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Abstract
The celebrated distributed computing approach for building systems and services using multiple

machines continues to expand to new domains. Computation devices nowadays have additional

sensing and communication capabilities, while becoming, at the same time, cheaper, faster and

more pervasive. Consequently, areas like industrial control, smart grids and sensor networks are

increasingly using such devices to control and coordinate system operations. However, com-

pared to classic distributed systems, such real-world physical systems have different needs, e.g.,

real-time and energy efficiency requirements. Moreover, constraints that govern communication

are also different. Networks become susceptible to inevitable random losses, especially when

utilizing wireless and power line communication.

This thesis investigates how to build various fundamental distributed computing abstractions (ser-

vices) given the limitations, the performance and the application requirements and constraints of

real-world control, smart grid and sensor systems. In quest of completeness, we discuss four dis-

tributed abstractions starting from the level of network links all the way up to the application level.

At the link level, we show how to build an energy-efficient reliable communication service. This

is especially important for devices with battery-powered wireless adapters where recharging

might be unfeasible. We establish transmission policies that can be used by processes to decide

when to transmit over the network in order to avoid losses and minimize re-transmissions. These

policies allow messages to be reliably transmitted with minimum transmission energy.

One level higher than links is failure detection, a software abstraction that relies on communication

for identifying process crashes. We prove impossibility results concerning implementing classic

eventual failure detectors in networks with probabilistic losses. We define a new implementable

type of failure detectors, which preserves modularity. This means that existing deterministic

algorithms using eventual failure detectors can still be used to solve certain distributed problems

in lossy networks: we simply replace the existing failure detector with the one we define.

Using failure detectors, processes might get information about failures at different times. How-

ever, to ensure dependability, environments such as distributed control systems (DCSs), require a

membership service where processes agree about failures in real time. We prove that the neces-

sary properties of this membership cannot be implemented deterministically, given probabilistic

losses. We propose an algorithm that satisfies these properties, with high probability. We show

analytically, as well as experimentally (within an industrial DCS), that our technique significantly

enhances the DCS dependability, compared to classic membership services, at low additional cost.
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Abstract

Finally, we investigate a real-time shared memory abstraction, which vastly simplifies program-

ming control applications. We study the feasibility of implementing such an abstraction within

DCSs, showing the impossibility of this task using traditional algorithms that are built on top of

existing software blocks like failure detectors. We propose an approach that circumvents this

impossibility by attaching information to the failure detection messages, analyze the performance

of our technique and showcase ways of adapting it to various application needs and workloads.

Keywords: Distributed abstractions, probabilistic message loss, transmission policy, partially

observable Markov decision problem, reliable links, failure detection, consensus, distributed

control system, membership, distributed shared memory, real-time systems
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Résumé
L’approche du calcul réparti, c’est-à-dire la coordination de multiples machines afin de construire

des systèmes ou d’offrir différents services, voit son domaine d’application s’élargir de plus en

plus. Aujourd’hui, les unités de calcul sont dotées de nouvelles capacités de communication

et de mesures, tout en devenant moins chères, plus rapides et plus répandues. Par conséquent,

des domaines comme le contrôle industriel, les réseaux intelligents, ou les réseaux de capteurs

emploient de plus en plus de tels outils afin de contrôler et coordonner les opérations de leurs

systèmes. Cependant, par rapport aux systèmes répartis classiques, ces systèmes physiques "réels"

imposent des contraintes différentes, par exemple, de temps réel ou de rendement énergétique. De

plus, les contraintes sur les communications sont également différentes. Les réseaux sont sujet à

d’inévitables et imprévisibles pertes, notamment dans le cas de communication sans-fil ou par

courants porteurs en ligne.

Cette thèse étudie comment diverses abstractions fondamentales (services) du calcul réparti

peuvent être implémentées étant donné les contraintes imposées par les cas concrets de contrôle,

de réseaux intelligents et de systèmes de capteurs. Par souci de complétude, nous présentons

quatre abstractions, depuis la couche de liaison d’un réseau, jusqu’à la couche applicative.

Au niveau de la couche de liaison, nous montrons comment construire un service de communi-

cation fiable et énergétiquement efficace. Un tel service est particulièrement important dans le

cas d’unités de calcul alimentées par batteries et communiquant sans fil, lorsque recharger ces

batteries n’est pas toujours faisable. Nous définissons quatre politiques de transmission que les

processus peuvent utiliser pour décider quand transmettre sur le réseau afin d’éviter les pertes et

minimiser les retransmissions. Ces politiques permettent de transmettre des messages de manière

fiable avec un minimum d’énergie.

Un niveau au-dessus de la couche de liaison se trouve la détection de défaillances. Il s’agit

d’une abstraction logicielle fondée sur la communication qui permet d’identifier les processus

morts. Nous prouvons l’impossibilité d’implémenter certains détecteurs classiques dans le cadre

de réseaux avec défaillances probabilistes. Nous définissons un nouveau type de détecteur de

défaillance qui est implémentable, et qui préserve la modularité. Cela implique que les algo-

rithmes existant employant les détecteurs de défaillance classiques peuvent être déployés dans

ces nouveaux réseaux directement : il suffit de substituer au détecteur classique un détecteur du

type que nous avons défini.
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Abstract

Grâce aux détecteurs de défaillances, les processus peuvent obtenir des informations à propos des

défaillances à différents instants. Cependant, pour garantir un niveau de fiabilité, certains environ-

nements comme les systèmes de contrôle répartis (distributed control systems, DCS) requièrent

un service d’adhésion où les processus se mettent d’accord à propos des défaillances en temps

réel. Nous prouvons que, étant données des défaillances probabilistes, les propriétés d’un tel

service d’adhésion ne peuvent pas être implémentées de manière déterministe. Nous présentons

un algorithme qui satisfait ces propriétés, avec haute probabilité. Nous montrons, analytiquement,

et expérimentalement (dans le cadre d’un DCS industriel), que notre approche améliore la fiabilité

d’un DCS de manière significative, comparé aux services d’adhésion classiques, pour un coût

additionel bas.

Enfin, nous examinons une abstraction de mémoire partagée temps-réel, qui simplifie largement

la programmation d’applications de contrôle. Nous étudions la possibilité d’implémenter une telle

abstraction au sein des DCSs. Nous prouvons qu’il n’est pas possible de résoudre ce problème en

utilisant des algorithmes classiques qui emploieraient des modules logiciels existants comme des

détecteurs de défaillance. Nous présentons une approche qui évite cette impossibilité en ajoutant

des informations aux messages du détecteur de défaillances. Nous analysons les performances

de notre technique, et illustrons les manières de l’adapter aux besoins et charges de travail de

diverses applications.

Mots-clés : Abstraction répartie, perte probabiliste de messages, politique de transmission, pro-

blème de décision Markovien partiellement observable, liaisons fiables, détection de défaillances,

consensus, système de contrôle réparti, adhésion, mémoire partagée répartie, système temps-réel.
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1 Introduction

The world is moving so fast these days that the man who says it can’t be done
is generally interrupted by someone doing it.

— Elbert Hubbard

Speed has always intrigued the human mind. While the reason behind this fascination remains

ambiguous, it may be explained by the simple ability of doing more and thus exploring new

unattainable horizons when going faster. For example, speed has allowed us to travel across

continents; speed permitted us to visit and explore other planets in a single lifetime duration;

enough speed can even allow us, according to Einstein [2], to “slow down time” [3], a phenomenon

known as time dilation.

The longing for more speed, at various levels, has in fact manifested itself in many human

inventions. The desire for a faster computational ability than that of humans, for example, led to

inventing computers. Decades of research later confirm this desire, as scientists and engineers

have been constantly striving to increase the available computing power. In fact, this increase

has sustained an exponential pace for the past four decades, a growth rate foreseen by Intel’s

co-founder Gordon E. Moore [4].

Over the course of many years, different computing trends have emerged with one goal in mind,

that being, defying physical and technological limitations to obtain faster systems and hence a

larger computing power. One such trend that has been prevailing over the past two decades is

increased distribution, at the system and service level. That is, systems and services are built

using multiple machines or computers, since the computing capabilities of a single machine

are not always sufficient, for example, to provide the desired latencies. In fact, many important

systems that we rely on nowadays, such as banking and weather prediction systems, planes, cars,

power grid controls and the Internet, comprise tens if not hundreds, thousands or even millions

of computers. Such a group of computers seeking to accomplish some form of cooperation or

common goal, by sending and receiving messages over the network (interconnecting them), is

known as a distributed system.
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Chapter 1. Introduction

Roughly speaking, a distributed system can be viewed as a collection of processes and links.

Processes represent the elements of the distributed system that are capable of performing com-

putations. A process in this case might represent a physical computer, a processor within a

computer or even a thread executing within a processor. In order to achieve a common task,

these processes need to communicate. Links, in this sense, symbolize the communication ability

between processes, and represent physical or logical networks supporting inter-process communi-

cation. Processes and links, thus, capture all underlying physical components that constitute a

distributed system.

In order for processes to coordinate and deliver some coherent service, a distributed algorithm is

needed. Such an algorithm manages the behavior of individual processes by assigning to every

process a specific program to execute. A distributed algorithm is hence the collection of programs

executed by all processes and is said to solve a distributed problem: the problem of making

processes implement a specific service or a set of guarantees.

1.1 Distributed Computing Abstractions

It is a common occurrence that slight variations of the same distributed problem appear in different

contexts [1]. One example of such problems is reliable information dissemination between

processes, be it in unicast (one-to-one communication) or broadcast (one-to-all communication).

Another example is the consensus problem [5], which requires agreement between processes to

perform a certain task or to take a common decision.

To facilitate reasoning and to avoid repeatedly reinventing the same solutions, abstract versions of

these problems are defined. A distributed abstraction is a representation of a distributed problem

capturing the set of essential characteristics of that problem. In this sense, distributed abstractions

help decipher the fundamental from the accessory and present the problem in a form suitable for

mathematical study [1, 6].

Not only do distributed abstractions highlight the necessary aspects of problems, but they also

allow solutions (distributed algorithms) to be developed in a modular fashion. In other words,

existing abstractions can be used as building blocks when devising solutions to new higher-

level problems.

1.2 System Models

In fact, processes and links, themselves, are abstractions of the computing and communication

components of the distributed system. Defining properties of processes and links, for example,

by specifying their mode of operation, the timing assumptions they adhere to (how computation

and communication delays behave) and their failure patterns, leads to defining a system model.
Different assumptions about processes and links define different system models and hence
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capture various instances of distributed systems. Typically, models are defined with properties

that correspond to practical, real-life distributed system deployments.

Once a specific system model is considered, the next step is to understand how to build distributed

abstractions in that model. Building the same abstraction in a different model might not be trivial,

e.g., solving consensus [5] in models having different timing assumptions requires different

algorithms and (solution) methods [7]. In fact, the newly considered model may pose challenges

that could even render implementing that abstraction impossible. Consensus, for example, can be

easily solved in models where processing and communication delays are bounded and known,

even if processes can crash. However, the consensus problem becomes impossible to solve in a

model with no assumptions about processing and communication delays, even if only one process

can crash [8].

In short, systems may exhibit various events, e.g., some processes might stop operating, as a

result of a crash, while others might continue normal operation, or some processes might become

disconnected for some time as a result of network failures. The occurrence of such events, if not

anticipated at design time, might cripple the abstraction by violating its specifications, rendering

the solution, which was developed in the absence of such assumptions, unusable or incorrect.

1.3 Reliable and Real-Time Distributed Abstractions

With computation devices nowadays becoming cheaper and faster, while incorporating at the

same time additional communication and sensing capabilities, distributed computing continues to

expand reaching new realms and domains. In particular, the “distributed trend” in computing has

managed to pave its way into application areas of transportation (auto-mobiles, avionics, railways,

etc.), smart cities, grids and buildings, health-care (medical devices, remote surgery and even

implantable devices) and industrial control (manufacturing plants, power plants, etc.), to name

a few. Specifically, designers and engineers are attempting to realize new system capabilities

by embedding more and more computing devices in the networks of these real-world physical
systems, e.g., to control, coordinate and monitor various operations. This results in a new type of

distributed systems1 that have a different set of restrictions and needs. We further elaborate on

this in what follows.

The set of constraints and specifications governing the operation of systems in these automation

domains are not fully accounted for in classic distributed computing models and abstractions. For

example, as opposed to the eventual guarantees of classic distributed systems, many applications

of real-world physical systems typically have real-time requirements [10, 11], such as those

needed, for instance, for detecting and recovering from failures [12–21]. Besides, networks

of such systems also have energy efficiency concerns, e.g., regarding minimizing the energy

consumption of battery-powered devices that might be operating part(s) of these automation

systems and which might be tedious to recharge [22–29].

1Typically, such distributed systems are referred to as cyber-physical systems [9].
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Moreover, as more and more devices (actuators, computation elements, etc.) are connected to such

systems, communication networks become prone to inevitable message losses [30, 31]. These

network losses could stem from unpredictable system loads or from physical properties of the

different, possibly heterogeneous, communication media connecting such devices [32–34]. For

example, networks in control systems, despite their high claimed reliability, typically experience

link failure rates in the range of 10−5/hr for permanent failures and 10−3/hr for transient

failures [35, 36]. These losses are believed to be even more severe when incorporating wireless

and power line communication technologies, whose quality is influenced by path loss, fading,

interference, switching of the power grid, activation of electrical equipment, and more [37–39].

In this sense, the quality of communication is affected by randomly occurring phenomena, which

makes message losses over the network non-deterministic. In fact, link characteristics in general

in such contexts can be, at best, seen as probabilistic and temporary rather than deterministic and

perpetual [30–32, 37–40].

This thesis aims at developing a better understanding of the power and the limitations of distributed

computing methods and abstractions given the communication behavior, the performance and the

application needs and requirements of smart grid, sensor and distributed control systems. To this

end, we investigate how to build dependable distributed abstractions that can indulge probabilistic

message losses while providing non-trivial guarantees, such as reliability, energy efficiency

and real-time responses, which are fundamental for the real-world physical systems under

consideration. Specifically, we explore four substantial abstractions starting from the level of

network links all the way up to the application level: (i) energy-efficient reliable communication,

(ii) reliable failure detection, (iii) real-time group membership and (iv) real-time distributed

shared memory. In what follows, we briefly introduce and discuss each of these abstractions.

1.3.1 Communication

At the lowest primitive level, the link level, we show how to build a peer-to-peer energy-efficient

reliable communication service that is synchronous with high probability. In environments such

as sensor networks [41–49], communication is lossy and some devices have battery-powered

wireless adapters where recharging may be tedious or even impossible. Energy-efficient algo-

rithms are crucial in these contexts [22–29, 50] in order to prolong the lifetime of the network.

Distributed algorithms can benefit by transparently utilizing such a communication abstraction to

deliver energy-efficient services to the whole network.

We investigate a setting where a link connecting two processes can alternate with time between

being reliable and lossy. A sender process, without knowing the current state of the link, should

“cleverly” decide, based on feedback relative to previous transmissions, when to send over the

link in order to ensure a reliable transmission with minimum transmission energy consumption

(precisely minimizing the number of re-transmissions, which are typically needed when messages

are sent at times when the link is in a lossy state).

We study building the desired communication abstraction under several variations of acknowledgment-

based (Ack/Nack) feedback mechanisms [51–54], which, to the best of our knowledge, sum-up all
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possible reliable and unreliable Ack/Nack feedback schemes. We compute transmission policies,

that can be used by processes to specify when to transmit over the network such that messages are

transmitted in a reliable energy-optimal manner, i.e., minimizing message re-transmissions. We

show that the implementation complexity of these policies varies and depends on the feedback

mechanism itself.

1.3.2 Failure Detection

Failure detection is a software abstraction that relies on inter-process communication for deter-

mining process crashes. Failure detectors thus exist one level higher than links and are often used

to encapsulate synchrony assumptions regarding communication within distributed systems. This

approach is known for its modularity, which allows the construction of algorithms using abstract

failure detection mechanisms, defined by axiomatic properties, as building blocks. Determining

how to implement the failure detection mechanism becomes a separate lower-level task.

Typically, classic failure detectors [7] require eventual synchrony guarantees on communication

in order to be implemented. This means that certain links should stop delaying messages, after

some point in time, forever and deterministically. In practice, such a link behavior is hard to

guarantee. Synchrony assumptions may hold only probabilistically and temporarily, as shown by

networking studies, especially in wireless and power line communication [30, 31].

To this end, we study failure detectors in a network with asynchrony inflicted by probabilistic

synchronous communication. We show that the classic failure detectors, e.g., �S for solving

consensus [7], are impossible to implement in networks with probabilistic losses. To circumvent

this impossibility, we refine the notion of classic failure detectors by defining new probabilistic

failure detector abstractions, that can be implemented in lossy networks while preserving the

failure detectors’ modularity. Our solution thus allows existing deterministic algorithms based on

classic failure detectors to be re-used in lossy networks for solving certain distributed problems.

This is achieved by simply replacing the existing classic failure detector with our corresponding

probabilistic one. Moreover, we derive lower bounds on the complexity of algorithms imple-

menting our failure detectors. We also define communication optimality of failure detectors in

systems with probabilistic losses and propose communication-optimal algorithms implementing

our failure detectors.

1.3.3 Group Membership

Failure detectors provide processes with information about crashes in the system. However, when

using failure detectors in their classic form [7], processes might get information about crashes

at different times or in different orders. Having such “non-synchronized” failure information

might be undesirable in certain situations, such as in distributed control systems (DCSs). For

example, uncoordinated failure notifications in DCSs might cause the local components (within

processes) that are responsible to jointly schedule application tasks to be inconsistent, resulting

in applications executing incorrectly.
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A higher abstraction level than failure detectors is hence needed, namely a membership service.

A membership service in DCSs allows processes to agree at all times about what processes have

crashed in the system, while detecting crashes in real time.

We investigate how to build such a real-time membership service in distributed control sys-

tems. We prove that the necessary membership properties in DCSs cannot be implemented

deterministically if, besides process crashes, communication links can also fail. To this end, we

define implementable probabilistic variants of membership properties, which constitute what

we call a synchronous membership service (SYMS). We propose ViewSnoop, our algorithm for

implementing SYMS with high probability.

We then evaluate our algorithm analytically as well as experimentally by implementing and

deploying ViewSnoop in an industrial DCS framework. We show that ViewSnoop significantly im-

proves the dependability of DCSs compared to membership schemes based on classic heartbeats,

at low additional cost. Moreover, ViewSnoop distinguishes, with high probability, host crashes

from message losses, enabling DCSs to counteract losses better than existing algorithms.

1.3.4 Distributed Shared Memory

Last but not least, we investigate a real-time distributed shared memory abstraction. Such

an abstraction typically builds on top of existing software blocks like failure detection and is

considered to greatly simplify programming of control applications [1].

We investigate the feasibility of implementing this abstraction within DCSs using algorithms that

either do not have access to failure detector information or that rely on failure detectors as software

blocks. Such algorithms thus cannot use failure detectors’ internals. We prove that, in both cases,

building a real-time DCS shared memory is impossible in the presence of message losses.

We propose a novel way to circumvent this impossibility by devising a white-box approach that

uses failure detector messages to communicate between processes. More precisely, our algorithm,

which we call TapeWorm, attaches information to the crash monitoring messages (heartbeats) of

the failure detector element of DCSs, using these heartbeats as the sole means to send information

between processes. We prove that TapeWorm indeed implements the required distributed shared

memory abstraction. We then provide an analytic evaluation showing that our algorithm can be

adapted to application needs and can be optimized for specific workloads.

1.4 Thesis Contributions

This thesis studies how to build distributed computing abstractions for distributed control, smart

grid and sensor systems. In these environments, constraints and requirements such as message

losses, real-time behavior and energy efficiency, dominate the design process. To this end, we
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investigate four abstractions starting from the basic communication link level and reaching

abstractions that directly influence the application level.

The main contributions of this thesis are the following:

1. Communication:
(a) A first full analytic study of energy-optimal transmission policies for links with

varying quality under several reliable and lossy transmission feedback mechanisms.

(b) A derivation of explicit and closed form solutions to implement energy-optimal

transmission policies.

(c) An establishment of the necessary conditions for reliable communication using

energy-optimal transmission policies.

2. Failure Detection:

(a) Impossibility result regarding the implementation of classic eventual failure detectors,

e.g. �S for solving consensus, in networks with probabilistic message losses.

(b) A new probabilistic failure detector notion, which preserves failure detection modu-

larity and can be implemented in lossy networks.

(c) Lower bounds on the number of processes and links required for implementing our

new failure detectors.

3. Membership:

(a) Impossibility results for deterministically implementing membership requirements in

distributed control systems (DCSs) with both host crashes and message losses.

(b) SYMS, a probabilistic abstraction for the membership service of DCSs.

(c) ViewSnoop, an algorithm implementing SYMS. ViewSnoop distinguishes host crashes

from message losses without affecting accuracy.

(d) An extensive experimental and analytic evaluation of ViewSnoop’s performance

showing that ViewSnoop provides a significantly more dependable service for DCSs,

compared to existing methods that rely on classic heartbeats.

4. Distributed Shared Memory:

(a) A first precise derivation of the necessary guarantees that a shared memory abstraction

must provide in DCSs.

(b) Theoretical proofs showing that such guarantees are impossible to implement using

traditional approaches [55–59], e.g., using algorithms that build on top of software

blocks such as failure detectors.

(c) TapeWorm, an algorithm that circumvents the above impossibility by following a

white-box approach directly utilizing failure detector algorithms of DCSs. TapeWorm
implements the required shared memory guarantees for applications running in DCSs.

(d) An analytic evaluation quantifying the performance of TapeWorm and showcasing

ways of adapting and optimizing TapeWorm to application needs and workloads.
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1.5 Roadmap

This thesis is divided into four parts. The first part presents some background on distributed

system models and networking communication models in Chapter 2 and Chapter 3 respectively.

The second part discusses the four abstractions we study, each presented in an individual chapter.

Chapter 4 studies building an energy-optimal reliable communication link, which is synchronous

with high probability. Chapter 5 investigates building failure detectors in lossy networks while

preserving their modularity. Chapter 6 examines coordinating failure notifications in real time,

providing a membership abstraction for distributed control systems. Chapter 7 inspects the

feasibility and researches solution methods for implementing real-time distributed shared memory

in the context of distributed control systems.

The third part sums up the main results of this thesis and contemplates about prospective research

areas that remain an interesting open territory to explore. The fourth and last part is a dedicated

appendix, which comprises some tedious computation details related to deriving closed form

expressions and some discussions which are outside the scope of prior chapters.
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History is for human self-knowledge ... the only clue to what man can do is what man has done.
The value of history, then, is that it teaches us what man has done and thus what man is.

— R. G. Collingwood

T his part of the thesis briefly surveys the literature of distributed computing models. It

presents a selection of well-known process and link abstractions in addition to well-

studied timing assumptions within the distributed computing community.

Besides distributed computing models, we describe the networking view of communication links,

precisely regarding message losses in physical communication media, used in the context of

smart grid, sensor and distributed control systems. We also compare this networking view of

communication to the link abstractions of distributed computing.





2 Distributed Computing Models

This chapter briefly discusses some of the widely adopted system models in distributed computing,

where processes communicate by message passing. We first distinguish some of the well known

failure properties of processes and links. We describe afterwards properties related to the timing

assumptions, i.e., the behavior of processes and links with respect to the passage of time.

A system model can be defined by combining different timing and failures properties of processes

and links.

2.1 Process Abstractions

In a distributed system, every process executes the program assigned to it by the distributed

algorithm. As long as the process adheres to the program assigned to it, that process is said to be

correct. A process, however, is said to crash or fail whenever that process no longer abides by

the algorithm. A process can deviate in many ways from the program (algorithm) assigned to it.

As such, different process abstractions are defined to capture these different failure patterns. We

discuss next, four process abstractions, depicted in Figure 2.1, representing the most common

four types of process failures used in the distributed computing literature.

2.1.1 Crash-Stop

The crash-stop abstraction depicts a process failure pattern where a crashed process stops

executing any further steps. In other words, a process in this abstraction executes the program

assigned to it correctly. However, this process may reach a certain point in time, say t, after which

it permanently stops performing computations and sending messages. This behavior implies that

in the crash-stop abstraction, once a process crashes, it never recovers.

Processes in the system can thus be either faulty or correct. A process that never crashes during

the algorithm’s execution time is said to be correct. Otherwise, the process is said to be faulty.
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Byzantine

Crash-Recovery
Omission

Crash-Stop

Figure 2.1 – Types of process abstractions [1]

It is important to note that considering that crashed processes never recover in the crash-stop

abstraction does not eliminate the possibility of processes recovering in practice. It rather means

that algorithms devised assuming crash-stop processes do not rely on processes to recover in

order to continue execution [1].

As such, distributed algorithms considering this abstraction are typically devised to work when

no more than f processes in the system can be faulty, where f could be zero or all processes

except one.

2.1.2 Crash-Recovery

Guaranteeing that f processes will not fail during the entire execution of an algorithm, for any

value of f , might be a difficult (even an implausible) requirement in certain systems, such as,

distributed operating systems and grid computing [60]. Hence, in such environments, algorithms

based on the assumption that some processes do not fail, will not work. This situation necessitates

a new process abstraction: the crash-recovery abstraction.

This abstraction basically allows processes to recover and thus resume the execution of the

algorithm. A process is termed faulty in this case when the process crashes and never recovers or

crashes and recovers an infinite number of times. A correct process in this abstraction, hence, is a

process that never crashes or that crashes and recovers a finite number of times.

2.1.3 Omission

As part of the algorithm assigned to it, a process might be required to send and/or receive

messages at certain points in time or relative to certain events. Omission faults characterize the

following behavior about processes: an omission fault occurs when a process does not send

or receive a message, which that process was supposed to send or receive according to the

distributed algorithm [1]. In this sense, a process in the omission fault abstraction diverges

from the algorithm assigned to it, and hence crashes, by dropping messages that should have

been exchanged with other processes. Omission faults in practice can result from stack/buffer

overflows, synchronization errors, congestion, etc.
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2.1.4 Byzantine

The Byzantine process abstraction, also known as arbitrary-fault or malicious, is considered as

the most general type of process failure. Processes in the Byzantine model can deviate from the

distributed algorithm in any plausible way. For example, processes might not perform some or

all local operations, processes also might drop (at sending or receiving) some messages or even

modify the contents of messages [1, 6].

Obviously, Byzantine faults are the most expensive faults to tolerate when designing algorithms.

However such arbitrary process faults could be the only option in environments where unpre-

dictable faults can occur. Such is the case, for example, in systems vulnerable to many attacks

where some processes become controlled by users who seek to deliberately interrupt the system

operation. Byzantine faults do not always occur as a result of intentional and malicious behaviors.

Bugs in implementation, the programming language or even the compiler could cause such

arbitrary faults.

2.2 Communication Abstractions

In distributed computing, communication between a pair of processes is typically abstracted

by a logical link. In practice, these two processes might or might not have a direct physical

communication medium between each other, depending on the underlying network topology.

Still, communication between these two processes might be possible, for example, using routing

algorithms which might relay messages over multiple hops. As such, the job of a link boils down

to relaying information between processes. A link takes the message from the sender process

and hands this message to the receiver process. In this sense, links can alter messages, e.g., by

dropping them, regardless if processes are behaving correctly or not.

We elaborate next on two widely-used point-to-point link abstractions in the distributed computing

community (broadcast or multicast abstractions are typically built on top of point-to-point links).

These point-to-point abstractions define what happens to messages sent by processes. We adopt

the classic distributed computing style for recalling the specifications of such communication

abstractions [1, 6].

2.2.1 Fair-Loss Links

Messages transiting through the network can be lost due to various reasons. The fair-loss
link abstraction captures this property, assuming that a message, when sent, has a chance of

successfully reaching the destination.

Formally, the fair-loss link is defined through the following three properties [1]:

1. Fair-loss: A correct process q delivers a message m an infinite number of times, if some

correct process p sends m infinitely often to q.
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2. Finite duplication: A message m that is sent a finite number of times cannot be delivered

an infinite number of times.

3. No creation: If some process q delivers a message m such that process p is the sender, then

p has previously sent m to q.

The first property of the fair-loss abstraction guarantees that if a process keeps on re-transmitting

a message, then that message is guaranteed to reach the destination, assuming that neither the

sender nor the receiver processes crash.

The second property ensures that the network cannot perform infinite re-transmissions on its own,

if that is not initiated by the sender process. Finally the last property ensures that the network

does not create any new messages, besides the ones sent by processes.

2.2.2 Reliable Links

Compared to the fair-loss links, the reliable links abstraction provides higher level guarantees.

Specifically, reliable links abstract the re-transmission mechanism that guarantees successful mes-

sage delivery over fair-loss links and eliminate messages from being duplicated when delivered

by processes.

More formally, reliable links ensure the following three properties [1]:

1. Reliable delivery: If a correct process p sends a message m to a correct process q, then q

eventually delivers m, i.e., q delivers m at some point in time after being sent.

2. No duplication: No message is delivered more than once by a process.

3. No creation: If some process q delivers a message m with sender p, then p has previously

sent m to q.

The first property guarantees that if a correct process sends a message to another correct process

then this message will be delivered (by the destination) at some point in time.

The second property eliminates duplicate message deliveries and the third property, as in fair-loss

links, ensures that no messages are created out of thin air.

2.3 Process and Link Timing Models

Besides defining the failure properties of processes and links, i.e., the multiple ways that pro-

cesses and links could “misbehave” when running a distributed algorithm, it also important

to characterize how processes and links behave with respect to time. For instance, this means
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specifying if and how bounds on processing and communication delays hold. We next discuss

three main distributed computing models for different process and link timing assumptions.

2.3.1 Asynchronous System

An asynchronous system makes no timing assumptions about processes and links. That is, in

an asynchronous system, processes do not have access to physical clocks and no bounds are

assumed concerning processing and communication delays.

Despite the absence of physical time, some notion of logical time [61] can be established in an

asynchronous system based on the sent and received messages. This logical notion of time allows

us to provide some form of partial ordering [61] of certain events that happened in the system.

2.3.2 Synchronous System

A synchronous system can be viewed as the other extreme, compared to the asynchronous system.

A synchronous system considers both processing and communication delays to be bounded; this

is achieved by assuming synchronous processes and synchronous communication, described in

more details below.

Synchronous process. A synchronous process always executes any step within a duration less

than some known bound. A step consists of delivering a message received on some link (possibly

nil), performing a local computation and sending a message to some other process (if required).

Synchronous communication. Synchronous communication means that there is a bound on

message transmission delays. In other words, the time interval between the moment a message is

sent and the moment that message is delivered to the destination process is always smaller than

some known bound.

2.3.3 Partially Synchronous System

Systems in practice define and rely on some timing assumptions that are believed to be respected

“most of time”. However, there are some periods in which the system stops respecting these

bounds and starts behaving asynchronously. These periods could occur as a result of network

congestion or slow memory for instance.

The partially synchronous system captures this notion and can thus be viewed as a more realistic

model than either synchronous or asynchronous systems. In partial synchrony either commu-

nication or processes or both, communication and processes, are partially synchronous [62].

We elaborate below on the meaning of partial synchrony both on the communication and the

processes level.
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Partially synchronous communication. Partial synchrony at the communication level means

that one of the following two conditions holds [62]:

Condition 1. There exists an upper bound δ on message delay respected at all times.

However, δ is not known to the distributed algorithm and thus acceptable solutions here

cannot assume any fixed value of δ at design.

Condition 2. There exists an upper bound δ on message delay which might not be respected

all the time; the message system is sometimes unreliable and thus may deliver messages

late or not even at all. For each execution there is a time t, not known to any of the

processes, after which the message delays respect δ from t onward. The communication

system is said to respect the bound eventually. Note that in this case, violations of δ are not

considered as process faults.

Partially synchronous processes. Similar to communication, processes are partially syn-

chronous if the bound on processing speed, say Δ, either (i) exists but is unknown or (ii)

only holds after some time t onward.
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In distributed computing, communication is abstracted by links. In this sense, the behavior

exhibited by communication is fully encapsulated by link abstractions, such as the fair-loss links

and reliable links (introduced in Section 2.2).

Modeling physical networking links and communication media is highly non-trivial due to its

dependence on the underlying communication technology and the factors that affect it. Sometimes

processes might even be connected by multiple heterogeneous (hybrid) communication media [32–

34, 63, 64], for example a combination of wireless, Ethernet and power line communication. This

makes modeling the communication behavior even more challenging.

However, what is of concern to this thesis, is specifically the behavior of traffic (messages) on

physical networks that connect processes. Precisely, we are interested in the loss patterns that

messages experience when sent over the network (which in turn affect message delays). Research

in the networking community has observed, experimented and modeled the behavior of network

traffic, in various settings. These studies are conducted under different communication media

that are believed to become an important part of the future network infrastructure of smart grid,

sensor and control systems [30–32, 37–40].

We review these message (packet) loss models focusing on three main models widely adapted in

the literature of networking and communication [52, 65–69]: (i) Bernoulli loss model (ii) Gilbert-

Elliot loss model, and (iii) higher order (4-state) Markov chain loss models.

Later, towards the end of this chapter, we provide a discussion comparing the networking

communication models with the link abstractions of distributed computing, highlighting the

differences and similarities between the two approaches for modeling communication.
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Figure 3.1 – The Bernoulli model for message (packet) loss.

3.1 Message Loss Models

3.1.1 Bernoulli Loss Model

The Bernoulli loss model is a simple discrete loss model where messages can be independently

lost with an identical probability “p”.

Let us denote by Xi ∈ {0, 1} the random variable stating if a message is lost or not at time i, i.e.,

Xi = 1 represents that fact that at time i the packet is lost while Xi = 0 the message is not lost.

The probability of Xi being 0 or 1 is independent of all other values of the time series and is

the same for all i. This model can be thus characterized by the single parameter p, which is the

probability that Xi = 1.

In practice, the value of p can be estimated for a sample trace of loss events by:

p =
n1

n
,

where n1 is the number of times the value Xi = 1 occurs in the time series and n is the total

number of samples in the time series.

The Bernoulli model is also known as the memory-less model since message loss is independent

of previous losses. In a high level view, as shown in Figure 3.1, the Bernoulli loss model can be

seen as a two-state process in which one state (Good) represents a packet reaching the destination,

and the other state (Bad) represents a packet loss.

3.1.2 Gilbert-Elliot Loss Model

The Gilbert-Elliot loss model is a discrete 2-state Markov chain.

Similar to the Bernoulli model, let us denote by Xi ∈ {0, 1} the random variable stating if a

message is lost or not at time i, i.e., Xi = 1 represents that fact that at time i the message is lost

while Xi = 0 the packet is not lost.
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Figure 3.2 – The Gilbert-Elliot (GE) model for message (packet) loss.

The stochastic process Xi can exist in two states such that its current state depends only on its

previous value, Xi−1. In contrast with the Bernoulli model, Section 3.1.1, the Gilbert-Elliot model

(GE) is capable of capturing the dependence between consecutive losses and is characterized by

two parameters α and β, as shown in Figure 3.2.

These parameters are known as the transition probabilities and are expressed as:

α = P [Xi = 0|Xi−1 = 1], β = P [Xi = 1|Xi−1 = 0].

In other words, if Xi−1 = 1, with probability α, Xi = 0, and with probability 1 − α, Xi = 1.

Similarly if Xi−1 = 0 then, with probability β, Xi = 1 and with probability 1− β, Xi = 0.

In a sample trace, α and β can be approximated using the maximum likelihood estimators:

α̂ =
n01

n0
,

β̂ =
n10

n1
,

where n01 is the number of times in the observed trace that 1 follows a 0 and n10 is the number

of times 0 follows 1. n0 is the number of 0s and n1 is the number of 1s in the trace.

A Gilbert-Elliot model is said to be positively correlated (implying a bursty packet loss behavior)

when 1− β > α, while it said to be negatively correlated if α > 1− β.

3.1.3 4-State Markov loss Model

Finite-state Markov processes can capture a large variety of temporal dependencies. The Bernoulli

model and the Gilbert-Elliot model are special cases of this class of models composed of only

two states.
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Figure 3.3 – The 4-state Markov model for message (packet) loss.

McDougall et. al [70] proposed a 4-state Markov model with two good and bad states. The

goal was to be able to further specify a distribution of the duration of the good and the bad

phases approximating an IEEE 802.11 channel [71]. The 2-state Markov models (Bernoulli

and Gilbert-Elliot) can capture relation between consecutive messages losses and transmissions.

Extending the number of states, as done by McDougall et. al [70], can allow us to model both

consecutive losses and longer link failure events (that could last for few seconds [72]). In this

sense the 4-state model can be seen as an extension of the Gilbert-Elliot model where loss bursts

with term correlation, typically observed on error prone wireless channels, are well captured.

Figure 3.3 shows the 4-state model along with the transition probabilities between the dif-

ferent states [73]. The values of πi are detailed below in terms of the system parameters

αg, αb, βg, βb, pg, pb:

π1 = (1− αg)pb π5 = (1− αb)pg

π2 = (1− αg)(1− pb) π6 = (1− αb)(1− pg)

π3 = (1− βg)(1− pb) π7 = (1− βb)(1− pg)

π4 = (1− βg)pb π8 = (1− βb)pg

3.2 Networking Versus Distributed Computing

In this section, we try to compare and contrast the networking view of communication with that

of distributed computing. At a very high level, communication in all networking models, depicted

in the previous section, can be seen as probabilistic. That is, a message sent at some point in

time t can be lost, for example, with probability p(t). Roughly speaking, the difference between

the multiple networking models of communication is the way that p(t) evolves (i) with time,

(ii) relative to previous transmissions, and (iii) across links.
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3.2.1 Similarity with Distributed Computing Communication Models

In the Bernoulli, the Gilbert-Elliot and the 4-state Markov chain loss models, a message sent at

any point in time can be probabilistically lost. As such, a single message which is constantly

re-transmitted may experience an unbounded number of losses. Hence, the delay for successfully

(reliably) transmitting any message is unbounded (similar to the asynchronous communication

assumption of distributed computing).

Also theoretically speaking, given this probabilistic view of losses, re-transmitting a message

infinitely often would guarantee that this message is delivered successfully to the destination an

infinite number of times, similar to the fair-loss links of distributed computing.

3.2.2 Difference with Distributed Computing Communication Models

The main difference, however, between the networking and the distributed computing view

on communication, is that messages, from a networking perspective, can respect some delays

probabilistically. In other words, as opposed to the asynchronous computing model where no

bounds are assumed on communication delays, networking models imply that communication

delays can respect some known bounds, however when and how long these bounds are respected

is non-deterministic. This non-determinism also means that there is no point in time after

which some unique bound on communication delay always holds, e.g., as considered in the

partially synchronous model. This raises many questions concerning the practicality of solutions

developed based on partial synchrony for example, when link characteristics in practice only

hold temporarily (see Chapter 5).

As opposed to the distributed computing link abstractions, this networking view of communication

can also permit the prediction and anticipation of message losses and thus of respective message

delays. Such additional information about the behavior of messages, which cannot be achieved

using classic distributed computing link models, is of substantial importance for contexts requiring

real-time guarantees [10, 11, 14–18, 74] such as the ones of interest to this thesis.

This thesis exploits these factors that are not captured by the classic distributed computing

links. We investigate the limitations, explore new abilities and rethink effective ways for apply-

ing existing distributed computing techniques to implement abstractions given the networking

probabilistic view of communication.
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Being abstract is something profoundly different from being vague. . .
The purpose of abstraction is not to be vague, but to create a new semantic level

in which one can be absolutely precise.
— E. Dijkstra

I n this part of the thesis, we introduce and discuss four fundamental distributed abstractions:

(i) reliable energy-efficient communication (ii) probabilistic failure detection (iii) real-

time group membership, and (iv) real-time distributed shared memory, respectively in Chap-

ters 4, 5, 6 and 7.

We investigate how to implement these abstractions taking probabilistic losses into account.

These losses reflect the networking view of how messages behave on physical communication

media within systems, such as smart grids, sensor networks and distributed control systems.

Besides providing robustness against losses, we also study how to guarantee crucial properties to

the systems under consideration, such as energy efficiency and real-time behavior.

All chapters in this part follow a common structure. They start by motivating the abstraction

under consideration presenting its benefits as well as the challenges posed by implementing such

an abstraction in the context of specific real-world physical systems. After that, we present the

system model in details followed by the chapter’s central part, which demonstrates the major

results. Finally, the chapters end with a discussion of existing work relative to the abstraction

under study and with a summary that highlights the main results and contributions.





4 Energy-Optimal Synchronous Reliable
Links

Communication is the very basic abstraction, besides processes, upon which all other distributed

abstractions rely. This chapter discusses how to build a communication abstraction that provides

important guarantees for upper layer abstractions like energy efficiency, reliability and synchrony,

while considering unreliability in the underlying communication media. Precisely, in this chapter

we investigate how to obtain in an energy-efficient manner, a reliable communication service that

is synchronous with high probability.

