
Atum: Scalable Group Communication
Using Volatile Groups

Rachid Guerraoui1, Anne-Marie Kermarrec2,
Matej Pavlovic1, Dragos-Adrian Seredinschi1

1École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2Inria Rennes, France

{firstname}.{lastname}@epfl.ch, anne-marie.kermarrec@inria.fr

ABSTRACT
This paper presents Atum, a group communication mid-
dleware for a large, dynamic, and hostile environment. At
the heart of Atum lies the novel concept of volatile groups:
small, dynamic groups of nodes, each executing a state ma-
chine replication protocol, organized in a flexible overlay.
Using volatile groups, Atum scatters faulty nodes evenly
among groups, and then masks each individual fault inside
its group. To broadcast messages among volatile groups,
Atum runs a gossip protocol across the overlay.

We report on our synchronous and asynchronous (eventu-
ally synchronous) implementations of Atum, as well as on
three representative applications that we build on top of it:
A publish/subscribe platform, a file sharing service, and a
data streaming system. We show that (a) Atum can grow
at an exponential rate beyond 1000 nodes and disseminate
messages in polylogarithmic time (conveying good scalabil-
ity); (b) it smoothly copes with 18% of nodes churning every
minute; and (c) it is impervious to arbitrary faults, suffer-
ing no performance decay despite 5.8% Byzantine nodes in
a system of 850 nodes.

CCS Concepts
•Computer systems organization → Fault-tolerant
network topologies; Reliability; Redundancy;

Keywords
Distributed systems; Byzantine fault tolerance; Gossip; Group
communication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12 - 16, 2016, Trento, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988356

1. INTRODUCTION
Group communication services (GCSs) are a central theme

in systems research [14, 18, 23, 45, 53]. These services pro-
vide the abstraction of a node group, and typically export
operations for joining or leaving the group, as well as broad-
casting messages inside this group. For a node in the group,
the GCS acts as a middleware between the application and
the underlying communication stack. The application sim-
ply sends and receives messages, while the network topology,
low-level communication protocols and the OS networking
stack are abstracted away by the GCS.

A wide range of applications can be built using this ab-
straction, spanning from infrastructure services in datacen-
ters [5, 39], to streaming and publish/subscribe engines in
cooperative networks [18, 19, 47, 53], or intrusion-tolerant
overlays [24, 44].

To cope with the needs of modern applications, GCSs need
to be scalable, robust, and flexible. Scalability is a primary
concern because many applications today involve thousands
of nodes [59] and serve millions of users [5, 72]. The main
indicator of scalability in a GCS is the cost of its operations,
which should ideally be sublinear in system size.

Given the scale of these systems, faults inevitably occur
on a daily basis. Crashed servers and buggy software with
potentially arbitrary behavior are common in practice, both
in cooperative systems (e.g., peer-to-peer) and datacenter
services [3, 28, 57, 59]. For instance, according to Barroso
et al. [11], in a 2000-node system, 0.5% nodes fail each day.
Clearly, GCSs have to be robust by design.

GCSs also need to be flexible, tolerating a considerable
fraction of nodes that join and leave the system, i.e., churn.
Peer-to-peer services are naturally flexible [72]. For data-
center services, churn emerges as a consequence of power
saving techniques, software updates, service migration, or
failures [11]; cross-datacenter deployment of services tends
to further exacerbate the churn issue.

There are well-known techniques to address individually
each of robustness, scalability, and flexibility. To obtain a
robust design, the classic approach is state machine replica-
tion [50, 66]: Several replicas of the service work in parallel,
agreeing on operations they need to perform, using some
consensus protocol [20]. State machine replication (SMR)
is powerful enough to cope even with arbitrary, i.e., Byzan-
tine faults [7, 20, 48]. To provide a scalable design, clus-
tering is the common approach. The nodes of the system
are partitioned in multiple groups, each group working in-

dependently; the system can grow by simply adding more
groups [13, 41]. To achieve flexibility and handle churn, join
and leave operations should be lightweight and entail small,
localized changes to the system [53]. A standard approach to
attain flexibility in a GCS is through gossip protocols [29].
With gossip, each participant periodically exchanges mes-
sages with a small, randomized subset of nodes. Gossip-
based schemes disseminate messages efficiently, in logarith-
mic time and with logarithmic cost [29].

It is appealing to combine clustering with SMR and gos-
sip to tackle all of the issues above. At first glance, it seems
natural to organize a very large system as a set of reliable
groups and have them communicate through gossip. Unfor-
tunately, this combination poses a major challenge due to
a conflict between robustness and flexibility. Churn induces
changes to the system structure and calls for groups that
are highly dynamic in nature, i.e., fluctuate in number and
size. In contrast, (Byzantine-resilient) SMR has opposing
requirements, imposing strict constraints on every group, to
keep groups robust and efficient. In particular, to ensure ro-
bustness, SMR requires a bounded fraction of faults in every
group [16, 32]; to achieve efficiency, it is important to keep
groups small in size, as SMR scales poorly due to quadratic
communication complexity [25].

In this paper, we report on our experiences from design-
ing and building Atum, a novel group communication mid-
dleware that seeks to overcome this challenge. To mitigate
the above conflict, we introduce the notion of volatile groups
(vgroups). These are clusters of nodes that are small (log-
arithmic in system size), dynamic (changing their compo-
sition frequently due to churn), yet robust (providing the
abstraction of a highly available entity). Every vgroup ex-
ecutes a SMR protocol, confining each faulty node to that
vgroup. Among vgroups, we use two additional protocols:
random walk shuffling and logarithmic grouping.

Random walk shuffling ensures that faulty nodes, if any,
are dispersed evenly among vgroups. Whenever a vgroup
changes, e.g., due to nodes joining or leaving, Atum uses
random walks to refresh the composition of this vgroup to
contain a fresh, uniform sample of nodes from the whole
system. This technique is particularly important for cases
when faults accumulate over time in the same vgroup.1 We
thus refresh a vgroup after any node joins or leaves it. Our
logarithmic grouping protocol guarantees in addition that
every vgroup has a size that is logarithmic in the system
size. Whenever a vgroup becomes too large or too small,
Atum splits or merges groups, to keep their size logarithmic.

To efficiently disseminate messages among vgroups, we
use a gossip protocol. The complexity of gossip is known
to be logarithmic in system size [29]. In Atum, we address
each gossip to a vgroup of logarithmic size, resulting in an
overall polylogarithmic complexity.

We implement two versions of Atum, one using a syn-
chronous SMR algorithm, and one based on an asynchronous
algorithm.2 To illustrate the capabilities of Atum, we build
three applications: ASub, a publish/subscribe service, AShare,

1This may happen due to bugs [57, 59, 73] or join-leave
attacks [8]; both of these situations reflect the concentration
of faults in the same group.
2Strictly speaking, an asynchronous SMR implementation is
impossible [37]. In this context, we call a SMR implementa-
tion asynchronous if it requires synchrony only for liveness
(eventual synchrony), like PBFT [20].

a file sharing platform, and AStream, a data streaming sys-
tem. Given these two implementations and the three ap-
plications, we report on their deployment over a variety of
configurations in a single datacenter, as well as across multi-
ple datacenters around the globe. We show that Atum: (a)
supports an exponential growth rate, scaling well beyond
1000 nodes, and smoothly copes with 18% of nodes churn-
ing every minute; (b) is robust against arbitrary behavior,
coping with 5.8% Byzantine nodes in a 850-node system; (c)
disseminates messages in polylogarithmic time, incurring a
small overhead compared to classical gossip.

It is important to note that the goal of our work is to ex-
plore the feasibility of a general-purpose GCS – in the same
vein as Isis [14], Amoeba [45], Transis [31], or Horus [70],
but for large, dynamic, and hostile networks. Our experi-
ences with Atum highlight the numerous complications that
arise in a GCS designed for such an environment (§7). The
protocols underlying the vgroup abstraction – SMR; group
resizing, splitting and merging; distributed random walks –
are challenging by themselves. Combining them engenders
further complexity and trade-offs. We believe, however, that
the vgroup abstraction is an appealing way to go, and we
hope our experiences pave the way for new classes of GCSs,
each specialized for their own needs. Note also that we do
not argue that the vgroup abstraction (and its underlying
protocols) is a silver bullet, necessary and sufficient for ev-
ery part of an application that requires multicasting in a
challenging environment. For instance, in our streaming ap-
plication, we use Atum to reliably deliver small authenti-
cation metadata; to disseminate the actual stream data at
high throughput, we use a separate multicast protocol.

To summarize, our main contributions are as follows:

• We introduce the notion of vgroups – small, dynamic,
and robust clusters of nodes. The companion random
walk shuffling and logarithmic grouping techniques en-
sure that every vgroup executes SMR efficiently, de-
spite arbitrary faults and churn.

• Using a gossip protocol among vgroups, we design Atum,
a GCS for large, dynamic, and hostile environments.

• We report on the implementation of two versions of
Atum and three applications on top of it.

