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Abstract
Metal fatigue during cyclic loading puts an endurance limit on most of today’s technology. It

impacts the reliability of metallic components used for transportation, electronic devices and

energy production because fatigue failure can occur without any apparent forewarning. This

phenomenon limits the lifetime of many industrially manufactured items, whose periodic

replacement affects the cost of everyday products. The problem of predicting fatigue failure

in metals has been addressed using the finite element method, which can provide the stress

and strain state of the material in complex geometries. Engineering models describing the

material behaviour have been used to predict the damage accumulation, but microstructure

and material design require constitutive models at the micrometre length scale, incorporating

the physical processes in the material. This involves the study of dislocation dynamics and

the formation of dislocation structures, which have been recognized as the key phenomena

affecting the macroscopic fatigue behaviour of metals. This problem is computationally chal-

lenging, first because of the large number of state variables required to describe the dislocation

behaviour, and second because the formation of dislocation structures takes place only after

many deformation cycles. In this project a continuum dislocation-based model, specific for

cyclic fatigue at the micrometre length scale, is developed. The main novelty is the predic-

tion of 3D dislocation structures starting from a random initial dislocation distribution. In

single slip deformation, the characteristic length scale and shape of dislocation structures

are predicted using only physical parameters, such as the stacking fault energy, and without

any fitting procedure. The model is implemented in a crystal plasticity finite element solver,

describing all the slip systems. Therefore, it is possible to model polycrystalline structures

and to study the orientation of multiple slip dislocation structures with respect to the loading

direction. Compared with existing models, the implementation of the dislocation junction

formation mechanism in a continuum framework is a step forward. A collaboration with

another PhD student, carrying out electron channeling contrast imaging experiments on

fatigued 316 stainless steel, has provided a validation of the model by direct comparison of

experimental and simulated dislocation structures close to the specimen surface. The crystal

lattice rotation is another variable that can be extracted from finite element simulations. The

developed model correlates the forming dislocation structures with the lattice rotation around

the coordinate axes. This allows the comparison with Laue microdiffraction experiments

carried out on copper single crystal specimens by another PhD student at the SLS, the syn-

chrotron at Paul Scherrer Institut. The dislocation-based model can calculate experimental

observables, such as the rotation components and rotation gradients, as a function of the

iii



Acknowledgements

simulated dislocation density in the specimen, which is not directly observable. This provides

a validation of the constitutive equations at the micrometre length scale.

Keywords: Dislocations, Crystal Plasticity, Fatigue, Finite element method
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Riassunto
La fatica dei metalli durante carichi ciclici pone un limite di resistenza nella maggior parte

della tecnologia odierna. Ha un impatto sull’affidabilità dei componenti metallici usati per

il trasporto, nei dispositivi elettronici e per la produzione di energia perché i guasti causati

da fatica possono accadere senza nessun preallarme. Questo fenomeno limita la durata di

molti manufatti industriali, la cui sostituzione periodica influenza il costo dei prodotti d’uso

quotidiano. Il problema della predizione dei guasti causati da fatica è stato affrontato usando il

metodo degli elementi finiti, che fornisce gli sforzi e le deformazioni del materiale in geometrie

complesse. Modelli ingegneristici che descrivono il comportamento del materiale sono stati

usati per predire l’accumulazione del danno, però lo sviluppo di materiali e microstrutture

richiede modelli costitutivi alla scala del micrometro, che incorporino i processi fisici nel

materiale. Questo implica lo studio della dinamica delle dislocazioni e della formazione di

strutture di dislocazioni, che sono state riconosciute come i fenomeni fondamentali che in-

fluenzano il comportamento macroscopico dei metalli sottoposti a fatica. Questo problema è

computazionalmente impegnativo, prima di tutto per il grande numero di variabili di stato

necessarie per descrivere il comportamento delle dislocazioni e poi perché la formazione di

strutture di dislocazioni ha luogo solo dopo molti cicli di deformazione. In questo progetto

è stato sviluppato un modello del continuo basato sulle dislocazioni, specifico per la fatica

ciclica alla scala del micrometro. L’innovazione principale consiste nella predizione di strut-

ture di dislocazioni 3D partendo da una distribuzione iniziale casuale delle dislocazioni. In

deformazione a scivolamento singolo, la lunghezza caratteristica e la forma delle strutture di

dislocazioni sono predette usando solo parametri fisici, come l’energia di difetto d’impilaggio,

e senza procedure di interpolazione. Il modello è implementato in un risolutore a elementi

finiti della plasticità dei cristalli, che descrive tutti i sistemi di scivolamento. Quindi, è possibile

simulare strutture policristalline e studiare l’orientamento delle strutture di dislocazioni in

scivolamento multiplo rispetto alla direzione di carico. In confronto con modelli già esistenti,

un passo in avanti è stata l’implementazione del meccanismo di formazione delle giunzioni di

dislocazioni in un modello continuo. Una collaborazione con un altro studente di dottorato,

che ha effettuato esperimenti usando il microscopio elettronico in contrasto di canalizzazione

su campioni di acciaio inossidabile 316 sottoposti a fatica, ha fornito una validazione del

modello confrontando direttamente le strutture di dislocazioni simulate e osservate nell’es-

perimento vicino alla superficie del campione. La rotazione del reticolo cristallino è un’altra

variabile che può essere estratta dalle simulazioni a elementi finiti. Il modello sviluppato cor-

rela le strutture di dislocazioni in formazione con la rotazione del reticolo cristallino attorno
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agli assi coordinati. Questo permette il confronto con esperimenti di microdiffrazione Laue

effettuati da un altro studente di dottorato su campioni formati da un singolo cristallo di

rame all’SLS, il sincrotrone all’istituto Paul Scherrer. Con il modello basato sulle dislocazioni si

possono calcolare osservabili sperimentali, come le componenti della rotazione e i gradienti

della rotazione, in funzione della densità di dislocazioni simulata nel campione, che non è

direttamente osservabile. Questo fornisce una validazione delle equazioni costitutive alla

scala del micrometro.

Parole chiave : Dislocazioni, Plasticità dei cristalli, fatica, metodo degli elementi finiti
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Introduction

Cyclic fatigue of metals is defined as the change of a metallic material when a repeated strain

or stress is applied to it [Suresh, 1998]. It is a phenomenon that puts an endurance limit on

mechanical components, and therefore affects the cost and reliability of modern technology.

The systematic study of fatigue began in the 19th century due to the increasing use of metallic

structures for transportation and industrial applications [Wöhler, 1870]. The discovery that

plastic strain in metals is the mechanism controlling fatigue failure led to the formulation

of the Coffin-Manson relation [Manson, 1954], [Coffin, 1954], fundamental to predict with

a certain degree of accuracy the lifetime of mechanical components. The arrangement of

dislocations into structures during cyclic fatigue has been extensively studied during the 1970s

using electron microscopy [Laird et al., 1986]. Understanding how these structures form is

important because they are regarded as precursors of fatigue damage. Analytical models

based on simplified arrangement of dislocations were proposed in the 1970s, for instance by

[Kuhlmann-Wilsdorf and Laird, 1977], [Holt, 1970]. However, the dislocation structures have

very different features depending on the material and on the load conditions, therefore more

complex models, based on numerical simulations are necessary. The description of metal

fatigue is challenging also because of its multiscale nature. Dislocations have a core, whose

features depend on the specific interatomic interactions, but they interact like discrete line

objects on the micrometre scale. On the other hand, well-developed dislocation structures

are large compared to the distance between single dislocations and, therefore, they may be

described by continuum models. Lastly, the development of persistent slip bands and cracks

is visible at the macroscopic scale. Thus, metal fatigue shows very different features if imaged

at different length scales, as shown in Fig. 1. The development of specific dislocation-based

models for fatigue is fundamental to understand why and how the dislocation structures form.

Moreover, such a model would be applied to materials and microstructure design.

0.1 Objectives and Project Framework

The main objective of this dissertation is to develop constitutive dislocation-based equations

to be used in a crystal plasticity finite element (CPFE) solver to simulate cyclic plastic deforma-

tion, as occurs during cyclic fatigue in FCC metals. Copper, aluminium and 316L stainless steel

are the materials of interest. Both single crystals and polycrystalline structures are simulated.
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Figure 1 – (a) Dipolar wall in copper fatigued into saturation at room temperature [Kuhlmann-
Wilsdorf and Laird, 1977]; (b) examples of persistent slip bands embedded in a loop patch
structure [Laird et al., 1986]; (c) Photograph of the surface of a specimen after 1.5 ⋅104 cycles at
γpl = 4.5 ⋅10−3 [Winter, 1974].

The developed models are implemented in the DAMASK framework of the Max Planck Institut

für Eisenforschung [Roters et al., 2012], which allows users to introduce constitutive models

into a crystal plasticity finite element code. This project involves a collaboration with two

other PhD students: Ainara Irastorza-Landa, performing in-situ Laue microdiffraction experi-

ments on fatigued copper single crystal samples at the Swiss Light Source, and Jens Nellessen,

performing electron channeling contrast imaging (ECCI) experiments on 316L stainless steel

polycrystalline samples at the Max Planck Institute for Iron Research [Nellessen et al., 2015].

0.2 Outline

• Chapter 1 contains a review of experimental evidence of dislocation structures and

mechanical properties during cyclic fatigue. The existing knowledge on the origin of

dislocation structure and their relationship with mechanical properties is discussed.

Existing computational models and their limitations are also discussed.

• Chapter 2 presents the model that has been developed for single crystals oriented for

single slip. Its ability to reproduce dislocation structures and mechanical properties is

discussed. Tests of the model with different sets of material parameters are shown, in

order to simulate the behaviour of different FCC metals.

• Chapter 3 presents the model that has been developed for multiple slip oriented crystals

and its application to the simulation of 316L stainless steel polycrystals. Simulations

are then compared with experimental results obtained using the electron channeling

contrast imaging technique.
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0.2. Outline

• Chapter 4 shows the application of the model to the simulation of Laue microdiffraction

experiments, where the lattice rotation is the computed observable.
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1 Review of Experimental Evidence and
Computational Models

In this chapter a review of experimental evidences on dislocation structures and mechanical

properties is reported. Dislocation structures are shown for single slip oriented crystals in

section 1.1, for multiple slip oriented crystals in section 1.2, and the formation mechanisms

are discussed. Mechanical properties and their relationship with dislocation structures are

discussed in section 1.3 and 1.4 for single and multiple slip. Existing computational models

are classified in section 1.6, while a brief introduction to the crystal plasticity finite element

method used in this thesis is given in section 1.7.

1.1 Single Slip Dislocation Structures

Dislocation structures during cyclic fatigue have been studied using bright field transmis-

sion electron microscopy (TEM) [Laird et al., 1986] and the weak-beam technique [Sauzay

and Kubin, 2011]. FCC metals, such as copper, have been extensively analysed due to the

well-defined dislocation structures appearing after many deformation cycles. Positive and

negative dislocations interact and form dislocation dipoles. After few cycles the so-called “loop

patches” appear, as shown in Fig. 1.1 (a), which are constituted of edge dislocation dipoles and

constitute barriers to the dislocation motion. After hundreds of cycles a stable configuration is

reached, called “vein-channel structure”, as shown in Fig. 1.1 (b). Veins are high dislocation-

density regions, oriented perpendicular to the Burgers vector, where mainly edge dislocations

are present, having a density of the order of 1015 m−2 [Kuhlmann-Wilsdorf and Laird, 1980].

Screw dislocations connecting the veins have been imaged in the channels, where the disloca-

tion density is of the order of 1012 m−2 [Buchinger et al., 1985]. These screw dislocations are

relatively free to glide, due to the low dislocation density inside the channels, as shown in Fig.

1.1 (c). The observation on a plane perpendicular to the edge dislocation lines in Fig. 1.2 (a)

shows that veins are cigar-shaped, they also tend to align along directions not contained in

the primary glide plane, as depicted in Fig. 1.2 (b). The longer travelling path of dislocations

during cyclic fatigue, compared to the case of monotonic load, leads to dislocation structures

closer to their dynamic equilibrium configuration. For this reason, attempts have been made

to describe veins as Taylor lattices [Kuhlmann-Wilsdorf, 2001]. If the plastic strain amplitude
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Figure 1.1 – (a) Loop patches after 9 deformation cycles at γpl = 7.5 ⋅10−3 [Kuhlmann-Wilsdorf
and Laird, 1977]; (b) vein-channel structure after thousands of cycles at γpl = 1.25 ⋅ 10−3

[Kuhlmann-Wilsdorf and Laird, 1977]; (c) schematic dislocation arrangement in the vein-
channel structure [Suresh, 1998].

Figure 1.2 – (a) Veins observed on a plane perpendicular to the edge dislocation lines
[Buchinger et al., 1985]; (b) vein alignment shown in (a); (c) boundary zone (dashed line)
between a PSB and the matrix structure [Winter, 1978].

is in the interval 6 ⋅10−5 < γpl < 7.5 ⋅10−3, part of the vein-channel structures transforms into

the so-called “persistent slip bands” (PSB), which take this name because of their recurring

visibility after removal using electropolishing [Basinski and Basinski, 1992]. Each vein splits

in two or three thinner walls and a sharp interface between the two structures appear, as

shown in Fig. 1.2 (c). This transformation takes place on a large number of slip planes and

Figure 1.3 – (a) Dislocation structures in a Cu crystal fatigued at γpl = 10−3 [Suresh, 1998]; (b)
crystal sharp-corner fatigued at γpl = 1.2 ⋅10−3 to 5000 cycles [Basinski and Basinski, 1992]; (c)
schematic dislocation arrangement in the PSB structure [Suresh, 1998].
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1.1. Single Slip Dislocation Structures

the thin dislocation walls become equally spaced and arrange into a ladder-like shape with a

rung spacing of 1.3 μm, as shown in Fig. 1.3 (a). These walls are constituted mostly of edge

dislocation dipoles, as depicted in Fig. 1.3 (c), and the dislocation density inside them is of the

order of 1015 m−2 [Suresh, 1998]. The dipolar nature of veins and PSB walls is proven by the

constant TEM background contrast from side to side of the walls. Using X-ray topography it

was concluded that the density of GNDs amounts to only a few percent of the total dislocation

density [Mughrabi and Obst, 2005]. The strain accommodated by PSB is usually much larger

than the strain accommodated by the vein-channel structures and, after many cycles, surface

extrusions appear at the intersection between the PSB and the crystal surface, as shown in

Fig. 1.3 (b). These extrusions precede the nucleation of surface cracks. The transformation of

veins into PSB walls begins with a decrease of the dislocation density in the inner part of veins,

as shown in Fig. 1.4 (a). Secondary slip with a Burgers vector not contained in the primary

slip systems has been proposed as a possible mechanism [Kuhlmann-Wilsdorf and Laird,

1980]. This would permit local mutual annihilation of opposite signed edge dislocations, as

shown in Fig. 1.4 (b). A significant amount of dislocations with a non-primary Burgers vector

is not always observed in copper [Antonopoulos and Winter, 1976]. However, experiments

on stainless steel have shown many prismatic loops, i.e. formed by positive and negative

edge dislocation segments connected by cross slip dislocations, which are likely to form if the

cross slip system is active [Li and Laird, 1994]. This mechanism contributes to the dislocation

annihilation and to the formation of low density dislocation channels, as shown in Fig. 1.4 (c).

Effect of strain amplitude. the increase of the average dislocation density with the plastic

strain amplitude was noticed first from studies on the electrical resistivity [Polák, 1969]. TEM

investigations of slices parallel to the active slip plane after plastic strain controlled tests have

shown that, for γpl < 6 ⋅10−5, the volume fraction of veins fV at saturation increases with γpl ,

as reported in Tab. 1.1.

γpl 7 ⋅10−6 1 ⋅10−5 1.5 ⋅10−5 2.2 ⋅10−5 3 ⋅10−5 6 ⋅10−5

fV 5−10% 18−22% 23−33% ∼ 40% ∼ 48% ∼ 50%

Table 1.1 – Volume fraction of veins fV for different values of γpl [Buchinger et al., 1985].

However the spacing between veins is not strongly affected by γpl and it turns out to be of the

order of 1 μm. For 6 ⋅10−5 < γpl < 7.5 ⋅10−3, the volume fraction of PSB increases linearly with

γpl . For γpl > 7.5 ⋅10−3, multiple slip becomes important and the corresponding dislocation

structures are described in section 1.2.
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Figure 1.4 – (a) Vein structures at γpl = 1 ⋅ 10−4 [Holzwarth and Eßmann]; (b) intersecting
secondary glide can move primary dislocations [Kuhlmann-Wilsdorf and Laird, 1980]; (c)
intersecting cross slip system creates prismatic loops [Li and Laird, 1994], at position B two
arrays of prismatic loops have been divided.

Effect of the material. Dislocation structures

have been observed also in other FCC materials,

such as aluminium, nickel and silver. For copper,

aluminium and silver, vein-channel structures

form and veins have a higher volume fraction if

γpl increases. The value of γpl for which PSB ap-

pears in the material is between γpl = 6 ⋅10−5 and

γpl = 1⋅10−4 for all these materials. The ratio τs/G
between the threshold of the resolved shear stress

for PSB formation and the shear modulus of the

material has a value of (6.5±0.5) ⋅10−4 [Li et al.,

2010]. The characteristic size of channels is of

the order of 1 μm for these materials, as shown

in Fig. 1.5 for Ni. Few publications are available

about the dislocation structures of aluminium;

ladder-like structures are typically not detected

and, even at low resolved shear stress, cellular

structures form, as shown in Fig. 1.6. Substitu-

tional alloys of copper, where Al is added, show

dislocations inside PSB walls that are stepped

with respect to contiguous planes because of

cross slip events [Laird et al., 1986].

Figure 1.5 – Dislocation structures in
Ni single crystals deformed at γpl = 2 ⋅
10−3 [Schwab et al., 1996].

Figure 1.6 – Dislocation structures in Al
single crystals deformed at τs = 4 MPa
[Zhai et al., 1996].
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1.1. Single Slip Dislocation Structures

Effect of the temperature. Cyclic fatigue ex-

periments at low temperatures were carried

out on copper single crystals [Basinski et al.,

1980]. As shown in Fig. 1.7, the main features

of dislocation structures remain unchanged,

apart from the spacing between dislocation

walls of PSB, which reduces to 0.7 μm at T =
77.4 K and to 0.45 μm at T = 4.2 K. The same

trend has been observed at higher temper-

atures (T = 600 K) in nickel single crystals

[Schwab et al., 1996]. The temperature de-

pendence of the PSB structures is in agree-

ment with the proposed formation mechanism

based on the activation of the cross slip system

[Kuhlmann-Wilsdorf and Laird, 1980].

Figure 1.7 – Vein-channel structures and
PSB in copper cyclically deformed at T =
77.4 K [Basinski et al., 1980].

Secondary dislocations. Secondary dislocations, belonging to the cross slip plane, are

commonly observed also during single slip deformation of copper single crystals. Roughly

equal numbers of primary and secondary dislocations have been imaged in the channels

for γpl < 6 ⋅10−5 [Buchinger et al., 1985]. Appreciable quantities of secondary dislocations

have been found in every dislocation wall only for γpl > 6 ⋅10−5 [Buchinger et al., 1985]. An

increasing contribution of secondary slip is observed for γpl > 2 ⋅10−3 [Laird et al., 1986].
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1.2 Multiple Slip Dislocation Structures

The kind of dislocation structures that are formed

in multiple slip orientations is dictated by the in-

teractions among dislocations belonging to dif-

ferent slip systems. The shape of these structures

depends on the crystal orientation. As shown in

Fig. 1.8 for copper single crystals under uniaxial

compression, an orientation close to the [001]
leads to two families of perpendicular walls form-

ing the so-called “labyrinth structure”, one close

to the [1̄11] axis leads to hexagonal cells forming

the so-called “cell structure”, and an orientation

close to the [011] axis leads to long dislocation

walls forming the so-called “deformation bands”.

PSB ladders are present in the material if the crys-

tal orientation is contained in the grey area of the

stereographic triangle in Fig. 1.8, but they are

gradually converted into the labyrinth and cell

structures when the orientation becomes closer

to the [001] and [1̄11] axes.

Figure 1.8 – Effect of the crystal orientation
on dislocation structures [Li et al., 2010].

Deformation bands. In [011] single crystals, apart from the PSB-vein structure, the so-

called “deformation bands” appear, which are formed by dislocation walls longer than in

PSB, as shown in Fig. 1.9 (a). The habit plane of these dislocation walls is (1̄01), which

is perpendicular to the Burgers vector of the primary slip plane, as depicted in Fig. 1.9

(b). The characteristic distance between the walls is similar to the rung spacing of PSB.

Deformation bands can accommodate more plastic deformation (up to 2 ⋅10−2) than PSB

[Zhang et al., 2001] and the intrusion-extrusion caused by them is stronger.
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1.2. Multiple Slip Dislocation Structures

Figure 1.9 – (a) Dislocation structures of [011] nickel at γpl = 6.1 ⋅10−4 viewed from (1̄11̄)
[Buque, 2001]; (b) Geometrical configuration of slip bands (SB) and deformation bands
(DB) [Li et al., 2002].

The formation of deformation bands is due to the locking of different PSB walls, initially

misaligned, into longer dislocation structures, as represented in Fig. 1.10.

Figure 1.10 – (a) Forming deformation bands in a [5̄ 12 20] copper single crystal deformed
at γpl = 8 ⋅10−3 [Zhang et al., 2001]; (b) schematic representation of misaligned PSB walls
during the formation of a deformation band.

Labyrinth structure. The activation of the critical slip systems during cyclic fatigue of[001] single crystals is associated with the formation of labyrinth structures. For γpl ≈
1 ⋅10−4, only veins and PSB appear, while for γpl ≥ 2.5 ⋅10−4 labyrinth structures were

imaged [Li et al., 2011]. Some dislocation structures, referred as “uncondensed” labyrinths,

are thicker and their edges are connected to forming labyrinth walls, as shown in Fig.

1.11 (a). If the strain amplitude is increased, the uncondensed structures evolve into

“condensed” labyrinth structures. If imaged on a plane containing the load direction, for

example (010) in Fig. 1.11 (a)-(b) and Fig. 1.12 (a), these structures are constituted of

interconnected walls which appear parallel and perpendicular to the load direction.
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Figure 1.11 – (a) Uncondensed labyrinth structures [Jin and Winter, 1984]; (b) Condensed
labyrinth structures [Jin and Winter, 1984].

Both sets of walls have the same regular spacing of around 0.5÷0.6 μm. Longitudinal(100)walls are less common than the transverse (001) [Jin and Winter, 1984]. Two Burgers

vectors are present in these structures: the (001) walls contain a preponderance of one

particular Burgers vector in a ratio of around 2 ∶ 1 and the (100) walls contain a similar

preponderance of a different Burgers vector [Jin and Winter, 1984]. As shown in Fig. 1.11

(b), PSB ladders along the b⃗2 direction are present, however their number is smaller than

in single slip deformation at the same plastic strain amplitude. Labyrinth structures have

been imaged also in single slip oriented crystals for γpl ≥ 2 ⋅10−4 [Li et al., 2011].

Figure 1.12 – (a) Labyrinth walls with a prevalent (001) orientation [Jin and Winter, 1984];
(b) illustration of the geometry of labyrinth structures [Li et al., 2011].

Both the conjugate and critical dislocation reactions take place in [001] single crystals,

forming Lomer-Cottrell and Hirth locks [Hirth, 1961]. However, the strength of the Lomer-

Cottrell junction obstructs the dislocation motion and dislocations belonging to the

primary and conjugate slip systems occupy separated regions [Jin, 1983]. The geometry of

the labyrinth structure formation is depicted in Fig. 1.12 (b): the primary and secondary
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1.2. Multiple Slip Dislocation Structures

dislocations, belonging to the critical system, with orthogonal Burgers vectors b⃗1 and

b⃗2 respectively interact and form walls perpendicular to the sum and difference of the

Burgers vectors. The wall orientations (001) and (100), once projected on the (010) plane,

correspond also to the projected intersections between the primary and the critical slip

planes, along which the dislocation junctions form.

Cell structure. The activation of the coplanar slip systems during cyclic fatigue of [111]
single crystals is associated with the formation of cell structures. For γpl ≈ 2 ⋅10−4, only

veins appear, as shown in Fig. 1.13 (a), while for γpl ≥ 1 ⋅10−3 cell structures were imaged

[Li et al., 2009]. The intermediate formation of PSB ladders between these two strain

amplitudes does not happen. As shown in Fig. 1.13 (b), on the primary slip plane (111)
cell structures appear as irregular and anisotropic. The shape of these cells range from

triangular to hexagonal, with a diameter of 1÷2 μm, and most of the cell walls are per-

pendicular to the Burgers vectors of the three slip systems on the (111) plane. Screw

dislocations appear along the edge of wall structures and connect them [Li et al., 2010].

Figure 1.13 – (a) Vein structure of [1̄11] copper single crystal at γpl = 1.84 ⋅10−4 [Li et al.,
2009]; (b) cell structures of copper single crystal on the (111) [Lepistö et al., 1984].

If images are taken on the (132̄) plane, as shown in Fig. 1.14 (a), it is visible that primary

slip planes containing cells are not distributed uniformly, but they concentrate on well-

defined slip bands [Li et al., 2010]. Cell structures have been imaged also in single slip

oriented crystals for γpl ≥ 7.5 ⋅10−3 [Li et al., 2011]. Both the conjugate and the coplanar

dislocation reactions take place in [111] single crystals, forming Lomer-Cottrell and copla-

nar junctions. As for the labyrinth structure formation, the Lomer-Cottrell interaction is

not contributing to the cell formation, whose geometry is depicted in Fig. 1.14 (b). The

dislocations on the two active coplanar slip systems interact forming the third coplanar
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Chapter 1. Review of Experimental Evidence and Computational Models

dislocations. The three sets of dislocations form walls perpendicular to the respective

Burgers vectors, where mainly edge dislocation dipoles are present.

Figure 1.14 – (a) Cell structures of copper single crystal on the (132̄) at γpl = 4 ⋅10−4 [Li
et al., 2009]; (b) illustration of the geometry of cell structures [Li et al., 2011].

Dislocation structures in polycrystals. The effect of grain boundaries on the dislocation

structures has been studied on bicrystal specimens [Hu et al., 1996], [Hu and Wang,

1997], [Hu and Wang]. Multiple slip can be activated near the grain boundary also in the

case where the corresponding monocrystalline components would undergo single slip

only. Cell structures tend to form at γpl lower than an equally oriented single crystal:

for example, the [3̄45] grain in [Hu and Wang, 1997] does not show vein structures for

γpl ≥ 5 ⋅10−4, but only cell structures, as shown in Fig. 1.15 (a), which are elongated along

the primary slip direction. Labyrinth structures are commonly found in grains with an

orientation close to [001], as shown in Fig. 1.15 (b). Grain boundaries act as obstacles

for dislocation structures, for example PSB are usually observed only on one side of high

angle grain boundaries, as shown in Fig. 1.15 (c).

Figure 1.15 – (a) Cell structures in a [3̄45] grain at γpl = 3.8 ⋅10−3 [Hu and Wang, 1997]; (b)
labyrinth structures in a [1̄17] grain at 2.8 ⋅10−4; (c) high angle grain boundary [Winter
et al., 1981].
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1.2. Multiple Slip Dislocation Structures

Effect of the material. Silver single crystals oriented for multiple slip show similar dislo-

cation structures as copper: labyrinth structures appear in [001]-oriented crystals, cell

structures in [1̄11]-oriented crystals and deformation bands in [011] [Li et al., 2008].

