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Abstract: Modifier adaptation enables the real-time optimization (RTO) of plant operation in
the presence of considerable plant-model mismatch. For this, modifier adaptation requires the
estimation of plant gradients, which is experimentally expensive as this might involves several
online experiments. Recently, a directional modifier-adaptation approach has been proposed,
which uses the process model to compute offline a subset of input directions that are critical for
plant optimization. This allows estimating directional derivatives only in the critical directions
instead of full gradients, thereby reducing the burden of gradient estimation. However, in certain
cases such as change of active constraints and large parametric uncertainties, directional modifier
adaptation may lead to significant suboptimality. Here, we propose an extension to directional
modifier adaptation, whereby, at each RTO iteration, we compute a set of critical directions
that are robust to large parametric perturbations. We draw upon a simulation study of the
run-to-run optimization of the Williams-Otto semi-batch reactor to illustrate the performance
of the proposed extension.
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1. INTRODUCTION

The process industry aims to maximize economic benefits,
while respecting safety and environmental constraints. In
this endeavor, the process performance is optimized us-
ing real-time optimization (RTO). The attractive feature
of RTO is that it takes into account plant-model mis-
match and slow process disturbances in the optimization
scheme. RTO methods typically rely on the available
process model (not necessarily an exact representation of
the plant) and plant measurements to steer the process
to some economic optimum. In fact, the interplay between
the model and the plant measurements differentiates the
various RTO schemes. For instance, the traditional two-
step approach (Chen and Joseph, 1987) uses plant mea-
surements to iteratively update the model parameters and
solve the updated optimization problem until convergence
is reached. While this approach is inexpensive (as no
additional online experiments are required), it often con-
verges to sub-optimal points unless the considered problem
satisfies stringent model-adequacy conditions (Forbes and
Marlin, 1996).

On the other hand, modifier adaptation (MA) (Gao and
Engell, 2005; Marchetti et al., 2009, 2016) uses plant mea-
surements to iteratively add bias and gradient-correction
terms to the modeled cost and constraint functions of

1 Also with the French-Argentine International Center for Infor-
mation and Systems Sciences (CIFASIS), CONICET-Universidad
Nacional de Rosario (UNR), S2000EZP Rosario, Argentina.

the optimization problem. The key feature of MA is its
guarantee of attaining plant optimality upon convergence.
We refer to Marchetti et al. (2016) for an overview of MA
schemes.

Unfortunately, MA requires plant gradient information at
each RTO step. The estimation of plant gradients at run-
time can become quite expensive with a large number of
input variables. In the literature, various approaches have
been proposed to make gradient estimation less expensive.
Some of these approaches utilize past operating data to
estimate the plant gradients (Marchetti et al., 2010; Gao
et al., 2015). Unfortunately, these approaches do not scale
well for high-dimensional problems.

Recently, a variant of MA known as directional modifier
adaptation (DMA) has been proposed (Costello et al.,
2015, 2016). DMA uses the available process model to
identify a small number of critical input directions that
are key for plant performance. Consequently, it often
suffices to estimate the plant gradients in these directions,
thereby making the overall approach less expensive. In
DMA, the local sensitivity of the Lagrangian gradient
is computed using the nominal model. Using singular-
value decomposition (SVD) of the sensitivity matrix,
one can categorize the input directions based on their
sensitivities to small parametric perturbations around the
nominal values. The gradients are then corrected only in
the subspace spanned by the most critical (i.e., sensitive)
directions (Costello et al., 2016). Note that, in DMA, this
input subspace remains unchanged for all RTO iterations.



The present paper goes a step further. At each RTO
iteration, we evaluate an approximation of the global
sensitivity of the Lagrangian gradient with respect to
parametric uncertainties. This approach is most effective
when the parametric perturbations are large. By means
of simulations, we illustrate that the proposed active
directional modifier adaptation (ADMA) scheme achieves
a good trade-off between the number of selected privileged
input directions and plant optimality.

The paper is structured as follows. Section 2 briefly recalls
the standard MA scheme and its directional variant.
Section 3 presents the proposed ADMA scheme, while
Section 4 illustrates the performance of the proposed RTO
scheme on a semi-batch reactor and draws a comparison
with other schemes. Finally, Section 5 concludes the paper.