The remainder of this paper is structured as follows. In
§2, we describe the assumptions and guarantees of Atum.
§3 and §4 present Atum’s design and the three applications
we built on top of it, respectively. We move on to discussing
some practical aspects of our synchronous and asynchronous
Atum implementations in §5. §6 reports on our extensive
experimental evaluation, using the above-mentioned three
applications. We discuss our experiences and lessons learned
in §7. Finally, we position Atum with respect to related work
in §8 and conclude in §9.

2. ASSUMPTIONS AND GUARANTEES
Atum addresses the problem of group communication in

a large network. Despite arbitrary faults or churn, Atum
guarantees the following properties for correct nodes. Live-
ness: If a node requests to join the system, then this node
eventually starts to deliver the messages being broadcast in
the system; this captures the liveness of both join and broad-
cast operations. Safety : If some node delivers a message m
from node v, then v previously broadcast m.

APIJoin, Leave,
Bootstrap

Broadcast

Random Walk
Shuffling

Overlay
layer

BFT
State Machine

Replication

Group
layer

Crypto + Network protocols
Node
layer

Application

Atum

Group Messages

Logarithmic
Grouping

H-graph

Gossip

Figure 1: Atum’s layered architecture.

Atum uses SMR as a building block (inside every vgroup)
and it inherits all assumptions made by the underlying SMR
protocol. We assume that a bounded number of nodes are
subject to arbitrary failures such as bugs or crashes, so
we consider SMR protocols with Byzantine fault tolerance
guarantees. Depending on the target environment, we can
use either an asynchronous protocol [20], or a synchronous
one [32]. Atum itself, however, has a general design and is
oblivious to the specifics of this protocol. As we will discuss
later, we experiment with both versions of this protocol.

We model the system as a large, decentralized network,
where a significant fraction of nodes can join and leave (i.e.,
churn). For liveness, we only expect the network to even-
tually deliver messages; this is a valid assumption even in
highly unstable networks such as the Internet. Safety relies
on the correctness of the underlying SMR protocol.

We use cryptography (public-key signatures and MACs)
to authenticate messages, and assume that the adversary
is computationally bounded and cannot subvert these tech-
niques. We do not consider Sybil attacks in our model; these
can be handled using well-known techniques, such as admis-
sion control [33] or social connections [52]. An alternative,
decentralized solution to deter Sybil attacks is to rely on
cryptographic proofs of work, as in Bitcoin [56].

Atum tolerates a limited number of nodes isolated by a
network partition. In practice, we treat isolated nodes as
faulty, so the bound on the number of faults also includes
partitioned nodes. Aside from the SMR algorithm, a severe
network outage might break liveness, but not safety.

3. DESIGN
Atum is a group communication middleware positioned

between a distributed application and the underlying net-
work stack. It has a layered design comprising four layers, as
depicted in Figure 1. At the bottom, the node layer handles
inter-node communication. We use standard techniques here
– cryptographic algorithms to secure communication, and a
network transport protocol for reliable inter-node message
transmission. Since these are orthogonal to our design, we
do not dwell on their details.

At the group layer (§3.1), Atum partitions nodes into
vgroups of logarithmic size. We ensure the robustness of
each vgroup using a state machine replication protocol with

C

B A

D E

F

Volatile group (vgroup)

Byzantine node
Node

Hamiltonian cycle #2 edge
Hamiltonian cycle #1 edge

BFT

Goss
ip

Gossip
State Machine

Replication

Figure 2: An instance of Atum: Vgroups intercon-
nected by an H-graph overlay with two cycles.

BFT guarantees. For inter-vgroup communication we use
special messages, called group messages, that ensure reliable
communication for pairs of vgroups.

The overlay layer (§3.2) connects vgroups and enables
them to communicate. The network formed by vgroups has
the structure of an H-graph [51], as Figure 2 depicts. At
this layer, the protocols are typically randomized (based on
gossip and random walks), and rely on group messages.

At the topmost layer sits the Atum API. For membership
management, we provide bootstrap, join, and leave opera-
tions; for data dissemination, we expose a broadcast oper-
ation. In the remaining parts of this section we describe
the interplay between these layers and their corresponding
techniques, including the API operations.

3.1 Group layer
The purpose of the group layer is to mask failures of indi-

vidual nodes and provide the abstraction of robust vgroups.
We partition nodes in vgroups of size g, and apply a BFT
SMR protocol in every vgroup. We design Atum to be ag-
nostic to this underlying protocol, so our system can support
either a synchronous version, which tolerates at most f =
b(g − 1)/2c faults in every vgroup [32], or an asynchronous
version, which has a lower fault-tolerance, at f = b(g−1)/3c
faults per vgroup [20]. We say that a vgroup is robust if the
number of faults in that vgroup does not exceed f .

Assuming each node in a vgroup has the same constant
probability of being faulty (we will discuss this assumption
closely in §3.2), the size g of a vgroup is critical for ensur-
ing its robustness. The more nodes a vgroup contains, the
higher the probability of being robust. To get the intuition,
consider a synchronous system with 1 failure out of every 20
nodes, i.e., with failure probability of 0.05. A vgroup with
g = 4 nodes tolerates f = b(4 − 1)/2c = 1 faults and fails
with probability Pr[X >= 2] = 0.014; the random variable
X denotes the number of failures and follows the binomial
distribution X ∼ B(4, 0.05). But a 20-node vgroup, with
f = 9, will fail with Pr[X >= 10] = 1.134 · 10−8. Thus,
larger vgroups are more desirable from a robustness per-
spective. On the other hand, large vgroups entail a bigger
overhead of the BFT protocol, penalizing performance [25].
Efficiency thus requires a smaller g.

At the group layer, there is thus a clear trade-off between
robustness (larger g) and performance (smaller g). What-
ever vgroup size we pick, the probability of all vgroups be-
ing robust decreases as the number of vgroups in the sys-
tem grows. To understand the trade-off, let us denote the
expected system size by n, and the number of vgroups by

Hamiltonian cycle edge

Inter-node
messages

Group
message

Figure 3: Two vgroups communicate (e.g., gossiping)

through a group message, which consists of multiple

inter-node messages.

n/g.3 Consider a growing system. At one extreme, if vgroup
size g is constant, we promote efficiency at the cost of ro-
bustness; as the system grows and accumulates vgroups, the
probability of all vgroups being robust diminishes. At the
other extreme, if the number of vgroups n/g is constant, we
favor robustness to the detriment of efficiency: Robustness
improves as n grows, but the BFT overhead may become
impractical. We argue that a middle-ground between these
two extremes is the best option.
Logarithmic grouping. We favor both efficiency and ro-
bustness in a controlled manner by making g and n/g grow
slowly, sublinearly in system size. We do so by setting g =
k· log(N), i.e., vgroups have their size logarithmic in the
system size; it has previously been proven that this is the
optimal choice [9, 42, 65]. The system parameter k controls
the above-mentioned trade-off. With bigger k, robustness in-
creases at the cost of performance, independently of system
size. In practice, we believe k = 4 is a good trade-off: Even
in a system with 6% simultaneous arbitrary faults, there is
a probability of 0.999 of all vgroups being robust.

In a dynamic environment, vgroups do not have a fixed
size g, but their size fluctuates due to churn. We intro-
duce two system parameters, gmin and gmax, defined by a
system administrator at startup; these define the minimum
and maximum vgroup size, respectively. If a vgroup grows
beyond gmax, then we split that vgroup in two smaller ones.
When a vgroup shrinks below gmin nodes, we merge it with
another vgroup. Parameters gmin and gmax depend on g =
k· log(N).4

Group messages. At the group layer, we can view Atum as
consisting of a host of robust vgroups. To achieve coordina-
tion among vgroups and implement data dissemination, we
introduce group messages as a simple communication tech-
nique for pairs of vgroups. A group message from vgroup A
to vgroup B is a message that all correct nodes in A send
to all nodes in B. A node d in B accepts such a message
iff d receives this message from the majority of nodes in A,
which guarantees correctness of the group message.

Group messages are a central building block of Atum.
Two vgroups can exchange group messages only if they know
each other’s identities, i.e., nodes in vgroup A know the com-
position of vgroup B and vice versa. We illustrate a group
message in Figure 3.

3The expected system size n need not be exact, an estima-
tion suffices. If n is conservative (too large), then the system
trades efficiency for better robustness; and vice versa if n is
too small.
4The sole purpose of g and k is to better understand Atum’s
robustness. It is only gmin and gmax that are used as config-
uration parameters in practice.

3.2 Overlay layer
At this layer, Atum maintains an overlay network on top

of vgroups that enables the use of group messages – such
that vgroups can communicate through gossip. The overlay
layer also manages the composition of every vgroup using
random walk shuffling. At this layer, each pair of connected
vgroups informs each other of any composition change.

