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Abstract. We show how introducing known scattering can be used in
direction of arrival estimation by a single sensor. We first present an
analysis of the geometry of the underlying measurement space and show
how it enables localizing white sources. Then, we extend the solution
to more challenging non-white sources like speech by including a source
model and considering convex relaxations with group sparsity penalties.
We conclude with numerical simulations using an unsophisticated sensing
device to validate the theory.
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1 Introduction

Walking down a street, we (or a cat) are able to tell where a bird song is coming
from. Perhaps it helps that we know birds live in trees, but it is the auditory
scene analysis performed by the brain that enables us to almost instantaneously
determine the direction of arrival (DoA), even for multiple sound sources [10].
In this paper, we study computational DoA estimation with a single sensor, a
task usually referred to as monaural sound source localization. We begin by a
brief review of the biological mechanisms from which we draw some inspiration.

First of all, we have two ears. Sound reaches each ear at a slightly different
time and loudness providing us with so-called binaural cues. The shape of the
outer ear as well as the shape of the head and torso additionally modify the
sound as it reaches our ears, and thus provide us with monaural cues. These
cues are encoded by the head-related transfer function (HRTF) [1]. Both types
of cues are necessary for accurate localization. Indeed, obstructing one ear hurts
the localization accuracy [7]. However, monaural localization is still possible,
though it is known that monaurally deaf people usually require certain prior
knowledge about the source to be localized [11]. We will see that (unless the
sources are white), the same is true of algorithms we propose.

Consider a generalized ear, a sensor with the directional frequency response
a(ω; θ) for sounds arriving from direction θ at a frequency ω. For J sources
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emitting from directions Θ = {θ1, . . . , θJ}, what we measure at the single sensor
is

y(ω) =

J∑
j=1

a(ω; θj)sj(ω) + n(ω), (1)

where sj are the source spectra and n is the measurement noise which will be
ignored in the large part of the ensuing discussion.

DoA estimation is then an inverse problem concerned with mapping the
measurement back to the directions Θ. The properties of the directional response
a are key in determining whether it can be successful. For instance, if our sensor
is omnidirectional, then a(ω, θ) = 1 for all frequencies ω and directions θ, and
no directional information is present. That is, the measurement remains the
same even if the sources are rotated to different directions. Thus, we would
prefer that a are diverse and act as distinguishable spectral signatures for their
corresponding directions. Still, as can be seen from (1), the inverse problem is
ill-posed since decomposing y back into a sum of products has infinitely many
solutions. This ill-posedness can be resolved by a combination of scattering and
proper source modeling.

Requiring that the responses a be diverse is similar to the HRTF case where
for each ear, the frequency response differs with the angle of arrival. An especially
interesting HRTF is that of a cat: it features prominent notches at frequencies
that depend on the direction of arrival [10].3 In fact, notches are one of two
possibilities to get strong diversity, the other being resonances. They both enable
localization of wideband sources, but while in enclosures such as rooms, they are
easy to obtain and have been successfully used for localization [2], they otherwise
require special design. For example, resonances were obtained in recent work
[14] with a metamaterial-coated device which was then used to localize noise.
Similarly, diversity of a was achieved in [9] using several microphone enclosures
which were designed and tested for localizing a single sound source. In our prior
work [3], we used a randomly shaped device to introduce random scattering and
showed that noise can be localized without a source model. While all the latter
work relies on the idea of a directional spectral signature, it was not made precise
why or how such spectral signatures are good for DoA estimation. As we will
show, whereas any incoherence of a is sufficient to localize noise sources, in order
to compensate for the lack of diversity and to handle complex sound sources, an
adequate source model is required, for example, a Hidden Markov Model [9] or
a dictionary [14].