Also nickel single crystals show labyrinth structures [Mecke et al., 1982] and deformation

bands, but the [1̄11] orientation tends to form wall-like configurations, extended perpen-

dicular to the tensile axis [Buque, 2001]. [001]-oriented aluminium single crystals show

well-developed labyrinth structures at 0.1 cumulative plastic strain γpl ,cum [Videm and

Ryum, 1996], while copper shows well-developed structures at γpl ,cum = 0.5 [Basinski and

Basinski, 1992]. As stated for single slip orientation, PSB ladder structures have not been

detected in multiple slip oriented aluminium.
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1.3 Single slip mechanical properties

During cyclic loading of single slip oriented copper single crystals, rapid hardening occurs

during the first tens of cycles until the resolved shear stress reaches a saturation value, as

shown in Fig. 1.16 (a). The saturation is reached faster if the plastic strain amplitude γpl

increases, thus the stress value depends on both γpl and the cumulative plastic strain γpl ,cum ,

as shown in Fig. 1.16 (b). A plot of the resolved saturation stress as a function of γpl is called

“cyclic stress-strain curve” (CSSC). It is shown in Fig. 1.16 (c) and it is divided into three regions,

denoted by A, B and C. In region A (γpl < 6 ⋅10−5) the saturation stress increases with γpl and,

as stated in section 1.1, this is correlated with an increase in the volume fraction of veins,

where the motion of dislocations requires a higher stress. In region B (6 ⋅10−5 < γpl < 7.5 ⋅10−3)

the saturation stress is strain-independent and its value is around 28 MPa for copper. This

is due to the two-phase structure: the softer ladder structure of PSB and the harder vein

structure of the matrix. In region B the volume fraction of PSB increases, but the stress to

move screw dislocations inside PSB channels remains the same because of their constant

width [Suresh, 1998]. In region C, multiple slip becomes important and the saturation stress

increases because of the interaction of primary and secondary slip systems.

Figure 1.16 – (a) Hysteresis loop evolution in copper single crystal at Δγpl = 3 ⋅10−3 for different
values of the cumulative plastic strain γpl ,cum [Déprés et al., 2008]; (b) cyclic hardening curve
at different imposed Δγpl [Déprés et al., 2008]; (c) cyclic stress strain curve (CSSC) of copper
single crystal [Mughrabi, 1978].
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Effect of the material. The CSSC of different FCC

metals has the same features if the ratio between

the saturation stress τsat and the shear modu-

lus G is plotted as a function of the plastic strain

amplitude, as shown in Fig. 1.17. In particu-

lar the threshold value of τsat/G for PSB forma-

tion has approximately the same value for cop-

per, nickel and silver. Metals, such as aluminium,

316L stainless steel and Cu-16Al, show the so-

called “softening” behaviour, which is a decrease

of the maximum stress when the number of cycles

increases. In annealed 316L stainless steel single

crystals, softening is present from the first few cy-

cles, as shown in Fig. 1.18, and this is associated

with “dislocation starvation”, which means that

not enough dislocations are available at the be-

ginning of the test in order to accommodate the

imposed plastic strain [Li and Laird, 1994]. The

dislocation rearrangement, and the consequent

formation of low density regions where disloca-

tions can glide at lower stresses, is also regarded

as a reason for mechanical softening [Pham et al.,

2013]. The backstress τb , associated with barriers

to dislocation motion, increases during cycling,

while the friction stress τ f decreases, as shown in

Fig. 1.18. Details about how the backstress and

friction stress are obtained from the stress-strain

curves are explained in appendix A.4. The ratio

between backstress and friction stress increases

also with γpl for both 316L stainless steel and cop-

per [Li and Laird, 1993], [Li and Laird, 1994].

Figure 1.17 – CSSC for nickel, copper
and silver single crystals [Mughrabi
et al., 1979].

Figure 1.18 – Maximum stress τmax ,
friction stress τ f and backstress τb as
a function of the number of cycles for
316L stainless steel deformed in single
slip at γpl = 1⋅10−3 [Li and Laird, 1994].
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Effect of temperature. At lower temperatures the

saturation stress is higher, as shown in Fig. 1.19

for copper, and this is due to the length scale of

the dislocation structures. For instance, in region

B, 75− 85% of the observed flow stress can be

accounted for by the bow out stress of primary

screw segments within the PSB [Basinski et al.,

1980]. This bow out stress is inversely propor-

tional to the PSB wall spacing, which decreases

with temperature. The qualitative behaviour of

the CSSC, with the three regions A, B and C shown

in Fig. 1.16 (c), is similar at different temperatures

[Hollmann, 2000], [Bretschneider et al., 1997].

Figure 1.19 – Hardening curves for cop-
per deformed at three different tem-
peratures T in region B [Basinski et al.,
1980].

1.4 Multiple slip mechanical properties

For multiple slip oriented single crystals the plateau in the cyclic stress strain curve is not

always observed, as shown in Fig. 1.20 (a). Cu single crystals with 4 active slip systems ([011]),

oriented for critical double slip ([034]) and conjugate double slip ([1̄12]) show a clear plateau.

By contrast, if the sample orientation gets closer to [001] or [1̄11], the clear plateau fades away.

Therefore, the region of the stereographic triangle where the plateau forms is correlated with

the grey area of the stereographic triangle in Fig. 1.8, and therefore with the formation of PSB.

Figure 1.20 – (a) CSSC of double and multiple slip oriented Cu single crystals [Wang et al.,
2001]; (b) variation of the crystal CSS curve with its location in the standard stereographic
triangle [Wang et al., 2001].
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Effect of the material. The effect of the orienta-

tion on the mechanical behaviour shown in Fig.

1.20 (b) has been found also in nickel [Buque,

2001] and silver [Li et al., 2008]. Aluminium [001]
single crystals show mechanical softening, start-

ing at a cumulative plastic strain around 0.1, as

shown in Fig. 1.21. This corresponds to the be-

ginning of the formation of labyrinth structures.

Also polycrystalline 316L steel shows mechanical

softening when dislocation rearrangement starts

[Pham et al., 2013].

Figure 1.21 – Hardening curve of [001]
single crystal aluminium deformed at
constant γpl .

1.5 Continuum dislocation-based models

The description of systems of discrete dislocations using continuum densities is statistical.

The dislocation density ρ is known with a certain spatial resolution, which is of the order of the

element size used in the simulation. The dislocation density ρ does not contain information

about the exact position of dislocations, but it represents an ensemble of systems of discrete

dislocations [Groma, 1997]. This concept is explained in Fig. 1.22 (a) in 2D. Inside an area A,

whose size is of the order of the spatial resolution, the number of dislocations is ρ ⋅ A. This

value can be non-integer because it is an average over the discrete ensemble, in which every

component can have a different number of dislocations. For instance, in Fig. 1.22 (a) positive

and negative edge dislocations have the same density: ρe+ ⋅ A = 1
2 and ρe− ⋅ A = 1

2 . In this case,

the ensemble is constituted of four components: one containing a positive and a negative

edge dislocation, two containing only one type of dislocation and one without dislocations.

Furthermore, every component of the discrete ensemble represents different states in which

the discrete dislocations have different spatial positions, as shown in Fig. 1.22 (b). This is

because all these states are described by the same ρ and, in a statistical model, they are equally

likely. A single simulation thus represents a set of discrete simulations. The rate equations

describing the time evolution of ρ have to represent the evolution of the discrete ensemble.

This implies that the average over the evolved discrete ensemble have to correspond to the

evolved dislocation density. Such rate equations are presented in the following.

1.6 Dislocation-based models for cyclic fatigue

Simulation of cyclic fatigue with the aim of calculating the damage of materials has been

carried out mostly using phenomenological material models [Lemaitre and Chaboche, 2002].

However the study of cyclic fatigue at the micrometer length scale requires a model with

internal parameters representing dislocations. In this section existing models are divided
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Figure 1.22 – (a) Equivalence between a continuum distribution ρ and an ensemble of states
with different number of dislocations. (b) Different states with different spatial positions of
one dislocation that are equivalent to a component of the discrete ensemble.

into different categories: composite models, reaction-diffusion models, self-consistent field

models and discrete dislocation dynamics models.

Composite models. These models are based on the assumption that the behaviour of the

high and low dislocation density regions can be treated separately. Two-phase models

were initially developed to illustrate the mechanism by which the plastic strain is carried

by the PSB. If fpsb is the PSB volume fraction, the plastic strain amplitude is expressed in

terms of the law of mixtures:

γpl = fpsbγpsb +(1− fpsb)γm , (1.1)

where γpsb and γm are the plastic strain accommodated by the PSB and the vein. As

stated in section 1.1, fpsb increases linearly with γpl , suggesting that γpsb and γm are

constants. The volume fraction fpsb of the softer phase is adjusted in order to maintain a

constant stress in the plateau of the cyclic stress-strain curve (region B) [Winter, 1974].

The Kubin-Estrin model is a composite model for the vein-channel structure that uses

different state variables to model mobile dislocations in the channel (ρmob) and immobile

dislocations in the veins (ρi mm). As shown in Fig. 1.23 (a), immobile dislocations are

divided into “recoverable” (ρr ) and “non-recoverable” (ρnr ), which cannot become mobile

again after stress reversal. Three differential equations are necessary to describe the time
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evolution of these state variables [Estrin, 1996]:

ρ̇r =C5ε̇p
√
ρi mm −C2ε̇pρr −C6ρr , (1.2)

ρ̇i mm =C ε̇p +C1ε̇p
√
ρi mm −C2ε̇pρi mm +C3ε̇pρmob , (1.3)

ρ̇mob =−C ε̇p −C1ε̇p
√
ρi mm −C3ε̇pρmob +C4ε̇p (ρi mm/ρmob)+C7ρr . (1.4)

Figure 1.23 – (a) State variables of the Kubin-Estrin model; (b) fit of the hysteresis stress-
strain curve for Al [Estrin et al., 1996].

Each term represents a different dislocation process, summarized in Tab. 1.2, and fitting

coefficients are used.

C C1 C2 C3

multiplication trapping annihilation dipole formation

C4 C5 C6 C7

dislocation sources trapping jog formation remobilization

Table 1.2 – Dislocation processes associated with the different coefficients in (1.2)-(1.4).

Reaction-diffusion models. These models introduce velocity gradient terms to describe

the motion of dislocations and to predict the formation of dislocation structures starting

from a random dislocation distribution [Dewel et al.]. In the Walgraef-Aifantis model,

dislocations are divided into “slow” (S) and “fast” (F), but there is no a priori assumption

on the spatial positions of these two types of dislocations. The evolution equations are

[Walgraef and Aifantis, 1985]:

ρ̇S +∇⋅ j⃗S = g (ρS)−βρS +γρFρ
2
S , (1.5)

ρ̇F +∇⋅ j⃗F =βρS −γρFρ
2
S , (1.6)

where j⃗S and j⃗F are the dislocation fluxes and the meaning of the other terms is sum-
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marized in Tab. 1.3. The multiplication-annihilation function g (ρS) is zero if there is a

balance between those two processes in the homogeneous steady state ρS,0, and a simple

form used is g (ρS) = a (ρS,0−ρS) [Schiller and Walgraef, 1988]. The dislocation fluxes are

drift terms (first spatial derivatives), however they have been treated as diffusion terms

(second spatial derivatives) because positive and negative dislocations during cyclic defor-

mation have a back and forth motion. This motion causes a dislocation accumulation to

spread with dislocations moving down the concentration gradient [Walgraef and Aifantis,

1986]. Two diffusion coefficients DS and DF for “slow” and “fast” dislocations are intro-

duced. In this model both the terms representing the fluxes and the trapping of mobile

dislocations (γ) are fundamental to obtain dislocation patterning. The characteristic

pattern wavelength is [Schiller and Walgraef, 1988]:

λc = 2π( DSDF

aγρ2
0,S

)1/4

, (1.7)

where ρ0,S is the “slow” dislocation density of the spatially uniform stationary state.

g (ρS) β γ

multiplication and annihilation remobilization trapping

Table 1.3 – Dislocation processes associated with the different coefficients in (1.5)-(1.6).

The Walgraef-Aifantis model has been extended to 2D using two state variables for the

“fast” dislocations belonging to the two slip systems [Pontes et al., 2006]. A 2D dislocation

patterning arises from this model, with walls perpendicular to the two Burgers vectors,

whose directions are chosen perpendicular, as shown in Fig. 1.24 (c). This is due to the

flux terms used to model the motion of dislocations: fluxes are imposed along the two

Burgers vectors and dislocations move away from emerging channels along the Burgers

vector directions, leaving behind empty channels oriented as edge dislocations on the

two slip systems. This is not consistent with the experimental observations of labyrinth

structures presented in section 1.2, where the dislocation walls are perpendicular to the

sum and difference of the Burgers vectors.
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1.6. Dislocation-based models for cyclic fatigue

Figure 1.24 – (a) Amplitude of the spatial pattern, plain lines are stable states, dashed
lines are unstable ones [Walgraef and Aifantis, 1985]; (b) pattern developed in a 1D model
[Schiller and Walgraef, 1988]; (c) simulated 2D dislocation patterning, primary slip direc-
tions are parallel to the diagonals of the box [Pontes et al., 2006].

Self-consistent field models. These models propose a physics-based method to treat the

dislocation interaction term (γ coefficient of the reaction diffusion models). A higher

order distribution function fN (t , r⃗1, ..., r⃗N) is defined for a system of N straight parallel

dislocations, which represents the distribution function in the configurational space(t , r⃗1, ..., r⃗N) of the dislocation coordinates [Groma, 1997]. The dislocation density ρ (r) of

the reaction-diffusion models is found by integrating fN over (N −1) coordinate variables.

Approximations are needed for the correlation function ρ2 (t , r⃗1, r⃗2), giving the probability

that two interacting dislocations have coordinate vectors r⃗1 and r⃗2. Existing simulations

have neglected the correlation between dislocation positions or have estimated it using

2D discrete dislocation dynamics simulations [Groma et al., 2003]. In these models the

dislocation motion is linearly proportional to the total stress on dislocations, which is

given by [Groma et al., 2003]:

τ(r⃗) =∫ τi nd (r⃗ − r⃗ ′)(ρ+ (r⃗ ′)−ρ− (r⃗ ′))dr⃗ ′+τexp , (1.8)

τi nd (r⃗) = Gb

2π(1−ν) x (x2− y2)
(x2+ y2)2 , (1.9)

where ρ+ and ρ− are the densities of positive and negative edge dislocations. 2D simu-

lations have been carried out using this model to understand the origin of dislocation

patterning. The main result is that a strong dislocation patterning appears only when a

dislocation multiplication term, proportional to ρτ2, is introduced, as shown in Fig. 1.25

(a). A periodic external stress can change the length scale of dislocation structures, as

shown in Fig. 1.25 (b).
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Chapter 1. Review of Experimental Evidence and Computational Models

Figure 1.25 – (a) dislocation structures if dislocation multiplication is introduced without
external stress; (b) dislocation structures with dislocation multiplication and a periodic
external stress [Groma and Balogh, 1999].

Discrete dislocation dynamics (DDD). Taylor lattice models have been used to explain

the basic properties of fatigue dislocation structures. The critical stress to split an edge

dislocation dipole with height h is given by [Kuhlmann-Wilsdorf et al., 1952]:

τh = Gb

8π(1−ν)h
, (1.10)

and the same formula, apart from a proportionality coefficient, holds for a dislocation

arrangement, as the one in Fig. 1.26 (a). The so-called “loop-flipping” mechanism, in

which lines of positive and negative edge dislocations move along opposite directions,

gives a contribution to the plastic strain accommodated by veins [Kuhlmann-Wilsdorf,

1979b]. Moreover, it is responsible for the creation of GND walls at the vein boundary and,

therefore, for the backstress τB . According to the Taylor lattice model, τB is proportional

to
√
γpl ,cum[Cheng and Laird, 1981], in agreement with experiments. The stability of

dislocation dipole walls, shown in Fig. 1.26 (b), against disintegration due to stress increase

has been studied [Neumann, 1987]. The maximum sustainable stress, as shown in Fig.

1.26 (c), is higher than the one of diamond-shaped Taylor lattices. Therefore this model

indicates that thin PSB walls are tendentially more stable than veins.
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1.6. Dislocation-based models for cyclic fatigue

Figure 1.26 – (a) Taylor lattice and “loop-flipping” motion [Kuhlmann-Wilsdorf, 1979a];
(b) disintegration of a dipolar wall due to stress increase; (c) maximum stability stress of
various dislocation configurations [Neumann, 1987].

The concept of low energy dislocation configurations has been applied also to multi-

ple slip dislocation structures [Dickson et al., 1986a]. The so-called “double pseudo-

polygonisation arrangement” theory (DPP) predicts energetically favourable wall orien-

tations perpendicular to the directions that bisect the obtuse and acute angles between

the edge dislocation lines on the two slip systems. These stacking directions (y and x

axes in Fig. 1.27 (a)) for dislocation loops on the two slip systems favour the formation of

edge dipoles, screw dipoles and dislocation junctions, which lower the interaction energy.

3D discrete dislocation dynamics simulations are computationally expensive and often

use simplified boundary conditions, however they have been used to simulate the early

fatigue cycles in a micrometre size grain. In single slip dislocation accumulations and

developement of dislocation dipole walls have been found, as shown in Fig. 1.27 (b). In

multiple slip, a network of dislocations belonging to the two slip systems form, as shown

in Fig. 1.27 (c).

Figure 1.27 – (a) Stacking arrangement of dislocation loops in the DPP theory [Dickson
et al., 1986b]; (b) single slip simulated microstructure after 25 cycles [Déprés, 2004]; (c)
double slip dislocation microstructure [Déprés et al., 2004].
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Chapter 1. Review of Experimental Evidence and Computational Models

Table 1.4 – Features table of the presented dislocation-based models for cyclic fatigue.

1.7 The crystal plasticity finite element method

In the crystal plasticity finite element method (CPFEM) the plastic deformation induced by

the activity on all the slip systems, and their specific geometry, is considered. The first CPFE

simulations date back to the 1980s [Peirce et al., 1982], but only recently the method has been

applied to 3D simulations of single- and polycrystals with arbitrary boundary conditions,

because the required computational resources are substantial [Roters, 2011]. The CPFEM

considers all available slip systems to calculate the plastic velocity gradient:

Lp = n∑
α=1

γ̇αp (S)mα⊗nα , (1.11)

where mα is the slip direction and nα is the normal to the slip plane. This method has been

implemented in a subroutine called DAMASK [Roters et al., 2012], used in our project, for

commercial finite element software, like Abaqus. The FEM software, at each equilibrium

iteration, provides a value for the total deformation gradient F and requires a stress calculation

(S). Known F, the task of the DAMASK subroutine is to find the elastic and plastic part Fe

and Fp respectively by solving a self consistent loop, as shown in Fig. 1.28, with Lp used as

a predictor in the Newton-Raphson scheme. The elasticity matrix C takes into account the

crystal anisotropy and it is characterized by three constants C11, C12 and C44 for FCC metals.

The values of these constants for different materials are reported in Tab. 1.5.

Material C11 C12 C44

Copper 168.75 GPa 121.58 GPa 75.68 GPa

Aluminium 107.3 GPa 60.8 GPa 28.3 GPa

316L steel 206 GPa 133 GPa 119 GPa

Table 1.5 – Elastic constants for copper [Overton and Gaffney, 1955], aluminium [Vallin et al.,
1964] and 316L steel [Reed and Horiuchi, 1983].
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1.7. The crystal plasticity finite element method

Figure 1.28 – Scheme of the crystal plasticity finite element method, as implemented in
DAMASK [Roters et al., 2012].

This framework is highly suitable for physics-based theories because the plastic strain rate

can be calculated using the Orowan kinetics law:

γ̇αp = ρα
mob vbα , (1.12)

where ρα
mob is the mobile dislocation density on the slip system α and vα the corresponding

dislocation velocity. The motion of dislocations between neighbouring elements is given by a

flux term:

Jαc =−∇⋅(ρα
c v⃗α

c ) , (1.13)

where v⃗α
c is directed perpendicular to the line directions of dislocations on the slip plane

α with character c. A finite volume discretization is used to calculate the spatial gradients

in (1.13). Given an integration point i 0, an hexahedral volume is defined, whose surfaces

bisect the segments connecting i 0 with its neighbouring integration points i 1, i 2, i 3, i 4, i 5, i 6.

This control volume is represented as a grey hexahedra in Fig. 1.29. The unit normals of the

surfaces are indicated as n̂i 1, n̂i 2, n̂i 3, n̂i 4, n̂i 5, n̂i 6 and the corresponding values of the areas

as Ai 1, Ai 2, Ai 3, Ai 4, Ai 5, Ai 6. In a finite volume scheme, the flux term is approximated by a

volume average of (1.13):

1

V ∫
V
∇⋅(ρα

c v⃗α
c )dV = 1

V ∮
∂V

ρα
c v⃗α

c ⋅ n̂d A = 1

V
∑

j=i 1,...,i 6

(ρα
c v⃗α

c ⋅ n̂ j A j ) , (1.14)

where V is the grey volume in Fig. 1.29. Every term of the sum on the right hand side of (1.14)

is calculated using the following first order approximation:

• if v⃗α
c ⋅n̂ j > 0 at i 0 (outgoing flux), then the values of v⃗α

c and ρα
c are taken at the integration

point i 0;

• if v⃗α
c ⋅n̂ j < 0 at i 0 (incoming flux), then the values of v⃗α

c and ρα
c are taken at the neighbour
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Chapter 1. Review of Experimental Evidence and Computational Models

Figure 1.29 – Control volume to calculate dislocation fluxes and unit normals pointing towards
the neighbouring integration points [Roters, 2011].

integration point j .

Evolution equations for the dislocation density during cyclic fatigue need to be implemented

for this computational method, which can have all the features that other models are missing,

as shown in Tab. 1.4.
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2 Single slip dislocation-based model

In this chapter the dislocation-based CPFE framework is applied to the simulation of cyclic

fatigue in single crystals. The dislocation processes taken into account in the model are

explained and new equations, specific for cyclic fatigue, are introduced to describe the disloca-

tion multiplication and interaction. These modifications with respect to existing models lead

to the prediction of the vein-channel structure starting from a randomly perturbed dislocation

distribution. The resulting dislocation patterning is analyzed with different sets of material

parameters in order to compare the behaviour of copper and aluminium. The influence of

dislocation structures on the mechanical properties is shown. Mechanical softening and the

strain amplitude dependence, predicted by the new model, are shown to be consistent with

experimental results. Finally, a possible approach to predict the emergence of persistent slip

bands during single slip deformation is presented.

2.1 Existing models for monotonic loads

Dislocation-based constitutive models for single slip describe the dislocation arrangement

using several dislocation densities, describing different orientations of the dislocation line with

respect to the Burgers vector [Sandfeld and Zaiser, 2015]. These models have been primarily

applied to monotonic deformations [Leung and Ngan, 2016], for which the dislocation cell

structure has been found [Xia and El-Azab, 2015]. Computationally efficient models used in

the CPFE framework consider signed edge and screw dislocation densities as state variables

[Roters, 2011], [Kords, 2013]. Their dislocation line is perpendicular and parallel to the Burgers

vector direction respectively, which is included in this computational framework for every slip

system, as stated in section 1.7. The dislocation densities used in a continuum model can

be thought as components of a state vector ρ (r⃗ , t), function of position and time. The time

evolution can be described by rate equations:

ρ̇ (r⃗ , t) = g (ρ (r⃗ , t)) , (2.1)
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Chapter 2. Single slip dislocation-based model

where the function g is a sum of terms representing the dislocation processes, such as multi-

plication, annihilation and cross slip. In the following the dislocation processes considered in

the constitutive model are explained.

Figure 2.1 – Dislocation annihilation process
[Roters et al., 2000].

Dislocation annihilation. In this process

a positive and a negative dislocation (edge

or screw character) meet and annihilate.

This is possible, even if the two disloca-

tions are not gliding exactly on the same

slip plane, because of dislocation climb for

edge dislocations and cross slip for screw

dislocations. These processes are energet-

ically favoured only when the distance be-

tween the two dislocation lines is lower

than a characteristic length ďα [Hirth and Lothe, 1982], shown in Fig. 2.1, which is

different for edge and screw dislocations. The flux per unit length of positive edge disloca-

tions is ρα
e+∣vα

e+∣, therefore the rate at which they cross the characteristic length 2ďα
e for

annihilation is 2ďα
e ρ

α
e+∣vα

e ∣. The same holds for negative edge dislocations. The rate of

encounters for edge (ρe+, ρe−) and screw (ρs+, ρs−) dislocations, causing annihilation, is

given by:

ρ̇α
e+,ann = ρ̇α

e−,ann =−4ďα
e ρ

α
e+ρ

α
e−∣vα

e ∣ , (2.2)

ρ̇α
s+,ann = ρ̇α

s−,ann =−4ďα
s ρ

α
s+ρ

α
s−∣vα

s ∣ . (2.3)

The annihilation distance for edge dislocations is determined by equating the attractive

stress between a positive and negative dislocation with the osmotic force, associated with

the free energy change when a vacancy is formed, which depends on the vacancy diffusion

coefficient [Hirth and Lothe, 1982]. The annihilation distance for screw dislocations is

determined by equating the attractive stress between a positive and negative dislocation

with the critical stress to induce a cross slip event [Basinski and Basinski, 1992]. The values

used in the simulations of this thesis for different materials are reported in Tab. 2.1.

Material ďα
e ďα

s

Copper 1.6 nm 50 nm

Aluminium 1.6 nm 50 nm

316L steel 1.3 nm 50 nm

Table 2.1 – Annihilation distances used for different materials [Basinski and Basinski,
1992], [Caillard and Martin, 1989], [Catalao et al., 2005].
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Dislocation multiplication. One of the first equations developed to describe the length

increase of dislocation lines is the Kocks-Mecking equation [Mecking and Kocks, 1981],

which states that:

( ∂ρ

∂γpl
)

mul t

= k1
√
ρ , (2.4)

where ρ is the total dislocation density and k1 is a constant. Models considering edge

and screw dislocations are usually based on the Arsenlis multiplication law [Arsenlis and

Parks, 2002], which holds if the averaging volume to obtain a continuum description is

larger than the characteristic size of a dislocation loop, which should be contained inside

one element of the mesh. As dislocation lines need to remain connected, moving screw

dislocations, with characteristic lengths l̄ s+ and l̄ s−, create new edge dislocations, and

edges create screws, as shown in Fig. 2.2 (a). For example the multiplication law for ρα
e+ is:

ρ̇α
e+,mul t = ρα

s+∣vα
s+∣

l̄ s+
+ ρα

s−∣vα
s−∣

l̄ s−
. (2.5)

Dislocation multiplication in the vein-channel structure is caused by moving screw dis-

locations inside channels, producing new edge dislocations at the location of the vein-

channel interface, as shown in Fig. 2.2 (b). These screw dislocations can be considered to

be the expanding dislocation loops in the Arsenlis model.

Figure 2.2 – (a) Expanding dislocation loop; (b) gliding motion of one screw dislocation
and averaging volume for the Arsenlis multiplication law.

Therefore, the Arsenlis law is valid when the averaging volume in the simulation is larger

than the channel width.

31



Chapter 2. Single slip dislocation-based model

Dislocation dipoles. During single slip deformation of pure crystals the major interaction

mechanism is the formation of dislocation dipoles [Roters, 2011]. As for annihilation, the

formation of a dipole takes place if the distance between two opposite signed dislocations

is lower than the so-called dipole stability height d̂α [Roters et al., 2000], as shown in Fig.

2.3 (a), but larger than the annihilation distance ďα. The dipole stability height in (1.10)

depends on the dislocation character and the applied stress. As for annihilation, the flux

per unit length of positive edge dislocations is ρα
e+∣vα

e ∣, therefore the rate at which they

cross the characteristic distance 2(d̂α
e − ďα

e ) for dipole formation is 2(d̂α
e − ďα

e )ρα
e+∣vα

e ∣.
For example, the dipole formation rate for positive edge dislocations is:

ρ̇α
e+,di p, f or m = 4(d̂α

e − ďα
e )ρα

e+ρ
α
e−∣vα

e ∣ . (2.6)

A stress increase causes the dislocations to be freed and the rate of this process is deter-

mined by a dipole height distribution function. In existing dislocation-based models this

distribution is assumed uniform [Roters et al., 2012], as shown in Fig. 2.3 (b), and it leads

to a dissociation rate:

ρ̇α
e+,di p,di ss =−ρ

α
e+,di p

d̂α
e

d(d̂α
e )

dt
= ρα

e+,di p∣τα∣ d∣τα∣
dt

, (2.7)

where ρα
e+,di p is the dipole density, d (d̂α

e )/d t is the derivative of the dipole stability

distance with respect to time and d ∣τα∣/d t is the derivative of the resolved shear stress

with respect to time.