We consider a Partially Observable Markov Decision Process (POMDP) setting in which a

communication link’s transmission quality: (i) changes according to a classic Markovian model

and (ii) can be only partially observed, through feedback relative to previous transmissions.

We perform a thorough analysis under several variations of acknowledgment-based (Ack/Nack)

feedback mechanisms.

Despite the general intractability of POMDPs, this chapter proves that a communication service

with the desired guarantees, under reliable feedback, can be inexpensively implemented. We

obtain closed form solutions specifying when to transmit over the link, which allows to derive an

energy-optimal implementation, precisely by minimizing the number of re-transmissions. We also

analyze in this chapter the impact of lossy feedback on implementing the required communication

service. Considering multiple lossy feedback mechanisms, we namely illustrate that an easily

implementable structure for the communication service can also be obtained, depending on the

feedback mechanism itself.

4.1 Motivation

Unreliable asynchronous communication renders the design and analysis of distributed algorithms

a challenging task [75–77]. Consequently, fault-tolerant distributed algorithms typically assume

reliable or even synchronous (or partially synchronous) links [78–82].
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However, in practice, message losses are unavoidable. In fact, all communication media are lossy

to some extent, due to uncertainties stemming from various phenomena such as unpredictable

system loads and physical properties of the media. For example, wireless and power line

communication quality are influenced by path loss, fading, interference, switching of the power

grid, activation of electrical equipment, etc [37–40]. Although message losses are common in

wireless and power line networks, they actually exist everywhere [30, 31]. Due to the random

occurrences of such inevitable phenomena, messages losses typically come and go over time.

The communication between a pair of processes (abstracted by a communication link) thus

experiences time-varying unreliability, i.e., changes in the quality of the communication link with

time between lossy and reliable. In addition to being a problem by itself, time-varying unreliability

induces asynchrony1, as successful message transmission delays become hard to anticipate.

This chapter discusses how to mask such message losses through a communication service, that

can be used by high level applications of the network. More precisely, we want to provide a

communication service which guarantees that message transfer, over a time-varying unreliable

communication link, is: (i) always reliable and (ii) synchronous with high probability. Moreover,

we want to design our communication service in an energy-efficient manner. In environments

such as sensor networks [41–49], some devices have battery-powered wireless and recharging

may be tedious or even impossible. In order to prolong the lifetime of a network, energy-efficient

algorithms are crucial [22–29, 50]. Distributed algorithms can thus transparently utilize this

communication service to deliver energy-efficient services at the network level, e.g., to build an

energy-efficient reliable broadcast or higher level abstracts.

As the link changes state between reliable and lossy (relative to the occurrence of various

phenomena) the current state of the link might not be known to the sending process [51–54, 83, 84].

The sender can however benefit from the feedback regarding previous transmissions to guess

the current state. It can thus make better decisions of when to transmit; for example to avoid

transmitting when the link state is bad. Such adaptive transmission decisions employ link

prediction to appropriately adjust the transmission rate to the varying link conditions. In short,

transmission policies which tell the sending process when to transmit and when to withhold from

transmitting can be devised.

A reliable communication can be achieved by re-transmitting a message until it has been re-

ceived [85]. However, the rate at which the protocol attempts to re-transmit yields a trade-off

between (i) low energy consumption, (ii) high throughput and (iii) low latency. At one extreme,

while merely optimizing for throughput and latency favors transmitting at every possible opportu-

nity, this scheme results in maximum waste of energy. Especially at times when the link might be

in a “bad condition”, i.e., constantly losing messages, for a long duration. At the other extreme,

optimizing solely for energy might lead to a throughput bottleneck and an overwhelming message

latency. Given this trade-off, this chapter addresses the question of how to build the desired

communication service optimally by first studying the fundamental question of when to transmit.

1Asynchrony means here that there is no upper bound on message transmission delays, while synchrony means

that the bound always exists and is known.
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In particular, we seek to solve the optimal transmission policy which defines when should a sender

transmit messages in order to optimize a defined energy-throughput balance while favoring lower

latency. We also address two corollary questions: (i) can optimal transmission policies guarantee

reliability under all desired energy-throughput trade-offs? If not, under what energy-throughput

trade-offs can reliability be ensured? (ii) how to provide synchronous guarantees with high

probability, given unbounded time-varying message losses between a pair of processes?

Determining the optimal transmission policy in such a setting is an instance of partially observable

Markov decision processes (POMDPs), known to be notoriously intractable [86]. Despite the

challenge, this chapter investigates the optimal transmission policy under various Ack/Nack
feedback schemes, which to our knowledge, covers all possible Ack/Nack feedback mechanisms.

We start first by describing in details the setting of the system under consideration.

4.2 System Overview

We study the communication between any two processes. One process, noted by S, needs

to send messages to the other process noted by R (see Figure 4.1). We assume discrete time

events denoted by Tsys = {t1, t2, t3, ...}. A subset, T , of these time events occur at S, where

ti ∈ T ∀i odd (i.e., T = {t1, t3, t5, ...}). The time interval between consecutive events in Tsys is

an upper bound on the propagation delay over the link in a single direction. As a result, the time

interval between consecutive time events in T is an upper bound on the round trip propagation

delay over the link. We designate by the time events in T the instances at which S is allowed to

use the link, if it desires.

4.2.1 Communication Link Behavior

As noted earlier in Section 4.1 various inevitable phenomena such as unpredictable system loads

and physical properties of the media result in message losses that typically come and go over

time. This loss behavior induces changes in the quality of the communication link, which, as a

consequence, switches with time between lossy and reliable. To capture the time-varying message

losses of a communication link, we consider a widely-used approach for such cases, the Gilbert-

Elliot (GE) model [67, 87], (also introduced earlier in Section 3.1.2). The GE model, consisting of

two states (see Fig. 4.1), is a simple non-trivial finite state Markov chain (FSMC) [88], established

to capture well message loss behavior resulting from randomly occurring phenomena [65, 89, 90].

In fact, the GE model has been empirically verified, by a large body of work [52, 65–69], as a

good approximation of message losses in real-life communication scenarios. The GE model, for

instance, has been used to model losses in wireless media IEEE 802.11 [69], wired power line

networks [32] and other hybrid networks [30, 31]. The two states of the GE model (Fig. 4.1),

noted by good and bad, can for example abstract the following: the communication link between
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Figure 4.1 – A time-varying communication link under the 2-state GE model

a pair of processes occupies the bad state when the packet success-rate drops below a certain

“unacceptable” threshold and the good state otherwise. The cause for these state transitions can,

itself, lie in the random phenomena leading to message losses [65].

At any point in time, the link can be in one of the two states: the good state or the bad state. The

link transitions with time, i.e., the link moves to its new state, which can be the same state it

existed in or the other state. The time instants at which the link transitions are known as the

transition times of the link. For example, given the link is in the good state at some point in time,

it will remain in the same state at the next transition time with probability 1− β and will move

to the other state with probability β. Similarly if the link state is bad at some point in time, it

will remain bad at the next transition time with probability (1− α) and will shift to good with

probability α. The link state remains fixed in the interval separating the transition times. We

assume that S knows the parameters of the link, i.e., α and β (in practice S can estimate these

parameters, see for example [91]).

If S sends a message m at some time ti ∈ T and the link is in the good state in the interval

[ti, ti+1[, then m is received by R at time t : ti < t < ti+1 (i.e., before ti+1). We say

R receives m by time ti+1. If however the link state is bad, the transmission of message m

fails, in which case S will retry to send this same message m in the following time unit in T .

Consequently, transmitting a message might span several time units (depending on the state of

the link). Meanwhile, new messages (whether from outside or generated by S itself) that may

arrive to S will be enqueued. We assume a FIFO queue where a message is dequeued only when

it is successfully acknowledged. If a message transmission fails, the respective message remains

at the top of the queue. Practically, this queue should be of a finite size. We thus assume that

the rate at which new messages arrive to S, relative to the rate at which messages are dequeued,

amounts to having at all times a non-empty queue2 of size at most N . In practice and with the

help of queuing theory, N can be chosen such that the probability of the queue overflowing is

extremely small (≈negligible). Guaranteeing a non-empty queue can be achieved by having S

generate dummy messages whenever needed, which then serve to probe the link state.

2This is otherwise known as the infinite backlog assumption resulting in infinite messages to send.
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4.2.2 Transmission Feedback

We investigate the optimal transmission scheme which determines the time instances in T
when S should transmit a message over the link such that some defined reward function is

maximized (see Section 4.2.3 for defining that function). We study optimal transmission schemes

considering different types of feedback from the receiver side, precisely four Ack/Nack feedback

mechanisms. These four feedback mechanisms constitute, to the best of our knowledge, all

possible variations of feedback mechanisms that are based on sending receipt acknowledgments

relative to message transmissions.

Perfect Feedback

This feedback mechanism allows the sender to know what was the link state in the last carried

transmission. Practically, such mechanism corresponds to one of two assumptions: (i) the

transmission of the message and the acknowledgment happen in the same time slot under the

same link condition (if the message is received successfully so is the ack) or (ii) both error-free

sensing of the link and message transmission complete within one time slot. An example for (ii)

is sensing applied in cognitive radio contexts (roughly implies “probing” the link). To achieve

multi-channel opportunistic access, secondary users, typically, always apply sensing before

attempting to transmit. Previous work such as [54, 92, 93] hinge on error-free sensing to solve

problems (among many others). To implement this feedback scheme, we assume that the link

transitions at every time instant in T only. When S sends a message m at some time ti ∈ T and

the link is in the good state, m will be successfully propagated to R. R then directly replies with

an ack, which will be received by S before the next time instant in T , i.e., ti+2. However, if the

link state is bad, transmission fails and R receives nothing. S is thus informed about the success

of the last message transmission, and simultaneously about the last link state, by the presence or

absence of an acknowledgment from R.

Next we describe various mechanisms in which feedback, sent by R to S, can be lost.

Constant Feedback

In this mechanism, the sender expects to receive periodical feedback from the receiver about the

link state. However, this feedback can be lost. This mechanism is analogous to sensing the link

on a periodical basis. We achieve this feedback by assuming that the link transitions at every time

instant in Tsys. We also assume that R has access to the time instants Trcv = {t2, t4, t6, ...}. R

thus sends a message to S at every time instant in Trcv regardless if S has sent something or not.

The message sent by R is an ack if some message from S is received and is a nack otherwise.

As a result, messages sent by R can be lost independently of those sent by S.
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Smart Feedback

In this mechanism, the sender expects feedback, despite potential losses, every time it transmits

over the link. The sender process S, hence, can always know the state of the link after every

message transmission, but might not be sure about the fate of the message sent, i.e., if that

message was lost or not. Smart feedback can be achieved similar to constant feedback, except

that we consider now that R knows the times at which S sends a message. As such R will not

send anything when it’s not expecting to receive a message from S. The assumption that R

knows the sending times of S can be easily satisfied under deterministic sending schemes, e.g.,

constantly transmitting over the link. Later in Section 4.5 we show that indeed such a sending

scheme (constantly transmit) could be the optimal scheme adopted by S.

Unreliable Feedback

The sender in this feedback mechanism is not sure if it can obtain feedback even when it transmits

over the link. This mechanism is analogous to a sensing service which is not available all the

time. To implement this mechanism, we also assume that the link transitions at every time instant

in Tsys. As noted in constant feedback, having the transition times in Tsys means that messages

sent by R can be lost independently of those sent by S. The receiver R sends an ack message to

S only when it receives a message from S; otherwise R sends nothing.

4.2.3 Cost Assignment

At each time instant in T , S can either (i) use the link to transmit a message or (ii) idle transmis-

sion. Both transmission and idling incur energy costs. We assume that a message transmission

incurs a cost (negative reward) of cp(≤ 0), while idling incurs a cost of cd(≤ 0). It is obvious

that in practice cp < cd (since the idling energy cost is at least one order of magnitude less than

sending in wireless sensor networks, see e.g., [94]), otherwise the optimal policy would be to

always transmit. If a message is both transmitted and acknowledged successfully, S obtains an

additional reward rs >| cp |. In this case, the total reward relative to a successful transmission is

r = rs + cp (> 0), while an unsuccessful or unacknowledged transmission gives no additional

reward. This assignment of rewards and costs constitutes a generic function which allows to

define any desired weighted balance between energy and throughput.

Illustration of Cost Assignment

Let us set the idling cost cd to 0 and try to establish a throughput-energy balance based on the

reward rs and cost cp. Assuming that messages sent by S are of maximum size, i.e., equivalent

to the link capacity, then a reward of value rs = 1 can be assigned. This reflects a maximum

throughput, achieved by utilizing 100% of the link capacity in every time unit where transmission

is successful. The amount of energy needed to transmit these fixed size messages is possible to
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obtain by measuring how much power is dissipated in the required transmission period. Assuming

that S is a battery operated process3, we can calculate the average percentage energy consumption

relative to a single transmission (guaranteed to be < 1), which can in turn be assigned as the

value of the energy cost cp.

4.3 Optimal Transmission Formulation

In this section, we formally define our first question concerning how our communication service

can be made energy optimal. In other words, we define mathematically the problem of determining

when to transmit over the link so that a defined cost function is optimized. For simplicity we

consider throughout the rest of the paper t = {ti : ti ∈ T } and t+ 1 = ti+2, i.e., the next time

instant in T . Let at be the action taken a time t. at = 1 (at = 0) corresponds to transmitting

(idling) at time t respectively. The transmission policy, π, will then be the set of all decisions to

be taken, i.e., at ∀t. We denote by ot the feedback received by S (precisely from R) by time t.

If nothing is received by time t then ot =⊥ . Let R(at, ot+1) be the reward obtained at time t

relative to action at and the corresponding feedback relative to action at (which is obtained by

time t+ 1).

R(at, ot+1) =

⎧⎪⎨
⎪⎩

r at = 1, ot+1 = ack,

cp at = 1, ot+1 = nack∨ ⊥,

cd at = 0

Under all feedback mechanisms, S can make probabilistic guesses about the link state. Conse-

quently, a conditional probability that the link state is good given the last received feedback from

R, can be maintained by S at all times in t ∈ T . This conditional probability is called the link

belief wt. We compute the link belief under each feedback mechanism.

Perfect Feedback. Under perfect feedback, if S sends a message at time t then at time t+ 1,

S will know what was link state in [t, t+ 1[. Accordingly the link belief is updated at the end of

every time t ∈ T as follows:

wt+1 =

⎧⎪⎨
⎪⎩

1− β at = 1, ot+1 = ack,

α at = 1, ot+1 =⊥,

τ(wt) = (1− β)wt + α(1− wt) at = 0.

3Sensor networks in a variety of contexts such as building automation and smart grids have finite energy sources or

intermittent energy harvesting scenarios.
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Constant Feedback. At all times t ∈ T , S can know the exact last state of the link before t.

Consequently, the link belief w is updated at every time t as follows:

wt+1 =

{
1− β ot+1 = ack ∨ nack,

α ot+1 =⊥,

Smart Feedback. S can know the exact previous state of the link at all times t : at = 1, i.e.,

the times at which S sends a message over the link. Consequently, the link belief w is updated at

time instants t as follows:

wt+1 =

⎧⎪⎨
⎪⎩

1− β at = 1, ot+1 = ack ∨ nack,

α at = 1, ot+1 =⊥,

τ2(wt) = τ(τ(wt)) at = 0.

Unreliable Feedback. S can know the exact previous state of the link at all times t such that

at = 1 ∧ ot+1 = ack, i.e., the times at which S sends a message and receives an acknowledgment

for that message. At all other times S can not be sure about the previous link state. Consequently,

the link belief w is updated at time instants t as follows:

wt+1 =

⎧⎪⎪⎨
⎪⎪⎩

1− β at = 1, ot+1 = ack,

T(wt) =
τ(α)−αwt(2−2β−α)

1−wt(1−β) at = 1, ot+1 =⊥,

τ2(wt) = τ(τ(wt)) at = 0.

We now show how T(wt) is derived. By Bayes’ Theorem,

T(wt) = Pr(st+1 = G|wt, at, ot+1 =⊥) =
Pr(st+1 = G,wt, at, ot+1 =⊥)

Pr(ot+1 =⊥)|wt, at)
(4.1)

where st is the link state at time t and

Pr(st+1 = G,wt, at, ot+1 =⊥) =
∑
st

Pr(st+1 = G|st, at, ot+1 =⊥)Pr(ot+1 =⊥ |st, at)Pr(st, wt).

(4.2)

This results in:
T(wt) =

τ(α)− αwt(2− 2β − α)

1− wt(1− β)
.

We want to favor lower message latency while maximizing the defined energy-throughput

cost function (Section 4.1), i.e., we consider a delay sensitive communication. Accordingly,

the performance measure we seek to maximize is the expected total discounted reward. The

discounting factor is a constant denoted by γ, such that 0 < γ < 1. This γ can be roughly

thought of as a penalty for delay. For a practical choice of γ, one should note that γ weights
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future rewards. Thus, a smaller γ should be chosen for more delay-sensitive applications, as it

puts more emphasis on early transmissions. The expected total discounted reward can be formally

written as:

Eπ

⎡
⎣ ∞∑
j=0

γjR(atj+1 , otj+3)|w0

⎤
⎦ , (4.3)

where w0 is the initial belief. The objective is to obtain the maximum expected total discounted

reward that can be incurred from transmitting over a single link, also known as the value

function Vγ(w). Let Vγ(w; a = 1) (and analogously Vγ(w; a = 0)) designate the expected total

discounted reward from transmitting (not transmitting) on the link in the first decision followed

by the optimal decisions in future times. Due to POMDP theory, the value function satisfies the

Bellman equation and thus Vγ(w) can be written as [52]:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}.

4.4 Optimal Transmission Strategies

For presentation simplicity we first derive the value function and study the optimal transmission

policy under the perfect feedback mechanism. We study the optimal transmission policy under

the other feedback mechanisms later in Section 4.6.

Transmitting over the link yields an immediate expected reward of:

wR(at = 1, ot+1 = ack) + (1− w)R(at = 1, ot+1 =⊥) = wr + (1− w)cp = w(r − cp) + cp.

The future maximum expected total discounted reward, relative to transmitting over the link, will

be either: (i) γVγ(1− β) (if the current state is good) or (ii) γVγ(α) (if the current state is bad).

The former occurs with probability w while the latter occurs with probability 1− w resulting in:

Vγ(w; a = 1) = w(r − cp) + cp + γ[wVγ(1− β) + (1− w)Vγ(α)].

Idling however yields an immediate expected cost of cd (since no other cost/reward exists relative

to idling the link). By the update function of the link belief (Section 4.3), w deterministically

evolves to τ(w) as a result of not using the link. The consequent future maximum expected total

discounted reward is Vγ(τ(w)) occurring with probability 1. Hence,

Vγ(w; a = 0) = cd + γVγ(τ(w)).
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The value function, Vγ(w), can be recursively written as:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(r − cp) + cp + γ[wVγ(1− β) + (1− w)Vγ(α)], cd + γVγ(τ(w))},

(4.4)

We distinguish between the different link types and determine the optimal transmission strategy

in each case. The link can be categorized, based on its transition probabilities, as either being

memoryless or not. The latter itself is subdivided into two categories: positively correlated
(1− β > α) and negatively correlated (1− β < α).

4.4.1 Memoryless link

The link is memoryless when the probability of being in either state at the next time step is

independent from current state, i.e., 1− β − α = 0. As a consequence, 1− β = α = τ(w) = p.

The value function in (4.4), thus reduces to

Vγ(w) = max{w(r − cp) + cp + γVγ(p), cd + γVγ(p)} = max{w(r − cp) + cp, cd}+ γVγ(p).

The optimal transmission policy hence depends merely on the values of w(r − cp) + cp and cd:

optimal policy =

{
transmit if w >

cd−cp
r−cp

,

idle otherwise.

Since 1− β = α = τ(w) = p, w will have a constant value for a given link. The optimal policy

thus is either: (i) transmit on the link at every t or (ii) never transmit on the link.

4.4.2 Link with Memory

It is well established that the value function can be obtained by value iteration as a uniform

limit of cost functions for finite horizon problems, which are continuous, piecewise linear and

convex [51, 93]. The uniform convergence follows from the discounted dynamic operator being a

contraction mapping [93]. As a consequence of uniform convergence, Vγ(w) is a convex function

in w continuous on [0,1].

Lemma 1. If cd < w(r − cp) + cp (in particular if cd < cp), then the optimal decision is to use
the link for transmission at every t.

Proof. By convexity of Vγ(w) in w we have:

Vγ(τ(w)) = Vγ(w(1− β) + α(1− w)) ≤ wVγ(1− β) + (1− w)Vγ(α).

Vγ(w; a = 1) is greater than Vγ(w; a = 0), if cd < w(r − cp) + cp, i.e., if cd − cp < w(r − cp).

Given that w(r − cp) ≥ 0, Vγ(w; a = 1) > Vγ(w; a = 0) if cd − cp < 0.

38



4.4. Optimal Transmission Strategies

Figure 4.2 – The behavior of the value functions for transmitting and idling.

Lemma 2. For a link with a defined cost function, there exists a unique value w∗ such that
Vγ(w

∗; a = 1) = Vγ(w
∗; a = 0), Vγ(w; a = 1) < Vγ(w; a = 0) ∀w < w∗ and Vγ(w; a = 1) >

Vγ(w; a = 0) ∀w > w∗.

Proof. For w = 0:

Vγ(0; a = 1) = cp + γVγ(α) and Vγ(0; a = 0) = cd + γVγ(α). From Lemma 1, cd < cp
trivializes the optimal policy to that which constantly transmits over the link. We thus consider

cd > cp which yields Vγ(0; a = 1) < Vγ(0; a = 0).

For w = 1:

Vγ(1; a = 1) = r + γVγ(1− β) and Vγ(1; a = 0) = cd + γVγ(1− β). Since r > 0 and cd ≤ 0,

we get Vγ(1; a = 1) > Vγ(1; a = 0).

It can be seen that Vγ(w; a = 1) is linear in w. Following from the convexity of Vγ(w), we can

conclude that Vγ(w; a = 0) is convex in w. As a result, there exists a single intersection point

between Vγ(w; a = 1) and Vγ(w; a = 0), where the implication w∗ is unique comes from. This

leads to the graph shown in Figure 4.2 concluding the proof.

As a direct consequence of Lemma 2 the optimal policy has the following structure:

optimal policy =

{
transmit if w > w∗,

idle if w < w∗.

We compute the value of w∗ by distinguishing between positively and negatively correlated

links. Depending on the possible position of w∗ with respect to α, 1− β and πg (the stationary

probability of being in the good state, πg = α
α+β ), w∗ takes different values and admits different

closed form expressions (refer to Appendix A). However, this requires first to guess the position

of w∗ with respect to α, 1−β and πg for a given link and given cost assignment. Not knowing the

position of w∗ in the general case, we define the optimal policy in terms of costs. The computed

closed form expressions of w∗, for all cases, depend on the cost cd. More precisely, these closed
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forms show that w∗ is strictly increasing in cd (refer to Appendix A). We substitute the given

fixed cost cd by an unknown cost C(w). We let C(w) be the cost such that w∗ = w. In other

words, C(w) is the idling cost under which Vγ(w; a = 1) = Vγ(w; a = 0).

Lemma 3. There exists a unique cost C(w) such that Vγ(w; a = 1) = Vγ(w; a = 0), where

Vγ(w; a = 1) = w(r − cp) + cp + γ[wVγ(1− β) + (1− w)Vγ(α)],

Vγ(w; a = 0) = C(w) + γVγ(τ(w)).

Proof. By Lemma 2 there is a unique intersection point (w∗) between Vγ(w
∗; a = 1) and

Vγ(w
∗; a = 0). Since w∗ is strictly increasing in the idling cost cd (refer to Appendix A), then

no two or more distinct idling costs can lead to the same w∗, which concludes the proof.

The closed form expressions of C(w) can then be obtained by simply inverting the closed form

expressions of w∗ and setting w∗ = w and are shown below.

Positively Correlated Channels.

1. If(w ≥ 1− β or w ≤ α)

C(w) = w(r − cp) + cp.

2. If(πg ≤ w < 1− β)

C(w) =
w(r − cp(1− γ)) + cp(1− γ(1− β))

1− γ(1− β − w)
.

3. If(α < w < πg)

C(w) =
rA(k)−B(k)(1− w)

A(k)−D(k)(1− w)
.

where k = �
ln(1− w

πg
)

ln(1−β−α)� − 2,

A(k) = (1−γk+2)(1−γ(1−β))+γk+2(1−γ)τk+1(α)
1−γ(1−β−α) ,

B(k) = r(1− γk+2)− cp(1− γ),

D(k) = γ(1− γk+1).

Negatively Correlated Channels.
Case: 1− β = 0;α = 1

1. If(w > 0.5)

C(w) =
[r(1− γ)− cp(1− γ2)]w + γr + cp(1− γ2)

1 + γ − γ2 − γ(1− γ)w
.
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2. If(w < 0.5)

C(w) =
(1− γ2)[r − cp(1 + γ)]w − γ3r + cp

1− γ(1− γ2)w
.

Case: −1 < 1− β − α < 0

1. If(w ≥ α or w ≤ 1− β)

C(w) = w(r − cp) + cp.

2. If(τ(1− β) ≤ w < α)

C(w) =
[(1− γ)r − cp]w + γαr + cp

(1 + γα)− γw
.

3. If(πg ≤ w < τ(1− β))

C(w) =
γαr+cp(1−αγ2+γ2(1−β)(α−(1−β)))+(1−γ)(r−cp(1+γ))w

1+αγ(1−γ)+γ2(1−β)(α−(1−β))−γ(1−γ)w
.

4. If(1− β < w < πg)

C(w) =
w(r − (1 + γ)cp) + cp(1 + γ(1− β))

1 + γ(1− β − w)
.

Lemma 4. C(w) is strictly increasing in w.

Proof. From Appendix A, w∗ is strictly increasing in cd, which means that cd is also strictly

increasing in w∗ (inverting the relation preserves the monotonicity). But the expressions for

C(w) are obtained by replacing cd by C(w) and setting w∗ = w, which concludes the proof.

Theorem 1. The optimal policy for a link with memory under a given cost assignment is:

optimal policy =

{
transmit if cd < C(w),

idle if cd ≥ C(w).

Proof. For a link with a given idling cost cd, there exists by Lemma 2 a unique value w∗ which

makes the action of transmitting on the link as equally attractive as that of idling transmission.

More precisely C(w∗) = cd. By Lemma 4, C(w) > cd for w > w∗. The optimal policy

definition says to transmit if w > w∗ and idle otherwise. Thus C(w) > cd amounts to having the

action of transmitting over the link as optimal. Similarly by Lemma 4, C(w) < cd for w < w∗,

which means that idling transmission is optimal.
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4.5 Optimal Reliable Transmission

Still considering perfect feedback, we investigate in this section how to guarantee reliability using

optimal transmission schemes. Clearly reliability is guaranteed if and only if optimal decisions

do not suspend transmission endlessly.

Lemma 5. Optimal transmission policies do not always guarantee reliability across a link be it
memoryless or not.

Proof. We prove the lemma for each case of link memory by illustrating a counter example

showing endless suspension of transmission under optimal decisions.

Memoryless. In the memoryless case the optimal decision at every time instant t is transmit

only if w >
cd−cp
r−cp

; however w = p = 1−β = α, ∀t > 0. An assignment of cd = 0 and r = −cp

leads to
cd−cp
r−cp

= 0.5. Hence any link satisfying 1− β = α < 0.5 will have the optimal decision

of always idling the link.

Positively correlated. One possible cost assignment could lead to the following relation being

satisfied: cd ≥ (1 − β)(r − cp) + cp. Such an assignment can happen in cases where the link

rarely resides in the good state and the energy costs are relatively high (e.g. cd = 0, r = −cp
and 1 − β = 0.3). The expected reward relative to transmitting on the link is w(r − cp) + cp.

Note that 1− β ≥ w ≥ α (a direct consequence of the belief update function in Section 4.3) and

that w(r − cp) + cp increases monotonically as w increases. The expected reward (cd) relative to

idling the link is thus always greater than the maximum expected reward relative to using the

link. Hence attempting to transmit at any time will only make the value of the total expected

discounted reward less.

Negatively correlated. As in the positively correlated case, a link which rarely resides in the

good state and whose energy costs are relatively high (e.g. cd = 0, r = −cp and α = 0.3) may

lead to having cd ≥ α(r−cp)+cp satisfied. Due to negative correlation, we have 1−β ≤ w ≤ α

(following from the belief update function in Section 4.3). Attempting to transmit on the link at

any time will yield an expected reward less than that obtained by idling the link. This makes the

decision of idling the link at all times lead to the maximum value of the total expected discounted

reward.

Theorem 2. In a memoryless link, i.e., a link with a constant probability, 1 − p, of losing
messages, reliability is guaranteed under an optimal policy only if p >

cd−cp
r−cp

. The policy in this
case is to constantly transmit on the link.

Proof. The proof follows directly from the optimal policy of memoryless links in Section 4.4.1.
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Theorem 3. Given that a positively correlated link is used at some time t, there are exactly 2
forms of optimal transmission policies at [t+ 1, ...,∞[, capable of guaranteeing reliability.

1. Constantly Transmit: In case of high idling cost, keep sending, irrespective of the predicted
link state (at+i = 1 ∀i). This policy is optimal if cd < α(r − cp) + cp.

2. Back-off on Bad: Transmit as long as the observed link state is good. When the observed
state is bad, transmission is withheld for T time instants (somehow wait until link is
expected to transition to the good state) after which transmission resumes again.

T =

⎢⎢⎢⎣ ln (r−cd)A(k)+(1−w0)(cdD(k)−B(k))
w0(B(k)−D(k))

ln(1− β − α)

⎥⎥⎥⎦ .
This policy is optimal if cd < (1− β)(r − cp) + cp ∧ cd ≥ (α)(r − cp) + cp.

Proof. We split the possible search space of w∗, i.e. [0; 1], into different regions. If w∗ ∈ [πg, 1],

and the link is observed in the bad state, i.e., w = α, then the optimal policy will be to suspend

transmission forever. This follows from the fact that (A.1) and (A.2) lead to w ≥ w∗ never being

satisfied. The only possible range for w∗, such that transmission is never suspended forever, is to

exist in the region [0, πg]. This range can be split in two: [0, α] ∪ [α, πg].

Following from the update function of Section 4.3 the link belief eventually abides by:

1− β ≥ w ≥ α. (4.5)

If w∗ ∈ [0, α], then by (4.5), w > w∗ will always be satisfied and the optimal policy would

be to always use the link. If w∗ ∈ [α, πg] then as long as the link is observed to be good

(w = 1− β > w∗) it would be optimal to use the link again.

However if the link is observed to be bad (w = α ≤ w∗) then it is optimal not to use the link

until w > w∗ is satisfied, which by (A.1) happens in finite time T. By Theorem 1 w > w∗ for

w∗ ∈ [α, πg] is equivalent to cd < rA(k)−B(k)(1−w)
A(k)−D(k)(1−w) , where w = τT(α) for T ∈ [0,∞].

Theorem 4. Given a negatively correlated link is used at some time t, there are exactly 2 forms
for the optimal transmission policies at times [t + 1, ...,∞], which are capable of ensuring
reliability:

1. Constantly Transmit: This policy is optimal if cd < (1− β)(r − cp) + cp.

2. Skip if Good: Transmits as long as the observed link state is bad. If the observed state is
good transmission is withheld for the following time instant after which it resumes again.
This policy is optimal if cd < α(r − cp) + cp ∧ cd ≥ (1− β)(r − cp) + cp.
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Proof. For the negatively correlated links [54]:

τ2k(w) and τ2k+1(w) → πg, from opposite directions , as k → ∞. (4.6)

If w∗ ∈ [τ(1− β), 1] then transmission can be suspended forever. When the link is observed in

the good state (w = 1− β < w∗) then it is optimal to idle the link. This results in the link never

being used since from (4.6), τk(1− β) > w∗, can never be satisfied.

Therefore, to guarantee reliability, we should have w∗ ∈ [0, τ(1− β)], which can be split into

[0, 1− β] ∪ [1− β, τ(1− β)[.

If w∗ ∈ [0, 1− β], by 1− β ≤ w ≤ α, w > w∗ is always satisfied and the optimal policy is to

always use the link.

Now if w∗ ∈ [1− β, τ(1− β)], then when w = α > w∗ (i.e., the link is observed to be bad) it

is optimal to use it again. If the link is good though, then w = 1− β which is not greater than

w∗, meaning it is optimal to idle the link. Consequently, in the following time instant, w will be

updated to w = τ(1− β) > w∗ and the optimal action is to transmit over the link.

Implications of Theorems 3 and 4

The established theorems indicate that an optimal reliable transmission protocol continues to

transmit after a successful (failed) transmission along a positively (negatively) correlated link.

This same protocol, however, will wait for a fixed time, say Twait, before attempting to send

again after a failed (successful) transmission. Hence an optimal reliable protocol can be defined

solely by the waiting time Twait after a successful (failed) sending attempt.

4.6 Impact of Lossy Feedback

Recall that so far, and for presentation simplicity, we have considered perfect feedback. We now

investigate the impact of lossy feedback on energy-optimal transmission policies by studying the

system under the constant feedback, smart feedback and unreliable feedback mechanisms.

Transmitting over the link yields an immediate expected reward of:

w(1− β)R(ati = 1, oti+2 = ack) + α(1− w)R(ati = 1, oti+2 = nack)

+ (wβ + (1− α)(1− w))R(ati = 1, oti+2 =⊥)

= w(1− β)(r − cp) + cp.

Idling however yields an immediate expected cost of cd (since no other cost/reward exists relative

to idling the link). Next we derive the value function relative for each of the other feedback

mechanisms.
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4.6.1 Constant Feedback

The future maximum expected total discounted reward, regardless if S transmits or idles the

link, will be either: (i) γVγ(1 − β) (if an ack or a nack is obtained) or (ii) γVγ(α) (if a ⊥ is

obtained). The former occurs with probability τ(w) while the latter occurs with probability

1− τ(w), resulting in:

Vγ(w; a = 1) = w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]

Vγ(w; a = 0) = cd + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)].

The value function Vγ(w) can be thus recursively written as:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)],

cd + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]}.
(4.7)

4.6.2 Smart Feedback

Under this feedback mechanism, the future maximum expected total discounted reward, relative

to S transmitting over the the link, will be either: (i) γVγ(1−β) (if an ack or a nack is obtained)

or (ii) γVγ(α) (if a ⊥ is obtained). The former occurs with probability τ(w) while the latter

occurs with probability 1− τ(w).

Vγ(w; a = 1) = w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)]

However, when S does not use the link to send a message, w will deterministically shift to τ2(w)

resulting in:

Vγ(w; a = 0) = cd + γVγ(τ
2(w)).

So, Vγ(w) can be written as:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(1− β)(r − cp) + cp + γ[τ(w)Vγ(1− β) + (1− τ(w))Vγ(α)], cd + γVγ(τ

2(wt))}.
(4.8)

4.6.3 Unreliable Feedback

Under this feedback mechanism, the future maximum expected total discounted reward, relative

to S transmitting over the link, will be either:

• γVγ(1− β) (if an ack is obtained) or
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• γVγ(
τ(α)−αw(2−2β−α)

1−w(1−β) ) (if ⊥ is obtained).

The former occurs with probability w(1−β) while the latter occurs with probability 1−w(1−β).

Vγ(w; a = 1) = w(1− β)(r − cp) + cp

+ γ

[
w(1− β)Vγ(1− β) + (1− w(1− β))Vγ(

τ(α)− αw(2− 2β − α)

1− w(1− β)
)

]
.

As in the smart feedback mechanism when S idles the link, Vγ(w; a = 1) = cd + γVγ(τ
2(w)).

So, Vγ(w) can be written as:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(1− β)(r − cp) + cp

+ γ

[
w(1− β)Vγ(1− β) + (1− w(1− β))Vγ(

τ(α)− αw(2− 2β − α)

1− w(1− β)
)

]
, cd + γVγ(τ

2(w))}.

(4.9)

4.6.4 Optimal Transmission Policies Under Lost Feedback

Having obtained the value function Vγ(w), we investigate the structure of the reliable energy-

optimal transmission policy under the different feedback mechanisms.

Constant Feedback

By observing (4.7), we can note that the maximum future total expected discounted reward for

using the link and idling it is the same (denote it by F ). Thus:

Vγ(w) = max{Vγ(w; a = 1), Vγ(w; a = 0)}
= max{w(1− β)(r − cp) + cp + F, cd + F}.

(4.10)

Theorem 5. A myopic (greedy) threshold policy is the energy-optimal transmission policy that
guarantees reliable transmission under a constant feedback mechanism when (1− β)2 >

cd−cp
r−cp

.

Proof. From (4.10), it is clear that the value function depends only on the immediate expected

reward. The optimal policy can be stated as:

optimal policy =

{
transmit if w >

cd−cp
(1−β)(r−cp)

,

idle otherwise.

By the update belief function under constant feedback (Section 4.2), the optimal policy will never

suspend transmission forever if (1− β)2 >
cd−cp
r−cp

.
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Smart Feedback

As in perfect feedback (Section 4.4), Vγ(w) for smart feedback can be shown to be a convex

function in w continuous on [0, 1].

Lemma 6. If cd < w(1− β)(r− cp) + cp (in particular if cd < cp), then the optimal decision is
to use the link for transmission at every t.

Proof. By convexity of Vγ(w) in w we have

Vγ(τ
2(w)) = Vγ(τ(w)(1− β) + α(1− τ(w))) ≤ τ(w)Vγ(1− β) + (1− τ(w))Vγ(α).

Vγ(w; a = 1) is greater than Vγ(w; a = 0), if cd < w(1 − β)(r − cp) + cp, i.e., if cd − cp <

w(1−β)(r−cp). Given that w(1−β)(r−cp) ≥ 0, Vγ(w; a = 1) > Vγ(w; a = 0) if cd−cp < 0.

Theorem 6. The energy optimal transmission policy under a smart feedback mechanism is a
threshold policy, i.e., Vγ(w; a = 1) < Vγ(w; a = 0) ∀w < w∗ and Vγ(w; a = 1) > Vγ(w; a =

0) ∀w > w∗ for a unique w∗, only if cd−cp ≥ γ[τ(α)Vγ(1−β)+(1−τ(α))Vγ(α)−Vγ(τ(α))]∧
r >

cd−βcp
1−β .

Proof. At w = 0:

Vγ(0; a = 1) = cp+γ[τ(α)Vγ(1−β)+(1− τ(α))Vγ(α)] and Vγ(0; a = 0) = cd+γVγ(τ(α)).

From Section 4.2 and Lemma 1 cd > cp (since cd < cp trivializes the optimal policy to that

which constantly transmits over the link). By convexity of Vγ(w) in w, Vγ(τ(α)) ≤ τ(α)Vγ(1−
β) + (1− τ(α))Vγ(α). Thus, if cd − cp < γ[τ(α)Vγ(1− β) + (1− τ(α))Vγ(α)− Vγ(τ(α))],

then Vγ(0; a = 1) < Vγ(0; a = 0); otherwise Vγ(0; a = 1) > Vγ(0; a = 0).

At w = 1:

Vγ(1; a = 1) = r(1−β)+βcp+γVγ(1−β) and Vγ(1; a = 0) = cd+γVγ(1−β). Consequently,

if r >
cd−βcp
1−β , then Vγ(1; a = 1) > Vγ(1; a = 0); otherwise Vγ(1; a = 1) < Vγ(1; a = 0).

From (4.8), it can be seen that Vγ(w; a = 1) is linear in w. Following from the convexity of

Vγ(w), we can conclude that Vγ(w; a = 0) is convex in w. This leads to a graph as that shown in

Figure 4.2 concluding the proof.

Closed form solutions and conditions relative to attaining reliability can be obtained similar to

those of perfect feedback Section 4.5. We do not elaborate further on these conditions since an

analogous analysis has been already conducted in details (Section 4.5).
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Unreliable Feedback

We analyze unreliable feedback for positively correlated links only.

Lemma 7. Under the unreliable feedback mechanism the link belief is w ∈ [0, 1].

Proof. w at any time can take one of the following values: (i) 1− β, (ii) T(w) or (iii) τ(τ(w)).

[54] shows that τn(w)∀ w, tends to α
α+β as n −→ ∞ (τn(w) means that the function τ is

called n times on w). It can be easily shown that T(w) is a decreasing function in w such that

0 < T(1),T(0) < 1.

Lemma 8. T(w) is a convex function in w.

Proof. For 0 < w1, w2, λ < 1:

λT(w1) + (1− λ)T(w2)− T(λw1 + (1− λ)w2)

= (1− β)2τ(α)[λ(1− λ)(w2 − w1)
2]

+ (1− β)(2− 2β − α)[λw1(1 + w1(2w2(1− β)− 1))

+ (1− λ)w2(1 + w2(2w1(1− β)− 1))] ≥ 0.

The value function Vγ(w) can be obtained by value iteration as a uniform limit of cost functions

for finite horizon problems, which are continuous and convex [51, 93]. Vγ(w), as the upper

envelope of a family of straight lines (cost functions), is thus convex in w (proved by [95]).