2. PROBLEM STATEMENT AND PRELIMINARIES

The optimization problem for the plant can be written as:

min
u

Φp(u) := ϕ(u, yp(u)) (1a)

s.t. Gp(u) := g(u, yp(u)) ⪯ 0, (1b)

uL ⪯ u ⪯ uU , (1c)

where u ∈ Rnu is the vector of input variables, yp ∈ Rny

are the measured output variables, ϕ : Rnu × Rny → R is
the cost to be minimized, g : Rnu×Rny → Rng is the vector
of plant constraints. The symbol (⪯) denotes component-
wise inequality of vectors. We denote the optimal inputs
to Problem (1) as u⋆

p.

The main challenge in solving the above optimization
problem stems from the fact that the input-output map-
ping yp(u) is unknown. However, an approximate model is
assumed to be available, with the input-output mapping
y(u, θ), where θ ∈ Rnθ are the model parameters. Using
the model, one can approximate Problem (1) as:

min
u

Φ(u, θ) := ϕ(u, y(u, θ)) (2a)

s.t. G(u, θ) := g(u, y(u, θ)) ⪯ 0, (2b)

uL ⪯ u ⪯ uU . (2c)

The optimal input u⋆ is found by solving Problem (2)
for θ = θ0, where θ0 is the vector of nominal model
parameters. In the presence of plant-model mismatch, the
model optimum u⋆ may not be equal to the plant optimum
u⋆
p. The goal of RTO is to find u⋆

p by iteratively modifying
and solving Problem (2).

Next, we consider RTO schemes relying on direct adap-
tation of the optimization problem, which are also known
as modifier adaptation (Gao and Engell, 2005; Chachuat
et al., 2008; Marchetti et al., 2009, 2016).

2.1 Modifier Adaptation

At the kth RTO iteration, MA adds zero-order and first-
order correction terms to the optimization problem (2) and
solves the following modified problem:

min
u

Φ(u, θ) + (λΦ
k )

Tu︸ ︷︷ ︸
=:Φm,k(u,θ)

(3a)

s.t. G(u, θ) + εGk + (λG
k )

T (u− uk)︸ ︷︷ ︸
=:Gm,k(u,θ)

⪯ 0 (3b)

uL ⪯ u ⪯ uU . (3c)

The subscript (.)m indicates a modified quantity; εGk ∈ Rng

are the zero-order modifiers for the constraints, whereas
λΦ
k ∈ Rnu and λG

k ∈ Rnu×ng are the first-order modifiers
for the cost and the constraint functions, respectively. At
the kth iteration, the modifier terms are computed as
follows:

εGk = Gp(uk)−G(uk, θ), (4a)

(λΦ
k )

T = ∇uΦp(uk)−∇uΦ(uk, θ), (4b)

(λG
k )

T = ∇uGp(uk)−∇uG(uk, θ). (4c)

Typically, a filter is applied to either the modifier terms
or the input step to avoid excessive corrections that can
compromise convergence (Marchetti et al., 2016)

The main feature of MA is that, upon convergence, a KKT
point of Problem (1) is reached. This key feature comes at
the high cost of having to estimate the plant cost and con-
straint gradients online, for example via finite differences.
Clearly, the expense of online gradient estimation increases
with the number nu of input variables.

2.2 Gradient Estimation for Modifier Adaptation

There are different ways of estimating gradients in MA.
One of the methods is dual MA, which relies on finite
differences using data from past RTO iterations. There
are two key requirements for finite-difference schemes: (i)
ensure that there is sufficient excitation in all directions of
the nu-dimensional input space, and (ii) adjust the finite-
difference steps to maintain the quality of the estimated
gradients, that is, the steps should neither be too large
(to reduce truncation errors) nor too small (to reduce
the effect of measurement noise). Dual MA achieves both
by adding extra constraints to Problem (3) (Marchetti
et al., 2010). These constraints shrink the feasible set to
ensure acceptable gradient estimates at the next iteration.
However, dual MA suffers from the same scaling issue as
standard MA in terms of the number of inputs considered
in gradient estimation.