Figure 2.3 – (a) Dislocation dipole formation process; (b) Uniform dipole height distribu-
tion.

Dislocation kinetics. The velocity of mobile dislocations is assumed to grow linearly with

the applied stress in all our simulations. This approximation has been widely used for the
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2.1. Existing models for monotonic loads

simulation of FCC crystals [der Giessen and Needleman, 1995]:

vα =Bταeff =B (∣τα∣−ταth −τp) , (2.8)

where B is the drag coefficient, τα is the resolved shear stress on the slip system α, τth is

the threshold stress for dislocation motion and τp is the Peierls stress, whose values for

different materials are reported in Tab. 2.2.

Material Copper Aluminium 316L steel

τp 0.5 MPa 2.83 MPa 0.112 MPa

Table 2.2 – Peierls stress for different materials [Schoeck and Krystian, 2005], [Wang and
Fang, 2000], [Misra et al., 2010].

Kinetics equation (2.8) holds for both edge and screw dislocations. The threshold stress

ταth is given by dislocation interactions on various slip systems:

ταth =Gb

����� 12∑
β=1

ξαβρβ , (2.9)

where ξαβ is the matrix representing the strength of interactions between dislocations

of slip systems α and β [Arsenlis and Parks, 2002]. In strain controlled simulations the

dislocation velocity is determined by the applied plastic strain rate, as stated by the

Orowan’s law (1.12); the higher the plastic strain rate, the higher the dislocation velocity.

The simulation timestep d t should satisfy the Courant–Friedrichs–Lewy condition vd t <
CmaxΔx, where Cmax is a constant and Δx is the distance between two integration points

[Courant et al., 1928]. This condition limits the computational feasibility of dislocation

dynamics simulations and, usually, discrete simulations use higher strain rates (typically

104 s−1 [Fivel, 2008]) than in experiments in order to reach the desired strain amplitude in a

reduced number of simulation steps. The dislocation velocity can also be limited by using

higher dislocation densities than in pristine materials [Déprés, 2004]. In this case, given

the plastic strain rate, the dislocation velocity is reduced, as stated by the Orowan’s law

(1.12). Another upper limit of the dislocation velocity is given by the shear sound velocity

[Hirth and Lothe, 1982]. A decrease of the total dislocation density in certain elements

during the formation of dislocation structures is observed because of dislocation fluxes,

leading to very high values of the dislocation velocity, as determined by (2.8). For this

reason a maximum velocity vmax is set in our simulations to prevent numerical divergence

without decreasing d t . This choice does not affect simulation results, provided that the

resolved shear stress ∣τα∣ in (2.8) is not much higher than (ταth +τp), because in that case

the dislocation velocity, and consequently the plastic strain rate in low dislocation density

regions, would be underestimated.
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ρe+ (t = 0) ρe− (t = 0) ρs+ (t = 0) ρs− (t = 0) l̄e+

1.0 μm−2 1.0 μm−2 1.0 μm−2 1.0 μm−2 10 μm

l̄e− l̄ s+ l̄ s− B vmax

10 μm 10 μm 10 μm 5 ⋅104 (μm/s)/MPa 1 m/s

Table 2.3 – Simulation parameters.

Figure 2.4 – (a) Representative volume and mesh used to test the existing physics-based model;
(b) Dislocation dipole density in one element.

Using the aforementioned dislocation processes cyclic deformation simulations have been

carried out in a small representative volume as shown in Fig. 2.4 (a), and using the parameters

in Tab. 2.3. The characteristic behaviour of the dislocation dipole density, shown in Fig. 2.4

(b), is ruled by the two mechanisms (formation and dissociation) described by (2.6) and (2.7).

Dipoles, created by glide when the stress is maximum, are almost completely eliminated in the

next half cycle because of dissociation by stress increase. This is due to the assumption made

in existing models of uniform dipole height distribution [Roters et al., 2012]. When the stress

goes from zero to its maximum value, the majority of dipoles are freed, as can be seen in Fig.

2.3 (b). Such dipole density oscillations preclude the identification of dislocation structures in

the model. The multiplication and annihilation laws (2.5) and (2.2)-(2.3) predict a monotonic

increase of dislocation density until the two mechanisms are balanced. In this case the edge

and screw dislocation density at saturation become:

ρe (saturation) = 2.8 ⋅1014 m−2 , (2.10)

ρs (saturation) = 9.1 ⋅1013 m−2 . (2.11)

These densities are spread uniformly throughout the model because the Arsenlis multiplica-

tion law is based on averaging volumes larger than the channel spacing. Edge dislocations are

created wherever screw ones are present, according to (2.5), thus any initial inhomogeneities

in the edge dislocation density is removed. This prevents the formation of dislocation pat-

terning, leading to a high and homogeneous threshold stress, and to an elastic shakedown

at saturation, as shown by the hardening curve in Fig. 2.5, simulated at 0.2 % strain ampli-

tude. This is not experimentally observed at that strain amplitude and the lack of low density

channels, accommodating plastic strain, is causing this inconsistency.
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2.2. Single slip model for cyclic fatigue

Figure 2.5 – Simulated stress-strain curve during cyclic fatigue at 0.2 % strain amplitude and
2 ⋅10−3 s−1 strain rate.

2.2 Single slip model for cyclic fatigue

In this section the new laws, developed for cyclic fatigue, are applied to the simulation of

single slip deformation of single crystals.

Gaussian dipole distance distribution. To calculate the fraction of mobile dislocations

a Gaussian dipole distance distribution is used, as shown in Fig. 2.6 (a). Indeed, it has

been shown experimentally (Fig. 2.6 (b)) and confirmed by discrete dislocation dynamics

[Déprés et al., 2008] that during cyclic deformation the fraction of dislocations forming a

dipole with height h (and stability distance given by (1.10)) is given by the distribution:

fc (h)∝ exp(−( h− h̄c

0.467h̄c
)2) , (2.12)

where c is the dislocation character (edge or screw). The mean h̄c of the Gaussian distri-

bution as a function of the total dislocation density ρtot al ,c with character c [Catalao et al.,

2005] is:

h̄e = 1

8πα(1−ν)√ρtot al ,e
, (2.13)

h̄s = 1

8πα
√
ρtot al ,s

, (2.14)

where α ≈ 0.3 is a constant. Dislocations in veins, where the density is higher, have a

smaller mean distance h̄c than in channels. By introducing the actual Gaussian distribu-

tion not all dipoles are freed when the stress is increased from zero to its maximum value,

as shown in Fig. 2.6 (a).
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Figure 2.6 – (a) Freed dipoles for the Gaussian distribution; (b) dipole height distribution
from experiments [Catalao et al., 2005].

Dislocation multiplication law for cyclic plasticity. When a finite element size is chosen

smaller than 1 μm, which is the characteristic spacing between two veins (Fig. 2.2), a

loop dislocation segment occupies several neighbouring elements, as shown in Fig. 2.7

(a). The dislocation orientation becomes important and separate geometrical configura-

tions, which are indicated as “straight” and “curved” in Fig. 2.7, need to be considered.

Assuming that the dislocation speed is approximately constant within a single element,

and assuming that the segments are convex, “straight” dislocation segments entering an

element from opposite sides (Fig. 2.7 (b)) do not generate longer dislocation segments

when they travel through the element. This is because the two intersections of the dis-

location segment with the element boundary (dashed circles in Fig. 2.7 (b)) move at the

same speed in the same direction, thus the “straight” segment keeps approximately the

same shape while moving. By contrast, dislocation segments which enter the element

from neighbouring sides (“curved” in Fig. 2.7 (c)) increase their length during motion

(dislocation multiplication) because the two intersections of the dislocation segment with

the element boundaries (dashed circles in Fig. 2.7 (c)) move in different directions while

the segment must remain connected.
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2.2. Single slip model for cyclic fatigue

Figure 2.7 – (a) New dislocation multiplication law when one dislocation loop occupies
more elements; (b)-(c) time evolution of “straight” and “curved” dislocation segments.

The multiplication law we propose for cyclic plasticity differentiates between these two

types of dislocation segments. A total of 8 density variables, listed in Tab. 2.4, are thereby

introduced. The 4 densities in the top row are used to describe “straight” segments,

the other 4 densities describe “curved” ones. For example, the density ρe+,s+ describes

segments that are formed from positive edge and screw dislocations.

ρe+ ρe− ρs+ ρs−

ρe+,s+ ρe+,s− ρe−,s+ ρe−,s−

Table 2.4 – Dislocation densities used for the cyclic fatigue multiplication law.

In terms of dislocation structures, “curved” dislocations are expected to be located close

to the vein-channel interface. For one “curved” dislocation segment of the type ρe+,s+, as

in Fig. 2.7 (c), the increase rate of the length of positive edge dislocation line is given by

the velocity ∣ve+,s+∣. The same can be stated for segments of the type ρe+,s−. The number

of “curved” segments of the type ρe+,s+ per unit volume is the ratio between their density

ρe+,s+ and their average length l̄c . Therefore the multiplication law for ρe+ is:

ρ̇e+,mul t = ρe+,s+∣ve+,s+∣
l̄c

+ ρe+,s−∣ve+,s−∣
l̄c

. (2.15)

Similar equations hold for the other “straight” dislocation densities. This multiplication

law can be derived from the general continuum dislocation dynamics theory [Hochrainer

et al., 2014], whose state variable is a dislocation density ρ (p,ϕ) that measures, at a

point with coordinates p, the area density of dislocations with line direction l(ϕ) =(cosϕ, sinϕ,0). The following time evolution equation holds [Hochrainer et al., 2014]:

∂tρ (p,ϕ) = −∇⋅(ρ (p,ϕ) v⃗ (p,ϕ))−∂ϕ (ρ (p,ϕ)ωϕ (p,ϕ))+v (p,ϕ)q (p,ϕ) , (2.16)

where q (p,ϕ) is the curvature density and ωϕ (p,ϕ) is the angular velocity. An integration

of ρ (p,ϕ) over specific angular intervals, using weight functions, can be used to define a

set of state variables for a constitutive theory. In the so-called simplified continuum dislo-

cation dynamics (sCDD) the first-order terms of the Fourier expansion of ρ (p,ϕ) are used

as state variables [Hochrainer et al., 2014], while in this thesis a simplifying assumption on

the dislocation curvature is taken because of the specific dislocation structure geometry in

Fig. 2.8 (a). An angle Δθe+,s+, whose value is close to π/2, has been chosen to define ρe+,s+

and a corresponding angular interval [θ1,θ2] = [−π/4−Δθe+,s+/2,−π/4+Δθe+,s+/2]:
ρe+,s+ (p) =∫ θ2

θ1

ρ (p,ϕ)dϕ. (2.17)
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Figure 2.8 – (a) Angular intervals Δθe+,s+ and Δθe−,s+ used to define the dislocation den-
sities in the model; (b) screw dislocation configuration inside a channel if the curvature
radius is around half of the channel width.

Integrating (2.16) on the same interval:

ρ̇e+,s+ =−∫ θ2

θ1

∇⋅(ρ (p,ϕ) v⃗ (p,ϕ))dϕ−∣ρ (p,ϕ)ωϕ (p,ϕ)∣θ2

θ1
+∫ θ2

θ1

q (p,ϕ)v (p,ϕ)dϕ .

(2.18)

The main hypothesis introduced is a constant value k̄ = (π/2)/l̄c of the average curvature

in the interval [θ1,θ2]. In order to satisfy that hypothesis it is necessary that the disloca-

tion velocity decreases, reaching zero, toward the vein-channel interface because of the

interaction between the moving curved dislocation and the vein. A simple assumption,

which satisfies also the time evolution equation of the dislocation curvature [Hochrainer

et al., 2014], is v =−v0 sinϕ. The third term on the right-hand side of (2.18) becomes:

−v0∫ θ2

θ1

q (p,ϕ)sinϕdϕ = v0k̄ (ρe+,s+ (p)
π/2

) . (2.19)

This term gives the contribution of the loop expansion of curved dislocations. The angular

velocity is ωϕ (p,ϕ) = −∇̂Lv , which is the directional derivative of the scalar velocity along

the generalized line direction [Hochrainer et al., 2014]. The generalized line direction is

defined for a dislocation as a 6D vector L = (l(ϕ) ,k(ϕ)), where l(ϕ) is the line direction

and k(ϕ) is the curvature vector, which is the unit normal vector of the dislocation line

multiplied by the scalar curvature. In this particular case, ωϕ is given by:

ωϕ (p,ϕ) = −k̄∂ϕv = k̄v0 cosϕ , (2.20)

hence it is finite at θ2 but zero at θ1. Thus the second term on the right-hand side of (2.18)

is:
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∣ρ (p,ϕ)ωϕ (p,ϕ)∣θ2

θ1
= v0k̄ (ρe+,s+ (p)

π/2
) , (2.21)

which is exactly cancelled out by the term in (2.19). This implies that the time evolution

of ρe+,s+ is given by the flux term only. The evolution equation of a density of “straight”

dislocations, for instance ρe+, can be found similarly by integrating 2.16 on an interval[θ2,θ3] = [−π/4+Δθe+,s+/2,π/4−Δθe+,s−/2]:

ρ̇e+ (p) = −∫ θ3

θ2

∇⋅(ρ (p,ϕ) v⃗ (p,ϕ))dϕ−∣ρ (p,ϕ)ωϕ (p,ϕ)∣θ3

θ2
. (2.22)

The third term on the right-hand side of (2.16) is absent because, in this angular interval,

the curvature is zero. Using (2.21) and the corresponding equation for ρe+,s−, one finds:

ρ̇e+ (p) = −∫ θ3

θ2

∇⋅(ρ (p,ϕ) v⃗ (p,ϕ))dϕ+ v0ρe+,s+ (p)
l̄c

+ v0ρe+,s− (p)
l̄c

. (2.23)

The last two terms represent the new multiplication law (2.15), while the first term is the

dislocation flux of positive edge dislocations, also considered in the model.

Determination of the value of the average curvature from first principle would require

computationally expensive simulations using the higher order dislocation density theory

[Hochrainer et al., 2014]. However, microscopy images [Winter, 1978], [Winter et al.,

1981], [Kuhlmann-Wilsdorf and Laird, 1977] show screw dislocations nearly straight in the

middle of the channel. The channel width is around 1 μm, therefore, using a value l̄c = 1

μm, screw dislocations would have a circular shape inside the channels, as shown in Fig.

2.8 (b). This is not consistent with experimental observations, therefore an upper limit is:

l̄c ≪ 1μm . (2.24)

The new multiplication law is tested on a simple system with two interacting dislocation

segments, as shown in Fig. 2.9. One straight edge dislocation is kept immobile. A second

dislocation segment has a edge part, forming a dislocation dipole with the first dislocation,

and a screw part. “Curved” dislocation density is present at the intersection between the

edge and the screw segment. When a resolved shear stress is applied the screw dislocation

move towards the left in Fig. 2.9. Therefore the edge dislocation density increases in the

elements that contain the immobile edge segment and, after the transit of the “curved”

density, it has doubled in value. This indicates that two edge dislocations are present in

those elements and this reproduces the behaviour of the equivalent discrete system.
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Figure 2.9 – Case study of the new multiplication law using two interacting dislocation
segments.

The screw dislocation segment in Fig. 2.9 has green color at the beginning, then trans-

forming to light blue. This is due to the distribution of screw dislocations into more

than one column of elements. In conclusion, our new equations are able to reproduce

quantitatively the multiplication of dislocations in a continuum framework.

Cross slip law. The new multiplication law (2.15) does not predict an increase of the

“curved” dislocation densities because the annihilation laws (2.2)-(2.3) are applied to

both “straight” and “curved” segments. The complete annihilation of oppositely signed

“curved” dislocations, which would interrupt the dislocation multiplication process, is

prohibited by cross slip. Therefore one needs to introduce this process in the model

equations. The double cross slip process has been recognized as a major multiplication

mechanism in FCC metals [Bitzek et al., 2008], [Messerschmidt and Bartsch, 2003]. A

simple model for double cross slip needs to consider that the process occurs at locations

where screw dislocations are present. A length w of such dislocations on the primary slip

system transfers to a parallel slip plane and then it multiplies as a Frank-Read source, as

depicted in Fig. 2.10 (a). In terms of the dislocation densities defined in Tab. 2.4, this

mechanism converts a length w of a “straight” screw segment into a dislocation loop

formed by “curved” segments, as shown in Fig. 2.10 (b), whose average length is l̄c .
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2.2. Single slip model for cyclic fatigue

Figure 2.10 – (a) Double cross slip mechanism; (b) Time evolution of a “straight” disloca-
tion segment during double cross slip; (c) dislocation loop expanding after a double cross
slip event.

The cross slip rate is given by [Vegge et al., 2000]:

R = νexp(−τI I I Vact

kT
) = νexp(−ΔG

kT
) , (2.25)

where τI I I is the stage three stress, Vact is the activation volume, ν is the attack frequency

and ΔG is the activation energy. Parameters used in our simulations for different materials

are reported in Tab. 2.5.

Material τI I I Vact ΔG

Copper 37 MPa 4.97 ⋅10−27 m3 1.15 eV

Aluminium 15 MPa 8.84 ⋅10−27 m3 0.829 eV

316L steel 56 MPa 5 ⋅10−27 m3 1.75 eV

Table 2.5 – Material parameters to calculate the cross slip rate [Bonneville et al., 1988],
[Groh et al., 2009], [Déprés et al., 2008].

The width w in Fig. 2.10 depends on the applied stress, however it is typically lower than

100 nm [Escaig, 1968] and thus the double cross slip can be described using a local law in

our model if an element size of around 200 nm is used. The same is true for the height H

[Appel et al., 1982]. The attack frequency ν ≈ 2 ⋅1015 s−1 has been deduced from molecular

dynamics simulations [Vegge et al., 2000]. Once the double cross slip process has taken

place, the curved segment expands, as shown in Fig. 2.10 (b), until a dislocation loop,

whose average length is l̄c , is formed. The double cross slip mechanism usually emits only

a single new dislocation loop [Messerschmidt and Bartsch, 2003], therefore the number of

loops created per unit volume during an infinitesimal time interval dt is:

dρcs

w
= (ρs++ρs−)Rdt

w
, (2.26)

where dρcs is the density of screw dislocation segments that cross slipped. The density of

new “curved” dislocations is:

dρe+,s+,cs = l̄c dρcs

w
= (ρs++ρs−) l̄c Rdt

w
, (2.27)
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and similar equations hold for the other “curved” densities. The length w is stress depen-

dent, but typically of the same order as the dissociation width [Escaig, 1968], which can

be estimated by w ≈ 44b. Therefore:

ρ̇e+,s+,cs = ( l̄c R

44b
) ⋅(ρs++ρs−) . (2.28)

Multiplying and dividing (2.28) by the dislocation velocity ∣ve+,s+∣:
ρ̇e+,s+,cs = ( l̄c∣ve+,s+∣)(

R

44
) ∣ve+,s+∣

b
⋅ (ρs++ρs−) . (2.29)

The fraction l̄c/∣ve+,s+∣ is the characteristic expansion time tc for a dislocation loop, cre-

ated by double cross slip. In the following we assume this fraction is a constant because

the maximum shear stress, and consequently the maximum dislocation velocity, does

not change significantly after the hardening stage in the first cycles. In our single slip

simulations, a characteristic velocity ∣ve+,s+∣ ≈ 1 μm/s follows from the chosen strain rate.

Defining:

β = Rtc

44
, (2.30)

the following cross slip equation can be obtained:

ρ̇e+,s+,cs = β∣ve+,s+∣
b

⋅ (ρs++ρs−) . (2.31)

For every cross slip event a line length 2H of secondary dislocations is created, as depicted

in Fig. 2.10 (a). During an infinitesimal time interval dt , the number of these events per

unit volume is given by (2.26). Therefore, the density increase of secondary dislocations is:

dρsec = 2H (dρcs

w
) . (2.32)

Using (2.26) and (2.32), a rate equation for the secondary dislocation density ρsec can be

found:

ρ̇sec = 2HR

w
(ρs++ρs−) . (2.33)

The characteristic value H ≈ 100 nm [Appel et al., 1982] has been used in our simulations.

The double cross slip mechanism imposes a lower limit for the average segment length

l̄c . Equation (2.27) is valid if the curved part of the dislocation loop in Fig. 2.10 (b), for

instance the part representing ρe+,s+, has average length l̄c . This length cannot be smaller

than the diameter of a circle, whose radius is w/2, because, as shown in Fig. 2.10 (c), the

curved segment connects the two secondary dislocations. Therefore, a lower limit for

copper is:

l̄c ≫w ≈ 0.011 μm. (2.34)
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In our simulations a value l̄c = 0.1 μm, intermediate between the two limits (2.24) and

(2.34), has been chosen. As a consequence, a characteristic expansion time tc ≈ 0.1 s in

(2.30) is used in our simulations.

The values of the cross slip coefficient β in (2.31) for different materials are reported in

Tab. 2.6.

Material β

Copper 8 ⋅10−8

Aluminium 2.6 ⋅10−2

316L steel 1.7 ⋅10−18

Table 2.6 – Material parameters to calculate the cross slip rate coefficient β.

The uncertainty on β is due to the experimental errors of τI I I , around ±3 %, and Vact ,

around ±4 % [Bonneville et al., 1988]. An error of ±7 % of the product τI I I Vact is increased

by the exponential function in (2.25) and thus we expect an uncertainty of one order of

magnitude on β.

The constitutive equations of the single slip model for cyclic fatigue are summarized in ap-

pendix A.1.

2.3 Eigenvalue analysis

A condition for the appearance of dislocation patterning from a randomly perturbed, initially

homogeneous distribution of dislocations, is the instability of the stationary state [Groma

and Balogh, 1999]. If ρ0 is the stationary state of the function g in (2.1), then g (ρ0) = 0. The

stationary state corresponds to a uniformly dislocation filled system. Near equilibrium a

Fourier component of the solution can be written as:

ρ (r⃗ , t) = ρ0+Δρ ⋅exp(ωq t + i q⃗ ⋅ r⃗) , (2.35)

where q⃗ represents a specific spatial wavelength while ωq gives the time evolution: if ωq > 0 a

particular wavelength of the solution is increasing its amplitude and eventually a patterning

can form, while if ωq < 0 a spatially uniform solution arises. The amplitude Δρ is a vector

constituted of fluctuations of all the dislocation densities of the model:

Δρ = (Δρe+,Δρe−,Δρs+,Δρs−,Δρe+,s+,Δρe+,s−,Δρe−,s+,Δρe−,s−) . (2.36)
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Figure 2.11 – Values of ωq in (2.35) as a function of the patterning wavelength λ, different
colors correspond to different eigenvalues.

If the solution (2.35)-(2.36) is introduced into the time evolution equation (2.1) and only first

order terms in Δρ are considered, then the following eigenvalue problem is obtained:

ωq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δρe+

Δρe−

Δρs+

Δρs−

Δρe+,s+

Δρe+,s−

Δρe−,s+

Δρe−,s−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=M ⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δρe+

Δρe−

Δρs+

Δρs−

Δρe+,s+

Δρe+,s−

Δρe−,s+

Δρe−,s−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.37)

where the components of the 8x8 matrix M are given by:

Mi j = ∂gi

∂ρ j
, (2.38)

where i and j are the indices of the vectors ρ̇ and ρ in (2.1). The eigenvalue problem 2.37 has

been solved numerically. The eight eigenvalues ωq are functions of the spatial wavelength

λ = 2π
∣q⃗ ∣ , which is present in the matrix M because of the spatial derivatives introduced by the

flux term in (1.13). They are calculated in Fig. 2.11 (a) using the Arsenlis multiplication law

(2.5), and in Fig. 2.11 (b) using both the new multiplication law (2.15) and cross slip law (2.5).

In both cases the annihilation laws (2.2)-(2.3) and the Gaussian dipole distance distribution

(2.12) have been used. Copper parameters are used in the analysis and the strain amplitude is

γ = 0.1%. It is evident that all the eigenvalues for the Arsenlis law are negative, apart from a zero

eigenvalue which corresponds to a fluctuation of screw densities only, and thus no patterning

can arise from an initial uniform dislocation distribution. That is not the case for the new

multiplication law, for which one of the eigenvalues is positive above a certain λ, as shown in

the inset of Fig. 2.11 (b). That eigenvalue remains positive even if the value of β is increased or
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Figure 2.12 – Values of ωq in (2.35) as a function of the patterning wavelength λ for β = 8 ⋅10−9

and β = 8 ⋅10−7, different colors correspond to different eigenvalues.

Figure 2.13 – Values of ωq in (2.35) as a function of the patterning wavelength λ for β = 0.

decreased by an order of magnitude with respect to the one for copper, as shown in Fig. 2.12.

This shows that our theory can predict dislocation patterning without fine tuning β, which has

a large uncertainty. This eigenvalue analysis has shown that the Arsenlis law is not suitable to

model patterning because it leads to a spatially uniform dislocation distribution. By contrast

the new multiplication law has a positive eigenvalue and thus a spatially periodic solution can

arise. The cross slip coefficient affects the values of ωq in (2.35), as shown in Fig. 2.12. However,

if the model is used without cross slip (β = 0), one positive eigenvalue is still present, as shown

in Fig. 2.13. This indicates that the new multiplication law is sufficient to predict dislocation

patterning. A specific value for the developing wavelength cannot be deduced from Fig. 2.11

(b) and a simulation in the time domain is necessary. However, eigenvalue analyses using

different model parameters can show which wavelengths λ increase their amplitudes. In Fig.

2.14 the values of ωq are shown for two different strain amplitudes γ. The eigenvalue that

becomes positive cross the ωq = 0 axis at a wavelength λ ≈ 2.2 μm for γ = 0.2% and λ ≈ 1.8 μm

for γ = 0.3%. The same eigenvalue becomes positive at λ ≈ 3.2 μm for γ = 0.1%, as shown in Fig.

2.11 (b). These different analyses are consistent with the similitude principle, according to
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Figure 2.14 – Values of ωq in (2.35) as a function of the patterning wavelength λ for γ = 0.2%
and γ = 0.3%, different colors correspond to different eigenvalues.

which the characteristic wavelength of dislocation structures during cyclic fatigue is inversely

proportional to the loading amplitude [Sauzay and Kubin, 2011].

2.4 Single slip simulations

Cyclic deformation simulations of a copper single crystal oriented for single slip have been

carried out using an element size of 200 nm on a parallelepiped geometry whose size is 12

μm along the x and y directions and 0.6 μm along z, as shown in Fig. 2.15. The slip plane(111) is oriented perpendicular to the z axis and the Burgers vector along the x axis. Cyclic

shear deformation with a strain amplitude γxz = 0.1 % is applied along the Burgers vector

direction, as shown in Fig. 2.15 (a). The strain rate is 10−3 s−1. Periodic boundary conditions

are used for dislocation fluxes along the y axis and the secondary dislocation density in (2.33)

is not included. Average values of initial dislocation densities and kinetic parameters in the

simulations are summarized in Tab. 2.7. Random fluctuations of δρ = 50 % are added to

this uniform distribution. These fluctuations depend on the spatial position and they are

generated randomly using the method described in the following. A random Halton sequence

[Halton, 1964] of 2-dimensional vectors (rnd1,rnd2) in (0,1)×(0,1) is generated. For every

2-dimensional vector of the sequence, the condition:

rnd2 < exp(−1

2
[3(2 ⋅ rnd1−1)]2) , (2.39)

is checked. If (2.39) is satisfied, then the initial dislocation density with character c at the

integration point i is:

ρc (i) = ρc (t = 0) ⋅ [1+δρ (3(2 ⋅ rnd1−1))] . (2.40)
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Figure 2.15 – (a) Edge dislocation density after 100 cycles using the new multiplication law;
(b) product between the total “curved” and edge dislocation density after 100 cycles using
the new multiplication law; the patterning is similar to the one in (a); (c) scatter plot of the
“curved” dislocation density as a function of the edge dislocation density in every element; (d)
edge dislocation density along the dashed line passing through the geometry in the inset. In
(a) and (b) the scales are different because of the different magnitude of the edge and “curved”
dislocation density.
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The integration point index i is the same as in the input file of the finite element solver

(Abaqus) and it is increased until the dislocation density is assigned to all the integration points.

