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Abstract: A nonlinear path following model predictive control scheme with application to a
kite based airborne wind energy system is presented. A novel terminal constraint is introduced
to guarantee closed-loop stability and convergence of the vehicle to geometric paths of desired
shapes. Convergence conditions are investigated and the efficacy of the approach is demonstrated
via numerical simulations for desired path shapes under nominal and perturbed conditions.
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1. INTRODUCTION

A common operational requirement for kite based Air-
borne Wind Energy (AWE) systems is to track a desired
optimal trajectory that maximizes power generation. This
requires the kite to reel out at a desired rate as it flies a
high energy extraction trajectory, then reel back in with a
low energy consumption maneuver such that a net positive
energy generation cycle is exhibited (Luchsinger, 2013;
Loyd, 1980).

While the desired trajectory for the vehicle can be pre-
computed using numerical optimal control solvers (Houska
and Diehl (2007, 2010); Erhard et al. (2015)), the tra-
jectory tracking itself presents numerous challenges due
to nonholonomic properties of the system, uncertain wind
and system parameters and limited controllability of the
vehicle speed. In fact, since the main driving force is
provided by the wind, the vehicle can only follow time-
profiles along the reference path that are coherent with
the wind. Previous works, like Ilzhfer et al. (2007); Gros
et al. (2013) consider Nonlinear Model Predictive Control
(NMPC) schemes tracking reference positions given as
a time parameterized reference trajectory. The effects of
unknown wind conditions, however, limit the applicability
of such schemes as the reference trajectory can quickly
become inconsistent with the wind speed and kite po-
sition, leading to non zero tracking errors. Erhard and
Strauch (2014); Fagiano et al. (2014) overcome this issue
of incoherence by changing the reference only on certain
position feedback switching events. They do not, however,
consider any exact reference trajectory or path shape to
be followed. Diwale et al. (2016) tackles this issue by
considering a path-following scheme based on feedback
linearization of the AWE system. The feedback lineariza-
tion scheme however provides only a localized region of
attraction in the presence of input saturation and leads

? This work is funded by the Sinergia project “Autonomous Air-
borne Wind Energy” (A2WE) of the Swiss National Science Foun-
dation (SNSF).

to suboptimal control demands due to cancellation of all
natural dynamics of the vehicle.

Motivated by these observations, we propose a Model Pre-
dictive Path-Following Control (MPFC) scheme inspired
by Faulwasser and Findeisen (2016) to plan for feasible
trajectories guaranteeing convergence and tracking of the
reference path. The core idea of MPFC is to consider a
geometric reference path instead of a time-parametrized
reference trajectory. A virtual system is used to control
the motion of a reference point along the path. Finally,
the input to the virtual system and the real system input
are computed by means of receding horizon optimization
such that the path is followed as closely as possible. In
order to guarantee path convergence, we consider termi-
nal constraints, which are inspired by vector field control
schemes often used in aerial vehicles or mobile robots
(Panagou et al., 2011). The advantage of incorporating
such constraints in the MPC scheme is that we do not
need an explicit representation of the vector field.

The organization of the paper is as follows. Section 2
defines the problem statement. Section 3 discusses the
design of the proposed MPFC scheme. Section 4 provides
the proof sketch for stability and recursive feasibility of
the MPFC scheme subject to a reachability assumption for
the convergence field. Section 5 presents simulation results
under nominal and perturbed conditions.

Notation

‖v‖ 2-norm of a vector(‖v‖ :=
√
vT v)

‖v‖Q Weighted 2-norm(‖v‖Q :=
√
vTQv,Q > 0)

atan2(·, ·) Four quadrant inverse tangent
∂τf Partial derivative of a function f w.r.t. τ

2. PROBLEM STATEMENT

Recall that the core idea of MPFC is to coordinate the
control of the real vehicle and the reference speed along a
path such that the tracking error is minimized. In order to
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Fig. 1. Kite coordinate frames representation.

precisely define this objective for path following in AWE
systems, we describe the model of the AWE system and the
virtual system used to control the reference motion along
the path. We then define the path-following problem.