Theorem 7. For a link with a defined cost function under unreliable feedback, there will exist at
least one value w∗ such that Vγ(w

∗; a = 1) = Vγ(w
∗; a = 0) only if r >

cd−βcp
1−β .

Proof. At w = 0:

Vγ(0; a = 1) = cp + γVγ(τ(α)) and Vγ(0; a = 0) = cd + γVγ(τ(α)). Since cd > cp, then

Vγ(0; a = 1) < Vγ(0; a = 0) (recall from Section 4.2 that if cd < cp the optimal action is to

constantly transmit over the link).

At w = 1:

Vγ(1; a = 1) = r(1 − β) + βcp + γ[(1 − β)Vγ(1 − β) + βVγ(α) and Vγ(1; a = 0) =

cd+γVγ(τ(1−β)). By convexity of Vγ(w) we have Vγ(τ(1−β)) ≤ (1−β)Vγ(1−β)+βVγ(α).

If r >
cd−βcp
1−β we get Vγ(1; a = 1) > Vγ(1; a = 0).

Both Vγ(w; a = 0) and Vγ(w; a = 1) depend on Vγ(f(w)) (where f(w) is some function of w)

and are convex (due to the convexity of Vγ(w) ∀ w). Vγ(w; a = 0) and Vγ(w; a = 1) will thus

intersect in at least a single point as shown in Figure 4.3 concluding the proof.
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Figure 4.3 – Behavior of value functions for transmitting and idling under unreliable feedback.

The optimal policy under unreliable feedback is to transmit only in the intervals where Vγ(w; a =

0) < Vγ(w; a = 1), which by Figure 4.3 may span multiple disjoint intervals over w ∈ [0, 1].

Consequently, a simple threshold policy (as that under the other feedback mechanisms) is not

necessarily guaranteed, i.e., the optimal policy may not be a simple threshold policy.

4.7 Establishing Synchronous Communication

The transmission on a link is subject at any time to a non-zero probability of message loss, which

may lead to a finite but unbounded delivery time for messages.

In this section, we show how synchronous communication over such a link can be guaranteed with

high probability. For presentation simplicity, we carry our analysis for the optimal transmission

under the perfect feedback mechanism. Similar analyses can be easily conducted for the other

feedback schemes.

We determine the probability distribution of the total time, X , required to deliver the last message

in the finite queue of size N . As such being able to guarantee with high probability that

such a message is delivered within a specific time, say δ, implies that any message will get

delivered in time ≤ δ.

More precisely, define the waiting time of the ith message in the queue to be the time required for

this message to reach the top of the queue. Let Xi designate the time to successfully transmit the

ith message in the queue, given it has zero waiting time. Xi is thus the time it takes message i to

get from the top of sender’s queue to the receiver’s side. In queuing theory, Xi is known as the

service time. Given N messages in the queue, X = X1 +X2 + ...+XN . We are interested in

the minimum δ such that P [X < δ] = 1 − ε. We show in what follows how to determine the

value of δ for the link.

Lemma 9. Xi ∀i, in a Gilbert-Elliot link model, are independent and identically distributed
random variables, given the initial link belief w0 = 1− β.
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Proof. The following three facts apply to every message at the top of the queue:

1. If a message reaches the top of the queue at time t ∈ T , then the link state at [t− 1, t[ was

good. A message only reaches the top of the queue if the previous message is no longer

there, i.e., has been successfully transmitted.

2. Given that the link was good at [t− 1, t[ the probability that the link state stays good or

becomes bad is independent of the message. Thus for any message reaching the top of the

queue, the probability distribution of the link being good is the same.

3. The optimal transmission policy is deterministic and independent of the message, but

dependent on the state of the link, which by 1 and 2, is the same for every message reaching

the top of the queue.

As a result the probability distribution of successfully transmitting a message is the probability

distribution of the link being in the good state after being observed to be good some t time

steps ago, where t by the third fact is only dependent on the policy. Due to the fact that the

transmission policy does not change for a given link, neither do the link stochastic parameters,

this probability distribution is fixed and thus independent and identical for every message. By

assuming w0 = 1− β, the very first message will have identical distribution as well.

The probability distribution of X , fX(k) = P [X = k], is obtained by the convolution of the

distributions of Xi’s.

fX(k) =

k∑
k1=1

k∑
k2=1

...

k∑
kN−1=1

fX1(k1) · fX2(k2)...fXN
(k −

N−1∑
i=1

ki)). (4.11)

The minimum δ such that P [X < δ] = 1−ε can be found by argmin
δ

{
δ :
∑δ

k=1 fX(k) >= 1− ε
}
.

fX(k) for a general queue of size N is hard to express in a closed form. fX(k) can however

be obtained offline by a simple algorithm implementing the function in (4.11). For theoretical

interest, we alternatively obtain a closed form of an upper bound on δ.

Theorem 8. The time to deliver all N messages in the queue with probability 1 − ε is upper
bounded by

δ =

⌈
N · E[Xi]

ε

⌉
.

Proof. The average waiting time of the N th message is

E[X] = E[
N∑
i=1

Xi] =

N∑
i=1

E[Xi] = N · E[Xi].
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By Markov’s inequality we have:

P [X > δ] <
E[X]

δ
=

N · E[Xi]

δ
.

Multiplying by −1 and then adding 1 to both sides of the inequality leads to

P [X ≤ δ] > 1− N · E[Xi]

δ
.

Since we need P [X < δ] = 1− ε, then an upper bound on δ is:

argmin
δ

{
δ : 1− N · E[Xi]

δ
≥ 1− ε

}
,

which after simple calculation leads to δ =
⌈
N ·E[Xi]

ε

⌉
.

Next we compute closed form expressions of fXi(k) and the average service time E[Xi] for all

optimal reliable policies.

4.7.1 Constantly transmit

A message reaches the top queue only if the message proceeding it gets successfully transmitted,

inferring that the link state was good. Since this policy always transmits, a message arriving to

the top of the queue at time t gets successfully transmitted at t+ 1 with probability 1− β (i.e.,

link is good at t+ 1), at t+ 2 with probability βα (i.e., link is bad at t+ 1 and good at t+ 2), so

on and so forth. The probability distribution of Xi is:

fXi(k) = P [Xi = k] =

{
1− β if k = 1,

βα(1− α)k−2 if k ∈ {2, 3, ...,∞}.

The average time to successfully transmit a message on the link given that it is on the top of the

queue, E[Xi], is:

E[Xi] =

∞∑
k=1

k · fXi(k) = 1− β +

∞∑
t=2

βαt(1− α)t−2 =
α+ β

α
.

We illustrate for this constantly transmit policy how to compute the average number of message

waiting in the queue. Assume a geometric arrival process and denote by λ the average arrival

rate per unit time. Let λ̄ = 1 − λ. Given a queue of fixed size N , we create a finite state

machine (FSM) for the number of messages in the queue. The designed FSM results in states

{0, 1, 1′, 2, 2′, ..., N,N ′}, where S and S′ are states with the same number of messages in the

queue but which may shift to different states and with different probabilities. This results from

time varying behavior of the link, which leads to service rates that change with time.
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We determine the transitions between these states and represent in the following transition matrix:

I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̄ λ 0 0 0 0 0 ...

λ̄(1− β) λ(1− β) λ̄β 0 λβ 0 0 ...

λ̄α λα λ̄(1− α) 0 λ(1− α) 0 0 ...

0 λ̄(1− β) 0 λ(1− β) λ̄β 0 λβ ...

0 λ̄α 0 λα λ̄(1− α) 0 λ(1− α) ...

0 0 0 λ̄(1− β) 0 λ(1− β) λ̄β ...

0 0 0 λ̄α 0 λα λ̄(1− α) ...

... ... ... ... ... ... ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

The rows of the matrix correspond to states at time t while the columns correspond to states at

time t+ 1. Extracting the information from the transition matrix above results in the following

system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = λ̄x0 + λ̄(1− β)x1 + λ̄αx1′ ;

x1 = λ̄x0 + λ(1− β)x1 + λαx1′ + λ̄(1− β)x2 + λ̄αx2′ ;

x1′ = λ̄βx1 + λ̄(1− α)x1′ ;

xi = λ(1− β)xi + λαxi′ + λ̄(1− β)xi+1 + λ̄αx(i+1)′ 2 ≤ i ≤ N − 1;

xi′ = λβxi−1 + λ(1− α)x(i−1)′ + λ̄βxi + λ̄(1− α)xi′ 2 ≤ i ≤ N ;

xN = λ(1− β)xN + λαxN ′ .

Solving this system of equations allows to determine an important value/metric, the probability

of having i messages in the queue: Pi = xi + xi′ . The average number of waiting messages in

the queue can be calculated by:
N∑
i=0

iPi.

4.7.2 Back-off on bad

This transmission scheme keeps transmitting on the link as long as the observed state is good. It

however ceases transmission for some time T (Theorem 3) after observing the link in the bad

state after which transmission is resumed. Such form of transmission can be optimal only in

positively correlated links. The probability distribution of Xi is:

fXi(k) = P [Xi = k] =

{
1− β if k = 1,

βτT(α)(1− τT(α))(
k−1
T+1

−1) if k ∈ {T+ 2, 2(T+ 1) + 1, ...,∞}.
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The average service time E[Xi] is:

E[Xi] =

∞∑
k=1

k · fXi(k) = (1− β) +

∞∑
t=0

[(t+ 1)T+ 1]βτT(α)t(1− τT(α))t

=
β(T+ 1) + τT(α)

τT(α)
.

4.7.3 Skip if good

This policy occurs in negatively correlated links and results in the following distribution:

fXi(k) = P [Xi = k] =

{
τ(1− β) if k = 2,

(1− τ(1− β))α(1− α)k−3 if k ∈ {3, ...,∞}.

The average service time E[Xi] is:

E[Xi] =

∞∑
k=1

k · fXi(k) = 2τ(1− β) +

∞∑
t=0

(t+ 3)(1− τ(1− β))α(1− α)t

=
4(1− τ(1− β))− α(1− 2τ(1− β))

α
.

4.8 Overview of Related Past Work

In this section, we discuss some existing work on related problems and settings. The purpose of

this section is to understand what has been done in related areas and highlight the contribution of

the results obtained in this chapter. We namely discuss (i) reliable links and dynamic link failures

in distributed algorithms, (ii) communication over time-varying links under POMDP settings and

(iii) restless bandits.

Previous work on distributed algorithms addressed the issue of achieving reliable communication

over lossy links at different levels [96–98]. For example Aguilera et al. implemented a failure

detector allowing a quiescent reliable communication when processes can fail [96]. Guerraoui et

al. defined the stubborn link abstraction which is weaker than a reliable link but strong enough to

solve important distributed problems such as consensus [97]. Another work by Basu et al. studied

the solvability of problems in a system with process crashes and message losses [98]. Aside from

reliable communication, certain distributed algorithms approaches studied systems with dynamic

communication failures. Multiple efforts [99, 100] addressed the k-consensus problem, which

requires only k processes to eventually decide. Moniz et al. [99] considered a system where

message transmissions can be faulty: after some unknown time at most �n2 �(n−k)+k−2 faulty

transmissions occur at each round. The number of faults per round prior to this is unrestricted.

In a different setting, Moniz et al. [100] considered a communication system where a process

sending a message will send it to all other processes sharing that link. Their algorithm tolerates up
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to f Byzantine processes and requires the number of omission faults affecting correct processes

to be at most �n−f
2 �(n − k − f) + k − 2 in infinitely many rounds, a fairness assumption to

guarantee liveness.

The work that we have done in this chapter goes one step further than that of [96–100] as it tries

to achieve energy-optimal algorithms. Also, in comparison with previous work accounting for

links failures through omission faults, we do not specify any bounds on the number of message

losses. We hence allow through a probabilistic loss behavior, to send messages intelligently,

precisely avoiding potential losses.

In a different context, existing work applied tools from Markov decision processes to solve

communication problems over time-varying links, e.g., [52, 66, 101]. In their work, Laourine

and Tong considered actions with a variable number of bits being sent in each action [52]. The

problem addressed in this chapter is different. We consider transmission with a fixed number of

bits in all actions and optimize for throughput under energy costs, which is not accounted for in

Laourine and Tong’s work [52]. Another work by Johnston and Krishnamurthy, applied results

from optimal search theory of a Markovian target to find optimal transmission strategies [101].

They studied the problem of transmitting a single file/message over the link maximizing the

average reward. In contrast, we consider an infinite sequence of messages to be transmitted

and optimize for the discounted reward, which allows to favor lower latency. Most related to

our work in this chapter is the work by Zhang and Wassermanin [66], which targeted achieving

a suitable balance between throughput and energy consumption. The authors proved that the

optimal transmission policy follows a threshold structure. Their paper assumed multiple power

levels for transmission where a sender must decide on one, in case it decides to send. This energy

level itself affects the probability of the message content being delivered correctly. However,

in our work we assume that a link can lose messages but it does not manipulate their content.

Besides, we define the optimal policy in terms of the costs and we obtain closed form solutions

in terms of the system parameters. It is also important to note that all the above mentioned work

have mainly considered positively correlated links (see Section 4.4) and error-free feedback. To

the best of our knowledge, this chapter is thus the first to analyze all cases of link memory, i.e.,

memoryless, positively and negatively correlated cases and to study optimal transmission under

lossy feedback.

Another closely related area to the problem studied in this chapter is that of restless multi-armed

bandits that was applied mainly to cognitive radio networks [53, 54, 102]. In restless multi-armed

bandits, there is a set of N independent projects that evolve over time and can yield some reward

once they are activated based on their state at that time. A player is required to activate one of

these projects at each time in such a way that maximizes the total long-term expected reward.

The problem was studied in a setting where projects evolve according to the GE model where

the parameters are known [53, 54, 102]. Zhao et al. prove that when projects are independent

and identically distributed, a myopic policy, which activates the project with the highest belief, is

optimal under the positive correlation assumption [54]. Another work by Guha et al. also studied

this problem under the positive correlation assumption and independent but not necessarily
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identically distributed links [53]. They propose an approximation algorithm with a performance

guarantee of 2. Among the work on restless bandits, that by Liu and Zhao is perhaps the closest to

the work in this chapter [54]. The authors compute a closed form of an index known as the Whittle
index (see [103] for a complete definition of this index), which measures the attractiveness of

activating a project. They propose to activate at every time the project with the highest index. Our

work in this chapter uses a notion similar to the subsidy of the Whittle index to derive its closed

forms. However, the link considered here has non-trivial differences from the link considered

in all cited work on restless bandits [53, 54, 102], as we permit for feedback to be lost. We also

allow for positive rewards and negative costs to coexist and allow for costs to be incurred at two

levels: when the link is idled and when a transmission fails.

4.9 Chapter Summary

We presented in this chapter an analytic study describing how energy-optimal reliable commu-

nication can be built, with high probability synchrony, over unreliable links. The analysis was

conducted for a time-varying lossy link that could for example capture the unreliable behavior

of wireless links. The importance of such a communication abstraction lies in the fact that

communication is the basic building block of any distributed algorithm. Consequently algorithms

built on top of this abstraction can inherently deliver energy efficient services and potentially

to the whole network, e.g., through reliable broadcast primitives. In contexts such as sensor

networks, energy efficiency is crucial to prolong the lifetime of the network which typically

comprises battery powered devices that are tedious to recharge.

We discussed four forms of Ack/Nack feedback mechanisms.

We first studied a reliable feedback mechanism, where a sending process is notified about the

success/failure of the previous transmission. Our results in this chapter showed the following:

• Optimal Transmission. Despite the fact that POMDPs are P-SPACE hard, this chapter

derived explicit solutions proving that the optimal transmission scheme, conforms to a

computationally inexpensive and easily implementable structure.

• Reliability. We showed that the optimal transmission policy, under certain energy-throughput

trade-offs and link parameters4, can stop transmission for good. Suspending transmission

as such prevents reliable communication. We hence identified the necessary conditions of

system parameters to achieve reliability. We proved that when reliability is guaranteed, the

optimal transmission policy takes one of three forms: constantly transmit, back-off on bad
and skip if good.

• Synchrony. Despite the dynamic message losses, we established methods to obtain

high probability guarantees on the total time required to successfully send a message

over the link.

4An example could be when the energy cost relative to transmitting is high and the link is rarely in the good state.
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We then studied the impact of lossy feedback (feedback which can be lost) on the optimal

transmission by considering different feedback mechanisms. Assuming a mechanism where

feedback about the link state is periodically sent, we showed that a myopic greedy policy [102] is

optimal and reliable. If feedback is sent only regarding the times when the sender transmits over

the link (regardless if the transmitted message is successfully received or not), we showed that the

optimal transmission will be similar to that in which feedback is reliable. In other words, closed

form expressions allowing an easy implementation of the policy can be obtained. However, if we

assume that the feedback is only sent when transmission is successful, we showcased that the

optimal transmission policy does not necessarily comply with an easily implementable structure.

In a nutshell this chapter’s main contributions can be stated as follows:

• A first full analytic study of optimal transmission policies of time-varying links for several

reliable and lossy feedback.

• A derivation of explicit and closed form solutions to implement optimal transmission

policies.

• An establishment of the necessary conditions for reliable communication using optimal

transmission policies.

• Methods to obtain synchronous message transfers with high probability.
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5 Probabilistic and Temporal Failure
Detectors

This chapter goes one step beyond communication to investigate failure detectors, which are

software abstractions that build directly on top of the communication services of a distributed

system. In fact, the guarantees provided by communication within a distributed system determine

what types of failure detectors can be implemented in that system. In this sense, failure detectors

themselves can be viewed as a higher level abstraction of communication guarantees.

Nevertheless, a celebrated aspect of the failure detector approach for solving distributed comput-

ing problems is modularity: failure detectors allow the construction of algorithms using abstract

failure detection mechanisms, defined by axiomatic properties, as building blocks. The minimal

synchrony assumptions on communication, which enable to implement the failure detection

mechanism, are studied separately.

The typical synchrony assumptions for implementing classic failure detectors [7] are generally

expressed as eventual guarantees that need to hold, after some point in time, forever and deter-
ministically. But in practice, link properties never do; synchrony assumptions may hold only

probabilistically and temporarily [30–32, 37–40].

In this chapter, we study failure detectors in a realistic distributed system where asynchrony

is inflicted by probabilistic synchronous communication. Given such a system, i.e., with prob-

abilistic communication, we answer questions related to: (i) the possibility of implementing

existing failure detectors for solving important distributed problems, e.g. the �S failure detector

for solving consensus [7] and (ii) the feasibility of using and applying existing asynchronous

algorithms that use classic failure detectors, in systems with probabilistic communication.
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5.1 Motivation

The failure detector abstraction is an elegant means to solve difficult distributed computing

problems, such as the fundamental consensus problem1, in a modular manner [8]. Roughly

speaking, a failure detector is a distributed “oracle” augmented to an asynchronous system. The

purpose of this oracle is to provide hints (possibly incorrect) about which processes of the system

have crashed [7]. A failure detector is formally defined by high-level axiomatic properties which,

in turn, encapsulate synchrony assumptions that allow problems like consensus to be solved. The

task of implementing a given failure detector using synchrony assumptions becomes a separate,

lower-level task.

A large body of work [104–109] has been devoted to determine which synchrony assumptions

are sufficient to implement for instance the �S failure detector, established to be the weakest, in a

precise sense [110], to solve consensus-like problems. The underlying synchrony assumptions,

typically adopted in the distributed community to implement �S take for example the form

of some links being eventually timely; i.e., after some point in time, these links never “delay”

messages. Such assumptions, besides placing the failure detector approach under scrutiny in the

distributed computing community itself [111], are questionable from the networking perspective.

We elaborate further on this.

Questioning Failure Detectors. As discussed by Dwork et al. in [62] as well as Lamport

in [5], in practice, consensus requires the system to be “good” only sufficiently long, while the

weakest failure detector to implement consensus requires parts of the system after some point

to be “good" forever [104–109]. This controversy was raised and discussed by Charron-Bost et

al. [111], who even suggested to abandon failure detectors and seek a better computing model.

From a networking perspective, the dependence of failure detectors on a “deterministic forever"

synchrony condition, suggests that failure detectors may be practically unfit. This results from

the fact that typical synchrony guarantees provided by networks are, at best, probabilistic. In

fact, a considerable amount of research on packet transmissions confirms that synchrony guaran-

tees in various kinds of networks, e.g., wired power line networks [38], hybrid wired/wireless

networks [112] and wireless networks [65, 89, 113], are indeed probabilistic2 (as discussed

and shown in Chapter 3). Consequently, failure detectors, like �S, might not be possible to

implement in such networks and thus algorithms designed on top of such failure detectors cannot

be practically used. We argue that this in fact is not the case!

Objective. This chapter aims at bridging the gap between the modular distributed computing

approach, based on failure detectors to circumvent the impossibility of fundamental distributed

problems, and the networking view of communication link characteristics. In this view (espe-

cially in the context of real-world physical systems like sensor networks and smart grids), link

characteristics are probabilistic and temporary, rather than deterministic and perpetual.

1Consensus [5] is an essential building block of most distributed computing problems and applications such as

leader election, state machine replication, atomic commit, etc.
2 In practice, messages can be delayed at any point in time, for example as a result of bad transmission quality of

the underlying channel [65, 89] or unpredictable loads on the system.
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To this end, we consider in this chapter N , a fully connected distributed system with probabilistic

synchronous communication, i.e., links can probabilistically lose messages, but otherwise respect

a known bound on the maximum transmission time. Such losses inherently inflict asynchrony,

as it can take arbitrarily long until a reliable/successful message transmission between any two

processes happens. As opposed to the partial synchrony typically considered in distributed

computing, N does not require the delay of a reliable/successful message, after some point

in time, to satisfy a specific bound forever. Solutions on the basis of our system N are thus

applicable to a wide range of real networked systems.

Given system N , we show in this chapter that the classic eventual failure detectors introduced by

Chandra and Toueg [7], such as �S , cannot be implemented in N . We propose new probabilistic

failure detector abstractions as a solution that preserves modularity of failure detectors, precisely,

by allowing existing asynchronous algorithms using eventual failure detectors to still be used to

solve certain distributed problems, such as the fundamental consensus problem, in systems like N .

First we start by describing system N more formally, providing elaborate details about the

underlying assumptions.

5.2 Overview of System N
We consider a distributed system N consisting of a finite set Π of n > 1 processes, Π =

{p1, p2, ..., pn}, which communicate by message passing. We assume, without loss of generality,

that processes have access to a global clock with discrete time events denoted by t : {1, 2, 3, ...}
(the global clock is used for presentation simplicity, in Appendix B.2 we show that a global clock

can be substituted by local clocks that do not have to be synchronized).

Processes can send and/or receive a message, at these discrete time events. The time interval

between consecutive events in t is assumed to be an upper bound on the propagation delay (tpg)

over any link connecting any two processes. Processing delays are assumed to be negligible

compared to communication delays.

Communication Links. The links interconnecting processes are assumed to be uni-directional

uni-cast links. In particular, every pair of processes (pi, pj) is connected by two uni-directional

links: lij and lji. These links exhibit changes in their transmission quality, as the quality of the

underlying channels might depend on various propagation conditions. We thus assume that a link

lij has a probability 0 < Pij(t) < 1 of losing the message sent at time t (if any is sent). This

captures the very idea that a link is not always reliable and can lose messages for an unbounded

but finite period3. The value of Pij(t) can change with time; at each time t : {1, 2, 3, ...}, Pij(t)

may have any value in (0, 1). We refer to such links as probabilistic. A probabilistic link is an

instance of the fair-loss link [97], where a message sent infinitely often is received infinitely often.

3Note that Pij(t) is assumed to be strictly less than 1 and greater than 0. However, our theoretical results can be

extended to the case where 0 ≤ Pij(t) ≤ 1, such that 0 < Pij(t) < 1 occurs infinitely often and that Pij(t) = 0 or

Pij(t) = 1 occur for some bounded duration.
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Faulty Processes. Processes can fail by crashing, i.e., by halting prematurely. We consider that

process crashes are permanent, i.e., no crashed process can recover. We use C to denote the

number of correct processes, i.e., processes that do not fail. We assume that C ≥ 1. When a

process pi sends a message m to process pj (for i �= j) and m is successfully propagated by link

lij , pj receives/delivers m. However if m is lost by link lij , pj receives nothing.

Reliable Message Transmission. Despite probabilistic losses, a reliable message transmission,

be it a unicast or a broadcast can still be achieved in N [96, 114, 115]. Reliable transmissions can

be provided via abstractions running on top of the probabilistic links of system N . For example,

a reliable link abstraction would guarantee the following with probability 1: a message sent by

a correct process pi to another correct process pj , will be delivered by pj at some future point

in time4. We provide next the complete specifications of a reliable link and a reliable broadcast

primitive in N . A reliable link abstraction guarantees:

1. Reliable delivery: If a correct process p sends a message m to a correct process q at

time t, then with probability 1 the following is guaranteed: there exists some time t′ > t

where q delivers m. In particular, q can deliver m at t + T with positive probability

∀ T ∈ {1, 2, 3, ...}.

2. No duplication: No message is delivered by a process more than once.

3. No creation: If some process q delivers a message m with sender p, then m was previously

sent to q by p.

A reliable broadcast primitive can also be defined in N :

1. Validity: If a correct process p broadcasts a message m at time t, then with probability

1 the following is guaranteed: at some time t′ > t all correct processes will have deliv-

ered m. Precisely, a correct processes can deliver m at t + T with positive probability

∀ T ∈ {2, 3, ...}.

2. No duplication: As for a reliable link.

3. No creation: If some process q delivers a message m with sender p, then m was previously

broadcast by p.

4. Agreement: If message m is delivered by some process at time t, then with probability 1

the following is guaranteed: at some time t′ ≥ t, m is delivered by every correct process.

4CRUCIAL: The phrase “the following is guaranteed with probability 1: there is a time when event X occurs”

does not mean that there is a point in time where event X occurs with probability 1 but rather that over the infinite

course of time event X will certainly occur. For example, if a fair coin is flipped an infinite number of times, then with

probability 1, there is a time when the coin lands on head, however there is no point in time where flipping the coin

lands on head with probability 1.
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The reliable link abstraction can be achieved over a probabilistic link lij , for example by deploying

buffers and message re-transmissions [96, 114–116] (as shown in Chapter 4). Typically, process

pi keeps re-transmitting a message m forever or in practice until some acknowledgment is

obtained for m. In this sense, the message transmission delay of a message m is measured by

the number of time slots elapsed from pi’s first attempted transmission of m until the time when

m is successfully received by pj . We do not elaborate on implementation details of such an

abstraction, as Chapter 4, in addition to existing work, already addresses this problem in systems

where links lose messages [96, 115]. Clearly, such a reliable link abstraction does not provide any

deterministic bounds on message transmission delays, as message losses may span unbounded

duration. However the reliable link abstraction in N offers instead a probability distribution on

the delay of a message.

The reliable broadcast primitive can be built for example using the reliable link abstraction in

system N . Algorithms such as those detailed in [117] can be directly applied and will result also

in a reliable broadcast where the delay to deliver a broadcast message, despite possibly being

arbitrarily long, admits a probability distribution.

5.3 Probabilistic Temporal Failure Detection

In a system augmented with a failure detector, each process has access to a local failure detector

module [7]. This module monitors other processes in the system and typically maintains a set of

those that it currently suspects to have crashed. Chandra and Toueg [7] defined various kinds of

failure detectors based on their achievable properties, namely completeness and accuracy.

Roughly speaking, the completeness property describes the failure detector’s ability to sus-

pect crashed processes, while the accuracy property defines the failure detector’s ability of

not suspecting correct processes. For instance, the �S failure detector, established to be the

weakest, in some sense [110], to solve consensus in an asynchronous system, guarantees the

following two properties:

1. Strong completeness: eventually every process that crashes is permanently suspected by

every correct process.

2. Eventual weak accuracy: there is some time instant tG ∈ {1, 2, 3, ...} after which some

correct process is never suspected by any correct process.

5.3.1 The Impossibility of Eventual Weak Accuracy

We now establish several lemmata proving certain guarantees on message delivery and pro-

cess failures.

Lemma 10. In system N , for any finite period Δt and at any time instant ts ∈ {1, 2, 3, ...}, all
messages that are sent on link lij during the interval ts+Δt, can be lost with positive probability.
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Proof. Recall that Pij(t) is the probability with which the link lij loses a message at time t. Let

Pij(t∩ t′) be the probability that lij loses the messages (if any is sent) at time t and time t′. Since

0 < Pij(t) < 1 ∀t, then

0 < Pij(t) =
Pij(t ∩ t′)
Pij(t′|t)

< 1 ∀ t′, t. (5.1)

By (7.1), Pij(t
′|t) > 0 (and 0 < Pij(t ∩ t′) < 1). By induction, we have Pij(t

′|t, t+ 1, ..., t′ −
1) > 0 ∀ t′ > t. Denote by B(t) the event that lij losses all messages (if any is sent) for the

interval t+Δt, for any finite period Δt. Then the probability of B(t) happening is:

Pr(B(t)) > Pij(t ∩ t+ 1 ∩ t+ 2 ∩ ... ∩ t+Δt)

= Pij(t)× Pij(t+ 1|t)× ...× Pij(t+Δt|t, t+ 1, ..., t+Δt− 1) > 0.

Given Pij(t) < 1, then we have 0 < Pr(B(t)) < 1.

Lemma 11. Consider any finite period Δt, any time instant ts ∈ {1, 2, 3, ...} and any subset of
processes ΔP . In system N , all processes /∈ ΔP can lose, with positive probability, all messages
sent in the interval ts +Δt from and to processes in ΔP .

Proof. The probability to have any subset of processes losing all messages exchanged with all

remaining processes for any finite period Δt, depends on the individual probabilities of the

relative individual links losing all sent messages during the interval Δt.

Following from Lemma 10, any link in the system can drop all messages (if any were sent) for a

finite but unbounded time, with a positive probability. Denote by Bij(t) the event that lij losses all

messages (if any were sent) in the interval t+Δt, for any finite period Δt. Then by Lemma 10,

0 < Pr(Bij(t)) < 1.

Following the arguments as in proof of Lemma 10, we have:

0 < Pr(
⋂

i,j∈[1,n]
Bij(t)) < 1 ∀ i, j ∈ [1, n],

where n is the total number of processes in the system. This concludes the proof.

Lemma 12. In system N , no correct process can determine with probability 1, at any point
in time, that some other process in the system has crashed, i.e., for any finite period a correct
process can be (with probability> 0) indistinguishable from a crashed one.

Proof. Following from Lemma 11, a single process p can lose all messages exchanged with the

whole network (i.e., from and to p) with positive probability for any finite time.

Consider an execution e1 where p crashes at time t and another execution e2 where p loses all

communication at time t for any finite period. Then executions e1 and e2 are indistinguishable to
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all processes (except p) for the whole time in which communication is lost, i.e., any finite time by

Lemma 11.

With these lemmata, we can prove that �S cannot be implemented in system N .

Theorem 9. It is impossible to implement “�S with probability 1” in N even if at most one
process can crash. That is, in the presence of process crashes, it is impossible to have an
algorithm in N that guarantees strong completeness deterministically and which ensures, with
probability 1, the following: there is a time after which some correct process is never suspected
by all correct processes.

Proof. We proceed by contradiction. Without loss of generality, assume a system N of n = 2

processes, p1 and p2. Suppose that there exists an algorithm A, that guarantees both strong

completeness and eventual weak accuracy.

Consider three executions: (i) e1: an execution where p1 fails at some time instant ts in

{1, 2, 3, ...}, (ii) e2: an execution where p2 fails at ts and (iii) e3: an execution where p1
and p2 are both correct but all messages exchanged between p1 and p2 are lost during the interval

ts+Δt. By the strong completeness property of A, in executions e1 and e2 there is a finite period,

say Δt′, after which p2 suspects p1 and p1 suspects p2 respectively. By Lemma 11, execution

e3 is a valid execution in A and Δt can be arbitrarily long, specifically Δt ≥ Δt′. Thus, by the

strong completeness of A, p1 suspects p2 and p2 suspects p1 in e3. By Lemma 11, execution

e3, such that Δt ≥ Δt′, can occur with positive probability at any time instant in {1, 2, 3, ...}.

This implies that A cannot guarantee with probability 1 the following: there exists some time

after which some correct process is never suspected (i.e., remains trusted forever) by any correct

process. This violates the eventual weak accuracy of A.

As a consequence of Theorem 9, we study how to vary the properties of �S, defining a variant

�S∗, which is implementable in our system N .

5.3.2 Probabilistic & Temporal Failure Detectors

We define a new probabilistic weak accuracy property that holds temporarily for periods that can

be arbitrary long. Combined with strong bounded completeness, these two properties define a

new failure detector �S∗.

Definition 1. Failure detector �S∗ guarantees both of the following properties:

1. Strong bounded completeness: every process that crashes is permanently suspected by
every correct process after a maximum of TD time slots of the actual crash.

2. Probabilistic & temporal weak accuracy: Consider any finite duration Δt. With probabil-
ity 1 the following occurs: there exists infinitely many time instants tG, such that a unique
correct process is not suspected by any correct process for the interval tG +Δt.
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Theorem 10. It is possible to implement �S∗, in system N , assuming n− 1 processes can crash.

Proof. Let ts be any time instant in {1, 2, 3, ...} and Δt be any finite duration.

Lemma 13. There is a positive probability that all messages sent by a correct process to all
other correct processes, in the interval ts +Δt, are not lost (i.e., successfully received).

Proof. Let Eij(ts) be the following predicate: All messages sent by a correct process pi to a

correct process pj , in the interval ts + Δt, are not lost, i.e., successfully received by pj . The

probability that predicate Eij(ts) occurs is: 0 < Pr(Eij(ts)) < 1. This can be easily deduced from

the proof of Lemma 10, given that the probability of a message (sent from pi to pj) being not lost

at any time instant ts ∈ {1, 2, 3, ...} is 0 < 1−Pij(ts) < 1. Let E(ts) be the following predicate:

All messages sent by a correct process pi to every correct process pj ∈ C, in the interval ts +Δt

are not lost. Since 0 < Pr(Eij(ts)) < 1, the probability of predicate E(ts) happening, as in the

proof of Lemma 11, is Pr(E(ts)) = Pr(
⋂

j:{pj∈C}Eij(ts)) > 0.

Assume algorithm A executing the following: (i) all processes periodically, at every time event

t = {1, 2, ...,∞}, broadcast messages (i.e., they send messages to all other processes in the

system) and (ii) initially all processes trust (do not suspect) each other. At every time instant in

{2, 3, 4, ...}, process pi suspects another process pj only if pi receives no new message from pj ,

otherwise pi trusts pj .

The strong bounded completeness of �S∗ is ensured by A. A process that crashes at time instant

tcrash ∈ {1, 2, 3, ...} stops sending messages and thus by (ii) will be suspected at all times

> tcrash + 1 by all correct processes forever (that is with TD = 1). Let’s denote by Ep(ts) the

following predicate: during the interval ts + Δt, all messages sent by a correct process p are

successfully received by all correct processes. By (ii) of algorithm A, Ep(ts) implies that process

p is not suspected by any correct process during the interval ts +Δt. Following from Lemma 13,

the probability of observing Ep(ts) is greater than zero. Note that in A any correct process can be

selected as the unique correct process.

Since in A processes keep sending messages to all other processes forever (infinitely) and since

for any time instant ts ∈ {1, 2, 3, ...} P (Ep(ts)) > 0, then with probability 1 the following is

satisfied: there exists infinitely many time instants tG when predicate Ep(tG) happens. A thus

guarantees the accuracy of �S∗, concluding the proof.

In Appendix B.1, we discuss the implementability of other types of probabilistic failure detectors;

namely P∗, a probabilistic variant of the perfect failure detector P , and �P∗, a probabilistic

variant of �P . In this main part of the chapter, however, we solely focus on �S and �S∗ for

better illustration.
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5.4 �S∗ Bounds and Algorithms

We study in this section the communication overhead of �S∗ and present a �S∗ optimal algorithm

(communication-wise).

5.4.1 Lower Bounds

First, we identify the bounds on the number of processes and links that need to respectively send

and carry messages forever in any algorithm implementing �S∗.

Theorem 11. Consider any algorithm A that implements �S∗ in system N of n ≥ 2 processes,
where n− 1 processes can crash. Then, C − 1 distinct processes send messages infinitely often in
A with probability > 0.

Proof. Assume that ts is any time instant in {1, 2, 3, ...} and Δt is any finite duration. If no

correct process sends messages infinitely often, i.e., all correct processes stop sending messages

at some point in time, say t, then �S∗ cannot be implemented. This holds, since after time t every

correct process becomes indistinguishable from a crashed process (w.r.t. to all other processes in

N ). By the strong bounded completeness of �S∗, every correct process suspects all processes in

N after some bounded duration. This violates the probabilistic eventual weak accuracy property

of �S∗.

Thus to implement �S∗ in N some correct process(es) should send messages infinitely often.

We now prove Theorem 11 by showing that in system N with n ≥ 2 processes, where n − 1

processes can crash, it is impossible to have with probability 1 an implementation of �S∗ where

eventually, only c : {0 < c < C − 1} correct processes send messages infinitely often.

Consider c̄ to be the subset of correct process that stop sending messages after time instant ts and

consider the following two executions: (i) e1: all processes in c crash at time instant tcrash > ts
and (ii) e2: all messages exchanged between processes in c and processes in c̄ in the interval

tcrash + Δt are lost. By Lemma 12, execution e2 is valid, as it has a positive probability of

happening. For processes in c̄ executions e1 and e2 cannot be distinguishable in any finite amount

of time (since Δt is any finite duration). Therefore, after some time (TD) processes in c̄ suspect

all processes in c. If no process in c̄ starts to send a message afterwards then if all processes

in c did crash no correct process in the system will send messages (a violation). Thus some

process(es) in c̄ should send messages, which in the case of e2, i.e., if processes in c are still

alive, results in more than c process sending messages. Since execution e2 occurs with a positive

probability, then it is impossible to guarantee with probability 1 that only c : {0 < c < C − 1}
correct processes send messages infinitely often. This concludes the proof.

N.B. Theorem 11 does not mean that each process sending messages infinitely often, needs to

do so by broadcasting (i.e., by sending the message to all other processes in the system). A
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process may send messages to any subset of the processes in the system. We show now that

Theorem 11 can be circumvented, in the sense that �S∗ algorithms can be implemented such that,

with probability 1, less than C − 1 processes send messages infinitely often. It can be done by

limiting the maximum number of processes that can crash.

Theorem 12. Given an algorithm A that implements �S∗ in N with n ≥ 2 processes of which at
most f < n

2 − 1 processes may crash, then the number of processes sending messages infinitely
often in A can be less than C − 1.

Proof. Consider an algorithm A which deterministically selects any f + 1 processes to keep

sending messages infinitely often after some point in time to all processes in N , while all other

processes stop sending messages completely. Since the maximum number of processes that may

fail is f , then A guarantees that at least one correct process will send messages infinitely often

and at maximum f + 1 will send messages infinitely often. By the proof of Theorem 10, it is

clear that �S∗ can be implemented in N even if only one correct process sends messages, to all

other processes in N , infinitely often. This proves that A implements �S∗ such that at most f +1

processes send messages infinitely often. f + 1 < n
2 < C − 1 (since C ≥ n− f ).

We now determine the number of links that need to carry messages infinitely often in algorithms

implementing �S∗. Despite the asynchrony caused by probabilistic message loss, system N can,

with positive probability, reach a point in time where links can be timely (i.e., ensure that the

delay of a reliable message transmission respects some bound) for any finite duration. We define

next what it means for algorithms to be optimal in N . Let Lmin be the minimum number of links

required to carry messages forever to implement failure detector X in a synchronous system5.

Let A be an algorithm that implements failure detector X , then:

Definition 2. A is optimal, if L, the number of links carrying messages infinitely often in A,
satisfies: limΔt→∞ L = Lmin, where Δt is an interval in which links are timely.

Theorem 13. The minimum number of links which need to send messages forever to implement
�S∗ in a synchronous system where n− 1 processes may crash is C (possibly C − 1 depending
on what processes crash).

Proof. First we prove that it is impossible to implement �S∗ if C − 2 links send messages

infinitely often. The proof is by contradiction. Assume an implementation A of �S∗ in which

only C − 2 links carry messages forever. Then there is in A at least one correct process p which

eventually (i.e., at some point t in time) does not exchange messages with any other correct

process.

Assume an execution e1 of A with C > 1 correct processes (including p) and another execution

e2 of A similar to e1 however where p crashes after time t (the time when p eventually stops

5In a synchronous system processing and message delays are bounded. This means that messages can be lost as

long as they can be re-transmitted successfully ensuring that total transmission time satisfies the delay bound.
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exchanging messages). e1 and e2 are indistinguishable to all processes (other than p) and thus

processes in e2 will keep using the same number of links. However in e2 since the number of

correct processes is less, then C − 3 links should be used which contradicts that e1 and e2 are

indistinguishable.

Now assume an implementation A′ of �S∗ in which only C − 1 links carry messages forever.

