000223649 001__ 223649
000223649 005__ 20190812205932.0
000223649 020__ $$a978-1-5090-4117-6
000223649 0247_ $$2doi$$a10.1109/ICASSP.2017.7952744
000223649 02470 $$2ISI$$a000414286203070
000223649 037__ $$aCONF
000223649 245__ $$aFRIDA: FRI-Based DOA Estimation For Arbitrary Array Layouts
000223649 269__ $$a2017
000223649 260__ $$bIEEE$$c2017$$aNew York
000223649 300__ $$a5
000223649 336__ $$aConference Papers
000223649 490__ $$aInternational Conference on Acoustics Speech and Signal Processing ICASSP
000223649 520__ $$aIn this paper we present FRIDA—an algorithm for estimating directions of arrival of multiple wideband sound sources. FRIDA combines multi-band information coherently and achieves state- of-the-art resolution at extremely low signal-to-noise ratios. It works for arbitrary array layouts, but unlike the various steered response power and subspace methods, it does not require a grid search. FRIDA leverages recent advances in sampling signals with a finite rate of innovation. It is based on the insight that for any array layout, the entries of the spatial covariance matrix can be linearly transformed into a uniformly sampled sum of sinusoids.
000223649 6531_ $$aDirection of arrival
000223649 6531_ $$afinite rate of innovation
000223649 6531_ $$asubspace method
000223649 6531_ $$asearch-free
000223649 6531_ $$awideband sources
000223649 6531_ $$aLCAV-APDA
000223649 700__ $$0247747$$g199162$$aPan, Hanjie
000223649 700__ $$0246726$$g161208$$aScheibler, Robin
000223649 700__ $$0(EPFLAUTH)256676$$g256676$$aBezzam, Eric Francis
000223649 700__ $$g203497$$0244456$$aDokmanic, Ivan
000223649 700__ $$0240184$$g107537$$aVetterli, Martin
000223649 7112_ $$dMarch 5-9, 2017$$cNew Orleans, USA$$aICASSP 2017
000223649 773__ $$t2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)$$q3186-3190
000223649 8564_ $$zURL$$uhttp://go.epfl.ch/FRIDA
000223649 8564_ $$zURL$$uhttps://github.com/LCAV/FRIDA
000223649 8564_ $$zURL$$uhttps://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SVQBEP
000223649 8564_ $$zPreprint$$yPreprint$$uhttps://infoscience.epfl.ch/record/223649/files/icassp2017.pdf$$s1973334
000223649 8564_ $$zPoster presented at ICASSP'17$$yPoster presented at ICASSP'17$$uhttps://infoscience.epfl.ch/record/223649/files/poster_icassp17.pdf$$s17979296
000223649 909C0 $$xU10434$$pLCAV$$0252056
000223649 909CO $$ooai:infoscience.tind.io:223649$$qGLOBAL_SET$$pconf$$pIC
000223649 917Z8 $$x161208
000223649 917Z8 $$x199162
000223649 917Z8 $$x161208
000223649 917Z8 $$x199162
000223649 917Z8 $$x199162
000223649 917Z8 $$x199162
000223649 937__ $$aEPFL-CONF-223649
000223649 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000223649 980__ $$aCONF