Network Flow Integer Programming to Track Elliptical Cells in Time-Lapse Sequences

We propose a novel approach to automatically tracking elliptical cell populations in time-lapse image sequences. Given an initial segmentation, we account for partial occlusions and overlaps by generating an over-complete set of competing detection hypotheses. To this end, we fit ellipses to portions of the initial regions and build a hierarchy of ellipses, which are then treated as cell candidates. We then select temporally consistent ones by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to partial occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.


Publié dans:
Transactions on Medical Imaging (TMI), 36, 4, 942-951
Année
2017
ISSN:
0278-0062
Mots-clefs:
Laboratoires:




 Notice créée le 2016-12-10, modifiée le 2019-03-17

Preprint:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)