2.1 Kite Model

The vehicle for the AWE system moves on a sphere of
radius L (tether length). Its position in polar coordinates is
given by the elevation and azimuth angles ϑ, ϕ. We denote
by γ the direction of the tangential velocity of the vehicle
on the sphere. By simple geometric relations, the angle γ
can be written as,

γ = atan2(ϕ̇ cosϑ, ϑ̇) (1)

Denoting the state of the vehicle at time t as q(t) :=
(ϑ(t), ϕ(t), γ(t)), we can write the vehicle dynamics as,

q̇ = s(q, λ, L, z)

(
cos γ
sin γ

0

)
+

(
0
0
uγ

)
(2)

where s(q, p, L, z) : Q × Λ × R × R → R+ is the physical
speed of the kite as a function of the vehicle state q ∈ Q,
physical parameters p ∈ Λ comprising the wind speed and
aerodynamic parameters, tether length L and the reel out
rate L̇ = z. uγ is a steering input to the system that allows
us to turn the vehicle (γ̇ = uγ). We refer the reader to
Figure 1 for a graphical representation of the angles and to
Diwale et al. (2016) for details on this model. The specifics
of s,Q,Λ are given in the Appendix.

Remark 1. For simplicity of exposition, we assume that
the tether length L is fixed and the reel out rate z =
0. We treat any deviation from this assumption as a
perturbation. �

2.2 Reference Path

For the reference path we consider any twice continuously
differentiable periodic mapping qref (τ) : R→ Q satisfying
the assumptions below.

Assumption 1. (Nonholonomic constraint). The reference
path is such that γref = atan2(∂τϕref cosϑref , ∂τϑref ). �

Thus the reference path γref satisfies the same geometric
relation with ϑref , ϕref as (1). This assumption is satisfied
by any path for which we choose ϑref (τ), ϕref (τ) and then
compute γref (τ) as given above.

Assumption 2. (Regular curve). The path is regular in the
sense that for all τ we have ||∂τqref (τ)|| 6= 0. �

Thus the reference qref (τ) does not remain stationary as
τ changes. In other words, locally each point on the path
corresponds to a unique τ , cf. Topogonov (2006).

Assumption 3. (Compact range). The path parametriza-
tion qref : R→ Q has a compact range in Q. �

Thus qref (τ) attains a value for each τ within Q, avoiding
unbounded reference trajectories and limiting behavior
where the limiting value does not lie in Q.

Assumption 4. (Input admissibility). The reference path
curvature is limited such that it can be tracked at a given
vehicle speed while respecting the steering constraints. �

Assumption 4 allows only those reference paths which
can be tracked by the real vehicle at a given speed s
with limited steering input umaxγ when starting with zero
tracking error. Due to space limitations, we skip the details
of verifying this assumption.

We move a virtual point along the path by moving τ with
controlled velocity uτ with the dynamics,

τ̇ = uτ (3)

We enforce uτ ≥ 0 to make the virtual vehicle move in a
fixed direction along the path.

2.3 Kite Path-Following Problem

We consider the augmented system of the virtual point
and real vehicle with the state

x(t) := (q(t), τ(t)).

The dynamics of x(t) is then given by (2), (3). We define
the path error for q and qref (τ) for an arbitrary q, τ as

e(q, τ) = q − qref (τ). (4)

For q(t), τ(t), we denote path-following error at time t as

e(t) = q(t)− qref (τ(t)). (5)

For notational convenience, we denote the tangent to the
reference path as m(τ) = ∂τqref (τ). The control objective
is then to asymptotically drive e(t) to 0 as t→∞ subject
to the constraints (2–3) and the actuator constraint set

U = {(uτ , uγ)T ∈ R2 |uτ ≥ 0, |uγ | ≤ umaxγ }.