Another approach proposes to use quadratic approxima-
tions (Gao et al., 2015). Similar to dual MA, the quadratic
approximation uses past data to fit a quadratic function.
The quadratic approximation contains gradient and cur-
vature information. This scheme has been shown to give
good gradient estimates (Gao et al., 2015, 2016). The
quadratic approximation ideas are derived from derivative-
free optimization methods (Conn et al., 2009). However,
the scaling issue persists.

2.3 Directional Modifier Adaptation

One can try to overcome the curse of dimensionality
by relaxing the requirement of full-gradient information
in MA. The properties of the model-based optimization
Problem (2) can be exploited to identify a promising subset
of input directions for gradient estimation. Costello et al.



(2016) proposed DMA that exploits the fact that the
gradients in some input directions are more vulnerable
(sensitive) to parametric uncertainty than in other direc-
tions. Hence, online gradient estimation is done only in
these more vulnerable directions. To find the desired set
of vulnerable directions, DMA evaluates the sensitivity of
the Lagrangian gradient with respect to local parametric
variations, evaluated at the nominal model optimum. To
this end, one computes the sensitivity matrix A ∈ Rnu×nθ ,

A = ∇u,θL(u
⋆, µ⋆, θ0), (5)

with L := Φ(u, θ) + (µ⋆)TG(u, θ), (6)

where θ0 are the nominal model parameters, u⋆ is the
nominal optimum, and µ⋆ are the corresponding Lagrange
multipliers. SVD of the matrix A gives

A = WΣV T ,

where the singular values σi, i = 1, . . . , nσ, are the
diagonal elements of Σ ∈ Rnu×nθ and wi are the columns
of W ∈ Rnu×nu . Note that the number of singular values
is nσ = min {nu, nθ}.
Through the singular values of A, one can rank the input
directions wi according to their sensitivity with respect to
local parametric perturbations. Assuming that there exists
nr < nu such that σnr+1 ≪ σ1, one can construct the
reduced matrix Wr ∈ Rnu×nr such that

Wr = [w1 w2 . . . wnr ], such that σnr+1 ≪ σ1.

In other words, at each RTO iteration, the directional
derivatives are estimated only in the directions correspond-
ing to the columns of the matrix Wr. The directional
derivatives of the plant cost function Φp in the nr direc-
tions specified by Wr are

∇WrΦp(u) =
∂Φp(u+Wrr)

∂r

∣∣∣∣
r=0

,

where ∇WrΦp ∈ R1×nr and r ∈ Rnr .

The directional derivatives for the plant constraints Gp

are defined in a similar way. These derivatives can be
estimated by finite differences or using a duality constraint
as done in dual modifier adaptation. The DMA algorithm
is summarized in Algorithm 1.

In some cases, DMA can significantly reduce the expense
of gradient estimation with negligible optimality loss, as
shown in the simulation study of an airborne-wind energy
system (Costello et al., 2016). As illustrated therein, the
key strength of DMA lies in its ability to significantly
reduce the number of input directions for gradient esti-
mation. However, this approach is valid only for small
uncertainty in the model parameters θ. In cases where
the parametric uncertainty is large and the Lagrangian
gradient is nonlinear in θ, Algorithm 1 may converge to
a significantly suboptimal point. Moreover, DMA finds
the Lagrangian gradient sensitivity only at the nominal
model optimum u⋆. This sensitivity will typically change
whenever the RTO iterates move away from u⋆, e.g. this
might happen when the set of active constraints changes.
Next, we propose an algorithm to overcome the limitations
of local DMA.

Algorithm 1 Directional Modifier Adaptation

Step 0 (Initialization): Compute the nominal optimum us-

ing εG0 = 0, λΦ
0 = 0, λGi

0 = 0, and u0 = 0. Set the values
of the filter matrices Kε, KΦ, KGi (typically diagonal
matrices) with eigenvalues in the interval (0, 1].

for k = 0 → ∞
Step 1 (Optimization): Solve the modified Problem (3):

uk+1 = argmin
u

Φ(u, θ) + (λΦ
k )

Tu

s.t. G(u, θ) + εGk + (λG
k )

T (u− uk) ⪯ 0.

uL ⪯ u ⪯ uU .

Step 2 (Plant evaluation): Apply uk+1 to the plant,

measure yp(uk+1), and compute Φp(uk+1), Gp(uk+1) from
yp(uk+1).