In this paper, we achieve the desired a by scattering by a very simple, hap-
hazard structure. Unlike prior work, we show in Section 2 that the underlying
principle that makes scattering useful requires neither a sophisticated sensing
device nor a source model to localize noise. The geometry of the problem sug-
gests a matched field processing approach [13] to DoA estimation, which has
reasonable complexity for few sources. Then in Section 3, we turn to sparse
reconstruction techniques with group sparsity penalties that can be optimized

3 This is specific for localization in elevation.
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efficiently. Beyond having controlled complexity for larger numbers of sources,
this more sophisticated formulation also allows us to include more general source
models like dictionaries. Finally, we present numerical results in Section 4.

2 Localization of Noise Sources

We assume having a set of D possible directions in the azimuth interval [0, 2π)
for which we know the sensing functions a1, a2, . . . , aD. Further, we choose a
set of F frequencies at which we examine the recorded signal; this can be done
through a filterbank of F narrowband filters. We can then re-write (1) as

y =
∑
j∈Θ

aj � sj + n, (2)

where y ∈ CF , aj ∈ CF , sj ∈ CF , and � denotes the Hadamard product. We
think of y as corresponding to one audio frame.

2.1 Geometrical Structure

White In the presence of J ≥ 1 independent white sources at locations Θ, the
expected power of the frame y from (2) is

E[|y|2] =
∑
j∈Θ

σ2
j |aj |2, (3)

where σ2
j is the power of the jth source and we again set n = 0. Thus, even if

σ2
j are unknown, we see that the measured power spectrum is, in expectation, a

positive linear combination of the power spectra of the sensing vectors, with coef-
ficients being the source powers. Put differently, all power measurements arising
from a certain configuration Θ lie in a cone characterized by the corresponding
sensing vectors:

E[|y|2] ∈ CΘ = {w | w =
∑
j∈Θ

pj |aj |2, pj ≥ 0}

as shown in Fig. 1. The entire space of measurements, for all possible configura-
tions, is a union of those cones. It follows that if we can find the right cone, we
will have identified the source locations. More precisely, the source localization
task amounts to identifying which of the cones {CΘ | Θ a set of J directions}
contains E[|y|2] or its empirical estimate. Without scattering, the measurement
space is collapsed into a single cone.

Color Unlike white, colored sources will modulate the sensing functions and
move them about in space as seen in (2):

E[|y|2] =
∑
j∈Θ

E[|sj |2]� |aj |2 =
∑
j∈Θ

σ2
j |bj |2 � |aj |2, (4)
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where |bj |2 are the prototype power spectra for each source. Consequently, with-
out knowing the modulation, we cannot identify the cones for localization. So if
we know the sources’ power spectral density or simply the time-varying power
spectra, we are again in similar situation as for white sources except that the
number of cones increases due to ambiguities in assigning |bj | to directions.

(a) (b)

Fig. 1. Cones in the measurement space. (a) The angle between two cones formed by
a pair of different sensing vectors. (b) Two distinct cones that share a sensing vector.

2.2 Structure Quality

Not all unions of cones are created equal. To ensure that we correctly identify the
cone and hence solve the localization problem, we require adequate separation
between the different cones. Thus, we examine the angles between every pair
of cones (for a certain number of sources J) as illustrated in Fig. 1a. Consider
two cones CΘ and CΦ for two sets of J directions Θ and Φ. The largest angle
between them is

α̌ = max
p∈CΘ,q∈CΦ

‖p‖=‖q‖=1

cos−1〈p,q〉. (5)

For simplicity, instead of the inter-cone angle α̌, we will in the following look
at the maximal angle between the smallest subspaces that contain the cones. For
this to make sense, we need to assume that J < F since otherwise cones will lie
in the same subspace. We note that this relaxation will then give us sufficient
conditions for localization.

