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Abstract—The demand for real-time data storage in dis-
tributed control systems (DCSs) is growing. Yet, providing real-
time DCS guarantees is challenging, especially when more and
more sensor and actuator devices are connected to industrial
plants and message loss needs to be taken into account.

In this paper, we investigate how to build a shared memory
abstraction for DCSs as a first step towards implementing
different shared storage systems in a DCS context. We first
prove that, in the presence of host crashes and message
losses, the necessary guarantees of such an abstraction are
impossible to implement using a traditional approach that
has no access to the internals of existing DCS services, e.g.,
a modular approach where algorithms are built on top of
existing software blocks like failure detectors. We propose a
white-box approach that utilizes messages of existing services in
any DCS as the sole means of communication. More precisely,
we present TapeWorm, an algorithm that attaches itself to
the heartbeat messages of the failure detector component
in DCSs. We prove that TapeWorm implements the desired
shared memory guarantees for applications running on a
DCS. We also analyze the performance of TapeWorm and we
showcase ways of adapting TapeWorm to various application
needs and workloads.

Keywords-real-time distributed shared memory; probabilistic
losses; distributed control systems; failure detection;

I. INTRODUCTION

In multi-core machines, shared memory (at the hardware
level) constitutes the typical means of communication for
hosts (processes) [1]–[3]. In message-passing distributed
systems, however, hosts communicate by exchanging mes-
sages over a network. Hence, shared memory, in such
distributed systems, no longer physically exists but rather
becomes a distributed communication abstraction built using
message exchange and local memories of hosts [1]–[5].

A distributed shared memory abstraction constitutes a
basic building block for implementing networked storage
systems, distributed file systems and distributed key-value
stores. These distributed data services are undeniably de-
manded in distributed control systems (DCSs) [6]–[11].
For example, power grid DCSs require real-time distributed
storage systems (distributed hash tables) to store and re-
trieve monitoring data for wind and photo-voltaic generation
sources [6]; ship-board DCSs require distributed real-time
data services to be embedded within the ship [7], [8]; traffic
control and agile manufacturing require the presence of
distributed fresh data that reflects real-world status [7]–[10];
real-time execution platforms for DCSs, such as [11], rely on
real-time replicated data structures for maintaining system
and crash detection information.

In addition to its importance as a building block for
various data storage services, shared memory is of immense
benefit to application programmers in DCSs; programming
with shared memory is considered significantly easier than
working with message exchanges [2]. This programming
simplicity encourages having more control application pro-
grammers and limits programming errors. Also, algorithms
designed for shared memory in mind could thus be di-
rectly used in a message-passing context that provides the
distributed shared memory abstraction. In short, there is a
fundamental need to study real-time data abstractions, such
as shared memory, in DCSs.

To this end, we investigate in this paper how to build a
shared memory abstraction for DCSs. We first derive the
guarantees that need to be provided by read and write oper-
ations accessing shared memory in a DCS context [1]–[5];
such guarantees define the respective consistency level. We
show (Section II-D) that the needed requirements necessitate
the presence of all of the following properties: real-time
termination, agreement and freshness. Roughly speaking,
real-time termination means that each operation, be it a read
or a write, always completes in a bounded known duration.
Agreement ensures that read operations, issued within a
fixed known time-window to the same shared object, return
the same value. Freshness guarantees that any value returned
by a read operation is a value written by one of the last
completed “c” writes, where c is a fixed known number.

The necessary consistency level, captured by the three
aforementioned properties, is, however, challenging to im-
plement when accounting for host crashes and message
losses that can happen in a DCS. Control systems typically
experience host crash rates of about 10�5

/hr and link
failure rates (causing message loss) in the range of 10�5

/hr

(permanent failures) and 10�3
/hr (transient failures) [12],

[13]. In fact, we prove that the three properties listed
above are impossible to achieve using traditional ways for
implementing distributed shared storage [4], [8]–[10], i.e.,
using algorithms that do not have access to the internals
of DCS services, for example, a black-box approach where
algorithms are built on top of existing failure detector
software blocks (more details in Section III). Yet data storage
services for DCSs are imminently needed [6]–[10].

To circumvent this impossibility, we propose a white
box approach that utilizes existing services running within
DCSs [11], [14], namely failure detection. DCSs usually
employ failure detectors that provide means for detecting
host crashes in real time [14]–[18]. More specifically, failure
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detectors output a list of hosts suspected to have crashed.
Accordingly, DCSs employ recovery mechanisms requiring
to shift application-related tasks to be executed only by
those hosts which are not suspected to have crashed. In
this sense, the output of suspected hosts (if any exists),
even if these hosts have not actually crashed, is no longer
visible to applications [14]. Benefiting from this behavior,
we propose a solution that guarantees the DCS consistency
level (consisting of the three aforementioned properties) as
seen by the applications, and not necessarily within the set
of all non-crashed hosts.

We design TapeWorm, an algorithm that attaches itself
to the crash monitoring messages (heartbeats) typically
exchanged on a periodical basis to detect host crashes
in DCSs [11], [12], [14]. TapeWorm uses the underlying
heartbeats as the sole means of transporting information.
TapeWorm, thus, benefits from the real-time operation of
failure detectors in DCSs in the following sense. Crashed
hosts, based on the exchanged heartbeats, are always sus-
pected in real time (a deterministic guarantee) [14]–[18].
The speed of detecting crashed hosts (detection time) should
be fast enough to guarantee that applications can recover
from potential host crashes and still meet their deadlines.
TapeWorm, by using heartbeats as a transportation mecha-
nism, can have the leverage of reaching hosts that are not
suspected, providing services to such hosts in real-time.

We prove that Tapeworm indeed implements the required
three properties of shared memory among non-suspected
hosts. We show that TapeWorm can be adapted, if need
be, to provide real-time guarantees faster than those of
the failure detector it relies on. Precisely, TapeWorm can
be adapted to allow read operations to return fresher val-
ues in the allowable freshness range1. We also conduct a
mathematical analysis computing the probability distribution
on the freshness of the values returned by TapeWorm as
well as the respective incurred bandwidth cost. Our analysis
quantifies TapeWorm’s performance in terms of variable
system parameters, such as the size of the system and
the message loss rate. We also devise an optimization of
TapeWorm for static workloads, where the time at which
operations are invoked is known by all hosts in the system.

In summary, the main contributions of this paper are:
1) A first precise derivation of the necessary guaran-

tees that a shared memory abstraction must provide
in DCSs.

2) Theoretical proofs showing the impossibility of im-
plementing such guarantees using traditional ap-
proaches [4], [5], [8]–[10], e.g., using a black-box
approach.

3) TapeWorm, an algorithm that circumvents the above
impossibility by following a white-box approach di-
rectly utilizing failure detector algorithms of DCSs.

1The freshness of writes is guaranteed since writes are typically issued
for example by sensors on a periodical basis.
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Figure 1. A DCS with three hosts running two control applications.

TapeWorm implements the required shared memory
guarantees for applications running in a DCS.

4) A mathematical analysis quantifying the performance
of TapeWorm and showcasing ways of adapting
and optimizing TapeWorm respectively to application
needs and workloads.