Since there is C correct processes, such an implementation is only possible if correct processes

are arranged in a tree topology (of which a star and a linear list are a special case). In such an

arrangement the root of the tree sends heartbeat messages, indirectly, to the rest of the correct

processes. Consider an execution e1 of A′ in which C processes are correct and let t be the point

in time after which only C − 1 links carry messages forever. Consider now e2, an execution

identical to e1 up to t, but where a leaf process p (assumed correct in e1) crashes at time t (a leaf

process has no successor processes). e1 and e2 are indistinguishable, to all processes above p in

the tree (in this case all processes since p is a leaf node). Hence the process sending messages to

p will not stop sending messages to p in e2, although the number of correct processes in e2 is one

less than in e1, resulting in C links being used forever. However, if the process p (which crashes

in e2) is not a leaf node, then p can be suspected by processes lower in the tree (or following it in

a linear list) and initiate a procedure to eliminate communication with p and restore the fact that

C − 1 links are used, concluding our proof.

We present next an optimal �S∗ implementation in N .

5.4.2 An Optimal �S∗ Implementation

We now present an optimal algorithm (Algorithm 1) implementing �S∗.

We assume that processes are arranged in a logical linear list, where p1 is at the head and pn
is at the tail. An intermediate process pi is preceded by process pi−1 and followed by process

pi+1. When links in the system are timely for some finite interval, the number of links carrying

messages infinitely often converges to C if at least one process crashes (possibly to C − 1 if

process pn, at the tail of the logical linear list, does not crash) and to C − 1 when no crashes occur.

Recall that a timely link ensures that the delay of a reliable/successful message respects some

bound; in this case we assume it to be the specified time-out.

The basic idea underlying Algorithm 1 is that a process at location x in the list always suspects

all processes succeeding it, i.e., processes at locations [x+ 1, ..., n]. The goal of Algorithm 1 is

to achieve two things:

1. Every correct process permanently suspects all crashed processes preceding it after TD

time slots of the crash.

2. When links are timely, no correct process suspects the first correct process in the logical

linear list.
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Algorithm 1 An Optimal �S∗ Algorithm.

1: Initialize:
2: set pred(pi) = pi−1 //set to null if i=1
3: set succ(pi) = pi+1 //set to null if i=n
4: set L(pi) = {pi+1, . . . , pn}
5:

6: Repeat periodically:
7: if succ(pi) �= null then
8: send < heartbeat, L(pi), pi > to succ(pi)
9: end if

10:

11: upon event Timeout on pred(pi) do //pred(pi) not null
12: L(pi) = L(pi) ∪ {pred(pi)}
13: send < suspicion, pi > to pred(pi)
14: set pred(pi) = process directly above pred(pi) in the list.

15:

16: upon event receive < suspicion, pj > do
17: send < heartbeat, L(pi), pi > to pj
18: for i < k < j do
19: send < Alive?, pi > to pk
20: end for
21: set succ(pi) = pj
22:

23: upon event receive < Alive?, pj > do
24: send < heartbeat, L(pi), pi > to pj
25:

26: upon event receive < heartbeat, L(pj), pj > do
27: if j < i ∧ index(pred(pi)) ≤ j then // index(pi) = i
28: set pred(pi) = pj
29: update_list(L(pj))
30: end if
31: if j > i ∧ index(succ(pi)) > j then
32: set succ(pi) = pj
33: end if
34:

35: Function update_list(L(pj)):
36: L(pi) = L(pj)
37: remove pi from L(pi)

Every process pi maintains a set of suspected processes L(pi) and two variables pred(pi) and

succ(pi) to respectively refer to the current predecessor process which is monitored by pi and

the current successor process to which pi periodically (e.g., every t) sends heartbeat messages

< heartbeat, L(pi), pi >. Note that process pi at the head of the list has pred(pi) = null whereas

process pj at the tail of the list has succ(pi) = null. We assume that processes have unique

identifiers (names) and that they know their position in the list. Process pi at all times suspects

all processes down the list including the tail, i.e., pj ∈ L(pi) ∀ pj : {i < j ≤ n}.

A process pi suspects pred(pi) which it is monitoring, when a time-out expires (possibly some

multiple of the sending period). In case of suspicion, pi sends through a reliable link abstraction

(as discussed in Section 5.2), a message < suspicion, pi > to pred(pi) and sets its pred(pi)

to the process before pred(pi) in the list (regardless if that process is in L(pi) or not) and
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updates its set of suspected processes L(pi) accordingly. Upon its receipt of a < suspicion, pj >

message, a process pi which is alive updates its successor to succ(pi) = pj and will start sending

< heartbeat, L(pi), pi > to pj . In addition, pi also sends a message < Alive?, pi > to all the

processes pk : {i < k < j}, as pi knows that pj suspected all these process (pk).

When a process pi receives a message < Alive?, pj >, pi replies by sending to pj , through a

reliable link abstraction, < heartbeat, L(pi), pi >.

When a process pi receives < heartbeat, L(pj), pj >, pi checks if pj precedes or succeeds it in

the list. If pj precedes pi in the logical linear list (i.e., j < i) and succeeds (or is) the current

predecessor of pi, then pred(pi) and the set of suspected processes L(pi) are updated accordingly.

Similarly, if pj succeeds pi in the logical linear list and precedes the current successor of pi, then

succ(pi) is updated.

Proof of Correctness of Algorithm 1

We first prove that Algorithm 1 implements �S∗, then we prove it is optimal. From the description

of the algorithm, strong completeness is guaranteed if a crashed process pi is suspected by all

correct processes that follow it in the list within TD time slots, i.e., by all pj : {j > i}.

Lemma 14. The first correct process pj , succeeding a crashed process pi, eventually suspects pi
permanently.

Proof. Let us denote by t the time at which pi crashes. By lines (11-14) of Algorithm 1 guarantees

that pj will eventually set pi as its predecessor and will monitor it. If pj suspects pi before time t

then if pj hears no messages from pi it will suspect it forever. However if pj hears a message

from pi, then by lines (26-33) of Algorithm 1 pj will monitor pi again and will eventually suspect

pi by (11-14) some time after t. Since after time t, pi will no longer send any messages, then pi
will be suspected forever by pj .

Lemma 15. The successor of a correct process pi will eventually be (when links behave timely)
the first correct process following pi.

Proof. Let us denote by pj the first correct process that follows pi. By lines (11-14) pj will

stop monitoring pi and will monitor other processes only if pj suspects pi. However, pj sends

a suspicion messages through reliable link abstraction. Since both pi and pj are correct the

suspicion will eventually reach pi which by lines (16-21) will send pj a heartbeat message

through a reliable link abstraction and will set pj as its successor. Again by the fact that the two

processes are correct pj will receive this heartbeat message and by lines (26-33) will monitor pi
again. Thus if links are timely pj will not “time-out” on pi.

By Lemma 15 and lines (26-33), the suspected list of a correct process pi is propagated to all

correct processes following pi in the logical linear arrangement. By lines (35-37) all process
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following a crashed process will eventually suspect that crashed process permanently ensuring

strong completeness. Now we prove the strong bounded completeness property of Algorithm 1,

i.e., a failed process is permanently suspected by all correct processes after some bounded

duration of having failed. The longest delay of suspecting a crashed process would be when

the tail of the logical list has to detect the crash of the head of the list. It is important to note

the following: if process pi is monitoring process pj , then pi can detect the failure of pj after

“timeout” time slots of not hearing from pj . For presentation simplicity, we consider a network of

three process p1 being the head and p3 being the tail. We accordingly show that p3 detects the

failure of p1 within a bounded duration which we compute. By induction and transitivity this

could be extended to a general network of n processes.

Assume that p1 fails at time t. Recall also that every process sends a heartbeat message at each

time slot to its successor. In that case, p2, the process monitoring p1, permanently suspects p1
after “timeout” time slots of not hearing from p1. Given that a successful message transmission

(not lost) between a pair of processes takes one time slot. This means that p2 suspects p1 in

the interval [t + timeout + 1,∞] and thus within a bounded delay of “timeout + 1”. p3 can

detect the crash of p1 in two cases: (i) via p2 (by seeing that p1 is in the suspected list of p2) or

(ii) directly from p1. The time taken for p3 to detect p1 in case (i) would be timeout+ 1 + Th,

where Th < timeout+ 1. While in case (ii) p3 has to suspect p2 first, after which it monitors

p1 and suspects it. In that case p3 would suspect p1 in 2(timeout + 1) time slots of not hear-

ing from p2. The worst-case delay for p3 to permanently suspect p1 would thus that p3 keeps

hearing from p2 until time instant “t + timeout + 1” and then does not hear from p2 for a

duration longer than 2(timeout+1). This results in p3 permanently suspecting p1 in the interval

[t+ 3(timeout+ 1),∞].

As a consequence, a failed process would be permanently suspected by all correct processes

within a maximum of 3(timeout + 1) time slots after having failed. This proves the strong

bounded completeness of Algorithm 1, given three processes.

Lemma 16. When links are timely, all correct processes will trust the correct process at the head
of the logical linear arrangement list.

Proof. By Lemma 14, when links are timely every correct process is monitored by the first

correct process following it in the list. Since the first correct process (at the head of list) does

not get suspected by the processes monitoring it (as a consequence of links being timely), by

Lemma 15 all correct process will eventually adapt its list of suspected processes which it is not

included in by lines (35-37).

The probabilistic accuracy can be insured by Lemma 16. At any point in time Lemma 16 has a

positive probability of happening. Since we consider infinite time instants, then with probability

1 the following happens: there are infinitely many time instants tG such that after each instant

links in the network behave timely for the interval [tG, tG +Δt], where Δt is any finite duration.
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Now we show that Algorithm 1 is optimal. Let T be the time after which all faulty processes

have crashed. Then after T and by Lemma 15, whenever the links become timely for any finite

time the set of links sending heartbeat messages will be either C − 1 if process pn (at the tail of

the list) is correct or C if pn is faulty.

5.5 Decisive Problems

In this section, we discuss what happens to deterministic algorithms using �S to solve deci-
sive problems, e.g., consensus (we give examples of decisive problems beyond consensus in

Section 5.5.2), when put in N which provides �S∗ guarantees instead.

Definition 3. A decisive problem is a problem which can be solved when a single irrevocable
global decision is reached. Any decisive problem P requires that both of the following two
properties are satisfied: (i) Termination: there is a point in time after which every correct process
will have decided and (ii) Integrity: No process can decide more than once.

Clearly consensus is one such problem, as the consensus abstraction guarantees: (i) Validity:
A value decided is a value proposed, (ii) Integrity: No process decides more than once, (iii)

Agreement: No two processes decide differently and (iv) Termination: there is a point in time

after which all correct processes would have decided. For illustration, we first focus on consensus,

then we discuss decisive problems.

5.5.1 Consensus with �S∗

We first show, for an exemplary existing consensus algorithm, that �S∗ can replace �S: the result

would be solving “consensus with probability 1”, in system N . Then we present a general form

of this result.

A Rotating Coordinator Algorithm. The basic idea behind the seminal rotating coordinator

algorithm of [7] is that processes alternate in a role of “leader” until one of them succeeds

in imposing a decision. The algorithm assumes a correct majority and uses two abstractions:

(i) reliable links and (ii) reliable broadcast. Both reliable links and reliable broadcast can be

implemented in our system N (in the sense specified in Section 5.2).

The algorithm is round-based, i.e., the processes move incrementally from one round to the other.

Process pi is the “leader” of every round k : k mod n = i. In such a round, process pi does the

following: (i) pi selects among a majority the latest adopted value (latest w.r.t. round), (ii) pi
sends that value to all processes and waits for the acknowledgment of the majority and (iii) once

pi succeeds in imposing that value on a majority, pi uses reliable broadcast to send its decision to

all and decides.

It is important to note that pi succeeds if it is not suspected by the majority (processes that suspect

pi inform pi and move to the next round, including pi).
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Theorem 14. The algorithm of [7] implements “consensus with probability 1” in N using �S∗

(instead of �S).

Proof. It is easy to see that �S∗ guarantees the strong completeness of �S and that the reliable

links and reliable broadcast in system N (see Section 5.2) guarantee respectively the properties

of the reliable links and reliable broadcast depicted in [7]. Thus the proof of correctness provided

in [7] remains true, except for the parts relying on the accuracy of �S , namely termination. Thus

it is sufficient to prove that the accuracy of �S∗ guarantees that all processes decide.

Consider trand to be any point in time after all faulty processes have crashed. Since the algorithm

of [7] operates in asynchronous rounds, then at time trand processes might be at different rounds.

We denote by r the largest round among all processes at time trand and by Δrtrand
the maximum

difference between the rounds of the processes at time trand. Note that from [7], Δrtrand
≤ n, n

being the total number of processes in the system.

In the algorithm of [7], after time trand, a process, be it a leader or not, completes a round

when a bounded number of messages (unicast or broadcast messages) is sent/received or when it

suspects the leader of that round. Let M be the maximum number of messages for a process to

complete a round.

Let TM ≥ TD be the amount time for exchanging the M messages, such that the probability of

exchanging M messages in TM time slots is positive (the properties of reliable links and reliable

broadcast primitive defined in Section 5.2 guarantee the existence of such a TM ). Recall that the

accuracy of �S∗ guarantees that with probability 1 the following holds: for any finite duration

Δt, there exists infinitely many time instants tG ∈ {1, ...,∞} such that some correct process, say

q, is not suspected by all correct processes for the interval [tG, tG +Δt].

Consider now r′ ≥ r to be the round in which q becomes leader. Thus with positive probability,

all processes can reach round r′ after TM · (Δrtrand
+ (r′ − r)) time slots from trand. If q is not

suspected by any of the processes, then with positive probability every process decides after TM

time slots from reaching round r′. In other words, if process q is not suspected by any correct

process in the interval [trand, trand + TM · (Δrtrand
+ (r′ − r) + 1)], then there is a positive

probability that all processes decide.

Since trand is any point in time, after all processes have crashed, then we can assume trand = tG,

such that Δt = TM · (Δrtrand
+ (r′ − r) + 1). By the accuracy of �S∗, with probability 1: there

exists infinitely many tG time instants (after all faulty processes have crashed) such that process q

is not suspected by all correct processes for the interval [tG, TG+TM · (Δrtrand
+ (r′ − r) + 1)].

Since there is a positive probability of all processes deciding TM · (Δrtrand
+ (r′ − r) + 1) time

slots after tG and there are infinitely many tG time instants, then with probability 1 we have the

following: there is a point in time after which all correct processes would have decided.
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Definition 4. An asynchronous algorithm A that solves a decisive problem P is said to be
�SN -bounded if A satisfies the following properties:

1. A uses as external blocks only the failure detector �S and communication primitives
implementable in N , such as reliable links and reliable broadcast (see specification in
Section 5.2).

2. Consider that there exists a point in time, tG, after which some correct process is never
suspected by all correct processes. Then A needs a bounded number of messages to be
sent after tG and until P is solved (i.e., all correct processes decide).

In fact many of the consensus algorithms using �S in the literature are �SN -bounded. This

makes our results applicable to wide range of existing algorithms.

Theorem 15. Any asynchronous algorithm that uses �S to solve consensus and is �SN -bounded,
solves “consensus with probability 1” in N when using �S∗ instead.

Proof can be seen for the more general result of Theorem 16.

5.5.2 Decisive Problems with �S∗

Now we generalize the result of Theorem 15 for decisive problems in general.

Theorem 16. Any asynchronous algorithm A that uses �S to solve a decisive problem P and is
�S-bounded, solves “P with probability 1” in N , when �S∗ is used instead 6.

Proof. �S∗ guarantees the strong completeness of �S. Thus w.r.t. A, the difference between

�S∗ and �S is in the provided accuracy property. The accuracy of �S is a property which holds

at some unknown point in time. As a result, any algorithm A that solves a decisive problem P

using �S, guarantees all safety properties required by P regardless of the accuracy of �S∗. A
hence uses the accuracy of �S to guarantee liveness, in particular termination, i.e., there is a time

after which all correct processes decide. It thus suffices to prove that with respect to A and with

probability 1 the following is satisfied: The accuracy of �S∗ guarantees that there is a point in

time after which all processes decide.

Assume the existence of an external clock (not accessible but merely used as a reference to

clarify the proof construction). Let tstart denote the time instant at which A starts executing.

Using �S in A to solve P implies that after tstart there is a time when all processes decide and

P is solved (see Definition 3). Precisely, after some correct process is never suspected by all

correct processes, all correct processes executing A should exchange a finite bounded number of

messages after which P would be solved.

6Solving “P with probability 1” means guaranteeing all safety properties of P deterministically and ensuring

termination with probability 1.
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Let M denote the upper bound on the number of messages (be them uni-casts or broadcasts)

needed by A from the time some correct process is never suspected by all correct processes

until P is solved. All events that could occur have a bounded delay (process speeds, crash

detection, etc.), except for reliable message transmissions (be them uni-casts or broadcasts).

Using communication primitives as the reliable links and reliable broadcast in N , the delay

for delivering a single message may be arbitrarily long. However it is possible, with positive

probability, that a message gets delivered after a known fixed delay, e.g., in x time slots after

being sent (see reliable transmission Section 5.2). Thus and without loss of generality, at any

point in time where some correct process in never suspected by all correct processes, it is possible

(with positive probability) for the M messages to be exchanged within a known fixed duration,

say TM , after which all processes would have decided.

From Definition 1, the accuracy of �S∗ guarantees with probability 1 that: there exists infinitely

many time instants tG after which a unique correct process is not suspected by any correct process

for the interval tG + TM . Since there are infinitely many such tG time instants and at each

tG there is a positive probability for the M messages to be exchanged within TM , then with

probability 1 the following happens: there is a time after which all processes would have decided

within TM time slots and thus P would be solved.

Other Decisive Problems. Besides consensus, there can be many other decisive problems, e.g.,

non-blocking atomic commit (NBAC), k−set agreement, fast consensus. Some of these decisive

problems, such as NBAC, are solved using �P . In Appendix B.3 we show that it is possible to

formulate �P∗, a variant of �P (in the main part of the paper we concentrate on �S). We also

show in Appendix B.3 that Theorem 16 can be extended to the set of decisive problems solvable

with �P when replaced by �P ∗, thus covering a wider set of problems, besides consensus.

5.6 Existing Failure Detector-Consensus Algorithms & Assumptions

Fault-tolerance has been addressed in many domains and at many levels [83, 118–122], for

example, to predict failures and figure out their sources and patterns [123–127], to detect transient

process failures [128], etc. We briefly survey in this section, existing work on failure detectors.

We also mention some related work on consensus with probability 1 and in systems with message

losses. When necessary, we compare and contrast between existing work and the work presented

in this chapter.

5.6.1 Failure Detectors

Minimal Synchrony

A large body of work studied Ω, a failure detector abstraction equivalent to �S [129], and its

implementation under different synchrony assumptions [104–106, 108, 109]. These implementa-
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tions either posed assumptions on the behavior of correct and faulty processes or required links

(or a subset of links) to be reliable, fair and/or eventually timely. See Table 5.1 for a summary of

the assumptions adopted by systems implementing Ω or �S .

In contrast, we focus on N , a system which, from the failure detection point of view, is weaker

than the systems considered above. In fact, we prove that �S properties cannot be guaranteed, with

probability 1, in N . We investigate properties of failure detectors that are implementable in N .

Minimal Communication

Another track of research addressed the communication overhead of failure detector implementa-

tions [105, 130–133]. Aguilera et al. [105] showed that an implementation of Ω in a system S

(see Table 5.1) requires all processes to periodically send messages and the minimum number of

links carrying messages forever can be at least (n2 − 1)/4. On the other hand, stronger systems

S+ and S++ (Table 5.1) allow efficient implementations, where only one process broadcasts

messages forever on n − 1 links. For systems with eventually timely correct processes and

links (also reliable), Larrea et al. [132, 134] provided algorithms for �S and �P , where 2n links

carry messages forever in the worst case, and for Ω where n− 1 links carry messages forever

respectively. Follow-up work [130, 131] defined communication optimality: in systems with at

least one faulty process, the number of correct processes C equals the minimum number of links

necessary to implement �P , �S and Ω. If the correct process with the smallest id has eventually

timely output links, communication-optimal implementations of �S and �P exist [133].

Our work in this chapter is different, as it investigates the communication overhead of �S∗, a

weaker variant of �S , in system N , where links never become timely forever. We show that when

links in N start behaving in a timely fashion for some interval, the number of links carrying

messages in our implementation of �S∗ will converge to C, possibly C − 1. Thus in the best case

(i.e., C − 1) our implementation of �S∗ in N , where n − 1 processes can crash, circumvents

the bound for �S when at least one process crashes using C links [131]. Our �S∗ algorithm is

inspired by the ring structure algorithms [131] for communication-optimal implementations of

�P . However, our implementation is different as it assumes a linear arrangement of processes

and manages suspicions differently to accommodate for properties of �S∗.

Failure Detectors with Probabilistic Guarantees

A different line of research explored failure detector implementations with probabilistic guar-

antees. Chen et al. in [21] studied the quality of service (QoS) of failure detectors in systems

where message delays and message losses follow probability distributions. They proposed a set

of metrics, among them (i) how fast actual failures are detected and (ii) how well false detections

are avoided. In [16], Bertier et al. proposed an implementation supporting a short detection

time based on estimations of the expected arrival of monitoring messages, and on adapting QoS

to the specific application needs. In [18], Gupta et al. quantified the optimal network load of
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Table 5.1 – Assumptions of systems considered when implementing failure detectors.

System Properties
All links lose messages probabilistically and fairly

N (this chapter) Propagation delay, in case of no loss, is bounded

Processes can crash and processing delays are negligible w.r.t. communi-

cation delay

Processes can be arbitrarily slow and can crash, but have a max. execution

speed

S [105] Links can be arbitrarily slow and lossy with at least one eventually timely

source (i.e., a timely correct process whose output links are eventually

timely)

S+ [105] S with at least one correct process whose input and output links are fair

S++ [105] S and such that all links are fair

[130–132] All links are reliable and eventually timely

[108] All links are reliable. Some correct process hears within interval δ from f
other processes (f is the maximum number of processes that can crash)

[104] All links are fair and there is one correct process with f output links

eventually timely

Links can lose or delay messages

[109] At least one correct process that can reach all other correct processes

through eventually timely links

failure detector algorithms as a function of the failure detection time and the probability of falsely

suspecting a correct process. Hayashibara et al. [17] proposed ϕ-failure detectors capable of

adapting to the application requirements and network conditions dynamically, by assigning a

value to every known process representing the confidence that it is alive.

In contrast, we evaluate the eventual guarantees of (binary) failure detectors implemented in

systems with probabilistic message losses. In particular we investigate implications of such

guarantees to solving distributed computing problems, namely consensus. We also study the

efficiency of implementing these failure detectors from a communication overhead perspective,

defining optimality in terms of the number of links that need to carry messages forever rather

than evaluating the real-time performance.

Rethinking Failure Detection

Several researchers challenged (directly or indirectly) the failure detection approach. Biely et

al. [135] showed that the asynchronous model augmented with Ω is equivalent to several models

where the links from at least one process (the source) are timely. In comparison with Biely

et al. [135], our work avoids the necessity of eventually timely link(s), for the solvability of

problems such as consensus in the presence of asynchrony.
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Charron-Bost et al. [111] highlighted a paradox about the failure detection approach which we

re-affirm, in a non-deterministic environment, in this chapter: Dwork et al. [62] and Lamport [5]

showed that sufficiently long finite “good” periods make consensus solvable while Chandra et

al. [110] show that consensus cannot be solved without permanent agreement on a leader from

some time on. Given this inconsistency in results, Charron-Bost et al. [111] showed that the

“discrepancy” is due to the two-layered structure of the failure detector approach itself. Precisely,

authors attribute this “artificial difficulty” to the interface between the failure detector layer and

the asynchronous system layer to which the failure detector is augmented and the lack of timing

control by failure detectors on the asynchronous system. Charron-Bost et al. [111] concluded that

it may be better to look at consensus without using failure detectors. Avoiding any dependence on

real time, Cornejo et al. [136] proposed asynchronous failure detectors (AFDs) and used them to

address challenges related to the hierarchy robustness of failure detectors. They also investigated

the relationship between the weakest failure detector and partial synchrony. They showed that a

large class of problems, termed as finite problems, such as consensus, do not encode the same

information about process crashes as their weakest failure detectors do (another validation of the

observation in [111]).

In this chapter, we take an opposite route compared to [111] and [136]. We refine the notion

of a failure detector with explicit dependence on real time to address a similar paradox as that

of [111]: “consensus with probability 1” can be implemented in system N (without the need for

randomization within the algorithm) while “�S with probability 1” is impossible to implement in

N . We define �S∗, a variant of �S implementable in N and show that such a transformation in

the failure detector notion allows deterministic consensus algorithms based on failure detectors

to solve “consensus with probability 1” in poorly behaved systems. In this sense, we succeed to

repress the “artificial difficulty” highlighted in [111] about the failure detector model, showing

that “consensus with probability 1” can be solved in poorly behaving systems (as viewed from a

networking perspective) using failure detectors, without requiring an eventually forever agreement

on a process that will never crash.

5.6.2 Consensus

Omission Faults

Some researchers explored consensus in systems with message losses without relying on eventual

guarantees. Santoro and Widmayer [137] showed that consensus is impossible if n− 1 of the

n2 possible messages sent in a round can be lost. In contrast, Schmid et al. [138] showed that

consensus can be solved even in the presence of O(n2) moving omission and/or arbitrary link

failures per round, provided that both the number of affected outgoing and incoming links of

every process is bounded and that all processes are correct. Soraluze et al. [139] considered the

general omission model, where processes can fail either by permanently crashing or by omitting

messages.They defined a failure detector requiring the existence of a majority of well-connected
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processes, which do not crash, and are able to communicate in both directions and without

omissions, either directly or indirectly, with a majority of processes.

In contrast, in this chapter we do not bound the number of messages lost at any point in time

and does not require any process to be connected at all times with any other process, yet we can

implement failure detectors and consensus.

Randomized Consensus Algorithms

Randomized algorithms ensuring “consensus with probability 1” have also been explored. Ap-

proaches based on coin-flips [140–142] or probabilistic schedulers [114] lead to consensus

algorithms with probabilistic factors. In systems with dynamic communication failures, multiple

randomized algorithms [99, 100] addressed the k-consensus problem, which requires only k

processes to eventually decide. Moniz et al. [99] considered a system with correct processes and a

bound on the number of faulty transmission. In a wireless setting, where multiple processes share

a communication channel, Moniz et al. [100] devise an algorithm tolerating up to f Byzantine

processes and requires a bound on the number of omission faults affecting correct processes.

Our work does not employ randomization in the algorithm, we focus on deterministic algorithms

in probabilistic networks. Moreover, instead of designing new consensus algorithms, we re-

use existing deterministic algorithms relying on failure detectors to solve “consensus with

probability 1” in N .

5.7 Chapter Summary

We investigated failure detection in systems embodying asynchrony via probabilistic synchronous

communication. In contrast to the conventional distributed computing assumptions when building

failure detectors, which hinged on link synchrony guarantees that need to hold deterministically

forever, we adopted a more realistic link behavior motivated by networking views on actual packet

loss. We showed that “�S with probability 1” cannot be implemented given such link behavior

(�S being established as the weakest failure detector to implement consensus), despite the fact

that “consensus with probability 1” can be implemented without requiring any randomness in the

algorithm itself.

This suggests two things: (i) �S is somehow too strong for consensus7, at least in a probabilistic

environment as N and (ii) deterministic algorithms solving consensus using �S, cannot be

practically put in use to solve consensus in systems like N , as �S itself cannot be guaranteed

in N . This “consensus/failure detector” paradox can be viewed as a re-affirmation of the

paradox highlighted in [111], this time in a non-deterministic environment. However, in contrast

with [111], we followed a different route.

7It is important to recall that �S is the weakest, amongst all failure detectors, to solve consensus [110]. This

does not mean however that �S is equivalent to consensus in a computability sense: one cannot implement �S from

consensus.
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Whereas [111] suggested to abandon the failure detector approach, we proposed instead a way

to circumvent the paradox by refining the failure detector notion itself, while preserving its

usefulness as an algorithmic building block. We defined a probabilistic failure detector �S∗.

Roughly speaking, �S∗ requires, with probability 1, that the properties of �S are satisfied for

periods that can be arbitrary long. We proved that �S∗ can be implemented in N , which implies,

at least from a failure detector perspective, that our system N is weaker than the systems

considered so far to build �S-like failure detectors [104–109]. More importantly, we showed

that the celebrated rotating coordinator algorithm of [7] to solve consensus using �S, actually

solves “consensus with probability 1” in N , when �S∗ is used instead of �S . We then generalized

this result, in three directions: (i) to hold for all deterministic consensus algorithms satisfying

some �SN -bounded condition (Section 3) (not only the rotating coordinator algorithm), (ii) to

hold for all decisive problems (Section 5.5), not only consensus and (iii) to hold for other failure

detectors, e.g., �P .

In particular, we showed that any deterministic algorithm, which solves a decisive problem using

�S (�P) and is �SN (�PN )-bounded, can be re-used in system N to solve the same problem,

ensuring termination with probability 1: the result is reached by using �S∗ (�P∗) instead.

In a nutshell, this chapter provided the following:

1. A way to circumvent the “consensus/failure detector” paradox in systems with probabilistic

synchronous communication (N ): we define �S∗ a probabilistic failure detector with

accuracy ensured for periods that can be arbitrary long. �S∗ can be implemented in

systems like N .

2. An optimal implementation of �S∗. The optimal implementation hinges on a logical linear

arrangement of the processes. When links behave in a timely manner (i.e., the delay of a

reliable message transmission respects some bound), the number of links carrying messages

infinitely often converges to using C (the number of correct processes), possibly C − 1. In

the best case, i.e., C − 1, our implementation of �S∗ achieves, to the best of our knowledge,

the lowest communication overhead compared to all known �S implementations.

3. For all decisive problems P , beyond consensus (see Section 5.5.2 for decisive problems),

we enable existing deterministic protocols which use �S and �P and which are �SN (�PN )-

bounded, to be reused in N to solve “P with probability 1”: simply using �S∗ and �P∗

instead of �S and �P respectively leads to the desired result. In this sense, our approach

succeeds in encapsulating the randomization of the probabilistic link behavior in the very

abstraction of failure detection (without affecting the deterministic algorithms built on top),

bridging the gap between distributed computing and networking practices.
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6 Real-Time Membership

The previous chapter studied the failure detector abstraction. In its classical form, the output of

failure detectors at different hosts1 (processes) might not always be the same, as failure notifi-

cations might be received at different times or in different orders. However, to guarantee better

dependability, distributed control systems (DCS) require failure notifications to be synchronized.

In other words, hosts in DCSs need to agree about which hosts in the system have crashed, while

detecting crashes in real time.

To this end, we investigate how to build a real-time membership abstraction (service), as a means

of providing a better coordinated output than failure detectors, capable of detecting failures within

a known fixed bound after failure.

This chapter proves that implementing the necessary membership properties for DCSs determin-

istically is impossible, when considering both, host crashes and message losses. However, we

propose an algorithm, which we call ViewSnoop, capable of implementing the required member-

ship properties with high probability. We show that our ViewSnoop algorithm provides a better

dependability to DCSs compared to existing membership algorithms relying on classic heartbeats,

at low additional cost. This improvement is shown both analytically as well as experimentally via

an implementation in a production DCS.

6.1 Motivation
Among the many financial hazards of industrial plants, downtime (the time during which a plant’s

normal operation is halted) is one of the most expensive (≈ 12,500$/hr) [143]. Automated
control systems, which manage these plants, hence require increased dependability. An automated

control system comprises a set of control applications; each being a program that handles (parts

of) an industrial system and generally adheres to hard real-time constraints. In order to tolerate

crashes, control systems are often decentralized [144–147]. Such distributed control systems
(DCSs) require however to learn about hosts (processes) which have crashed in order to initiate

proper recovery measures.

1In the context of distributed control systems, we use the term “hosts” to refer to processes, in coherence with

existing literature [12, 13].
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Figure 6.1 – A DCS with three hosts running two control applications.

Most control applications running on DCSs are cyclic [12, 148, 149]. Such applications consist

of several small tasks that execute periodically. Some of these tasks run concurrently on several

hosts, possibly on behalf of different control applications. A scheduler, a distributed DCS module,

typically maps tasks to non-crashed hosts and specifies the order in which these tasks execute

(Figure 7.1(a)).

A DCS cannot avoid host crashes and message losses [150–152]. Control systems typically

experience host crash rates of about 10−5/hr and link failure rates in the range of 10−5/hr

(permanent failures) and 10−3/hr (transient failures) [35, 36]. In order to “recover” from crashed

hosts, DCSs need to know about these crashes and react in real-time; for example, to have the

scheduler re-map tasks to non-crashed hosts, ensuring proper execution of all applications [153]

(see Figure 7.1(b)).

Besides the real-time necessity, hosts in DCSs need to have consistent views of which hosts

in the system have crashed. Inconsistent views imply that hosts might consider different hosts

as crashed. The state of the scheduler module in a DCS, as a result, might be invalidated

yielding improper executions of applications and causing downtime [12]. Basically, a DCS

needs a group membership service [1, 154–159] to coordinate the information regarding crashed

hosts in real time.

In short, an ideal membership in DCSs amounts to a service that synchronously reports, to all

(non-faulty) hosts, perfect information about host crashes and within fixed bounds (see Figure 6.2).

In the presence of message losses, however, implementing such a service deterministically is

impossible as we prove in this chapter (Section 6.3).
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In fact, known implementations of deterministic membership services either assume no message

losses, provide eventual (not real-time) guarantees or use additional help [1, 160–163]. The

implementable membership guarantees in contexts similar to DCSs can, at best, be probabilis-

tic [35, 155, 164].

This chapter investigates how to define a membership with probabilistic properties suited for

DCSs and establishes accordingly a synchronous membership service (SYMS), a new abstraction

encapsulating a probabilistic form of the ideal membership properties needed by DCSs. In

this chapter, we also propose an algorithm, which we call ViewSnoop, that implements SYMS

properties with high probability (relative to other membership mechanisms and which persists

with increasing system size, see Section 6.5). The main idea underlying ViewSnoop is to (a) have

hosts maintain local suspicion lists that are not visible to the scheduler of a DCS and at the same

time (b) let hosts snoop into each others’ local views by modifying the structure of heartbeats,

precisely by piggybacking local suspicion lists on heartbeats. Heartbeats are disseminated

periodically via a broadcast primitive (not necessarily reliably) as in most DCSs to facilitate crash

detection [12, 35, 154–156]. Appending suspicion lists to heartbeats helps hosts know about other

alive hosts, despite possible message losses. This property increases the probability of having a

global consistent view and hence a better accuracy. Combined with (a), ViewSnoop can, with high

probability, discern message losses from host crashes, better than using sequence numbers [165]

(see Section 6.5). Having losses mistaken for host crashes, and removing correct hosts as a result,

not only worsens accuracy2, but also depletes processing resources, threatening availability. This

chapter also shows the performance benefits and trade-offs of ViewSnoop compared to existing

membership algorithms relying on classic heartbeats, both analytically as well as experimentally

in an industrial DCS framework.

We commence, in what follows, by describing in details how DCSs for cyclic control applications

function, highlighting the mandatory constraints and requirements for proper operation.

2The probability of not excluding non-crashed hosts.
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failure of the host responsible to refresh the data.

6.2 Distributed Control Systems For Cyclic Control Applications

A distributed control system (DCS) for cyclic control applications consists of a set of hosts

(processes), Π = {h1, h2, ..., hn}, physically mapped to cores of the same or different machines.

Clearly, these hosts can fail (crash) [35], i.e., stop executing operations. Hosts have access

to local synchronized clocks with bounded skew. Accordingly, all hosts define control cycles

(rounds) of the same fixed duration. Control cycles are synchronized among hosts, i.e., the start

and end of a cycle occur at all hosts at the same time (with a bounded skew). During every control

cycle, each host executes the tasks assigned to it by the scheduler (recall Figure 7.1).

Scheduler

This is a distributed module that specifies which application tasks run on which hosts and in what

order. The allocation of tasks to hosts is called a configuration. A scheduler makes sure that

all hosts can execute the assigned tasks without exceeding the total cycle duration. Moreover,

the scheduler ensures that configurations allow all applications to meet their deadlines (timing

constraints). As such, a host requiring some input, in some configuration, expects the value of

this input to be refreshed, every cycle (e.g., by another host driving this input, see Figure 6.3). A

value that is not refreshed in time is called a stale input. Typically in DCSs, hosts can tolerate to

read stale input up to a bounded number of consecutive cycles, say sc. If the input remains stale

for more than sc cycles, then a new configuration has to be installed.

A DCS requires to exclude a crashed host: (i) within a bounded number of cycles after crashing

(real-time) and (ii) synchronously at all alive hosts, i.e., in the same cycle. Violating (ii) might

lead the scheduler state to be inconsistent, resulting in hosts executing different configurations

(mapping of tasks to hosts). Applications, as a result, might execute incorrectly, as communication

and/or the order of execution between tasks of the same application might be invalid.
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Communication

Every pair of hosts is connected by two logical uni-directional links. Links here for example

abstract a physical bus or a dedicated network link. Arguably, all communication is prone to

random disturbances resulting from bad channel quality, collisions, stack overflows etc. Messages

can thus be lost. When there is no loss, we assume that messages have a bounded delay, say

d. Configurations computed by the scheduler account for the delay d. As such, any message

scheduled to be sent in cycle r, if not lost, is assumed to be received in the same cycle r.

Specifically, we model losses as follows: a message sent by hi is received by hj with probability

p. Sending a message reliably at any point in time from one host to another, thus, can take an

unbounded amount of time, due to losses and follow-up re-transmissions.

We assume, for the theoretical analysis, that p is independent of time and links and is the same for

all links. Nevertheless, correlated losses, although not considered theoretically for the tractability

of our analysis, can occur in our experimental evaluation (Section 6.7).

Crash monitoring

In this chapter, we consider monitoring schemes that rely only on message exchange and synchro-

nized local clocks (time-outs). Specifically, a host sends messages, known as heartbeats, every

cycle to at least one other host in the system (hosts do not send heartbeats to themselves). We

assume no causality between heartbeats sent in the same cycle; the content of heartbeats sent by

a host during cycle r is the same and can be affected only by the heartbeats sent at cycles < r. A

host is “alive” at cycle r, if that host does not crash during r (during r a host is either crashed or

alive). Hosts do not crash themselves on purpose, as resources for running tasks become scarcer,

risking some applications to halt.

6.3 Overview of SYMS

After our description of the operation of a DCS, we identify now the ideal membership, following

the traditional way of defining its properties [1, 160, 161]. For simplicity, we specify the

properties for host crashes in the fail-stop model [7], i.e., without recovery (we discuss recoveries

in Section 6.7).

We first introduce some terminology. We denote a view by the tuple (id,M), where M is the set

of hosts declared in a view as alive (not crashed). Variable id denotes the view identifier (namely

the cycle in which the view is installed). Initially all hosts install the view V = (id,M), where

M includes all hosts in the system. Consequent views are obtained from monitoring, as described

in Section 7.2. We assume that if a host hi receives a heartbeat sent by a host hj in round r, then

hi cannot exclude3 hj in round r + 1.

3This assumption is analogous to our assumption that hosts cannot be crashed on purpose, in the sense that, as
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The ideal properties for DCSs can be expressed as follows:

P1: Monotonicity: If a host installs a view V = (id,M) and later V ′ = (id′,M ′), then

id < id′ and M ′ ⊆ M .

P2: Agreement: If a host installs a view V = (id,M) at round r, then all alive hosts at r

install V = (id,M) at r.

P3: Completeness: If a host h crashes, then after a maximum of sc rounds elapse after the

crash, all hosts that remain alive sc rounds after the crash, install V = (id,M) where

h /∈ M .

P4: Accuracy If a host installs view V = (id,M) where h /∈ M , for some host h, then h

has already crashed.

P5: Non-triviality: Let C be the set of hosts alive at round r, during which host h installs a

view V = (id = r,M). Then, it is possible that {C∩M ′} ⊆ M , where V ′ = (id′ < r,M ′)
is the most recent view h installed before the view at r.

In contrast with traditional membership properties [1, 160, 161], which detect crashes eventually

and not necessarily in a synchronous manner (i.e., in the same synchronous round by all hosts),

completeness (P3) and accuracy (P2) here stipulate real-time and synchronous detection of

crashes respectively.

Theorem 17. No algorithm can deterministically guarantee both completeness (P3) and accuracy
(P4) in a DCS with message losses.

Proof. Both properties, P3 and P4, are related to failure detection, precisely perfect failure

detection4. A perfect failure detector [7] cannot be implemented in case of message loss, because

finite executions where a host crashes cannot be distinguished from finite executions where all

messages from this host are lost [167].

For better illustration and entirety, we showcase this fact again below.

Consider an example of a DCS with two hosts, h1 and h2, and the following executions:

• e1. an execution where host h2 fails at cycle r.