3. MODEL PREDICTIVE PATH FOLLOWING
CONTROL

As standard in NMPC, MPFC is based on receding horizon
solutions to an Optimal Control Problem (OCP). Here, we
consider MPFC based on the following OCP:

min
x(·),u(·)

∫ T

0

1

2
||e(s)||2Q + ||u(s)||2Rds+

1

2
||e(T )||2Qf

(6a)

subject to (2), (3) with x(0) = x̂(t) (6b)

u(s) ∈ U , x(s) ∈ X ∀s ∈ [0, T ] (6c)

1

2
||e(T )||2Q + e(T )TQf q̇(T ) ≤ 0. (6d)

e(q(T ), τ(T ))Qfm(τ(T )) ≥ 0 (6e)

where X := Q × R, and x̂(t) denotes the systems state
at time t under the closed-loop control action of the
MPFC scheme. The OCP is solved in receding horizon



fashion at time t. 1 The actual input applied to the system
û(t) is given by û(t) = u?(0) for the optimal solution
u?(·) of the OCP at time t. As will be shown later,
the constraints (6e),(6d) correspond to the existence of
a vector field controller and is used to provide a larger
region of attraction to the MPFC scheme. The matrices
Q,Qf are chosen to be symmetric positive definite.

The next result certifies the path convergence properties
of the MPFC scheme based on OCP (6).

Proposition 1. (Path convergence). Consider the MPFC
scheme based on (6). Let the prediction model (2) be an
exact representation of the kite dynamics, i.e. there is no
plant-model mismatch. Suppose that OCP (6) is feasible
for all t ≥ 0. Then, the closed loop satisfies

lim
t→∞

‖e(t)‖ = 0. �

Proof. Due to space limitations, we sketch only the main
steps of the proof. Consider the positive semi-definite value
function V : X → R+

0

V (x̂) =

∫ T

0

1

2
||e(s)||2Qds+

1

2
||e(T )||2Qf

(7)

where e : [0, T ] → R3 is the trajectory predicted by dy-
namics (2),(3) , originating at x̂, and driven by the optimal
input u?(·, x̂). Note also that V is positive semidefinite
since it only depends on e which lies in a subset of X and
the condition V = 0 characterizes the set of points on
the reference path. Consider the derivative of V along the
MPFC closed-loop trajectories of (2),(3), denoted as x̂(t),

dV

dt
=
∂V

∂x̂
˙̂x

We have that

∂V

∂x̂
˙̂x =

∫ T

0

eT (s)Qė(s)ds+ eT (T )Qf ė(T ).

Integration by parts yields

dV

dt
=
∂V

∂x̂
˙̂x =

1

2
eT (s)Qe(s)

∣∣∣∣T
0

+ eT (T )Qf ė(T ). (8)

The following implication then follows directly

1

2
||e(T )||2Q + eT (T )Qf ė(T ) ≤ 0 (9)

⇒ dV

dt
≤ −1

2
ê(t)TQê(t). (10)

Here ê(t) is the closed-loop path-following error corre-
sponding to x̂(t). In Theorem 7 we show that if the termi-
nal constraints (6d), (6e) hold, then (9) is satisfied. Then,
using LaSalle’s invariance principle in conjunction with
(10) it follows that x̂(t) converges to the largest invariant

set such that V̇ = 0 ⊂ {x ∈ X : e = 0}. �

The above proof sketch relies on the quite strong assump-
tion of recursive feasibility of OCP (6). In the next section
we discuss the existence of a terminal control law enforcing
(6d),(6e) ( =⇒ (9)) and recursive feasibility.

1 Note that, for sake of simplified exposition, we consider the
nominal case of recomputing the solution to (6) in an instantaneous
fashion. Furthermore, we assume that, for all x̂(t) and u(·) being
piecewise continuous, the OCP admits a locally optimal solution.

4. TERMINAL CONTROL AND CONSTRAINTS

4.1 Global Feasibility of (6e):

For any state q = (ϑ, ϕ, γ)T , let

H(q) = {τ? | τ? ∈ argmin
τ

e(q, τ)TQfe(q, τ)}.

Also recall, m(τ) := ∂τqref (τ) and e(q, τ) = q − qref (τ).