The rest of the paper is organized as follows. Section II
details how a DCS operates and identifies the required
properties for a DCS shared memory abstraction. Section III
highlights the difficulty of implementing such properties by
proving two impossibility results. Section IV presents our
algorithm, TapeWorm, for implementing shared memory in
a DCS, proves TapeWorm’s correctness and shows how to
return fresher values using TapeWorm. Section V presents
an analysis of TapeWorm’s performance, precisely analyzing
the freshness of the values returned as well as the incurred
bandwidth. Section V demonstrates as well an optimization
of TapeWorm under static workloads. Section VI discusses
related work, while Section VII concludes the paper.

II. DCSS FOR CYCLIC CONTROL APPLICATIONS

A distributed control system (DCS) consists of a set
of n hosts (or processing units), denoted by ⇧ =
{h1, h2, ..., hn

}. As in any distributed system, these hosts
can fail (crash) [2], i.e., stop executing operations. The
rate of host failures in control systems is typically around
10�5

/hr [12], [13]. Hosts are considered to be synchronous,
i.e., the delay d

p

of performing a local step has a fixed
known bound. Hosts have access to local synchronized
clocks with bounded skew. Using these local clocks, hosts
define control cycles (rounds) of the same fixed duration.
The cycle duration is >> d

p

. These control cycles are time-
wise synchronized among all hosts, i.e., the start and end of
a cycle occur at all hosts at the same time (with a bounded
skew). Cycle lengths vary according to applications, e.g., 8-
10 ms for substation automation and low-level robot inter-
faces and up to 1 s for temperature-driven applications [19].

DCSs often execute control applications that are
cyclic [11], [20], [21], i.e., run periodically. For exam-
ple, an application might be required to periodically read
values from a sensor and to activate “intensive cooling
mechanisms” after t seconds of a machine exceeding a
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certain temperature threshold. Specifically, cyclic control
applications consist of several small tasks that repeatedly
execute. Some of these tasks run concurrently on several
hosts, possibly on behalf of different control applications
(see Figure 1). In every cycle, each host executes the tasks
assigned to it by the scheduler.

A. Scheduler
The scheduler is a distributed system module that specifies

which application tasks run on which hosts and in what order
(see Figure 1). The allocation of tasks to hosts is called
a configuration. A scheduler makes sure that all hosts can
execute the assigned tasks without exceeding the total cycle
duration. Moreover, the scheduler ensures that configurations
allow all applications to run correctly and to meet their
deadlines. Upon detecting the crash of a host, the scheduler
computes (taking into account the crashed host) a new
configuration, which maps tasks to hosts. This re-mapping of
tasks ensures that applications meet their deadlines despite
host crashes.

B. Communication
A pair of hosts in a DCS is connected by two logical uni-

directional links. Hosts h

i

and h

j

are connected by links l

ij

and l

ji

. Links, in this context, can abstract a physical bus
or a dedicated network link. Arguably, all communication
is prone to random disturbances, for example, bad channel
quality, interference, collisions, stack overflows etc [22].
Messages can thus be lost. When there is no loss, we assume
that messages have a bounded delay, say d. We specifically
consider that a message sent on link l

ij

, 8i 6= j, at any
time t has probability 0 < P

ij

(t) < 1 of getting lost.
Configurations computed by the scheduler account for the
message delay d. As such, any message scheduled to be sent
in a control cycle r, if not lost, is assumed to be received
in cycle r.

Sending a message reliably from one host to another,
however, can take an unbounded amount of time, due to
losses and the required follow-up re-transmissions.

C. Failure Detection and Monitoring in a DCS
A failure detector is a distributed module that runs on

every host and provides the DCS scheduler with information
about host crashes [23]. The most common monitoring
scheme used by failure detectors in DCSs dictates that each
host periodically, i.e., in every cycle, broadcasts a heartbeat
message of some structure2 [11], [12], [14], [25]–[27]. Based
on these heartbeats and using time-outs, a failure detector
monitors which hosts in the system have crashed and which
have not. As such, we consider, in this paper, failure detector
algorithms using heartbeats and time-outs alone.

Detecting crashes in real time in a DCS is crucial, for
instance, in order to allow the scheduler to re-map the tasks

2Different failure detection algorithms may send different information
within heartbeats [15]–[18], [24].

(initially assigned to the crashed host) to other hosts, with-
out violating application deadlines. Failure detection varies
depending on application needs, but is often expected to be
in the order of milliseconds. Since communication is prone
to losses, real-time failure detection using heartbeats and
time-outs cannot be always accurate [15]–[18], [28], [29].
Accuracy depicts a failure detector’s ability of not suspecting
correct hosts, i.e., hosts that do not crash. As such, at
any cycle r, a host can exist in one of the following sets
(assuming the fail-stop crash model [23], i.e., no recoveries):
Crashed hosts rC(r): this set includes all hosts that have
crashed at some cycle up to cycle r (included).
Eliminated hosts rE(r): this set includes all hosts that have
not crashed up to and including cycle r but are suspected
by the failure detector during cycle r.
Alive hosts rA(r): is the set of hosts that have not crashed
up to and including cycle r and are not suspected during r.

A scheduler considers all hosts belonging to the set
rA(r) functional at cycle r and computes configurations ac-
cordingly. All other hosts, i.e., hosts 2 {rE(r)SrC(r)},
are considered non-functional, and as such no application
tasks are allocated to execute on them [11] or their output
(if any exists) is made hidden from the applications [14].
Assuming no recoveries, if r < r

0, then rC(r) ✓ rC(r0).
The scheduler, being a distributed module executing on

every host (recall Figure 1), should maintain a consistent
state at all cycles. A consistent scheduler state is achieved
when the failure detector, at every host, suspects the same set
of hosts, and thus provides the scheduler module at every
host with the same set rA(r) 8 r [11]. An inconsistent
scheduler state means that hosts might be executing different
configurations (since hosts have different rA(r)). Different
configurations mean different mapping of tasks to hosts. In
other words, the DCS would be experiencing “downtime”
(normal operation is halted) since applications might be ex-
ecuting incorrectly (communication or the order of execution
between tasks of the same application might be invalid) [11].

D. Shared Storage Abstraction
Applications in distributed control environments require

shared memory functionalities [6]–[11], as application tasks
executing on different hosts may require to communicate by
reading and writing to shared memory. Shared memory can
be viewed as a collection of shared object abstractions. We
consider a DCS, as in [11], [30], where a single object is
assigned to every task that writes a value. As such, every
shared object in a DCS is a read/write object which can be
written to by a single host, however, it can be read from
by any number of hosts, i.e., single-writer multiple-reader
(SWMR) object [1]–[5] (see Figure 2). For simplicity, we
assume that a shared object is written to, once every cycle3.

3From the reader nodes’ perspective, multiple writes to an object in cycle
r, can be viewed as a single write, that being the last write in r which is
available for reads in cycle r + 1.
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Figure 2. An example of a shared memory (an object) in a DCS.

1) Properties of a DCS Shared Memory. We now deter-
mine the properties that should be satisfied by the read and
write operations issued to shared memory.

Termination. A DCS requires operations (read and
write), to complete within a bounded amount of time after
being invoked, say t

op

. When computing configurations,
the scheduler accounts for t

op

and assigns tasks to hosts
accordingly. Cycle durations are defined such that opera-
tions, with a delay of t

op

, complete and return in the same
cycle in which they were invoked. Having operations with
unbounded delay makes the scheduler’s job, of computing
configurations with a fixed cycle duration, impossible.