• e2. an execution where host h1 and h2 are both correct but lose all messages sent (if any)

at all cycles in the range [r, r + sc].

long as hi receives heartbeats from hj , then hj is certainly alive (at least up to the moment of sending the last heard

heartbeat). Acting otherwise might risk the system’s availability (higher downtime) as fewer hosts become available.
4P3 is a stronger version of the strong completeness property (defined in [7]), as it has a bound on the detection

time (sc control cycles versus eventually). P4 is the strong accuracy property. P3 and P4 together define a stronger

version of the perfect failure detector [166] (a perfect failure detector with a bound on detection time).
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Since the control cycle duration is fixed, a finite number of messages can be sent during a control

cycle, say ni. Execution e2 is valid, since e2 can occur with the positive probability, (1 −
p)ni(sc+1), p being the probability that a sent message is successfully received. h1 cannot monitor

h2 (to know if h2 is alive) except through message exchange and time-outs (see Section 7.2).

With respect to h1 executions e1 and e2 are indistinguishable during [r, r + sc], for any finite

value of sc (since h1 cannot know if h2 has failed or all messages from h2 are lost).

By P3, in execution e1 h1 declares h2 as failed at most by cycle r + sc. Since e1 and e2 are

indistinguishable during [r, r + sc] then h1 declares h2 as failed at most by cycle r + sc also in

e2. This violates P4 in execution e2.

Theorem 18. No algorithm satisfying non-triviality (P5) can deterministically guarantee agree-
ment (P2) and completeness (P3) in a DCS with message losses.

Proof. Assume by contradiction that an algorithm A satisfies the non-triviality property (P5)

and deterministically guarantees agreement (P2) and completeness (P3) in a DCS with losses.

Hosts in algorithm A install an initial view as specified by our assumption in Section 6.3, i.e., a

view in which no host is excluded.

Lemma 17. Assuming that no hosts have been excluded, an algorithm A satisfying P5 means
that exactly one of the following cases is true.

For every host hj such that hj ∈ C, a host hi installing a view V (id,M) can:

Case 1. Decide if hj ∈ M regardless of any received heartbeats.

In this case hi can decide to

(a) Include hj in all views installed.

(b) Exclude hj in a randomly chosen cycle.

Case 2. Decide whether hj ∈ M depending on the heartbeats received by hi.

Proof. Any view to be installed by any host has to be constructed by the monitoring scheme

depicted in Section 7.2.

Assuming that no hosts are excluded (precisely, that no views besides the initial one are installed),

P5 can be restated as follows:

Consider some round r in which a host hi in A installs a view V (r,M). Then, there is a positive

probability that C ⊆ M , where C is the set of hosts alive at round r.

For every host hj such that hj ∈ C, hi can:
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Case 1. Decide if hj ∈ M regardless of any received heartbeats.

In this case hi can decide to:

(a) Include hj in all views installed.

(b) Exclude hj in a randomly chosen cycle.

(c) Exclude hj deterministically in some predetermined cycle r′.

Case 2. Decide whether hj ∈ M depending on the heartbeats received by hi.

hi cannot decide based on any other means, as Section 7.2 constrains monitoring to be solely

based on exchanging heartbeats.

In fact, having hi decide according to case 1(c) violates P5. Assume that hj is a correct host, i.e., a

host that does not crash. Then having hi exclude hj at any cycle r′ deterministically, regardless of

any received heartbeats, means that the view at r′ can never include hj as alive, which contradicts

P5. As such, in order to satisfy P5, one of the other statements should be true.

We will now show that in a system with two hosts h1 and h2, deciding according to Case 1 or

Case 2 will not allow P2 and P3 to be satisfied deterministically.

If Case 1(a) is true, then A would violate completeness (P3): Consider an execution where h1 is

correct, i.e., does not crash during the entire execution of the algorithm, and h2 crashes at some

point. If Statement 1(a) is true, then h1 would never declare h2 as crashed.

If Case 1(b) is true then A might violate agreement (P2): Consider an execution where both

hosts h1 and h2 are alive. Let r′ be the cycle in which h1 excludes h2 from its view and let r′′ be

the cycle in which h2 excludes itself from its own view. Since r′ and r′′ are randomly chosen,

there is a positive probability that r′ �= r′′. In that case, hosts install different views and P2 is

violated.

If Case 2 is true, the following is a necessary condition to satisfy completeness (P3): a host

in A should exclude some host after not hearing (directly or indirectly) from that host for dt
consecutive cycles, such that dt ≤ sc (given that every host sends a heartbeat at every cycle to at

least one other host). According to our monitoring assumptions in a DCS (Section 7.2) any host

sends heartbeats to at least one other host in the system.

In a DCS with two hosts, this means that: in every cycle, h1 sends heartbeats to h2 and h2 sends

heartbeats to h1. In other words, h1 can receive heartbeats only from h2 and h2 can receive

heartbeats only from h1.

Consider the case where h2 loses all heartbeats sent by h1 for more than sc consecutive cycles

(which can happen with positive probability). By the completeness property (P3), h2 should
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install (after dt consecutive cycles of loss) a view V excluding h1. Also, h2 has to decide whether

to include or exclude itself from V . The decision taken by h2, whether to exclude itself from V

or not in that case, is independent of what happens to the heartbeats sent by h2 to h1 in the past

dt cycles (i.e., if these heartbeats are lost or not). This statement is valid since in that duration h2
did not receive any heartbeats and thus cannot know any information.

Similarly, such a scenario can also happen with h1. Let us refer to such a scenario, which can

occur with either hosts, as Scenario S. A host in scenario S installs a view V (excluding the other

host) and decides either to exclude itself from V or not. We discuss both cases below.

A host decides to exclude itself in scenario S.

Consider an execution e satisfying both conditions below:

a. h1 and h2 correct, i.e., never fail.

b. Starting from cycle r, all heartbeats sent by h1 to h2 are lost for α · sc cycles, i.e., for all

cycles in [r, r+ α · sc], ∀α ≥ 1, while all heartbeats sent by h2 to h1, in this same interval,

are not lost.

Condition (b) can happen with positive probability (see proof of Theorem 17). In execution e, h2
cannot hear any heartbeats in [r, r + α · sc]. In this case and by the completeness property (P3),

h2 excludes h1 and itself at cycle r + dt.

We recall now the following assumption of Section 6.3: if a host hi receives a heartbeat sent by

host hj at round r, then hi cannot exclude hj in round r + 1. Since h1 receives all heartbeats

from h2 (regardless of the content of these heartbeats) in [r, r + α · sc], h1 would still include h2
as alive during cycle r + dt, which violates agreement (P2).

It is very important to note that in [r, r + dt], h2 stops obtaining any additional information. This

is due to the fact that h2 receives no heartbeats in that interval. Thus, at beginning of cycle r,

h2 already has all the information it needs upon which it can base its decision of whether to

include or exclude itself from the view. Since execution e does not make any assumptions about

heartbeats prior to cycle r, this means that the decision of h2 to exclude itself in e covers all the

possible cases in which h2 might decide to exclude itself.

A host decides not to exclude itself in scenario S.

Consider now an execution e′ satisfying both conditions below:

a. h1 and h2 correct, i.e., never fail.

b. Starting from cycle r, all heartbeats sent by h1 to h2 are lost for α · sc cycles and all

heartbeats sent by h2 to h1 are lost for α · sc cycles, i.e., for all cycles in [r, r + α · sc],
∀α ≥ 1.
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Condition (b) can happen with positive probability (this can be inferred from the proof of

Theorem 17 and the fact that losses are independent of links). In execution e′, h2 cannot hear any

heartbeats in [r, r + α · sc]. In this case and by the completeness property (P3), h2 excludes h1
at cycle r + dt; hence h2 installs a view at cycle r + dt where h2 considers only itself as alive.

Similarly, also by the completeness property (P3) and the fact that a host in scenario S decides

not to exclude itself, h1 installs at cycle r + dt a view where h1 is only alive, which violates

agreement (P2).

In [r, r + dt], h2 stops obtaining any additional information (h2 receives no heartbeats in that

interval). Thus, at beginning of cycle r, h2 already has all the information it needs upon which

it decides to include or exclude itself. The same applies for h1. Since execution e′ does not

make any assumptions about heartbeats prior to cycle r, this means that the decision of h2 not to

exclude itself in e′ covers all the possible cases in which h2 might decide not to exclude itself.

Combined with the previous case (the case in which h2 excludes itself at r + dt) we cover all

possible cases that might affect h2’s decision.

The same can be constructed for h1. This result concludes the proof as it shows that an algorithm

that satisfies P5 and P3 has a positive probability of violating agreement (P2), given the monitoring

families considered in this chapter (Section 7.2).

Both theorems hold even if only one host can crash.

Given these impossibilities, an implementable form of the desired ideal properties can only be

probabilistic. We define such a probabilistic form under an abstraction we call SYMS:

SYMS 1, SYMS 3 and SYMS 5 : respectively as P1, P3 and P5 above.

SYMS 2: If some host installs view V = (id,M) at round r, then with probability pagree, all

alive hosts at r install V = (id,M) at round r.

SYMS 4: If some host installs view V = (id,M) such that h /∈ M , for some host h, then with

probability paccurate, h has already crashed.

We highlight two probabilistic metrics. The first is pagree, the probability that all alive hosts

agree on the view (list of hosts that are considered alive) to be installed at a round. The second

is paccurate, the probability of an excluded host to have actually crashed. To increase the

dependability of a DCS, SYMS algorithms need to maximize both metrics.

6.4 The ViewSnoop Algorithm

ViewSnoop implements SYMS by building local suspicion lists above which membership views

are constructed . Suspicion lists combined with the process of constructing views allow ViewSnoop
to detect and act upon stale input resulting from message losses and not only host crashes (details
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in Section 6.5.4). In particular, ViewSnoop seeks to increase the probability of having synchronous

consensus on views given message losses and to always detect host crashes in real-time.

Let ni be the maximum number of heartbeats a host hi can send in some cycle r (every heartbeat,

if not lost, is received in r). For illustration, we assume that ni is the same at all cycles and for all

hosts. We first describe ViewSnoop for sc = 3 (consecutive cycles in which a host can tolerate

stale data); sc = 3 represents the minimum upper bound on the number of cycles to exclude a

crashed host in ViewSnoop (as we show below). Later in this section, we discuss how to extend

ViewSnoop to any value of sc ≥ 3.

Every host in ViewSnoop maintains a list of suspected hosts (localsuspect). In each cycle, every

host broadcasts a copy of its suspicion list tagged with the control cycle number, as a heartbeat,

ni times to all hosts. At the end of the cycle the list for the next cycle is prepared. In ViewSnoop,

a view installed at cycle r has id = r.

6.4.1 ViewSnoop’s Functionalities

Synchronous View Agreement.

This functionality of ViewSnoop constructs the view that a host installs in a control cycle. At the

end of the control cycle (i.e., after broadcasting the suspicions list), every host performs a merge
on all the suspicion lists received: the result is a new view to be installed at the beginning of the

next cycle. For every host hj in the current view, a host hi performs the merge as follows:

If hj belongs to the localsuspect list of hi and hj is in the suspected list of all heartbeats received

by hi, then hi excludes hj from the view to be installed in the following cycle. Otherwise hi
considers hj alive.

Consider a host hj that belongs to the localsuspect list of all alive hosts at cycle r. Then the merge

guarantees the following: all alive hosts at cycle r+1 exclude hj . The reason is that alive hosts at

r + 1, can receive messages (if any is received) of hosts which append their localsuspect lists at r.

Host Crashes Detection in Real-time.

ViewSnoop aims at excluding crashed hosts in real-time, i.e., within a fixed number of cycles, sc.

This second functionality of ViewSnoop ensures that a crashed host belongs to the localsuspect
list of all alive hosts (and which remain alive) at most two cycles after crashing. By satisfying
this condition, the synchronous view agreement, precisely the merge, guarantees that the
crashed host gets excluded at most one cycle later, i.e., by the third cycle.

Detecting crashes in real-time relies on the ni heartbeats sent by every host in every cycle.

Initially the localsuspect list of host h only contains h. A host h always suspects itself. At the end

of a cycle, every host updates its localsuspect list based on the non-excluded hosts it hears from

during that cycle. For example, if hi did not receive any message from hj (which is part of hi’s
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current view), then hi places hj in the localsuspect list. Note that placing hj in the suspected list

does not mean that hj is excluded from hi’s view; excluding hosts is governed by the synchronous

view agreement.

hj , thus, gets suspected (not excluded), at most two cycles after crashing, by all hosts that remain

alive (since hj stops sending heartbeats after crashing and might send a heartbeat and directly

crash). The merge of Section 6.4.1, excludes hj at most one cycle later, i.e., by the third cycle.

6.4.2 Tolerating sc ≥ 3 Stale Control Cycles

To tolerate sc ≥ 3 cycles, a host hi needs an array variable (with one entry per host), countstale.

The only modification to ViewSnoop is induced in the synchronous view agreement part, precisely

the merge operation. Hosts now perform merge as follows: hj is declared failed by hi, according

to the description below (otherwise hj is declared alive).

For every hj

IF (countstale(hj)=sc) DO
Declare hj failed

ELSE
IF (cond1 && cond2) DO
// cond1: hj belongs to localsuspect of hi.

// cond2: hj is in the suspected list of all heartbeats received by hi.
countstale(hj) + +;

ELSE
countstale(hj) = 1;

ENDIF
ENDIF

6.4.3 Approximating ViewSnoop’s Probabilistic Guarantees

ViewSnoop guarantees property SYMS 1 due to two reasons. First, the id of the view to be

installed at control cycle r is r, the control cycle number itself. Second, crashed hosts do not

recover and if host A excludes host B at cycle r, then A does not install any view at cycles > r

where B is considered alive (after excluding B, A ignores any heartbeats from B). SYMS 3 is

ensured in ViewSnoop of the following reasons:

• A host h that fails at cycle r, stops sending heartbeat message from cycle r + 1 onward.

• Since h sends no heartbeats at cycles in [r + 1,∞[, then h is included in the suspected list

of all host alive at cycles in [r + 1,∞[.

• As indicated in Section 6.4.1, a host h suspected all alive hosts at cycle r + 1 is declared

as failed at cycle r + 2.

ViewSnoop guarantees property SYMS 5, since: (i) every host broadcasts to all other hosts a

heartbeat at every cycle and (ii) a host hi receiving a heartbeat from a non-excluded host hj at
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cycle r declares hj as alive. In this sense, any host at cycle r has a positive probability (probability

of heartbeats being not dropped) of installing a view containing the set of hosts that have not

crashed or been excluded up to cycle r.

We determine, in what follows, pagree and paccurate with which ViewSnoop satisfies properties

SYMS 2 and SYMS 4. We approximate pagree and paccurate in crash-free executions, i.e., only

considering false suspicions resulting from message losses, since we do not assume any particular

probability for host crashes (we show in Section 6.7 that crashed hosts are excluded by all alive

hosts using ViewSnoop in at most 3 cycles).

Lemma 18. The probability, pagree, that all alive hosts in ViewSnoop agree on the view to be
installed at a round can be approximated by pagree = 1− pdisagree, where:

pdisagree =

|C|∑
k=1

(|C|
k

)
[Prob(disagreeA)]

k [1− Prob(disagreeA)]
|C|−k

Prob(disagreeA) = [Prob(1|πA) + Prob(2|πA)]P (πA)

P (πA) =

|C|∑
|C|−|πA|=2

( |C|
|C| − |πA|

)
(1− p)ni(|C|−|πA|) [1− (1− p)ni ]|πA| ,

P rob(1|πA) = (1− p)ni×|πA| ×
|C|−|πA|−1∑

h=1

(|C| − |πA| − 1

h

)[
1− (1− p)ni(|πA|+1)

]h

×
[
(1− p)ni(|πA|+1)

]|C|−|πA|−h−1
,

P rob(2|πA) = [1− (1− p)ni×πA ]×
|C|−|πA|−1∑

k=1

(|C| − |πA| − 1

k

)[
(1− p)ni(|πA|+1)

]k

×
[
1− (1− p)ni(|πA|+1)

]|C|−|πA|−k−1
,

such that πA is the the set of hosts which do not have some host A in their localsuspect list at the
beginning of cycle r and C is the set of alive hosts in r − 1, assuming that no host has excluded
any other host.

Proof. Consider host A and two sets of hosts:

1. πA: hosts which do not have A in their localsuspect list at the beginning of cycle r.

2. πĀ: hosts which have A in their localsuspect at the beginning of r.

Assume that host A is not included in any of these sets. Let C be the set of alive hosts in r − 1

and assume that no host has excluded any other host, then |C| = |πA|+ |πĀ|+ 1. Disagreement

in cycle r occurs if any condition below holds:
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1. Host A does not receive any message from all hosts in πA and at least one host in πA
⋃

πĀ
receives a message from A

⋃
πA.

2. At least one host in πĀ does not receive any message from all hosts in A
⋃

πA and:

(a) Host A hears from at least one host in πA OR

(b) At least one host in πA hears from some other host in A
⋃

πA.

Condition (1) happens with probability Prob(1|πA):

Prob(1|πA) =P (Host A does not receive any message from all hosts in πA)

× P (at least one host in πA
⋃

πĀ receives a message from A
⋃

πA).

In our computations, we do some approximations for presentation simplicity of closed-form

expressions. The value of Prob(1|πA) can be approximated as follows:

Prob(1|πA) ≈P (Host A does not receive any message from all hosts in πA)

× P (at least one host in πĀ receives a message from A
⋃

πA).

P (Host A does not receive any message from all hosts in πA) = (1− p)ni×|πA|.

P (at least one host in πĀ receives a message from A
⋃

πA) =

|C|−|πA|−1∑
h=1

(|C| − |πA| − 1

h

)[
1− (1− p)ni(|πA|+1)

]h
×
[
(1− p)ni(|πA|+1)

]|C|−|πA|−h−1
.

So,

Prob(1|πA) ≈ (1− p)ni×|πA|

×
|C|−|πA|−1∑

h=1

(|C| − |πA| − 1

h

)[
1− (1− p)ni(|πA|+1)

]h
×
[
(1− p)ni(|πA|+1)

]|C|−|πA|−h−1
.

Condition (2) happens with probability Prob(2|πA):

Prob(2|πA) =P (At least one host in πĀ does not receive any message from all hosts in A
⋃

πA)

× [P (Host A hears from at least one host in πA)

+ P (At least one host in πA hears from at least one other host in A
⋃

πA)].

We approximate Prob(2|πA) as follows:

Prob(2|πA) ≈P (At least one host in πĀ does not receive any message from all hosts in A
⋃

πA)

× P (Host A hears from at least one host in πA).
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P (At least one host in πĀ does not receive any message from all hosts in A
⋃

πA) =

|C|−|πA|−1∑
k=1

(|C| − |πA| − 1

k

)[
(1− p)ni(|πA|+1)

]k
×
[
1− (1− p)ni(|πA|+1)

]|C|−|πA|−k−1
.

P (Host A hears from at least one host in πA) = 1− (1− p)ni×πA .

So,

Prob(2|πA) ≈ [1− (1− p)ni×πA ]

×
|C|−|πA|−1∑

k=1

(|C| − |πA| − 1

k

)[
(1− p)ni(|πA|+1)

]k
×
[
1− (1− p)ni(|πA|+1)

]|C|−|πA|−k−1
.

P rob(1|πA) and Prob(2|πA) are probabilities conditioned on the probability, P (πA), of having

|πA| hosts that do not have A in their localsuspect list at the beginning of cycle r. The probability

P (πA) can be expressed as:

P (πA) =

|C|∑
|C|−|πA|=2

( |C|
|C| − |πA|

)
(1− p)ni(|C|−|πA|) [1− (1− p)ni ]|πA| .

As a result the disagreement probability can be estimated as follows:

Prob(disagreeA) ≈ [Prob(1|πA) + Prob(2|πA)]P (πA).

The probability to have a disagreement (pdisagree) is the probability to disagree about at least one

alive host:

pdisagree =

|C|∑
k=1

(|C|
k

)
[Prob(disagreeA)]

k [1− Prob(disagreeA)]
|C|−k ,

where pagree = 1 − pdisagree.
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Lemma 19. The probability paccurate of a host excluded in ViewSnoop to have actually failed
can be approximated by 1− [Prob(1|πB) + Prob(2|πB) + Prob(3|πB)]P (πB), where:

Prob(1|πB) = (1− p)ni×πB ,

P rob(2|πB) =
|C|−|πB |−1∑

r=1

(|C| − |πB| − 1

r

)[
(1− p)(|πB |+1)ni

]r

×
[
1− (1− p)(|πB |+1)ni

]|C|−|πB |−r−1
,

P rob(3|πB) =
|πB |∑
s=1

(|πB|
s

)[
(1− p)(|πB |)ni

]s
×
[
1− (1− p)|πB |ni

]|πB |−s
,

P (πB) =

|C|∑
|C|−|πB |=2

( |C|
|C| − |πB|

)
(1− p)ni(|C|−|πB |) [1− (1− p)ni ]|πB | ,

such πB is the set of hosts that heard from some host B in cycle r − 1 and C is the set of all alive
hosts in cycle r (assuming no exclusions at all hosts).

Proof. Let E be the event that some correct host B is excluded, then Prob(E) = 1 − paccurate.

We define the following:

1. πB : the set of hosts which do not have B in their localsuspect list at the beginning of cycle r.

2. πB̄: the set of hosts which have B in their localsuspect list at the beginning of cycle r.

3. The set of all alive hosts in cycle r (assuming no host has excluded any other host),

C = πB + πB̄ + {B}.

A correct host B gets declared as crashed and thus is excluded by some host if any of the

following happens:

1. B does not hear any message from all hosts in πB . This event occurs with probability:

Prob(1|πB) = (1− p)ni×πB ..

2. At least one host in πB̄ does not hear any message from all hosts in B
⋃

πB . This event

occurs with probability:

Prob(2|πB) =
|C|−|πB |−1∑

r=1

(|C| − |πB| − 1

r

)[
(1− p)(|πB |+1)ni

]r

×
[
1− (1− p)(|πB |+1)ni

]|C|−|πB |−r−1
.

96



6.5. Analytic Evaluation of ViewSnoop

3. At least one host in πB does not hear any message from all hosts in B
⋃

πB . This event

occurs with probability:

Prob(3|πB) =
|πB |∑
s=1

(|πB|
s

)[
(1− p)(|πB |)ni

]s
×
[
1− (1− p)|πB |ni

]|πB |−s
.

P rob(E|πB), the probability that some correct host B is declared crashed given that πB hosts

heard from B, can be approximated by

Prob(1|πB) + Prob(2|πB) + Prob(3|πB).

We have:

Prob(E ∩ πB) = Prob(E|πB) ∗ Prob(πB),

where Prob(πB) is the probability that exactly |πB| have host B in localsuspect list at the

beginning of cycle r. Thus,

Prob(E) =

|C|∑
|C|−|πB |=2

( |C|
|C| − |πB|

)
Prob(E ∩ πB)

=

|C|∑
|C|−|πB |=2

( |C|
|C| − |πB|

)
Prob(E|πB)× Prob(πB)

=

|C|∑
|C|−|πB |=2

( |C|
|C| − |πB|

)
(1− p)ni(|C|−|πB |) [1− (1− p)ni ]|πB | × Prob(E|πB).

6.5 Analytic Evaluation of ViewSnoop

Probabilistic performance metrics, like pagree and paccurate, cannot be evaluated accurately via

experimentation and are best measured analytically. We hence conduct extensive theoretical

analyses and simulations addressing: (a) ViewSnoop’ dependability (b) the effect of network load

on the dependability of ViewSnoop and (c) ViewSnoop’s capability of differentiating between

network and host failures.

We address the above points of ViewSnoop’s performance and compare with membership schemes

based on classic heartbeats. First, we describe the different classic heartbeat-based schemes with

which we compare and compute their probabilistic guarantees.
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6.5.1 Classic heartbeat-based Memberships

Simple fault-exclusion mechanism (SFTM)

This mechanism is employed as the basis of most existing membership protocols with real-time

guarantees [12, 35, 154, 155]. These existing protocols typically augment SFTM with additional

help not supported in the context of this chapter, such as allowing hosts to be killed and using

additional hardware (see Section 6.8). In SFTM, every host broadcasts a heartbeat in every cycle

and at the end of a cycle, suspects and excludes all hosts from which it did not hear. A heartbeat

here represents an “I am alive” message. Let us denote by pagree(SFTM) and paccurate(SFTM),

the probability of installing the same view by all alive hosts (C) in some cycle and the probability

of a host declared as failed to have actually crashed respectively, given that a message loss

probability is 1− p.

Then

pagree(SFTM) = p|C|(|C|−1),

and

paccurate(SFTM) = 1−
|C|−1∑
r=1

(|C| − 1

r

)
(1− p)rp|C|−1−r.

M-SFTM

A variant of SFTM where every host broadcasts ni heartbeats per cycle, as opposed sending a

single heartbeat. Sending more heartbeats makes M-SFTM more robust than SFTM to message

losses in ways supported by the DCS context discussed in this chapter. At the end of a cycle,

every host in M-SFTM suspects and excludes all hosts from which it did not hear any heartbeat.

A heartbeat has the same structure as in SFTM. Alive hosts in M-SFTM install the same views if

each host hears some heartbeat from every other alive host. Hence,

pagree(M-SFTM) = [1− (1− p)ni ]|C|(|C|−1) .

A host h is falsely excluded by at least one other alive host if at least one other host receives none

of host h’s heartbeats. Thus:

1− paccurate(M-SFTM) =

|C|−1∑
k=1

(|C| − 1

k

)
[(1− p)ni ]k [(1− (1− p)ni)]|C|−1−k .
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Ring Algorithm

A variant of SFTM, this time not using all-to-all communication, inspired from Larrea et al. [131–

133]. Hosts send heartbeats following a ring structure. Initially host 1 sends heartbeats only to

host 2, host 2 to host 3, ..., and host n to host 1 (n : total number of hosts). Similar to Section 6.4,

we describe the algorithm for sc = 3.

The ring algorithm uses a boolean variable, “suspect”, initially set to false.

In every cycle, hosti sends a heartbeat tagged with the cycle number, ni times to hosti+1 following

it on the ring of the current system view. The heartbeat has the same structure as in SFTM. At

the end of the control cycle, every hosti checks if it received some heartbeat from hosti−1 of the

current system view. If no such message is received, then hosti updates its suspect variable to

true (false otherwise).

At the beginning of cycle r, every hosti executes the code below.

Install V = (r,M) such that M = M ′, where (r − 1,M ′) is the view of the previous
control cycle.
IF (suspect) DO

Broadcast < id(hosti−1), crash > message ni times.
Declare hosti−1 failed & install at the beginning of

cycle r + 1, V = (r + 1,M ′′): hosti−1 /∈ M ′′.
Set suspect = false

Listen in control cycle r + 1 to heartbeats of
hosti−1 in the new V = (r + 1,M).

ELSE
Install at beginning of cycle r + 1, V = (r + 1,M), M

being the system view at cycle r.
ENDIF
At the end of a control cycle r, every hosti executes:
IF (< id(hostx), crash > is received) DO

Declare hostx failed and install at beginning of cycle r + 1, V = (r + 1,M ′′) such
that hosti−1 /∈ M ′′.
ENDIF

The probability of hosts installing the same view in the ring algorithm boils down to two cases:

1. If every alive host receives at least one heartbeat from the host that precedes it in the ring,

i.e., if there are no false suspicions.

2. If all hosts receive the < id(hostx), crash > of any host, whenever sent.

In the second case, i.e., (2), a host hi which is falsely suspected agrees to install a view where hi is

not alive in that view. As such, according to the description of the algorithm hi no longer receives

heartbeats from the alive host hj preceding it. Since hi is still alive, despite being excluded

form the view, hi eventually suspects hj and broadcasts the message < id(hj), crash >. Upon

receiving such messages, we face two cases:
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Figure 6.4 – The ratio of the agreement probability and accuracy of ViewSnoop over SFTM and

M-SFTM algorithms.

1. Hosts exclude hj and then hj leads the host preceding it to get excluded and so on, until

all hosts get eventually excluded. This case means that the accuracy of the algorithm drops

to zero, as a correct host gets excluded for sure.

2. Hosts ignore messages received from the excluded host hj . In this case, hj becomes in

disagreement with the rest of hosts in the system.

To this end, the probability of agreement among hosts in the ring algorithm is approximated with

the probability that all correct hosts do not get falsely suspected. In other words:

pagree(Ring) = [1 − (1− p)ni ]|C| .

The probability that a correct host is falsely suspected and excluded in a cycle, i.e., the probability

that a host is placed in the suspected list of at least one other host in some cycle is:

1−paccurate(Ring) = (1− p)ni + (1− p)ni

|C|−1∑
h=1

(|C| − 1

h

)
[(1− p)ni ]h [1− (1− p)ni ]|C|−1−h .

Now we evaluate the dependability of ViewSnoop compared to the aforementioned classic

heartbeat-based schemes.
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Figure 6.5 – The ratio of the agreement probability and accuracy of ViewSnoop over the ring

algorithm.

6.5.2 ViewSnoop’s Dependability

We evaluate ViewSnoop’s dependability by comparing the values of pagree and paccurate achieved

by ViewSnoop versus those obtained using SFTM, M-SFTM and the ring algorithms. Any

gain in pagree and/or paccurate translates into a more dependable SYMS implementation and

a better DCS availability5. We simulate the values of pagree and paccurate for all algorithms

using ni ∈ {1, 2, 4, 8} broadcast messages per control cycle. Note that for ni = 1, SFTM and

M-SFTM become the same algorithm.

Simulations are run for values of p ∈ {0.8, 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999} and

C ∈ {3, 10, 100, 1000}, where p is the probability of a host receiving a broadcast message

successfully and C is the number of alive hosts in the system.

Gain in Agreement Probability

Figure 6.4 (a)-(d) and Figure 6.5 (a)-(d) report respectively the ratios of pagree obtained by

ViewSnoop w.r.t. that obtained by M-SFTM (SFTM) and ring. The actual values of pagree of the

different algorithms, i.e., not the ratios, are also reported in Figure 6.7 for p = {0.9, 0.99, 0.999}.

5Lower accuracy means more correct hosts get excluded, increasing the risk of downtime due to the lack of

processing resources.
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Figure 6.6 – The ratio of the agreement probability and accuracy of SFTM and M-SFTM over

the ring algorithm.

The following remarks are in order:

1. ViewSnoop has a higher agreement probability compared to all other classic heartbeat-

based mechanisms and under all settings, i.e., for all values of p, ni and C.

2. For a fixed value of p and a fixed ni, the gain in the agreement probability for ViewSnoop
over all other classic heartbeat-based mechanisms increases exponentially as the number

of alive hosts C increases.

3. Given a fixed number of alive hosts (C), the positive gain in the agreement probability of

ViewSnoop compared to all other mechanisms tends asymptotically to zero (i.e., no gain) as

p → 1 and as ni increases (when messages losses are fully masked all algorithms provide

the same guarantees).

Gain in Accuracy

The gain in the probabilistic accuracy of ViewSnoop over that of M-SFTM (SFTM) and ring can be

observed in Figure 6.4 (e)-(h) and Figure 6.5 (e)-(h), respectively. The actual values of paccurate of

the different algorithms, i.e., not the ratios, are reported in Figure 6.7 for p = {0.9, 0.99, 0.999}
.

102



6.5. Analytic Evaluation of ViewSnoop

Algorithm Message Complexity Message Content
SFTM O(C2) 2 integers

M-SFTM O(niC2) 2 integers

Ring O(niC) 2 integers

ViewSnoop O(niC2) 2 integers +1 string

Table 6.1 – Message complexity of algorithms implementing SYMS.

The probability of falsely excluding an alive process achieved by all classic heartbeat-based

mechanisms is lower bounded by the probability achieved by ViewSnoop, allowing it to have the

best accuracy. This lower bound becomes tighter as p → 1 and ni → ∞ while it becomes more

relaxed as C → ∞.

Conclusion. ViewSnoop indeed offers a more dependable service, compared to SFTM, M-

SFTM and the ring algorithm, enhancing thus the availability of a DCS. The significance of this

improvement relies on: (i) the number of heartbeats sent every cycle, (ii) the reliability of the

communication and (ii) the size of the DCS. For DCSs suffering from communication losses,

our algorithm provides superior probabilistic guarantees for critical cyclic control applications

(where the number of sent heartbeats per cycle is scarce) compared to mechanisms based on

sending simple heartbeats. In fact, we show in Appendix C that both probabilities with which

ViewSnoop implements SYMS properties, i.e., pagree and paccurate, tend to 1 as the number of

hosts in the system tends to ∞.

6.5.3 The Effect of Network Load

We study the effect of network load on the guarantees of algorithms implementing SYMS.

Network load can be split into: (i) message complexity, i.e., the number of heartbeat messages

sent per host per cycle, and (ii) message size. We study the impact of these factors individually.

Message complexity

Table 6.1 summarizes the message complexitiesin the absence of host crashes and losses.

Observation 1. Allowing hosts to send more heartbeats per cycle improves an algorithm’s
probabilistic guarantees.

Our results in Figure 6.7 show that both, pagree and paccurate, for all algorithms, i.e., ViewS-
noop, M-SFTM and ring, increase as ni (the number of heartbeats sent per host per cycle)

increases. This is expected as sending the same message multiple times helps mask potential

losses of that message.

Observation 2. Consider algorithms A and B with message complexities O(A) and O(B)

respectively. If O(A) ≥ O(B) then the statement: “B is at most as good as A”, w.r.t. the ensured
reliability and availability, does not hold.
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Figure 6.7 – Values of pagree and paccurate of all algorithms versus varying values of ni for

p = 0.9, p = 0.99 and p = 0.999.
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Our results in Figure 6.7 show that the ring algorithm (with lower message complexity) provides

better guarantees than M-SFTM, both in terms of pagree and paccurate. This result also holds for

various values of p (see also Figure 6.6).

Conclusion. Increasing the number of heartbeats sent per host per cycle of an algorithm imple-

menting SYMS increases the probabilistic guarantees of that algorithm; however this relation

does not hold across algorithms. In other words, the performance of distinct algorithms cannot be

compared solely based on their message complexity.

Message Size and Structure.

We investigate whether ViewSnoop benefits from sending more information in a heartbeat than

simply: “I am alive”, to achieve better guarantees. We compare M-SFTM and ViewSnoop, as

they have the same message complexity but differ in message size. Such a comparison shows

the impact of exchanging local views versus simple heartbeats. Figure 6.7 shows a positive

improvement in pagree and in paccurate when local views are exchanged. The improvement over

M-SFTM, for 10 hosts, is about 9.2×, increasing exponentially with the increasing system size.

Conclusion. Appending local views to heartbeats allows ViewSnoop to increase its probabilistic

guarantees and thus the availability of the DCS. The improvement is most significant in large

DCSs running critical applications (small ni).

6.5.4 Distinguishing Host Crashes from Message Losses

Distinguishing host crashes from message losses is very important in DCSs. In case of message

losses where hosts are still alive, a DCS can benefit from this information to update the configura-

tions such that tasks requiring communication would not be allocated to hosts connected by bad

links or different routes for communication are used instead. In all classic heartbeat-based mech-

anisms, roughly speaking, a host A knows the state of host B (if B is alive or not) only if A and

B can communicate, even with the use of sequence numbers [165]. As long as communication

between A and B is down then A has no idea about B’s state.

In contrast, ViewSnoop, by exchanging views, allows A to know about the state of B from other

hosts even if communication between A and B is down. ViewSnoop can detect the failure of

communication, when for example host B is in the suspect list of host A while A still sees

that host B is not in the suspect list of all other hosts that A hears from. Let pcom_fail be

the probability that a host A detects correctly the communication failure between itself and

another host. Note that all other classic heartbeat-based mechanisms are incapable of detecting

correctly a communication failure without a trade-off in paccurate, while ViewSnoop can do it
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with probability:

pcom_fail = 1− (1− p)ni(|C|−1) −
|C|−1∑
k=1

(|C| − 1

k

)
[(1− p)ni ]k [1− (1− p)ni ]|C|−1−k

×
|C|−1−k∑

h=1

(|C| − 1

h

)
[(1− p)ni ]h [1− (1− p)ni ]|C|−1−k−h

Notice that pcom_fail tends to 1 as ni and |C| increase. This means that ViewSnoop can detect

communication failures with high probability in large systems where hosts are not limited in the

number of heartbeats they can send per control cycle.

6.6 Run-time, Application and Implementation Details

6.6.1 Run-time Environment

We implemented ViewSnoop and deployed it in FASA [12], an industrial automated DCS frame-

work, whose behavior adheres to the description in Section 7.2.

A cycle in FASA consists of a phase called the “execution period”, followed by a phase called

the “slack period” (see Figure 6.8 (a)). The execution period is the time a host utilizes for

executing tasks assigned to it. The slack period is the remaining time of the cycle (used for

running background operations if any is needed).

The scheduler in FASA computes global configurations statically and installs the configurations

relative to the alive hosts. The scheduler, based on the configuration, knows which hosts need to

communicate with each other. Accordingly, the FASA scheduler builds abstract communication

channels between communicating hosts on top of the unidirectional links. These channels can be

configured to use different underlying links.

For our experiments, we deploy ViewSnoop in a FASA system where the scheduler can accom-

modate a maximum of one failure. The scheduler embodies pre-computed configurations to

re-distribute application tasks on hosts, when only a single host can crash. The failure of more

than one host would cause the system to stop executing.

6.6.2 Application

We execute on FASA a cyclic control application called Waveform (see Figure 6.8 (b)). Waveform
is a simplified example of an industrial control application (extracted from a real setting) that

reads some input variable, performs calculations (e.g., a cascaded feedback loop), and finally

writes some output to a field-bus I/O interface.
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Figure 6.8 – (a) A FASA control cycle; (b) Waveform: an example application.

The application is executed every cycle, by periodically executing the application’s tasks. In

the example, a new input value is provided by the Sensor task at the beginning of each cycle.

The input follows a triangular periodical signal. The WaveTransform task performs certain

calculations that change the input signal. Specifically, the WaveTransform task in this example

observes the input signal to learn its amplitude, base, and period and increases the upper half

of the triangular wave amplitude by a factor of 1.5 every third period. This output is fed into a

Monitor task, which prepares the value for output to a field-bus I/O interface.

6.6.3 ViewSnoop Implementation

ViewSnoop is implemented within the FASA distributed scheduler (see Figure 6.9) in C++. For

communication, ViewSnoop has access to a UDP broadcast primitive (without acknowledgments

and prone to communication failures).

At the beginning of every cycle, the ViewSnoop module on every host broadcasts a heartbeat

message. In our current implementation, ViewSnoop sends a single heartbeat per cycle, i.e.,

ni = 1. This scheme could be extended to multiple broadcast messages, however, taking into

account the cycle time (in Section 6.5 we evaluate ViewSnoop with ni ≥ 1). The ViewSnoop
module on each host maintains a local list of suspected hosts (see Figure 6.9). This list is

implemented as a vector containing the host_ids of suspected hosts. The heartbeat message in

ViewSnoop is implemented as an object encapsulating the control cycle number and the list of

suspected hosts.

For programming simplicity, this object is parsed into a string when transmitted on the network6.

During the slack period, the ViewSnoop module on hi checks for the current−host−ids: the

ids of the hosts from which hi received heartbeat messages for the current cycle. ViewSnoop

6Different compression schemes can be applied before the bit-stream vector is sent as a string over the network.

One such compression is done by transforming the bit-stream to the corresponding ASCii characters and then sending

these characters over the network.

107



Chapter 6. Real-Time Membership

FASA Scheduler

ViewSnoop 
List of suspected hosts

Host 1

List of alive hosts
…

…

Update

FASA Scheduler

List of suspected hosts

Host 2

List of alive hosts
…

…

Update

 FASA Scheduler

ViewSnoop 
List of suspected hosts

Host 3

List of alive hosts
…

…

Update

Network

ViewSnoop 
.
.
.

Received 
msgs

.

.

.

Received 
msgs

.

.

.

Received 
msgs

Figure 6.9 – Architecture of ViewSnoop within FASA.

decides based on its local list of suspected processes and the current−host−ids to update the list

of alive hosts observable by the scheduler. Upon observing a change in the list of alive hosts, the

scheduler activates the corresponding configuration.

6.7 Experimental Evaluation of ViewSnoop

We evaluate experimentally the performance and cost of ViewSnoop addressing the following

points: (a) the time for detecting and excluding crashed hosts, (b) the time the system remains

available in the presence of communication losses, given no host failures (c) the overhead

ViewSnoop adds to a DCS and (d) the speed at which ViewSnoop accommodates host recoveries.

We compare the performance of ViewSnoop with that of SFTM, the mechanism employed in

most existing membership protocols with real-time guarantees (described Section 6.5). Whenever

needed, we inject message losses in the network at the receiver side; we assign a fixed success
probability p with which a sent message is successfully received by a destination host (unreliable

broadcast). This is besides any other message losses that can happen in the network; these losses

can be correlated and can result from collisions, contention, etc, since we conduct our evaluation

in a real production DCS.