The overlay has the form of an H-graph [51], in which
vgroups correspond to vertices and vgroup connections to
edges (see Figure 2). An H-graphis a multigraph composed
of a constant number of random Hamiltonian cycles. Each
vertex thus has two random neighbors for each cycle. This
structure is sparse (constant degree), well connected, and
has a logarithmic diameter with high probability. Thus, we
can apply gossip efficiently on top of this overlay, because
messages can permeate rapidly through the whole network.
The sparsity of the overlay allows Atum to scale, since every
vgroup only has to keep track of a limited (constant) num-
ber of neighboring vgroups. A further reason for using this
overlay is its decentralized random structure, which is well
suited for efficient vgroup sampling using random walks [51].
Gossip. We use gossip along the edges of the H-graph,
so any two neighboring vgroups can gossip using group mes-
sages. We use this technique to disseminate application mes-
sages whenever a node invokes a broadcast operation. To
transform gossip’s probabilistic delivery guarantees into de-
terministic ones, we have each vgroup gossip at least with
neighboring vgroups on a specific cycle of the H-graph.
Random walk shuffling. Like gossip, we also run this pro-
tocol along the edges of the overlay. We use random walk
shuffling to handle churn, i.e., join and leave operations. Re-
call that at the group layer we assume that each node has
the same constant probability of being faulty (§3.1). Ran-
dom walk shuffling guarantees this assumption by assigning
joining nodes to vgroups selected uniformly at random from
the whole system. As the name of this technique suggests,
we use random walks to sample vgroups.

A random walk is an iterative process, where a message is
repeatedly relayed across the overlay network. The length
of the walks is a system parameter that we denote by rwl.
At each step of the walk, a vgroup sends a group message
to another vgroup using a random incident link of the over-
lay. After rwl steps, the walk stops at some random vgroup
from the network – this is the vgroup which the random
walk selected. Multiple parameters impact the uniformity of
vgroup selection: rwl, n/g (i.e, the number of vgroups in the
system), and the density of the network (given by hc, the
number of H-graph cycles). Intuitively, for uniform selec-
tion, a small and dense system needs shorter random walks
than a larger, sparser system. In Table 1, we summarize the
important parameters of Atum.

In order to find proper combinations of Atum parameters
(to obtain uniform random vgroup selection), we carry out
a simulation. The aim is to derive a guideline that shows
the relations between these parameters, so we can properly
configure Atum to provide uniform sampling.

Figure 4 shows the simulation results. We consider the
length of the random walk optimal if Pearson’s χ2 test with
a confidence level of 0.99 cannot distinguish the distribu-
tion of the simulated random walks from a truly uniform
distribution. The interpretation of this guideline is straight-
forward; e.g., in a system of roughly 128 vgroups, we set rwl
to 9 and hc to 6. In §6.1.2, we evaluate experimentally the

 5

 7

 9

 11

 13

 15

 2 4 6 8 10 12

R
a

n
d

o
m

 w
a

lk
 l
e

n
g

th
(r

w
l)

Number of H-graph cycles (hc)

of vgroups:
8192
2048

512
128

32
8

Figure 4: Guideline with optimal rwl and hc system
parameters.

trade-off between rwl and hc.
Even if new nodes join random vgroups, bugs can lead to

faulty nodes accumulating in the same vgroup over time (or
an adversary can mount a join-leave attack [8]). To counter
such a situation, after a node joins or leaves a vgroup, we
refresh the composition of that vgroup through a shuffling
technique: We exchange all nodes of this vgroup with nodes
selected uniformly at random from the whole system. To
select a random node from the system, we first use a random
walk to select a vgroup, which in turn picks a random node
from its composition.

Random walk shuffling ensures that the composition of ev-
ery vgroup is sampled randomly from the whole system. By
keeping vgroups random, we provide a sufficient condition to
ensure their robustness. To also ensure efficiency, logarith-
mic grouping maintains the size of each vgroup logarithmic
in system size.

3.3 API operations
Atum exports four basic operations:
• bootstrap(ownIdentity, params),
• join(contactNode),
• leave(), and
• broadcast(message).

In addition, our system requires the application to provide
two callback functions:
• deliver(message), and
• forward(message, neighbor).

In the following, we describe these operations in detail.

3.3.1 bootstrap(ownIdentity, params)
The bootstrap operation creates a new instance of Atum

that consists of a single vgroup containing only one node –
the calling node. Trivially, this vgroup is a neighbor to itself
on every cycle of the H-graph. The parameter ownIdentity
identifies the calling node. It contains the network address
(IP address and port) that other nodes can use to join this
instance of Atum. The params argument specifies system
parameters as we present them in Table 1 (except for k).

Param. Description Typical values

hc Number of H-graph cycles. 2, . . . , 12
rwl Length of random walks. 4, . . . , 15
gmax Maximum vgroup size. 8, 14, 20, . . .
gmin Minimum vgroup size. 0.5 · gmax
k Robustness parameter 3, . . . , 7

Table 1: System parameters.

3.3.2 join(contactNode)
As in other BFT systems [49], [62], Atum uses a trusted

entity to orchestrate the first contact between a joining node
and the system. In Atum, any correct participating node
can take this role; we call such a node a contact node. In
practice, the contact node can be a social connection of the
joining node, and it is well-known that, without a centralized
admission control scheme, a trusted entity is a necessary
prerequisite for joining an intrusion-proof system [27].

Let c be a contact node belonging to vgroup C. A join

operations proceeds as follows. A joining node j contacts c,
which replies with the identities and public keys of nodes in
C; this is the only step where j needs to trust c. The joining
node then sends a request to be added to the system to all
nodes of C. After receiving a join request, the nodes in C
execute an SMR agreement operation [20, 32] to make sure
that either all correct nodes of C handle the request or none
of them does. This agreement handles the case when j is
faulty and sends the join request only to a subset of C.

After agreeing on the join request, C starts the random
walk shuffling protocol by initiating a random walk. A
vgroup D selected by this walk will accommodate j. Af-
ter the walk finishes, vgroup C sends a group message with
the composition of D to j. In the next step, j contacts all
nodes in D, these nodes agree on j’s request, update their
state, and notify their neighboring vgroups about the new
member j. Since we use SMR inside vgroup D, j synchro-
nizes its state with D. The state replicated at each node
includes information needed to participate in all protocols,
e.g., neighboring vgroup compositions, state of ongoing ran-
dom walks, or pending join or leave operations.

After vgroup D receives the new node j, random walk
shuffling continues by exchanging all nodes of D (including
j) with random nodes from the whole system. First, D
starts a random walk for each of its nodes to select exchange
partners. Let S denote this set of partners. The next step is
exchanging the nodes: (1) each node in D joins the vgroup
of its exchange partner, and (2) the partners in S become
members of D.

The last part of the join operation is to check if the size
of D exceeds gmax. If it does, we trigger the logarithmic
grouping protocol. This protocol splits the nodes of D into
two equally-sized random subsets – one remains in D, the
other forms a new vgroup E. After the split, D starts one
random walk for each cycle of the H-graph. Each vgroup
selected by such a random walk inserts E between itself and
its successor on the corresponding cycle of the H-graph.

3.3.3 leave()
With this operation, a node l sends a request to leave

the system to all nodes of its vgroup L. Nodes in L agree
on this request, reconfigure to remove l, and inform their
neighbors about the reconfiguration. After l leaves, random
walk shuffling refreshes the composition of L as described
above. If this group performs a merge (described below),
we defer the shuffling until after merging.

If L shrinks below gmin nodes, we trigger logarithmic group-
ing to merge L with a random neighboring vgroup M : All
nodes of L join M , and we remove L from the overlay. This
removal leaves a “gap” in each cycle of the H-graph. To close
these gaps, the predecessor and successor of L on each cycle
become neighbors; they receive the information about each
other from L. M informs its neighbors about the reconfigu-

ration, shuffles, and splits if necessary.

3.3.4 broadcast(message)
This operation allows a node to broadcast a message to

all nodes. A broadcast operation comprises two phases. In
the first phase, the calling node initiates an SMR operation
to do a Byzantine broadcast inside its own vgroup [12, 32].
In the second phase, Atum uses gossip to disseminate the
message throughout the overlay.

The second phase is customizable, and the application-
provided callback forward drives the gossip protocol. When
a vgroup receives a broadcast message for the first time,
Atum delivers this message by calling deliver. It then calls
forward once for each neighbor of that vgroup; this func-
tion decides, by returning true or false, whether to forward
a message to a neighbor on the H-graph or not. The de-
fault behavior in Atum is to forward broadcast messages to
random neighbors, akin to gossip protocols [29].

By modifying the forward callback, an application de-
signer can trade-off between message latency, throughput,
and fairness. For instance, in latency-sensitive applications,
Atum can gossip along all H-graph cycles, flooding the sys-
tem, to disseminate messages fast. For throughput, an ap-
plication can gossip along a single cycle, allowing higher
data rates, but increased latency. We experiment with this
callback in the evaluation of our data streaming application
(§6.3). We note that an unwise choice of forward can break
the guarantees of broadcast, for instance, if this callback
specifies to not forward messages to any neighbor.

4. APPLICATIONS
In this section, we illustrate the usage of Atum by design-

ing three applications, which we layer on top of our GCS.
We first describe a simple publish/subscribe service, then a
file sharing system, and finally a data streaming application.