Read Agreement. Certain critical control applications,
e.g., those for power system control, require specific con-
sistency on the values being read by hosts in the same
cycle. Namely, read operations invoked in the same cycle
to the same shared object, upon completion, are required to
return the same value. To better illustrate the need for such
a requirement, consider a control application where hosts
are required to open or close circuit breakers based on the
values read from shared memory. If, in some cycle, two or
more hosts read different values of the same shared object,
these hosts might allow for undesirable power flows leading
to blackouts, overheating wires and creating islands [31].

Read Freshness. In a DCS, hosts requiring to read
shared memory can typically tolerate some freshness range
for the value being read. In other words, it is acceptable
if a read operation does not return the latest value written.
Such tolerance is typically supported by a DCS due to the
presence of failures, message losses, potential unanticipated
system delays, etc. More specifically, a read operation in-
voked by a host in some cycle, upon completion, is required
to return a value that is written at most c cycles ago. In
practice, the value of c is correlated with the reaction time4

needed by certain applications. Recall, that we assume that
every shared object is written to once every cycle.

To sum-up, the consistency of a DCS shared memory is
governed by three main properties, formally stated below:
Termination: Any operation invoked by a non-crashed host
completes in the same cycle in which it was invoked. The

4Reaction time is the time interval from the moment some value is written
until all hosts can read this value.

delay between the time an operation is invoked and the time
it completes is at most t

op

.
Agreement: In a given cycle, read operations to the same
shared object return, upon completion, the same value.
Freshness: A read operation invoked during cycle r, upon
completion, returns a value that is written at most c cycles
ago, if the writer host of that object is not suspected at r. If
the writer, however, is suspected at some cycle r

0, then all
reads invoked in cycles � r

0 return a value written at some
cycle in [r0 � c, r

0].
It is important to note that it is sufficient that services

in a DCS, such as shared memory, ensure their respective
properties at times when the scheduler state in the DCS
is consistent, i.e., when the scheduler at all non-crashed
hosts sees the same rA(r) 8 r. Ensuring shared memory
properties, in the absence of scheduler consistency is not
required, as the DCS would be down (unavailable to deliver
correct services).

In fact, production DCSs, such as [11], [30], adhere to
the architecture and mode of operation that we consider in
this paper. In fact our distributed shared memory abstraction
is inspired by the constraints and requirements governing
such industrial DCSs. Nowadays, application areas of pro-
grammable logic controllers (PLCs), DCSs and SCADA
overlap and include monitoring and control applications
for factory automation, substation automation and smart
grids [32].

2) Comparing with Classic Abstractions. We now com-
pare the aforementioned properties with those of classic
shared objects and related abstractions [4], [5], [7]–[9], [33].

Atomic Objects. Informally, the atomicity property re-
quires that each operation appears as if it was executed
instantaneously at some point in time, regardless of the
time taken by each operation to complete [4], [5]. Besides
atomicity, atomic objects also require that operations respect
their temporal order, basically, having reads return the last
written value. The properties of a DCS shared object,
however, require operations to complete in real time and do
not require reads to return the last value written but rather
return a value written within a bounded past duration from
the time a read is invoked.

Temporally Consistent Objects. Temporal consistency
represents the consistency level adopted in most real-
time distributed databases [7]–[9]. The temporal consis-
tency property is typically used to quantify the freshness
of replicated values among distributed hosts. Two objects
are said to be temporally consistent with each other if
their corresponding timestamps are within a known fixed
bound �. In this sense, the freshness property defined here
ensures temporal consistency among hosts in a DCS. Besides
temporal consistency, real-time databases require real-time
responses. Real-time response is similar to the termination
property defined in this paper. However, the termination
property for DCSs is strictly stronger as it requires op-
erations to complete within a bounded delay at all times
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rather than with high probability. The main difference is that
real-time distributed databases do not require the agreement
property defined above, essential in a DCS context.

Real-Time Reliable Broadcast. Since we consider
SWMR shared objects, we highlight the difference with
closely related abstractions like a reliable broadcast abstrac-
tion [33]. Roughly speaking, real-time reliable broadcast
requires a sent message to be delivered to all hosts or none
in some bounded time �. One main difference is that the
shared memory abstraction we define requires not only to
agree about the value to be delivered but on the time of
delivery as well. Hosts invoking reads in the same cycle
should deliver the same value; otherwise we do not require
agreement. This means that messages should be delivered
within a certain time bound after being sent, but more
importantly messages should be delivered within the same
cycle at all hosts (requiring to see that message). Another
difference is the fact that a real-time reliable broadcast alone
cannot ensure the freshness property; it is possible that every
message sent is delivered by no one.

III. FEASIBILITY OF IMPLEMENTING SHARED
MEMORY IN A DCS

We discuss, in what follows, the feasibility of implement-
ing a shared object, satisfying termination, agreement and
freshness, in a DCS. We first introduce the following lemma,
which we rely on in our proofs later in this section.

Lemma 1. Any algorithm that deterministically implements
the termination property implements “local” operations;
operations invoked by a host h

i

do not wait for responses
from any other host h

j

(8i 6= j) in order to complete.

Proof: By contradiction assume that an algorithm im-
plements termination and when a correct host h

i

(i.e., does
not crash) invokes an operation, h

i

waits for a reply from
at least one other host h

j

(i 6= j) in the system. Since cycle
durations are fixed, a host can hence send a finite number
of messages within a cycle, say m messages.

We compute in what follows the probability that host h
i

loses all m messages sent to it by any host h
j

in the system.
Recall that P

ji

(t) is the probability with which the link l

ji

loses a message at time t 8j 6= i. Let P

ji

(t \ t

0) be the
probability that l

ji

loses the messages (if any is sent) at
time t and time t

0. Since 0 < P

ji

(t) < 1 8t, then

0 < P

ji

(t) =
P

ji

(t \ t

0)

P

ji

(t0|t) < 1 8 t

0
, t. (1)

By (1), P
ji

(t0|t) > 0 (and 0 < P

ji

(t\t0) < 1). By induction,
we have P

ji

(t0|t, t1, ..., tx) > 0 8 t

0
> t, t

x

. Denote by B(t)
the event that l

ji

losses all messages (if any is sent) for the
interval t+�t, where �t is the control cycle duration. Let
t

x

denote the times at which h

j

sends a message in [t+�t].
Then the probability of B(t) happening is:

Pr(B(t)) = P

ji

(t1 \ t2 \ ... \ t

m

)

= P

ji

(t1)⇥ P

ji

(t2|t1)⇥ ...⇥ P

ji

(t
m

|t1, ..., tm�1) > 0.
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Figure 3. Different algorithmic families resembling traditional approaches
for building distributed shared memory.

Given 0 < P

ji

(t) < 1 8t and P

ji

(t0|t, t1, ..., tx) > 0
8 t

0
> t, t

x

, then we have 0 < Pr(B(t)) < 1; there is
a positive probability that h

i

receives no reply from h

j

and
thus the invoked operation does not complete in any bounded
cycle duration where a bounded number of messages can be
sent by a host, which violates termination.

We now define and distinguish between different algorith-
mic families; these algorithmic families resemble traditional
approaches for building distributed shared memory [1]–[5].

Autonomous Algorithms. These algorithms can only
exchange messages using the lossy links of the DCS and use
the available local synchronized clocks. In other words, these
algorithms do not use any external building blocks (abstrac-
tions) but implement themselves all needed functionalities,
thus the name autonomous.