Hardware Description.

We deploy ViewSnoop within FASA [12] and precisely in the same industrial setting in which

FASA was originally implemented, tested and run [12]. That is, three Mac Minis with dual-

core Intel i7-2620M @2,7GHz CPU, 4 GB RAM, and Gigabit Ethernet network connection (a

similar implementation setting was also used for example in the RTCAST real-time membership

protocol [154]). Our implementation on three machines is used to validate and estimate the

overhead of ViewSnoop versus that of SFTM (also deployed in FASA [12]). Performance on

larger DCSs is rigorously simulated in Section 6.5.
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Figure 6.10 – Time to suspect (Ts) and exclude (Tex) crashed hosts.

The machines are given unique ids (1, 2 and 3) and we refer to them as hosts. All machines

run Ubuntu 12.10, Kernel: 3.5.0 − 24x86_64. The hosts use control cycles of 5 ms and are

synchronized using PTP [168]. The cycle duration in practice varies according to the applications,

e.g., 8 ms to 10 ms for substation automation and low-level robot interfaces [169] and up to 1 s

for less critical temperature-drive applications.

6.7.1 Time to Exclude Crashed Hosts

We verify experimentally our theoretical claims (Section 6.4) regarding ViewSnoop’s speed of

excluding crashed hosts, and compare them to those achieved by SFTM. To this end, we crash

host 1 at the 50th cycle in two manners: (i) before sending a heartbeat in the 50th cycle and (ii)

after sending that heartbeat. We measure the following:

1. The time span until some host in the system suspects host 1 after it fails (Ts).

2. The time span until host 1 gets excluded after its failure by all hosts in the system (Tex).

Theoretically, Ts ≤ 2 and Tex ≤ 3 cycles in ViewSnoop (see Section 6.4) and Ts = Tex ≤ 2 in

SFTM (implied from SFTM’s description earlier this section).

We repeat the experiment 50 times and report the values in Figure 6.10. Our results show that

when host 1 crashes before sending a heartbeat, host 1 gets suspected, in ViewSnoop, after ≈ 1 ms,
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Figure 6.11 – Number of control cycles until an alive host is excluded (the higher the better):

(a) mean; (b) distribution.

i.e., at the same cycle it crashed in (the 50th cycle) and gets excluded from the system after 6 ms

(at the 51st cycle).

When host 1 crashes after sending a heartbeat, host 1 gets suspected, in ViewSnoop, 8 ms after

crashing (at the 51st cycle) and excluded from the system 11 ms after crashing (at the 52nd cycle).

Our results also show that, in SFTM, Ts = Tex and that host 1 is suspected at the same cycle as

in ViewSnoop but excluded one cycle earlier than in ViewSnoop.

6.7.2 Mean Time to Failure

We assess the system’s reliability by measuring the mean time to failure of ViewSnoop, focusing

here on violating P4 of the group membership properties. To this end, we count the number of

control cycles in a crash-free execution until an alive host is excluded by ViewSnoop by mistake.

We consider crash-free executions (we do not crash any host) and simulate message losses on the

network by specifically having a receiver of a broadcast heartbeat deliver that message randomly

with fixed probability p ∈ {0.8, 0.85, 0.9, 0.95, 0.99}; the message is dropped otherwise. We do

not consider values of p > 0.99 in experimentation since it requires weeks or even months to

obtain the desired numbers. We account, however, for such values of p in our analytic evaluation

(Section 6.5).

For each value of p, we run the system for 50 times, measuring in each how long it takes the

system to declare a correct host as failed. We plot the average values and the detailed distribution

in Figure 6.11 (a) and (b) respectively. Our results show that ViewSnoop can keep a correct host

in the system for a much longer time than SFTM. This means that a system with ViewSnoop is

expected to have a higher availability (processing resources are available for longer times) and

reliability (falsely suspects processes at a lower rate) than with SFTM.
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of 1 byte suspicion list; (b) ViewSnoop’s mean bandwidth increase versus cycle duration; II.

Processing delay of SFTM and ViewSnoop in μs.

We also consider a variant of SFTM: a host is excluded if no heartbeat is received from that host

for two consecutive cycles. This variant is considered to compare ViewSnoop and SFTM when

having the same speed of excluding crashed hosts.

Even with this variant, ViewSnoop amounts to a better reliability than SFTM. The probability of

excluding a correct host in ViewSnoop is [(1− p)2(1− p2)] versus (1− p)2 in SFTM. Correct

hosts are thus expected to stay included in the system using ViewSnoop for a longer duration. The

reason is that ViewSnoop allows hearing about hosts from other alive ones.

6.7.3 Costs of ViewSnoop on a DCS

Network cost

We quantify the network overhead of ViewSnoop by measuring the additional bandwidth required

by our ViewSnoop implementation in comparison to that needed by SFTM. ViewSnoop requires

every host to append to the heartbeat of SFTM, a string containing the ids of the suspected hosts.

Such a heartbeat is sent every control cycle, in this case every 5 ms.
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As in Section 6.7.2, we introduce message losses; messages are successfully received with

probability p ∈ {0.9, 0.99, 0.999}. We run the system until it halts and record the size (in bytes)

of all suspected lists appended to heartbeats in that run by all hosts. For each value of p, we

repeat this experiment ≈ 20 times (≈3,000 heartbeats). We report the values in Figure 6.12-I(a).

Our results show that the size of the suspicion lists is consistent in all repetitions: 1 out of 3000

heartbeats contained a 3 byte instead of 1 byte suspicion list. 3 bytes lists are observed at the

end of the experiments, since we run the system until one host is falsely detected as failed, after

which all hosts stop operation. This causes all hosts to suspect each other increasing the size of

the list. These values do not vary between the different values of p.

An Ethernet packet in SFTM is 64 bytes (IPv4) and 84 bytes (IPv6), meaning that our algorithm

induces, on average, an overhead of 1.6% and 1.3% respectively, compared to SFTM. We also

plot, in Figure 6.12-I(b) the average additional bandwidth of ViewSnoop (compared to SFTM)

as a function of the cycle duration (varying from 5 ms to 1 s). The additional bandwidth for

ViewSnoop is 200 bytes/sec for 5 ms cycles and decreases exponentially as the cycle duration

increases. It is important to note though, that each frame consists of Ethernet, IP and UDP

headers (18, 20 IPv4 (40 IPv6) and 8 bytes respectively), thus allowing 18 bytes of UDP payload.

This payload, which already exists in mechanisms using classic heartbeats (as heartbeat messages

are sent in any case), can be used by ViewSnoop without incurring any bandwidth increase for

systems with less than ≈140 hosts.

Processing cost

Under the same experimental set-up as for evaluating network costs, we measure ViewSnoop’s

processing cost, i.e., how much delay does ViewSnoop add to the regular processing time of hosts.

To that end, we measure during a control cycle the time a host spends to check for crashed hosts,

suspect hosts, update the list of suspected hosts and update the content of the heartbeat message

to be sent. The statistics are consistent for the different values of p, so for brevity we report

statistics for p = 0.99.

Figure 6.12-II shows that, on average, ViewSnoop requires 0.3 μs more processing time per cycle

compared to SFTM. More importantly, such processing is done in the slack period of a cycle,

which typically is 20% of the cycle duration, i.e., 1 ms for a 5 ms cycle. Our algorithm thus does

not delay any application as it consumes on average 0.46% of the slack period, which is entirely

dedicated for background operations by design. We also observe that processing delays above 5

μs occur fewer times, attributed to cases when hosts are falsely suspected.

6.7.4 Host Recoveries

For simplicity, we have discussed in the main paper SYMS and ViewSnoop, our implementation

of SYMS, without considering host recoveries. In fact, both SYMS and ViewSnoop can be easily

extended to encompass recoveries. In this recovery setting, the maximum number of hosts in the
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Figure 6.13 – Time for recovered hosts to join the system in ViewSnoop.

system is known ahead of time. However, since hosts can be excluded from the system view,

due to actual crashes or communication faults, these hosts can try to enter the system again. Let

W(r) be the set of non-crashed hosts at the beginning of cycle r (a non-crashed host does not

have to be part of the system view). For coherence, an “alive” host here is a host that has not

been declared yet as crashed by any host. A recovered host B becomes “alive” only starting

from the cycle in which B’s view includes all alive hosts and the views of all alive hosts include

B. To allow recoveries, SYMS 1 is updated to: if a host installs a view V = (id,M) and then

V ′ = (id′ = r,M ′), then id < r and {M ′ − {M ∩M ′}} ⊆ W(r). Accordingly, ViewSnoop is

adapted to account for recoveries as follows:

1. A recovered host B, wanting to join the system, broadcasts heartbeats at the beginning of

every cycle. Initially, B only has itself in its view. B learns about the alive hosts in the

system and includes them in its view according to (2) below.

2. If a host A receives a heartbeat from host B in cycle r (where B is not in A’s view), then

A removes B from its suspected list. A includes B in its view in cycle r′ if A does not

suspect B and all hosts that A heard from in cycle r′ do not suspect B.

We implement this crash recovery extension of ViewSnoop and evaluate how long it takes a

recovering host to be included in the view of all other alive hosts. A broadcast heartbeat is

delivered by a host with probability p ∈ {0.8, 0.85, 0.9, 0.99}. We force host 1 to stop sending

heartbeats at the 5th cycle and start sending heartbeats again at the 11th cycle. This behavior

ensures that host 1 is declared failed by both host 2 and host 3, before trying to join the system

back at the 11th cycle. We measure Trecover, the time from the beginning of the 11th control

cycle until host 1 is included in the view of both host 2 and host 3. For each value of p we repeat

the experiment 50 times and report our results in Figure 6.12-III.

We notice that as p increases, i.e., less losses, the time for a new host to join the system approaches

two control cycles. This duration is an upper bound on the time a process needs to re-join the
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system in the absence of message losses. We can see for p ∈ {0.8, 0.85, 0.9} cases where a host

can re-join in one cycle. This happens when host 2 and host 3 receive host 1’s heartbeat at the

11th cycle, but do not hear from each other (such fast re-joins can only happen in unreliable

communication).

In comparison, in SFTM host 2 and host 3 include host 1 in their views as soon as they receive a

heartbeat from host 1. Host 1, thus, joins the system in the same cycle with probability p2, after

one cycle with probability (1− p2)p2, and after s cycles with probability (1− p2)(s−1)p2. In the

presence of losses, host 1 joins the system, on average, after

1− p2

p2

cycles. Given no message losses, a recovered host, in SFTM, is recognized by all alive hosts in

the system in less than one cycle (one cycle less than ViewSnoop).

6.8 Existing Memberships for Real Time

Membership services have been addressed in different contexts [145–147, 166, 170–179]. For

example, detecting host crashes in real-time while guaranteeing the desired quality of service

needed by applications has been targeted in [14–21]. However, none of these works addressed

membership issues, precisely the issue of providing a consistent view of failures.

So in what follows, we focus on existing work on membership services in real-time context.

Kopetz and Grünsteidl [35] proposed the time-triggered protocol (TTP) for distributed real-

time control applications. TTP provides many services including membership. TTP assumes

time division multiple access (TDMA)7 as means to organize sender transmission. A node is

considered failed when no message is received from that node in its designated transmission

slot. Also, a sender node itself can decide if it is not operating correctly, and accordingly crash

itself, based on: (i) internal detection mechanisms, (ii) acknowledgments received relative to

a window of previous transmissions and (iii) frame rejections (by preforming a specific CRC

check). Disagreement is resolved, with high probability, by excluding nodes that do not agree

with the majority. Barbosa et al. [155] devised a protocol using TDMA, where each node must

acknowledge messages from k other nodes in the membership group. Membership agreement

is guaranteed if f ≤ k − 1 failures occur during n consecutive transmission slots (n being

the total number of nodes in the system). Rufino et al. [164] proposed failure detection and

membership services to enhance the dependability of distributed systems interconnected by

field-bus technologies, namely CAN, to levels comparable to TTP-based systems. The major

component in their technique is the CAN enhanced layer: a combination of the CAN standard

layer with some simple machinery and low-level protocols. Abdelzaher et al. [154] proposed

7TDMA divides the medium access into slots such that in each TDMA round nodes transmit a fixed amount of

traffic in the preallocated slots.
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RTCast, a multicast and membership service for real-time process groups sending periodic or

aperiodic messages. RTCast relies on a ring topology in which processes take turn in sending

heartbeats. RTCast relies on processes being able to crash themselves, namely when detecting

receive omissions. Amir et al. proposed Totem [157], a reliable total ordered broadcast protocol

assuming a ring topology. The Totem protocol depends on acknowledgments and re-transmission

mechanisms to overcome communication faults and can provide real-time message delivery with

high probability. Clegg and Marzullo [158] designed group membership with low overhead, low

cost of handling failures and supporting simple schedulability analysis. The proposed solution

abstains from sending heartbeats but rather relies on other layers to exchange enough messages

to ensure failure accuracy and liveness of membership agreement.

The work in this chapter differs essentially at two levels: (i) required guarantees and (ii) im-

plementation. On the level of guarantees, we require crashes to be synchronously detected

on all alive hosts and within bounded periods from the crash. In contrast with existing work,

disagreement, even for few rounds after which agreement maybe achieved, must be avoided. We

thus define a probabilistic notion of agreement which we seek to maximize. Implementation

wise, our protocol (ViewSnoop) relies on the periodic exchange of messages, however not in

a TDMA fashion as opposed to [35, 155] enabling ViewSnoop to tolerate message collisions.

Also, as opposed to [164], we do not assume a specific type of interconnection between hosts

(i.e., field-bus), we just consider communication is prone to losses, not relying on additional

hardware or acknowledgments. Processes in ViewSnoop do not kill themselves, as opposed

to [35, 154], where the DCS’s computing resources can be easily depleted, jeopardizing the

system’s availability. To this end, we employ a technique not explored in any of the previous

work. Our approach relies on exchanging local views as opposed to exchanging classic heartbeats

(as [35, 154, 155, 157]) and having self-crashing capabilities.

6.9 Chapter Summary

This chapter defined the membership properties required in DCSs. In their implementable form,

these properties take the form of a probabilistic real-time membership service called SYMS. We

proposed ViewSnoop, an algorithm based on exchanging local views between hosts, as a way to

implement SYMS with high probability guarantees and low overhead.

We first evaluated analytically the performance metrics of ViewSnoop comparing with membership

services based on classic heartbeats [12, 35, 154, 155]. We showed that:

1. ViewSnoop provides better guarantees, on both view agreement among hosts and accuracy,

compared to membership services based on classic heartbeats alone, e.g., 9.2x better

agreement probability and 1.6x better accuracy probability for a system with 10 hosts. This

improvement increases exponentially and un-boundedly with system size.
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2. ViewSnoop distinguishes host crashes from message losses, without jeopardizing accuracy

(which all membership services based on classic heartbeats suffer from). ViewSnoop, thus,

allows better configurations to be computed, accounting for bad links rather than excluding

correct hosts.

We then reported on a full implementation of ViewSnoop in an industrial DCS framework, called

FASA [12]. We evaluated ViewSnoop’s performance experimentally (on FASA), comparing it to

a classic heartbeat-based implementation, deployed in most existing DCS frameworks [12, 35,

154, 155].

We showed experimentally that ViewSnoop is significantly more dependable than the classic

heartbeat-based implementation. More precisely, ViewSnoop provides a higher accuracy, ranging

from 2.5x up to 4x better than the classic implementation. The higher the accuracy, the fewer

correct hosts are excluded. Thus, the risk of downtime, due to the lack of processing resources,

becomes smaller. This improvement increases as the system size grows.

We also assessed the trade-offs underlying ViewSnoop’s design and implementation:

1. ViewSnoop notifies hosts about crashes in real-time, with a lower downtime risk compared

to using classic heartbeats. The trade-off is only one extra control cycle to recognize

crashes and recoveries. ViewSnoop, always excludes crashed hosts from the system in less

than three cycles after crashing (real-time). ViewSnoop also allows recovering hosts, given

no message losses, to join the system in less than two cycles. The classic heartbeat-based

implementation requires one cycle less.

It is crucial to note though, that if this trade-off is eliminated, precisely by allowing classic

heartbeat-based memberships for an additional cycle to recognize crashes and recoveries,

we show that ViewSnoop still provides better accuracy and availability.

2. ViewSnoop induces 0.3 μs (7%) processing overhead and 200 bytes/sec (11%) network

overhead (for UDP over Ethernet), over the classic heartbeat-based implementation. How-

ever, the added delay neither affects FASA, nor the upper layer applications, as ViewSnoop
fully executes within the idle time of a host, while the network overhead is 1.6% (IPv4)

and 1.2% (IPv6) of the packet size being sent in the classic mechanism.

3. ViewSnoop periodically broadcasts suspicion lists, rather than broadcasting classic heart-

beats. Broadcasting suspicion lists will likely lead to a bandwidth bottleneck in large-scale

distributed systems if host crashes and losses are common. Yet, ViewSnoop is targeted for

DCSs, i.e., environments where crashes and losses typically seldom occur [35, 36].
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The main contributions of this chapter can thus be summarized as follows:

1. A specification of the membership requirements for DCSs running cyclic applications. We

prove that a deterministic form of these ideal requirements is impossible to implement in

a system with both host crashes and message losses. We define SYMS, a probabilistic

abstraction of the requirements of DCSs. SYMS can be implemented despite message loss.

2. ViewSnoop, an algorithm implementing SYMS with high probability. ViewSnoop’s design

allows it to distinguish host crashes from message losses, better than using message

sequence numbers [165], and without affecting accuracy.

3. An experimental and an analytic evaluation of ViewSnoop’s performance showing that

ViewSnoop provides a significantly more dependable service, enhancing a DCS’s availabil-

ity, compared to methods relying on classic heartbeats [12, 35, 154, 155].
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7 Real-Time Distributed Shared-
Memory

Abstractions such as distributed shared memory (DSM) have a direct impact on control applica-

tions. Precisely, many developers consider DSM significantly easier to program with, compared to

message passing. Control application programmers are hence more motivated and programming

errors are reduced considerably. Besides vastly simplifying programming applications, providing

the DSM abstraction in a message-passing context allows algorithms designed for shared memory

in mind to be directly used. In a nutshell, having a DSM abstraction in distributed control systems

(DCSs) has many advantages.

This chapter investigates how to build a real-time distributed shared memory abstraction for

DCSs. We identify the challenges required to implement such an abstraction. Precisely, we prove

that, in the presence of host crashes and message losses, such an abstraction is impossible to

implement using traditional algorithms that either (i) assume no knowledge about failures or (ii)

are built on top of existing failure detector software blocks.

We propose a way to circumvent this impossibility by devising a white-box approach that uses an

algorithm, which we call TapeWorm. TapeWorm attaches information to the crash monitoring

messages of the failure detector component in DCSs and uses these messages as the sole means of

communication. We prove that TapeWorm indeed implements the distributed shared memory ab-

straction for DCS applications. We also analyze the performance of TapeWorm and we showcase

ways of adapting and optimizing our approach to various application needs and workloads.

7.1 Motivation

In multi-core machines, shared memory (provided at the hardware level) constitutes the typical

means of communication for hosts (processes) [1, 180, 181]. In message-passing distributed

systems, however, hosts communicate by exchanging messages over a network. Hence, shared

memory, in such distributed systems, no longer physically exists but rather becomes a distributed

communication abstraction built using message exchange and local memories of hosts [1, 58, 59,

180, 181].
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7.1.1 Benefits of Distributed Shared Memory in DCSs

A shared memory abstraction constitutes a basic building block for implementing networked

storage systems, distributed file systems and distributed key-value stores. These distributed data

services are undeniably demanded in distributed control systems (DCSs) [13, 55–57, 182, 183].

For example, power grid DCSs require real-time distributed storage systems (distributed hash

tables) to store and retrieve monitoring data for wind and photo-voltaic generation sources [182];

ship-board DCSs require distributed real-time data services to be embedded within the ship [56,

183]; traffic control and agile manufacturing require the presence of distributed fresh data that

reflects real-world status [55–57, 183]; real-time execution platforms for DCSs, such as [13], rely

on real-time replicated data structures for maintaining system and crash detection information.

In addition to its importance as a building block for various data storage services, shared memory

is of immense benefit to application programmers in DCSs; programming with shared memory is

considered significantly easier than working with message exchanges [1]. This programming

simplicity encourages having more control application programmers and limits programming

errors. Also, algorithms designed for shared memory in mind could thus be directly used in a

message-passing context that provides the distributed shared memory abstraction. In short, there

is a fundamental need to study real-time data abstractions, such as shared memory, in DCSs.

To this end, we investigate in this chapter how to build a shared memory abstraction for DCSs. We

first derive the guarantees that need to be provided by read and write operations accessing shared

memory in a DCS context [1, 58, 59, 180, 181]; such guarantees define the respective consistency

level. We show (Section 7.2.4) that the needed requirements necessitate the presence of all of

the following properties: real-time termination, agreement and freshness. Roughly speaking,

real-time termination means that each operation, be it a read or a write, always completes in a

bounded known duration. Agreement ensures that read operations, issued within a fixed known

time-window to the same shared object, return the same value. Freshness guarantees that any

value returned by a read operation is a value written by one of the last completed “c" writes,

where c is a fixed known number.

The necessary consistency level, captured by the three aforementioned properties, is, however,

challenging to implement when accounting for host crashes and message losses that can happen

in a DCS. Control systems typically experience host crash rates of about 10−5/hr and link

failure rates (causing message loss) in the range of 10−5/hr (permanent failures) and 10−3/hr

(transient failures) [35, 36]. In fact, we prove that the three properties listed above are impossible

to achieve using traditional ways for implementing distributed shared storage [55–58], i.e., using

only algorithms to which the DCS is oblivious or using a black-box approach where algorithms

are built on top of existing software blocks, like failure detectors (details Section 7.3). Yet data

storage services for DCSs are imminently needed [55–57, 182, 183].
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7.1.2 Approach Overview

We propose a way to circumvent this dilemma by devising a white box approach utilizing existing

services that typically run within DCSs [13, 74], namely failure detection. Since hosts can crash,

DCSs usually employ failure detectors that provide means for detecting host crashes in real

time [14–18, 74]. More specifically, failure detectors output a list of hosts suspected to have

crashed. Accordingly, DCSs employ recovery mechanisms requiring to shift application-related

tasks to be executed only by those hosts which are not suspected to have crashed. In this sense,

the output of suspected hosts (if any exists), even if these hosts have not actually crashed, is no

longer visible to applications [74].

Benefiting from this behavior, we propose a solution that guarantees the DCS consistency level

(consisting of the three aforementioned properties) as seen by the applications, and not necessarily

within the set of all non-crashed hosts. We design TapeWorm, an algorithm that attaches itself to

the crash monitoring messages (heartbeats) typically exchanged on a periodical basis to detect

host crashes in DCSs [13, 35, 74]. TapeWorm uses the underlying heartbeats, exchanged between

hosts, as the sole means of transporting information. By doing so, TapeWorm benefits from the

real-time operation of failure detectors in DCSs in the following sense. Crashed hosts, based

on the exchanged heartbeats, are always suspected in real time (a deterministic guarantee) [14–

18, 74]. The speed of detecting crashed hosts (detection time) should be fast enough to guarantee

that applications can recover from potential host crashes and still meet their deadlines. TapeWorm,

by using heartbeats as a transportation mechanism, can have the leverage of reaching hosts that

are not suspected, providing services to such hosts in real time.

We prove that Tapeworm indeed implements the required three properties of shared memory

among non-suspected hosts. We show that TapeWorm can be adapted, if need be, to provide

real-time guarantees faster than those of the failure detector it relies on. Precisely, TapeWorm can

be adapted to allow read operations to return fresher values in the allowable freshness range1.

We also conduct a mathematical analysis computing the probability distribution on the freshness of

the values returned by TapeWorm as well as the respective incurred bandwidth cost. Our analysis

quantifies TapeWorm’s performance in terms of variable system parameters, such as the size of

the system and the message loss rate. We also devise an optimization of TapeWorm for static

workloads, where the time at which operations are invoked is known by all hosts in the system.

7.2 DCSs For Cyclic Control Applications

A distributed control system (DCS) consists of a set of n hosts (or processing units), denoted

by Π = {h1, h2, ..., hn}. As in any distributed system, these hosts can fail (crash) [1], i.e.,

stop executing operations. The rate of host failures in control systems is typically around

10−5/hr [35, 36]. Hosts are considered to be synchronous, i.e., the delay dp of performing a

1The freshness of writes is guaranteed since writes are typically issued by sensors, i.e., on a periodical basis.
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Figure 7.1 – A DCS with three hosts running two control applications.

local step has a fixed known bound. Hosts have access to local synchronized clocks with bounded

skew. Using these local clocks, hosts define control cycles (rounds) of the same fixed duration.

The cycle duration is >> dp. These control cycles are time-wise synchronized among all hosts,

i.e., the start and end of a cycle occur at all hosts at the same time (with a bounded skew). Cycle

lengths vary according to applications, e.g., 8-10 ms for substation automation and low-level

robot interfaces and up to 1 s for temperature-driven applications [169].

DCSs often execute control applications that are cyclic [13, 148, 149], i.e., run periodically.

For example, an application might be required to periodically read values from a sensor and

to activate “intensive cooling mechanisms” after t seconds of a machine exceeding a certain

temperature threshold. Specifically, cyclic control applications consist of several small tasks that

repeatedly execute. Some of these tasks run concurrently on several hosts, possibly on behalf of

different control applications (see Figure 7.1).

In every cycle, each host executes the tasks assigned to it by the scheduler.

7.2.1 Scheduler

The scheduler is a distributed system module that specifies which application tasks run on which

hosts and in what order (see Figure 7.1). The allocation of tasks to hosts is called a configuration.

A scheduler makes sure that all hosts can execute the assigned tasks without exceeding the total

cycle duration. Moreover, the scheduler ensures that configurations allow all applications to run

correctly and to meet their deadlines. Upon detecting the crash of a host, the scheduler computes

(taking into account the crashed host) a new configuration, which maps tasks to hosts. This

re-mapping of tasks ensures that applications meet their deadlines despite host crashes.
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7.2.2 Communication

Every pair of hosts in a DCS is connected by two logical uni-directional links. Hosts hi and

hj are connected by links lij and lji. Links, in this context, for example abstract a physical

bus or a dedicated network link. Arguably, all communication is prone to random disturbances,

for example, bad channel quality, interference, collisions, stack overflows etc [184]. Messages

can thus be lost. When there is no loss, we assume that messages have a bounded delay, say d.

We specifically consider that a message sent on link lij , ∀i �= j, at any time t has probability

0 < Pij(t) < 1 of getting lost.

Configurations computed by the scheduler account for the message delay d. As such, any message

scheduled to be sent in a control cycle r, if not lost, is assumed to be received in cycle r.

Sending a message reliably from one host to another, however, can take an unbounded amount of

time, due to losses and the required follow-up re-transmissions.

7.2.3 Failure Detection and Monitoring in a DCS

A failure detector is a distributed module that runs on every host and provides the DCS scheduler

with information about which hosts have crashed [7]. The most common monitoring scheme used

by failure detectors in DCSs dictates that each host periodically, i.e., in every cycle, broadcasts a

heartbeat message of some structure2 [13, 35, 74, 154–156]. Based on these heartbeats and using

time-outs, a failure detector monitors which hosts in the system have crashed and which have not.

As such, we consider, in this chapter, failure detector algorithms using heartbeats and time-outs

alone.

Detecting crashes in real time in a DCS is crucial, for instance, in order to allow the scheduler

to re-map the tasks (initially assigned to the crashed host) to other hosts, without violating

application deadlines. Failure detection varies depending on application needs, but is often

expected to be in the order of milliseconds. Since communication is prone to losses, real-time

failure detection using heartbeats and time-outs cannot be always accurate [15–18, 167, 185].

Accuracy depicts a failure detector’s ability of not suspecting correct hosts, i.e., hosts that do not

crash. As such, at any cycle r, a host can exist in one of the following sets (assuming host crashes

in the fail-stop model [7], i.e., no recoveries):

1. Crashed hosts ∇C(r): this set includes all hosts that have crashed at some cycle up to

cycle r (included).

2. Eliminated hosts ∇E(r): this set includes all hosts that have not crashed up to and

including cycle r but are suspected by the failure detector during cycle r.

3. Alive hosts ∇A(r): is the set of hosts that have not crashed up to and including cycle r

and are not suspected during cycle r.

2Different failure detection algorithms may send different information within heartbeats [15–18, 134].
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Figure 7.2 – An example of a shared memory (an object) in a DCS.

A scheduler considers all hosts belonging to the set ∇A(r) functional at cycle r and computes

configurations accordingly. All other hosts, i.e., hosts ∈ {∇E(r)⋃∇C(r)}, are considered

non-functional, and as such no application tasks are allocated to execute on them [13] or their

output (if any exists) is made hidden from the applications [74]. Assuming no recoveries, if

r < r′, then ∇C(r) ⊆ ∇C(r′).

The scheduler, being a distributed module executing on every host (recall Figure 7.1), should

maintain a consistent state at all cycles. A consistent scheduler state is achieved when the failure

detector, at every host, suspects the same set of hosts, and thus provides the scheduler module

at every host with the same set ∇A(r) ∀ r [13]. An inconsistent scheduler state means that

hosts might be executing different configurations (since hosts have different ∇A(r)). Different

configurations mean different mapping of tasks to hosts. In other words, the DCS would be

experiencing “downtime” (normal operation is halted) since applications might be executing

incorrectly (communication or the order of execution between tasks of the same application might

be invalid) [13].

7.2.4 Shared Storage Abstraction

Applications in distributed control environments require shared memory functionalities [13, 55–

57, 182, 183], as application tasks executing on different hosts may require to communicate by

reading and writing to shared memory.

Shared memory can be viewed as a collection of shared object abstractions. We consider a

DCS, as in [12, 13], where a single object is assigned to every task that writes a value. As such,

every shared object in a DCS is a read/write object which can be written to by a single host,

however, it can be read from by any number of hosts, i.e., single-writer multiple-reader (SWMR)

object [1, 58, 59, 180, 181] (see Figure 7.2). For simplicity, we assume that a shared object is

written to, once every cycle3.

3From the reader nodes’ perspective, multiple writes to an object in cycle r, can be viewed as a single write, that

being the last write in r which is available for reads in cycle r + 1.
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Properties of a DCS Shared Memory

We now determine the properties that should be satisfied by the read and write operations issued

to shared memory (later in this section, we compare with properties of other shared memory

abstractions).

Termination. A DCS requires each operation, be it a read or a write, to complete within a

bounded amount of time after being invoked, say top. When computing configurations, the

scheduler accounts for top and assigns tasks to hosts accordingly. Control cycle durations are

defined such that operations invoked at some cycle and requiring a delay of top complete and

return in that same cycle. Having operations with unbounded delay makes the scheduler’s job, of

computing configurations with a fixed cycle duration, impossible.

Read Agreement. Certain critical control applications, e.g., those for power system control,

require specific consistency on the values being read by hosts in the same cycle. Namely, read

operations invoked in the same cycle to the same shared object, upon completion, are required

to return the same value. To better illustrate the need for such a requirement, consider a control

application where hosts are required to open or close circuit breakers based on the values read

from shared memory. If, in some cycle, two or more hosts read different values of the same

shared object, these hosts might allow for undesirable power flows leading for example to creating

islands, blackouts, overheating wires, etc [186].

Read Freshness. In a DCS, hosts requiring to read shared memory can typically tolerate some

freshness range for the value being read. In other words, it is acceptable if a read operation does

not return the latest value written. Such tolerance is typically supported by a DCS due to the

presence of failures, message losses, potential unanticipated system delays, etc. More specifically,

a read operation invoked by a host in some cycle, upon completion, is required to return a value

that is written at most c cycles ago. In practice, the value of c is correlated with the reaction time4

needed by certain applications. Recall, that we assume that every shared object is written to once

every cycle.

To sum-up, the consistency of a DCS shared memory is governed by three main properties,

formally stated below:

1. Termination: Any operation invoked by a non-crashed host completes in the same cycle

in which it was invoked. The delay between the time an operation is invoked and the time

it completes is at most top.

2. Agreement: Read operations invoked in the same cycle to the same shared object, upon

completion, return the same value.

4Reaction time is the time interval from the moment some value is written until all hosts can read this value.
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3. Freshness: A read operation invoked during cycle r, upon completion, returns a value that

is written at most c cycles ago, if the writer host of that object is not suspected at r. If the

writer, however, is suspected at some cycle r′, then all reads invoked in cycles ≥ r′ return

a value written at some cycle in [r′ − c, r′].

It is important to note that it is sufficient that services in a DCS, such as shared memory, ensure

their respective properties at times when the scheduler state in the DCS is consistent, i.e., when

the scheduler at all non-crashed hosts sees the same ∇A(r) ∀ r. Ensuring shared memory

properties, in the absence of scheduler consistency is not required, as the DCS would be down

(unavailable to deliver correct services).

Comparing with Classic Abstractions

We now compare the aforementioned properties with those of classic shared objects and related

abstractions [55, 56, 58, 59, 183, 187].

Atomic Objects. Informally, the atomicity property requires that each operation appears as

if it was executed instantaneously at some point in time, regardless of the time taken by each

operation to complete [58, 59]. Besides atomicity, atomic objects also require that operations

respect their temporal order, basically, having reads return the last written value. The properties

of a DCS shared object, however, require operations to complete in real time and do not require

reads to return the last value written but rather return a value written within a bounded past

duration from the time a read is invoked.

Temporally Consistent Objects. Temporal consistency represents the consistency level adopted

in most real-time distributed databases [55, 56, 183]. The temporal consistency property is typi-

cally used to quantify the freshness of replicated values among distributed hosts. Two objects

are said to be temporally consistent with each other if their corresponding timestamps are within

a known fixed bound δ. In this sense, the freshness property defined here ensures temporal

consistency among hosts in a DCS. Besides temporal consistency, real-time databases require

real-time responses. Real-time response is similar to the termination property defined in this

chapter. However, the termination property for DCSs is strictly stronger as it requires operations

to complete within a bounded delay at all times rather than with high probability. The main

difference is that real-time distributed databases do not require the agreement property defined

above, essential in a DCS context.

Real-Time Reliable Broadcast. Since we consider SWMR shared objects, we highlight the

difference with closely related abstractions like a reliable broadcast abstraction [187] in real time.

Roughly speaking, real-time reliable broadcast requires a sent message to be delivered to all hosts
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or none in some bounded time δ. One main difference is that the shared memory abstraction we

define requires not only to agree about the value to be delivered but on the time of delivery as

well. Hosts invoking reads in the same cycle should deliver the same value; otherwise we do not

require agreement. This means that messages should be delivered within a certain time bound

after being sent, but more importantly messages should be delivered within the exact same cycle

at all hosts (requiring to see that message). Another difference is the fact that a real-time reliable

broadcast alone cannot ensure the freshness property; it is possible that every message sent is

delivered by no one.

Control Applications For Distributed Shared Memory in DCSs

Production DCSs, such as [12, 13], adhere to the architecture and mode of operation that we

consider in this chapter. In fact our distributed shared memory abstraction is inspired by the

constraints and requirements governing such industrial DCSs. Nowadays, application areas of

programmable logic controllers (PLCs), DCSs and SCADA overlap and include monitoring and

control applications for factory automation, substation automation and smart grids [188].

7.3 Feasibility of Implementing Shared Memory in a DCS

We discuss, in what follows, the feasibility of implementing a shared object, satisfying termination,

agreement and freshness, in a DCS. We first introduce the following lemma, which we rely on in

our proofs later in this section.

Lemma 20. Any algorithm that deterministically implements the termination property implements
“local" operations; operations invoked by a host hi do not wait for responses from any other host
hj (∀i �= j) in order to complete.

Proof. By contradiction assume that an algorithm implements termination and when a correct

host hi (i.e., does not crash) invokes an operation, hi waits for a reply from at least one other host

hj (i �= j) in the system. Since cycle durations are fixed, a host can hence send a finite number of

messages within a cycle, say m messages.

We compute in what follows the probability that host hi loses all m messages sent to it by any

host hj in the system. Recall that Pji(t) is the probability with which the link lji loses a message

at time t ∀j �= i. Let Pji(t ∩ t′) be the probability that lji loses the messages (if any is sent) at

time t and time t′. Since 0 < Pji(t) < 1 ∀t, then

0 < Pji(t) =
Pji(t ∩ t′)
Pji(t′|t)

< 1 ∀ t′, t. (7.1)

By (7.1), Pji(t
′|t) > 0 (and 0 < Pji(t ∩ t′) < 1). By induction, we have Pji(t

′|t, t1, ..., tx) > 0

∀ t′ > t, tx. Denote by B(t) the event that lji losses all messages (if any is sent) for the interval
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Figure 7.3 – Different algorithmic families resembling traditional approaches for building dis-

tributed shared memory.

t + Δt, where Δt is the control cycle duration. Let tx denote the times at which hj sends a

message in [t+Δt]. Then the probability of B(t) happening is:

Pr(B(t)) = Pji(t1 ∩ t2 ∩ ... ∩ tm)

= Pji(t1)× Pji(t2|t1)× ...× Pji(tm|t1, ..., tm−1) > 0.

Given 0 < Pji(t) < 1 ∀t and Pji(t
′|t, t1, ..., tx) > 0 ∀ t′ > t, tx, then we have 0 < Pr(B(t)) <

1; there is a positive probability that hi receives no reply from hj and thus the invoked operation

does not complete in any bounded cycle duration where a bounded number of messages can be

sent by a host, which violates termination.

We now define and distinguish between different algorithmic families; these algorithmic families

resemble traditional approaches for building distributed shared memory [1, 58, 59, 180, 181].

Autonomous Algorithms. These algorithms can only exchange messages using the lossy links

of the DCS and use the available local synchronized clocks. In other words, these algorithms

do not use any external building blocks (abstractions) but implement themselves all needed

functionalities, thus the name autonomous.

The scheduler is oblivious to algorithms in this family; the scheduler does not adapt its be-

havior to the algorithm’s decisions, i.e., changes to the algorithm result in no impact on the

scheduler (Figure 7.3).

Opaque Algorithms. These algorithms can use, in addition to message exchange and local

clocks, a failure detector as a black-box [7]. Roughly speaking, this means that opaque algorithms

can observe the output of failure detectors and build on top of this output and the properties that

this output satisfies (Figure 7.3). Different failure detector classes can be defined depending on
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the properties guaranteed by the output of the failure detector. Recall that we consider that the

output of a failure detector is a list of suspected hosts.

The scheduler is not oblivious to the failure detector used, however, both the scheduler and

the failure detector are oblivious to the algorithms in this family. It is important to note that

algorithms in this family are not a subset of autonomous algorithms, since implementing the

failure detector itself may not be possible via message exchange and local clocks.

Theorem 19. No autonomous algorithm can deterministically implement termination and fresh-
ness in a DCS, where up to n-2 hosts can fail.

Proof. By contradiction, assume the existence of an autonomous algorithm A that determinis-

tically implements termination and freshness. A cannot know which hosts are seen as “non-

suspected” by the scheduler and thus should guarantee freshness for any non-crashed host.

For illustration, we consider a DCS of two correct hosts h1 and h2. By Lemma 20, operations

(reads and writes) satisfying termination in A complete without waiting for any reply from any

host. Hosts in A, however can exchange messages to ensure freshness. Consider host h1 to be

the writer of a shared object O, i.e., h1 invokes write operations to O at every cycle.

Similar to the reasoning in the proof of Lemma 20, we compute the probability that all messages

sent from and to h1 are lost for α · c cycles ∀ α ≥ 1.

Let P21(t ∩ t′) (P12(t ∩ t′)) be the probability that l21 (l12) loses the messages (if any is sent) at

time t and time t′.
0 < P21(t), P12(t) < 1 ∀t, then:

0 < P21(t) =
P21(t ∩ t′)
P21(t′|t)

, P12(t) =
P12(t ∩ t′)
P12(t′|t)

< 1 ∀ t′, t. (7.2)

By (7.2), P21(t
′|t) > 0 (0 < P21(t ∩ t′) < 1) and P12(t

′|t) > 0 (0 < P12(t ∩ t′) < 1). By

induction, we have P21(t
′|t, t1, ..., tx) > 0 and P12(t

′|t, t1, ..., tx) > 0 ∀ t′ > t, tx. Denote by

R(t) (S(t)) the event that l21 (l12) loses all messages (if any is sent) for the interval t+Δt, where

Δt is such that t+Δt is equal to the duration of α · c cycles. Let m (m′) be the maximum number

of messages h1 (h2) can send in t+Δt and tx (t′x) denote the times at which a message is sent

from (to) h1 during [t, t+Δt]. Then the probabilities of R(t) and S(t) happening is:

Pr(R(t)) = P21(t1 ∩ t2 ∩ t3 ∩ ... ∩ tm)

= P21(t1)× P21(t2|t1)× ...× P21(tm|t1, ..., tm−1) > 0.