Lemma 2. (Minimum error points on path).
For all τ? ∈ H(q), it holds that e(q, τ?)TQfm(τ?) = 0. �

Proof. Note that τ? ∈ H(q) is a minimizer of eTQfe.
Hence, symmetry of Qf and the first-order optimality
condition imply −e(q, τ?)TQfm(τ?) = 0. �
Lemma 3. (Non-emptiness of H(q)).
For all q ∈ Q, it holds that H(q) 6= ∅. �

Proof. As qref (τ) is twice continuously differentiable map
to a compact subset ofQ and is periodic in τ , for any q, the
term e(q, τ)TQfe(q, τ) has a minimizer. Thus optimizing
over τ ∈ R implies H(q) 6= ∅. �
Lemma 4. (Existence of neighborhoods of τ?).
For all τ? ∈ H(q), there exists a non-empty and non-
singular neighborhood

N (q, τ?) :=
{
τ | e(q, τ)TQfm(τ) ≥ 0

}
6= ∅

and N (q, τ?) \ τ? 6= ∅.

Proof. By Lemma 2, we have e(q, τ?)TQfm(τ?) = 0.
Furthermore, e(q, τ)TQfm(τ) is a continuous function of
τ that has a local minimum at τ?. Hence, there exists a
neighborhood of τ? wherein e(q, τ)TQfm(τ) ≥ 0. �

Let
N (q,H(q)) :=

⋃
τ?∈H(q)

N (q, τ?),

then the following theorem states feasibility of (6e).

Theorem 5. (Global feasibility of (6e)).
For any terminal condition q(T ) ∈ Q, there exists a
τ(T ) ∈ R such that (q(T ), τ(T )) satisfies (6e) and is given
by {q(T ), τ(T ) : q(T ) ∈ Q, τ(T ) ∈ N (q(T ),H(q(T )))}. �

Proof. Observe that, for any given kite state q ∈ Q,

N (q,H(q)) = {τ |e(q, τ)TQfm(τ) ≥ 0}
is the set of all τ satisfying the terminal constraint (6e).
Lemma 4 shows that, for all q ∈ Q,N (q,H(q)) 6= ∅. Thus,
independent of initial condition q(0) and for any terminal
state q(T ) ∈ Q, τT ∈ N (q(T ),H(q(T ))) satisfies (6e).

Since the considered path is periodic and we do not impose
any input magnitude constraint on uτ . Hence, for any τ(0),
there exists a positive input such that τ(T ) = τT . �

4.2 Feasibility of (6d):

For sake of readability, we drop the time argument T from
vectors like m(T ), e(T ), q(T ). Recall that X := Q×R. We
will also use the following short hand notations: F (q, τ) :=
(m e) ∈ R3×2. Dropping the arguments (q, τ), we write,
g = FTQfe ∈ R2×1, P = FTQfF , S = diag(1, 1, 0) and
H = FTSF . Also note that we can rewrite (6d) as

eTQf q̇ ≤ −
1

2
||e||2Q.



Inspired by the concept of vector field controllers, let
us try to find a vector field v(q, τ) : X → R3 such
that q̇(T ) = v(q(T ), τ(T )) satisfies (6e). To this end, for
w(q, τ) : X → R2, we parametrize the desired vector field
v(q, τ) as

v(q, τ) = F (q, τ)w(q, τ).

Furthermore, from (2) we have that ||q̇||S = s(q, λ, L, z)
imposes a magnitude constraint on Sq̇. Thus, in order to
find a v(q, τ) that satisfies this magnitude constraint and
satisfies (6d), we consider a optimization problem to be
solved at each (q, τ) to yield a w?(q, τ)

minimize
w∈R2

1

2
||Fw −m||2Qf

+
1

2
||w||2 (11a)

subject to gTw ≤ −1

2
||e||2Q (11b)

wTHw − s2 = 0 (11c)

where s = s(q, λ, L, z). Note that, for the sake of read-
ability, we dropped the arguments (q, τ) above. The pe-
nalization ||Fw −m||2Qf

, in the objective function (11a),

regularizes w such that v points along the tangent of the
path m whenever possible. Equation (11b) imposes that
v satisfies (6d) and (11c) imposes that v satisfies the
magnitude constraint on Sq̇. Setting w(q, τ) = w?(q, τ)
and solving (11) yields the desired vector field v(q, τ).