4.1 ASub
Publish/subscribe services are an essential component in

cooperative networks and datacenter systems alike [19, 34,
39]. ASub is a topic-based publish/subscribe system which
relies entirely on the capabilities and API of Atum. We
remark that topic-based pub/sub is essentially equivalent
to group communication, since the programming interfaces
of these two paradigms coincide. The abstraction of a topic
matches with the abstraction of a group, because subscribing
to a certain topic involves joining the group dedicated for
the said topic; similarly, publishing an event is analogous to
broadcasting a message to a group of nodes [15].

Given this equivalence between group communication and
pub/sub systems, to build ASub we only need to add a
thin layer on top of Atum. Due to space considerations,
we do not dwell on the details of this system. Suffice to
say that the operations of ASub map directly to the Atum
API (§3.3). Thus, we obtain the following pub/sub oper-
ations: create_topic, subscribe, unsubscribe, and pub-

lish from Atum’s bootstrap, join, leave, and broadcast,
respectively.

4.2 AShare
In this file sharing application, Atum plays a central role

by providing the messaging and membership management
layer. In AShare, we distinguish between data, i.e., file con-
tent, and metadata, i.e, mapping between files and nodes,

file sizes, owners, and file checksums. AShare relies on two
protection mechanisms to ensure data availability and au-
thenticity: a novel randomized replication scheme to account
for high churn, and integrity checks to fight file corruption.

AShare stores metadata as soft state, keeping a complete
copy at each node, inside a structure called the metadata
index.5 Whenever a node wants to update the index, it ini-
tiates a broadcast, informing every node about the update.
We use Atum’s broadcast to ensure reliable delivery, so ev-
ery node correctly receives the broadcast (§3.3).

4.2.1 Interface and namespace
To add a file with name f in AShare, the owner u calls
〈PUT, u, f, c, d〉, where c is the file content and d is the di-
gest of the content. Conversely, 〈DELETE, u, f〉 triggers the
system to remove all the replicas of f . When nodes want
a specific file, they do a 〈SEARCH, e〉, where e is the search
term, e.g., file or owner name. As a result, SEARCH might
yield a file f ′ previously added by a node u′. To obtain f ′,
a node calls 〈GET, u′, f ′〉.

The namespace is similar to that of file sharing networks.
Every user has its own flat namespace, so we identify files by
both their owner and their name (u, f); for simplicity, we of-
ten omit the owner u when referring to a file. Users have ex-
clusive write access (PUT and DELETE) to their own names-
pace, and read-only access to foreign namespaces (GET or
SEARCH). Being a file sharing network, we do not aim
at ensuring privacy, but the partitioned namespace restricts
malicious activities, given the read-only access. Another ad-
vantage of the partitioned namespace is that no updates on
the index can ever conflict.

4.2.2 Operations and protection mechanisms
For the sake of availability, AShare replicates every file

when the owner calls PUT for that file. In the first step of
this operation, the owner u broadcasts a message with the
tuple (u, f, d), making the file available for everyone to read.
Upon delivery of this message, every node updates their in-
dex to include this new tuple, and then they run a random-
ized replication algorithm. This algorithm creates multiple
replicas of f at random nodes; AShare aims to maintain at
least ρ replicas per file, where ρ is a system parameter. In
practice, ρ should correspond to a fraction (e.g., 0.1 to 0.3)
of the system size. We ensure the availability of every file
as long as at least one correct replica exists for each file. ρ
replicas thus protect against ρ− 1 failures.6

Randomized replication. The basic replication algorithm
that every node executes is as follows. Given a file f , each
node consults its index to compute c, the replica count for f ;
if c is smaller than ρ, then every node replicates f with prob-
ability ρ−c

n
, n being the current system size. The outcome

of the algorithm is that a random sample of nodes nominate
themselves to replicate f , yielding ρ replicas on expectation.
To attain ρ copies with certainty, we introduce a feedback
loop that triggers the randomization algorithm repeatedly.

Figure 5 depicts the feedback loop. To replicate a file
(u, f), a node x simply reads the file by calling 〈GET, u, f〉.
5An alternative is to use a DHT [69]. This method, however,
is fraught with challenges if we want to tolerate arbitrary
faults and churn [74]. We leave this for future work.
6A failure in this context means that a node holding a file
replica misbehaves (e.g. by corrupting replicas), or leaves
the system.

c = 1
PUT broadcast Randomized

replication

GET
c++

if (c < ρ)

Figure 5: AShare: A feedback loop triggers the ran-
domized replication algorithm repeatedly. c is the
number of replicas for a file.

When GET finishes, x broadcasts the tuple ((u, f), x); this
broadcast informs every node that x now stores a replica of
f . Upon delivering this broadcast, all nodes update their
index, and then the feedback loop kicks in: Nodes which do
not already store f execute the randomized replication al-
gorithm once more, using the same basic steps we described
earlier. The feedback loop deactivates when c (the number
of replicas for f) becomes greater or equal to ρ.

During a GET operation, the calling node consults its in-
dex to obtain the addresses of all the nodes which store the
target file f . The node needs all these addresses because it
performs a chunked transfer from multiple nodes at a time
(not just from the owner). A problematic situation can ap-
pear, however, if some node that stores a replica of this file
is faulty and the replica is not consistent with the original
file. To solve this issue, we introduce integrity checks.
Integrity checks. This protection mechanism preserves
the safety of the service. It allows a node to verify if a replica
of a file is authentic, and fights against file corruption that
can arise as a result of disk errors [67] or Byzantine faults.

As described earlier, as part of the PUT operation, the
owner broadcast a tuple (u, f, d), containing file identifi-
cation and digest. We compute the digest using a SHA-2
collision-resistant hash function. The nodes store this digest
in the index, and then use it to verify data authenticity.

Nodes pull files from each other in chunks, i.e., every file
has a predetermined number of chunks, established by the
owner. Chunks are the units of transfer during GET. This
scheme has two benefits: (1) A node can pull file chunks
in parallel from all the nodes which replicate that file; (2)
digest computation is faster because it can take advantage
of multithreading, by computing digests for multiple chunks
in parallel. If the integrity check for any chunk fails, then
the chunk is pulled from another node. Given this chunked
transfer scheme, parameter d in a PUT operation is actually
a set of digests, each corresponding to one of the chunks.

We implement the index as a general key-value store us-
ing SQLite [1]. It is useful both to resolve file lookups (by
checking the files-to-nodes mapping) and to verify the au-
thenticity of chunks (using digests). If a node detects that
its index is corrupted (e.g. due to disk errors or bugs in
auxiliary software such as SQLite), it can leave and rejoin
the system to obtain a fresh, correct copy of the index.

We implement DELETE using a broadcast, which informs
every node to update their index accordingly. If a node
stores a replica of the file being deleted, then it also dis-
cards the chunks of this replica. SEARCH is straightforward,
since every node has the metadata index; we implement this
operation on top SQLite’s query engine.

4.3 AStream
AStream is a streaming application with a two-tier de-

sign. Atum represents the first tier, which reliably dissemi-
nates stream authentication (digests) from the source node
to other nodes. The second tier is a lightweight multicast
algorithm which disseminates the actual stream data. Every
node uses the digests from the first tier to verify data from
the second tier. This second tier has two modules:
A decentralized algorithm to construct a set of spanning
trees, and a push-pull multicast scheme to propagate data.
We consider these modules interesting in their own right,
but due to lack of space we only give a high-level sketch.

Our second tier is inspired from previous solutions on
forest-based reliable multicast [18]. We construct a graph
(union of trees) with two important properties: (1) It is
rooted in the source node (i.e., the broadcasting node), and
(2) every node – except the root – has at least one parent
which is correct. Intuitively, these two properties ensure that
all nodes receive the data stream from the root correctly.

To build a graph with these properties, we leverage the
underlying structure of the Atum overlay (see Figure 2 for
an illustration) as follows. First, we use a deterministic func-
tion that every node knows, to pick one of the cycles of the
H-graph, denoted w, and a direction d on that cycle (ei-
ther left or right). Each node then builds a set of parents
of size f + 1, chosen randomly from vgroup V , where V
is the neighboring vgroup on cycle w and direction d. The
nodes which are neighbors with the source choose the source
as their single parent – forming the connection to the root.
Given the properties of Hamiltonian cycles and the fact that
every vgroup has a majority of correct nodes, this ensures
that every node has at least one correct parent, the source
node being the root. In addition to this, nodes also select a
parent from all other neighboring vgroups, which they may
use as shortcuts, in case they are very far from the source
node on the selected cycle w.

For disseminating the data, we use a simple, redundant
scheme. The root first splits the data in successive chunks,
and pushes the first chunk to each of its children. These
children, in turn, push this chunk to their children. The
algorithm then switches from a push phase to a pull phase,
as follows: Each child selects the first parent that pushed a
valid chunk, and periodically pulls the subsequent chunks.
A node that fails to obtain stream chunks (after receiving
the corresponding digests through Atum) tries pulling from
another parent. While it is simple, this technique ensures
delivery of all data, as at least one parent is always correct.

5. DEPLOYING Atum
In this section, we discuss some practical aspects of Atum.

We then present our two different implementations of it.