The scheduler is oblivious to algorithms in this family;
the scheduler does not adapt its behavior to the algorithm’s
decisions, i.e., changes to the algorithm result in no impact
on the scheduler (Figure 3).

Opaque Algorithms. These algorithms can use, in addi-
tion to message exchange and local clocks, a failure detector
as a black-box [23]. Roughly speaking, this means that
opaque algorithms can observe the output of failure detectors
and build on top of this output and the properties that this
output satisfies (Figure 3). Different failure detector classes
can be defined depending on the properties guaranteed by
the output of the failure detector. Recall that we consider the
output of a failure detector to be a list of suspected hosts.

The scheduler is not oblivious to the failure detector used,
however, both the scheduler and the failure detector are
oblivious to the algorithms in this family. It is important
to note that algorithms in this family are not a subset
of autonomous algorithms, since implementing the failure
detector itself may not be possible via message exchange
and local clocks.

Theorem 1. No autonomous algorithm can deterministically
implement termination and freshness in a DCS, where up to
n-2 hosts can fail.

Proof: By contradiction, assume the existence of an
autonomous algorithm A that deterministically implements
termination and freshness. A cannot know which hosts are
seen as “non-suspected” by the scheduler and thus should
guarantee freshness for any non-crashed host.

5



For illustration, we consider a DCS of two correct hosts
h1 and h2. By Lemma 1, operations (reads and writes)
satisfying termination in A complete without waiting for
any reply from any host. Hosts in A, however can exchange
messages to ensure freshness. Consider host h1 to be the
writer of a shared object O, i.e., h1 invokes write operations
to O at every cycle.

Similar to the reasoning in the proof of Lemma 1, we
compute the probability that all messages sent from and to
h1 are lost for ↵ · c cycles 8 ↵ � 1.

Let P21(t\t0) (P12(t\t0)) be the probability that l21 (l12)
loses the messages (if any is sent) at time t and time t

0.
0 < P21(t), P12(t) < 1 8t, then:

0 < P21(t) =
P21(t \ t

0)

P21(t0|t) , P12(t) =
P12(t \ t

0)

P12(t0|t) < 1 8 t

0
, t.

(2)
By (2), P21(t0|t) > 0 (0 < P21(t \ t

0) < 1) and
P12(t0|t) > 0 (0 < P12(t \ t

0) < 1). By induction, we
have P21(t0|t, t1, ..., tx) > 0 and P12(t0|t, t1, ..., tx) > 0
8 t

0
> t, t

x

. Denote by R(t) (S(t)) the event that l21 (l12)
loses all messages (if any is sent) for the interval t + �t,
where �t is such that t+�t is equal to the duration of ↵ ·c
cycles. Let m (m0) be the maximum number of messages
h1 (h2) can send in t + �t and t

x

(t0
x

) denote the times
at which a message is sent from (to) h1 during [t, t +�t].
Then the probabilities of R(t) and S(t) happening is:

Pr(R(t)) = P21(t1 \ t2 \ t3 \ ... \ t

m

)

= P21(t1)⇥ P21(t2|t1)⇥ ...⇥ P21(tm|t1, ..., tm�1) > 0.

P r(S(t)) = P12(t
0
1 \ t

0
2 \ ... \ t

0
m

)

= P12(t
0
1)⇥ P12(t

0
2|t01)⇥ ...⇥ P12(t

0
m

|t01, ..., t0m�1) > 0.

Given 0 < P21(t), P12(t) < 1, P21(t0|t, t1, ..., tx) >

0 and P12(t0|t, t1, ..., tx) > 0 8 t

0
> t, t

x

, then
0 < Pr(S(t)), P r(R(t)) < 1.

Consider some cycle r. The probability that all messages
from and to h1 get lost and thus all writes invoked by h1

during cycles [r, r + ↵ · c] are not seen by h2 is:

Pr(S(t) \ R(t)) = Pr(S(t)) · Pr(R(t)|S(t)).
Since 0 < Pr(S(t)) < 1, then 0 <

Pr(S(t)\R(t))
Pr(R(t)|S(t)) < 1 and

0 < Pr(S(t) \ R(t)) < 1.
Thus, h2 invoking a read operation to read the value O,

for example at cycle r+ c+1, has a positive probability of
reading a value that is not written c cycles ago, violating
freshness. Recall that, by the termination property, every
read operation should complete and return a value within
the same cycle in which it was invoked.

We now define what we call a non-trivial failure detector.

Definition 1. A non-trivial failure detector5 does not suspect
a correct host, at any point in time, with positive probability,
while it eventually suspects all failed hosts permanently.

5A failure detector providing more accurate information about correct
hosts in the system is only a special case of a non-trivial failure detector.

Theorem 2. Let rA(s) denote the set of hosts which are
not suspected by a non-trivial failure detector X during
cycle s. No opaque algorithm using X can deterministically
implement termination and freshness for hosts 2 rA(s) 8s,
in a DCS, where n-2 hosts can fail.

Proof: An opaque algorithm can observe the output of
the failure detector X and hence can know rA(s), the set of
hosts that are not suspected by X during cycle s. Consider a
host h

i

to be the writer of a shared object O, i.e., h
i

invokes
write operations to O at every cycle.

Consider an execution where h

i

and some other host h
j

(which requires to read the value of O after cycle r + c)
are correct. Then from Definition 1, there is a positive
probability that {h

i

, h

j

} 2 rA(s), 8s 2 [r, r + ↵c] at
hosts h

i

and h

j

.
Similar to the proof of Theorem 1, it can be inferred that

there is a positive probability that all writes invoked by h

i

during [r, r+↵c], are not seen by host h
j

(all messages sent
by h

i

during [r, r+↵c] can be lost with positive probability).
As such, all reads invoked by h

j

after cycle r + c do not
return a fresh value. This concludes the proof.

IV. TAPEWORM: A DCS SHARED MEMORY ALGORITHM

In this section, we demonstrate a way to circumvent
the impossibilities shown in Section III. We present Tape-
Worm, our algorithm for implementing shared memory in
DCSs. The main idea underlying TapeWorm is to benefit
from monitoring messages (known as heartbeats) typically
exchanged by the failure detector component of a DCS,
precisely by attaching information to these messages. Recall
from Section II-C that we consider failure detectors that
detect host crashes in real time, based only on the exchanged
heartbeat messages and time-outs. Accordingly, the below
is a necessary condition for any such failure detector that
detects crashed hosts in a delay less than d

t

cycles after the
crash (8d

t

).
Real-time detection: If a host h

i

does not hear any of
the heartbeats sent by host h

j

during [r � (d
t

� 1), r � 1]
(directly from h

j

or indirectly via other hosts), h
i

suspects
h

j

at the beginning of cycle r.
This suspicion places h

j

in the eliminated set of hosts
rE . d

t

is fixed and constitutes the real-time guarantee for
detecting a crashed host in the DCS.

A. A Basic TapeWorm Algorithm
For simplicity, we describe TapeWorm (Algorithm 1) in

the context of a single shared object O. Recall that d
t

is an
upper bound on the number of cycles it takes a failed host
to be declared as failed by the system (precisely suspected
by the failure detector). We assume that c > d

t

, c being the
bound on the data freshness.