P r(S(t)) = P12(t
′
1 ∩ t′2 ∩ ... ∩ t′m)

= P12(t
′
1)× P12(t

′
2|t′1)× ...× P12(t

′
m|t′1, ..., t′m−1) > 0.

Given 0 < P21(t), P12(t) < 1, P21(t
′|t, t1, ..., tx) > 0 and P12(t

′|t, t1, ..., tx) > 0 ∀ t′ > t, tx,

then 0 < Pr(S(t)), P r(R(t)) < 1.
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Consider some cycle r. The probability that all messages from and to h1 get lost and thus all

writes invoked by h1 during cycles [r, r + α · c] are not seen by h2 is:

Pr(S(t) ∩ R(t)) = Pr(S(t)) · Pr(R(t)|S(t)).

Since 0 < Pr(S(t)) < 1, then 0 < Pr(S(t)∩R(t))
Pr(R(t)|S(t)) < 1 and 0 < Pr(S(t) ∩ R(t)) < 1.

Thus, h2 invoking a read operation to read the value O, for example at cycle r + c + 1, has a

positive probability of reading a value that is not written c cycles ago, violating freshness. Recall

that, by the termination property, every read operation should complete and return a value within

the same cycle in which it was invoked.

We now define what we call a non-trivial failure detector.

Definition 5. A non-trivial failure detector5 does not suspect a correct host, at any point in time,
with positive probability, while it eventually suspects all failed hosts permanently.

Theorem 20. Let ∇A(s) denote the set of hosts which are not suspected by a non-trivial failure
detector X during cycle s. No opaque algorithm using X can deterministically implement
termination and freshness for hosts ∈ ∇A(s) ∀s, in a DCS, where n-2 hosts can fail.

Proof. An opaque algorithm can observe the output of the failure detector X and hence can know

∇A(s), the set of hosts that are not suspected by X during cycle s. Consider a host hi to be the

writer of a shared object O, i.e., hi invokes write operations to O at every cycle.

Consider an execution where hi and some other host hj (which requires to read the value of

O after cycle r + c) are correct. Then from Definition 5, there is a positive probability that

{hi, hj} ∈ ∇A(s), ∀s ∈ [r, r + αc] at hosts hi and hj .

Similar to the proof of Theorem 19, it can be inferred that there is a positive probability that all

writes invoked by hi during [r, r + αc], are not seen by host hj (all messages sent by hi during

[r, r + αc] can be lost with positive probability). As such, all reads invoked by hj after cycle

r + c do not return a fresh value. This concludes the proof.

7.4 TapeWorm: A DCS Shared Memory Algorithm

In this section, we demonstrate a way to circumvent the impossibilities shown in Section 7.3.

We present TapeWorm, our algorithm for implementing shared memory in DCSs. The main idea

underlying TapeWorm is to benefit from monitoring messages (known as heartbeats) typically

exchanged by the failure detector component of a DCS, precisely by attaching information to

these messages. Recall from Section 7.2.3 that we consider failure detectors that detect host

5A failure detector providing more accurate information about correct hosts in the system is only a special case of

a non-trivial failure detector.
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crashes in real time, based only on the exchanged heartbeat messages and time-outs. Accordingly,

the below is a necessary condition for any such failure detector that detects crashed hosts in a

delay less than dt cycles after the crash (∀dt).

Real-time detection: If a host hi does not hear any of the heartbeats sent by host hj during
[r−(dt−1), r−1] (directly from hj or indirectly via other hosts), hi suspects hj at the beginning
of cycle r.

This suspicion places hj in the eliminated set of hosts ∇E . dt is fixed and constitutes the real-time

guarantee for detecting a crashed host in the DCS.

7.4.1 A Basic TapeWorm Algorithm

For simplicity, we describe TapeWorm (Algorithm 2) in the context of a single shared object O.

Recall that dt is an upper bound on the number of cycles it takes a failed host to be declared as

failed by the system (precisely suspected by the failure detector). We assume that c > dt, c being

the bound on the data freshness.

Every host in TapeWorm maintains a list, Freshlist, of size c. Freshlist of a host h at cycle r

holds the values of O seen by h and tagged with control cycles in [r− c, r]. Later in Section 7.4.1,

we show that it is sufficient for Freshlist to hold values of O seen by h and tagged with control

cycles in [r − dt, r].

Consider hw to be the host that writes to O (recall that any object is written to by a single host).

Upon invoking a write to object O with a value v at cycle r, hw updates its Freshlist, by adding

the tuple < r, v > and deleting the tuple tagged with control cycle r − c− 1. After this step, a

write completes.

A host h that invokes a read operation to object O at cycle r, consults its Freshlist. Host h

returns the value tagged with the largest cycle number, say maxcycle, such that maxcycle ≤ r−dt.

After this step the read invoked by h completes. If no such value exists, then a read returns the

value tagged with the largest cycle within Freshlist. Initially, for the first c cycles, reads return

⊥, the initial value of O (assumed to be known by all hosts) and completes.

Every host h benefits from the underlying heartbeats sent in the DCS by piggybacking Freshlist(h)

on these heartbeats. We consider that heartbeats are scheduled to be exchanged towards the end

of a control cycle, i.e., after all invoked operations during a cycle have completed. A host hi,

upon receiving a heartbeat during cycle r from host hj , updates its Freshlist(hi) to:

Freshlist(hi) = Freshlist(hi)
⋃

Freshlist(hj),

for all values tagged with control cycles in [r, r − c].
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Algorithm 2 A Basic TapeWorm Algorithm.

1: Initialize:
2: set Freshlist = {⊥}c
3:

4: Repeat periodically:
5: broadcast < heartbeat,Freshlist, id >
6:

7: upon event receive < heartbeat,Fresh′list, id
′ > do

8: set Freshlist = Fresh′
list

⋃
Freshlist

9:

10: upon event write < v, cycle > do
11: updatelist< v, cycle >
12:

13: upon event read < cycle > do
14: if (cycle < c) then
15: return ⊥
16: end if
17: if (< ∗, cyc >∈ Freshlist : cyc = max {cyc ≤ cycle− dt}) then
18: return < ∗, cyc >
19: end if
20: return < ∗, cyc >∈ Freshlist : cyc = max cyc
21:

22: Function update_list(< v, cycle >):
23: set Freshlist = Freshlist

⋃
< v, cycle >

24: remove < ∗, cycle− c− 1 > from Freshlist

Proof of Correctness.

We now prove the correctness of our TapeWorm algorithm.

Termination:

Both read and write operations in TapeWorm complete after performing a bounded number of

local operations which requires a bounded amount of time and thus constitutes the required top.

Termination is hence satisfied.

Agreement and freshness:

Recall that it is sufficient to guarantee the shared memory properties when the scheduler state is

consistent (Section 7.2.4). The scheduler is consistent when all hosts ∈ ∇E(r)⋃∇A(r) at any

cycle r agree on which hosts are in ∇A(r+ 1) during cycle r+ 1 (see Section 7.2.3). Given that

the scheduler state is consistent, we have the following:

Lemma 21. For any host h ∈ ∇A(r), i.e., belonging to the set of non-suspected hosts at cycle r,
all hosts in {∇E(r − 1)

⋃∇A(r − 1)} have heard (directly or indirectly) a heartbeat sent by h
during some cycle in [r − (dt − 1), r − 1].
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Proof. By the real-time detection property, a crashed host is declared failed (suspected) in less

than dt cycles after the crash. Consider a DCS of two hosts h1 and h2 and consider the following

two executions:

• e1 : an execution where h2 crashes during cycle r−(dt−1) before h2 sends any heartbeats.

• e2 : an execution where h1 and h2 are both correct (do not crash) but lose all heartbeats

sent (if any) during all cycles in [r − (dt − 1), r − 1].

Execution e2 can happen with positive probability as shown in the proof of Lemma 19. With

respect to h1, executions e1 and e2 are indistinguishable during [r − (dt − 1), r − 1], for any

finite value of dt (since h1 cannot know if h2 has failed or all messages from h2 are lost).

By the real-time property of failure detection, h1 suspects h2 in execution e1 at cycle r. Since e1

and e2 are indistinguishable during [r − (dt − 1), r − 1] then h1 suspects h2 as failed at cycle r

also in e2.

So, in order for h2 not to be suspected at cycle r by h1, h1 has to hear (directly or indirectly) at

least one heartbeat sent by h2 during some cycle in [r− (dt− 1), r− 1]. Since the scheduler state

is assumed to be consistent, then all hosts ∈ ∇E(r − 1)
⋃∇A(r − 1) have heard (directly or

indirectly) a heartbeat sent by host hi, at some cycle in [r − (dt − 1), r − 1], ∀hi ∈ ∇A(r).

Lemma 22. Let h be the host that writes to the shared object O. If h ∈ ∇A(r), then all hosts
∈ ∇E(r − 1)

⋃∇A(r − 1) have in their Freshlist the value written by h at cycle r − dt.

Proof. By Lemma 21, if h ∈ ∇A(r), then all hosts ∈ ∇E(r − 1)
⋃∇A(r − 1) have heard

(directly or indirectly) a heartbeat sent by host h at some cycle in [r − (dt − 1), r − 1]. All

heartbeats sent by h at some cycle in [r − (dt − 1), r − 1] contain the value written by h at cycle

r − dt, since (i) heartbeats are exchanged towards the end of a cycle (after operation in that cycle

have completed) and (ii) h always appends to its heartbeats Freshlist(h), which contains all

values written by h in cycles [r − c, r], where dt < c. In fact, it can be noticed that it is sufficient

to only send Freshlist(h) containing values of O written by h in cycles [r − dt, r].

Since every host ∈ ∇E(r− 1)
⋃∇A(r− 1) has heard (directly or indirectly) a heartbeat sent by

host h ∈ ∇A(r) at some cycle in [r − (dt − 1), r − 1], then every host has received from some

host hi a Freshlist(hi) containing the value of object O written at cycle r−dt. The reason is that

any host hj receiving Freshlist(hi) performs: Freshlist(hj) = Freshlist(hi)
⋃

Freshlist(hj),

concluding the proof.

By Lemma 22 and the algorithm description, if h, the writer host of some object O is not

suspected at cycle r, then all hosts invoking a read to O during r return the value written at cycle

r − dt, which satisfies agreement and freshness since c > dt.
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If, however, h is suspected as crashed at cycle r, then by Lemma 21 and Lemma 22 all hosts

∈ ∇E(r− 1)
⋃∇A(r− 1) have last heard (directly or indirectly), the heartbeat sent by h during

cycle r − dt (otherwise h would suspected at a cycle < r). This heartbeat contains the value

written by h at cycle r− dt. No other heartbeats are heard from h (since otherwise h is suspected

at cycle > r). The value tagged with r − dt hence has the highest cycle and is thus returned by

any host issuing reads during cycles ≥ r, which satisfies both agreement and freshness, as c > dt.

TapeWorm hence guarantees agreement and freshness when h is not suspected and when it is.

Note that from the proof of Lemma 22, it is sufficient that Freshlist of hosts is of size dt and

not c.

7.4.2 A Fresher TapeWorm Algorithm

In this section, we depict how TapeWorm can be modified such that read operations return fresher

values, within the defined freshness interval. In other words, we describe how reads invoked in

TapeWorm at cycle r can return values written at cycles in [r − c, r], precisely in [r − s, r] where

s < dt.

Every host in TapeWorm has a list, Freshlist, that holds at cycle r the values of O seen by h and

tagged with control cycles in [r − c, r]. For every value in Freshlist(h), h now keeps a list of

host ids, called seencycle#, and for each host id in seencycle# a list called seenbyid.

Upon invoking a write, with a value v, to object O at cycle r, hw (the host writing to O) appends

its id to seenr, besides updating its Freshlist as described in Section 7.4.1. After this step, a

write completes.

Every host h piggybacks its Freshlist(h), seencycle# and seenbyid lists to the heartbeats. Upon

receiving a heartbeat at cycle r from host hj , a host hi updates its Freshlist(hi) to:

Freshlist(hi) = Freshlist(hi)
⋃

Freshlist(hj),

for all values tagged with control cycles in [r, r − c]. For every value tagged with cycle r′ such

that r′ is in Freshlist(hj) but not in Freshlist(hi), hi adds its id to seenr′(hi). Afterwards, for

every value tagged with cycle# in the newly computed Freshlist(hi), hi performs:

seencycle#(hi) = seencycle#(hi)
⋃

seencycle#(hj),

and for every host hk (k �= j) in the new seencycle#(hi):

seenbyhk
(hi) = seenbyhk

(hi)
⋃

seenbyhk
(hj).

For hj in the new seencycle#(hi), hi performs:

seenbyhj
(hi) = seenbyhj

(hi)
⋃

seencycle#(hj).
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A host h that invokes a read operation to object O at cycle r, consults its Freshlist(h) and returns

the value tagged with the largest cycle, maxcycle > r − dt, satisfying both properties below:

1. seenmaxcycle
contains the ids of all hosts that are not suspected in cycle r + 1.

2. For every host hk in seenmaxcycle
, seenbyhk

(h) contains the ids of all hosts not suspected

in r + 1.

The above two properties state that a host h returns a value at cycle r, if h knows that (i) every

host in ∇A(r + 1) (non-suspected hosts at cycle r + 1) has seen that value and (ii) every host in

∇A(r + 1) knows that every other host in ∇A(r + 1) has seen that value. After this step the

read invoked by h completes. If no such value exists, then a read returns as it would do in the

basic TapeWorm algorithm described in Section 7.4.1. As such, the correctness of this fresher

TapeWorm follows from the correctness of the basic version.

7.5 Performance Analysis

In this section, we analyze certain aspects of TapeWorm’s performance. We specifically determine

(a) the probability distribution of the values returned by read operations in the allowable freshness

range, i.e., [cycleread − c, cycleread] where cycleread is the cycle in which a read operation is

invoked, (b) the bandwidth overhead of TapeWorm, and (c) optimizations of TapeWorm for static

workloads.

7.5.1 The Freshness of Values Seen by Hosts

Recall that heartbeats, to which TapeWorm attaches information, are exchanged at the end of

a cycle, after all tasks are executed. In other words, read and write operations get invoked and

complete at a cycle r before the heartbeats at cycle r get exchanged. For simplicity, we consider

Pij(t) = p ∀i, j and t. In other words, a message sent at any time and on any link has probability

p of getting lost, where p is the same for all links and is independent of time and links. We study

the fresher TapeWorm version depicted in Section 7.4.2 assuming that the writer host is correct,

i.e., does not crash.

Assume that for all cycles in [r + 1, r + dt]:

∇A(r + 1) = ∇A(r + 2) = ... = ∇A(r + dt) = ∇A,

i.e., the set of non-suspected hosts remains the same. We now compute the probability that a

read, in TapeWorm, to a shared object O at any cycle in [r + 1, r + dt] returns the value of O
written at cycle r. In the fresher TapeWorm version, a read to O invoked at cycle r + 1, returns

the value written at cycle r with probability 0. This is due to the following fact: a host h sends its

heartbeats at cycle s before it receives any heartbeats that some other hosts sent during s.
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A read to O at cycle r+2, returns the value written at cycle r with probability (1−p)|∇A|2(|∇A|−1).

For reads invoked at cycle cyc ∈ [r + 3, r + dt − 1]: the probability that a read at cycle cyc

returns the value of O written at cycle r can be approximated by the probability that each host

in ∇A hears (directly or indirectly) from every other host in ∇A by cycle cyc− 2, after which

every host in ∇A hears the heartbeat of every other host in ∇A. Let h be a host in ∇A. We

denote by πh(cyc) the set of hosts in ∇A that received a heartbeat from h (directly or indirectly)

at some cycle in [r+ 3, r+ cyc− 3] and by πh̄(cyc) the set of hosts in ∇A that did not receive a

heartbeat from h (directly or indirectly) at some cycle in [r + 3, r + cyc− 3]. The probability

that at cycle cyc− 2 not all hosts in ∇A hear from h is equal to the probability that at least one

host in πh̄(cyc) does not receive a heartbeat from any host in πh(cyc) in cycle cyc− 2:

Prob(|πh̄(cyc)|)×
|πh̄(cyc)|∑

x

(|πh̄(cyc)|
x

)
[(1− p)|πh(cyc)|]x[1− (1− p)|πh(cyc)|]|πh̄(cyc)|−x,

where Prob(πh̄(cyc)) is the probability that |πh̄(cyc)| hosts do not hear (directly or indirectly)

from host h any heartbeat by cycle cyc− 3. Thus, the probability that a read at cycle cyc returns

the value of O written at cycle r is:

(1− p)|∇A| ×
∏

∀h∈∇A
1− Prob(|πh(cyc)|)×

|πh̄(cyc)|∑
x

(|πh̄(cyc)|
x

)
[(1− p)|πh(cyc)|]x[1− (1− p)|πh(cyc)|]|πh̄(cyc)|−x.

A read to O invoked at cycle r + dt, returns the value written at cycle r with probability:

1−(1− p)|∇A|(|∇A|−1) −
r−dt−1∑
cyc=r+3

(1− p)|∇A| ∏
∀h∈∇A

1− Prob(|πh(cyc)|)×

|πh̄(cyc)|∑
x

(|πh̄(cyc)|
x

)
[(1− p)|πh(cyc)|]x[1− (1− p)|πh(cyc)|]|πh̄(cyc)|−x.

7.5.2 Bandwidth overhead of TapeWorm

Hosts in TapeWorm do not send any additional messages. However, hosts append information to

heartbeats. In this section, we quantify the size of information being piggybacked to heartbeats.

Every host in TapeWorm saves c values of object O relative to the last c values written to O. In

fact, it is sufficient for hosts to keep the last dt < c values of O, as shown in Section 7.4.1. These

values constitute the Freshlist of a host.

Consider that shared memory consists of x shared objects each capable of storing a value

of m bits. The basic TapeWorm algorithm of Section 7.4.1 incurs a bandwidth overhead of

dt · x ·m bits/cycle per link. This overhead is relative to having each host attach the Freshlist
to the heartbeat sent by that host every cycle.
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In the fresher TapeWorm algorithm of Section 7.4.2 a host sends, in addition to the Freshlist,

the seencycle# and seenbyid lists. The information in these two lists can be represented by an

n × (n+ 1) binary matrix, where n is the total number of hosts in the system. The first column

of this matrix represents information relative to the seencycle# list, and each row, excluding the

first position, represents the information relative to seenbyid list. A compact way of representing

this matrix is to traverse the bits column by column (or row by row) and represent the binary data

in ASCII format. The result incurs an additional overhead of

n(n+ 1)

8
bits/cycle

per link compared to the basic TapeWorm.

Existing known failure detection and membership algorithms in control systems and real-time

environments already implement an all-to-all broadcast mechanism for sending heartbeats and

monitoring hosts [13, 35, 74, 154–156]. Often, these systems use Ethernet packets over UDP [13,

35, 154, 155] to send heartbeats. Classic heartbeats occupy only a very small fraction of the

allowable minimum payload of an Ethernet packet (minimum UDP payload is 18 bytes).

Since TapeWorm only appends information to heartbeats, part of or maybe all information

relative to TapeWorm (depending on the system and shared storage size) can be sent without any

additional overhead by utilizing the unused payload of heartbeat messages.

7.5.3 DCS Shared Memory: Necessary and Sufficient Conditions

In this section, we determine the necessary and sufficient conditions for implementing the three

properties of shared memory in a DCS (defined in Section 7.2.4).

We recall sufficient assumptions that define the family of algorithms to which TapeWorm belongs;

we refer to this family of algorithms as Parasite Algorithms:

1. Hosts can exchange messages or append information to heartbeats exchanged over the DCS

links. Precisely, in every cycle, each host either appends or does not append information to

the heartbeat broadcasted in that cycle. Hosts have access to local synchronized clocks.

2. Hosts get suspected according to the real-time detection property: if a host hi does not

hear any of the heartbeats sent by host hj during [r − 1, r − (dt − 1)] (directly from hj or

indirectly via other hosts), hi suspects hj at the beginning of cycle r.

Theorem 21. A necessary condition for a parasite algorithm to deterministically implement
termination, agreement and freshness in a DCS is:
Every host h appends, to every heartbeat sent in [r − 1, r − (dt − 1)], any value of object O
written during a cycle ∈ [r − c, r], if h knows of any such value (where r + 1 is the cycle during
which a read operation is invoked by some host).

137



Chapter 7. Real-Time Distributed Shared-Memory

Proof. Let r + 1 be the cycle at which a read to object O is invoked by some host. To prove

Theorem 21, we prove that if some host h, be it a writer or a reader, knows a value of O written

during some cycle ∈ [r − c, r] and does not append any such value to some heartbeat sent in

[r − 1, r − (dt − 1)], one of the three properties is violated.

Consider a DCS with three hosts h1, h2 and h3 sharing an object O, where h1 is the writer of

O. Also assume that at cycle r + 1 = c + 1, both h2 and h3 invoke a read to O. To satisfy

agreement and freshness, these reads should return the same value, that being a value written

earliest at cycle 1. For illustration consider c = dt + 1. In this case, since r+ 1 = c+ 1, a host h

by Theorem 21 should append values of O to every heartbeat sent at all cycles ∈ [3, c].

Case 1: h is the writer

Assume that h1 decides not to append any information to the heartbeat it broadcasts at some

cycle r′ ∈ [3, c]. Consider an execution e satisfying all the below:

1. All three hosts are correct, i.e., no host fails.

2. Both h2 and h3 lose all heartbeats sent by h1 at all cycles in [1, r′[
⋃

]r′, c]. However, h2
and h3 both receive the heartbeat sent by h1 at r′.

3. h1 and h2 receive all the heartbeats sent by h3 during all cycles in [1, c].

4. h1 and h3 receive all the heartbeats sent by h2 during all cycles in [1, c].

Execution e can happen with positive probability (since each host broadcasts a heartbeat at every

cycle and every sent heartbeat has a positive probability of being lost). In execution e, the failure

detector at the beginning of cycle c+ 1, at all hosts, includes h1, h2 and h3 in ∇A, since every

host heard some heartbeat sent from every other host during the past dt − 1 cycles, i.e., in [3, c].

However, h2 and h3 do not see any value for O besides ⊥, the initial value (prior to any write);

h2 and h3 only receive the heartbeat sent by h1 at cycle r′ and this heartbeat has no values of O
appended to it. As such, a read at cycle c+1 invoked by either h2 or h3 and satisfying termination

completes and returns ⊥ during c+ 1, which violates the freshness property.

Case 2: h is a reader.

Assume now that h2 does not append any value to the heartbeat it broadcasts at some cycle

r′ ∈ [3, c]. Consider an execution e′ satisfying all the below:

1. All three hosts are correct.

2. h3 loses all heartbeats sent by h1 at all cycles in [1, c].

3. h2 receives all heartbeats sent by h1, and h1 receives all heartbeats sent by h2 at all cycles

in [1, c].
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4. h3 loses the heartbeats sent by h2 at all cycles in [1, r′[
⋃

]r′, c], but receives the heartbeat

sent by h2 at cycle r′ ∈ [3, c].

5. h1 and h2 receive all the heartbeats sent by h3 at all cycles in [1, c].

Execution e′ can happen with positive probability (since messages can be probabilistically lost).

In e′, the failure detector at the beginning of cycle c+ 1, at all hosts, can include h1, h2 and h3
in ∇A, since every host can hear (directly or indirectly) some heartbeat sent from every other

host during the past dt − 1 cycles, i.e., during [3, c]. Specifically h3 can hear the heartbeat of h1
indirectly via the heartbeat received from h2 at cycle r′. However, since h2 did not append any

value for O at cycle r′, h3 does not see any value for O besides the initial value ⊥. Note that h2
knows values of O since it receives heartbeats from h1 (h1 is the writer of object O and appends

values of O to all the sent heartbeats).

As such, a read at cycle c+ 1 invoked by h3 and satisfying termination completes and returns ⊥
during c+ 1, which violates the freshness property.

Theorem 22. Consider that non-crashed hosts agree on the set ∇A(r), such that the writer of
a shared object O belongs to ∇A(r). Then a sufficient condition for a parasite algorithm to
deterministically ensure termination, agreement and freshness in a DCS, given a single object O
to which a read operation is invoked by some host at cycle r, is:
Each host appends any value of the shared object written at some cycle in [r − c, r − dt] (if this
host has seen such a value) to every heartbeat sent during all cycles in [r − dt, r].

Proof. Consider a DCS of three hosts h1, h2 and h3. Also consider h1 to be the host that writes

to O. Let r be the cycle at which some host invokes a read to O and let v denote the value that h1
writes to O at cycle r − dt.

Lemma 23. Consider that every host appends v (whenever it has received v) to every heartbeat
sent during all cycles in [r − dt, r], where r is the cycle during which some host invokes a read
operation to that shared object. Given that hosts agree on the set ∇A(r), all non-crashed hosts
at cycle r have v.

Proof. Upon receiving a write to object O at cycle r − dt, h1 saves v and then completes, i.e.,

the write at h1 locally returns before h1 sends any heartbeat at r − dt. h1 hence appends v to all

the heartbeats it sends in cycles ∈ [r − dt, r] (since h1 has v). Agreeing about ∇A(r), where

h1 ∈ ∇A(r), means that all hosts in {∇E(r)⋃∇A(r)} have heard (directly or indirectly) a

heartbeat sent by h1 during some cycle in [r − dt, r]. Every host that hears v, appends v to every

heartbeat it sends in [r − dt, r]. This implies that every host in {∇E(r)⋃∇A(r)}, which was

able to hear (directly or indirectly) a heartbeat from h1, has received the value v.
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By Lemma 23 all non-crashed hosts at cycle r would have received v. Any host that invokes

a read at r can thus always complete after locally returning v, the value of O written at cycle

r − dt, deterministically. Readers and writers locally return satisfying termination. All readers at

cycle r return v, thus satisfying agreement and freshness (since c > dt).

7.5.4 Optimizing TapeWorm under Static Workloads

We have assumed, so far, that read operations can be invoked at any cycle and this invocation

time in not known. As such, in both versions of TapeWorm, the basic and the fresher, information

about a shared object is appended to heartbeats of every host at every cycle. Based on the results

of Section 7.5.3, we investigate optimizing (i) the rate of appending information to heartbeats

and (ii) the number of hosts that need to append information to heartbeats in every cycle.

When workloads are static, i.e., hosts know the cycle at which read operations are invoked, then

TapeWorm under certain assumptions can be optimized, in the sense that hosts do not need to

append information on all heartbeats sent at all control cycles. Precisely, from Theorem 21

and Theorem 22, satisfying the three properties of shared memory requires two things: (i) all

non-faulty hosts append information on every heartbeat only for a fixed time interval (dt cycles)

before the invocation of a read operation, and (ii) the writer host does not get suspected during

that interval of dt cycles.

This can be interpreted as follows. Let r be the cycle at which some host invokes a read operation

to object O. In static workloads, r is known by TapeWorm. Hosts in TapeWorm can now append

information to heartbeats sent only during dt cycles prior to r. This optimization is valid under

the assumption that the writer host of the object O can communicate (directly or indirectly) with

all non-crashed hosts during that interval.

7.6 Existing Real-Time Distributed Data Storage

Sharing data in real time has been addressed in various contexts, ranging from architectural

design and synchronization for real-time shared memories in multi-core machines [189–192] to

real-time replicated databases [55, 56, 183] and distributed memory. In this section, however,

we focus on previous related work in distributed environments (similar to DCSs) rather than

on works (i) on architectural memory designs or (ii) on accessing physical shared memory in

multi-core machines in real time.

Aslinger and Son [55] presented two algorithms for database replication, each targeting a different

data workload. The first algorithm is developed for non-static periodic workloads and ensures

that replicas are updated at the minimum required rate. The second algorithm is designed for

random workloads and adaptively changes the update policy of replicas based on previously

observed data patterns. Both algorithms aim at increasing the scalability of real-time databases.

Peddi and DiPippo [56] proposed a database replication algorithm for static periodic workloads,
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where all object locations and client data requirements are known a priori. The algorithm creates

transactions from the operations issued to the database objects and feeds these transactions to

a scheduling algorithm. If a schedule that meets all deadlines can be computed, then all read

operations guarantee to return a fresh value (satisfying temporal consistency). Otherwise, the

system specification must be reconsidered. Wei et al. [183] use a full replication mechanism to

ensure data freshness of committed transactions in medium distributed databases (5 to 10 nodes).

The algorithm consists of local heuristic feedback controllers and global load balancers. The

local controllers manage the admission of incoming workloads, while the global balancers collect

performance data from all sites and balance the workloads.

In contrast to [55, 56, 183], we consider message losses in addition to node failures. Overcoming

the effect of message losses and meeting the requirements of shared memory in a DCS is highly

non-trivial, as we show that it is impossible to be achieved (Section 7.3) without the aid of

heartbeats and without requiring real-time crash detection.

Zou and Farnam [57] presented a real-time primary-backup replication scheme. The proposed

scheme enforces temporal consistency (defined in Section 7.2.4) among data replicas and deter-

mines the corresponding rate at which update messages should be sent from the primary to the

backup. Zou and Farnam [57] also discussed message losses. The authors assumed that messages

can be lost with probability ρ, and denoted by P the probability of the temporal consistency

desired to be achieved. Their solution to message losses, as such, dictates to increase the fre-

quency of sending update messages from the primary to the backup to guarantee the required

probability P .

In contrast to [57], we seek to deterministically guarantee the consistency of operations issued

to a shared object, given system agreement regarding which hosts are considered alive and thus

participate in executing tasks.

Xiong at al. [193] proposed MIRROR, a concurrency control algorithm for real-time replication

control. MIRROR augments the optimistic two-phase locking (O2PL) algorithm with a state-

based conflict resolution mechanism. The choice of the conflict resolution method is a dynamic

function that either uses Priority Abort or Priority Blocking depending on the states of the

transactions involved in the conflict. In Priority Abort, a conflict is resolved for the favor of

the transaction with higher priority (by aborting a lower priority transaction currently holding

the lock or blocking the lower priority transaction trying to acquire a lock held by a higher

priority transaction). In Priority Blocking, a transaction is always blocked upon the encounter of

a lock conflict and can acquire the lock after the lock is released. Lock requests are ordered by

transaction priority.

Concurrency control mechanisms, such as [193], suffer from potential deadlock or unbounded

blocking and thus do not comply with DCS-like requirements.

Other approaches addressed building real-time distributed hash tables (DHTs) [182, 194]. Qian et

al. [182] designed and implemented a Chord-based DHT. Given the periodic structure of requests
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considered in [182], a cyclic executive is used to schedule the jobs that subsequent nodes in the

Chord overlay network should execute to serve a request. Skodzik et al. [194] extended Kad, an

implementation variant of the P2P Kademlia protocol, by a TDMA based mechanism in order to

make Kad suitable for hard real-time constraints.

In contrast to [182, 194], we require each operation, be it a read or a write, to return and complete

based on performing a bounded number of local steps. As we show in Lemma 20, waiting to

reliably transmit any message in order for an operation to complete, could take an arbitrary long

time in the communication system we consider in this chapter.

7.7 Chapter Summary

This chapter investigated how to build a shared memory abstraction for distributed control

systems (DCSs). Such an abstraction constitutes a basic building block for real-time shared

storage functionalities (like real-time DHTs, key-value stores etc.), which are highly demanded

in DCSs.

We determined the guarantees that a shared memory abstraction should deliver to applications

accessing it via read and write operations. We proved that such guarantees are impossible to

implement deterministically, in the presence of host crashes and message losses (in the sense

described in Section 7.3).

We presented TapeWorm, an algorithm that circumvents this impossibility and guarantees the

desired shared memory properties for applications. TapeWorm adopts a white-box approach

in which heartbeat messages of the failure detector component running in a DCS, are used as

a means of transporting information. We also conducted a mathematical analysis quantifying

the performance of TapeWorm and showcased ways for adapting and optimizing TapeWorm to

application needs and workloads.

The main contributions of this chapter can be summarized as follows:

1. A first precise derivation of the necessary guarantees that a shared memory abstraction

must provide in DCSs.

2. Theoretical proofs showing that such guarantees are impossible to implement using tradi-

tional approaches [55–59], e.g., using a black-box approach.

3. TapeWorm, an algorithm that circumvents the above impossibility by following a white-box

approach directly utilizing failure detector algorithms of DCSs. TapeWorm implements the

required shared memory guarantees for applications running in a DCS.

4. A mathematical analysis quantifying the performance of TapeWorm and showcasing ways

of adapting and optimizing TapeWorm respectively to application needs and workloads.
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It’s time to say goodbye, but I think goodbyes are sad and I’d much rather say hello.
Hello to a new adventure.

— E. Harwell

T his part summarizes the work presented in this dissertation. We recall the main motivation

and challenges of the problems addressed in this thesis. We then highlight the achieved

results and their impact on research in areas of automation for smart grid, sensor networks and

distributed control systems.

We also discuss interesting open future questions related to the studied topics.





8 Summary and Open Questions

This thesis investigated how to build distributed abstractions in the context of automation systems

for control, smart grid and sensor networks, also known as cyber-physical systems. Such real-

world physical systems adhere to a different set of requirements and constraints compared to

classic distributed systems. Existing solutions to distributed problems, developed based on classic

distributed computing assumptions, may hence be not fully portable, even sometimes unusable in

a cyber-physical context.

To this end, we studied how to build four abstractions, given the design constraints and needs of

such automation systems. Our investigation commenced from communication links and went all

the way up to applications. We recall in what follows these abstractions, summarizing our results

and contributions. We discuss also potential interesting open questions.

8.1 Energy-efficient Reliable Communication

In Chapter 4 of this thesis we presented an analytic study describing how energy-efficient reliable

communication, that is synchronous with high probability, can be built over unreliable links.

The analysis was conducted for a time-varying lossy link capturing the dynamic communication

quality of network links for the systems in consideration.

We performed our analyses considering the main forms of Ack/Nack feedback mechanisms. We

obtained under reliable feedback, a closed form of the policy which determines when to transmit

over the link, in order to avoid sending messages when the link is in a bad state (losing messages)

and hence to minimize re-transmissions. Minimizing the number of re-transmissions leads to

minimizing the total transmission energy needed for sending a message. Combined with this

closed form solution, we also identified the necessary conditions under which transmission is

never suspended forever, for example when the policy is “very conservative” since the energy lost

due a message loss is much more expensive than taking the risk to transmit. We provided as well a

probabilistic bound on the total time to deliver a message. In short, we presented an implementable

form of an energy-efficient reliable communication, guaranteeing high probability synchrony.
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We also performed, to the best of our knowledge, a first analysis studying the impact of lossy

feedback on optimal transmission policies. Optimality of a policy in this context is defined with

respect to a defined energy-throughput-latency trade-off, where the policy needs to maximize

a reward function, given a weighted function consisting of rewards for transmitting messages

successfully and costs for transmitting messages and losing them. We showed that easy imple-

mentable forms of the desired communication service can also be obtained depending on the

utilized feedback mechanism.

Possible interesting open questions may look into the case of investigating optimal transmission

policies under unreliable feedback considering multiple energy levels of transmission that can be

used to send a message over the link.

8.2 Failure Detection

In Chapter 5, we investigated failure detection in systems embodying asynchrony via probabilistic

synchronous communication. In contrast to the conventional distributed computing assumptions

when building failure detectors, which hinged on link synchrony guarantees that need to hold

deterministically forever, we adopted a more realistic link behavior motivated by networking

views on actual packet loss. We showed that, under lossy probabilistic communication links,

“�S with probability 1” cannot be implemented, while “consensus with probability 1” can be

implemented without requiring any randomness in the algorithm itself. We recall that �S has been

established, in some sense [110], to be the weakest failure detector to implement consensus. We

accordingly refine the notion of failure detectors defining �S∗ which does not require any “forever”

guarantee from the underlying network. We show that �S∗ can be implemented in system N and

even efficiently. In addition, we show that �S∗ can replace �S in several deterministic consensus

algorithm and yields an algorithm that solves “consensus with probability 1”. We also generalize

this result to encompass (i) a more general set of problems, which we call decisive problems, and

(ii) other eventual failure detectors besides �S .

Open questions that constitute interesting potential for future work may investigate the weakest

probabilistic system to implement �S∗ or the solvability of problems, besides the ones discussed in

this thesis (i.e., the set of decisive problems, Section 5.5), using our new notion of failure detectors.

8.3 Real-Time Membership

In Chapter 6, we defined the membership properties essential for the proper operation of dis-

tributed control systems (DCSs) running cyclic control applications. In their implementable form,

these properties take the form of a probabilistic real-time membership service, which we called

SYMS. We proposed ViewSnoop, an algorithm based on exchanging local views between hosts in

order to implement SYMS.
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We evaluated ViewSnoop both analytically as well as experimentally via an implementation

within FASA, an industrial DCS framework. Our results convey that ViewSnoop provides a

more dependable service, compared to membership mechanisms based on classic heartbeats,

thus enhancing a DSC’s reliability. Additionally, ViewSnoop can distinguish host failures from

message losses. Schedulers in DCSs can thus compute better configurations, in the sense that

tasks requiring information exchange are not allocated to hosts connected by bad links.

Devising optimizations that can be augmented to ViewSnoop making it adaptive to changing

network conditions, are open interesting questions. Such optimizations allow ViewSnoop to

operate at even lower costs when the network behaves good and make our algorithm more suited

for very large-scale distributed systems.

8.4 Real-Time Distributed Shared Memory

In Chapter 7, we investigated how to build a distributed shared memory (DSM) abstraction for

distributed control systems (DCSs). Such an abstraction makes programming control application

significantly easier and results in less programming errors. Besides, DSM constitutes a basic

building block for real-time shared storage functionalities (like real-time DHTs, key-value stores

etc.), which are highly demanded in DCSs.

We determined the necessary guarantees that a DSM abstraction should deliver to applications

accessing it. Given that hosts can crash and messages can be lost, we proved that such guarantees

are impossible to implement deterministically, in traditional ways where algorithms (i) do not rely

on failure detection or (ii) use failure detectors as software blocks. We presented an algorithm,

which we called TapeWorm, capable of circumventing this impossibility. TapeWorm, hence,

guarantees the desired shared memory properties for DCS applications. TapeWorm adopts a

white-box approach in which heartbeat messages of the failure detector component running in a

DCS, are used as a means of transporting information. We also conducted a mathematical analysis

quantifying the performance of TapeWorm and showcased ways for adapting and optimizing

TapeWorm to application needs and workloads.

Interesting questions that are still open for investigation could potentially address issues related

to solution designs of DSM algorithms when monitoring schemes do not employ all-to-all

(broadcast) communication between hosts.
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A Deriving Closed Form Expressions of
The Belief Function w∗

This Appendix details the derivation of the closed form expressions of w∗.

A.0.1 Positively Correlated Links

τk(w) monotonically tends to πg , as k → ∞. (A.1)

1− β > πg > α. (A.2)

Case 1: w∗ ≥ πg

If w < w∗, from (A.1) τk(w) ≤ w∗ and thus the optimal decision is to also idle the link.

Following from (A.2) V (α) = cd + γcd + γ2cd + ... = cd
1−γ .

If w > w∗, then V (w) = w(r− cp)+ cp+ γ[wV (1−β)+ (1−w)V (α)]. If(w∗ ≥ 1−β), then

V (1 − β) = cd
1−γ . By continuity of V (w) at w∗ we have w∗(r − cp) + cp + γ[w∗V (1 − β) +

(1− w∗)V (α)] = cd + γV (τ(w∗)), which yields: w∗ = cd−cp
r−cp

. However, if w∗ < 1− β, then

V (1− β) = (1− β)(r − cp) + cp + γ[(1− β)V (1− β) + (β)
cd

1− γ
]

=
(1− β)(r − cp) + cp + γβ cd

1−γ

1− γ(1− β)
.

By continuity of V at w∗

w∗(r − cp) + cp + γ[w∗ (1− β)(r − cp) + cp + γβ cd
1−γ

1− γ(1− β)
+ (1− w∗)

cd
1− γ

] =
cd

1− γ
.
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After reduction:

w∗ =
(cd − cp)(1− γ(1− β))

r − cp(1− γ)− γcd
,

dw∗

dcd
=

(1− γ(1− β))(r − (1− γ)cp)− γcp(1− γ(1− β))

(r − cp(1− γ)− γcd)2
> 0.

which shows that w∗ is a strictly increasing function of cd.

Case 2: w∗ < πg

By (A.1), τk(w∗) > w∗ ∀ k > 1 thus

V (τ(w∗)) = τ(w∗)(r − cp) + cp + γ[τ(w∗)V (1− β) + (1− τ(w∗))V (α)]

= cp + γV (α) + τ(w∗)[(r − cp) + γ(V (1− β)− V (α))].
(A.3)

By (A.2), we have (1− β) > w∗ and

V (1− β) = (1− β)(r − cp) + cp + γ[(1− β)V (1− β) + βV (α)] =
(1− β)(r − cp) + cp + γβV (α)

1− γ(1− β)
.

(A.4)

(r − cp) + γ[V (1− β)− V (α)] =
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
. (A.5)

By continuity of V at w∗

cp + γV (α) + w∗[(r − cp)+γ[V (1− β)− V (α)] =

cd + γ[cp + γV (α) + τ(w∗)[(r − cp) + γ(V (1− β)− V (α))]].