Proposition 8, presented in Appendix, provides the op-
timal solution w? to (11) and its existence conditions.
Specifically, when already on the path (e = 0), it turns
out that w? is such that Fw? points along the tangent
direction given by direction of m. Thus, when on the path,
the desired vector field pushes the vehicle along the path,
rendering the path an invariant set under the vector field.
Choosing q̇(T ) = v(q(T ), τ(T )), then imposes (6d).

Let S ⊂ Q be a compact subset of Q for which the
conditions of Proposition 8 are satisfied. Let Vα := {e :
1
2 ||e||

2
Qf
≤ α} be the largest level set contained in S

(subject to maximization w.r.t. α). Furthermore, let ∠v =
atan2(e2v, e1v), e1 = (1 0 0), e2 = (0 1 0), e3 = (0 0 1).

Assumption 5. Assume that, starting at the any q(0) ∈ Q,
there exists a reachable point inQ such that v(q(T ), τ(T )) =
F (q(T ), τ(T ))w∗(q(T ), τ(T )). �

Proposition 6. (Recursive feasibility of (6d)).
Let Assumption 5 hold. Then, for any q(T ) ∈ Vα, such
that τ(T ) ∈ N (q(T ),H(q(T ))), γ(T ) = ∠v(q(T ), τ(T ))
and uγ = e3v(q(T ), τ(T )), the terminal condition (6d)
holds. Furthermore, the set Vα is positively invariant and
(6d) is recursively feasible. �

Proof. Observe that e1q̇ = s cos γ, e2q̇ = s sin γ and
e3q̇ = uγ . It is easy to verify that γ(T ) = ∠v(q(T ), τ(T )),
uγ = e3v(q(T ), τ(T )) and (11c) imply q̇(T ) = v. From
(11b) we have v such that q̇(T ) = v satisfies (6d). Fur-
thermore, considering the positive semidefinite function
VT (q, τ) = 1

2 ||e||
2
Qf

, we see that V̇T = eTQf ė = eTQf q̇ −
eTQfm(τ)uτ . Since τ(T ) ∈ N (q(T ),H(q(T ))) is such that
eTQfm(τ) ≥ 0 and uτ ≥ 0, we have eTQfm(τ)uτ ≥ 0

implying V̇T ≤ eTQf q̇. Further with q̇ = v, from (11b),

we have eTQf q̇ ≤ − 1
2 ||e||

2
Q implying V̇T ≤ −1

2 ||e||
2
Q. This

implies that Vα is positively invariant and thus (6d) is
recursively feasible. �

4.3 Convergence Constraints

Theorem 7. If (6d) and (6e) hold for a terminal state
x(T ) = (q(T ), τ(T )), then (9) also holds for x(T ). �

Proof. For sake readability, let us drop the time argu-
ment T with the understanding that all quantities in the
expressions below are at the terminal time T . Consider

1

2
||e||2Q + eTQf ė =

1

2
||e||2Q + eTQf q̇ − eTQfm(τ)uτ .

Then from (6d), it follows that eTQf q̇ ≤ −1
2 ||e||

2
Q.

Furthermore, from (6e) we have that, for all uτ ≥ 0,
−eTQfm(τ)uτ ≤ 0. These statements imply that

1

2
||e||2Q + eTQf ė ≤ 0.

This finishes the proof. �

5. SIMULATION RESULTS

For the numerical implementation of our continuous time
MPFC scheme we use a sampled data implementation
with sampling time δ. The OCP (6) in the sampled data
setting is solved using a direct multiple shooting approach
with N time step horizon (T = N · δ). The nonlinear
program (NLP) is setup with automatic differentiation
using CasADi (Andersson (2013)) with a RK4 integrator
approximation and solved using an interior point solver
(IPOPT, Wächter and Biegler (2006)) on a 2.8 GHz Intel
Core i7 processor. The values for Q,Qf , R,N, T are given
in (12) in the Appendix.

