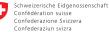


GALVANICALLY ISOLATED MODULAR CONVERTERS

A. Christe, Prof. D. Dujic

École Polytechnique Fédérale de Lausanne Power Electronics Laboratory Switzerland


PEL RESEARCH ACTIVITIES

Ongoing research projects related to MVDC

- ▶ MVDC Energy Conversion Technologies and Systems, SFOE funding
- Multiport Energy Gateway, SNSF NRP 70 funding
- ► Solid State Resonant Conversion, SNSF funding
- ▶ Medium Frequency Transformer Design and Optimization, internal funding
- ► Galvanically Isolated Modular Converter, SCCER-FURIES funding
- ► High Power Multi Drive Systems operated from a MVDC Bus, ind. funding
- MVDC Protection Coordination, ind. funding
- ▶ ..

Research focus

- System design optimization
- Source-load interactions and stability studies
- Power electronic conversion technologies
- Energy storage integration
- Medium frequency transformers for galvanic isolation

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN

Energy Turnaround National Research Programme NRP 70

In cooperation with the CTI

Energy funding programme Swiss Competence Centers for Energy Research

	S
v	C
· ·	C

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

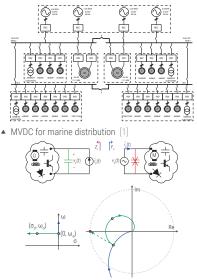
Commission for Technology and Innovation CTI

MVDC ENERGY CONVERSION – TECHNOLOGIES AND SYSTEMS

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun suizra

Bundesamt für Energie BFE Office fédéral de l'énergie OFEP

Objectives

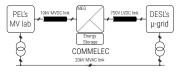

- ► Quantify potential and impact of MVDC systems (w.r.t. MVAC)
- Develop dynamic models and stability assessment tools
- Develop enabling power electronics technologies

Demonstration in PEL's MV laboratory

- Efficient electrical energy conversion (less losses)
- Compact electrical energy conversion (less raw materials)
- Energy storage integration (improved energy management)

WG SC C6.31 *MVDC Grids - Feasibility Study -* next meeting to be held in Lausanne, January 17th - 18th, 2017

Stability studies


[1] U. Javaid, D. Dujić, and W. van der Merwe. "MVDC marine electrical distribution: Are we ready?" IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Nov. 2015, pp. 823–828

MULTIPORT ENERGY GATEWAY (MEG)

Focus

 MVDC-LVDC conversion system with integrated energy storage

HV PEBB

Converter Topology

► SST with multiport resonant stage [2]

Features

- ► DC transformer
- Soft switching

Prototype ratings

► *P* = 0.5 MW

Hybrid ES

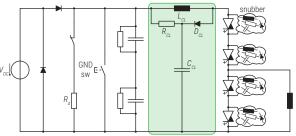
Three windings MFT

► V_{MV} = 10 kV

- LLC resonant circuit
- Efficiency
- ► *V*_{LV} = 750 V

[2] Y.-K. Tran and D. Dujic. *A Multiport Medium Voltage Isolated DC-DC Converter." The 42nd Annual Conference of IEEE Industrial Electronics Society-IECON. EPFL-CONF-222799. 2016

SOLID STATE RESONANT CONVERSION


Focus

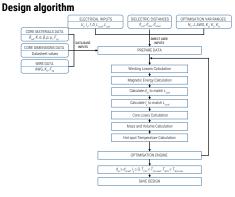
- Bulk power conversion
- IGCT characterization & optimization
- High power magnetics design

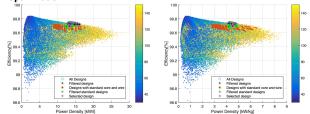
Test setup

Characterization setup

Prototype

- $V_{DC} = 5 \,\mathrm{kV}$
- ► *I_{max}* = 2.25 kA




MFT DESIGN & OPTIMIZATION

Focus

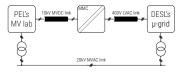
- ► High voltage MFT design [3] insulation coordination
- Precise parameter control resonant operation
- High power conversion thermal design
- Characterization of magnetic materials

Optimization

Prototype

- ► *P* = 100 kW
- ► $V_D = V_S = 750 \text{ V}$
- ► *f_{sw}* = 10 kHz

[3] M. Mogorovic and D. Dujic. "Medium Frequency Transformer Design and Optimization." PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. (submitted), May 2017



GALVANICALLY ISOLATED MODULAR CONVERTER (GIMC)

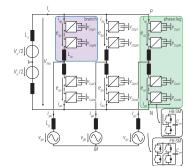
Focus

 MVDC-LVAC galvanically isolated conversion system

Features

- High efficiency
- Galvanic isolation
- Modularity

ReliabilityAvailability


Scalability

Prototype ratings

- ► S = 0.5 MVA
- $N_{\text{cells}} = 6 \times 16$
- ► *V_{DC}* = 10 kV
- ► V_{AC} = 400 V