According to (2.39)-(2.40) the dislocation density fluctuations at the integration points have a

Gaussian distribution with standard deviation δρ. At every integration point, the fluctuation

δρ is the same for every dislocation type in the model. Thus, the Kröner-Nye tensor of the

initial dislocation distribution is zero at every point and connectivity of dislocation lines is

satisfied.

ρe+ (t = 0) = 1.0 μm−2 ρe− (t = 0) = 1.0 μm−2

ρs+ (t = 0) = 1.0 μm−2 ρs− (t = 0) = 1.0 μm−2

ρe+,s+ (t = 0) = 0.01 μm−2 ρe+,s− (t = 0) = 0.01 μm−2

ρe−,s+ (t = 0) = 0.01 μm−2 ρe−,s− (t = 0) = 0.01 μm−2

B = 1.0 (μm/s)/MPa vmax = 10 μm/s

l̄e+ = 1.0 μm l̄e− = 1.0 μm

l̄ s+ = 1.0 μm l̄ s− = 1.0 μm

Table 2.7 – Initial dislocation densities and parameters for the simulations in Fig. 2.15.

In Fig. 2.15 (a) accumulations of edge dislocations are visible in regions oriented perpen-

dicular to the Burgers vector. The dislocation density reaches values of the order of 1015

m−2 inside the walls and 1011÷1012 m−2 inside channels. These densities are similar to the

ones observed experimentally, as stated in section 1.1. A characteristic micrometre spacing

among dislocation walls emerges. This length scale is predicted using only physics-based

parameters and it compares well with the observed channel width (Fig. 1.1 (b) and Fig. 1.2

(c)). The characteristic in-plane bending of veins along the Burgers vector is also reproduced.

By contrast, using the Arsenlis multiplication law (2.5), the edge dislocation density grows

uniformly. This can be seen in Fig. 2.15 (d), where the edge dislocation density after 100

cycles along the dashed line passing through the geometry in the inset is shown for the two

multiplication laws. This is because the Arsenlis law, applied with an element size smaller than

a channel, predicts that new edge dislocations are continuously produced inside channels and

thus it would remove any initial inhomogeneities in the edge dislocation density. In Fig. 2.15

(b) the product between the edge and the total “curved” dislocation density, responsible for

the multiplication, is shown: the spatial variations are similar to those of the edge dislocation

density in Fig. 2.15 (a). Some additional accumulations of “curved” dislocations are present

inside channels; however, there is a spatial correlation between the edge dislocation density

and the total “curved” dislocation density after 100 cycles. This can be seen in Fig. 2.15 (c),

where the total “curved” dislocation density is plotted against the edge dislocation density

for every element in the geometry. The points concentrate in two regions, one on the left,

containing elements inside channels (low ρe ), and one on the right, containing elements

inside veins (high ρe ). The right region shows, in average, higher values of the total “curved”

dislocation density. Therefore, “curved” dislocations are concentrated where veins are present

and the dislocation multiplication takes place mostly at the vein-channel interface, as shown

in Fig. 2.2 (b). The distribution of screw dislocations does not show patterning in the Burgers
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Figure 2.16 – (a) Screw dislocation density after 100 cycles using the new multiplication law;
(b) scatter plot of the edge dislocation density as a function of the product ∣ve+,s+∣ ⋅ (ρs++ρs−)
at every integration point.

vector direction and turns out to be uncorrelated with the edge dislocation density, as shown

in Fig. 2.16 (a). The dynamics of dislocation structure formation the simulations suggest are as

follow: regions where edge dislocations accumulate are more resistant against dipole splitting

because the mean h̄c of the Gaussian distribution in Fig. 2.6 (a) decreases with increasing

total dislocation density. Edge dislocations then move from low density regions (channels) to

high density ones (veins), and channels are not refilled with edge dislocations because the

“curved” dislocations tend to concentrate near the vein-channel interface. According to (2.31),

the “curved” dislocations are created by cross slip mainly where both a high screw dislocation

density and dislocation velocity are present. This can be seen by plotting ρe as a function

of the product ∣ve+,s+∣ ⋅ (ρs++ρs−) at every integration point, as shown in Fig. 2.16 (b). The

points with a lower value of ρe , representing channels, have, in average, a higher value of

the product ∣ve+,s+∣ ⋅ (ρs++ρs−), proportional to the production rate of “curved” dislocations.

Once created, “curved” dislocations move from low density regions to high density ones, where

their velocity decreases.

The dislocation structure formation in this statistical framework has to be interpreted using

the ensemble introduced in section 1.5. Since the dislocation density is the average over the

discrete ensemble, many components of this ensemble have to contain high and low disloca-

tion density regions, at the same position where they appear in the continuum simulation.

Therefore, a single simulation run represents an average of the results of multiple discrete

simulations.

The mesh size dependence has been tested on a 4 μm x 4 μm x 1 μm geometry deformed at

0.1% strain with both 200 nm and 100 nm element size. The parameters are the same as in Tab.

2.7. The Burgers vector is along the y axis and the slip plane normal along the z axis. The edge

dislocation density is averaged along the x axis. In Fig. 2.18 (a) the averaged edge dislocation

density after monotonic deformation is shown. The mesh size dependence is visible at the

boundary, where large gradients of the edge dislocation density are present. These gradients

are due to the stress free boundary condition and the consequent low dislocation velocity,
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leading to dislocation accumulation. After 8 cycles, as shown in Fig. 2.18 (b), the simulation

made with 100 nm elements shows more features, even if the spatially averaged value of

the edge dislocation density agrees with the 200 nm elements simulation. This shows that

dislocation patterning appears also using a smaller element size.

In the simulation in Fig. 2.15 (a), the dislocation walls have a typical length of around 400 nm

along the Burgers vector direction (x axis). Therefore, they occupy two elements along that

axis. Since linear elements are used, the dislocation density as a function of the x coordinate

has triangular peaks, as shown in Fig. 2.15 (d). This simulation cannot predict the exact density

distribution of dislocation walls along the Burgers vector direction, which is not necessarily

linear. However, it predicts the maximum value of the dislocation density in the centre of the

wall. By contrast, the low dislocation density channels have a larger characteristic size, around

1 μm. The dislocation density in these channels is low and the continuum model predicts

that less than one dislocation is present in some elements. As explained in section 1.5, those

elements represent an ensemble where some components do not contain dislocations at that

specific spatial position. As shown by the electron microscopy images in section 1.1, channels

are occupied by single dislocations, whose spacing is of the order of 1 μm, larger than the

element size in the simulations. Therefore, ensemble components in which no dislocations

are present in certain elements are realistic. The statistical continuum models used in these

simulations are not able to find the position of single dislocations in the channels, but only to

determine their density.

As shown by the simulation in Fig. 2.15 (a), an element size larger than 1 μm would prevent

the observation of dislocation patterning because the element size would be larger than the

spacing between neighbouring dislocation walls. Similarly, an element size smaller than 10

nm would not be suitable because the details of the dislocation core are not included in the

model.

The simulation in Fig. 2.15 has been carried out also with δρ = 15% random fluctuations,

added to the initial uniform dislocation distribution. In Fig. 2.17 (a), accumulations of edge

dislocations are visible with a characteristic shape and length scale comparable to the pat-

terning in Fig. 2.15 (a). The spectral density obtained using the Fourier transform of the edge

dislocation density in Fig. 2.15 (a) (δρ = 50%) and 2.17 (a) (δρ = 15%) is shown in Fig. 2.17 (b).

The Fourier transform is calculated along the x axis and the spectral density is averaged over

the y and z axis. The comparison between the two spectral densities in Fig. 2.17 (b) shows

that the characteristic wavelength of dislocation structures depends mainly on the equation

system and not on the initial condition. However, the specific position of dislocation walls is

different in the two simulations with δρ = 50% and δρ = 15%.

The dependence on the cross slip coefficient β of the rate at which the average dislocation

density increases is illustrated in Fig. 2.19 (a). The solid curve (β = 8 ⋅10−8) is the average value

predicted by our model using copper parameters [Bonneville et al., 1988]. Due to the large

uncertainty in the value of the β, a lower limit of the predicted average dislocation density

is given by the dashed curve (β = 8 ⋅10−9) in Fig. 2.19 (a). Transmission electron microscopy

measurements of the dislocation density in copper [Hancock and Grosskreutz, 1969] fit inside

the interval between the solid and the dashed curve in Fig. 2.19 (a). Considering that the
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2.4. Single slip simulations

Figure 2.17 – (a) Edge dislocation density after 100 cycles using the new multiplication law
and initial fluctuations of the initial dislocation density δρ = 15%. (b) Spectral density of ρe as
a function of the wavelength.

Figure 2.18 – Averaged edge dislocation density after (a) monotonic deformation and (b) after
8 cycles using both 200 nm and 100 nm element size.
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Chapter 2. Single slip dislocation-based model

Figure 2.19 – (a) Simulated average dislocation density as a function of the cumulative shear
strain for β = 8 ⋅10−8 (solid curve) and β = 8 ⋅10−9 (dashed curve); squares represent experi-
mental points [Hancock and Grosskreutz, 1969], with a measurement error estimated at about
50%. (b) Simulated channel volume fraction as a function of the number of cycles; the error
bar represents the saturation channel volume fraction in copper at the same saturation stress
[Buchinger et al., 1985].

experimental error is about 50%, our predicted average dislocation density compares well

with experiments. Once dislocation structures are formed, there is a sharp interface between

low and high dislocation density regions: channels are almost empty of edge dislocations

while inside veins ρe > 1 ⋅1014 m−2. Thus, it is possible to set a threshold edge dislocation

density ρe,th (e.g. ρe,th = 1 ⋅1011 m−2) and to define the volume fraction of channels as the

fraction of integration points where ρe < ρe,th . The channel volume fraction as a function

of the number of cycles at 0.1% strain amplitude is shown in Fig. 2.19 (b) and its value at

saturation agrees with the experimental one [Buchinger et al., 1985]. The simulated saturation

value of the channel volume fraction does not change significantly if ρe,th is chosen from the

interval 1 ⋅1011 m−2 ≤ ρe,th ≤ 5 ⋅1012 m−2.

Effect of strain amplitude. In our model the average dislocation density after a certain

number of cycles increases with the strain amplitude, as shown in Fig. 2.20 (a). This is

coherent with the experimental results reported in section 1.1 [Polák, 1969]. To understand

the effect of the strain amplitude on the dislocation structures a simulation with strain

jump is shown in Fig. 2.20. The simulation geometry is the same as the one in Fig. 2.15

and the parameters the same as in Tab. 2.7. The strain amplitude is γ = 0.1% until cycle

N = 30, then it is suddenly increased to γ = 0.2%. In Fig. 2.20 (b)-(c) the edge dislocation

density at N = 25 and N = 37 cycles is shown. Some of the previously formed small veins

disappear and the dislocations rearrange, while the larger veins increase their dimensions.

The channels become shorter, satisfying the similitude principle [Sauzay and Kubin, 2011].
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2.4. Single slip simulations

Figure 2.20 – (a) Simulated average dislocation density for two different strain amplitudes;
(b)-(c) edge dislocation density before (N = 25) and after (N = 37) a strain rate jump.

This leads to an increase of the volume fraction of veins for higher strain amplitudes, as

reported in section 1.1 [Buchinger et al., 1985].

Effect of the material. Performing simulations with different sets of parameters is useful

to determine the model predictions for different FCC materials. The parameter that affects

more the shape, volume fraction and channel width of dislocation structures is the cross

slip coefficient β. A lower cross slip rate leads to less developed dislocation structures, a

smaller average dislocation density and an increased channel width. This is shown in Fig.

2.21 (a) where the simulation setup is the same as the one in Fig. 2.15 and the cross slip

coefficient is one order of magnitude lower (β = 8 ⋅10−9). This is consistent with results

found by discrete [Devincre and Kubin, 1997] and continuum [Xia and El-Azab, 2015]

dislocation dynamics, where, in the absence of cross slip, no dislocation storage occurs in

the material and cell structures do not form. The same simulation as in Fig. 2.15 has been

made with a 100 times higher dislocation mobility. As shown in Fig. 2.21 (b), a smaller

spacing between adjacent dislocation walls is obtained. Dislocation patterning after 100

cycles, using copper parameters and including secondary dislocations, results in slightly

shorter channel widths, as shown in Fig. 2.21 (c), than the patterning without secondary

dislocations in Fig. 2.15.
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Chapter 2. Single slip dislocation-based model

Figure 2.21 – Edge dislocation density after 100 cycles using (a) a lower cross slip coefficient
β = 8 ⋅ 10−9; (b) a higher dislocation mobility B = 100 (μm/s)/MPa and (c) including
secondary dislocations.

A general criterion to find out the effect of parameters on the patterning wavelength

can be deduced from the Walgraef-Aifantis model. Equation (1.7) implies that stronger

interactions among dislocations lead to a shorter wavelength of dislocation structures. Ac-

cordingly, the more dislocations are free to move, the longer is the patterning wavelength.

Using this criterion we can interpret all the above results. If the cross slip coefficient

β decreases, then the dislocation density grows at lower rate and the threshold stress

to remobilize dislocations inside walls is lower; therefore more dislocations are mobile

and larger channels form. To explain the shorter channels in Fig. 2.21 (b), one should

note that, in a strain controlled simulation, if the dislocation mobility increases, then the

resolved stress decreases because, according to Orowan’s law, a lower stress is needed to

accommodate the imposed plastic strain. Thus fewer dislocations are free to move and

the wavelength of dislocation structures decreases. The shorter channels in Fig. 2.21 (c)

are due to the stronger interactions among dislocations when secondary dislocations are

present. In general, our simulations have shown that the patterning wavelength is shorter

whenever the average dislocation density is higher.

If the cross slip coefficient is lower, edge dislocations transfer faster from channels to veins

because of the lower dislocation density and the consequent lower mutual interactions.

This can be seen in Fig. 2.22 (a) where the solid line represents the edge dislocation density

in an element contained in the circle in the inset while the dashed line shows the same

quantity in a channel in Fig. 2.15 (a) (β = 8 ⋅10−8).

Figure 2.22 – (a) Solid line: depletion of the channel indicated by the circle in the inset.
Dashed line: depletion of the channel with higher cross slip coefficient β = 8 ⋅10−8. (b)
Hardening curves for β = 8 ⋅10−8 (dashed line) and β = 8 ⋅10−9 (solid line).

This property is confirmed by TEM analyses of different materials. For instance, the

dislocation structures in aluminium and copper reach a comparable state when the

cumulative plastic shear strain reaches 0.1 [Videm and Ryum, 1996] in aluminium, and

0.5 [Basinski and Basinski, 1992] in copper.

As stated in section 1.1, at higher temperature the characteristic length scale of dislocation
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2.5. Mechanical properties of the single slip model

Figure 2.23 – (a) Hardening curve using the multiplication law for cyclic fatigue (2.15), averaged
over the deforming surface; (b) hardening curve for two different values of the strain amplitude
γ.

structures increases. This is consistent with our results and with (1.7) if one assumes that

the increased annihilation rate leads to a lower average dislocation density.

2.5 Mechanical properties of the single slip model

The flow stress as a function of the number of cycles is shown in Fig. 2.23 (a). Initially hardening

is observed, followed by a stagnation in the flow stress characterized by some fluctuations

and followed by a softening. This softening can be explained by the influence of regions,

forming after many cycles, with low dislocation density, as shown in Fig. 2.22 (a), where screw

dislocations can glide easily. If the strain amplitude γ is higher, as shown in Fig. 2.23 (b),

the softening is more evident because the higher stress causes a faster decrease of the edge

dislocation density inside the channels. Because of the absence of dislocation patterning,

softening cannot be predicted when using the Arsenlis multiplication law (2.5), as shown in Fig.

2.5. For different plastic strain amplitudes the flow stress as a function of the number of cycles

predicted using the multiplication law for cyclic fatigue (2.15) and the Arsenlis multiplication

law (2.5) is shown in Fig. 2.24. The Arsenlis multiplication law predicts a spatially uniform

dislocation density at saturation whose value is given by the balance between dislocation

multiplication and annihilation, as stated in (2.10) and (2.11). Both those processes are directly

proportional to the dislocation velocity ∣v ∣, which, according to Orowan’s law (1.12), is directly

proportional to the plastic strain rate. When rate equations for dislocation multiplication (2.5)

and annihilation (2.2)-(2.3) are equated, the dislocation density at saturation is determined

only by the material parameters l̄e+, l̄e−, l̄ s+, l̄ s−, ďe , ďs and not by the plastic strain amplitude

γpl . Therefore the flow stress at saturation, which is determined by the total dislocation

density, does not depend on γpl , as shown in Fig. 2.24 (a). Using the multiplication law

for cyclic fatigue (2.15) the saturation stress increases with γpl because of the presence of

dislocation structures, whose volume fraction depends on γpl , as shown in Fig. 2.20. The

strain amplitude dependence of the saturation stress compares well with existing experimental
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Chapter 2. Single slip dislocation-based model

Figure 2.24 – Maximum stress as a function of the number of cycles for different plastic strain
amplitudes using (a) the Arsenlis multiplication law (2.5) and (b) the multiplication law for
cyclic fatigue (2.15). Simulation are carried out using the parameters in Tab. 2.7.

data for copper [Déprés et al., 2008] and aluminium [Videm and Ryum, 1996], as shown in

section 1.3.

Effect of the material. As shown in Fig. 2.22, mechanical softening is caused by the deple-

tion of channels and the faster this phenomenon develops, the stronger the mechanical

softening becomes. Indeed a more pronounced mechanical softening is present if the

cross slip coefficient β is lower, as shown in Fig. 2.22 (b). Aluminium exhibits softening,

the hardening curve having a local minimum between 0.5 and 5 cumulative plastic shear

strain [Videm and Ryum, 1996], as shown in Fig. 1.21, while copper hardening saturates

only when the cumulative plastic shear strain reaches values around 10 [Déprés et al.,

2008], as shown in Fig. 1.16 (b). The computational results in Fig. 2.22 (b) are in contrast

to the experimental knowledge that aluminium, which has a higher cross slip coefficient,

shows more pronounced cyclic softening. Every dislocation based model able to predict

patterning presents this inconsistency because a faster depletion of channels for a lower

multiplication rate is predicted. The introduction of secondary dislocations in our model

has shown to solve this problem. During the formation of vein-channel structures, the

additional hardening provided by secondary dislocations increases the number of disloca-

tions stopped inside veins and, therefore, leads to a faster dislocation structure formation.

This effect is more evident using aluminium parameters because its cross slip coefficient

is higher than that of copper, as shown in Tab. 2.6. Including secondary dislocations,

mechanical softening appears in aluminium but not in copper while the opposite holds

true without secondary dislocations, as shown in Fig. 2.25.
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2.6. Persistent slip bands modelling

Figure 2.25 – (a) Hardening curve without the introduction of secondary dislocations and
strain γ = 0.1%. (b)-(c) Hardening curve with the introduction of secondary dislocations
and strain γ = 0.1% and γ = 0.2% respectively.

2.6 Persistent slip bands modelling

A dipole-dipole interaction term has been introduced to reproduce the stability of dislocation

dipole walls, as shown in Fig. 1.26 (b)-(c) [Neumann, 1987]. This interaction is caused by

the combination of attractive forces, among opposite signed dislocations (red arrows in Fig.

2.26 (a)), and repulsive ones (green arrows in Fig. 2.26 (a)). This attractive interactions

affect dislocation dipoles on neighbouring elements along the slip plane normal and can be

modelled in our continuum framework using an additinal stress term:

τdipole = Gb

2π(1−ν) ⋅⎛⎝
Ndipoleh̄

D2

⎞⎠ , (2.41)

where Ndipole is the number of dipoles in one element, h̄ is the average dipole height, given

by (2.13), and D is the distance between the two elements. This term is significant only when

the dislocation density reaches a high value, after many deformation cycles. Tests on simple

geometries are made using the configurations in Fig. 2.26 (b) and (c), where dislocations are

distributed horizontally and vertically with respect to the Burgers vector b⃗. When shear stress

is applied, the wall configuration turns out to be more stable because it has a higher yield point

(Fig. 2.26 (d)) and a consequent lower dislocation flux. This is due to the attractive interaction

(2.41) among dislocation dipoles in the wall configuration. Cyclic shear simulations using

copper parameters have been carried out both with and without the interaction term in (2.41)

on a 4 μm x 4 μm x 0.6 μm parallelepiped geometry. The crystal orientation is the same

as in Fig. 2.15, the strain amplitude γ = 0.1%, and the initial dislocation densities are the

same reported in Tab. 2.7. Without the dipole interaction term τdipole, a single dislocation

structure forms in the centre of the geometry, as shown in Fig. 2.27 (a). Two channels with low

dislocation density are present and dislocation accumulations at the boundary are caused by

stress free boundary conditions. If the τdipole term is introduced, dislocation walls are spread

throught the geometry and they are shorter along the b⃗ vector direction. This shows that such

an interaction term can change the shape of dislocation structures after many cycles and lead
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Figure 2.26 – (a) Interaction between two dipoles inside neighbouring elements; (b) dipoles
distributed orthogonally with respect to the slip plane; (c) dipoles distributed along the slip
plane; (d) stress-strain curves of the two configurations in (b) and (c).

Figure 2.27 – (a) Edge dislocation density after 30 cycles without the τdipole stress term. (b)
Edge dislocation density after 20 cycles with the τdipole term. (c) τdipole in (2.41) calculated
from the dislocation distribution in (b).

to thinner dislocation walls, more similar to persistent slip band walls.
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3 Multiple slip dislocation-based model

In this chapter the dislocation-based CPFE framework is applied to the simulation of cyclic

fatigue in single- and polycrystals oriented for multiple slip. The single slip model is extended

to multiple slip, first considering edge and screw dislocations as state variables and then taking

into account of the formation of dislocation junctions in a continuum framework. These two

approaches are compared with the single crystal simulations and an analysis based on the

orientation distribution function. In a case study of a polycrystal, electron channeling contrast

images of cyclically deformed austenitic stainless steel samples [Nellessen et al., 2015] are

used to validate the developed model. By comparison with predictions of existing models it

is shown that the introduction of dislocation junctions is necessary to correctly predict the

orientation of dislocation structures.

3.1 Multiple slip model based on edge and screw dislocation densi-

ties

The single slip model for cyclic plasticity explained in section 2.2 has been extended to multiple

slip with the following modifications to dislocation processes:

• dislocation annihilation: equations (2.2)-(2.3) are used independently for the different

slip systems α. The annihilation process on one slip system does not affect the others.

• dislocation multiplication and cross slip: the new multiplication law (2.15) and the

cross slip law (2.29) are used independently for the different slip systems, which means

the processes on one slip system do not affect the others.

• dislocation interactions: the threshold stress equation (2.9) is used as the average

value of the Gaussian distribution to determine the fraction of mobile edge and screw

dislocations, as shown in Fig. 3.1. In the single slip model a distribution of the dipole

height is used (section 2.2), while in multiple slip the Gaussian curve represents a

distribution of the interaction strength between two dislocations, as done in [Déprés
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et al., 2008]. Thus, given an external resolved shear stress τi on the i-th slip system, the

fraction of mobile edge and screw dislocations can be approximated using the blue area

under the Gaussian curve in Fig. 3.1. The threshold stress equation (2.9) implies that

dislocations on one slip system have an influence on the others. Using this approach,

the orientation dependence of the yield point, corresponding to the stress value at

which most dislocations become mobile, of different single crystalline materials can be

predicted [Arsenlis and Parks, 2002]. The Gaussian distribution function used is [Déprés

et al., 2008]:

fc (τi)∝ exp(−( τi − τ̄i

0.467τ̄i
)2) , (3.1)

where c is the dislocation character. The mean τ̄c
i of the Gaussian distribution as a

function of the dislocation density ρi
c with character c on the i-th slip system is given

by (2.9). Because of its statistical nature, this approach is suitable for high dislocation

densities, when many dislocations are present at one integration point. For materials

with a low cross slip coefficient (e.g. 316L steel), this leads to high values of the fraction

of mobile dislocations and to a less pronounced dislocation patterning. This is because

the value of the dislocation density is low in the first cycles, of the order of 1.0 μm−2, the

average number of dislocation lines in a 200 nm size element is lower than one. A high

value of the fraction of mobile dislocations also leads to more dislocation exiting the

geometry, given that free surface conditions are used. For this reason, when simulating

316L steel, all dislocations are assumed mobile only when the resolved shear stress

becomes higher than the threshold stress in (2.9) [der Giessen and Needleman, 1995].

Figure 3.1 – Fraction of mobile dislocations in
multiple slip.

The motion of dislocations between neighbouring elements is given by the flux term in (1.13)

for every slip system and the kinetics law used is (2.8).

A cyclic compression simulation on a parallelepiped geometry whose size is 4 μm along the

x and y directions and 1 μm along z is done. The element size is 200 nm, which is the same

used in the single slip simulations presented in section 2.2. The load direction is [100] and

the applied displacement is 0.008 μm, in order to induce a 0.2% strain amplitude. Copper
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3.1. Multiple slip model based on edge and screw dislocation densities

Figure 3.2 – (a) Simulation of labyrinth structures after 30 deformation cycles. (b) Simulation
of cell structures and (c) dislocation density on the two active coplanar slip systems.

parameters are used and all the 12 slip systems are considered. Periodic boundary conditions

for dislocation fluxes are used along all the axes and the secondary dislocation density in

(2.33) is not included. Average values of initial dislocation densities and kinetic parameters

in the simulation are summarized in Tab. 2.7. Random fluctuations of 50% are added to this

uniform distribution. The total dislocation density ρ in the centre of the parallelepiped after

30 deformation cycles is shown in Fig. 3.2 (a). Dislocation walls form perpendicular to two

direction, b⃗1 and b⃗2, oriented at 45 degrees with respect to the load direction. These directions

correspond to Burgers vectors of four active critical slip systems (interacting by Hirth locks

[Martínez et al., 2008]): [110](11̄1), [110](11̄1̄), [11̄0](111) and [11̄0](111̄). As stated in

section 1.6 for the Walgraef-Aifantis model, this is due to the motion of edge dislocations along

a direction perpendicular to the Burgers vector. This is not consistent with the experimental

observation in Fig. 1.11 (b), where labyrinth walls form parallel and perpendicular to the load

direction. In the simulation of Fig. 3.2 (b), dislocation walls do not align with the Hirth junction

direction, which would be [010] if projected on the observation plane. Thus, it appears

necessary to introduce dislocation junctions and their specific geometrical configuration.

The proposed method will be explained in section 3.2. The characteristic length scale of the

labyrinth structures shown by the simulation is close to the experimental one, as shown in Fig.

3.2 (a) [Sauzay and Kubin, 2011].

The same simulation is made with a different load condition in order to activate two coplanar

slip systems. A cyclic shear deformation is applied, reaching an amplitude γy z = 0.1%. The

total dislocation density ρ is shown in Fig. 3.2 (b). The two Burgers vectors b⃗1 and b⃗2 belong

to the two most active slip systems, whose dislocation densities are shown in Fig. 3.2 (c). The

orientation of channels is typically perpendicular to the respective Burgers vectors. These

two coplanar slip systems account for the majority of dislocations, while dislocations do not
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multiply on the third coplanar slip system. Even if the simulated dislocation walls in Fig. 3.2 (b)

have a cell-like shape, similar to the one observed experimentally [Li et al., 2011], dislocations

in the third coplanar system are not produced because of the absence of coplanar junction

formation, in contrast to the experimental evidences explained in section 1.2. Also in this case,

the introduction of dislocation junctions is necessary.

