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ABSTRACT

The big data imposes the key problem of generalizability
of the results. In the present contribution, we discuss sta-
tistical tools which can help to select variables adequate for
target level of abstraction. We show that a model considered
as over-fitted in one context can be accurate in another. We
illustrate this notion with an example analysis experiment
on the data from 13 university Massive Online Open Courses
(MOOCs). We discuss statistical tools which can be helpful
in the analysis of generalizability of MOOC models.
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1. INTRODUCTION

The rapid growth of Massive Online Open Courses (MOOCs)
has shown significant impact not only on the education but
also on educational research. Over 100 world class univer-
sities partner with MOOC platforms to provide free educa-
tion. Many of these universities, use data analytics to pro-
vide indicators to the policy makers, and valuable insights
to the teachers and producers.

Researchers from emerging educational fields, such as learn-
ing analytics and educational data mining, attempt to make
sense from the huge datasets from the MOOC providers (for
example Coursera, Edx). These large datasets provide an
opportunity to detect the slightest differences in the be-
haviour which are correlated to the students’ performance.

However, the big data involves the risk of misinterpreting
the results. The misinterpretations could surface mainly be-
cause of two reasons. First, the effect sizes are few orders of
magnitude smaller then we used to expect in classical educa-
tional psychology studies; and the results are still significant
due to the large sample. Second, “black-box” approaches like
Support Vector Machines or Neural Networks give us great
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predictive power of models but do not explain the underlying
processes.

Both of these reasons can lead to “overfitting” a model for
a given context. Still, the same model can be be accurate
in another context as illustrated in Figure 2. Choosing too
specific descriptors could lead to the models which precisely
describe one student but fail to generalize to new concepts.
Too vague descriptors tend to generalize better but inform
less about the specifics of the underlying processes. In sta-
tistical terminology this is often referred to as the “bias-
variance trade-off”.
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Figure 1: Example of layers to which we can draw
conclusions from instances of MOOC:Ss if the gener-
alizability issues are addressed correctly.

The bias-variance trade-off is the central problem in statis-
tical learning. It corresponds to the fact that one cannot
minimize both quantities, “bias” and “variance”, at the same
time. A model with large bias is a smooth model not meant
to fit sample points very closely but still captures the general
trend in the data. Conversely, a model with large variance
(not smooth) varies a lot for similar input parameters in or-
der to fit well to each point in the dataset, often causing the
so-called “overfitting”.
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The objective of this paper is to highlight the potential prob-
lem of closed-world context of MOOC research. We discuss
techniques for leveraging existing models to more general
context. We argue that designing context independent fea-
tures is crucial for building generalizable models and we il-
lustrate how variable selection process can be enhanced with
statistical techniques. We illustrate a statistical technique
which can be helpful in the choice of the important variables.

We address the following three research questions:

1. How to measure the extent to which the MOOC re-
search as generalizable?

2. How to leverage predictive models in a MOOC to a
broader context?

3. How to improve model’s accuracy by restraining the
scope of the variables used for prediction purposes?

2. RELATED WORK

2.1 Student Categorization

The common approach for finding generalizable patterns is
to classify students into groups. To the best of our knowl-
edge, there exist only a few categorisation schemes, mostly
based on what emerges as a pattern of behaviour from MOOC
students. These categories are based on the students’ mo-
tivation [20], engagement patterns [10, 14, 16, 7] or demo-
graphics [5, 4].

There are many categorisation schemes depending on the
engagement patterns. [10] categorised the students in Com-
pleting, Auditing, Disengaging and Sampling students based
on their activities which range from watching majority of
lectures and submitting all the assignments (Completing) to
watching only one or two lectures and no assignment sub-
missions (Sampling). In a connectivist MOOC setting, [14]
categorised students into Active (students who adapt well
to the connectivest pedagogy), Passive (frustrated ones) and
Lurkers (who actively follow the course but do not interact
with anyone). Phil Hill first categorised MOOC students
into Lurkers (ones who only enrol or sample the course),
Active (fully engaged with the course material, quizzes and
forums), Passive (only consume the content, did not partic-
ipate in forums) and Drop-ins (consumed only a part of the
course as an Active student) [8]. Later he revised his cate-
gories and divided the Lurkers into No-shows and Observers
[7].

These schemes are either defined by hard-coded thresholds
or by unsupervised learning techniques. For that reason,
they remain robust in terms of generalizability within the
MOOC’s context, but they are hard to generalize outside
of it. In this study, we will rather discuss regression than
classification/clustering, keeping in mind that similar obser-
vations can be done in both contexts.