Step 3 (Estimation of directional derivatives): Estimate
the directional derivatives ∇WrΦp,k+1 and ∇WrGp,k+1.
Approximate the full gradients at uk+1 by:

∇uΞp,k+1 = ∇uΞ(uk+1, θ0)(Inu −WrW
+
r ) +∇WrΞp,k+1W

+
r ,

where Ξ ∈ {Φ, Gi}, and W+
r is the Moore-Penrose pseudo-

inverse of Wr, and i = 1, ..., ng.

Step 4 (Modifier update): Update the modifiers and in-
clude first-order filtering:

εGk+1 = (Ing −Kε)εGk +Kε(Gp(uk+1)−G(uk+1, θ0)),

λΦ
k+1 = (Inu −KΦ)λΦ

k +KΦ(∇uΦp,k+1 −∇uΦ(uk+1, θ0))
T ,

λ
Gi
k+1 = (Inu −KGi )λ

Gi
k +KGi (∇uGpi,k+1 −∇uGi(uk+1, θ0))

T ,

where i = 1, ..., ng .

end

3. ACTIVE DIRECTIONAL MODIFIER
ADAPTATION

In general, the Lagrangian (6) is sensitive to changes in
parameter values. Hence, if the actual parameters, i.e.
the plant parameters, lie far from their nominal values,
then the ‘nominal’ sensitivity of the Lagrangian model
gradient may not be a good approximation to the true
plant sensitivity. Algorithm 2 proposes a DMA extension
that tackles this issue, labeled active directional modifier
adaptation (ADMA).

To this end, as the plant parameters are unknown, we aim
to approximate the global sensitivity of the Lagrangian
gradient with respect to the bounded parametric uncer-
tainty set Θ ⊂ Rnθ . Note that we assume here only
parametric plant-model mismatch. We also assume that
the plant and model parameters belong to a bounded
uncertainty set, that is, θp, θ0 ∈ Θ.

Observe that Steps 0–2 are the same as in Algorithm 1.
In Step 3, however, we compute the privileged directions
iteratively at each RTO iteration, while, in Algorithm 1,
these direction are computed only once.

In other words, at each RTO iteration, Monte-Carlo
sampling is performed in the uncertainty set Θ, and the
parametric sensitivity of the Lagrangian gradient is found
for each parameter value. The procedure is illustrated in
Figure 1. The Lagrangian sensitivity matrices computed



Algorithm 2 Active Directional Modifier Adaptation

Step 0 (Initialization): Compute nominal optimum using

εG0 = 0, λΦ
0 = 0, λGi

0 = 0, and u0 = 0. Set the values of the
filter matrices Kε, KΦ, KGi (typically diagonal matrices)
with eigenvalues in the interval (0, 1].

for k = 0 → ∞
Step 1 (Optimization): Solve the modified Problem (3):

uk+1 = argmin
u

Φ(u, θ) + (λΦ
k )

Tu

s.t. G(u, θ) + εGk + (λG
k )

T (u− uk) ⪯ 0.

uL ⪯ u ⪯ uU .

Step 2 (Plant evaluation): Apply uk+1 to the plant,

measure yp(uk+1), and compute Φp(uk+1), Gp(uk+1) from
yp(uk+1).

Step 3 (Computation of privileged directions): Perform

Monte Carlo sampling and compute Wr,k+1 via (7)-(10).

Step 4 (Estimation of directional derivatives): Estimate
the directional derivatives ∇Wr,k+1

Φp,k+1 and
∇Wr,k+1

Gp,k+1. Approximate the full gradient at uk+1 by:

∇uΞp,k+1 = ∇uΞ(uk+1, θ0)(Inu −Wr,k+1W
+
r,k+1)

+∇Wr,k+1
Ξp,k+1W

+
r,k+1,

where Ξ ∈ {Φ, Gi}, and W+
r,k is the Moore-Penrose

pseudo-inverse of Wr,k, and i = 1, ..., ng.