Every host in TapeWorm maintains a list, Fresh

list

, of
size c. Fresh

list

of a host h at cycle r holds the values
of O seen by h and tagged with cycles in [r � c, r]. Later
in Section IV-A, we show that it is sufficient for Fresh

list

6



Algorithm 1 A Basic TapeWorm Algorithm.
1: Initialize:
2: set Freshlist = {?}c
3:
4: Repeat periodically:
5: broadcast < heartbeat,Freshlist, id >
6:
7: upon event receive < heartbeat,Fresh0list, id

0 > do
8: set Freshlist = Fresh0

list

S
Freshlist

9:
10: upon event write < v, cycle > do
11: updatelist< v, cycle >
12:
13: upon event read < cycle > do
14: if (cycle < c) then
15: return ?
16: end if
17: if (< ⇤, cyc >2 Freshlist : cyc = max {cyc  cycle� dt})

then
18: return < ⇤, cyc >
19: end if
20: return < ⇤, cyc >2 Freshlist : cyc = max cyc
21:
22: Function update list(< v, cycle >):
23: set Freshlist = Freshlist

S
< v, cycle >

24: remove < ⇤, cycle� c� 1 > from Freshlist

to hold values of O seen by h and tagged with cycles in
[r � d

t

, r].
Consider h

w

to be the host that writes to O (recall that
any object is written to by a single host). Upon invoking a
write to object O with a value v at cycle r, h

w

updates its
Fresh

list

, by adding the tuple < r, v > and deleting the
tuple tagged with control cycle r � c� 1. After this step, a
write completes.

A host h that invokes a read operation to object O at
cycle r, consults its Fresh

list

. Host h returns the value
tagged with the largest cycle number, say max

cycle

, such
that max

cycle

 r � d

t

. After this step the read invoked
by h completes. If no such value exists, then a read returns
the value tagged with the largest cycle within Fresh

list

.
Initially, for the first c cycles, reads return ?, the initial value
of O (assumed to be known by all hosts) and completes.

Every host h benefits from the underlying heartbeats
sent in the DCS by piggybacking Fresh

list

(h) on these
heartbeats. We consider that heartbeats are scheduled to be
exchanged towards the end of a control cycle, i.e., after all
invoked operations during a cycle have completed. A host
h

i

, upon receiving a heartbeat during cycle r from host h
j

,
updates its Fresh

list

(h
i

) to:

Fresh

list

(h
i

) = Fresh

list

(h
i

)
[

Fresh

list

(h
j

),

for all values tagged with control cycles in [r, r � c].

Proof of Correctness.
We now prove the correctness of our TapeWorm algorithm.
Termination: Both read and write operations in TapeWorm

complete after performing a bounded number of local oper-
ations which requires a bounded amount of time and thus
constitutes the required t

op

. Termination is hence satisfied.

Agreement and freshness: Recall that it is sufficient to
guarantee the shared memory properties when the scheduler
state is consistent (Section II-D). The scheduler is consistent
when all hosts 2 rE(r)SrA(r) at any cycle r agree on
which hosts are in rA(r + 1) during cycle r + 1 (see
Section II-C). Given that the scheduler state is consistent,
we have the following:

Lemma 2. For any host h 2 rA(r), i.e., belonging to
the set of non-suspected hosts at cycle r, all hosts in
{rE(r� 1)

SrA(r�1)} have heard (directly or indirectly)
a heartbeat sent by h during some cycle in [r�(d

t

�1), r�1].

Proof: By the real-time detection property, a crashed
host is declared failed (suspected) in less than d

t

cycles
after the crash. Consider a DCS of two hosts h1 and h2 and
consider the following two executions:

• e1 : an execution where h2 crashes during cycle r �
(d

t

� 1) before h2 sends any heartbeats.
• e2 : an execution where h1 and h2 are both correct (do

not crash) but lose all heartbeats sent (if any) during
all cycles in [r � (d

t

� 1), r � 1].
Execution e2 can happen with positive probability as

shown in the proof of Lemma 1. With respect to h1,
executions e1 and e2 are indistinguishable during [r� (d

t

�
1), r � 1], for any finite value of d

t

(since h1 cannot know
if h2 has failed or all messages from h2 are lost).

By the real-time property of failure detection, h1 suspects
h2 in execution e1 at cycle r. Since e1 and e2 are indistin-
guishable during [r � (d

t

� 1), r � 1] then h1 suspects h2

as failed at cycle r also in e2. So, in order for h2 not to be
suspected at cycle r by h1, h1 has to hear (directly or indi-
rectly) at least one heartbeat sent by h2 during some cycle
in [r� (d

t

� 1), r� 1]. Since the scheduler state is assumed
to be consistent, then all hosts 2 rE(r � 1)

SrA(r � 1)
have heard (directly or indirectly) a heartbeat sent by host
h

i

, at some cycle in [r� (d
t

� 1), r� 1], 8h
i

2 rA(r).

Lemma 3. Let h be the host that writes to the shared
object O. If h 2 rA(r), then all hosts 2 rE(r �
1)

SrA(r � 1) have in their Fresh

list

the value written
by h at cycle r � d

t

.

Proof: By Lemma 2, if h 2 rA(r), then all hosts
2 rE(r�1)

SrA(r�1) have heard (directly or indirectly)
a heartbeat sent by host h at some cycle in [r�(d

t

�1), r�1].
All heartbeats sent by h at some cycle in [r�(d

t

�1), r�1]
contain the value written by h at cycle r � d

t

, since (i)
heartbeats are exchanged towards the end of a cycle (after
operation in that cycle have completed) and (ii) h always
appends to its heartbeats Fresh

list

(h), which contains all
values written by h in cycles [r � c, r], where d

t

< c.
In fact, it can be noticed that it is sufficient to only send
Fresh

list

(h) containing values of O written by h in cycles
[r � d

t

, r].
Since every host 2 rE(r � 1)

SrA(r � 1) has heard
(directly or indirectly) a heartbeat sent by host h 2 rA(r) at
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some cycle in [r�(d
t

�1), r�1], then every host has received
from some host h

i

a Fresh

list

(h
i

) containing the value of
object O written at cycle r � d

t

. The reason is that any
host h

j

receiving Fresh

list

(h
i

) performs: Fresh

list

(h
j

) =
Fresh

list

(h
i

)
S
Fresh

list

(h
j

), concluding the proof.
By Lemma 3 and the algorithm description, if h, the writer

host of some object O is not suspected at cycle r, then all
hosts invoking a read to O during r return the value written
at cycle r � d

t

, which satisfies agreement and freshness
since c > d

t

.
If, however, h is suspected as crashed at cycle r, then by

Lemma 2 and Lemma 3 all hosts 2 rE(r�1)
SrA(r�1)

have last heard (directly or indirectly), the heartbeat sent by
h during cycle r � d

t

(otherwise h would suspected at a
cycle < r). This heartbeat contains the value written by h

at cycle r� d

t

. No other heartbeats are heard from h (since
otherwise h is suspected at cycle > r). The value tagged
with r� d

t

hence has the highest cycle and is thus returned
by any host issuing reads during cycles � r, which satisfies
both agreement and freshness, as c > d

t

. TapeWorm hence
guarantees agreement and freshness when h is not suspected
and when h is. Note that from the proof of Lemma 3, it is
sufficient that Fresh

list

of hosts is of size d

t

and not c.