5.1 Practical considerations
Message digests. Similar to [20], we reduce network band-
width usage by substituting the content of some messages
with their digest. In Atum, a majority of the nodes in any
vgroup send the entire group message (§3.2); the remaining
nodes only send a digest of the corresponding message. Since
every vgroup has a correct majority of nodes, this strategy
ensures that at least one correct node sends the entire mes-
sage, so we never need to retransmit a message.
Random walk communication. When a vgroup G starts
a random walk (§3.2), the vgroup S selected by this random

walk cannot communicate directly with G, because S is a
random vgroup from the system, not necessarily a neighbor
of G, and thus might not know G’s composition. To deal
with this issue, random walks comprise a backward phase.

The backward phase of a random walk carries a message
from S back to G, relayed by the same vgroups that ini-
tially forwarded the random walk. After the backward phase
finishes, G and S can start communicating directly, as we
piggyback their compositions on the relayed messages.

An alternative solution is what we call random walk cer-
tificates. They work as follows. At each iteration of a ran-
dom walk, the forwarding vgroup appends a certificate to
the message used to carry out the random walk. This cer-
tificate consists of the identity of the chosen neighbor, signed
by the forwarding vgroup. When the walk reaches the se-
lected vgroup, it contains a chain of certificates, where each
vgroup certifies the identity of the next one. The selected
vgroup S can then send a reply directly to the originating
vgroup G, with the whole certificate chain appended. This
way, G can verify the identity of S by verifying the certifi-
cates in the chain. The advantage of this approach is that
a backward phase is not necessary and that vgroups need
not keep state of ongoing random walks. Depending on the
length of the random walk, however, the certificate chain
can become bulky in size (which is linear in rwl).

We experiment with both approaches to random walk
communication (backward phase and certificates) in our two
implementations. The asynchronous implementation uses
random walk certificates, since they are conceptually sim-
pler, easier to implement, and incur less total overhead.
However, verifying all signatures in a long certificate chain
is computationally expensive. Since certificate verification
would make it hard for the synchronous implementation to
meet its timing deadlines, we opt for the backward phase in
the synchronous case.
Bulk RNG for random walks. A random walk of length
rwl requires that rwl vgroups generate a random number
– each vgroup that forwards the walk to a random neigh-
bor. Distributed random number generation algorithms,
however, are expensive [46]. Thus, we generate all of the
rwl random numbers in bulk at the first iteration of the
walk, and we piggyback these numbers on the random walk
messages. At each subsequent iteration of the walk, the for-
warding vgroup uses one of the rwl random numbers.

Intuitively, one could consider a simpler approach of pre-
computing random numbers at each vgroup, and using such
a random number pool whenever a random walk needs to
be relayed. Interestingly, this approach turns out to be in-
correct. A single Byzantine node could bias the random
decision by repeatedly triggering operations that consume
random numbers from the pool. Thus, to keep our system
robust against such an attack, we require that random num-
bers are not generated before knowing exactly what to use
them for.
Randomized message sending. During early experi-
ments with Atum we noticed that the problem of through-
put collapse can arise [22]. This can happen when a vgroup
has to send one or multiple large group messages. Typi-
cally, the size and number of inter-node messages in a group
message depend on the size of the communicating vgroups
(see Figure 3). After the nodes of the sending vgroup gen-
erate outgoing messages, they send them in a short burst
to the first node of the destination vgroup, then the second

node, and so on. In the worst case, there is an upsurge of
download bandwidth at each destination node, leading to
packet loss.

To address this issue, each sending node randomizes the
order of the outgoing messages.
Removing unresponsive nodes. Nodes become unre-
sponsive due to crashes, bugs, network partitions, etc. We
use a mechanism similar to leave to evict unresponsive
nodes. To this end, every node in Atum sends periodic heart-
beats to its vgroup peers. If a node fails to send heartbeats,
the other nodes in the vgroup eventually agree to evict this
node. Eviction proceeds in the same way as a leave.

In an asynchronous system, it is impossible to distinguish
a failed node from a slow node, so our heartbeats are coarse-
grained, e.g., one every minute. If a node is silent and omits
to send many successive heartbeats, amounting to a prede-
fined period of time, then its peers agree to evict the silent
node. If an evicted node recovers, it can rejoin the system
using join. This eviction scheme does not endanger safety,
because we evict nodes at a very slow rate. If an attacker
wants to break the safety of our system by attacking cor-
rect nodes, the attacker would have to mount a persistent
barrage of DDoS attacks on many nodes; we believe the re-
sources needed for such an attack outweigh the benefits.

5.2 Atum implementations
As explained in §3, at the design level we make no ex-

plicit choice of which SMR algorithm to use inside vgroups.
In the first implementation, we choose to use a synchronous
algorithm, in particular the Dolev-Strong agreement proto-
col [32] for SMR; synchronous algorithms are significantly
simpler to implement, reason about, and debug, compared
to their asynchronous counterparts [12, 20]. To see how this
choice impacts performance and to obtain a comprehensive
evaluation, we also implement a version of Atum based on
the PBFT asynchronous SMR [20], combined with an adap-
tation of the SMART protocol [55] for reconfiguration. We
examine the differences between these two implementations
in our evaluation (§6) and further discuss them in the ex-
periences section (§7). In addition, we also implement the
three applications described in §4.

6. EVALUATION
We report on our experiments with Atum on Amazon’s

EC2 cloud. For the synchronous version (Sync), we use
a single datacenter in Ireland. Due to a high level of re-
dundancy, intra-datacenter networks are synchronous [68];
indeed, infrastructure services in datacenters often rely on
synchrony [21, 26, 40]. For WAN experiments, we use the
asynchronous version (Async) because the network is less
predictable. We deploy Async across 8 different regions of
the world, located in Europe, Asia, Australia, and America.
For both Sync and Async, each node runs on a separate
virtual machine instance of type micro, which provides the
lowest available CPU and networking performance [2].

6.1 Base evaluation of Atum
We study here the behavior of the main operations in

Atum, so these results pertain to any application layered on
top of Atum. Since Atum implementations are user-space
libraries, we use the ASub application to carry out these base
experiments. We deploy both Sync and Async and address
four important questions: (1) How fast can the Atum system

 0
 200
 400
 600
 800

 1000
 1200
 1400

 500
 1500

 2500
 3500

 4500
 5500

 6500

S
y
s
te

m
 s

iz
e

 N

 (
#

 o
f

n
o

d
e

s
)

Seconds

of nodes:
SYNC:

800
1400

ASYNC:

800
1400

Figure 6: Growth speed for systems with up to 1400
nodes.

 10
 40
 70

 100
 130
 160
 190

50100 200 400 800

C
h

u
rn

 r
a

te
(r

e
-j
o

in
s
/m

in
.)

System size N (# of nodes)

SYNC (rwl=6, hc=8)
SYNC (rwl=11, hc=5)

ASYNC (various)

Figure 7: Maximal tolerated churn rates in systems
of size 50, 100, 200, 400 and 800 nodes.

grow? (2) What continuous churn rate can it sustain? (3)
How fast does Atum disseminate messages (a) in a failure-
free scenario (b) and in presence of Byzantine nodes?

6.1.1 System growth speed
We first consider the join throughput; this may reflect, for

example, the arrival rate of new subscribers in ASub. We
use different configurations of (hc, rwl), depending on the
target system size, according to our guideline in Figure 4.
E.g., for a system with 800 nodes in roughly 120 vgroups,
(hc, rwl) = (5, 10). For the Sync system we use rounds of 1
second, and we evaluate both versions using systems of 800
and 1400 nodes.

As Figure 6 shows, if we configure a system for a smaller
maximum size, then the system can grow slightly faster.
This is because larger systems require larger values for rwl,
which increases the cost of adding nodes. As the system
grows, however, it is able to handle faster rates of node ar-
rival, resulting in an exponential growth; our flexible overlay
allows the system to run multiple join operations concur-
rently, all of which execute within a confined (randomly se-
lected) part of the network. During these experiments, we
do not observe any scalability bottlenecks. We expect Atum
to continue to exhibit this behavior (good scalability and ex-
ponential growth speed) in systems well beyond 1400 nodes,
so, in the interest of time and budget, we choose to not
experiment further.

Note the glitch around second 3000. The growth rate
drops slightly due to temporary asynchrony, after which
many nodes join in a burst and the system continues to
grow normally. The short plateau after the burst is caused
by the delay in creating and booting Amazon instances.

6.1.2 Churn tolerance
Next, we provoke continuous churn by constantly remov-

ing and re-joining nodes, for systems of up to 800 nodes. As
we show in Figure 7, Sync can churn up to 18% of all nodes
every minute, and Async reaches 22.5%. The nodes have

an average session time between 5 and 6 minutes.
We use Sync to also evaluate how the choice of overlay pa-

rameters affect Atum’s behavior under churn. The relevant
parameters are random walk length (rwl) and number of
H-graph cycles (hc). We use two combinations of (rwl, hc):
(6, 8) and (11, 5). The intuition is that random walks are
heavily used during churn, so we expect that a smaller rwl

allows higher churn rates. Figure 7 confirms this intuition.
The decrease in rwl does not translate, however, to a pro-
portional increase of churn rate, because other sub-protocols
also affect this rate, e.g., random number generation or SMR
inside vgroups. Since the behavior of Async is less pre-
dictable, this effect, although present, is less prominent for
Async, and we use a different configuration for each system
size according to our configuration guideline.