Considerations

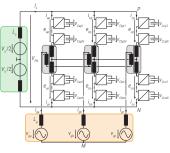
- ▶ VSI on LVAC side of SST reduces efficiency by \approx 2 % (!) [4]
- Solution with MMC + LFT preferred to overcome that issue

Double-star Modular Multilevel Converter [5] for power flow and voltage control

Line Frequency Transformer for voltage adaptation

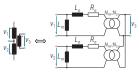
Research challenge

Transformer integration into the MMC

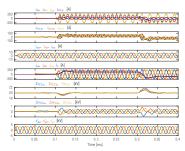

[4] J.E. Huber and J.W. Kolar. "Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer." Energy Conversion Congress and Exposition (ECCE), 2014 IEEE. Sept. 2014, pp. 4545–4552

[5] R. Marquardt, A. Lesnicar, and J. Hildinger. *Modulares Stromrichterkonzept für Netzkupplungsanwendungen bei hohen Spannungen." ETG-Fachtagung. 2002

GIMC - TOPOLOGY AND OPERATING PRINCIPLES



- ► Transformer integration must achieve DC bias cancellation in magnetic core
- Two new structures are obtained
 - $\begin{array}{c|c} \mbox{1. Stacked GIMC} & [6] \\ \mbox{2. Interleaved GIMC} & [7] \end{array} \} \mbox{flexible configuration} \end{array}$
- ▶ State-space models are identical ⇒ same control algorithm [8]



Stacked GIMC

- Interleaved GIMC

Three-windings transformer

[▲] Full switched model simulation

[6] S. Tamada, Y. Nakazawa, and S. Irokawa. "A proposal of Modular Multilevel Converter applying three winding transformer." Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2014 International. May 2014, pp. 1357–1364

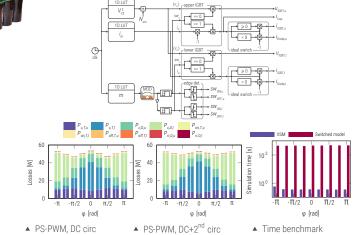
[7] M. Hagiwara and H. Akagi. "Experiment and Simulation of a Modular Push-Pull PWM Converter for a Battery Energy Storage System." Industry Applications, IEEE Transactions on 50.2 (Mar. 2014), pp. 1131–1140

[8] A. Christe and D. Dujic. "Galvanically isolated modular converter." IET Power Electronics 9.12 (2016), pp. 2318-2328

GIMC – CELL DESIGN

Cell

- 1.2 kV / 50 A full-bridge IGBT module
- ► C_{cell} = 1.9 mF


Thermal design [9]

Cell level: detailed FEM Cabinet level: simplified FEM

3.50 2.80 1.40 0.70

Semiconductor losses

- Virtual Submodule concept has been utilized
- Closed-loop waveforms are approached by analytical waveforms

[9] E. Coulinge, A. Christe, and D. Dujic. "Electro-Thermal Design of a Modular Multilevel Converter Prototype." PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. May 2016, pp. 1-8

GIMC - CONVERTER LAYOUT

Shaping the FUtuRe Swiss Electrical InfraStruc

Dielectric design

Design constraints to CAD

Min [mm]

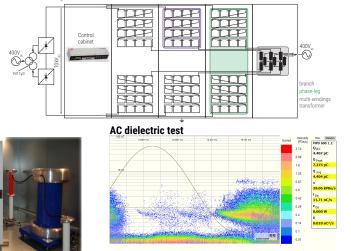
3

6.8

3.2

30

12.5


60 60

102

- Cell compliant to UL840 (< 1 kV_{ac} circuit)
- Converter compliant to IEC 61800-5-1 (6.6 kV_{ac} system, PD 1 & OV cat. I) [10]
- Design phase supported by FEM simulations
- Measurement in PD test setup (\leq 10 pC \checkmark)

Converter layout

PD test setup

[10] A. Christe, E. Coulinge, and D. Dujic. "Insulation Coordination for a Modular Multilevel Converter Prototype." Power Electronics and Applications (EPE 2016), Proceedings of the 2016-18th European Conference on. 2016,

Var

ľ_h

di h

d_{C.h}

 $d_{L,v}$

d_{C.v}

 $d_{L,c}$

d_{C,c} d_{L,r}

ENABLING TECHNOLOGIES AT PEL

High power medium voltage conversion

- ▶ Offers efficient and controllable bulk power processing [MW]
- Requires careful insulation coordination safety
- Leads to modular designs
- Implies advanced control / communication strategies
- Reliability and availability must be ensured

Research path

- System studies
- Modeling and simulations
- Control system design
- Medium voltage high power prototyping
- Performance verification
- Publishing

It is possible in an academic research laboratory...

GALVANICALLY ISOLATED MODULAR CONVERTERS

A. Christe, Prof. D. Dujic

École Polytechnique Fédérale de Lausanne Power Electronics Laboratory Switzerland