B. A Fresher TapeWorm Algorithm
In this section, we depict how TapeWorm can be modified

such that read operations return fresher values, within the
defined freshness interval. In other words, we describe how
reads invoked in TapeWorm at cycle r can return values
written at cycles in [r � c, r], precisely in [r � s, r] where
s < d

t

.
Every host in TapeWorm has a list, Fresh

list

, that holds
at cycle r the values of O seen by h and tagged with control
cycles in [r� c, r]. For every value in Fresh

list

(h), h now
keeps a list of host ids, called seen

cycle#, and for each host
id in seen

cycle# a list called seenby

id

.
Upon invoking a write, with a value v, to object O at

cycle r, h
w

(the host writing to O) appends its id to seen

r

,
besides updating its Fresh

list

as described in Section IV-A.
After this step, a write completes.

Every host h piggybacks its Fresh

list

(h), seen

cycle#

and seenby

id

lists to the heartbeats. Upon receiving a
heartbeat at cycle r from host h

j

, a host h

i

updates its
Fresh

list

(h
i

) to:

Fresh

list

(h
i

) = Fresh

list

(h
i

)
[

Fresh

list

(h
j

),

for all values tagged with control cycles in [r, r � c].
For every value tagged with cycle r

0 such that r

0 is in
Fresh

list

(h
j

) but not in Fresh

list

(h
i

), h

i

adds its id to
seen

r

0(h
i

). Afterwards, for every value tagged with cycle#
in the newly computed Fresh

list

(h
i

), h
i

performs:

seen

cycle#(hi

) = seen

cycle#(hi

)
[

seen

cycle#(hj

),

and for every host h
k

(k 6= j) in the new seen

cycle#(hi

):

seenby

hk(hi

) = seenby

hk(hi

)
[

seenby

hk(hj

).

For h
j

in the new seen

cycle#(hi

), h
i

performs:

seenby

hj (hi

) = seenby

hj (hi

)
[

seen

cycle#(hj

).

A host h that invokes a read operation to object O at
cycle r, consults its Fresh

list

(h) and returns the value
tagged with the largest cycle, max

cycle

> r� d

t

, satisfying
both properties below:

1) seen

maxcycle contains the ids of all hosts that are not
suspected in cycle r + 1.

2) For every host h
k

in seen

maxcycle , seenby
hk(h) con-

tains the ids of all hosts not suspected in r + 1.
The above two properties state that a host h returns a value

at cycle r, if h knows that (i) every host in rA(r + 1)
(non-suspected hosts at cycle r + 1) has seen that value
and (ii) every host in rA(r + 1) knows that every other
host in rA(r + 1) has seen that value. After this step the
read invoked by h completes. If no such value exists, then a
read returns as it would do in the basic TapeWorm algorithm
described in Section IV-A. As such, the correctness of this
fresher TapeWorm follows from that of the basic version.

V. PERFORMANCE ANALYSIS

In this section, we analyze certain aspects of TapeWorm’s
performance. We specifically determine (a) the probability
distribution of the values returned by read operations in
the allowable freshness range, i.e., [cycle

read

�c, cycle

read

]
where cycle

read

is the cycle in which a read operation is
invoked, (b) the bandwidth overhead of TapeWorm, and (c)
optimizations of TapeWorm for static workloads.

A. The Freshness of Values Seen by Hosts
Recall that heartbeats, to which TapeWorm attaches infor-

mation, are exchanged at the end of a cycle, after all tasks
are executed. In other words, read and write operations get
invoked and complete at a cycle r before the heartbeats at cy-
cle r get exchanged. For simplicity, we consider P

ij

(t) = p

8i, j and t. In other words, a message sent at any time and
on any link has probability p of getting lost, where p is the
same for all links and is independent of time and links. We
study the fresher TapeWorm version depicted in Section IV-B
assuming that the writer host is correct, i.e., does not crash.

Assume that for all cycles in [r + 1, r + d

t

]:

rA(r + 1) = rA(r + 2) = ... = rA(r + d

t

) = rA,

i.e., the set of non-suspected hosts remains the same. We
now compute the probability that a read, in TapeWorm, to a
shared object O at any cycle in [r+1, r+d

t

] returns the value
of O written at cycle r. In the fresher TapeWorm version, a
read to O invoked at cycle r+1, returns the value written at
cycle r with probability 0. This is due to the following fact:
a host h sends its heartbeats at cycle s before it receives any
heartbeats that some other hosts sent during s.

A read to O at cycle r + 2, returns the value written at
cycle r with probability (1� p)|rA|2(|rA|�1)

.
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For reads invoked at cycle cyc 2 [r + 3, r + d

t

� 1]: the
probability that a read at cycle cyc returns the value of O
written at cycle r can be approximated by the probability
that each host in rA hears (directly or indirectly) from every
other host in rA by cycle cyc � 2, after which every host
in rA hears the heartbeat of every other host in rA. Let h
be a host in rA. We denote by ⇡

h

(cyc) the set of hosts in
rA that received a heartbeat from h (directly or indirectly)
at some cycle in [r + 3, r + cyc � 3] and by ⇡

h̄

(cyc) the
set of hosts in rA that did not receive a heartbeat from h

(directly or indirectly) at some cycle in [r+3, r+ cyc� 3].
The probability that at cycle cyc � 2 not all hosts in rA
hear from h is equal to the probability that at least one host
in ⇡

h̄

(cyc) does not receive a heartbeat from any host in
⇡

h

(cyc) in cycle cyc� 2:

Prob(|⇡
h̄

(cyc)|)⇥
|⇡h̄(cyc)|X

x

✓|⇡
h̄

(cyc)|
x

◆
[(1� p)|⇡h(cyc)|]x[1� (1� p)|⇡h(cyc)|]|⇡h̄(cyc)|�x

,

where Prob(⇡
h̄

(cyc)) is the probability that |⇡
h̄

(cyc)| hosts
do not hear (directly or indirectly) from host h any heartbeat
by cycle cyc� 3. Thus, the probability that a read at cycle
cyc returns the value of O written at cycle r is:

(1� p)|rA| ⇥
Y

8h2rA
1� Prob(|⇡

h

(cyc)|)⇥

|⇡h̄(cyc)|X

x

✓|⇡
h̄

(cyc)|
x

◆
[(1� p)|⇡h(cyc)|]x[1� (1� p)|⇡h(cyc)|]|⇡h̄(cyc)|�x

.

A read to O invoked at cycle r+d

t

, returns the value written
at cycle r with probability:

1�(1� p)|rA|(|rA|�1) �
r�dt�1X

cyc=r+3

(1� p)|rA|
Y

8h2rA
1� Prob(|⇡

h

(cyc)|)⇥

|⇡h̄(cyc)|X

x

✓|⇡
h̄

(cyc)|
x

◆
[(1� p)|⇡h(cyc)|]x[1� (1� p)|⇡h(cyc)|]|⇡h̄(cyc)|�x

.

B. Bandwidth overhead of TapeWorm
Hosts in TapeWorm do not send additional messages.

However, hosts append information to heartbeats. In this sec-
tion, we quantify the size of information being piggybacked
to heartbeats. Every host in TapeWorm saves c values of
object O relative to the last c values written to O. In fact,
it is sufficient for hosts to keep the last d

t

< c values of
O, as shown in Section IV-A. These values constitute the
Fresh

list

.
Consider that shared memory consists of x shared objects

each capable of storing a value of m bits. The basic
TapeWorm algorithm of Section IV-A incurs a bandwidth
overhead of d

t

· x · m bits/cycle per link. This overhead
is relative to having each host attach the Fresh

list

to the
heartbeat sent by that host every cycle.