3.2 Multiple slip model based on dislocation junctions

The dislocation junction formation in the continuum dislocation dynamics framework is

introduced by combining edge and screw dislocation densities into a density aligned with

dislocation junctions. As for the single slip model, multiple dislocation densities are used to

differentiate between the orientations of a dislocation line. The state variables can be defined

starting from the higher order dislocation density ρα (p,ϕ) of the continuum dislocation

dynamics theory [Hochrainer et al., 2014], which quantifies the density of dislocations at a

point p on the slip system α with line direction oriented at an angle ϕ with respect to the

Burgers vector. Integration of ρα (p,ϕ) over prescribed angular intervals as defined in the

following, leads to different dislocation densities. In case two slip systems are active, for which

the slip plane normals are n1 and n2, the dislocation junction vector l⃗lock can be defined as

l⃗lock = (n̂1× n̂2), as shown in Fig. 3.3 (a). Dislocation segments orthogonal to l⃗lock are included

in the dislocation densities ρα
⌜+ and ρα

⌜−, as shown in Fig. 3.3 (a). This orientation corresponds

to dislocations gliding inside channels between neighbouring dislocation walls formed by

Hirth locks in labyrinth dislocation structures Li et al. [2011]. The positive or negative sign

depends on the position of the dislocation line in a clockwise oriented dislocation loop.

Similarly ρα
�+ and ρα

�− are defined as the densities of dislocation segments parallel to l⃗lock.

These dislocations have the same orientation as dislocation junctions. General dislocations,

with an orientation intermediate between ⌜ and �, are included in other dislocation densities.

For instance by integrating ρα (p,ϕ) over the angular interval Δθ�+,⌜− shown in Fig. 3.3 (a),

which includes orientations intermediate between positive � and negative ⌜, the density

ρα
�+,⌜− can be defined. The 8 different densities used in the model are listed in Tab. 3.1.

ρ�+ ρ�− ρ⌜+ ρ⌜−

ρ�+,⌜+ ρ�+,⌜− ρ�−,⌜+ ρ�−,⌜−

Table 3.1 – Dislocation densities used in the junction constitutive model.

If more than two slip systems are active, a fixed reference slip system is chosen to define the

dislocation junction vector l⃗lock, ρ� and ρ⌜ dislocations. The velocity vectors of different

dislocation densities are orthogonal to the corresponding dislocation lines; for instance the

velocity vectors v⃗1
⌜+, v⃗1

⌜− and v⃗1
�+ are depicted in Fig. 3.3 (b). Other dislocation densities have

velocity vectors oriented at 45 or 135 degrees, respectively, with l⃗lock; for instance ρα
�+,⌜+ has

velocity vector (v⃗α
�++ v⃗α

⌜+). This definition of dislocation densities is suitable for modelling
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Figure 3.3 – (a) Definition of the dislocation junction vector l⃗lock and of the different dislocation
densities. (b) Velocity vectors v⃗1

⌜+, v⃗1
⌜− and v⃗1

�+.

the dynamics of dislocation junctions in labyrinth dislocation structures, since under an

applied stress the dislocations ρα
⌜+ and ρα

⌜− move along l⃗lock, as shown in Fig. 3.3 (b), while

the dislocations ρα
�+ and ρα

�− can interact and form immobile junctions. The choice of a fixed

reference slip system allow to model at the same time all dislocation junction types between

that reference system and all the others. Therefore this slip system has to be the most active

slip system, with the highest value of the dislocation density, to predict the actual dislocation

junctions in the material.

Dislocation multiplication law for the junction constitutive model. A multiplication

law, formally similar to the one used for the single slip model, can be written in terms of

the dislocation densities in Tab. 3.1. The dislocation loop in Fig. 3.3 (b) has to remain

connected, therefore a new dislocation line is created that lengthens the dislocation

junction during the motion of ρα
⌜+ and ρα

⌜−. This dislocation multiplication process

is accounted for by the dislocation curvature density Hochrainer et al. [2007], which

concentrates between � and ⌜ dislocation segments, for instance in ρ1
�+,⌜+ in Fig. 3.3 (a).

As a consequence the densities ρα
�+, ρα

�−, ρα
⌜+ and ρα

⌜− do not participate in the dislocation

multiplication process because they are constituted of dislocation segments with zero

curvature. A curved dislocation segment, such as ρα
�+,⌜+, is always connected to one �

and one ⌜ segment and its motion creates new � dislocation lines at a rate given by the

velocities ∣v⃗α
⌜+∣ and ∣v⃗α

⌜−∣. The number of these curved segments per unit volume is given

by the ratio between the corresponding density and a fixed average segment length Λ̄, for

instance ρα
�+,⌜+/Λ̄. The dislocation multiplication law can be written as:

ρ̇α
�+,mul t = ρα

�+,⌜+∣v⃗α
⌜+∣

Λ̄
+ ρα

�+,⌜−∣v⃗α
⌜−∣

Λ̄
. (3.2)
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Similar equations for ρ̇α
�−,mul t , ρ̇α

⌜+,mul t and ρ̇α
⌜−,mul t can be obtained by substituting the

curved densities in (3.2) ρα
�+,⌜+ and ρα

�+,⌜− with the two curved densities with �−, ⌜+
or ⌜− into the subscript. The value of Λ̄ chosen for our simulations is 0.1 μm, so that

a curved dislocation segment has a length corresponding to the distance between two

neighbouring integration points. This is the same value used for l̄c in the single slip model,

whose lower and upper bounds are described in section 2.2.

Cross slip law for the junction constitutive model. The cross slip law is implemented as

in the single slip model. However, the screw dislocation density is not a state variable in

the junction constitutive model and it has to be expressed as a function of the dislocation

densities in Tab. 3.1. The motion of screw dislocations on secondary slip planes and their

consequent multiplication as Frank-Read sources Bitzek et al. [2008], Messerschmidt and

Bartsch [2003] is shown in Fig. 3.4 (a).

Figure 3.4 – (a) The process of cross slip of a screw dislocation segment from one slip
plane to another. (b) The resulting Frank-Read source generates new curved dislocation
segments.

This process generates new curved dislocation segments at a rate R given by (2.25) and

the same attack frequency ν = 2 ⋅1015 s−1 as in single slip is used [Vegge et al., 2000]. The

value used for the width w is the same as in the single slip model, w ≈ 44b. The density of

new “curved” dislocations is given by an expression similar to (2.27):

dρ�+,⌜+,cs = Λ̄dρcs

w
= (ρs++ρs−)Λ̄Rdt

w
, (3.3)

where dρcs/w is the number of loops created per unit volume during an infinitesimal

time dt , as in (2.26). Similar equations hold for the other “curved” densities. The same
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3.2. Multiple slip model based on dislocation junctions

characteristic expansion time tc ≈ 0.1s for a dislocation loop is used, as for the single slip

simulations. The cross slip coefficient β is defined by (2.30) and the following cross slip

equation can be obtained:

ρ̇�+,⌜+,cs = β∣v�+,⌜+∣
b

⋅ (ρs++ρs−) . (3.4)

The screw dislocation densities ρs+ and ρs− are obtained by projecting � and⌜ dislocation

segments along the Burgers vector:

ρα
s+ = ρα

⌜+ cosΦ+ρα
�+ sinΦ , (3.5)

ρα
s− = ρα

⌜− cosΦ+ρα
�− sinΦ , (3.6)

where 0 ≤Φ ≤π/2 is the angle represented in Fig. 3.3 (b):

sinΦ = ∣ l⃗lock ⋅ b⃗∣∣l⃗lock∣∣ ⋅ ∣∣b⃗∣∣ ∣ , (3.7)

where ∣∣l⃗lock∣∣ and ∣∣b⃗∣∣ are the norms of l⃗lock and b⃗.

Annihilation law for the junction constitutive model. The annihilation rate is propor-

tional to the product of opposite signed edge and screw dislocation densities, as expressed

by (2.2) and (2.3) for every slip system. The projection equations (3.5) and (3.6) are used.

For instance, the annihilation rate of ρ�+ dislocations is given by:

ρ̇α
�+,ann =−4d̂sρ

α
s− ⋅ (ρα

�+ sinΦ) ⋅ ∣v⃗α
s ∣−4d̂eρ

α
e− ⋅ (ρα

�+ cosΦ) ⋅ ∣v⃗α
s ∣ . (3.8)

The two terms in (3.8) take into account the annihilation of screw and edge parts of ρ�+

dislocation segments.

The constitutive equations of the multiple slip model for cyclic fatigue based on dislocation

junctions are summarized in appendix A.2.

3.2.1 Two dislocation loops forming a dislocation junction

To illustrate the junction constitutive model in the presence of dislocations belonging to

two different slip systems, we simulate the motion of two dislocation loops on intersecting
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Chapter 3. Multiple slip dislocation-based model

Figure 3.5 – (a) Displacement field along the z axis. (b) Evolution of the total dislocation
density ρ of two dislocation loops forming a dislocation junction at the intersection of their
slip planes.

slip planes. The model geometry is constituted of two planes with a thickness of 200 nm,

corresponding to one single element, that intersect along a line of elements, as shown in

Fig. 3.5 (a). These planes correspond to the (111) and (1̄1̄1) slip planes of the FCC crystal

and the angle between them is around 109o . A displacement along the z axis is imposed on

the upper surfaces of the two planes while the lower surfaces are held fixed; the resulting z

component of the displacement is shown in Fig. 3.5 (a). Using these boundary conditions,

the resolved shear stress on the two slip systems is uniform. Fig. 3.5 (b) shows the evolution

of the total dislocation density ρ on the two slip systems during changes in the resolved

shear strain γ. The initial dislocation density of the two loops is set at 1014 m−2, thus each

integration point, having a distance of 100 nm, contains the equivalent of a single dislocation.

The two dislocation loops expand until they meet at the intersection of the two planes, where

a dislocation junction is formed. The ρα
�+ dislocation density becomes immobile due to the

threshold stress (2.9), used in the dislocation junction model. Without this interaction the

dislocation density would exit the geometry. The sections of the loops that do not form the

junction expand further and a new dislocation line is created at the connections between �

and ⌜ segments, as predicted by the multiplication law (3.2). This simulation is made without

the cross slip process described by (3.4).
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Figure 3.6 – (a) Total dislocation density after 40 cycles in [001] compression. (b) Orientation
of the active slip systems.

3.3 Dislocation patterning and orientation analysis

The dislocation junction model is applied to the simulation of cyclic [001] compression using

copper parameters. The geometry and element size is the same as in Fig. 3.2 (a). The load

direction is [001] and the applied displacement is 0.004 μm, in order to induce a εzz = 0.1%

strain amplitude. Only two slip systems (critical double slip) are activated: [101](1̄1̄1) and[1̄01](111). Their geometry and Burgers vectors b⃗1 and b⃗2 are shown in Fig. 3.6. Periodic

boundary conditions for dislocation fluxes are used along all the axes and the secondary

dislocation density in (2.33) is not included. Average values of initial dislocation densities and

kinetic parameters in the simulation are summarized in Tab. 3.2.

ρ�+ (t = 0) = 1.0 μm−2 ρ�− (t = 0) = 1.0 μm−2

ρ⌜+ (t = 0) = 1.0 μm−2 ρ⌜− (t = 0) = 1.0 μm−2

ρ�+,⌜+ (t = 0) = 0.01 μm−2 ρ�+,⌜− (t = 0) = 0.01 μm−2

ρ�−,⌜+ (t = 0) = 0.01 μm−2 ρ�−,⌜− (t = 0) = 0.01 μm−2

B = 1.0 (μm/s)/MPa vmax = 10 μm/s

Table 3.2 – Initial dislocation densities and parameters for the simulations in Fig. 3.6.

The total dislocation density ρ in the centre of the parallelepiped after 40 deformation cycles

is shown in Fig. 3.6 (a). Comparing this result with the dislocation pattern in Fig. 3.2, it can

be seen that the wall orientation is not at 45o with respect to the load direction using the

dislocation junction model. A quantitative analysis of the orientation of walls is possible using

the 2D orientation distribution function [Gasparyan and Ohanyan, 2015], [Lu and Torquato,
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Chapter 3. Multiple slip dislocation-based model

Figure 3.7 – (a) Black and white conversion of the image in Fig. 3.6 used to calculate the 2D
orientation distribution function and dislocation line orientation angle θ; (b) corresponding
2D orientation distribution function and comparison with the edge-screw model.

1992]. First the simulated pattern images are converted into black and white using a threshold

value for the total dislocation density. For instance, a black and white conversion of the

dislocation pattern in Fig. 3.6 (a) is shown in Fig. 3.7 (a). White and black areas correspond to

high and low dislocation density areas. The 2D orientation distribution function is defined as

the probability that a segment of length L, oriented at an angle θ with respect to the horizontal,

lie completely inside the white area, representing dislocation structures. Such a segment is

shown in red in Fig. 3.7 (a). θ is a variable of the 2D orientation distribution function, while

the length L is kept fixed. The 2D orientation distribution function is calculated by counting

the fraction of segments with length L and orientation θ that fit inside the white area, among

all possible segments with this orientation fitting inside the figure. The result calculated for

the junction model (Fig. 3.6) and for the edge-screw model (section 3.1) is shown in Fig. 3.7 (b)

for L = 760 nm. For the edge-screw model, two peaks of the curve in Fig. 3.7 (b) are reached at

different values of θ, one between 40o < θ < 60o and the other between 110o < θ < 130o . For the

dislocation junction model, a main peak is reached between 60o < θ < 70o . As stated in section

3.1, in the edge-screw model the dislocation walls tend to align to the orientation of edge

dislocations. As reported in Tab. 3.3, edge dislocation lines are oriented at θ = 45o and θ = 135o ,

which are close to the values of the peaks of the green curve in Fig. 3.7 (b). The broadening of

the peak is due to the width of the dislocation structures. Indeed segments with length L with

slightly different orientations can fit inside the same vein. This broadening decreases if the

segment length L is increased.

Slip system [101](1̄1̄1) [1̄01](111)
ρe 135o 45o

ρs 45o 135o

ρ� 0o 0o

ρ⌜ 63o 117o
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3.4. Polycrystal simulations

Table 3.3 – Dislocation line orientation θ for different dislocation types, projected on the x − z
plane.

The peak between 60o < θ < 70o in the blue curve in Fig. 3.7 (b) corresponds to ρ⌜ dislocations

of the [101](1̄1̄1) slip system, which is 63o , as reported in Tab. 3.3. Therefore the predictions of

the two models are different; the dislocation junction model predicts that ρ⌜ dislocations move

away from forming low density regions along directions parallel to the dislocation junction

vector l⃗lock = [11̄0] between these two slip planes. Thus, dislocation walls form perpendicular

to l⃗lock and this orientation is at around θ = 63o for the slip system [101](1̄1̄1). The wall

orientation found in Fig. 3.6 (a) is more similar to the experimental results on [001] single

crystals shown in section 1.2 (Fig. 1.11 (a)) with respect to the edge-screw model simulation.

This is because the edge-screw model, as shown in Fig. 3.2 (a), predicts dislocation walls

perpendicular to the Burgers vector directions and this is in contradiction to the experimental

observation in Fig. 1.12 (a).

3.4 Polycrystal simulations

Both the multiple slip edge-screw model and the dislocation junction model are applied to

the simulation of fatigue experiments on polycrystalline 316 austenitic stainless steel, where

the electron channeling contrast imaging (ECCI) technique [Zaefferer and Elhami, 2014] is

used. These experiments have been carried out at the Max Planck Institut for Iron Research by

Jens Nellessen [Nellessen et al., 2015]. In the following the principles of the ECCI technique

are briefly explained.

Electron Channeling Contrast Imaging. This experimental analysis is performed in a

scanning electron microscope (SEM) and uses a backscattered electron (BSE) detector.

Typically, a low tilt configuration of the sample is employed, as shown in Fig. 3.8 (a). The

backscattered intensity of a perfect crystal is a function of the incidence angle θ, as shown

in Fig. 3.8 (b). The sample is usually oriented close to the Bragg diffraction angle θB in

order to maximize the derivative of the backscattered intensity with respect to θ.
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Figure 3.8 – (a) ECCI configuration of a SEM microscope; (b) electron backscattered
intensity as a function of the incidence angle for a perfect crystal [Goldstein et al., 2005].

A dislocation close to the specimen surface creates a distortion of lattice planes. These

planes deviate with respect to the Bragg condition. Therefore, a dislocation produces a

contrast in the BSE intensity constituted by a positive and a negative intensity peak, as

shown in Fig. 3.9 (a). An example of the contrast produced by single dislocations in a

single crystal is shown in Fig. 3.9 (b).

Figure 3.9 – (a) Lattice plane orientation around a dislocation and consequent BSE inten-
sity. (b) Single dislocations imaged in a Si single crystal [Simkin and Crimp, 1999].

The advantages of ECCI over transmission electron microscopy (TEM) are the easier

sample preparation and the larger analysed areas. The electron beam has usually an

energy in the interval 10÷30 KeV, for which the electron penetration depth in steel is

typically around 400 nm [Drouin et al., 2007]. This is also the characteristic depth at which

dislocations can be imaged. ECCI enables the observation of dislocations with different

Burgers vectors.
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3.4. Polycrystal simulations

Figure 3.10 – (a) ECCI image taken in the centre of the [3 29 1]-oriented grain after 50 cycles;(111) and (1̄1̄1) slip plane traces are visible. (b) Simulation set-up of the polycrystalline
structure (LD: loading direction).

Bone-shaped specimens are characterized using EBSD; they have a gauge length of 8 mm,

a width of 2 mm and a thickness of 1 mm. The microstructure is fully austenitic with an

average grain size of 60 μm and random crystallographic texture. The specimens are deformed

cyclically up to 100 cycles using a tensile-compression module under displacement control

(100 μm) with a strain rate of 0.5 ⋅10−3 s−1. In situ DIC measurements [Raabe et al., 2001]

are used to determine the local strain distribution. Two grains, whose orientations are close

to [3 29 1] and [1̄ 19 0], are selected and analyzed by ECCI. Evidence of oriented dislocation

walls are provided by ECCI observations, as shown in Fig. 3.10 (a) and 3.11 (a). EBSD data are

used to build the corresponding polycrystal geometries in Fig. 3.10 (b) and 3.11 (b), whose

dimensions are 6 μm × 203 μm × 186 μm and 6 μm × 195 μm × 182 μm, and to assign the

proper stiffness tensor to every grain depending on the orientation. The mesh used (Fig. 3.10

(b) and 3.11 (b)) is coarser in the grains surrounding the central one and refined in the centre,

where 200 nm elements are generated inside a parallelepiped with dimensions 4 μm x 4 μm

and depth 0.6 μm, close to the upper surface. Details of the mesh are shown in Fig. 3.12. The

strain in the central grain is determined by the polycrystalline structure and by the boundary

conditions, and can be predicted using this meshing technique. Dislocation structures are

analyzed in the upper part of the central grain, where the mesh is refined, as shown in Fig. 3.12

(c). In the simulations a pure tension-compression cyclic deformation, with a period of 0.004 s

and a displacement amplitude of 1.48 μm (Fig. 3.10 (b)) and 1.43 μm (Fig. 3.11 (b)), is applied

along the loading direction (LD). The deformation amplitude is chosen such that the local

strain amplitude in the central grain is 0.95%, as measured by in situ DIC, and the strain rate is

9.5 s−1. The strain rate in the simulation is higher than the experimental one in order to reduce

the computational time. In a strain controlled test, the distance travelled by dislocations

depends only on the strain increment if the dislocation density and stress distribution are
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Chapter 3. Multiple slip dislocation-based model

Figure 3.11 – (a) ECCI image taken in the centre of the [1̄ 19 0]-oriented grain after 100 cycles;(111), (1̄1̄1) and (1̄11) slip plane traces are visible. (b) Simulation set-up of the polycrystalline
structure (LD: loading direction).

Figure 3.12 – (a) Mesh used for the simulation of the [3 29 1]-oriented grain; (b) detail of the
central part of the mesh; (c) simulated dislocation structures are analyzed in the upper part,
where 200 nm elements are generated.
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Edge-screw model

ρe+ = 1 ⋅1013 m−2 ρe− = 1 ⋅1013 m−2

ρs+ = 1 ⋅1013 m−2 ρs− = 1 ⋅1013 m−2

ρe+,s+ = 1 ⋅1011 m−2 ρe+,s− = 1 ⋅1011 m−2

ρe−,s+ = 1 ⋅1011 m−2 ρe−,s− = 1 ⋅1011 m−2

B = 100 (μm/s)/MPa vmax = 1000 μm/s

Dislocation junction model

ρ�+ = 1 ⋅1013 m−2 ρ�− = 1 ⋅1013 m−2

ρ⌜+ = 1 ⋅1013 m−2 ρ⌜− = 1 ⋅1013 m−2

ρ�+,⌜+ = 1 ⋅1011 m−2 ρ�+,⌜− = 1 ⋅1011 m−2

ρ�−,⌜+ = 1 ⋅1011 m−2 ρ�−,⌜− = 1 ⋅1011 m−2

B = 100 (μm/s)/MPa vmax = 1000 μm/s

Table 3.4 – Initial dislocation densities and kinetics parameters in the simulations using the
edge-screw and dislocation junction model.

uniform. This is because, according to Orowan’s law (1.12), the plastic strain rate is directly

proportional to the dislocation velocity. When dislocation non-uniformities are present, the

dislocation configuration can be affected by the strain rate if the effective shear stress τeff,

defined in (2.8), becomes comparable with the difference between the threshold stress ταth

in low and high dislocation density regions. This is due to the additional stress necessary

to move dislocations in low dislocation density regions, compared with the threshold stress

ταth , during a higher strain rate simulation. This higher stress can move dislocations in high

dislocation density regions at a strain amplitude smaller than in lower strain rate simulations.

The typical effective resolved shear stress in our simulations is around 20 MPa, while the

difference in threshold stress is around 100 MPa. Additionally, experimental investigations

made at a deformation frequency around 1 Hz [Laird et al., 1986] and around 0.01 Hz [Pham

et al., 2011] show a similar geometry of the labyrinth structures. It is worth to note that our

strain rate is smaller than the one used in discrete dislocation dynamics simulations, which

is typically around 104 s−1 [Fivel, 2008]. Average values of initial dislocation densities in the

simulations and kinetics parameters are summarized in Tab. 3.4. Random non-uniformities

of 10% are added. The 6 μm thickness, shown in Fig. 3.12 (b), of the representative volumes

is chosen based on the typical dislocation travel distance. If the initial dislocation densities

in Tab. 3.4 are used in Orowan’s law (1.12), then the dislocation travel distance is around

1 μm and the surface effects due to dislocations exiting the geometry through the bottom

surface of the representative volumes in Fig. 3.10 (b) and Fig. 3.11 (b) are minimized. The

typical dislocation velocity, according to the imposed strain rate and Orowan’s law (1.12), is

around 103 μm/s, which corresponds to the limit imposed on the dislocation velocity. Thus,

the velocity limit does not affect the behaviour of dislocations, apart from those in elements

where the dislocation density becomes temporary close to zero, as stated in section 2.1.

3.4.1 Dislocation patterning in the [3 29 1]-oriented grain

The slip traces visible in Fig. 3.10 (a) belong to (111) and (1̄1̄1) planes. As revealed by Schmid

factor analysis, the two most active slip systems are [011̄](111) and [011](1̄1̄1). This last

slip system is taken as reference to define the dislocation junction vector l⃗lock in Fig. 3.3

(a). The simulated total dislocation density after 50 cycles in the central grain is shown in
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Figure 3.13 – (a) Total dislocation density in the centre of the [3 29 1]-oriented grain after 50
cycles using the dislocation junction model. (b) Black and white conversion used to calculate
the 2D orientation distribution function and dislocation line orientation angle θ.

Fig. 3.13 (a) using the dislocation junction model and in Fig. 3.14 (a) using the edge-screw

model. Dislocation walls separated by low dislocation density regions are observed using both

models. This density has been found by averaging the total dislocation density at a depth of

100 nm and 300 nm, i.e. in the centre of the two elements that are closest to the upper surface

in Fig. 3.12 (c), this in order to be comparable to the analysis depth of ECCI experiments.

Indeed, the penetration depth of 30 keV electrons, used in the experiments, is around 400 nm

Drouin et al. [2007] and the dislocation contrast decays exponentially with depth Zaefferer

and Elhami [2014]. The maximum dislocation density within the dislocation structures

ρpeak for all the slip systems is shown in Fig. 3.15 (a) for the edge-screw model and in Fig.

3.15 (b) for the dislocation junction model. This quantity represents the contribution of the

different slip systems to the formation of dislocation structures. The slip systems [011](1̄1̄1)
and [110](1̄11̄) have higher ρpeak for the edge-screw model, while the slip systems [11̄0](111)
and [011](1̄11̄) give the major contribution for the dislocation junction model. In Fig. 3.13 (b)

and 3.14 (b) the dislocation line orientation angle θ for edge, screw, � and ⌜ dislocations is

reported. A quantitative analysis of the orientation of walls is made using the 2D orientation

distribution function [Gasparyan and Ohanyan, 2015]. The black and white conversion of

the simulated images is shown in Fig. 3.13 (b) and Fig. 3.14 (b). The value of the dislocation

density in the white regions is greater than 175 μm−2. This value has been selected to identify

connected walls.

The 2D orientation distribution as a function of the angle θ is shown in Fig. 3.16 (b) for the

dislocation junction model (continuous line) and for the edge-screw model (dashed line). A

fixed length of about L = 780 nm is used. The choice of L in an interval between 620 nm and

940 nm does not affect the position of the maxima of the 2D orientation distribution function,
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Figure 3.14 – (a) Total dislocation density in the centre of the [3 29 1]-oriented grain after
50 cycles using the edge-screw dislocation model. (b) Black and white conversion used to
calculate the 2D orientation distribution function and dislocation line orientation angle θ.

Figure 3.15 – Maximum dislocation density ρpeak in the centre of the [3 29 1]-oriented grain
after 50 cycles on all the slip systems using (a) the edge-screw model and (b) the dislocation
junction model.

75



Chapter 3. Multiple slip dislocation-based model

Figure 3.16 – (a) ECCI image in the centre of the [3 29 1]-oriented grain processed using
a Gaussian filter to remove slip lines, dislocation structures have a dark contrast. (b) 2D
orientation distribution function for the edge-screw and the dislocation junction model.

as shown in Fig. 3.20 (a). The 2D orientation distribution function has the highest peak around

40 degrees for the dislocation junction model, an orientation close to ⌜ segments of the slip

systems [11̄0](111) and [011](1̄11̄), and around 120 degrees for the edge-screw model, an

orientation close to the edge segments of the slip systems [011](1̄1̄1) and [110](1̄11̄). The line

segments oriented at θ = 45o for the dislocation junction model and at θ = 117o for the edge-

screw model are shown in Fig. 3.16 (b). In the filtered ECCI image in Fig. 3.16 (a) dislocation

walls are mainly parallel to the [110] direction, in better agreement with the results of the

dislocation junction model.

If the value of the dislocation density in the white regions is increased to 225 μm−2, then these

regions appear unconnected, as shown in Fig. 3.17 (a). This can be explained by the element

size (200 nm), which is comparable to the experimentally observed thickness of labyrinth

walls [Jin and Winter, 1984]. The corresponding 2D orientation distribution as a function of

the angle θ is shown in Fig. 3.17 (b) for the dislocation junction model. Two different values of

L (500 nm and 700 nm) are used. Two peaks around 50 and 120 degrees are present for L = 500

nm, which are similar to the ones in Fig. 3.16 (b), while the maximum of the distribution is

at θ = 0o . However, for L = 700 nm, the 2D orientation distribution function is zero almost

everywhere and no orientations can be identified. This justifies the choice of the threshold

density 175 μm−2 to identify dislocation walls with a length comparable to the one in the ECCI

image in Fig. 3.16 (a).