(A.6)

Replace (A.5) in (A.6)

cp + γV (α) + w∗[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
] =

cd + γ[cp + γV (α) + τ(w∗)[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
].

(A.7)

By τ(w∗) = α+ w∗(1− β − α) reduce (A.7) and find w∗

w∗ = 1− [1− γ(1− β)][r − cd]

[1− γ(1− β − α)][(r − cp) + γcp − γ(1− γ)V (α)]
. (A.8)

Thus to find the value of w∗, we have to find V (α).
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If(w∗ ≤ α), then

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α)V (α)] =
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

By the assumption of positive memory, 1− β > α, then

V (1− β) =
(1− β)(r − cp) + cp + γβV (α)

1− γ(1− β)
.

Solving the two equations yields

V (α) =
α(r − cp) + cp − γcp(1− β − α)

(1− γ)(1− γ(1− β − α))
. (A.9)

Replace (A.9) in (A.8), to get w∗ = cd−cp
r−cp

. It is easy to see that w∗ is strictly increasing function

in cd.

If (w∗ > α), then by (A.1), for some k we have

τk(α) < w∗ ≤ τk+1(α).

Thus,

V (α) = cd + γcd + ...+ γkcd + αk+1V (τk+1(α)) =
1− γk+1

1− γ
cd + γk+1V (τk+1(α)).

(A.10)

V (τk+1(α)) = cp + γV (α) + τk+1(α)[(r − cp)γ(V (1− β)− V (α))]

= cp + γV (α) + τk+1(α)[
(r − cp) + γcp − γ(1− γ)V (α)

1− γ(1− β)
].

(A.11)

Replace (A.11) in (A.10)

(r − cp) + γcp − γ(1− γ)V (α) =
[1− γ(1− β)][r(1− γk+2)− cp(1− γ)− γ(1− γk+1)cd]

(1− γk+2)(1− γ(1− β)) + γk+2(1− γ)τk+1(α)
.

(A.12)

Replace (A.12) in (A.8)

w∗ = 1− [r − cd][(1− γk+2)(1− γ(1− β)) + γk+2(1− γ)τk+1(α)]

[1− γ(1− β − α)][r(1− γk+2)− cp(1− γ)− γ(1− γk+1)cd]
. (A.13)

To write w∗ in a more readable form, let:

A(k) = (1−γk+2)(1−γ(1−β))+γk+2(1−γ)τk+1(α)
1−γ(1−β−α) ,
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B(k) = r(1− γk+2)− cp(1− γ), D(k) = γ(1− γk+1).

w∗ can then be written as

w∗ = 1−A(k)
r − cd

B(k)−D(k)cd
. (A.14)

We can show that w∗ is strictly increasing in cd by

dw∗

dcd
= A(k)

(r − cp)(1− γ)

(B(k)−D(k)cd)2
> 0.

Since τk(α) < w∗ ≤ τk+1(α) where

τk(w) = πg − (1− β − α)k(πg − w), then k = �
ln(1−w∗

πg
)

ln(1−β−α)� − 2.

This concludes all possible cases when the link has a positive memory. Similar analysis and

computations are carried for the negatively correlated case.

A.0.2 Negatively Correlated

When the link has a negative memory, i.e. 1− β − α < 0, we study the following cases:

Case1:1− β = 0; α = 1{
V (1) = r + γV (0)

V (0) = cd + γV (1)

We solve the two equations and obtain

{
V (1) = r+γcd

1−γ2

V (0) = cd+γr
1−γ2

if(w∗ ≥ 0.5) This means that 1− w∗ < w∗, τ(w∗) = 1− w∗ and τ(1− w∗) = w∗

V (1− w∗) = cd + γV (w∗).

By continuity of V at w∗ we have

V (w∗) = cd + γV (1− w∗) = cd + γ(cd + γV (w∗)) =
cd

1− γ
. (A.15)

cd
1− γ

= w∗(r − cp) + cp + γ[w∗V (0) + (1− w∗)V (1)]

= cp + γ
r + γcd
1− γ2

+ w∗[(r − cp) + γ[
cd + γr

1− γ2
− r + γcd

1− γ2
].
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w∗ =
cd(1 + γ − γ2)− γr − cp(1− γ2)

(1− γ)[γcd + r − cp(1 + γ)]
. (A.16)

dw∗

dcd
=

(1 + γ − γ2)(1− γ)r + γ2(1− γ)r − cp(1− γ2)

(1− γ)2[γcd + r − cp(1 + γ)]2
> 0. (A.17)

It can also be seen that w∗ is strictly increasing in cd.

if(w∗ < 0.5)

This means (1− w∗) > w∗, so

V (1− w∗) = (1− w∗)(r − cp) + cp + γ[(1− w∗)V (0) + w∗V (1)]. (A.18)

and by the continuity of V at w∗

w∗(r − cp) + cp + γ[w∗V (0) + (1− w∗)V (1)] = cd + γV (1− w∗)

= cd + γ[(1− w∗)(r − cp) + cp

+ γ[(1− w∗)V (0) + w∗V (1)]].

w∗ =
cd − cp + γ(r + γV (0)− V (1))

(1 + γ)[r − cp + γ(V (0)− V (1))]
=

cd − cp + γ3r

(1− γ2)[γcd + r − cp(1 + γ)]
. (A.19)

dw∗

dcd
=

(1− γ2)(1− γ4)r − cp(1− γ2)

(1− γ2)2[γcd + r − cp(1 + γ)]2
> 0. (A.20)

which is strictly increasing in cd.

Case2: 0 < α− (1− β) < 1

In this case for any w ∈ [0, 1], τ2k(w) and τ2k+1(w) converge from opposite directions to πg as

k → ∞.

If(w∗ ≥ πg)

Then τk(w∗) < w∗, ∀ k. But, V (τ(w∗)) = cd
1−γ . By continuity of V (w) at w∗ we have

w∗(r − cp) + cp + γ[w∗V (1− β) + (1− w∗)V (α)] = cd + γV (τ(w∗)).

w∗ =
cd
1−γ − cp − γV (α)

r − cp + γ(V (1− β)− V (α))
. (A.21)
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Following from 0 < α − 1 − β < 1, we have 1 − β < w0 and α > πg. So V (1 − β) =

cd + γV (τ(1− β)). If(τ(1− β) ≤ πg) τk(1− β) < w∗, and hence V (τ(1− β)) = cd
1−γ .

If(τ(1− β) > πg), then

V (τ(1− β)) = τ(1− β)(r − cp) + cp + γ[τ(1− β)V (1− β) + (1− τ(1− β))V (α)].

If(α ≤ w∗) We have τk(α) < w∗, ∀ k, and thus V (α) = cd
1−γ .

If(α > w∗)

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α))V (α)] =
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

r − cp + γ(V (1− β)− V (α)) =
γ(1− γ)V (1− β) + (1− γ)r − cp

1− γ(1− α)
.

Given that τ(1 − β) = α − (1 − β)(α − 1 + β) < α, divide the interval [πg, 1] into the 3

sub-intervals [πg, τ(1− β)], [τ(1− β), α] and [α, 1].

If(w∗ ∈ [α, 1]), then

V (α) = V (1− β) = cd
1−γ and thus by replacing in (A.21) we get w∗ = cd−cp

r−cp
.

If(w∗ ∈ [τ(1− β), α]), then V (1− β) = cd
1−γ and

w∗ =
cd
1−γ − cp − γ

α(r−cp)+cp+γαV (1−β)
1−γ(1−α)

γ(1−γ)V (1−β)+(1−γ)r−cp
1−γ(1−α)

=
cd(1 + αγ)− γαr − cp
γcd + (1− γ)r − cp

.

dw∗

dcd
=

(1 + αγ)(1− γ)r + αγ2r − cp(1 + γ2)

(γcd + (1− γ)r − cp)2
> 0. (A.22)

which is strictly increasing in cd.

If (w∗ ∈ [πg, τ(1− β)])

V (α) =
α(r + γV (1− β)) + cp(1− α)

1− γ(1− α)
.

r − cp + γ(V (1− β)− V (α)) =
(1− γ)(r + γV (1− β))− cp

1− γ(1− α)
.

r + V (1− β) = cd − γcp + γ2V (α) + γτ(1− β)[r − cp + γ(V (1− β)− V (α))]

= r + γcd +
r + γV (1− β)

1− γ(1− α)
(γ3α+ γ2(1− γ)τ(1− β)) + γ2

1− τ(1− β)

1− γ(1− α)
cp.
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Replace in (A.21)

w∗ =
(1 + αγ(1− γ) + γ2(1− β)(α− (1− β)))cd − γαr

(1− γ)(γcd + r − cp(1 + γ))
− cp(1− αγ2 + γ2(1− β)(α− (1− β)))

(1− γ)(γcd + r − cp(1 + γ))
.

which can be shown to be strictly increasing in cd.

If(w∗ < πg)

V (α) = α(r − cp) + cp + γ[αV (1− β) + (1− α))V (α)] =
α(r − cp) + cp + γαV (1− β)

1− γ(1− α)
.

r − cp + γ(V (1− β)− V (α)) =
γ(1− γ)V (1− β) + (1− γ)r − cp

1− γ(1− α)
.

τ(w∗) > πg > w∗ and thus by continuity of V (w) at w∗, we obtain

w∗ =
cd − (1− γ)(cp + γV (α)) + γα[r − cp + γ(V (1− β)− V (α))]

[r − cp + γ(V (1− β)− V (α))][1− γ(1− β − α)]

=
[1− γ(1− α)][cd − cp]

[γ(1− γ)V (1− β) + (1− γ)r − cp][1− γ(1− β − α)]
.

If(0 ≤ w∗ ≤ 1− β)

V (1− β) =
(1− β)(r − cp) + cp + βγV (α)

1− γ(1− β)
=

r[1− β − γ(1− β − α)] + βcp
(1− γ)[1− γ(1− α)(1− β)]

.

Thus w∗ is found to be

w∗ =
[1− γ(1− α)][cd − cp]

[1− γ(1− α)](r − cp)
=

cd − cp
(r − cp)

. (A.23)

It can be clearly noticed that w∗ is strictly increasing in cd.

If(1− β < w∗ < πg), then τ(1− β) > w∗ and we have

r + γV (1− β) =
(γcd + r)[1− γ(1− α)] + γ2(1− τ(1− β))cp
(1− γ)[1− αγ + γ2(1− β)(α− (1− β))]

.

So the value of w∗ would be

w∗ =
(cd − cp)(1 + γ(1− β))

[γcd − (1 + γ)cp + r]
.

whose derivative with respect to cd is positive, meaning that w∗ is strictly increasing in cd. This

concludes the negative correlated case.
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B.1 Other Probabilistic Failure Detectors

Since �S∗ can be implemented in our system, we study the possibility of implementing meaning-

ful probabilistic variants of failure detectors which noticeably simplify the design of distributed

algorithms, namely perfect failure detection. A perfect failure detector module, P , guarantees

in addition to strong completeness, the strong accuracy property, which says that no process

is suspected before it crashes. Distributed algorithms, specifically those solving consensus,

using P are easy to design due to their implicit reliance on the strong accuracy property of P
to guarantee some safety property [117]. The liveness of such algorithms typically relies on the

strong completeness. It is important to note that on the contrary consensus algorithms based on

unreliable failure detectors [7] usually rely on the eventual accuracy to guarantee liveness of the

algorithm. We thus define P∗, a probabilistic variant of P , as a failure detector that guarantees

strong accuracy and probabilistic strong completeness, where the latter can be formally defined

as: Probabilistic Strong Completeness: Eventually every process that crashes can be suspected,

with positive probability, by every correct process.

Theorem 23. It is impossible to implement the failure detector P∗ in N , even if at most one
process can fail.

Proof. Consider a network of n = 2 processes, p1 and p2, and the following executions:

e1. an execution where process p2 fails at time t.

e2. an execution where processes p1 and p2 are both correct but get partitioned at time t.

By the probabilistic strong completeness there is a time after which p1 in execution e1 has a

positive probability of suspecting p2. By Lemma 12, executions e1 and e2 can be indistinguishable

to p1 for any finite duration after t. Accordingly there is a time where p1 has a positive probability

of suspecting p2 in execution e2. By the strong accuracy property of P∗ a correct process is never
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suspected. Thus the probability of p1 suspecting p2 in e2 should be 0 at all times, a contradiction

concluding the proof .

We show now that �P∗, a variant of �P can be implemented. Failure detector �P∗ guarantees:

(i) strong bounded completeness and (ii) probabilistic eventual strong accuracy: Consider any

finite duration Δt. With probability 1 the following occurs: there exists infinitely many time

instants tG, such that after each all correct processes are not suspected by any correct process for

the interval tG +Δt.

Theorem 24. It is possible to implement �P∗, in N , even if n− 1 processes can crash.

Proof. The proof is similar to that of Theorem 10. Following from Lemma 13, if all correct pro-

cesses broadcast messages forever (send an infinite number of messages), then with probability 1,

the following will be observed: any finite number of consecutive messages, e.g., Δt messages, is

successfully transmitted, i.e., with no losses.

As such, an algorithm which satisfies both characteristics below for example implements �P∗:

1. All processes periodically (say with period Δt1 chosen arbitrarily) broadcast messages

forever.

2. Process pi suspects another process pj only if pi receives no message form pj for a period

strictly greater than Δt1.

B.2 Substituting Global Clock by Unsynchronized Local Clocks

We briefly discuss in this section how the global clock assumption can be substituted with local

clocks which do not need to be synchronized. For this purpose, we redefine the system model

accordingly to accommodate new notations.

We consider a distributed system N consisting of a finite set Π of n > 1 processes, Π =

{p1, p2, ..., pn}, which communicate by message passing. We assume that all processes have

access to local clocks with discrete time events denoted by tpi : {1, 2, 3, ...}. A process pi is

assumed to take actions, i.e., either send or receive or both, at the discrete time events of tpi . The

time interval between consecutive events in tpi , ∀ i (i.e., for all processes) is assumed to be the

same such that it is an upper bound on the propagation delay (tpg) over any link interconnecting

any two processes. Processing delays are assumed to be negligible compared to communication

delays.

162



B.3. �P∗ Algorithms for Decisive Problems

Communication Links. The links interconnecting processes are assumed to be uni-directional

uni-cast links. In particular, every pair of processes (pi, pj) is connected by two uni-directional

links: lij and lji. These links exhibit changes in their transmission quality, as the quality of the

underlying channels might depend on various propagation conditions. We thus assume that a

link lij has a probability 0 < Pij(tpi) < 1 of losing messages at time tpi . This captures the very

idea that a link is not always reliable and can lose messages for an unbounded but finite period.

The value of Pij(tpi) can change with time; specifically, at each time tpi : {1, 2, 3, ...}, Pij(tpi)

may have any value in (0, 1). However, we assume that the value of Pij(tpi) remains constant

between consecutive intervals of tpi . We refer to such links as probabilistic links. A probabilistic

link thus constitutes an instance of the fair-loss link [97], where a message sent by some process

pi infinitely often is received infinitely often.

Faulty Processes. Processes faults are defined as in Section 4.2.

Monitoring Schemes. Given local clocks that are not synchronized (i.e., might be skew), we

suggest now, through an example, a small modification to the period at which processes send

messages and that at which processes suspect each other, such that �S∗ can be implemented.

Precisely, the algorithm in Theorem 10 can be adapted as follows. First, a process pi sends

messages periodically, by sending messages at every time instant of its local clock tpi . Initially

all processes trust (do not suspect) all other processes. At every odd time event of its local clock

such that tpi > 1, process pi suspects a process pj if it does not receive a new message since the

last odd time event. At every time tpi if pi receives a new message from pj , then pi trusts pj . If

all messages sent by pi are not lost for some finite period tpi +Δt, then all other processes pj
will not suspect pi for some period tpj +Δt. The skew (w.r.t. some global time) between the

periods in which pi is trusted by pj is ≤ 2tpg ∀ j (recall that tpg is the maximum bound on the

prorogation delay). In other words, this means that, if Δt > 2tpg, then is a common duration

between all processes during which pi is not suspected. This duration is at least Δt− 2tpg.

A similar modification can be applied to Algorithm 1 as well, to have a valid implementation of

�S∗.

B.3 �P∗ Algorithms for Decisive Problems

In this section we extend Theorem 16 for the set of algorithms that solve decisive problems using

�P . First we recall the definitions of �P and �P ∗.

Failure detector �P guarantees: (i) strong completeness and (ii) eventual strong accuracy: There

exists a time after which all correct processes are never suspected by any correct process.

Failure detector �P∗ guarantees: (i) strong bounded completeness and (ii) probabilistic eventual
strong accuracy: Consider any finite duration Δt. With positive probability, a all correct processes
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are not suspected by any correct process for the interval ts +Δt, ∀ts ∈ {1, 2, 3, ...}.

Definition 6. An asynchronous algorithm A that solves a decisive problem P is said to be
�PN -bounded if it satisfies the following properties:

1. A uses as external blocks only the failure detector �P and communication primitives
implementable in N , such as reliable links and reliable broadcast (see specification in
Section 4.2).

2. Assume that there exists a point in time tG when all correct process are never suspected by
any correct process. Then A needs a bounded number of messages to be sent after tG and
until P is solved (i.e., all correct processes decide).

Theorem 25. Any algorithm A that uses �P to solve a decisive problem P and is �PN -bounded,
solves P in N guaranteeing termination (i.e., all processes decide) with probability 1, when �P∗

is used instead.

Proof. We follow similar steps as those adopted in the proof of Theorem 16.

�P∗ provides (in a stronger form) strong completeness as �P . It thus suffices to prove that with

respect to A and with probability 1 the following is satisfied: �P∗ provides the same accuracy

as �P .

Assume the existence of an external clock. This clock is not accessible but merely used as a

reference to clarify the proof construction. Let tstart denote the time instant at which A starts

executing. Using �P in A to solve P implies that after tstart there is a time when all processes

decide and P is solved (see Definition 3). Precisely, after the time when all correct processes

are never suspected by any correct process, all correct processes executing A should exchange a

finite bounded number of messages after which P would be solved.

Let M denote the upper bound on the number of messages (be them uni-casts or broadcasts)

needed by A from the time all correct processes are never suspected by any correct process

until P is solved. All events that could occur after tG have a bounded delay (process speeds,

crash detection, etc.), except for reliable message transmissions (be them uni-casts or broadcasts).

Using communication primitives as the reliable links and reliable broadcast in N , the delay

for delivering a single message may be arbitrarily long. However it is possible, with positive

probability, that a message gets delivered after a known fixed delay, e.g., x time slots of being

sent, at any time instant at which it might be sent (see specifications of reliable transmission

Section 4.2). Thus and without loss of generality it is possible (with positive probability) for the

M messages to be exchanged within a known fixed duration, say TM , after which all processes

would have decided and thus P would be solved.

Therefore, P can be solved with �P∗ if we prove that �P∗ can with probability 1 provide the

following: there is some time instant tG ∈ {1, 2, 3, ...} after which all correct processes are not

164



B.3. �P∗ Algorithms for Decisive Problems

suspected by any correct process for the interval [tG, TM ]. From Appendix B.1, the accuracy

of �P∗ guarantees that: with positive probability, all correct processes are not suspected by

any correct process for the interval ts + TM , ∀ts ∈ {1, 2, 3, ...}. Since this holds for every

ts ∈ {1, 2, ...,∞}, then �P∗ can with probability 1 provide that: there is some time instant

tG ∈ {1, 2, 3, ...} after which all correct processes are not suspected by any correct process for

the interval [tG, TM ].
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C Proof of Viewsoop’s High Probability
Guarantees For Large Systems

Lemma 24. The probabilistic guarantees of ViewSnoop, pagree and paccurate, both tend towards 1,
as the number of hosts in the system tends towards ∞.

Proof. Consider a host A and two sets of hosts defined below:

1. πA: hosts which do not have A in their localsuspect list at the beginning of cycle r.

2. πĀ: hosts which have A in their localsuspect at the beginning of r.

Let C be the set of alive hosts at cycle r. We compute pagree and paccurate when the number of

alive hosts is very big, i.e., when C → ∞.

Hosts in πA (πĀ) are those hosts which do not have (have) host A in their localsuspect list at

the beginning of cycle r. In other words, hosts in πA (πĀ) are those hosts which received (did

not receive) a heartbeat from host A in cycle r − 1. Since an infinite number of hosts is alive

(C → ∞), then an infinite number of hosts receive A’s heartbeat in cycle r − 1 and an infinite

number of hosts do not receive A’s heartbeat in cycle r − 1, i.e., |πA|, |πĀ| → ∞. (An analogy

with A sending a message to an infinite number of hosts is flipping a coin an infinite number of

times where a head presents a successful message delivery and a tail represents a loss. Flipping

a coin an infinite number of times will result in observing an infinite number of heads and an

infinite number of tails).

Recall from Section 6.4.3, that disagreement in cycle r occurs if any condition below holds:

1. Host A does not receive any message from all hosts in πA and at least one host in πA
⋃

πĀ
receives a message from A

⋃
πA.

2. At least one host in πĀ does not receive any message from all hosts in A
⋃

πA and:

(a) Host A hears from at least one host in πA OR

167



Appendix C. Proof of Viewsoop’s High Probability Guarantees For Large Systems

(b) At least one host in πA hears from some other host in A
⋃

πA.

Condition (1) happens with probability Prob(1|πA):

Prob(1|πA) =P (Host A does not receive any message from all hosts in πA)

× P (at least one host in πA
⋃

πĀ receives a message from A
⋃

πA).

Condition (2) happens with probability Prob(2|πA):

Prob(2|πA) =P (At least one host in πĀ does not receive any message from all hosts in A
⋃

πA)

× [P (Host A hears from at least one host in πA)

+ P (At least one host in πA hears from at least one other host in A
⋃

πA)].

We prove in what follows that the probability of any host in πĀ
⋃

A not receiving a message

from a host in πA tends to zero, and hence Prob(1|πA), P rob(2|πA) tend to zero as well. The

probability that a host in πĀ
⋃

A does not hear any heartbeat from all hosts in πA, given that

|πA| hosts do not have A in their localsuspect list at the beginning of cycle r, P (H|πA) is:

P (H|πA) = (1− p)ni×|πA|.

However, since |πA| → ∞ then P (H|πA) → 0. This implies that every host in πĀ
⋃

A

hears a message from some host in πA and thus Prob(disagreeA) → 0, i.e., pagree is in

1−O((1− p)|πA|), ∀ p ∈]0, 1[.

Following similar reasoning, if host A is correct (does not fail during the entire execution), then

the probability that a host H does not declare A as crashed in cycle r + 1 can be guaranteed if H

hears from some host in πA. This happens with probability: PA(H|πA) = 1− (1− p)ni×|πA|.

Since πA → ∞ when C → ∞, then PA(H|πA) → 1 in that case. The probability, paccurate, that

an excluded host has actually crashed can be restated as the probability of not excluding a correct

host. This means paccurate = PA(H|πA) for some correct host and also tends to 1.

These results show that ViewSnoop implements the agreement and accuracy probabilities of the

SYMS with high probability (tend to 1 as the number of hosts increases).
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Fast message dissemination in random geometric networks. Distributed Computing, 26(1),

2013.

[76] Elizabeth Latronico and Philip Koopman. Design time reliability analysis of distributed

fault tolerance algorithms. In DSN, 2005.

[77] G.S. Veronese, M. Correia, A.N. Bessani, Lau Cheuk Lung, and P. Verissimo. Efficient

byzantine fault-tolerance. IEEE Trans. Comput., 2013.

[78] Fabíola Greve and Sébastien Tixeuil. Conditions for the solvability of fault-tolerant

consensus in asynchronous unknown networks. In WRAS, 2010.

[79] James Aspnes, Faith Ellen Fich, and Eric Ruppert. Relationships between broadcast and

shared memory in reliable anonymous distributed systems. Distributed Computing, 18(3),

2006.

[80] Shuyi Chen, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting, and W.H. Sanders. Using link

gradients to predict the impact of network latency on multitier applications. IEEE/ACM
Trans. on Networking, 19(3), 2011.

[81] Christof Fetzer. Perfect failure detection in timed asynchronous systems. IEEE Trans.
Comput, 52(2), 2003.

[82] Rami Yared, Xavier Défago, Julien Iguchi-Cartigny, and Matthias Wiesmann. Collision

prevention platform for a dynamic group of asynchronous cooperative mobile robots. JNW,

2, 2007.

[83] B. Garbinato, F. Pedone, and R. Schmidt. An adaptive algorithm for efficient message

diffusion in unreliable environments. In DSN, 2004.

[84] Camilo Rojas, Damien Piguet, and Jean-Dominique Decotignie. Poster: Single packet link

estimation. In EWSN, 2016.

[85] Zhen-guo Gao, Klara Nahrstedt, Weidong Xiang, Huiqiang Wang, and Yibing Li. Random

network coding based schemes for perfect wireless packet retransmission problems in

multiple channel networks. WIRELESS PERS COMMUN, 69(4), 2013.

[86] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of optimal queuing

network control. Math. Oper. Res., 24(2), 1999.

[87] N. Nayyar, Yi Gai, and B. Krishnamachari. On a restless multi-armed bandit problem with

non-identical arms. Allerton, 2011.

[88] Hong Shen Wang and N. Moayeri. Finite-state markov channel-a useful model for radio

communication channels. IEEE Trans. Veh. Technol., 44, 1995.

174



Bibliography

[89] L.N. Kanal and A. R K Sastry. Models for channels with memory and their applications to

error control. Proc. IEEE, 66(7), 1978.

[90] Hong-Shen Wang and N. Moayeri. Finite-state markov channel-a useful model for radio

communication channels. IEEE Trans. Veh. Technol., 44(1), 1995.

[91] Gerhard Hasslinger and Oliver Hohlfeld. The gilbert-elliott model for packet loss in real

time services on the internet. In MMB, March 2008.

[92] Qing Zhao, B. Krishnamachari, and Keqin Liu. On myopic sensing for multi-channel

opportunistic access: structure, optimality, and performance. IEEE Trans. Wireless
Commun., 7(12), 2008.

[93] J.L. Ny, Munther Dahleh, and E. Feron. Multi-uav dynamic routing with partial observa-

tions using restless bandit allocation indices. P AMER CONTR CONF, 2008.

[94] A Caracas, C. Lombriser, Y. A Pignolet, T. Kramp, T. Eirich, R. Adelsberger, and U. Hun-

keler. Energy-efficiency through micro-managing communication and optimizing sleep.

In SECON, 2011.

[95] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming: Probability and
Mathematical. Academic Press, Orlando, USA, 1983.

[96] Marcos K Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure detector

for quiescent reliable communication. Technical report, 1997.

[97] Rachid Guerraoui, Rui Olivera, and André Schiper. Stubborn communication channels.

Technical report, IC, EPFL, 1996.

[98] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with

unreliable links in the presence of process crashes. In WDAC, 1996.

[99] Henrique Moniz, NunoFerreira Neves, Miguel Correia, and Paulo Veríssimo. Randomiza-

tion can be a healer: Consensus with dynamic omission failures. In LNCS, volume 5805.

2009.

[100] H. Moniz, N.F. Neves, and M. Correia. Turquois: Byzantine consensus in wireless ad hoc

networks. In DSN, June 2010.

[101] L.A. Johnston and V. Krishnamurthy. Opportunistic file transfer over a fading channel: A

pomdp search theory formulation with optimal threshold policies. IEEE Trans. Wireless
Commun., 5, 2006.

[102] Qing Zhao, B. Krishnamachari, and Keqin Liu. On myopic sensing for multi-channel

opportunistic access: structure, optimality, and performance. IEEE Trans. Wireless
Commun., 7(12), December 2008.

175



Bibliography

[103] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied
Probability, 25, 1988.

[104] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

Communication-efficient leader election and consensus with limited link synchrony. In

PODC, 2004.

[105] Marcos Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On

implementing omega in systems with weak reliability and synchrony assumptions. LNCS,

21, 2008.

[106] Achour Mostefaoui, Michel Raynal, and Corentin Travers. Time-free and timer-based

assumptions can be combined to obtain eventual leadership. IEEE Trans. Parallel Distrib.
Syst., 17, 2006.

[107] A. Mostefaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation of failure

detectors. In DSN, 2003.

[108] Dahlia Malkhi, Florin Oprea, and Lidong Zhou. Omega meets paxos: Leader election and

stability without eventual timely links. In DISC, 2005.

[109] Ernesto Jiménez, Sergio Arévalo, and Antonio Fernández. Implementing unreliable failure

detectors with unknown membership. Inf. Process. Lett., 100, 2006.

[110] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector

for solving consensus. In PODC, 1992.

[111] Bernadette Charron-Bost, Martin Hutle, and Josef Widder. In search of lost time. Inf.
Process. Lett., 110(21), 2010.

[112] Gerhard Hasslinger and Oliver Hohlfeld. The gilbert-elliott model for packet loss in real

time services on the internet. In MMB, 2008.

[113] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne Pignolet. Source

routing in time-varying lossy networks. In NETYS. 2015.

[114] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J.
ACM, 32(4), 1985.

[115] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne Pignolet. To transmit

now or not to transmit now. In SRDS. 2015.

[116] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exploiting atomic broadcast in

replicated databases. In Euro-Par, 1998.

[117] Christian Cachin, Rachid. Guerraoui, and Luís Rodrigues. Introduction to Reliable and
Secure Distributed Programming. Springer, 2011.

176



Bibliography

[118] M.C. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal. Fault-tolerant dynamic task

graph scheduling. In SC, Nov 2014.

[119] V. Berten, J. Goossens, and E. Jeannot. A probabilistic approach for fault tolerant multi-

processor real-time scheduling. In IPDPS, 2006.

[120] Yulu Jia, George Bosilca, Piotr Luszczek, and Jack J. Dongarra. Parallel reduction to

hessenberg form with algorithm-based fault tolerance. In SC, 2013.

[121] Ricardo Padilha, Enrique Fynn, Robert Soulé, and Fernando Pedone. Callinicos: Robust

transactional storage for distributed data structures. In USENIX ATC, 2016.

[122] Fernando Pedone and Nicolas Schiper. Byzantine fault-tolerant deferred update replication.

J. Braz. Comp. Soc., 18(1), 2012.

[123] Sheng Di, Cho-Li Wang, and Franck Cappello. Adaptive algorithm for minimizing cloud

task length with prediction errors. IEEE Trans. Cloud Comput, 2, 2014.

[124] Guillaume Aupy, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. Checkpointing

algorithms and fault prediction. J. Parallel Distrib. Comput., 74, 2014.

[125] Anne Benoit, Aurélien Cavelan, Yves Robert, and Hongyang Sun. Assessing general-

purpose algorithms to cope with fail-stop and silent errors. In LNCS. 2015.

[126] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi,

Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A Chien,

Paul Coteus, Nathan A Debardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez,

Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven

Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon Stearley, and

Eric Van Hensbergen. Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl., 28(2), 2014.

[127] W. Dweik, M. Abdel-Majeed, and M. Annavaram. Warped-shield: Tolerating hard faults

in gpgpus. In DSN, 2014.

[128] Joffroy Beauquier, Sylvie DelaËt, Shlomi Dolev, and Sébastien Tixeuil. Transient fault

detectors. In Distributed Computing, volume 1499 of LNCS. 1998.

[129] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector

for solving consensus. J. ACM, 43, 1996.

[130] Mikel Larrea, Alberto Lafuente, Iratxe Soraluze, Roberto Cortiñas, and Joachim Wieland.

On the implementation of communication-optimal failure detectors. In LNCS, volume

4746. 2007.

[131] Alberto Lafuente, Mikel Larrea, Iratxe Soraluze, and Roberto Cortias. Communication-

optimal eventually perfect failure detection in partially synchronous systems. J. Comput.
System Sci., 81, 2015.

177



Bibliography

[132] Mikel Larrea, Sergio Arevalo, and Antonio Fernndez. Efficient algorithms to implement

unreliable failure detectors in partially synchronous systems. LNCS, vol.1693, 1999.

[133] Mikel Larrea, Antonio Fernandez Anta, and Sergio Arévalo. Implementing the weakest

failure detector for solving the consensus problem. IJPEDS, 28, 2013.

[134] M. Larrea, A. Fernandez, and S. Arevalo. Optimal implementation of the weakest failure

detector for solving consensus. In SRDS, 2000.

[135] Martin Biely, Martin Hutle, LuciaDraque Penso, and Josef Widder. Relating stabilizing

timing assumptions to stabilizing failure detectors regarding solvability and efficiency. In

SSS, volume 4838. 2007.

[136] Alejandro Conrejo, Nancy Lynch, and Srikanth Sastry. Asynchronous failure detectors. In

PODC, 2012.

[137] N. Santoro and P. Widmayer. Time is not a healer. In STACS, 1989.

[138] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for

consensus under link failures. SIAM J. Comput., 38(5), 2009.

[139] Iratxe Soraluze, Roberto Cortiñas, Alberto Lafuente, Mikel Larrea, and Felix Freiling.

Communication-efficient failure detection and consensus in omission environments. Inf.
Process. Lett., (6), 2011.

[140] James Aspnes, Hagit Attiya, and Keren Censor. Combining shared-coin algorithms. J.
Parallel Distrib. Comput., 70(3), 2010.

[141] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia. Communication-efficient

randomized consensus. In LNCS, volume 8784. 2014.

[142] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David Peleg. Randomized

distributed decision. LNCS, 27, 2014.

[143] Automation services reduce downtime for manufacturers, 2009.

[144] Feng-Li Lian, J. Moyne, and D. Tilbury. Network design consideration for distributed

control systems. IEEE Trans. Control Syst. Technol., 10, 2002.

[145] E. Anceaume, A. Fernández, A. Mostefaoui, G. Neiger, and M. Raynal. A necessary and

sufficient condition for transforming limited accuracy failure detectors. J. Comput. Syst.
Sci., 68, 2004.

[146] Pascal Felber, Xavier Défago, Rachid Guerraoui, and Philipp Oser. Failure detectors as

first class objects. In DOA, 1999.

[147] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves, and Paulo

Verissimo. Highly available intrusion-tolerant services with proactive-reactive recovery.

TPDS, 21, 2010.

178



Bibliography

[148] Giuseppe Lipari, Paolo Gai, Michael Trimarchi, Giacomo Guidi, and Paolo Ancilotti. A

hierarchical framework for component-based real-time systems. In LNCS, volume 3054.

2004.

[149] Giuseppe Lipari, Enrico Bini, and Gerhard Folher. A framework for composing real-time

schedulers. ENTCS, 82, 2003.

[150] Jean Arlat, Zbigniew Kalbarczyk, and Takashi Nanya. Nanocomputing: Small devices,

large dependability challenges. IEEE Security Privacy, 10, 2012.

[151] Hyong Sop Shim and Atul Prakash. Tolerating client and communication failures in

distributed groupware systems. In SRDS, 1998.

[152] Nicola Nostro, Ilaria Matteucci, Andrea Ceccarelli, Felicita Di Giandomenico, Fabio

Martinelli, and Andrea Bondavalli. On security countermeasures ranking through threat

analysis. In SAFECOMP, 2014.

[153] Patricia López Martínez, Laura Barros, and José M. Drake. Design of component-based

real-time applications. J. Syst. Softw., 86, 2013.

[154] T. Abdelzaher, A. Shaikh, F. Jahanian, and Kang Shin. Rtcast: lightweight multicast for

real-time process groups. In RTTAS, 1996.

[155] R. Barbosa, A. Ferreira, and J. Karlsson. Implementation of a flexible membership protocol

on a real-time ethernet prototype. In PRDC, 2007.

[156] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The totem

single-ring ordering and membership protocol. ACM Trans. Comput. Syst., 13, 1995.

[157] L.E. Moser and P.M. Melliar-Smith. Probabilistic bounds on message delivery for the

totem single-ring protocol. In RTSS, 1994.

[158] M. Clegg and K. Marzullo. A low-cost processor group membership protocol for a hard

real-time distributed system. In RTSS, 1997.

[159] C. Almeida. Handling qos in a dynamic real-time environment. In WORDS, 2003.

[160] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifica-

tions: A comprehensive study. ACM Comput. Surv., 33, 2001.

[161] R. Friedman and R. van Renesse. Strong and weak virtual synchrony in horus. In SRDS,

1996.

[162] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In USENIXATC, 2010.

[163] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera, and Michael Walfish. Taming

uncertainty in distributed systems with help from the network. In EuroSys, 2015.

179



Bibliography

[164] José Rufino, Paulo Veríssimo, and Guilherme Arroz. Node failure detection and member-

ship in canely. In DSN, 2003.

[165] Iratxe Soraluze, Roberto Cortiñas, Alberto Lafuente, Mikel Larrea, and Felix Freiling.

Communication-efficient failure detection and consensus in omission environments. Inf.
Process. Lett., 111, 2011.

[166] Christof Fetzer. Perfect failure detection in timed asynchronous systems. IEEE Trans.
Comput., 52(2), 2003.

[167] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne Pignolet. Never say

never - probabilistic and temporal failure detectors. In IPDPS, 2016.

[168] Ieee standard profile for use of ieee 1588 precision time protocol in power system applica-

tions. IEEE Std C37.238-2011, July 2011.

[169] M. Felser. Real-time ethernet - industry prospective. Proceedings of the IEEE, 93, 2005.

[170] Roy Friedman, Achour Mostéfaoui, and Michel Raynal. A weakest failure detector-based

asynchronous consensus protocol for f<n. Inf. Process. Lett., 90, 2004.

[171] G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi. Stateful detection in high throughput

distributed systems. In SRDS, 2007.

[172] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C. Schmidt. Adaptive

failover for real-time middleware with passive replication. In RTAS, 2009.

[173] M. Serafini, P. Bokor, N. Suri, J. Vinter, A. Ademaj, W. Brandstatter, F. Tagliabo, and

J. Koch. Application-level diagnostic and membership protocols for generic time-triggered

systems. TDSC, 8, 2011.

[174] S. Varadarajan and T. Chiueh. Automatic fault detection and recovery in real time switched

ethernet networks. In INFOCOM, volume 1, 1999.

[175] Bin Rong, I. Khalil, and Z. Tari. An adaptive membership algorithm for application layer

multicast. In ICNS, 2006.

[176] J. K. Muppala, S. P. Woolet, and K. S. Trivedi. Real-time systems performance in the

presence of failures. Computer, 24, 1991.

[177] D. M. Moraes and E. Duarte. A failure detection service for internet-based multi-as

distributed systems. In ICPADS, 2011.

[178] Fabíola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon. A failure detector for

wireless networks with unknown membership. In Euro-Par, 2011.

[179] Antonio Fernandez Anta, Sergio Rajsbaum, and Corentin Travers. Brief announcement:

Weakest failure detectors via an egg-laying simulation. In PODC, 2009.

180



Bibliography

[180] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, 2004.

[181] M. Vukolic. Quorum Systems:With Applications to Storage and Consensus. Morgan and

Claypool, 2012.

[182] Tao Qian, F. Mueller, and Yufeng Xin. A real-time distributed hash table. In RTCSA, 2014.

[183] Yuan Wei, S. H. Son, J. A. Stankovic, and K. D. Kang. Qos management in replicated

real-time databases. In RTSS, 2003.

[184] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne Pignolet. To transmit

now or not to transmit now. In SRDS, 2015.

[185] Rachid Guerraoui, David Kozhaya, Manuel Oriol, and Yvonne-Anne Pignolet. Who’s on

board? probabilistic membership for real-time distributed control systems. In SRDS, 2016.

[186] A. Timbus, A. Oudalov, and C. N. M. Ho. Islanding detection in smart grids. In ECCE,

2010.

[187] Fred B. Schneider, David Gries, and Richard D. Schlichting. Fault-tolerant broadcasts.

Sci. Comput. Program., 4, 1984.

[188] B. Galloway and G. P. Hancke. Introduction to industrial control networks. IEEE Commu-
nications Surveys Tutorials, 15(2), 2013.

[189] M. Dev Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A generic,

scalable and globally arbitrated memory tree for shared dram access in real-time systems.

In DATE, 2015.

[190] A. BanaiyanMofrad, N. Dutt, and G. Girão. Modeling and analysis of fault-tolerant

distributed memories for networks-on-chip. In DATE, 2013.

[191] Simon Schliecker and Rolf Ernst. Real-time performance analysis of multiprocessor

systems with shared memory. ACM Trans. Embed. Comput. Syst., 10, 2011.

[192] B. B. Brandenburg and J. H. Anderson. Reader-writer synchronization for shared-memory

multiprocessor real-time systems. In ECRTS, 2009.

[193] Ming Xiong, K. Ramamritham, J. Haritsa, and J. A. Stankovic. Mirror: a state-conscious

concurrency control protocol for replicated real-time databases. In RTAS, 1999.

[194] J. Skodzik, P. Danielis, V. Altmann, and D. Timmermann. Hartkad: A hard real-time

kademlia approach. In CCNC, 2014.

181





 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

183



 

 

 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

184



 

 

 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

185