In the fresher TapeWorm algorithm of Section IV-B a
host sends, in addition to the Fresh

list

, the seen

cycle# and
seenby

id

lists. The information in these two lists can be
represented by an n ⇥ (n+ 1) binary matrix, where n is

the total number of hosts in the system. The first column of
this matrix represents information relative to the seen

cycle#

list, and each row, excluding the first position, represents
the information relative to seenby

id

list. A compact way of
representing this matrix is to traverse the bits column by
column (or row by row) and represent the binary data in
ASCII format. The result incurs an additional overhead of
n(n+1)

8 bits/cycle, per link compared to the basic TapeWorm.
Existing known failure detection and membership algo-

rithms in control systems and real-time environments already
implement an all-to-all broadcast mechanism for sending
heartbeats and monitoring hosts [11], [12], [14], [25]–[27].
Often, these systems use Ethernet packets over UDP [11],
[12], [25], [26] to send heartbeats. Classic heartbeats occupy
only a very small fraction of the allowable minimum payload
of an Ethernet packet (minimum UDP payload is 18 bytes).

Since TapeWorm only appends information to heartbeats,
part of or maybe all information relative to TapeWorm
(depending on the system and shared storage size) can be
sent without any additional overhead by utilizing the unused
payload of heartbeat messages.

C. DCS Shared Memory: Necessary & Sufficient Conditions

In this section, we determine the necessary and sufficient
conditions for implementing the three properties of shared
memory in a DCS (defined in Section II-D).

We recall sufficient assumptions that define the family
of algorithms to which TapeWorm belongs; we refer to this
family of algorithms as Parasite Algorithms:

1) Hosts can exchange messages or append information
to heartbeats exchanged over the DCS links. Precisely,
in every cycle, each host either appends or does not
append information to the heartbeat broadcasted in that
cycle. Hosts have access to local synchronized clocks.

2) Hosts get suspected according to the real-time detec-
tion property: if a host h

i

does not hear any of the
heartbeats sent by host h

j

during [r� 1, r� (d
t

� 1)]
(directly from h

j

or indirectly via other hosts), h

i

suspects h

j

at the beginning of cycle r.

Theorem 3. A necessary condition for a parasite algorithm
to deterministically implement termination, agreement and
freshness in a DCS is:

Every host h appends, to every heartbeat sent in
[r� 1, r� (d

t

� 1)], any value of object O written during
a cycle 2 [r � c, r], if h knows of any such value (where
r + 1 is the cycle during which a read operation is in-
voked by some host).

Proof: Let r+1 be the cycle at which a read to object O
is invoked by some host. To prove Theorem 3, we prove that
if some host h, be it a writer or a reader, knows a value of O
written during some cycle 2 [r� c, r] and does not append
any such value to some heartbeat sent in [r�1, r�(d

t

�1)],
one of the three properties is violated.
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Consider a DCS with three hosts h1, h2 and h3 sharing
an object O, where h1 is the writer of O. Also assume that
at cycle r + 1 = c + 1, both h2 and h3 invoke a read to
O. To satisfy agreement and freshness, these reads should
return the same value, that being a value written earliest at
cycle 1.

For illustration consider c = d

t

+ 1. In this case, since
r+1 = c+1, a host h by Theorem 3 should append values
of O to every heartbeat sent at all cycles 2 [3, c].

Case 1: h is the writer.
Assume that h1 decides not to append any information to

the heartbeat it broadcasts at some cycle r

0 2 [3, c]. Consider
an execution e satisfying all the below:

1) All three hosts are correct, i.e., no host fails.
2) Both h2 and h3 lose all heartbeats sent by h1 at all

cycles in [1, r0[
S

]r0, c]. However, h2 and h3 both
receive the heartbeat sent by h1 at r0.

3) h1 and h2 receive all the heartbeats sent by h3 during
all cycles in [1, c].

4) h1 and h3 receive all the heartbeats sent by h2 during
all cycles in [1, c].

Execution e can happen with positive probability (since
each host broadcasts a heartbeat at every cycle and every
sent heartbeat has a positive probability of being lost). In
execution e, the failure detector at the beginning of cycle
c + 1, at all hosts, includes h1, h2 and h3 in rA, since
every host heard some heartbeat sent from every other host
during the past d

t

�1 cycles, i.e., in [3, c]. However, h2 and
h3 do not see any value for O besides ?, the initial value
(prior to any write); h2 and h3 only receive the heartbeat
sent by h1 at cycle r

0 and this heartbeat has no values of
O appended to it. As such, a read at cycle c + 1 invoked
by either h2 or h3 and satisfying termination completes and
returns ? during c+1, which violates the freshness property.
Case 2: h is a reader.

Assume now that h2 does not append any value to the
heartbeat it broadcasts at some cycle r

0 2 [3, c]. Consider
an execution e

0 satisfying all the below:
1) All three hosts are correct.
2) h3 loses all heartbeats sent by h1 at all cycles in [1, c].
3) h2 receives all heartbeats sent by h1, and h1 receives

all heartbeats sent by h2 at all cycles in [1, c].
4) h3 loses the heartbeats sent by h2 at all cycles in

[1, r0[
S

]r0, c], but receives the heartbeat sent by h2

at cycle r

0 2 [3, c].
5) h1 and h2 receive all the heartbeats sent by h3 at all

cycles in [1, c].
Execution e

0 can happen with positive probability (since
messages can be probabilistically lost). In e

0, the failure
detector at the beginning of cycle c + 1, at all hosts,
can include h1, h2 and h3 in rA, since every host can
hear (directly or indirectly) some heartbeat sent from every
other host during the past d

t

� 1 cycles, i.e., during [3, c].

Specifically h3 can hear the heartbeat of h1 indirectly via
the heartbeat received from h2 at cycle r

0.
However, since h2 did not append any value for O at

cycle r

0, h3 does not see any value for O besides the initial
value ?. Note that h2 knows values of O since it receives
heartbeats from h1 (h1 is the writer of object O and appends
values of O to all the sent heartbeats). As such, a read
at cycle c + 1 invoked by h3 and satisfying termination
completes and returns ? during c + 1, which violates the
freshness property.

Theorem 4. Consider that non-crashed hosts agree on the
set rA(r), such that the writer of a shared object O
belongs to rA(r). Then a sufficient condition for a parasite
algorithm to deterministically ensure termination, agreement
and freshness in a DCS, given a single object O to which a
read operation is invoked by some host at cycle r, is:

Each host appends any value of the shared object written
at some cycle in [r� c, r� d

t

] (if this host has seen such a
value) to every heartbeat sent during all cycles in [r�d

t

, r].

Proof: Consider a DCS of three hosts h1, h2 and h3.
Also consider h1 to be the host that writes to O.

Let r be the cycle at which some host invokes a read to
O and let v denote the value that h1 writes to O at cycle
r � d

t

.

Lemma 4. Consider that every host appends v (whenever
it has received v) to every heartbeat sent during all cycles
in [r � d

t

, r], where r is the cycle during which some host
invokes a read operation to that shared object. Given that
hosts agree on the set rA(r), all non-crashed hosts at cycle
r have v.