Denote the orthonormal bases for the smallest subspaces containing CΘ and
CΦ by BΘ and BΦ, and define the largest angle as

α = cos−1 σmin(BT
ΘBΦ), (6)

where σmin(.) denotes the smallest singular value. We do not consider the smaller
angles because what matters is that the two cones are distinct i.e., the largest
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angle is non-zero. If the smaller angles include zero, it means that the cones
intersect; by definition the cones here indeed intersect at exactly the sensing
vectors. For example as shown in Fig.1b, consider the following two cones CΘ =
{w = pa1 +qa2, p, q ≥ 0} and CΦ = {w = pa1 +qa3, p, q ≥ 0}, then CΘ ∩CΦ =
{pa1, p ≥ 0}.

The smaller the angle α, the more sensitive the sensing device is to noise.
Hence, a good set of sensing functions are ones that result in large angles be-
tween every pair of cones. Thus, we are interested in the worst-case angle or
alternatively the worst-case coherence between the cones which we define as

µJ = max
Θ 6=Φ

σmin(BT
ΘBΦ), (7)

where σmin(.) denotes the smallest singular value. For the case of a single white
source J = 1, (7) reduces to conventional coherence in the power domain

µ1 = max
i 6=j

〈|ai|2, |aj |2〉
‖|ai|2‖‖|aj |2‖

. (8)

The lower the coherence, the better. Nevertheless as we will see next, in the
noiseless case, a sufficient condition for the accurate localization of any number
of sources J is to simply have the corresponding coherence µJ < 1.

2.3 Conditions for Localization

We now turn our attention to the actual localization problem. Let y := |y|2
denote the power spectrum of y. Based on the analysis in Section 2.1, we have
E[y] ∈ CΘ and accordingly E[y] = BΘw. Then, we can write y = PΘy +
(I − PΘ)y where PΘ denotes the projection onto range(BΘ). For a particular
realization, the error vector zΘ = (I−PΘ)y will be non-zero, but by the law of
large numbers, its average over many frames will converge to zero.

Thus, a straightforward akin to matched field processing is to calculate the
sample mean of N power frames and test it against every cone: perform an
exhaustive search for the right match as determined by the minimum distance
to the cone (more precisely, the corresponding subspace) of the empirical power
mean. This procedure is summarized in Algorithm 1.

Algorithm 1 DoA estimation of J sources

Input: Number of sources J , bases BΘ ∀Θ , |Θ| = J , N power frames yn for n =
1, . . . , N .

Output: Directions of arrival Θ∗ = {θ∗1 , . . . , θ∗J}.
Compute ỹ = 1

N

∑N
n=1 yn

Θ∗ = arg min
Θ

‖(I−BΘB
T
Θ)ỹ‖ = arg max

Θ
‖BT

Θỹ‖

Algorithm 1 relies on the law of large numbers to justify using the empirical
mean in lieu of the expectation, but the whole discussion has made no mention
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of noise. The following proposition suggests that the localization will be correct
even with measurement noise as long as a certain relationship holds between the
signal-to-noise ratio (SNR) in the power domain and the worst-case coherence.

Proposition 1 (Correct localization). Assuming J independent sources, let
the source configuration be specified by the cone CΘ and denote by ỹ the sample
mean of N independent power frames. Consider further a zero-mean noise term
n independent of the source signals, with power n := |n|2. Then as long as the
SNR in the power domain exceeds ‖E[

∑
j∈Θ aj � sj ]‖/‖E[n]‖ >

√
2/(1− µJ),

localization by Algorithm 1 with input ỹ is correct with arbitrarily high probability
for a sufficiently large N .