2.2 Performance and engagement prediction

Student’s performance is one of the key metrics analyzed
in MOOCs. Many studies chose performance as an indi-
cator for showing the value of the categorization methods.
Massive datasets allow us to discover relation between per-
formance and even the smallest factors like the number of
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pauses during watching a MOOC video or ratio of a video re-
played [12]. Performance is also a crucial indicator for policy
makers and MOOC practitioners. Reports focus on perfor-
mance of MOOCs as a function of performance of students
[13].

Previous studies on performance often concern a small set
of MOOGCs [1, 17, 9]. These studies provide insights about a
large cohort of students and generalize to another cohorts,
however the studies encounter lack of generalizability due to
a small sample in the sense of course variability. In other
studies, authors used time spent on lecture video, lecture
quiz, homework, forum, quiz, assignments to predict stu-
dents’ learning gain [3, 11, 21, 3]. Lauria et al. [11] used
the amount of content viewed, forum read, number of posts,
assignments and quizzes submitted, to predict the perfor-
mance and the engagement of the students. Wolff et al.
[21] used the temporal clickstream data to predict students’
performance.

These studies risk having high bias towards the courses in
context and thus might lack the generalizability to be ex-
tended to courses with different content and/or courses from
different domain. However in the aforementioned works, it is
difficult to confirm our claim due to small number of MOOCs
being analyzed. An example with generalizable set is shown
by [2], where authors used the weekly time series data with
2-, 3-, 4-, and 5- grams to predict the final grades of the
students. They experienced issues with the predictive mod-
els being generalisable - the model accuracy decreases as the
authors used the same course session, to a different session
from the same course, to a different course.

3. PROBLEM STATEMENT

In the MOOC context, models with large variance might
correspond to the cases where one includes specific informa-
tion about users, which are characterising only the sample
at hand. For example, a model which includes exact timing
of actions into account, could fit precisely to the data, since
it identifies the user by the time of his actions, but it pro-
vides no generizability to new samples. Conversely, models
with high bias correspond to situations when one considers
general indicators like only the number of forum activities
in a MOOC - thus, the model will fit worse to specific users
but is more likely to generalize.

In practice, it is impossible to make both variables small,
i.e. to retain both good fitness and smoothness. We need
to choose the complexity of the model such that the sum
of these two quantities is minimised. One could show that
for any statistical learning method, the error can be decom-
posed to variance and bias terms. For a given target value
y, predictors x and the estimator f, the error of the model
can be depicted as:

E[(y — f(a:))Q] = Bias[f(a:)]2 +Var[f(z)} +02, (1)

where o is the standard deviation of the residuals,

Bias [f(a:)] = E[f(l’)] - f(x)
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and

Var[f(2)] = E[(f(=) - Elf(2)])*].

In other terms, bias is the squared distance between the
real output f(x) and the average prediction for given z, i.e.
the E[f(z)]. The bias gets large whenever the average of
predictions z differs highly from E[ f (az)] Conversely, the
variance, expressing how do prediction vary from average
around z, gets large whenever the variability is high.

;
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Figure 2: Influence of bias-variance trade-off on the
generalzation error - illustrative conceptual draw-
ing.

The ideal model would have both quantities Bias| f (z)] % and

Var [ f (17)] equal to zero, but, as we mentioned before, it is
not practically possible. However, we can control this error,
as both quantities depend on the complexity of the model.
For example, a linear model with large number of parameters
has high variance and thus the error term increases. On
the contrary, if one chooses low complexity (small number
of variables), the model might have high error due to the
high bias. The “best” model is somewhere in the middle, as
illustrated by the green curve in Figure 2.

What is often missed in the analysis of the bias-variance
plot, is that the error depends also on the context in which
we generalize. Particularly in the MOOC context, in Figure
2 the green curve corresponds to generalization to another
instance of the same MOOC, whereas the error follows a
different pattern (orange curve) if we change the context to
another MOOC.

4. MATERIALS AND METHODS

As we focus on the concept of generalizability of models
and robustness of variables, we investigate our approach on
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several different MOOCs. We used data from 13 MOOC:s,
from EPFL, from both coursera and edX platforms. The
dataset contains 1 MOOC which had 3 sessions in 3 con-
secutive semesters and 2 MOOCs which had 2 sessions in 2
consecutive semesters, as indicated in Table 4.

This setup allows us to investigate several aspects of gener-
alizability. We investigated the fit of a model in correspon-
dance to: 1) the course itself; 2) another instance of the
same course; 3) another engineering course.