3.4.2 Dislocation patterning in the [1̄ 19 0]-oriented grain

The slip traces visible in Fig. 3.11 (a) belong to (111), (1̄1̄1) and (1̄11) planes. By contrast, the

two slip systems with the highest Schmid factor (0.429) are [011](11̄1) and [01̄1](1̄11). The
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Figure 3.17 – (a) Black and white conversion of the dislocation density in the centre of the[3 29 1]-oriented grain (Fig. 3.14 (a)) for the dislocation junction model and (b) corresponding
2D orientation distribution function.

two slip systems with the second highest Schmid factor (0.406) [11̄0](111) and [11̄0](1̄1̄1) are

likely to be active. This last slip system is taken as reference to define the dislocation junction

vector l⃗l ock . The simulated total dislocation density after 100 cycles in the central grain is

shown in Fig. 3.18 (a) using the dislocation junction model. The maximum dislocation density

ρpeak is shown in Fig. 3.18 (b) and it is highest for the slip systems [11̄0](111) and [11̄0](1̄1̄1).

Thus, CPFE simulations can predict the activation of these two collinear slip systems and show

that the influence of neighbouring grains is changing the slip activity in the central one with

respect to an equally oriented single crystal. Indeed, active slip systems interacting by the

collinear interaction are not commonly observed in copper single crystals [Devincre et al.,

2006], [Devincre et al., 2005]. When the two collinear slip systems are active, the dislocation

junction model and the edge-screw model are identical because screw and � dislocation lines

coincide. The 2D orientation distribution function for the [1̄ 19 0]-oriented grain is shown

in Fig. 3.19 (b), where a length of about L = 860 nm is used. The choice of L in an interval

between 780 nm and 940 nm does not affect the position of the maxima of the 2D orientation

distribution function, as shown in Fig. 3.20 (b). Four maxima around 0o , 45o , 63o , 135o are

present. The θ = 45o and θ = 135o orientations correspond to � and ⌜ dislocations of the two

active collinear slip systems. In the filtered ECCI image in Fig. 3.19 (a) several orientations

of the dislocation walls are visible: 0o coincides with the orientation of ⌜ dislocations of the[011](1̄1̄1) slip system, 27o and 90o with ⌜ and � dislocations on the (11̄1̄) slip plane. Some

other walls with an orientation around 170o can also be identified.

In the following the simulation results are compared with the existing dislocation-based

models described in section 1.6 and 3.1.

Comparison between the junction model and the edge-screw models. The simulation
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Figure 3.18 – (a) Total dislocation density in the centre of the [1̄ 19 0]-oriented grain after 100
cycles using the dislocation junction model. (b) Black and white conversion used to calculate
the 2D orientation distribution function and dislocation line orientation angle θ. (c) Maximum
dislocation density ρpeak in the centre of the [1̄ 19 0]-oriented grain after 100 cycles on all the
slip systems using the dislocation junction model.
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Figure 3.19 – (a) ECCI image in the centre of the [1̄ 19 0]-oriented grain processed using a
Gaussian filter to remove slip lines, dislocation structures have a dark contrast, examples of
oriented walls are enclosed by rectangles. (b) 2D orientation distribution function for the
simulated dislocation density in Fig.

3.18 (a).

Figure 3.20 – (a) Orientation distribution functions of the image in Fig. 3.13 for five different
values of L. (b) Orientation distribution functions of the image in Fig. 3.18 (a) for three
different values of L.
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of the [3 29 1]-oriented grain can be used to distinguish between the predictions of the

dislocation junction and the edge-screw model, explained in section 3.1. When using the

edge-screw model, walls parallel to the edge dislocation segments of the two slip systems

with highest Schmid factor form (Fig. 3.15 (a) and 3.16 (b)), which are mostly constituted

by edge dislocations. This is due to the high density of edge dislocations on the active slip

systems after many cycles. Indeed, the annihilation distance for edge dislocations d̂e is

lower than for screw dislocations, as reported in Tab. 2.1. Edge dislocations move along

their Burgers vector and interact, forming dislocation walls. Thus, the simulated channels

tend to assume the shape of edge dislocation segments that moved away. By contrast,

the dislocation junction model predicts that ρ� and ρ⌜ dislocation densities have the

same order of magnitude after many cycles because their annihilation rate equations, like

(3.8), involve both distances d̂e and d̂s . ρ⌜ dislocations of the slip systems [011̄](111) and[011](1̄1̄1) get away from forming low density regions along directions parallel to the dis-

location junction vector between these two slip planes, which in this case is l⃗lock = [11̄0].
Thus, many dislocation walls form perpendicular to l⃗lock and this orientation is at around

θ = 45o to the loading direction, in agreement with the experimental results in Fig. 3.16 (a)

and by L’Esperance et al. [L’Esperance et al., 1986], who found wall orientations interme-

diate between {100} and {210}.

In the [1̄ 19 0]-oriented grain, the θ = 90o orientation is explained by the model as dis-

location junctions at the intersection between the (1̄1̄1) and the (1̄11) slip planes. The

predicted θ = 45o orientation corresponds to ⌜ dislocations of the two active collinear slip

systems and the closest observed orientation is at around θ = 27o , as shown in Fig. 3.19

(a), which coincides with the orientation of ⌜ dislocations on the (11̄1̄) slip plane. The

dominant θ = 0o orientation in the experimental image in Fig. 3.19 (a), compared with the

2D orientation distribution function in Fig. 3.19 (b), can be due to the lack of dislocation

junctions between the slip planes (111) and (11̄1̄) in the model, forming dislocation walls

with θ = 0o orientation. Indeed the slip system [11̄0](1̄1̄1), and not [11̄0](111), is taken as

reference to define the dislocation junction vector l⃗lock . A model with more state variables

for every slip system would be required to capture all possible dislocation junctions. For

instance, one dislocation density could be defined for every couple of slip systems to

describe dislocation segments aligned with the corresponding dislocation junction. The

activity of the (11̄1̄) slip system can also be underestimated in the simulation because the

subsurface microstructure is not considered.
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Comparison with reaction-diffusion models. The reaction-diffusion approaches pre-

sented in section 1.6 model the motion of dislocations using diffusion and flux terms in

the constitutive equations. In the model by Pontes et al. [Pontes et al., 2006], the motion

of dislocations on two slip systems takes place along the two orthogonal Burgers vectors

respectively. Consequently low density regions form perpendicular to the Burgers vector

directions and not, as observed experimentally, perpendicular to the dislocation junction

line. The lack of dislocation junctions in the model, therefore, leads to incorrect predic-

tions. Reaction-diffusion models are valuable to understand the characteristic length

scale of dislocation structures, which is determined by the balance between dislocation

interaction strength and dislocation mobility. According to (1.7), the distance between

dislocation walls increases if the coefficient γ that determines the amount of immobile

dislocations, called pinning rate in their model, or the homogeneous steady state disloca-

tion density ρ0,S decreases. This applies also to our simulations: the small annihilation

distance for edge dislocations d̂e leads to a higher homogeneous steady state dislocation

density in the edge-screw model than in the dislocation junction model. Therefore a larger

length scale is predicted by the dislocation junction model. Additionally, a higher average

dislocation density is predicted by the edge-screw model, as shown by the higher volume

fraction of dislocation structures in Fig. 3.14 (a) than in Fig. 3.13 (a). The characteristic

distance between dislocation walls is in the range 0.3÷0.6 μm for the edge-screw model

in Fig. 3.14 (a) and 0.6÷0.8 μm for the dislocation junction model in Fig. 3.13 (a), which

better agrees with the experimental image in Fig. 3.16 (a).

Comparison with the double pseudo-polygonisation arrangement theory. The double

pseudo-polygonisation (DPP) arrangement theory of Dickson [Dickson et al., 1986a],

explained in section 1.6, predicts energetically favourable wall orientations perpendicular

to the directions that bisect the obtuse and acute angles between the edge dislocation

lines on the two slip systems. According to Table 1 in Dickson et al. [1986a] these directions

are [001] and [2̄10] for the [3 29 1]-oriented grain. This second type of walls is oriented

at θ = 27o with the loading direction, similar to the value θ = 45o predicted using the

dislocation junction model. Therefore, the experimental image in Fig. 3.16 (a) cannot be

used to discriminate between the Dickson’s theory and the dislocation junction model.

However, the edge-screw model predicts θ = 117o as the main wall orientation, which is

not observed experimentally.

The simulation of the [1̄ 19 0]-oriented grain is used to examine the case of two active

collinear slip systems on conjugate slip planes, in our case [11̄0](111) and [11̄0](1̄1̄1),

not considered by the DPP theory of Dickson et al. [Dickson et al., 1986a]. By applying
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the DPP theory criterion, the dislocation walls result perpendicular to [001] and [110].
This second type of walls would be oriented at θ = 135o with the loading direction but

they are not evident in the experimental image in Fig. 3.19 (a), being θ = 170o the closest

visible orientation. The θ = 135o orientation corresponds to one of the four maxima of the

2D orientation distribution function in Fig. 3.19 (b) and these walls are constituted by

� dislocations forming collinear junctions. However, the collinear junction involves an

annihilation of dislocation segments along the intersection of the two slip planes (111)
and (1̄1̄1) [Madec et al., 2003] and this can explain why this orientation is not visible in the

experiment. Dislocation walls oriented at θ = 0o are predicted by the dislocation junction

model as formed by dislocations on the (1̄1̄1) slip plane, while the DPP theory criterion is

not able to explain them.

Comparison with the Li formation mechanism. The formation mechanism of disloca-

tion structures proposed by Li [Li et al., 2011], shown in Fig. 1.12 (b), does not predict walls

perpendicular to the [2̄10] or [11̄0] direction. This theory predicts that the interaction

of edge dislocations of the two mainly active slip systems creates walls perpendicular to

the sum and difference of the two Burgers vectors, which in our case are [001] and [010].
Walls perpendicular to the [010] direction (θ = 90o orientation) are more common for the

edge-screw model than for the dislocation junction model, as shown by the 2D orientation

distribution function in Fig. 3.16 (b), but they are not observed in the experimental image

in Fig. 3.16 (a). By contrast, our dislocation junction model predicts that dislocation walls

are formed when ⌜ dislocations move and interact forming immobile structures. This

behaviour cannot be captured by models based solely on edge and screw dislocations.

In conclusion, the developed junction model predicts dislocation walls, arising from a ran-

dom initial dislocation distribution, oriented parallel to the [110] direction, which were not

captured by existing reaction-diffusion models Pontes et al. [2006] and by low energy theories.

The interpretation of electron channeling contrast imaging analyses of fatigued austenitic

steel is improved, because our model identifies the interactions that cause the formation of

this type of observed dislocation walls as the interactions between dislocations parallel and

perpendicular to the dislocation junction line. The introduction of the dislocation junction

mechanism is shown to be essential in continuum constitutive equations when describing

fatigue on a sub-micrometer length scale.
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4 Comparison between simulation and
synchrotron Laue microdiffraction
experiments
In this chapter the single and multiple slip edge-screw dislocation-based models are used to

predict the crystal lattice rotation at the sub-dislocation structure length scale. For validation,

the results are compared to Laue microdiffraction experiments carried out on copper single

crystals [Irastorza-Landa et al., 2016]. First, the methods to calculate the crystal lattice rotation

in the CPFE framework and in the experiment are explained and compared. The relationship

between the rotation components and the dislocation content is expressed in terms of the

Kröner-Nye tensor. The experiment has revealed misoriented regions influenced by pre-

existing plastic deformations. This has motivated specific calculations. The effect of the initial

crystal lattice orientation, induced by these pre-existing deformations, on the subsequent

evolution is studied using a phenomenological plasticity model and interpreted with the

stiffness tensor. The correlation between dislocation patterning and crystal rotation is studied

using a refined mesh and the dislocation based model. A highly misoriented area found in the

experiment is explained with the behaviour of immobile dislocation clusters with different

shapes. Finally, the interpretation of the simulation results is discussed and compared with

previous X-ray experiments on cyclically deformed samples [Mughrabi and Obst, 2005].

4.1 Crystal lattice rotation in the CPFE framework

Using CPFE method one can compute the components of the crystal lattice rotation by polar

decomposition of the elastic strain gradient. The plastic deformation gradient Fp does not

incorporate a rotation, while the elastic deformation gradient Fe can be decomposed as [Eberl

et al., 2002]:

Fe =Re ⋅Ue , (4.1)

where Re is a rotation matrix and Ue represents a pure stretching. According to Euler’s rotation

theorem, Re can be represented by a rotation vector ê and a rotation angle θ. The rotation
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components are defined as:

θx = θ ⋅ êx , (4.2)

θy = θ ⋅ êy , (4.3)

θz = θ ⋅ êz . (4.4)

In case of small rotation angles, as for the Laue microdiffraction experiment, θx , θy and

θz represent the values of three different rotations around the coordinate axes x, y and z,

whose composition gives the total rotation. This approximation is in general not true for

large rotations [Goldstein et al., 2000], because in 3D they are not commutative. The rotation

components θx , θy and θz are the observables of the Laue microdiffraction experiments.

4.2 Relationship between the rotation components and the disloca-

tion content

The elastic strain gradient Fe can be decomposed in the sum of an elastic strain tensor εe
i j

(representing a stretching) and a lattice rotation tensor ωe
i j (representing a spin) [McHugh,

2004]. This last tensor is related to the rotation components in (4.2)-(4.4) by:

ωe
i j =−εi j kθk , (4.5)

where εi j k is the permutation symbol. As shown by Kröner [E., 1955], considering the lattice

mismatch produced by a set of N dislocations (indexed by n), there is a relationship between

their Burgers vectors bn
i , their dislocation lines l n

i and the curl of the elastic deformation

gradient:

N∑
n=1

bn
i l n

k δ(x⃗ − x⃗n) = − 3∑
l , j=1

εkl j
∂Fe,i j

∂xl
. (4.6)

The left hand side of (4.6) is referred as the Kröner-Nye tensor and indicated as αi k . In the

absence of an elastic strain tensor (εe
i j = 0), which is a realistic condition at zero stress, there

is a simplified relationship between the Kröner-Nye tensor and the rotation components

[Pantleon, 2008]:

αx y = ky x = ∂θy

∂x
, (4.7)

αxz = kzx = ∂θz

∂x
, (4.8)
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αy x = kx y = ∂θx

∂y
, (4.9)

αy z = kz y = ∂θz

∂y
, (4.10)

αzz =−kxx −ky y . (4.11)

These equations allow to find the five accessible Kröner-Nye tensor components using only

derivatives along x and y . This allows an estimation of Kröner-Nye tensor components using

EBSD [Pantleon, 2008] or transmission X-rays analysis [Larson et al., 2008]. The approximation

used in (4.7)-(4.11) is valid if εe
i j is much smaller than ωe

i j , which does not contribute to the

stress tensor.

The same procedure to find these accessible components can be carried out using CPFE

simulations: first the rotation components (4.2)-(4.4) are found from the elastic deformation

gradient Fe , then the rotation gradients and Kröner-Nye tensor components in (4.7)-(4.11) are

calculated. With this method, the αi j components, that would be found if the real specimen

has the same elastic and plastic strain state of the virtual one, can be calculated. Therefore,

the comparison between the αi j found in experiments and simulations is not subject to the

approximation (εe
i j = 0), while this is the case for the interpretation of rotation gradients in

terms of GND density.

A simple case to understand the relationship between rotation components and dislocations

is shown in Fig. 4.1. The crystal lattice rotation is caused by gradients of the plastic strain

along the Burgers vector direction [Arsenlis and Parks, 1999]. Three regions with different

plastic behaviours are represented using three parallelepipeds. If the central region does

not accommodate plasticity because inside it the motion of dislocations is prevented, then a

gradient of the plastic strain γαp along the Burgers vector direction (y axis) is present. Edge

dislocations, moving in the two lateral regions, stop when they reach the interface with the

central region, as shown in Fig. 4.1, and they form walls constituted of signed edge dislocations,

called geometrically necessary dislocations (GNDs). Therefore, GNDs appear at the interface

between high and low plastic strain regions in order to maintain continuity in the crystal. The

mathematical relationship between the plastic strain and the edge GND density is:

ρα
e,GN D b =−∇γαp ⋅mα . (4.12)

The displacement continuity between the high and low plastic strain region leads to a crystal

lattice rotation, as shown in Fig. 4.1. This rotation compensates for the strain incompatibility

and it has opposite sign in the high and low plastic strain regions. For instance, in equation

(4.6) and in the idealized case represented in Fig. 4.1, only edge dislocations are present (only
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Figure 4.1 – Schematic process through which edge GNDs accumulate and the crystal lattice
rotates.

αy z is non zero) and only the component ωe
x y = θz has a gradient along the Burgers vector

direction (y). In the lower part of Fig. 4.1 the approximation εe
i j = 0 is valid, if no external

constraints are imposed on the relaxed configuration. The two higher plastic strain regions

accommodate plastic strain and rotation, while the lower plastic strain region accommodates

only rotation. Both plastic deformation and rotation do not contribute to the stress tensor,

therefore the stress equilibrium condition between the lower and the higher plastic strain

regions is satisfied. In this case the rotation component θz is equal to the accommodated

plastic strain amplitude γαp in the higher plastic strain regions. As shown in the following, the

experimental rotation angle reaches a value θz ≈ 0.25o = 0.0044 radians, while the plastic strain

amplitude γαp goes up to 0.295% = 0.00295. Using this simplified comparison, a difference of

around 30% between the Nye tensor components and the rotation gradients can be expected.

Another quantity that will be used in the following is the so-called “apparent” GND density

that is the sum of all available components of αi j [Gupta and Agnew, 2010]:

ρapp = 1

b
⋅ (∣αx y ∣+ ∣αxz ∣+ ∣αy x ∣+ ∣αy z ∣+ ∣αzz ∣) . (4.13)

This quantity includes different types of dislocations, it can be seen as an upper limit of the

GND content of the material or a lower limit of the total dislocation density [Kysar et al., 2010].

4.3 Laue microdiffraction and in-situ fatigue experiment

In this section the experimental results of the Laue microdiffraction experiments on copper

single crystals using synchrotron X-rays [Van Swygenhoven and Van Petegem, 2010] are shown.
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4.3. Laue microdiffraction and in-situ fatigue experiment

Figure 4.2 – (a) Schematic drawing of the microXAS beamline; (b) deformation rig to apply
cyclic deformation on the sample (courtesy of Ainara Irastorza).

These experiments have been carried out at the microXAS beamline of the Swiss Light Source

of the Paul Scherrer Institut by Ainara Irastorza-Landa [Irastorza-Landa et al., 2016]. In the

following the principles of the Laue microdiffraction technique and experimental details are

briefly explained. The synchrotron radiation, once focused by a pair of Kirkpatrick-Baez

mirrors, can reach a submicrometre spot size. Bragg diffraction takes place in the single crystal

copper sample and the image is recorded in transmission geometry by a photoluminescence

detector, as shown in Fig. 4.2 (a). The Laue pattern of the undeformed samples is constituted

of sharp peaks at specific azimuthal and tangential angles θ and Φ, which move, broaden and

split once deformation occurs. The cyclic deformation is applied by the deformation rig shown

in Fig. 4.2 (b), compatible with in-situ Laue microdiffraction experiments. The sample, shown

in Fig. 4.3, has two external immobile parts, fixed by bolts, and a central mobile region. The

load cell acts on this central part, inducing shear strain in two “shear zones”, magnified in Fig.

4.3 (b). During deformation the shear strain is concentrated in the 150 μm thick region. The

single slip crystal orientation is such that the x axis is perpendicular to the (111) plane and the

y axis is parallel to the [1̄01] Burgers vector. Picosecond pulse laser ablation has been applied

to this region to form the circular 30 μm thick region in Fig. 4.3 (b) [Guitton et al., 2015]. The

diameter is around 300 μm and Laue microdiffraction is applied in this region after cyclic

deformation. The sample is scanned along the x and y axes in Fig. 4.3 (b), in a rectangular area

with dimensions 10 μm × 25 μm. The beam direction is along the z axis. The experimental

rotation components are calculated using a template-matching technique [Gupta and Agnew,

2010], [Hofmann et al., 2012]. This is a refinement procedure yielding an orientation matrix

that represents the average crystal orientation within the illuminated volume. First an average

orientation is calculated, then virtual diffraction patterns are generated by rotating around the

x, y and z axes with a step size of 0.03o . For every virtual diffraction pattern, the diffraction

spots are calculated and it is checked if the experimental intensity in those spots is higher
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Figure 4.3 – (a) Schematic view of the copper single crystal sample geometry and actuators; (b)
shear zone, the thickness of different regions is reported [Irastorza-Landa et al., 2016].

Figure 4.4 – Rotation θx around the x axis for different number of cycles N [Irastorza-Landa
et al., 2016].

than 20% of the maximum peak intensity. In this case, the rotation angles around the x, y

and z axes are saved. Misorientation angles θx , θy and θz are calculated with respect to a

point whose orientation does not change sensibly after 120 cycles. This point corresponds to

coordinates x = 5.9 μm and y = 12.7 μm and it is selected as a reference point. The Euler angle

θ and the apparent GND density are calculated as in (4.2)-(4.4) and (4.13).

The misorientation angles θx , θy and θz at different number of cycles are shown in Fig. 4.4, 4.5

and 4.6. The Euler angle θ at different number of cycles is shown in Fig. 4.7. Some misoriented

regions are present at cycle 0 because of pre-existing plastic deformations. These are indicated

with the letters A, B, C, D and E in Fig. 4.7. In the first 80 cycles the distribution of the

misorientation θ changes continuosly. The feature in region A disappears, the ones in regions

B and D fragment while the rotation in region C increases until cycle 50, then it decreases.

Between cycle 80 and 120, new features appear, as shown in Fig. 4.7. In region F and B, two

highly misoriented regions form. As shown in Fig. 4.4, 4.5 and 4.6, the rotation around the
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Figure 4.5 – Rotation θy around the y axis for different number of cycles N [Irastorza-Landa
et al., 2016].

Figure 4.6 – Rotation θz around the z axis for different number of cycles N [Irastorza-Landa
et al., 2016].

Figure 4.7 – Euler angle θ for different number of cycles N [Irastorza-Landa et al., 2016].
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Figure 4.8 – Apparent GND density for different number of cycles N [Irastorza-Landa et al.,
2016].

z and x axes are more pronounced than the rotation around the y axis. Highly misoriented

regions after cycle 80 (F and B) are rotated mainly around the z axis.

The apparent GND density ρapp , calculated using (4.13), at different number of cycles is shown

in Fig. 4.8. Already at cycle 0 several traces with non-zero ρapp can be observed. For instance,

region B, corresponding to the initial red feature of the θz field in Fig. 4.6, is surrounded by

apparent GND walls at cycle 0. During the first 50 cycles both formation and dissociation of

apparent GND walls are observed. For instance, dissociation is visible in the lower part of

Fig. 4.8 (region G). The highly misoriented region F does not contain apparent GNDs in the

initial cycles, but a stable structure form after deformation. The apparent GND density ρapp

is particularly high at the interface of this highly misoriented region compared to the rest of

the analyzed area. Also regions B and D are surrounded by some GND walls after deformation.

Fig. 4.9 shows the details of the evolution of apparent GND traces of some regions in Fig. 4.7

and 4.8:

• Region G: initial traces disappear upon cycling;

• Region A: initial traces redistribute and a region free of apparent GND on the left side is

formed after 120 cycles;

• Region B: high density initial apparent GND are present; they redistribute upon cycling

and do not disappear.

Simulations are carried out in the next sections to address the following questions, suggested

by the experimental results:

• Section 4.4: what is the plastic strain and the strain homogeneity in the analyzed area?

• Section 4.5: Does the pre-existing rotation affect the time evolution of the microstruc-

ture?
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Figure 4.9 – Evolution of the apparent GND density in regions G, A and B (courtesy of Ainara
Irastorza).
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• Section 4.6: How is the lattice rotation affected by the evolving dislocation structures?

• Section 4.6: Which boundary condition and representative volume are necessary to

predict the correct magnitude of the rotation components?

• Section 4.7 and 4.8: How does the shape of accumulated dislocation structures affect

the rotation gradients?

• Section 4.8: Is the predicted apparent GND density comparable to experiments?

• Section 4.9: Is the simulation able to reproduce the formation and dissociation of

apparent GND density structures?

4.4 Plastic strain and strain homogeneity in the analyzed area

In this section a phenomenological power law plasticity model is used to simulate the full

geometry of the sample during in-situ fatigue experiments. The aim is to quantify the plastic

strain applied in the thin area, which cannot be measured in the experiment, and the strain

homogeneity in the analyzed area. The representative volume used in the CPFE simulations is

shown in Fig. 4.10 (a). This represents only half of the real geometry, symmetric displacement

boundary conditions are applied on the upper surface in Fig. 4.10 (a). The surface in contact

with the bolts, indicated by green arrows in Fig. 4.10 (a), is set at zero displacement. The

magnitude of the applied displacement is measured by the actuator and used in the simula-

tion [Irastorza-Landa et al., 2016]. The same crystal orientation as in the experiment is used,

therefore a single slip system is active. A refined mesh is used in the shear zone, as shown in

Fig. 4.10 (b), where the plasticity concentrates. The surrounding region can be meshed with

Figure 4.10 – (a) Representative volume and boundary conditions; (b) refined mesh in the
shear zone.

coarser elements since it remains elastic.

The phenomenological constitutive model is based on the description of Hutchinson [Hutchin-

son, 1976]. The plastic strain rate of every slip system is given by:

γ̇αp = γ̇0 ∣ τα
gα

∣n sgn(τα) , (4.14)
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where γ̇0 is a reference shear rate, τα is the resolved shear stress of the α-th slip system and n

is the stress exponent. gα is a variable representing the slip resistance of the α-th slip system

and it evolves according to:

ġα = 12∑
β=1

h0hαβ ∣1− gβ

g∞
∣a sgn(1− gβ

g∞
) , (4.15)

where h0, a are parameters and hαβ is the hardening matrix [Diehl et al., 2016], representing

the interaction among slip systems. The parameters used for copper are derived from stress-

strain curves obtained in pure shear experiments [Dmitrieva et al., 2009] and are listed in Tab.

4.1.

γ̇0 n g(t = 0) g∞ h0 a

0.1 20 10 MPa 30 MPa 100 MPa 0.01

Table 4.1 – Parameters for the phenomenological plasticity model in (4.14)-(4.15) [Déprés
et al., 2008], [Dmitrieva et al., 2009].

The simulated force is calculated using a surface average of the stress component σx y over

the displaced surface in Fig. 4.10 (a). This force is matched to the experimental one and

the resulting strain field γx y is shown in Fig. 4.11 (a). The strain reaches a value of 1.05%

in the centre of the representative volume, where the rectangular area analyzed by Laue

microdiffraction lies. In Fig. 4.11 (a), a strain uniformity within 10% is present in the analyzed

area.

The experiment has been carried out with different imposed displacements for different

Figure 4.11 – (a) Simulated shear distribution of the sample; (b) measured force as a function
of the simulated shear in the thin area [Irastorza-Landa et al., 2016].

interval of the cycle number, as shown in Fig. 4.11 (b). The simulation has shown that the

shear strain can be approximated as γ =Δ/D , where Δ is the displacement of the actuator and

D is the diameter of the thin part (300 μm). Thus, a plot of the measured force as a function

of the calculated shear stress can be made, as shown in Fig. 4.11 (b). Then the plastic strain

has been calculated as suggested in Suresh’s book [Suresh, 1998]: first the hysteresis loops
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of the force-strain curve is drawn, as in Fig. 4.11 (b), then the plastic part of the shear strain

is calculated as the width of one loop along the zero force (F = 0) axis. The plastic strain

amplitude at different number of cycles is reported in Fig. 4.11 (b). It considerably increases

after cycle 80, leading to a larger force-strain hysteresis. In conclusion, the simulation has

given an estimation of the plastic strain amplitude and its homogeneity in the analyzed area.

4.5 The influence of pre-existing lattice rotation on the evolving

microstructure

The phenomenological power law model (4.14)-(4.15) has been used to study, at the microme-

tre length scale, the effect of the initial crystal orientation, induced by pre-existing plastic

deformations, on the rotation components after cyclic deformation. The aim is to show that

the model predictions at a length scale of the order of 10 μm are affected by the stiffness tensor

of initially misoriented regions. A comparison with the dislocation-based model introduced

in section 2.2 is made.