Proof (sketch). Suppose first that we can measure the expected value of the
power measurements E[y] = E[x] + E[n], where x :=

∑
j aj � sj . In Algo-

rithm 1, we take subspace membership as a proxy to cone membership, mean-
ing that we will have localized correctly as long as E[y] is closer to the true
subspace range(BΘ) than to any other range(BΦ); equivalently, we ask that

〈E[y], P̂ΘE[y]〉 > 〈E[y], P̂ΦE[y]〉, where û := u
‖u‖ . This can be rewritten as (de-

noting u := E[u] and setting µ̃ := 〈P̂Θy, P̂Φy〉):

〈PΘy + n, P̂Θy〉 > 〈 PΘy + n, P̂Φy〉

⇔ ‖PΘy‖+ 〈P̂Θy,n〉 > ‖PΘy‖µ̃+ 〈PΦy,n〉

⇔ ‖PΘy‖(1− µ̃) > 〈P̂Φy − P̂Θy,n〉

⇐ ‖PΘy‖(1− µ̃)
(a)
> ‖P̂Φy − P̂Θy‖‖n‖

⇔ ‖PΘy‖(1− µ̃)
(b)
>
√

2
√

1− µ̃‖n‖ ⇐ ‖PΘy‖
‖n‖

(c)
>

√
2

1− µJ

where in (a) we used the Cauchy-Schwarz inequality to upper bound the right-
hand side, (b) we used the law of cosines and (c) we used the fact that the
function 1√

1−t is increasing with t ∈ [0, 1) to replace µ̃ with the worst-case µJ .

Convergence in probability then follows from replacing expectations by empirical
means and invoking the weak law of large numbers. ut

Note that Proposition 1 does not quantify the number of frames N required
to guarantee correct localization. However, the concentration of measure phe-
nomenon for the Lipschitz ‖ · ‖ suggests that N is tightly controlled [6].

3 Algorithms

With the described matched field processing approach, it is not straightforward
to use more complex source models such as overcomplete dictionaries. Moreover,
for large D and J , computational complexity makes the search unfavorable.
Therefore, in this section, we resort to convex relaxations for sparse recovery
which can be optimized efficiently.
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Let aj ∈ RF+ denote the power spectrum of the jth sensing function. Let

V ∈ RF×K+ be the source model such that sj = Vxj , e.g. a subspace basis or an
overcomplete dictionary. Then we can write

y = Ax + z, (9)

where A ∈ RF×KD+ = [diag(a1)V, . . . ,diag(aD)V], x ∈ RKD+ is a vector of
concatenated source coefficients xj ∈ RK+ and z ∈ RF+ is a term grouping all the
cross-terms which arise when calculating the power of y (2).

Since the system of equations in (9) is underdetermined, we consider the
solution of the following optimization problem

min
x≥0

1

2
‖y −Ax‖22 + Ψ(x), (10)

where the first term is the data fidelity and Ψ is an appropriate regularization.
The choice of Ψ is inspired by the underlying geometrical structure and is dis-
cussed in the following sections.

Once we solve for x, localization amounts to finding the J direction indices
corresponding to the xj with the highest norms ‖xj‖2.

3.1 Subspace Model

The appropriate regularization for signals from a union of cones is to enforce
group sparsity, i.e., only few xj are non-zero. The `1/`2 penalty known to pro-
mote group sparsity [15] is defined as

Ψ(x) = λ

D∑
j=1

‖xj‖2, (11)

where λ > 0 determines the weight of the penalty.
The source model for white sources is one-dimensional i.e., V = 1 and thus

Ψ reduces to the `1 penalty. We emphasize that in that case we do not need an
explicit source model and only require knowledge of the sensing vectors where
A = [a1, . . . ,aD].

3.2 Dictionary Model

For colored sources, we consider using an overcomplete dictionary (i.e., K > F )
to represent their time-varying power spectra. The dictionary is chosen such that
every source admits a sparse representation and while we still have a union of
cones structure, the elements in the union depend dynamically on the sources
being localized and are not known a priori. Thus, to appropriately select the
right subset, we add the `1 penalty

Ψ(x) = λ

D∑
j=1

‖xj‖2 + γ‖x‖1, (12)
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where λ > 0 and γ > 0 are the trade-off parameters determining the weights of
their respective terms. This penalty (12) promotes sparsity across groups and
within active groups. The corresponding objective is known as the sparse-group
lasso [4] which we augment by the non-negativity constraint.