Subsequently, we discuss results for the following scenarios:

(1) Nominal simulations: Simulations under zero plant-
model mismatch

(2) Perturbed simulations:
(a) Sampled velocity: Speed of the vehicle is sampled

at the beginning of the MPC horizon and then
assumed constant at that value over the horizon.

(b) Pumping cycle: The vehicle is reeled in and out
with an external controller. The tether length
is sampled at the beginning of the horizon and
assumed constant over the horizon. The vehicle
speed held constant as done in 2a.

(3) MPFC without terminal constraints

Note that in the perturbed scenarios 2a,2b, the AWE
system is still simulated using the nominal model in
equation (2), while the perturbed models as described in
2a,2b are used for predictions in the MPFC controller.
Simulations without the terminal constraints are presented
to highlight the role of terminal convergence constraints in
enforcing faster convergence.

Nominal simulations: The first 30 seconds of Figure 2 and
3 provide a typical MPFC closed loop trajectory for the
AWE vehicle under nominal simulation when following a
lemniscate shaped reference path (see Appendix, (13)).
Figure 3 shows the closed loop evolution of the system
state x̂(t) and closed loop inputs ûγ(t), ûτ (t) when tracking
the lemniscate. With δ = 0.1s and N = 10, the average
solve time to plan a 1 s long horizon is 0.2 s, suggesting the
possibility to apply the nominal MPFC scheme in real time



Fig. 2. Closed loop flight trajectory with convergence
constraints for complete pumping cycle.

Fig. 3. Closed loop state and input evolution.

Fig. 4. Path following errors.

as a higher level planner in a cascaded structure control
scheme.

Perturbed simulations: We test our control scheme ap-
plying perturbations in the velocity model s(q, λ, L, z).
Since we do not have an accurate model s(q, λ, L, z) due
to unknown parametric and structural uncertainties, we
choose a simplified model where, s(q, λ, L, z) = so. The

constant so is updated to the speed estimate of the vehicle
at the beginning of the horizon and then held constant
for the MPC prediction over the horizon. Figure 4 shows
the closed loop path following error obtained under the
perturbation 2a showing a very close overlap with the
nominal case. Thus the MPFC scheme seems to have
sufficient inherent robustness with the chosen parameters
to plan under imperfect prediction. Further due to the
simplification of the dynamics under this sampled speed
model, the solve time is significantly reduced with an
average solve time of about 0.05 seconds and worst case
solve time of about 0.1 second.

The trajectory after 30 seconds in Figure 2 and 3 shows the
closed loop trajectory for the complete pumping cycle op-
eration of an AWE system corresponding to perturbation
2b. Figure 4 shows the path following errors for perturba-
tion 2b, where the closed loop trajectory follows a reference
for the full pumping cycle which is made up by switching
between two different lemniscate paths for the traction and
retraction phases. The switching of reference path creates
an instantaneous increase in the path following error which
is reduced quickly by the MPFC scheme to start tracking
the new reference path.

Performance without terminal constraints: Figure 4 also
shows the convergence of path following errors when ter-
minal constraints are not imposed. This shows that the
MPFC scheme can also work with only the terminal
penalty being imposed. However by comparison, the termi-
nal constraints significantly improve the convergence rates.

6. CONCLUSION

The paper presented a nonlinear model predictive path
following (MPFC) scheme for airborne wind energy sys-
tems that may be used as a high-level planner in combi-
nation with a low-level steering controller. A novel set of
terminal convergence field constraints are introduced to
guarantee asymptotic convergence to zero path tracking
error. Recursive feasibility and convergence results have
been investigated for the proposed scheme under a reach-
ability assumption for the convergence field. Numerical
studies under nominal and perturbed conditions indicate
good control performance. The proposed MPFC scheme
is observed to be computationally viable for real-time
application in cascaded kite control schemes.