The mesh used for the phenomenological power law model is the same as in Fig. 4.10, except

for the central part of the thin area. In that part, cubic elements with a 0.5 μm size are used in

a parallelepiped region with size 10 μm × 25 μm × 30 μm along the x, y and z axes. The mesh

used for the dislocation-based model is the same as in Fig. 4.21.

The rotation of the initial crystal, as measured in the experiment, is not uniform, but initial

misorientations are present, as shown by the components θx , θy and θz in Fig. 4.4, 4.5 and

4.6. This initial rotation has been incorporated in the simulation: first the components θx , θy

and θz are converted into Bunge angles (φ1,θ,φ2) at every point in the x and y plane, then a

rotation matrix R0 (x, y) is calculated and assigned as initial value for the plastic deformation

gradient Fp . This rotation is assumed uniform in depth (along the z axis).

An analysis based on a RGB (red-green-blue) representation of the simulated rotation com-

ponents is carried out. The rotation components θx , θy and θz , with respect to the reference

point mentioned in section 4.3, are first averaged over depth (arithmetic average over the z

axis) to model the behaviour of X-rays penetrating the thin layer. Then, the Euler vector ê

in (4.2)-(4.4) is found. The Euler vector components êx , êy and êz , whose values are in the

interval [−1;1], are mapped linearly to the interval [0;255] (8-bit color intensity). A color

map is built using these numbers as intensities of red, green and blue. This method allows

to evidence around which coordinate axis the rotation is dominant. The result is shown in

Fig. 4.12 at cycle 11 in the upper part of the geometry using the phenomenological power law

model and the dislocation-based model for cyclic fatigue. The main features are the following:

• the white-pink area on the upper right, corresponding to the initial misoriented region

B in Fig. 4.6 and 4.7;

• the two regions on the left and right of the area in Fig. 4.12 (a)-(b), where red-pink is the

dominant color;
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Figure 4.12 – (a) Simulated RGB rotation map, using (a) the phenomenological power law
model and (b) the dislocation-based model for cyclic fatigue, of the upper part of the rectan-
gular area analyzed by Laue microdiffraction at cycle 11; the red and blue features indicate
that θx and θz are the dominant rotation components.

• the central part, where blue is the dominant color.

For instance, the left red-pink region is comparable with the red feature in the θx field at

cycle 11 in Fig. 4.4, corresponding to region C in Fig. 4.7. The RGB map in Fig. 4.12 indi-

cates that the dominant rotation components are θx (red) and θz (blue), as also measured in

[Mughrabi, 2006]. The RGB maps obtained using the phenomenological power law model and

the dislocation-based model are similar. Therefore, at a length scale of the order of 10 μm, the

magnitude of the rotation components is not determined by the dislocation structures. As will

be shown in the rest of this chapter, dislocation structures influence the rotation components,

even in absence of initial misorientations, at a smaller length scale.

The comparison between the measured and simulated Euler angle θ in (4.2)-(4.4) is shown in

Fig. 4.13:

• also in this map a highly rotated region is present on the upper right of the area, corre-

sponding to region B in Fig. 4.7;

• some of the yellow features on the left side, corresponding to regions A and C in Fig. 4.7,

having a Euler angle in the interval 0÷0.15 degrees, are present in both experiment and

simulation.

The simulated angular interval has the same order of magnitude as in the experiment and it

is determined by the applied displacement. These results suggest that the knowledge of the
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Figure 4.13 – (a) Simulated and (b) experimental Euler angle θ map of the upper part of the
rectangular area analyzed by Laue microdiffraction at cycle 11 (courtesy of Ainara Irastorza).

initial microstructure is essential to predict the time evolution of the rotation components.

Therefore it has been necessary to further analyze the simulation made with the phenomeno-

logical model, to understand the origin of high and low rotation regions. The stress tensor

component σx y , corresponding to the resolved shear stress on the primary slip system, is

strongly correlated with the cumulative plastic shear strain on that system, as shown in Fig.

4.14 (b)-(c). Regions where the absolute value of this resolved stress is higher have higher

γp,cum , as predicted by the phenomenological model in (4.14). This affects the evolution of

the rotation components. Some regions with lower absolute value of σx y , such as the red

feature on the lower right of Fig. 4.14 (b), are correlated with a lower value of the stiffness

tensor component Cx y x y (blue region in Fig. 4.14 (a)). The stiffness tensor is calculated using

the initial orientation. At every coordinate (x, y) its value is given by:

Ci j kl (x, y) =R0,i a (x, y)R0, j b (x, y)R0,kc (x, y)R0,ld (x, y)C0,abcd , (4.16)

where R0 is the lattice rotation matrix and C0,abcd is the stiffness matrix of FCC copper in the

undeformed lattice reference system. In this specific specimen geometry, the component

Cx y x y is the proportionality coefficient between the highest strain component εx y and the

stress component σx y . Therefore, in this strain controlled test, regions with lower stiffness

component are expected to have a lower stress magnitude. This is true for the lower part of

the area in Fig. 4.14 (a) and (b). Therefore, the stiffness component Cx y x y affects strongly

the shear stress. By comparing Fig. 4.14 (a) with the initial rotation components in Fig. 4.4,

4.5 and 4.6, one can observe a correlation between the stiffness component Cx y x y , θx and θy
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Figure 4.14 – (a) Cx y x y component of the stiffness tensor; (b) stress tensor component σx y ;
(c) cumulative plastic strain γp,cum on the primary slip system. In (a) and (b) the scales are
different because of the different magnitude and sign of Cx y x y and σx y .

in the lower part of the area. The low value of the stiffness component Cx y x y in that area is

due to these initial rotation components. The stiffness component Cx y x y can affect the time

evolution of the rotation components:

• the θx rotation component in Fig. 4.4 shows expanding blue regions in the lower part of

the area, where Cx y x y is lower;

• regions B and D in Fig. 4.7, where the value of θz increases after many cycles, are

associated with areas having a lower value of Cx y x y compared with the surrounding

regions, as shown by the two light blue regions in the upper right part of the area in Fig.

4.14 (a).

The phenomenological model is also able to predict that θx and θz are the main rotation

components, as shown by the red and blue features in Fig. 4.12 (a)-(b).

In conclusion, the comparison between simulation and experiment has shown that, at a length

scale of the order of 10 μm, the rotation components are strongly affected by the initial mis-

orientation, present because of plastic deformation probably induced during manufacturing.

To understand the behaviour after cyclic deformation an analysis of the local elastic stiffness

tensor is necessary.

4.6 Lattice rotation from evolving dislocation structures

In this section the single slip dislocation-based model in section 2.2 is used to study the

correlation between evolving dislocation structures and rotation components. Simulations
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are carried out first in a smaller representative volume to understand the effect of boundary

condition and averaging over depth (z axis).

During cyclic fatigue, the dislocation structures represent a barrier for the motion of disloca-

tions. Thus, it is expected that signed gliding dislocations are blocked and form accumulations

of GNDs. As stated in section 1.1, GNDs amount to only a few percent of the total dislocation

density. This information was found by analyzing the broadening of X-ray rocking curves of

cyclically deformed samples [Mughrabi, 2006]. Using the assumption that equally spaced

dislocation walls form, which are impenetrable for dislocations, Mughrabi estimated that at

most 5% of the total dislocation density is constituted of GNDs [Mughrabi and Obst, 2005].

However, these analytical models do not give insight into the time evolution of the rotation.

The main rotation components during cyclic fatigue of copper found using Berg-Barrett X-

ray topographs are along the edge dislocation line ([12̄1]) and the slip plane normal ([111])
[Mughrabi, 2006]. The dislocation walls used in the Mughrabi’s assumption are infinite along

the edge dislocation line ([12̄1]) (z axis in Fig. 4.1), thus the only non-zero rotation component

is θz and the rotation along the slip plane normal cannot be calculated.

To understand the effect of dislocation structures in our single slip model (section 2.2), a

Figure 4.15 – (a) Representative volume to simulate the lattice rotation along the edge disloca-
tion line (section cut at x = 0.4 μm) and dislocation density after 50 cycles; (b) rotation along
the z axis, averaged over the elements along the blue and green dashed lines in (a).

cyclic shear simulation is carried out on a parallelepiped geometry with size 4 μm along the y

and z directions and 1 μm along x. 200 nm elements are used and the load conditions are the

same as in Fig. 2.15, with a strain amplitude γx y = 0.1%. Periodic boundary conditions for the

dislocation fluxes are used, and the initial dislocation densities are the same as in Tab. 2.7. The

slip plane (111) is oriented perpendicular to the x axis and the Burgers vector along the y axis.

The strain rate is 10−3 s−1. The rotation θz is averaged over the elements along the dashed

green and blue lines in Fig. 4.15 (a), which are in the middle of the representative volume,

at a depth of x = 0.5 μm. Dislocation patterns form after 50 cycles in the central part of this

geometry, where the green dashed line is chosen, as shown in Fig. 4.15 (a). The blue dashed

line is chosen along a low dislocation density region, representing a channel. The θz rotation

is shown in Fig. 4.15 (b). It reaches values around 0.02o inside forming channels. Along the
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Figure 4.16 – Lattice rotation θz in channels and dislocation structures.

green dashed line θz has lower values in the first cycles and a phase difference with respect to

the blue line is present. This difference tends to disappear after many cycles as an effect of the

averaging procedure. The simulated values of θz are smaller than the experimental ones in Fig.

4.6 because of the smaller strain amplitude in this simulation compared with the experiment.

A higher and persistent difference of the rotation θz in dislocation structures and channels

can be seen if the rotation is selected only in a single element. This is shown in Fig. 4.16 for

the 12 μm × 12 μm × 0.6 μm representative volume analyzed in section 2.2. The value of θz

selected in a single channel element at a distance of around 1 μm from the closest dislocation

structure can reach 0.1o , while inside the dislocation structure the rotation is smaller. Also

in this case a phase difference is present. These simulations indicate that the formation of

dislocation structures can induce highly misoriented regions in the θz rotation component, as

the ones shown in Fig. 4.6, but also that this effect can be partially hidden by the averaging

along depth (z axis).

Simulations with different strain amplitudes are carried out to understand the effect on the

lattice rotation. If the strain amplitude is increased, the magnitude of the rotation θz in the

dislocation structures increases only slightly, as shown in Fig. 4.17. In the idealized picture in

Fig. 4.1, a double value of the plastic strain in the high plastic strain regions would lead to a

double value of the rotation around the edge dislocation lines. However, θz in Fig. 4.17 does

not scale linearly with γx y because the representative volume is constrained on the upper

surface, therefore free rotations of the elements around the z axis are prevented.

In the idealized picture in Fig. 4.1, if the same plastic strain amplitude is present in the two

high plastic strain regions, then the same magnitude of the rotation is expected. In Fig. 4.18

(a), the central region, where dislocation structures are present, is surrounded by two low

density regions, where the green and blue dashed lines are drawn. If the rotation is averaged

along these lines, then a difference of the maximum and minimum value of θz is present, as

shown in Fig. 4.18 (b)-(c). The oscillation amplitude of θz is similar in the two low density

regions and no large phase difference is present, in agreement with the simplified model in

Fig. 4.1. Additionally, a drift of the average value of θz is present, as shown in Fig. 4.18 (b),

which can be due to an asymmetry of the plastic strain accommodated in the two channels.
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Figure 4.17 – Rotation along the z axis in the dislocation structures for (a) γx y = 0.1 % and (b)
γx y = 0.2 %.

Figure 4.18 – (a) Representative volume to simulate the lattice rotation along the edge dis-
location line; (b) rotation along the z axis, averaged over the elements along the blue and
green dashed lines in (a); (c) the oscillation amplitude and phase of θz is similar in the two low
density regions.
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Figure 4.19 – Rotation along (a) the y axis and (b) the x axis, averaged over the elements along
the green dashed line in Fig. 4.18 (a).

Free boundary condition are set on the two surfaces perpendicular to the y axis, therefore

they do not cause boundary effects in the two low density regions. In the experiment (Fig. 4.6),

the rotation component θz has also different values around the highly misoriented region F in

Fig. 4.7, ranging between −0.05o and 0.05o .

The other two components of the rotation θx and θy , averaged along the elements indicated by

the green dashed line in Fig. 4.18 (a), are shown in Fig. 4.19. In this simulation the components

θx and θy have a magnitude that is smaller by approximately a factor 20 compared with θz .

This is due to the single slip load in this simulation and the dominant γx y strain component.

Therefore, this simulated volume, smaller than the experimentally analyzed volume by approx-

imately a factor 500, cannot reproduce the higher values of θx and θy found in the experiment

(Fig. 4.4 and 4.5) because the boundary condition is more restrictive than in the experiment.

However the components θx and θy are not zero because of the three dimensional character

of the simulation. In the idealized picture in Fig. 4.1, if the lower plastic strain region is

uniform in depth (representing a straight dislocation structure along the edge dislocation line

direction), the only rotation component would be θz . However this condition is not satisfied

in the simulation in Fig. 4.18 (a) because the dislocation structures are bent and not straight

along the z axis. The origin of θx can be understood from the scheme in Fig. 4.20. If the

lower plastic regions are not uniform along the z axis, there is a gradient of the plastic strain

component γp,y x because the plastic deformation increases along the z axis from the lower to

the higher plastic strain region. In terms of GNDs this is associated to the presence of both

edge and screw accumulations at the interface between the low and high plastic strain regions,

as shown in Fig. 4.20. With zero applied stress, the displacement continuity between the high

and low plastic strain region leads to a crystal lattice rotation around the x axis, as shown in

Fig. 4.20. In terms of (4.6), the presence of screw GNDs, represented by the αy y component of

the Nye tensor, leads to a gradient of the component ωe
y z =−θx . The relationship between the

vein bending on the slip plane and the rotation components will be further discussed later in

this chapter.
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Figure 4.20 – Schematic relationship between edge GNDs, screw GNDs and lattice rotation
around the slip plane normal (x axis).

4.7 Rotation gradients from accumulated dislocation structures

The dislocation-based model, applied to the specimen geometry, can clarify some micrometre

scale features of the Nye tensor observed in the experiment. As shown in section 2.2 a 200 nm

mesh size is necessary to resolve dislocation structures in the single slip model. Therefore, a

parallelepiped, with dimensions 0.2 μm × 4 μm × 1 μm along the coordinate axes, formed

by 200 nm elements is included in the thin area, as shown in Fig. 4.21. The mesh becomes

gradually coarser in the surrounding region to allow the application of the dislocation-based

model to this large geometry. Even if the 200 nm region is short along the x axis, patterning

of edge dislocations is reproducible because their dislocation line is along z and the Burgers

vector is along y . Thus, the 200 nm element regions can be thought as the representative

volume used in the simple shear simulation in section 2.2, which is also short (0.6 μm) along

the direction perpendicular to the slip plane.

The simulation is carried out with the same deformation amplitude as in the experiment,

copper parameters are used and the initial dislocation densities are the same as in Tab. 2.7.

The crystal lattice orientation is the same as in the experiment. The strain rate used is 103 s−1.

Dislocation fluxes are allowed at the surface and the transmissivity factor is 1. This means

that every dislocation reaching the surface and moving towards the surface normal can exit

the representative volume. For this crystal orientation this happens mainly for positive and

negative screw dislocations because their velocity vector is directed along the z axis in Fig. 4.21.

This leads to dislocation structures with a lower value of the maximum dislocation density

compared to the simulation with periodic fluxes in Fig. 2.15 (a).

Dislocation patterning appears after 50 deformation cycles, as shown by the edge dislocation

density in Fig. 4.22 (a). The rotation components, averaged over the z axis, and the rotation gra-

dient kz y , corresponding to the Nye tensor component αy z in the approximations (4.7)-(4.11),

are calculated. The result is shown in Fig. 4.22 (b): couples of positive and negative peaks are

present in the same positions as veins because, as shown in section 4.6, the motion of positive
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Figure 4.21 – 3D section view of the mesh used in the central part of the thin region for the
dislocation based model simulation.

and negative GNDs is stopped by dislocation structures. These GNDs on the primary slip

system are in this case represented by αy z . Experimental data in Fig. 4.22 (c) show also positive

and negative peaks after 100 cycles in region F in Fig. 4.7, whose spacing is of the order of 1

μm. In the simulations, positive and negative peaks are not always visible in correspondence

of a vein because of the average over depth. As it will be shown in the following, dislocation

structures change position along the z axis. Therefore positive and negative edge GNDs on the

opposite side of a vein can remove the features observed in αy z .

The same procedure described above for αy z is applied to the calculation of the αxz compo-

nent of the Nye tensor. The simulation after 50 deformation cycles in Fig. 4.23 shows features

Figure 4.22 – (a) Edge dislocation density in the centre of the geometry; (b) simulated com-
ponent αy z of the Nye tensor; (c) measured component αy z of the Nye tensor at cycle 100
(courtesy of Ainara Irastorza).
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Figure 4.23 – (a) Simulated component αxz of the Nye tensor; (b) measured component αxz

of the Nye tensor at cycle 100, the green rectangle evidences features that are similar to the
simulated ones (courtesy of Ainara Irastorza).

elongated along the Burgers vector direction (y axis). A similar elongation is observed after

100 cycles in region F in Fig. 4.7 of the experimental map, as shown in Fig. 4.23 (b). The αxz

component of the Nye tensor is not directly related to GNDs on the primary slip system but it

reflects the rotation gradient along the slip plane normal direction (x axis). As shown in the

following, this rotation gradient is connected with the displacement of the veins along the

depth (z axis).
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Figure 4.24 – Edge dislocation density at different depth z in the 200 nm elements of the 30
μm thin layer and corresponding rotation field θz .
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Figure 4.25 – Displacing rotation gradient, as in Fig. 4.24, and consequent αxz Nye tensor
component.

In Fig. 4.24 the change of the vein position as a function of depth z is shown. Images are taken

in the 200 nm elements region, between the coordinates z = 29 μm and z = 30 μm, where

dislocation structures can be clearly resolved. The vein on the right is displacing with respect

to the fixed reference indicated by the line. The corresponding rotation field θz is correlated

with the dislocation density field: regions with high dislocation density have lower rotation

and vice versa, in agreement with the simulation in Fig. 4.16. The derivative kzx = ∂θz/∂x

is positive in the circled region in Fig. 4.24. This region is elongated along the y axis and it

displaces in depth along the same direction. As shown in Fig. 4.25 the same is true for the

other two circled veins. Therefore, when averaged over depth, the features of the Nye tensor

component αxz , corresponding to kzx in the approximations (4.7)-(4.11), are elongated along

the y axis, corresponding to the Burgers vector direction.

In conclusion, the dislocation based model applied to the full specimen geometry can clarify

the relationship between the Nye tensor components αy z , αxz and dislocation structures. The

positive and negative features shown in Fig. 4.22 (a) and 4.23 (a) appear in correspondence of

forming veins, despite of the average over depth. Similar features are present in the experiment

after 100 deformation cycles in the forming highly misoriented region F in Fig. 4.7, suggesting

the formation of a dislocation structure in that region.

Starting from a randomly distributed dislocation density does not allow to predict the precise

position of the features of the Nye tensor components in the analyzed area of the specimen.

However, the characteristic distance between positive and negative regions of αy z , which is

around 1 μm in the simulation in Fig. 4.22 (b), and the elongation of the αxz features along

the Burgers vector direction are comparable to the experiment.

The simulation results would suggest that, wherever a dislocation structure is present, both

components αy z and αxz show positive and negative values on the two opposite sides of

the structure. As observed previously, the averaging procedure along the z axis and the vein

bending on the slip plane can prohibit the observation of the αy z component because of the

superposition of positive and negative edge GNDs on the opposite sides of the vein. This

is the case in the schematic representation in Fig. 4.20, where positive and negative edge

dislocations are at the same position in the x-y plane, if a projection along the z axis is made.
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Figure 4.26 – (a) Representative volume and mesh; (b) part of the representative volume where
the dislocation-based plasticity is used.

4.8 Rotation gradients surrounding different vein structures

The computational efficiency of the developed model used in the full specimen geometry

does not allow to simulate the behaviour of this system up to 120 cycles. However, a cyclic

deformation applied to a representative volume containing an immobile dislocation vein can

clarify the nature of the highly misoriented region F in Fig. 4.7. In this section the effect of such

immobile dislocation vein and its shape is tested. The rotation and Nye tensor components

are compared with the experimental ones.

The representative volume used is shown in Fig. 4.26 (a). It is a parallelepiped with dimensions

10 μm × 10 μm × 1 μm along the x, y and z axes. The central part is modelled using the multi-

ple slip edge-screw dislocation-based plasticity model in section 2.2, while the surrounding

is described by Von Mises plasticity [Peirce et al., 1982]. The mesh size used in the central

part is 200 nm. The cluster of immobile dislocations, with density ρi mm , contributing to the

threshold stress in (2.9), is placed inside the representative volume, as shown in Fig. 4.26 (b),

and it represents an already formed vein. Periodic dislocation fluxes are used on the surface of

the dislocation-based plasticity region. The displacement U(t) is imposed along the external

surface in order to induce pure shear in the central region, as shown in Fig. 4.27. The function

U(t) is chosen to simulate the experimental strain amplitude in Fig. 4.11 (b). The simulated

crystal is oriented for single slip: the Burgers vector is parallel to the y axis and the slip plane

normal is parallel to the x axis.

Four different shapes of the vein are compared. As shown in Fig. 4.28, the first one is parallel to

the edge dislocation line (“straight”), the second one is inclined in the slip plane (“Y-inclined”),

as if it is constituted of mixed edge and screw dislocations, the third one is inclined both in

and out of the slip plane (“Y&X-inclined”), as if it is constituted of dislocations belonging to a

107



Chapter 4. Comparison between simulation and synchrotron Laue microdiffraction
experiments

Figure 4.27 – Boundary condition used in the simulation.

Figure 4.28 – Shapes of the straight, Y-inclined, Y&X-inclined and two inclined veins used in
the simulation.
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secondary slip system, and the last one is constituted of two inclined clusters. The density of

immobile dislocations used is ρi mm = 100 μm−2 and it is uniform inside the vein. The initial

mobile dislocation densities are reported in Tab. 4.2 and copper parameters in Tab. 2.7 are

used.

ρe+ (t = 0) = 5.0 μm−2 ρe− (t = 0) = 5.0 μm−2

ρs+ (t = 0) = 5.0 μm−2 ρs− (t = 0) = 5.0 μm−2

ρe+,s+ (t = 0) = 0.1 μm−2 ρe+,s− (t = 0) = 0.1 μm−2

ρe−,s+ (t = 0) = 0.1 μm−2 ρe−,s− (t = 0) = 0.1 μm−2

Table 4.2 – Initial dislocation densities for the simulations.

In the following the rotation components are averaged over depth (z axis) and the rotation

gradients are calculated using these averaged values. After one full deformation cycle, the

rotation field θz becomes non-homogeneous for the four vein geometries. This is due to the

lower strain accommodated inside the vein, as explained in Fig. 4.1. The shape of this feature

is related to the projected shape of the immobile dislocation vein. Therefore the Y-inclined

vein has a feature in θz which is slightly elongated along the y axis, while for the Y&X-inclined

vein it is slightly elongated along both the y and the x axes. The rotation gradients for the four

cases are shown in Fig. 4.30, 4.31, 4.32 and 4.33. The following observations can be made:

• the components with the highest magnitude are kzx and kz y because θz is the main

rotation component. In particular, kz y corresponds to edge GNDs accumulating at

the interface of the immobile vein. The value of kz y is highest for the straight vein

and smallest for the Y-inclined vein and for the two inclined veins. This is due to the

superposition of positive and negative edge GNDs when the depth averaging is carried

out;

• the component ky y is related to the screw GND density, which can accumulate on the

sides of the veins. Therefore, the positive and negative peaks of ky y are aligned along the

vein projection. For the Y-inclined vein the ky y component has positive and negative

peaks aligned to the y axis, while for the Y&X-inclined vein, the two central positive and

negative peaks are displaced along the x axis.

The experimental images 4.4, 4.5 and 4.6 are used to calculate the rotation gradients after 120

deformation cycles, as shown in Fig. 4.34. The main features appear at the boundary of the

highly misoriented area in region F of Fig. 4.7 and the values are higher than in the simulation

because the experimentally observed rotation magnitude is higher, as can be found comparing

Fig. 4.7 with Fig. 4.29. The following observations can be made:

• the experimental kz y component has not the highest values. This indicates that the

prediction given by the Y-inclined vein model or by the Y&X-inclined vein model corre-
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Figure 4.29 – Simulated rotation component θz for the four vein shapes after one cycle. Differ-
ent scales are used because of the different magnitude for the four vein shapes.
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Figure 4.30 – Simulated rotation gradient components for the straight vein shape after one
cycle. Different scales are used because of the different magnitude of the components.

Figure 4.31 – Simulated rotation gradient components for the Y-inclined vein shape after one
cycle. Different scales are used because of the different magnitude of the components.
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Figure 4.32 – Simulated rotation gradient components for the Y&X-inclined vein shape after
one cycle. Different scales are used because of the different magnitude of the components.

Figure 4.33 – Simulated rotation gradient components for the two inclined veins shape after
one cycle. Different scales are used because of the different magnitude of the components.
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Figure 4.34 – Measured rotation gradients in radians per meter in region F of Fig. 4.7 (courtesy
of Ainara Irastorza).

spond better to the experiment and a superposition of positive and negative edge GNDs

is a possible explanation for the low value of kz y ;

• the components kxx , ky x and kzx have features elongated along the Burgers vector

direction (y axis), while the components kx y , ky y and kz y have features elongated along

the slip plane normal (x axis). This is also observed in the experimental images in Fig.

4.34 and it is due to the sharp interface of the rotation field between the immobile vein

and the surrounding area;

• in case of a straight vein, the rotation gradient components are either symmetric or

antisymmetric with respect to lines parallel to the x and y axis passing through the centre

of the vein. In case of a Y-inclined vein this symmetry is broken in the components

kxx , kx y , ky x and ky y . The positive and negative peaks of the rotation gradients are not

anymore aligned with the x and y axes, but the red and blue features appear inclined. In

case of a Y&X-inclined vein this inclination is present in all the rotation gradients. The

same can be observed in the upper part of the experimental rotation gradients in Fig.

4.34. This specific feature is not observed in the straight vein model and the two veins

model.

Using (4.13), the apparent GND density can be calculated from the rotation gradients. The

results are shown in Fig. 4.35 for the four vein shapes. For the straight and Y&X-inclined veins,

ρapp has a dominant contribution from αy z . Therefore, mainly features elongated along the
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Figure 4.35 – Simulated apparent GND density after one cycle.

x axis appear. The situation is more complex for the Y-inclined vein, for which also αxz is

giving an important contribution. The Y-inclined vein shows features which are elongated

both along the x and y axes, and which surround the projection of the vein on the x-y plane.

The missing apparent GND walls parallel to the y axis for the straight, Y&X-inclined and two

veins are not consistent with the experimental observation in region F of Fig. 4.8 and 4.7 at

120 cycles, where the apparent GNDs are completely surrounding the highly misoriented area.

4.9 Formation and dissociation of apparent GND density structures

In this section, the time evolution of the edge GND density has been studied by applying many

deformation cycles for the straight vein shape in Fig. 4.28. The effect of the initial density of

immobile dislocations in the vein and the ratio between mobile and immobile dislocation

densities on the formation or dissociation of GND walls is investigated. The simulation results

are compared with the behaviour of the different regions shown in Fig. 4.9.

The displacement amplitude U(t) in Fig. 4.27 is chosen to simulate the experimental strain

amplitudes shown in Fig. 4.11 and it varies between two extreme values depending on the
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Figure 4.36 – Maximum and minimum values of the applied displacement as a function of the
number of cycles N .

cycle number N in a time interval Δt = 0.2 s, as shown in Fig. 4.36. The strain rate is around

0.05÷0.1 s−1. To reduce the computing time, the displacement amplitude is increased every

10 cycles instead of using the experimental intervals in Fig. 4.11 (b). Simulations are carried

out with different densities ρi mm in the vein and different ratios of initial mobile to immobile

dislocation densities, as reported in Tab. 4.3.