4 Numerical Results

In this section, we present numerical results for 2D DoA estimation in a 3D
environment using a simulated 3D model of a randomly shaped sensing device.
The sensing device consists of an omnidirectional sensor surrounded by 7 cubes
of randomly chosen sizes (side lengths ∈ [10, 14] cm) and orientations, spread
over an area 60×60 cm2 as shown in Fig.2a. The mesh was generated using Gmsh
[5] and the directional frequency responses were calculated using the boundary
element method package BEM++ [12]. Taking into consideration the sizes of
the cubes, we use 193 frequencies between 2000 Hz and 8000 Hz which are
most affected by the scattering. The power spectra of the sensing vectors for 36
directions equally spaced in the interval [0◦, 360◦) are shown in Fig.2b.
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Fig. 2. The sensing device. (a) Illustration of the sensing device consisting of 7 cubes
surrounding a microphone. (b) The corresponding transfer functions per direction.

To add modeling mistmatch in the simulations, the sources are randomly
placed at a ±1◦ shift from the assumed model. We implemented consensus
ADMM [8] to solve (10). Finally, we consider the localization successful when
the estimate is the closest shift for all J sources.

4.1 White Sources

First we show that we can localize white sources without having an explicit dic-
tionary or knowing the distribution parameters. The corresponding coherences
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of our sensing device are µ1 = 0.88 and µ2 = 0.93 so Proposition 1 guaran-
tees perfect localization of one and two sources. We simulate one and two white
Gaussian (zero-mean unit-variance) and Bernoulli (psuccess = 0.5) sources at all
36 directions. We solve the non-negative lasso (11) with λ = 10. The rate of
successful localization averaged over 10 runs is shown in Table 1. We conjecture
that any error is strictly due to the modeling mismatch.

4.2 Speech Sources

Next we show preliminary results for localization of one or two speakers with the
help of a dictionary. Four speakers (two female, two male) were randomly chosen
from the TIMIT speech corpus; the maximum amplitudes were normalized to 1
before computing the frequency representation. Every speaker emits 100 frames.
As discussed in Section 2.1, colored sources require some prior knowledge. Thus,
we assume knowing the power spectra for each speaker’s frames where V =
[V1,V2,V3,V4] and Vi ∈ RF×100+ ; this is similar to what was done in [14] and
we leave for future work incorporating a more general learned speech dictionary.
We solve the non-negative sparse group lasso (12) with λ = 0.1 and γ = 0.1. The
average success rates are shown in Table 1. First, we note how it still possible to
perfectly localize one speaker even at a very high coherence. In two-source cases,
one source was almost always localized accurately (in 99 % of all cases). Second,
the lower performance for localizing two sources compared to the white case is
likely due to the higher coherence µ2. In particular, the lower performance in
localization of male speakers can probably be attributed to unfavorable interplay
between the structure response and the source spectrum. It remains, however,
to be completely explained.

Table 1. Success rates for DoA estimation of one or two sources

Type Success rate

One Gaussian source 100%
One Bernoulli source 100%
Two Gaussian sources 86.7%
Two Bernoulli sources 86.7%

One female speaker 100%
One male speaker 100%
Two speakers (female) 75.9%
Two speakers (male) 41.7%
Two speakers (female & male) 41%

5 Conclusion

In conclusion, we demonstrated the potential of using a sensing device that intro-
duces known scattering in the measurements for DoA estimation. In particular,
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we showed that the scattering induces a union of cones structure which allows us
to localize any number of white sources in the noiseless case granted the coher-
ence is strictly less than 1. We then showed that with the proper modeling, in
the form of an overcomplete dictionary and group sparsity penalties, we are able
to localize more challenging sources like speech, all while using a single sensor
with what may be considered a rather poor response, corrupted by scattering
off of random clutter. Future work includes running a real-world experiment and
using a general learned dictionary as well as extending the approach to handle
reverberation.
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