APPENDIX

Simulation parameters

MPFC parameters:

Q = diag(1000, 1000, 3), Qf = diag(500, 500, 150)

R = diag(0.1, 0.01), N = 10, δ = 0.1sec., umaxγ = 20
(12)

Model data:

Q = {(ϑ, ϕ, γ) : ϑ ∈ [0, π/2), ϕ ∈ (−π/2, π/2), γ ∈ [−π, π]}

s(q, λ, L, z) =(
1 0
0 (cosϑ)−1

)
vwL

−1

(
cos γ
sin γ
−E

)T (− sinϑ cosϕ
− sinϕ

− cosϑ cosϕ

)



Λ = (vw, E) are the parameters, wind vector and aerody-
namic glide ratio respectively. (vw ∈ R2 vector represents
the wind vector in the horizontal ground plane)

Reference path parameterization: For the lemniscate ref-
erence path used in numerical simulations, we use,

ϑref (τ) = h+ a sin(2τ), ϕref (τ) = 4a cos(τ) (13)

In perturbed scenario 2b we use h = π/6 for reel-out and
h = π/4 for reel-in. a = 0.2 for all cases. The tether is
reeled-out at 0.5 m/s and reeled-in at 1 m/s.

Terminal convergence constraints

Below adj(·) represents the adjoint of a matrix and trace(·)
gives the trace of a matrix. Let, F := (m e) ∈ R3×2,
g := FTQfe ∈ R2×1, P = FTQfF , H = FTSF and

`=−2||g||2adj(H), c = −||g||2adj(P ) − ||g||
2

b0 =−gTh− gT adj(P )h− 1

2
(|P |+ 1 + trace(P ))||e||2Q

b1 =−2gT adj(H)h+ (trace(H) + trace(H adj(P )))||e||2Q
b2 = 4|H|||e||2Q, r0 = b0 ± cs, r1 = b1 ± `s, r2 = b2

The variable s is the speed as defined in (11).

α0 =− adj(ggT )h+
1

2
(I + adj(P ))g||e||2Q

α1 =−2 adj(H)g||e||2Q, β0 = h+ adj(P )h

β1 = 2 adj(H)h, h =

(
||m||2Qf

mTQfe

)
k0 = |P |+ trace(P ) + 1, k2 = 4|H|
k1 = 2 trace(H) + 2 trace(H adj(P ))

n0 = k0s± β0, n1 = k1s± β1, n2 = k2s

λ(ν) =
1

`ν + c
(b2ν

2 + b1ν + b0) (14a)

for ν ∈ P1 := {x ∈ R : r2x
2 + r1x+ r0 = 0} (14b)

also let,

P0 = {x ∈ R : n2x
2 + n1x+ n0 = 0} (15)

Proposition 8. The minimizing solution for (11) is

w? =
1

σ(µ)
(a1µ+ a0) (16a)

with µ ∈ Pλ such that, for e 6= 0, λ(ν) > 0,

Pλ = P1, & (a1, a0) = (α1, α0), σ(µ) = `µ+ c. (16b)

Otherwise

Pλ = P0, (a1, a0) = (β1, β0), σ(µ) = k2µ
2 + k1µ+ k0.

(16c)
The solution exists if the quadratics defining P0 and P1

have real roots . �

Proof. The proof follows by writing the Lagrangian for
(11) as

L(w, λ, µ) =
1

2
||Fw −m||2Qf

+
1

2
||w||2

+ λ

(
gTw +

1

2
||e||2Q

)
+ µ

(
wTHw − s2

)
. (17)

Then, writing the KKT conditions and solving for the two
cases, λ > 0 and λ = 0. For λ > 0, we can write w?, λ as
a function of µ as given in (14a) for µ = ν. µ itself can
be obtained as roots to a quadratic equation (14b) with
µ = ν. When e = 0, the inequality becomes weakly active
and thus the solution can be obtained from the λ = 0 case.
For λ = 0, µ can be obtained as roots to the quadratic as
defined in (15). Once µ is taken for the appropriate case,
w? can be obtained as specified by (16). �
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