Im3-R0.33 Im3-R0.05 Im20-R0.05 Im100-R0.05

ρi mm 3 μm−2 3 μm−2 20 μm−2 100 μm−2

ρe+, ρe−, ρs+, ρs− (t = 0) 1 μm−2 0.15 μm−2 1 μm−2 5 μm−2

ρe+,s+, ρe+,s−, ρe−,s+, ρe−,s− (t = 0) 0.02 μm−2 0.003 μm−2 0.02 μm−2 0.1 μm−2

Table 4.3 – Initial dislocation densities for the simulations.

The different simulations are indicated by “Im3-R0.33”, “Im3-R0.05”, “Im20-R0.05” and “Im100-

R0.05”. The number after “Im” is the initial value of ρi mm in μm−2, the number after R is the

ratio between mobile and immobile dislocation densities. Initial random fluctuations with a

value up to 10% are added to the mobile dislocation densities.

The effect of the ratio R on the microstructural evolution is investigated by examining the

edge GND density ρe,GN D = (ρe+−ρe−) of the primary slip system during the early fatigue

cycles (N < 10), in which the displacement amplitude is kept constant. The pre-existing vein

represents an initial heterogeneity and it obstacles the motion of primary edge dislocations

along the Burgers vector direction. Even if the positive and negative edge dislocations move

along opposite directions when the load is reversed, the GND walls are present also after full

cycles when the applied displacement is zero (U(t) = 0) because the formation is partially

irreversible. Indeed, the dislocations in the GND walls contribute to the threshold stress
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on the primary slip system τ1
th in (2.9), which during reverse loading prevents part of the

GNDs to move to their original position. For this reason, the evolution of τ1
th during the

early cycles is analyzed in parallel. Fig. 4.37 shows the evolution of the edge GND density

ρe,GN D = (ρe+−ρe−) of the primary slip system and of τ1
th for Im3-R0.33 and Im3-R0.05, where

the following is observed:

• after one cycle GND walls clearly form for the Im3-R0.33 case, whose initial mobile

dislocation density is higher than in Im3-R0.05. More cycles are required to observe wall

formation in Im3-R0.05. In both cases τ1
th is maximum where the initial immobile vein

is located. Interestingly, the region around the vein in the Im3-R0.33 case have relatively

high τ1
th values. In fact, the absolute values are higher than those inside the vein in the

Im3-R0.05 case.

• After 3 cycles GND walls are still visible for both cases, but the GND walls in Im3-R0.33

start dissociating. The analysis of the τ1
th spatial distribution shows that in Im3-R0.33 the

region around the initial vein has patterned spots with high τ1
th values. In the Im3-R0.05

case, on the other hand, τ1
th is still maximum in the immobile vein and rather uniform

in the surroundings.

• From cycles 5 to 9 the evolution in both cases is rather different. In the case of high initial

mobile dislocation density (Im3-R0.33), the GND walls completely dissociate and the

τ1
th pattern observed after 3 cycles evolves by increasing values and by covering larger

areas. On the other hand, in the low initial mobile dislocation density case (Im3-R0.05)

the GND walls become more defined and their density increases upon cycling. Besides,

τ1
th shows maximum values at the interface of the immobile vein, where dislocations

are being accumulated. From cycles 7 to 9, dislocation multiplication starts also getting

noticeable in the surroundings (distributed spots with high τ1
th values) but the pattern

is less evident than for Im3-R0.33.

These results indicate that stable GND walls form if τ1
th is higher in the immobile vein and

at its interface than in the surrounding region (Im3-R0.05). If the initial mobile dislocation

density is high enough (Im3-R0.33), the dislocation multiplication leads to a higher τ1
th in the

surrounding region. Thus, the immobile vein is not the main structure stopping the motion of

mobile dislocations but rather the forming fatigue dislocation structures are.

To determine the effect of ρi mm , the microstructural evolution of all the cases in Tab. 4.3 is

investigated. Fig. 4.38 shows the evolution of the edge GND density ρe,GN D = (ρe+−ρe−) of

the primary slip system from cycle 10 to 50 in the four cases and the following conclusions can

be drawn:

• by comparing the values after 10 cycles, it is observed that higher initial mobile and

immobile dislocation densities lead to higher GND density values.

• In all R=0.05 cases, GND walls form after 10 cycles independently of ρi mm . In the

Im3-R0.33 case, the walls dissociate earlier.

116
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Figure 4.37 – Relationship between the geometrically necessary edge dislocation density
ρe,GN D = (ρe+−ρe−) and the threshold stress on the primary slip system for two different
values of the mobile dislocation density.
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Figure 4.38 – Geometrically necessary edge dislocation density ρe,GN D = (ρe+−ρe−), averaged
over depth (z axis), at different number of cycles N and for different mobile and immobile
dislocation densities.
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• The dissociation rate of the formed GND walls is different depending on ρi mm . In the

case of low ρi mm (Im3-R0.05), formation of a substructure of positive and negative edge

dislocations in the GND walls occurs after 10 cycles, while for higher ρi mm values partial

dissociation of the GND walls happens after more cycles (e.g. Im100-R0.05 after 30

cycles). In the particular case of Im20-R0.05, the formed GND walls are stable during

the applied cycles.

• In all four cases, the GND distribution remains stable after the displacement jump at 40

cycles.

• None of the R=0.05 cases have similar edge GND density ρe,GN D = (ρe+−ρe−) distribu-

tion to Im3-R0.33 after 50 cycles.

These results indicate that ρi mm has an effect on the evolution of GNDs.

In order to get better understanding, the τ1
th distribution is examined. Fig. 4.39 shows the

threshold stress τ1
th of the primary slip system as a function of the number of cycles N for all

the cases in Tab. 4.3. It is observed that:

• as it was already found in Fig. 4.37, Im3-R0.33 shows a patterned τ1
th distribution in the

surrounding region of the initial vein. Upon cycling, the values increase and during the

last 10 cycles the distribution does not change.

• For the same ρi mm but lower initial mobile dislocation density (Im3-R0.05), τ1
th has a

higher value at the interface of the immobile vein. Some pattern in the surrounding

region is also observable. Due to the low mobile dislocation density (0.15 μm−2), τ1
th is

not sufficiently high to make stable GND structures at the interface of the vein. Therefore,

the formation of a substructure of positive and negative edge dislocations in the GND

walls from cycle 10 on is observed in Fig. 4.38.

• The qualitative behavior of Im20-R0.05 is analogue to the early stages of Im3-R0.05

(N < 10) in Fig. 4.37. Dislocations accumulate at the interface of the immobile vein,

where τ1
th is highest, and therefore GND walls form. Patterning also evolves in the

surrounding region. In fact, it is more evident than for Im3-R0.05 due to higher initial

mobile dislocation density (see the last row in Fig. 4.39 where the same scale bar is set

in the four cases for better comparison).

• In the extreme case Im100-R0.05, the behaviour of τ1
th is similar to the first 50 cycles

of Im20-R0.05. The region surrounding the vein has, however, always low τ1
th . Indeed,

even though the case Im100-R0.05 has higher initial mobile dislocation density, there

is no pattern formation. The boundary effects are noticeable in this case due to the

difference of the hardening behaviour of the two material models (dislocation based

plasticity and von Mises plasticity).

The reason behind the presence or absence of pattern formation is related to the initial mobile

dislocation density, which by Orowan’s law (1.12) is related to the dislocation velocity. The
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Figure 4.39 – Threshold stress τ1
th on the primary slip system at different number of cycles N

and for different mobile and immobile dislocation densities. The last row shows τ1
th at cycle

50 with the same color scale.
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Figure 4.40 – Velocity at cycle 50 for different mobile and immobile dislocation densities.

dislocation velocity at cycle 50 is plotted for the different cases in Fig. 4.40 and the analysis

shows that:

• in both Im3-R0.33 and Im3-R0.05, where the initial ρi mm is low, the vein region has

non-zero velocity. In Im3-R0.05, there are however more areas with higher velocity. This

is in good agreement with Orowan’s law (1.12) because the mobile dislocation density in

that case is lower. The presence of high velocity regions at the interface of the vein in

Im3-R0.05 leads to the formation of the GND walls observed in Fig. 4.38.

• The velocity field of Im20-R0.05 shows null velocity in the vein region but the velocity

field in the surrounding is similar to the Im3-R0.05 case and pattern forms. Still the

velocity values at the interface of the vein are high and that is why walls are formed:

GNDs tend to move there.

• For Im100-R0.05, most of the simulated region has almost zero velocity field due to

the high initial mobile density. This is because Orowan’s law (1.12) gives a value of the

dislocation velocity that decreases if the mobile dislocation density is higher. This leads

to regions with lower multiplication rate and less formation of dislocation structures

around the immobile vein. As a consequence, there is no pattern formation in the

surroundings but only on the walls that act as main obstacle during fatigue.

These results show that the dissociation process of GND walls depends not only on the ratio

R as shown before, but also on the initial conditions. For a given ratio R, the initial values

determine the microstructural evolution: either the GND walls transform with further cycling

(Im3-R0.05), are stable around the vein and do not prevent pattern formation (Im20-R0.05)

or act as a dominant obstacle for dislocation motion and inhibit pattern formation (Im100-

R0.05).

Fig. 4.41 shows the evolution of the apparent GND density as a function of the number of

cycles N for all the cases in Tab. 4.3:

• in Im3-R0.33 the traces of the apparent GND density at cycle 10 are not so strong and

are rather disperse. Upon cycling the density of the traces increases but the distribution

is rather random. In fact the presence of the vein goes unnoticed.
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Figure 4.41 – Apparent GND density at different number of cycles N and for different values of
the dislocation densities.
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• In Im3-R0.05 the vein is dominant during the first 20 cycles: the high density apparent

GND traces are mainly localized in the surrounding of the vein. During the last 30 cycles,

the walls are still visible but the surrounding areas also start showing high apparent

GND traces.

• In Im20-R0.05, the distribution of the initial apparent GND traces resembles the one

of Im3-R0.05 at cycle 30-40. The presence of the immobile vein is visible by apparent

GND walls but the surroundings have also high apparent GND traces. Upon cycling the

area where the vein is located stays free of traces. Its dimension is similar to other areas

where there are no apparent GNDs but where there were no initial heterogeneities.

• When the initial immobile dislocation density is high enough (Im100-R0.05) the vein

is dominant during all the applied cycles. We observe that high apparent GND density

walls are formed after 10 cycles and that they hardly vanish.

Tab. 4.4 summarizes the main results observed in these simulations. Briefly, the complete

dissociation of edge GND walls takes place only if the ratio R is 0.33. For R=0.05, only partial

dissociation is observed and generally edge GND walls are stable during cyclic deformation.

The threshold stress τ1
th shows walls at the interface of the immobile vein only when stable

edge GND walls form (R=0.05), while it shows only structures around the vein in the case

R=0.33. The apparent GND density is strongly correlated with the threshold stress τ1
th rather

than with the edge GND density. A strong pattern around the vein can form for lower values of

the mobile dislocation density (Im3-R0.33, Im3-R0.05, Im20-R0.05), while for higher values of

the dislocation densities (Im100-R0.05) only walls around the vein form.

Im3-R0.33 Im3-R0.05

ρe,GN D Wall dissociation during the first cycles Formation and substructuring of walls

τ1
th Pattern forming around the vein Formation of walls and pattern around the vein

ρapp Pattern forming around the vein Formation of walls and pattern around the vein

Im20-R0.05 Im100-R0.05

ρe,GN D Formation of walls Formation and partial dissociation of walls

τ1
th Formation of walls and pattern around the vein Walls and strong vein

ρapp Walls and strong pattern around the vein Strong walls

Table 4.4 – Summary of the results.

The simulated apparent GND density can be compared to the behaviour of the three regions

of the experiment in Fig. 4.9:

• region G: the dissociation of pre-existing GND walls and the few appearing traces around

them are comparable to the case Im3-R0.33.
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• Region A: pre-existing GND walls rearrange and a pattern around the initial traces form.

This is comparable to the case Im20-R0.05.

• Region B: high density initial GND traces are present; they rearrange and form per-

manent GND walls after 120 cycles. This is comparable to the cases Im3-R0.05 and

Im100-R0.05.

4.10 Discussion and conclusion

In conclusion, the CPFE method, used with a dislocation-based constitutive model predict-

ing patterning, can correlate the characteristics of dislocation structures with the crystal

lattice rotation. This feature is not available in existing dislocation-based model for fatigue

[Déprés et al., 2008] because no coupling with a FE solver is implemented. Analyses of X-ray

experiments on polycrystalline structures have been compared with the CPFE method, using

phenomenological constitutive laws [Obstalecki et al., 2014], however such an analysis at the

micrometre length scale is not available. The main rotation components around the edge

dislocation line ([12̄1]) and the slip plane normal ([111]) observed by Mughrabi [Mughrabi,

2006] are consistent with the experimental results shown in this work. The simulations suggest

that, at a larger length scale (of the order of 10 μm), these components are affected by the

initial misorientation and the resulting inhomogeneity of the stiffness tensor, as shown in

section 4.5. At smaller length scale (of the order of 1 μm) the specific shape of dislocation

structures affect the rotation and the Nye tensor components, as shown in section 4.6. The

simulations suggest that a dislocation structure that has a bending in the slip plane can better

reproduce the experimental features observed, as shown in section 4.7. This is consistent with

TEM observations made on the (111) slip plane shown in section 1.1. The simulations are

useful to understand the relationship between GNDs and Nye tensor components, which do

not always correspond to real dislocations. Highly misoriented regions can be surrounded

by apparent GNDs even if the actual GND content is constituted mainly by edge dislocations,

forming walls elongated along the slip plane normal, as shown in section 4.8. Initial hetero-

geneities at the micrometre length scale were not introduced in existing dislocation-based

models for fatigue, but they turn out to affect the evolution of the lattice rotation of differ-

ent regions, depending on the initial dislocation density, as shown in section 4.9. Finally, a

comparison with the Kuhlmann-Wilsdorf theory [Kuhlmann-Wilsdorf, 1979a] explained in

section 1.6, assuming that veins and channels are giving a similar contribution to the plastic

strain in the material, can be made. The experiment and the simulations are showing highly

misoriented regions, which can be caused by gradients of the plastic strain amplitude. In the

Kuhlmann-Wilsdorf theory these gradients are not present. Therefore, the results obtained

support the Mughrabi model [Mughrabi and Obst, 2005], in which channels accommodate a

higher strain amplitude. However, Mughrabi model has to be extended to a 3D one, where

veins and channels are changing their position along the specimen depth, in order to capture

all the rotation components found in the experiment and in the simulations made in this

work.
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In this project the possibility to describe the cyclic fatigue behaviour of FCC metals at the

sub-micrometre length scale using the CPFE method has been investigated. A continuum

dislocation-based constitutive model has been developed for single slip deformation of single

crystals. The main step forward is the prediction of dislocation patterning appearing after

many deformation cycles. This has been achieved by the introduction of a new dislocation

multiplication law and a Gaussian dipole distance distribution. The multiplication law is

based on the introduction of the dislocation curvature as a parameter and on the approxima-

tion that dislocation segments with specific orientations are curved. The higher dimensional

dislocation theory [Hochrainer, 2015], where the dislocation density and curvature are both

state variables, is suitable to find dislocation patterning during monotonic load [Sandfeld and

Zaiser, 2015]. The developed model for cyclic fatigue is a special case of the higher dimensional

theory, which could be used to find approximate relationships between the dislocation density

and curvature. These approximations can be introduced in a model with a lower number of

state variables, suitable to analyze cyclic fatigue.

A continuum local cross slip law has been developed to describe the behaviour of different

materials, such as copper and aluminium. The mechanical properties and the features of

dislocation patterns depend on the cross slip coefficient β. The large uncertainty on this coeffi-

cient needs further clarifications in order to develop a model that can reproduce experimental

observations without fine tuning parameters. Non-local cross slip laws have been recently

developed in continuum dislocation models [Xia and El-Azab, 2015] and used to simulate

dislocation patterning during monotonic load. The application of these laws to cyclic fatigue

needs to be further studied. The simulations carried out using the dipole-dipole interaction to

reproduce persistent slip bands have shown that the introduction of small interaction terms

can change the characteristics of developing dislocation patterns. A similar result was found

by [Walgraef and Aifantis, 1985] introducing a threshold stress above which dislocations are

liberated from veins. However, the thin PSB walls can be described only using a fine mesh,

with an element size below 100 nm, and the details of the transition from veins to PSB walls

need to be clarified.

In the multiple slip model, a continuum approach to describe dislocation junctions has been
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developed. The introduction of dislocation junctions affects strongly the features of disloca-

tion patterns, especially their shape and orientation. The recent implementation of partial

dislocations and stacking faults in a continuum model [Leung and Ngan, 2016] shows that

more accurate description of dislocation junctions can be achieved. The model developed

in this project is able to capture the formation of dislocation junctions with the primary slip

system, while a model with more state variables would be required to capture all possible dis-

location junctions. The ECCI experiments provide a valuable validation method for multiple

slip continuum dislocation models. However, methods to estimate the dislocation density and

the depth of dislocation structures are required for quantitative comparison.

The CPFE method is suitable to simulate the crystal lattice rotation and its relationship with

dislocation structures. The comparison with transmission Laue microdiffraction experiments

is limited by the volume average of this experimental technique. However, in this project,

dislocation based models were able to reproduce the features of the Nye tensor in the sur-

rounding of highly misoriented regions during cyclic fatigue. The influence of pre-existing

plastic deformations due to machining has been introduced in the model in terms of initial

lattice rotations. Simulations have shown that this is fundamental to predict the subsequent

evolution of the rotation components. The exact position of dislocation structures during

cyclic fatigue cannot be captured by the developed model if the initial dislocation distribution

is not known. A combination of Laue microdiffraction and electron microscopy techniques

could make it possible to reconstruct this initial dislocation distribution.
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A Equation summary

A.1 Single slip model for cyclic fatigue

In this section the constitutive equations of the single slip model for cyclic fatigue, introduced

in section 2.2, are summarized. The state variables used on every slip system are reported in

Tab. A.1.

ρe+ ρe− ρs+ ρs−

ρe+,s+ ρe+,s− ρe−,s+ ρe−,s−

Table A.1 – Dislocation densities used for the single slip model for cyclic fatigue.

The rate equations for these dislocation densities on every slip system α are reported in the

following. A (x, y) coordinate system is used, where the y axis is along the Burgers vector

direction.

ρ̇α
e+ = Fα

s (hs)∣vα∣
l̄c

(ρα
e+,s++ρα

e+,s−)−4ďα
e ∣vα∣Fα

e (he)ρα
e+ (ρα

e−+ρα
e−,s++ρα

e−,s−)− ∂

∂y
(Fα

e (he)ρα
e+vα) .

(A.1)

ρ̇α
e− = Fα

s (hs)∣vα∣
l̄c

(ρα
e−,s++ρα

e−,s−)−4ďα
e ∣vα∣Fα

e (he)ρα
e− (ρα

e++ρα
e+,s++ρα

e+,s−)+ ∂

∂y
(Fα

e (he)ρα
e−vα) .

(A.2)

ρ̇α
s+ = Fα

e (he)∣vα∣
l̄c

(ρα
e+,s++ρα

e−,s+)−4ďα
s ∣vα∣Fα

s (hs)ρα
s+ (ρα

s−+ρα
e+,s−+ρα

e−,s−)+ ∂

∂x
(Fα

s (hs)ρα
s+vα) .

(A.3)
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ρ̇α
s− = Fα

e (he)∣vα∣
l̄c

(ρα
e+,s−+ρα

e−,s−)−4ďα
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s++ρα
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ρ̇α
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s ∣vα∣Fα
s (hs)ρα

e−,s+ (ρα
s−+ρα

e+,s−+ρα
e−,s−)

+ ∂

∂y
(Fα

e (he)ρα
e−,s+vα)+ ∂

∂x
(Fα

s (hs)ρα
e−,s+vα)+ β∣vα∣

b
(ρα

s++ρα
s−) . (A.7)

ρ̇α
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The dipole stability distances hα
e and hα

s , which are functions of the resolved shear stress τα,

are given by:

hα
e = Gb

8π(1−ν)∣τα∣ , (A.9)

hα
s = Gb

8π∣τα∣ . (A.10)

The fraction of edge and screw mobile dislocations Fα
e and Fα

s correspond to the green area

below the Gaussian curve in Fig. 2.6. They are calculated using:

Fα
e (hα

e ) = 1

2
(1−erf( hα

e − h̄α
e

0.467h̄α
e

)) , (A.11)

Fα
s (hα

s ) = 1

2
(1−erf( hα

s − h̄α
s

0.467h̄α
s

)) , (A.12)
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where erf is the error function. h̄α
e and h̄α

s are the mean dipole distances for edge and screw

dislocations:

h̄α
e = 1

8πα(1−ν)√(ρα
e++ρα

e−+ρα
e+,s++ρα

e+,s−+ρα
e−,s++ρα

e−,s−) , (A.13)

h̄α
s = 1

8πα(1−ν)√(ρα
s++ρα

s−+ρα
e+,s++ρα

e+,s−+ρα
e−,s++ρα

e−,s−) . (A.14)

A.2 Multiple slip model for cyclic fatigue

In this section the constitutive equations of the multiple slip model for cyclic fatigue based on

dislocation junctions, introduced in section 3.2, are summarized. The state variables used on

every slip system are reported in Tab. A.2.

ρ�+ ρ�− ρ⌜+ ρ⌜−

ρ�+,⌜+ ρ�+,⌜− ρ�−,⌜+ ρ�−,⌜−

Table A.2 – Dislocation densities used in the junction constitutive model.

The rate equations for these dislocation densities on every slip system α are reported in the

following. A (x, y) coordinate system is used, where the y axis is along the Burgers vector

direction.
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(A.17)
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e ∣vα∣ρα
�+,⌜− [cosΦ(ρα

�− cosΦ+ρα
⌜+ sinΦ)+ sinΦ(ρα

�− cosΦ+ρα
⌜+ sinΦ)]

−4ďα
s ∣vα∣ρα

�+,⌜− [sinΦ(ρα
⌜− cosΦ+ρα

�− sinΦ)+cosΦ(ρα
⌜+ cosΦ+ρα

�+ sinΦ)]
− ∂

∂x
(∣vα∣ρα

�+,⌜− (cosΦ− sinΦ))− ∂

∂y
(∣vα∣ρα

�+,⌜− (cosΦ+ sinΦ))
+ β∣vα∣

b
[cosΦ(ρα

⌜++ρα
⌜−)+ sinΦ(ρα

�++ρα
�−)] . (A.20)

ρ̇α
�−,⌜+ =−4ďα

e ∣vα∣ρα
�−,⌜+ [cosΦ(ρα

�+ cosΦ+ρα
⌜− sinΦ)+ sinΦ(ρα

�+ cosΦ+ρα
⌜− sinΦ)]

−4ďα
s ∣vα∣ρα

�−,⌜+ [sinΦ(ρα
⌜+ cosΦ+ρα

�+ sinΦ)+cosΦ(ρα
⌜− cosΦ+ρα

�− sinΦ)]
+ ∂

∂x
(∣vα∣ρα

�−,⌜+ (cosΦ− sinΦ))+ ∂

∂y
(∣vα∣ρα

�−,⌜+ (cosΦ+ sinΦ))
+ β∣vα∣

b
[cosΦ(ρα

⌜++ρα
⌜−)+ sinΦ(ρα

�++ρα
�−)] . (A.21)

ρ̇α
�−,⌜− =−4ďα

e ∣vα∣ρα
�−,⌜− [cosΦ(ρα

�+ cosΦ+ρα
⌜− sinΦ)+ sinΦ(ρα

�− cosΦ+ρα
⌜+ sinΦ)]

−4ďα
s ∣vα∣ρα

�−,⌜− [sinΦ(ρα
⌜+ cosΦ+ρα

�+ sinΦ)+cosΦ(ρα
⌜+ cosΦ+ρα

�+ sinΦ)]
− ∂

∂x
(∣vα∣ρα

�−,⌜− (cosΦ+ sinΦ))+ ∂

∂y
(∣vα∣ρα

�−,⌜− (cosΦ− sinΦ))
+ β∣vα∣

b
[cosΦ(ρα

⌜++ρα
⌜−)+ sinΦ(ρα

�++ρα
�−)] . (A.22)

The dislocation velocity vα grows linearly with the applied stress:

vα =B (∣τα∣−ταth −τp) , (A.23)
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A.3. List of symbols

while it is zero if (ταth +τp) > ∣τα∣. The threshold stress ταth is given by dislocation interactions

on various slip systems:

ταth =Gb

���� 12∑
δ=1

ξαδρδ , (A.24)

where ξαδ is the matrix representing the strength of interactions between dislocations of slip

systems α and δ [Arsenlis and Parks, 2002].

A.3 List of symbols

ρe+ Positive edge dislocation density

ρe− Negative edge dislocation density

ρs+ Positive screw dislocation density

ρs− Negative screw dislocation density

ρe+,s+ Curved dislocation density with positive edge and screw components

ρe+,s− Curved dislocation density with positive edge and negative screw components

ρe−,s+ Curved dislocation density with negative edge and positive screw components

ρe−,s− Curved dislocation density with negative edge and negative screw components

α Slip system index

δ Slip system index

Fe Fraction of edge mobile dislocations

Fs Fraction of screw mobile dislocations

he Dipole stability distance for edge dislocations

hs Dipole stability distance for screw dislocations

h̄e Mean dipole distance for edge dislocations

h̄s Mean dipole distance for screw dislocations

τ Resolved shear stress

G Shear modulus

ν Poisson ratio

v Dislocation velocity

l̄c Average segment length for curved dislocations

Λ̄ Average segment length for curved dislocations

ďe Annihilation distance for edge dislocations

ďs Annihilation distance for screw dislocations

b Magnitude of the Burgers vector

β Cross slip coefficient

l⃗lock Dislocation junction vector (see Fig. 3.3)

Φ Angle between the edge dislocation line and l⃗lock (see Fig. 3.3)

τth Threshold stress

τp Peierls stress

131



Appendix A. Equation summary

Figure A.1 – Quantities describing the stress-strain hysteresis loops.

A.4 Quantities describing the stress-strain curve

In this section the quantities used to describe the stress-strain curves during cyclic fatigue

are defined. As shown in Fig. A.1, the plastic strain amplitude γpl is the halfwidth of the

stress-strain hysteresis loop at zero stress. The elastic strain amplitude is found by subtracting

the plastic strain amplitude from the total strain amplitude. In single slip shear experiments

or simulations, the total strain is a function of time (γ(t)). The “elastic strain” and “plastic

strain” (without the word “amplitude”) refer to the quantities:

γel (t) = τ(t)/G , (A.25)

γpl (t) = γ(t)−τ(t)/G , (A.26)

where τ(t) is the resolved shear stress as a function of time and G is the shear modulus.

In multiple slip condition, the definitions (A.25)-(A.26) are used for every slip system. In

compression experiments or simulations, the total strain amplitude refers to the relative

elongation along the compression axis and the definitions (A.25)-(A.26) are used with the

Young modulus E in place of G . The cumulative plastic strain γpl ,cum (t) after a time t is

defined as:

γpl ,cum (t) =∫ t

0
∣γ̇pl (ξ)∣dξ . (A.27)

In the following, the stress quantities in Fig. A.1 are defined [Kuhlmann-Wilsdorf and Laird,

1979]:
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A.4. Quantities describing the stress-strain curve

• yield stress τy : stress value at which the material starts to deform plastically;

• maximum stress τmax : maximum value of the stress reached during one cycle;

• friction stress τ f : internal stress value necessary for the motion of dislocations;

• backstress τb : stress value contributing to the internal stress acting on dislocations.

When the stress is reversed, the backstress continues to contribute along the same

direction.
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