Proof: Upon receiving a write to object O at cycle
r � d

t

, h1 saves v and then completes, i.e., the write at
h1 locally returns before h1 sends any heartbeat at r � d

t

.
h1 hence appends v to all the heartbeats it sends in cycles 2
[r � d

t

, r] (since h1 has v). Agreeing about rA(r), where
h1 2 rA(r), means that all hosts in {rE(r)SrA(r)}
have heard (directly or indirectly) a heartbeat sent by h1

during some cycle in [r � d

t

, r]. Every host that hears v,
appends v to every heartbeat it sends in [r � d

t

, r]. This
implies that every host in {rE(r)SrA(r)}, which was
able to hear (directly or indirectly) a heartbeat from h1, has
received the value v.

By Lemma 4 all non-crashed hosts at cycle r would have
received v. Any host that invokes a read at r can thus always
complete after locally returning v, the value of O written at
cycle r � d

t

, deterministically. Readers and writers locally
return satisfying termination. All readers at cycle r return v,
thus satisfying agreement and freshness (since c > d

t

).

D. Optimizing TapeWorm under Static Workloads

We have assumed, so far, that read operations can be
invoked at any cycle and this invocation time in not known.
As such, in both versions of TapeWorm, the basic and the

10



fresher, information about a shared object is appended to
heartbeats of every host at every cycle. Based on the results
of Section V-C, we investigate optimizing (i) the rate of
appending information to heartbeats and (ii) the number of
hosts that need to append information to heartbeats in every
cycle.

When workloads are static, i.e., hosts know the cycle at
which read operations are invoked, then TapeWorm under
certain assumptions can be optimized, in the sense that hosts
do not need to append information on all heartbeats sent at
all control cycles. Precisely, from Theorem 3 and Theorem 4,
satisfying the three properties of shared memory requires
two things: (i) all non-faulty hosts append information on
every heartbeat only for a fixed time interval (d

t

cycles)
before the invocation of a read operation, and (ii) the writer
host does not get suspected during that interval of d

t

cycles.
This can be interpreted as follows. Let r be the cycle

at which some host invokes a read operation to object O.
In static workloads, r is known by TapeWorm. Hosts in
TapeWorm can now append information to heartbeats sent
only during d

t

cycles prior to r. This optimization is valid
under the assumption that the writer host of the object O can
communicate (directly or indirectly) with all non-crashed
hosts during that interval.

VI. RELATED WORK

Sharing memory in real time has been addressed in
various contexts, ranging from architectural design and
synchronization for real-time shared memories in multi-core
machines [34], [35] to real-time replicated databases [7]–
[9] and distributed memory. In this section, however, we
focus on previous related work in distributed environments
(similar to DCSs) rather than on works (i) on architectural
memory designs or (ii) on accessing physical shared memory
in multi-core machines in real time.

Aslinger and Son [9] presented two algorithms for
database replication, each targeting a different data work-
load. The first algorithm is developed for non-static periodic
workloads and ensures that replicas are updated at the
minimum required rate. The second algorithm is designed
for random workloads and adaptively changes the update
policy of replicas based on previously observed data pat-
terns. Both algorithms aim at increasing the scalability
of real-time databases. Peddi and DiPippo [8] proposed a
database replication algorithm for static periodic workloads,
where all object locations and client data requirements are
known a priori. The algorithm creates transactions from the
operations issued to the database objects and feeds these
transactions to a scheduling algorithm. If a schedule that
meets all deadlines can be computed, then all read opera-
tions guarantee to return a fresh value (satisfying temporal
consistency). Otherwise, the system specification must be
reconsidered. Wei et al. [7] use a full replication mecha-
nism to ensure data freshness of committed transactions in
medium distributed databases (5 to 10 nodes). The algorithm

consists of local heuristic feedback controllers and global
load balancers. The local controllers manage the admission
of incoming workloads, while the global balancers collect
performance data from all sites and balance the workloads.

In contrast to [7]–[9], in our paper we consider message
losses in addition to node failures. Overcoming the effect
of message losses and meeting the requirements of shared
memory in a DCS is highly non-trivial, as we show that it
is impossible to be achieved (Section III) without the aid of
heartbeats and without requiring real-time crash detection.

Zou and Farnam [10] presented a real-time primary-
backup replication scheme. The proposed scheme enforces
temporal consistency (defined in Section II-D) among data
replicas and determines the corresponding rate at which
update messages should be sent from the primary to the
backup. Zou and Farnam [10] also discussed message
losses. The authors assumed that messages can be lost with
probability ⇢, and denoted by P the probability of the
temporal consistency desired to be achieved. Their solution
to message losses, as such, dictates to increase the frequency
of sending update messages from the primary to the backup
to guarantee the required probability P .

In contrast to [10], we seek in our paper to determin-
istically guarantee the consistency of operations issued to
a shared object, given system agreement regarding which
hosts are considered alive. Recall that those alive hosts are
the ones that participate in executing tasks.

Xiong at al. [36] proposed MIRROR, a concurrency
control algorithm for real-time replication control. MIR-
ROR augments the optimistic two-phase locking (O2PL)
algorithm with a state-based conflict resolution mechanism.
The choice of the conflict resolution method is a dynamic
function that either uses Priority Abort or Priority Blocking
depending on the states of the transactions involved in the
conflict. In Priority Abort, a conflict is resolved for the favor
of the transaction with higher priority (by aborting a lower
priority transaction currently holding the lock or blocking
the lower priority transaction trying to acquire a lock held
by a higher priority transaction). In Priority Blocking, a
transaction is always blocked upon the encounter of a lock
conflict and can acquire the lock after the lock is released.
Lock requests are ordered by transaction priority.

Concurrency control mechanisms, such as [36], suffer
from potential deadlock or unbounded blocking and thus
do not comply with DCS-like requirements.

Other approaches addressed building real-time distributed
hash tables (DHTs) [6], [37]. Qian et al. [6] designed
and implemented a Chord-based DHT. Given the periodic
structure of requests considered in [6], a cyclic executive is
used to schedule the jobs that subsequent nodes in the Chord
overlay network should execute to serve a request. Skodzik
et al. [37] extended Kad, an implementation variant of the
P2P Kademlia protocol, by a TDMA based mechanism in
order to make Kad suitable for hard real-time constraints.

In contrast to [6], [37], we require each operation, be it a
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read or a write, to return and complete based on performing
a bounded number of local steps. As we show in Lemma 1,
waiting to reliably transmit any message in order for an
operation to complete, could take an arbitrary long time in
the communication system we consider in this paper.

VII. CONCLUSION

This paper investigated how to build a shared memory
abstraction for distributed control systems (DCSs). Such an
abstraction constitutes a basic building block for real-time
shared storage functionalities (like real-time DHTs, key-
value stores etc.), which are highly demanded in DCSs. We
determined the guarantees that a shared memory abstraction
should deliver to applications accessing it via read and write
operations. We proved that such guarantees are impossible to
implement deterministically, in the presence of host crashes
and message losses (in the sense described in Section III).
We presented TapeWorm, an algorithm that circumvents this
impossibility and guarantees the desired shared memory
properties for applications. TapeWorm adopts a white-box
approach in which heartbeat messages of the failure detector
component running in a DCS, are used as a means of
transporting information. We also conducted a mathematical
analysis quantifying the performance of TapeWorm and
showcased ways for adapting and optimizing TapeWorm to
application needs and workloads.
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