4.1 Setup

In order to attain a generalizable model, the setup must
be consistent between the training data and the test data.
Thus, we use the variables which could be defined for all the
courses. Additionally, all the scores are normalized to the
same range (0 - 100). Since courses have different lengths,
we focus only on student activities in the first week. Finally,
since 95% of the students did not submit any assignments
and significantly bias linear models, we analysed only those
students who got at least 1 point as their final grades. Note,
that the context we are defining serves mainly as an illus-
tration, thus we choose a relatively simple setup for trans-
parency.

As the measure of performance of a model we take the Nor-
malized Mean Squared Error (NMSE), defined as

NMSE = Var(y — f(z))/Var(y),

where y is the dependent variable to predict, f is the esti-
mator of the relation between y and independent variable =
and Var corresponds to the sample variance.

4.2 Example method

In the linear regression, the main source of complexity is due
to the number of variables in the model. Classical statistics
provide us with robust tools for variable selection, such as
ANOVA, Akaike Information Criteria. These techniques are
useful for their inferential value, however, they do not guar-
antee the best generalizability in terms of prediction.

One of the techniques, where the complexity is controlled
using a parameter that also affects the performance of the
model, is regularized linear regression. In classical statistics,
called ridge regression, the standard linear model is extended
with an additional, regularizing term. This regularising term
controls the parameters of the model with respect to the
performance measure based on the prediction, by decreasing
the importance of variables which do not account for the
prediction.

In particular, given the independent variables X1, X, ..., Xq4
and the dependent variable Y we build a model minimizing

k
BlY — BiX1 — BoXo — . — B X" + XD B2, (2)

i=1
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where d is the number of variables, S1, 2, ..., 84 are the pa-
rameters of the model and p = 2.

If ) is large, we put more weight to the sum of 8s. Therefore,
the number of parameters will be reduced and the model
will have a low bias. On the other hand, if A is small, the
model corresponds to linear regression and the variance is
high since we use all the variables.

We chose this model for our analysis since it allowed us to
control both the bias and the variance with a single param-
eter \. Moreover, changing the value of p from 2 to 1 is
(2), gives better results in many setups. Hence, we choose
to use p = 1. The model is known in the machine learning
literature as LASSO [19]. The complete algorithm, for those
interested, can be found in [19]. Here we are refraining our-
selves to the basic description as this is not the main focus
of the paper.

4.3 Variables

For illustrating the problem, we chose the students’ final
grade in the course as the dependent variable. Following are
the features that we extracted from the data for modeling
this value.

1. Counts: We counted different online activities exhib-
ited by the students. 1) Lectures: lecture view, lecture
re-view, lecture download and lecture re-download; 2)
Quiz: quiz submission, quiz re-submission, here we
differentiated between the quizzes as an exercise, in-
video quizzes and the surveys; 3) Assignments: assign-
ment submission and assignment re-submission; 4) Fo-
rums: thread launches, upvotes, downvotes, subscrip-
tions, views, comments and posts.

2. Delays: We computed the time difference between the
different events in the MOOC structure and students’
activities. 1) First View Delay: the time difference be-
tween the first view or first download of the lecture and
the time when the lecture was online; 2) Overall View
Delay: the average first view delay for all the lecture
views and downloads; 3) Between Lecture Delay: the
time difference between the views or downloads of two
different lectures; 4) Within Lecture Delay: the aver-
age time difference between two views and/or down-
loads of the same lecture; 5) First Quiz Attempt Delay:
the time difference between the first submission for a
quiz and the time when the quiz was online; 6) Within
Quiz Time: the time difference between two attempts
for the same quiz; 7) Overall Quiz Attempt Delay: the
average first quiz attempt delays for all the quizzes.

3. Progress: We computed the score difference between
the two consecutive attempts to the same quiz or the
same assignment.

4. 2-way Transitions: We labeled the different activi-
ties as L, A, Q and F for lectures, assignments, quizzes,
and forums respectively. Further, we constructed a
time-series of the actions and counted how many times
the action pairs (for example, AA, AL, AF, LQ, FL,
16 pairs) occur in the time series for each student.
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5. 3-way Transitions: using the same time series, as
to compute the 2-way transitions, we counted how
many times the action triples (for example, AAA, FAL,
QAF, LLQ, FLL, 64 triples) occur in the time series
for each student.

5. RESULTS

Using the variables, defined in the Section 4.3, we illustrate
the setup for modelling the data. As we mentioned in the
Section 4.1, we considered only the activities from the first
week of the courses and from those students who scored at
least 1. We would also like to emphasize here that the main
aim of this contribution is not to present a model that has
the least error, but to show how we can build generalizable
models taking into account the bias-variance trade off.