Step 5: (Modifier update): Update the modifiers and in-
clude first-order filtering:

εGk+1 = (Ing −Kε)εGk +Kε(Gp(uk+1)−G(uk+1, θ0)),

λΦ
k+1 = (Inu −KΦ)λΦ

k +KΦ(∇uΦp,k+1 −∇uΦ(uk+1, θ0))
T ,

λGi
k+1 = (Inu −KGi)λGi

k +KGi(∇uGpi,k+1 −∇uGi(uk+1, θ0))
T ,

where i = 1, ..., ng.

end

at the kth iteration are combined into the single matrix
Ak as:

Ak = [S1,k S2,k . . . Sn,k], (7)

with Si,k = ∇u,θL(uk, µk, θi), i = 1, . . . , n, (8)

where n is the number of Monte-Carlo samples. The matrix
Wk is obtained by SVD of Ak,

Ak = WkΣkV
T
k . (9)

We choose the first nr columns of Wk corresponding to the
largest singular values such that σnr+1 ≪ σ1. Then, we
construct the matrix Wr,k ∈ Rnu×nr of privileged input
directions as

Wr,k = [w1,k w2,k . . . wnr,k], (10)

where wi,k is the ith column of Wk.

Each matrix Si,k represents the local sensitivity of the
Lagrangian evaluated with the corresponding parameters
θi. Since Ak consists of all the Si,k matrices, it contains the
gradient sensitivity for the whole parametric uncertainty
set Θ. Hence, performing SVD on this matrix reveals the
most vulnerable directions for the set Θ. In other words,
as opposed to DMA, where the matrix A contained local
information both for θ0 and at u⋆, the matrix Ak contains

⇥

✓3

✓2

✓1

ru,✓L(uk, µk, ✓1)

ru,✓L(uk, µk, ✓2)

ru,✓L(uk, µk, ✓3)

ru,✓L(uk, µk, ✓n)
✓n

✓0

✓p

Fig. 1. Computation of the parametric sensitivity of the Lagrangian
gradient for each Monte-Carlo sample in the parametric set Θ.

global information for all θ ∈ Θ and local information at
uk. Note that, in order to have a good approximation of
the global sensitivity in Ak, the value of n should be chosen
sufficiently large. 2

After the computation of the privileged directions, Algo-
rithm 2 continues with the same steps as Algorithm 1,
namely, one estimates the directional derivatives (Step 4)
and updates the modifiers via the standard filter equations
(Step 5).

SinceADMA requires Lagrangian sensitivity computation
at each Monte-Carlo sample, it is computationally more
expensive than DMA. However, the computational bur-
den is not the main concern for MA schemes. Rather,
the crucial barrier to overcome in applications is a sig-
nificant reduction in the total number of required plant
evaluations.We remark that the sensitivity information in
Ak is only an approximation since, in computing Wr,k,
we neglect the input directions corresponding to small
singular values. Hence, estimating plant gradients only in
the directions given by Wr,k may result in gradient errors,
which, in turn, may lead to sub-optimality. Also, SVD
may not necessarily lead to a significant reduction in the
number of privileged directions. However, as shown in the
simulation study of next section, Algorithm 2 can produce
powerful results in many cases. Moreover, note that one
can potentially extend the ADMA Algorithm 2 to include
the property of guaranteed global convergence via trust-
region framework as shown in Bunin (2014), Biegler et al.
(2014).

4. SIMULATION STUDY

We test the different MA-based algorithms discussed in
the previous sections on the problem of run-to run op-
timization of the Williams-Otto semi-batch reactor de-
scribed in Würth et al. (2009). The following reactions
take place:

A+B
k1−→ C

C +B
k2−→ P + E

P + C
k3−→ G,

where ki = ai exp(
bi

Tr+273.15 ), i = 1, 2, 3. The reactant A
is already present in the reactor, while the reactant B is
fed to the reactor. During the exothermic reactions, the

2 Here, for sake of simplicity, we determined heuristically a fixed
number of samples such that adding more samples has only a minor
effect on the singular values in Σk.



desired products P and E as well as the side-product G
are formed. The heat generated through the exothermic
reaction is removed by a cooling jacket, which is controlled
by manipulating the cooling water temperature. During
the batch, path constraints on the inlet flowrate of reac-
tant B (FBin), the reactor temperature (Tr), the reactor
volume (V ) and the cooling water temperature (Tw) must
be observed. The manipulated variables for this process
are the time-varying profiles FBin(t) and Tw(t). The model
equations and the parameter values used in this study can
be found in Würth et al. (2009). The economic objective is
to maximize the yield of the desired products at the final
time tf . The dynamic optimization problem is defined as
follows:

max
FBin(·),Tw(·)

J := (cPnP (tf )V (tf ) + cEnE(tf )V (tf ))

s.t. 0 ≤FBin(t) ≤ 5.784 kgs−1 (11)

V (tf ) ≤5 m3

20 ◦C ≤Tw(t) ≤ 100 ◦C

60 ◦C ≤Tr(t) ≤ 90 ◦C .