As our configuration guideline (Figure 4) shows, if we de-
crease rwl (y-axis), we have to increase hc (x-axis) to pre-
serve the random walks’ uniform sampling property. A big-
ger hc means that groups have more neighbors, so nodes
keep more state, which leads to bulkier state transfers. Go-
ing from hc= 5 to 8, however, turns out to have a smaller
impact on the churn rate than the change of rwl.

6.1.3 Group communication latency
In this experiment, we instantiate a system and then dis-

seminate 800 messages of length 10 to 100 bytes (comparable
to Twitter messages). We experiment with system sizes of
200, 400, and 800 nodes in a failure-free case. To also evalu-
ate Atum in the presence of faults, we use 800 correct nodes
and subsequently add 50 (5.8%) nodes with injected faults.

To simulate arbitrary behavior of Byzantine nodes in Sync,
we modify their algorithm such that they do not participate
in any protocol except: (1) they send heartbeats, to pre-
vent being evicted from the system (see §5.1); and (2) they
pretend not to receive heartbeats from correct nodes, and
periodically propose to evict all correct nodes from their
vgroup. A Byzantine node has no incentive to send spoofed
or corrupted messages while the majority of the nodes in
its vgroup is correct; the recipient of such messages would
discard them. To set the system parameters, we use the
configuration guideline (§3.2), and we use rounds of 1.5 sec-
onds. For Async, faulty nodes have no incentive to send
corrupted messages, and therefore stay quiet.

We depict a CDF of the obtained latencies in Figure 8. For
all scenarios with Sync, the latency has an upper bound of
8 rounds (12 seconds). The two phases of broadcast con-
tribute independently to this latency. Nodes in the same
vgroup with the publisher deliver a message immediately
after the first phase, and nodes in other vgroups deliver it
in the second phase (§3.3.4). We normalize the results to
correspond to the expected latency of the first phase, which
is 4 rounds in these experiments. The actual latency might
differ by up to 2 rounds, depending on the size of the pub-
lisher’s vgroup. Since faulty nodes do not reach majority in
any vgroup, they do not affect correct nodes. Thus, Atum
suffers no performance decay despite 5.8% faults, and the
latency remains unchanged.

Figure 8 also shows how Sync compares with the two ap-
proaches it combines: synchronous SMR and gossip. The
first baseline is a simulation of a classic round-based crash
tolerant gossip protocol [29], with no failures. Every node
has a global membership view and in every round exchanges
messages with random nodes. To ensure fair comparison,

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 75 76 77

F
ra

c
ti
o

n
 o

f
d

e
liv

e
re

d
m

e
s
s
a

g
e

s

Latency (seconds)

Atum SYNC:
N = 200
N = 400
N = 800
N = 850*

Atum ASYNC:
N = 200
N = 400
N = 800
N = 850*

S.Gossip:
N = 850

S.SMR:

N = 850*

Figure 8: Group communication latency: Compari-
son between gossip, Atum, and SMR. We tag with
∗ the systems with 50 faults.

we set the fanout of this gossip protocol (i.e., the number
of message exchanges per round) to the size of the view of
a Atum node (this is a loose upper bound on the Atum
fanout), and rounds to 1.5 second. As Figure 8 reveals, the
latency penalty in Atum corresponds roughly to the latency
of the SMR protocol in the first phase of broadcast (which
is 4 rounds), with minimal additional overhead. This is the
price we pay for Byzantine fault tolerance. The second base-
line is the Byzantine agreement protocol [32] that we use to
implement SMR in Sync, when we scale it out to the whole
system. The latency for this protocol is f + 1 rounds (1.5
seconds each), where f is the number of tolerated faults.

Latencies for Async are much lower, since there are no
synchronous rounds, and so nodes do not need to coordinate
their steps at a conservative rate. In contrast to Sync, how-
ever, the tail latency reaches 105.5s, with less than 0.01%
notifications delayed by more than 5s. With Async, a small
number of temporarily slow nodes might deliver notifica-
tions late, without affecting other nodes. To compensate for
the lower fault tolerance of Async (b(g − 1)/3c instead of
b(g − 1)/2c), we increase the robustness parameter k to 7,
which results in a latency increase due to larger vgroups.

Failure rates observed in practice are about 0.5% nodes
per day in a datacenter, according to Barroso et al. [11].
In this experiment, we tolerate 5.8% faults thanks to our
logarithmic grouping and random walk shuffling schemes.
In fact, the number of faults that Atum tolerates increases
with system size. This is intuitive, given that larger systems
imply larger vgroups (vgroups are roughly logarithmic in
system size), so each vgroup can handle more faults.

We obtain the results hitherto using ASub, since this ap-
plication maps exactly to the group communication API of
Atum. Nevertheless, these results evaluate the basic oper-
ations of Atum, so they apply to all applications built on
Atum, including AShare and AStream. In the following sec-
tions, we evaluate particular metrics for these two applica-
tions; this evaluation is orthogonal to the underlying GCS
and independent of the group communication performance.

6.2 Evaluating AShare
We first evaluate the performance of GET in failure-free

runs. This operation is equivalent with reading an entire
file in a typical distributed filesystem, so we use NFS4 as
baseline. By default, NFS4 has no fault-tolerance guaran-
tees and is the standard solution for accessing files across

 0.1

 0.5

 0.9

 1.3

 1.7

2 4 8 16 32 64 128
256

512
1024

2048

L
a

te
n

c
y
 p

e
r

M
B

 (
s
)

File size (MB)

NFS4
Ashare simple

Ashare parallel

Figure 9: AShare: Read performance (latency per
MB). We normalize the result to file size.

 0.2

 0.5

 0.8

 8 10 12 14 16 18 20

L
a
te

n
c
y
 p

e
r

M
B

 (
s
)

Number of file replicas

All replicas correct
1 to 6 faulty replicas

Figure 10: AShare: Impact of Byzantine nodes on
read latency. Experiment with 50 nodes (7 Byzan-
tine) and 500 files.

the network. Results show that we provide comparable per-
formance with NFS4, while offering stronger guarantees.

Figure 9 shows our results. We normalize the read latency
to file size, so the y-axis plots latency/MB, using files from
2MB to 2GB. We consider three cases: (1) NFS4, where a
client reads from a server; (2) AShare simple, where a node
GETs files replicated by another node and the files have a
single chunk – this is for fair a comparison with NFS4; and
(3) AShare parallel, where a node reads files replicated by
two other nodes and each file has 10 chunks. As we can see,
the normalized read latency decreases as file size increases,
because the constant overhead for transfer initiation (e.g.,
handshakes, TCP slow-start [6]) amortizes as transfer time
grows. While the AShare simple execution can match the
performance of NFS4 for larger files, we observe that the
parallel execution outperforms NFS4 by up to 100% for files
over 512MB. We attribute this gain to the use of parallel
pulling and multithreaded digest computation.

We also study how Byzantine nodes impact GET latency.
A Byzantine node in this scenario corrupts all the replicas
it stores. We analyze the read latency in two scenarios – a
50-node system with 500 files, and a 100-node system with
1000 files. In both scenarios we set ρ = 8, so each file has a
minimum of 8 replicas, and 7 random nodes are Byzantine.
Every file consists of 10 chunks, with a fixed size of 1MB.

Figure 10 conveys AShare’s resilience to corrupted replicas
in the 50-node system. For moderately-replicated files, with
8 or 9 replicas, the read latency increases by up to 3x. This
is expected, given that the majority of the pulled chunks
are corrupted and have to be re-pulled from a correct node.
We also observe that the positive effect of having multiple
replicas per file diminishes. In the ideal configuration, the
number of chunks equals the number of replicas of a file,

such that each chunk can be pulled from a separate node
and verified in parallel. In this configuration we can strike a
balance between storage overhead (replicas count) and read
latency. This can be seen in our results for files with 10
replicas. We draw similar conclusions from the results of
the 100-node experiment in Figure 11.

We also used the Grid’5000 experimental platform for
AShare evaluation, both for the failure-free and Byzantine
scenario. Compared to EC2, we experimented on better ma-
chines (Xeon or Opteron CPUs, more memory) on a network
with similar properties. We omit the results for brevity, as
they are consistent with the results on EC2.

6.3 Evaluating AStream
To evaluate AStream, we consider a 1MB/s stream, which

is an adequate rate for live video. As discussed in §3.3.4, the
forward callback allows applications to customize the way
Atum disseminates data in the second phase of broadcast.
Specifically, applications like ASub would favor latency and
flood the system by gossiping on all the H-graph cycles. In
AStream, latency is not critical, so we customize the for-

ward callback to use either one (Single) or two (Double)
H-graph cycles. For Sync, we set the round duration to 1
second. We run experiments with 20 and 50 nodes. In par-
allel with the first tier, the second tier transfers the data as
soon as Atum delivers the digests.