In the proposed setup, we demonstrate how generalizable a
model is to: 1) the students from the same course (separate
test set of 20% of observations), 2) the students from another
instance of the same course, 3) to a different course.
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Figure 3: Prediction error (NMSE) for the test sam-
ples, for the different values of the shrinkage factor
A in (2), using all the variables.

First, we analyze the model fit to the first session of the
Numerical Analysis course and test it on: itself, another
session of Numerical Analysis and House Water Treatment
Systems a course from a different domain. We illustrate
the results in Figure 3. We observed that the model which
had highest predictive power on the test set in the session
1 (black curve) has the worse predictive power for another
instance of the same course (red curve), but still performs
well. The optimal shrinkage factor (X in equation (2)) turns
out to be close to 0 in both cases. This shows that almost
all the variables we introduced are included in the model.
We could conclude that the model generalizes to another
instances of the same course.

However, as we hypothesized, the full model did not fit at
all to a course from a different domain. Only with a large
value of the shrinkage factor, which removed 97 variables

409



from the model, we obtain a model with some informative
value for a course from another domain. Furthermore, the
errors become similar for all the courses, illustrating that the
model has lower variance. It generalizes better to another
course but it lost its fit to the Numerical Analysis course.

We conducted the identical analysis (see Table 1) on all the
courses mentioned in the dataset. In all the cases, gener-
alizability to another course required significant decrease in
the complexity, using the shrinkage factor. Removing cer-
tain variables from the model turns out to be crucial for
the performance. Since we started with 134 variables, to
further analyze the ability to generalize, we restricted our-
selves to a simpler case with the first three (counts, delays
and progress) groups of variables introduced in Section 4.3.

The same patterns were observed in this simpler case. The
optimal model for prediction in the same instance and in
another instance of the course have the lowest error if the
complexity (variance) is high. However, the model with
such a high complexity exhibits poor performance in another
course, from the same domain, i.e. the linear optimization.

As hypothesized, variables which were removed by LASSO,
are course-structure dependent. The most generalizable mod-
els contain the variables related to the lecture, forum and
quiz activities. These variables provide the required gener-
alizability to the model and hence we observe that as we
increase the shrinkage factor, the predictive power of the
model increasingly became similar for the different courses.

6. CONCLUSION

We demonstrated through examples that in the terms of
bias-variance trade-off, achieving both the specificity and
generalizability is not possible while modelling student be-
haviour. Through the statistical methods available, one can
only achieve one of the two goals, or find an optimum solu-
tion that is specific to one course and only reveals the surface
learning behaviour of the students from a course from an-
other domain, or vice verse.

Similar validation framework, analysing fitness in the same
course, another session of the same course and another course
was previously introduced [2] in literature. Results from this
work are equivalent to ours with some predefined and fixed
complexity parameter. In our work we show that practi-
tioners can modulate the complexity and generalizabiity by
selecting a subset of variables.

Previous works, have small sample size in terms of number
of MOOGCs. It is therefore difficult to assess their general-
izability. For example, Social Network Analysis (as shown
by [18, 15, 6]) is based on the motivation of the student -
if the students are sharing the exact answers (or revealing
them in some other ways) forum view can play a big role in
achievement. Clickstreams (as shown by [21]) in a video are
highly dependent on the content. Finally, from the method-
ological perspective generalizability is also a design choice -
for example - if we choose a smaller number of clusters in
unsupervised learning, we may obtain more robust results
(smaller variance higher bias).
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|

| | | | | |
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Figure 4: Illustration of bias-variance trade-off from
engineering courses. Prediction error (NMSE) for
the test samples, for the different values of the
shrinkage factor \ in (2)

Shrinkage Factor

7. DISCUSSION

Our goal was to illustrate the generalizability issue which we
encounter in any machine learning or learning analytics se-
tups. We did not compare multiple algorithms, but we used
a simple one to support our claims. It is worth mention-
ing that the same phenomenon is encountered in any other
machine learning method.

Moreover, the same analysis can be performed with any reg-
ularized regression algorithms, i.e., consisting a parameter
to control the complexity of the model, like SVM, logistic
regression, neural networks, etc. In each of these methods
regularization selects the optimal sets of parameters.

Finally, the choice of the feature set should be based on the
desired outcome of modelling student behaviour in a MOOC.
If the goal is to attain high predictability in a small variety of
courses, one could choose to include course-structure related
variables. On the other hand, if the modelling requirement
is to have a decent genralizability over a wide variety of
courses, one has to compromise the predictability over a set
of courses and select only the course-structure-independent
variables.
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