For a given run, the dynamic optimization problem (11) is
solved by conversion to an NLP via direct single-shooting.
This is done by discretizing the problem over ns control
stages in time. For each time interval, the dynamic input
variables are parametrized into low-order polynomials.
We parametrized each time-varying input into ns = 40
piecewise-constant inputs.

Plant-model mismatch is considered by introducing para-
metric uncertainty. The actual value of the parameter b1
is unknown and lies within ±20% from its nominal value.
In the simulations, the plant value is considered to be
10% lower than the nominal value of 6667 K. The optimal
input profiles obtained by solving Problem (11) using the
nominal model are shown in Figure 2. The plant outputs
obtained by applying this nominal solution to the plant
are shown in Figure 3. Note that the path constraint on
the reactor temperature Tr is violated for the plant.

We start by implementing standard MA with full gradient
estimates. Figures 4 and 5 show that the optimal input and
output profiles obtained upon convergence closely match
the plant optimum profiles. Although MA starts from the
active constraints given by the nominal solution, it is able
to identify the correct set of active constraints at the plant
optimum. However, MA requires full gradient estimation.
This implies that, if the gradient is identified using finite
differences with added input perturbations, the plant is
perturbed 80 times at each RTO iteration. Hence, one has
to wait for 80 transient operations to settle between each
RTO iteration, which would make the application of this
type of MA on industrial-scale reactors rather prohibitive.

The DMA and ADMA algorithms are applied next. The in-
put profiles reached upon convergence for both algorithms
are shown in Figure 6, while the corresponding outputs
obtained in the plant are shown in Figure 7. As seen in
the figures, ADMA successfully finds the plant optimal
solution, whereas DMA gives only a feasible (sub-optimal)
solution. Although DMA successfully finds the optimal
water temperature profile, it is unable to find the optimal
profile for the feed of B. In fact, the sub-optimality for
DMA is large as it gives a profit of 2.18 million $ as op-
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Fig. 2. Optimal input profiles (nominal model).
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Fig. 3. Temperature and volume profiles (nominal model).
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Fig. 4. Input profiles upon convergence for MA with full
gradient update.
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Fig. 5. Reactor temperature and volume profiles upon
convergence for MA with full gradient update.

posed to the plant optimal profit of 3.14 million $ (Figure
8). On the other hand, DMA updates the gradients only in
a single direction, whereas ADMA updates the gradients
in at most 4 input directions at each RTO iteration. Note
that the number of privileged directions found by ADMA
change from iteration to iteration as shown in Figure 9.
Also for ADMA, the number of Monte-Carlo samples taken
for the uncertain kinetic parameter b1 is 250 samples. The
comparison of the three schemes is summarized in the
Table 1.
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Fig. 7. Reactor temperature and volume profiles upon
convergence for DMA and ADMA.
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Table 1. Summary of the three RTO schemes

RTO scheme
Plant profit
(million $)

No. of RTO
iterations

No. of gradient
update directions

MA 3.14 21 80

DMA 2.18 5 1

ADMA 3.14 23 3 to 4

5. CONCLUSIONS

The paper has discussed a novel variant of modifier adap-
tation, namely, active directional modifier adaptation. At
each RTO step, the proposed scheme applies parametric
perturbation analysis on the Lagrangian gradient of the
model to determine privileged input directions, that is,
those directions that profit most from gradient estimation.
This way, it is possible to significantly reduce the number
of directional derivatives to be estimated experimentally.
In other words, the effort for gradient estimation in MA is
kept low, while good process performance can still be at-
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Fig. 9. Number of privileged directions with ADMA.

tained. A simulation study of a semi-batch reactor under-
pins that the proposed scheme can outperform standard
DMA in terms of optimality, while being less expensive
than standard MA.
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