In Figure 12 we plot the latency of the second tier of
AStream. As we show, changing the forward function has
an impact on dissemination. As expected, if we use more
cycles to disseminate metadata, latency decreases. Since we
use a lightweight multicast protocol in the second tier, this
has a small impact on latency. For instance, in the 20-node
system, Single scenario, the second tier takes .7 seconds;
the total latency is 5.7 seconds with Sync (which incurs 5s
latency) or 1.7 seconds with Async (which incurs 1s).

7. EXPERIENCES AND
LESSONS LEARNED

A big challenge we faced concerns the fundamental trade-
off between flexibility and robustness. On the one hand,
Atum is designed to be flexible and adapt to high churn
with ease: It resizes, merges and splits vgroups as befitting.
On the other hand, to uphold robustness, Atum is also de-
signed to restrict how vgroups evolve, placing bounds on
their size, and composing them via random sampling. To
convey how this trade-off manifests in practice, we strain
Atum by joining nodes at an overwhelming rate; this gen-
erates many concurrent shuffle operations, and suppresses

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 8 10 12 14 16 18 20

L
a
te

n
c
y
 p

e
r

M
B

 (
s
)

Number of file replicas

All replicas correct
1 to 6 faulty replicas

Figure 11: AShare: Impact of Byzantine nodes on
read latency. Experiment with 100 nodes (7 Byzan-
tine) and 1000 files.

 0

 200

 400

 600

 800

20 50

L
a
te

n
c
y

 (
m

ill
is

e
c
o
n
d
s
)

System size

Single cycle

700

900
Double cycle

100
200

Figure 12: AStream: Latency for 1MB/s data
stream.

some node exchanges, because the chosen exchange partner
already participates in another exchange. In our experi-
ments (§6.1.1) we join nodes at a rate of 8% of the system
size each minute. Figure 13 shows what happens when we
intensify this rate to 20% and 24%: Higher growth rates
suppress more node exchanges (penalizing robustness), but
the system grows faster (is more flexible).

Another hard challenge was the interplay between the
SMR algorithm inside vgroups and the distributed protocols
running among vgroups. The two most salient issues here
were the following. First, SMR reconfiguration by itself is
a tricky business [12, 58]. The shuffle operation in Atum,
however, involves multiple vgroups concurrently reconfig-
uring by exchanging nodes among themselves. Complica-
tions with this include deadlocks, missed operations, dupli-
cate membership (nodes belonging to two different vgroups),
dangling membership (nodes being left out of a vgroup), or
other inconsistencies. Second, the H-graph overlay we use is
decentralized and random, where every node has only a local
view; this makes the split operation particularly intricate be-
cause it involves orchestration among multiple vgroups, on
all cycles of the graph.

These challenges compelled us to simplify the implemen-
tation at all levels. So we initially considered a synchronous
SMR [32], and implemented Sync in 20K LOC in C. This
decision is reasonable for highly-redundant networks (such
as inside a datacenter availability zone [68]), but is not real-
istic for large, dynamic networks, where the round size has
to be very conservative. Since we wanted a comprehensive
evaluation, including on WAN, we decided to also imple-
ment Async, based on asynchronous SMR, i.e., assuming
eventual synchrony [20]. This version is more complex, but
we used a high-level language (8K LOC in Python), which
helped us deal with the complexity.

As our results show, Async outperforms Sync. On the
other hand, Sync brings multiple benefits: It has predictable

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500

E
x
c
h

a
n

g
e

c
o

m
p

le
ti
o

n
 r

a
te

Time (seconds) to grow to N=400

8%
20%
24%

Fraction of
completed
exchanges

Join rate:

Figure 13: As a system grows faster, the quality
of random vgroup composition suffers due to sup-
pressed exchanges.

performance, is simpler to implement and reason about (due
to the round-based model), and is thus less prone to bugs;
moreover, Sync was an important stepping stone to help us
understand the complex interactions in Atum.

8. RELATED WORK
The work presented in this paper spans multiple research

areas, including BFT, P2P applications, pub/sub, and file
sharing. We review some of the systems which intersect with
our work and highlight the differences.

S-Fireflies [30] is an effective self-stabilizing system for
data dissemination, robust to Byzantine faults, and churn-
tolerant. It creates random permutations of the system
nodes and uses them to pick the neighbors for each node. A
difference between S-Fireflies and Atum is that the former
relies on global knowledge of all nodes at all times, meaning
that every node of the system is aware of every other node.7

Scatter [41] is a distributed key-value store with lineariz-
able operations. As Atum, Scatter also partitions the system
into self-organizing, dynamic groups of nodes, and is churn-
tolerant. Scatter focuses on performance and strong con-
sistency at large scale, while in Atum, our main objective
is large-scale BFT. Inside groups, Scatter relies on Paxos;
across groups, it achieves coordination using a 2PC-based
protocol. Atum ensures stronger fault-tolerance guarantees
inside groups (by using a BFT agreement [32]) and coordi-
nates groups using a scalable gossip scheme.

FlightPath [53] is a powerful P2P streaming system. It is
robust towards rational and Byzantine nodes, and it toler-
ates high churn rates. In FlightPath, the focus is on stream-
ing data efficiently from a designated source node, using
gossip and a centralized tracker. In our work we also lever-
age gossip; in addition, Atum is a completely decentralized,
general-purpose GCS, it does not rely on a central tracker,
and it allows any node to broadcast.

Membership services are an important middleware for data
dissemination [35, 43]. These services often rely on the non-
determinism of a sampling protocol to obtain random con-
nections with other peers and ensure low-latency and robust
dissemination. In Atum, our sampling scheme is based on
random walks over a well-connected H-graph. Other sys-
tems, such as RaWMS [10] or the wormhole-based peer sam-
pling service (WPSS) [64], also leverage random walks to im-
plement efficient sampling. In contrast with these systems,
Atum provides a complete solution for data dissemination,
which also handles high churn rates and Byzantine failures.

Gossip-based systems typically exploit randomness to by-
pass failures and ensure robust dissemination [29]. Vicin-
ity [71] is a protocol for constructing and maintaining an
overlay network, which investigates the importance of ran-
domness in large-scale P2P networks. The analysis around
this protocol shows that randomness must be complemented
with structure (determinism) for effective large-scale P2P
networks. In Atum, we also leverage non-determinism (shuf-
fling) alongside determinism (SMR) to scatter faulty nodes
and handle churn in volatile groups.

DHTs such as Chord [69] or Tapestry [75] provideO(logN)
lookup time and are commonly used for routing in storage
system. DHTs can be adapted to handle Byzantine faults
[17, 36, 38, 63], and the problem of churn has also been ad-

7We also assume global knowledge in one of our applications
(AShare, §4.2), but this assumption is not inherent in Atum.

dressed in [54, 60]. Tentative lookup schemes that are both
secure and churn-friendly are given in [74], where session
times as low as 10 minutes are theoretically explored. In
Atum, we focus on general-purpose group communication –
instead of lookup – and we use the novel concept of volatile
groups to allow even shorter session times.

BFS [20], Farsite [4], Pond [61], and Rosebud [62] are file
storage systems that use PBFT [20]. In BFS, the replicas
running PBFT also store the data objects, so this system
fully replicates data across all the nodes and cannot scale
well. Pond, Rosebud, and Farsite achieve scalability by sep-
arating the BFT mechanism from the storage subsystem.
They use BFT quorums to agree on the operations that are
performed, and the storage nodes perform these operations.
The BFT and storage subsystems can scale independently
in this case. Although these four systems assume a dynamic
environment, only Rosebud provides details on this concern.

In Rosebud, a group of BFT replicas agree on the system
configuration and monitor all the nodes in the system; this
group periodically – once per epoch – propagates new con-
figurations. The churn rate in Rosebud thus depends on the
length of epochs. This system has an evaluation with epoch
duration of a few hours; shorter epochs are possible but are
not considered. Atum can cope with session times in the
order of minutes (§6.1.2). Unfortunately, we were not able
to find a Rosebud implementation to use for comparison.

9. CONCLUSIONS
This paper reports on our experiences with designing and

building Atum, a general-purpose group communication mid-
dleware for a large, dynamic, and hostile network. At the
heart of Atum lies the novel concept of volatile groups, i.e.,
small, dynamic, yet robust clusters of nodes. Specifically,
Atum applies state machine replication at small-scale, in-
side each vgroup, and uses gossip to disseminate data among
vgroups. We ensure that vgroups are robust and efficient by
employing two techniques, namely random walk shuffling
and logarithmic grouping.

We experimented with two Atum implementations – one
synchronous and one asynchronous (eventually synchronous).
We used Atum as a reliable core to build three applications:
ASub, a publish/subscribe service, AShare, a file sharing
system, and AStream, a data streaming platform. Using
these applications, we verified experimentally the properties
of our system: Our findings indicate that Atum tolerates
arbitrary faults even in a large-scale, high-churn network.

The Atum library, together with our applications, is avail-
able online at http://lpd.epfl.ch/site/atum.

10. ACKNOWLEDGMENTS
We thank our colleagues from the LPD laboratory at EPFL,

as well as the anonymous reviewers, for their thoughtful
comments. They helped to substantially improve the qual-
ity of this paper. We also thank Mahammad Valiyev for
his help with the implementation of Sync. This work has
been supported in part by the European ERC Grant 339539
- AOC and the Swiss National Science Foundation (FNS)
grant 20021 147067.

11. REFERENCES
[1] https://www.sqlite.org/.

[2] https://aws.amazon.com/ec2/instance-types/.

[3] Amazon S3 Availability Event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE:
Federated, available, and reliable storage for an
incompletely trusted environment. ACM SIGOPS
Operating Systems Review, 36(SI), 2002.

[5] A. Adya, G. Cooper, D. Myers, and M. Piatek.
Thialfi: a Client Notification Service for Internet-Scale
Applications. In SOSP, 2011.

[6] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[7] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. Rbft:
Redundant byzantine fault tolerance. In ICDCS, 2013.

[8] B. Awerbuch and C. Scheideler. Towards Scalable and
Robust Overlay Networks. IPTPS, 2007.

[9] B. Awerbuch and C. Scheideler. Towards a Scalable
and Robust DHT. Theory of Computing Systems,
45(2), 2009.

[10] Z. Bar-Yossef, R. Friedman, and G. Kliot. RaWMS -
Random Walk Based Lightweight Membership Service
for Wireless Ad Hoc Networks. ACM Trans. Comput.
Syst., 26(2), 2008.

[11] L. A. Barroso, J. Clidaras, and U. Hölzle. The
datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synthesis Lectures
on Computer Architecture, 8(3):1–154, 2013.

[12] A. Bessani, J. Sousa, and E. Alchieri. State Machine
Replication for the Masses with BFT-SMART. In
DSN, 2014.

[13] C. E. Bezerra, F. Pedone, and R. V. Renesse. Scalable
state-machine replication. In DSN, 2014.

[14] K. P. Birman. Replication and Fault-tolerance in the
ISIS System. In SOSP, 1985.

[15] K. P. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36, 1993.

[16] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4), 1985.

[17] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. S. Wallach. Secure routing for structured
peer-to-peer overlay networks. ACM SIGOPS
Operating Systems Review, 36(SI), 2002.

[18] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream:
high-bandwidth multicast in cooperative
environments. In ACM SIGOPS Operating Systems
Review, volume 37, pages 298–313, 2003.

[19] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I.
Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. Selected
Areas in Communications, IEEE Journal on, 20(8),
2002.

[20] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Transactions
on Computer Systems, 20(4), 2002.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. ACM TOCS, 26(2), 2008.

[22] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph. Understanding TCP Incast Throughput
Collapse in Datacenter Networks. In WREN, 2009.

[23] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Comput. Surv., 33(4), 2001.

[24] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-end Containment of Internet Worms. In SOSP,
2005.

[25] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol
for Byzantine fault tolerance. In OSDI, 2006.

[26] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In NSDI, 2008.

[27] G. Danezis, C. Lesniewski-laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant dht routing. In In
ESORICS. Springer, 2005.

[28] J. Dean. Designs, lessons and advice from building
large distributed systems. Keynote from LADIS, 2009.

[29] A. J. Demers, D. H. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. E. Sturgis, D. C. Swinehart,
and D. B. Terry. Epidemic algorithms for replicated
database maintenance. ACM SIGOPS Operating
Systems Review, 22(1), 1988.

[30] D. Dolev, E. Hoch, and R. Renesse. Self-stabilizing
and byzantine-tolerant overlay network. In OPODIS,
2007.

[31] D. Dolev and D. Malki. The Transis approach to high
availability cluster communication. Communications
of the ACM, 39(4), 1996.

[32] D. Dolev and H. R. Strong. Authenticated algorithms
for byzantine agreement. SIAM J. Comput., 12(4),
1983.

[33] J. R. Douceur. The sybil attack. In IPTPS. Springer,
2002.

[34] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys (CSUR), 35(2), 2003.

[35] C. Fetzer and F. Cristian. A fail-aware membership
service. In Reliable Distributed Systems, 1997.

[36] A. Fiat, J. Saia, and M. Young. Making Chord Robust
to Byzantine Attacks. Algorithms–ESA, 2005.

[37] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(2):374–382,
1985.

[38] R. Geambasu, J. Falkner, P. Gardner, T. Kohno,
A. Krishnamurthy, and H. M. Levy. Experiences
building security applications on DHTs. Technical
report, Technical report, UW-CSE-09-09-01, 2009.

[39] H. Geng and R. van Renesse. Sprinkler - Reliable
Broadcast for Geographically Dispersed Datacenters.
In Middleware 2013. 2013.

[40] S. Ghemawat, H. Gobioff, and S.-T. Leung. The

Google File System. In SOSP, 2003.

[41] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter. In
SOSP, 2011.

[42] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly
dynamic distributed computing with byzantine
failures. In PODC, 2013.

[43] M. A. Hiltunen and R. D. Schlichting. The cactus
approach to building configurable middleware services.
In Proceedings of the Workshop on Dependable System
Middleware and Group Communication (DSMGC
2000), 2000.

[44] H. Johansen, A. Allavena, and R. Van Renesse.
Fireflies: scalable support for intrusion-tolerant
network overlays. ACM SIGOPS Operating Systems
Review, 40(4), 2006.

[45] M. F. Kaashoek and A. S. Tanenbaum. Group
communication in the Amoeba distributed operating
system. In ICDCS, 1991.

[46] A. Kate, Y. Huang, and I. Goldberg. Distributed key
generation in the wild. IACR Cryptology ePrint
Archive, 2012.

[47] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: High bandwidth data dissemination using an
overlay mesh. In SOSP, 2003.

[48] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: speculative byzantine fault
tolerance. In SOSP, Oct. 2007.

[49] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent
storage. SIGPLAN Not., 2000.

[50] L. Lamport. The implementation of reliable
distributed multiprocess systems. Computer Networks,
2:95–114, 1978.

[51] C. Law and K.-Y. Siu. Distributed construction of
random expander networks. In INFOCOM, 2003.

[52] C. Lesniewski-Lass and M. F. Kaashoek. Whanau: A
sybil-proof distributed hash table. In NSDI, 2010.

[53] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos,
L. Robison, L. Alvisi, and M. Dahlin. FlightPath:
Obedience vs. Choice in Cooperative Services. In
OSDI, 2008.

[54] Z. Liu, R. Yuan, Z. Li, H. Li, and G. Chen. Survive
under high churn in structured P2P systems:
evaluation and strategy. In ICCS, 2006.

[55] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken,
J. R. Douceur, and J. Howell. The smart way to
migrate replicated stateful services. In EuroSys, 2006.

[56] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system.

[57] E. B. Nightingale, J. R. Douceur, and V. Orgovan.
Cycles, Cells and Platters: An Empirical Analysis of
Hardware Failures on a Million Consumer PCs. In
EuroSys, 2011.

[58] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. USENIX ATC,
2014.

[59] D. Oppenheimer, A. Ganapathi, and D. A. Patterson.
Why do Internet services fail, and what can be done

about it? In USITS, 2003.

[60] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. In USENIX, 2004.

[61] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon,
B. Y. Zhao, and J. Kubiatowicz. Pond: The
OceanStore prototype. In FAST, volume 3, 2003.

[62] R. Rodrigues and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture.
Technical Report MIT-LCS-TR-932 and
MIT-CSAIL-TR-2003-035, 2003.

[63] R. Rodrigues, B. Liskov, and L. Shrira. The design of
a robust peer-to-peer system. In ACM SIGOPS
European workshop: beyond the PC - EW10, 2002.

[64] R. Roverso, J. Dowling, and M. Jelasity. Through the
wormhole: Low cost, fresh peer sampling for the
internet. In Peer-to-Peer Computing (P2P), 2013.

[65] C. Scheideler. How to spread adversarial nodes?:
Rotate! In STOC, 2005.

[66] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4), 1990.

[67] B. Schroeder, S. Damouras, and P. Gill.
Understanding latent sector errors and how to protect
against them. In FAST, 2010.

[68] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey.
Jellyfish: Networking data centers randomly. In NSDI,
2012.

[69] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM, 2001.

[70] R. Van Renesse, K. P. Birman, and S. Maffeis. Horus:
A Flexible Group Communication System.
Communications of the ACM, 39(4), 1996.

[71] S. Voulgaris and M. van Steen. Middleware, 2013.

[72] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt.
Measurement and modeling of a large-scale overlay for
multimedia streaming. In QSHINE, 2007.

[73] H. Weatherspoon, P. Eaton, B.-G. Chun, and
J. Kubiatowicz. Antiquity: exploiting a secure log for
wide-area distributed storage. ACM SIGOPS
Operating Systems Review, 41(3), 2007.

[74] M. Young, A. Kate, I. Goldberg, and M. Karsten.
Practical Robust Communication in DHTs Tolerating
a Byzantine Adversary. In ICDCS, 2010.

[75] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE
JSAC, 22(1), 2004.

