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Abstract

We consider the initial value problem for the inviscid Primitive and Boussinesq
equations in three spatial dimensions. We recast both systems as an abstract Euler-
type system and apply the methods of convex integration of De Lellis and Székelyhidi
to show the existence of infinitely many global weak solutions of the studied equations
for general initial data. We also introduce an appropriate notion of dissipative solutions
and show the existence of suitable initial data which generate infinitely many dissipative
solutions.

1 Introduction

The Boussinesq equations are used to model the behaviour of oceans. Recall that the Boussi-
nesq approximation consists in neglecting changes of density except in the buoyancy terms
and results in a system coupling the incompressible Navier-Stokes equations (for an unknown
velocity field u = u(t,x) = (u, v, w) and pressure p = p(t,x)) with the convection-diffusion
equation (for an unknown temperature θ = θ(t,x)). Physically relevant references can be
found in [20]. We will also consider the effect of the Coriolis force in the form Ω × u for a
vector function Ω = (Ωx,Ωy,Ωz) and neglect the effect of viscosity. The inviscid Boussinesq
equations then read as

∂tu+ u · ∇xu+ Ωyw − Ωzv + ∂xp = 0, (1a)

∂tv + u · ∇xv − Ωxw + Ωzu+ ∂yp = 0, (1b)

∂tw + u · ∇xw + Ωxv − Ωyu+ ∂zp = −θ, (1c)

divx u = 0, (1d)
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∂tθ + u · ∇xθ − λ1(∂
2
xx + ∂2

yy)θ − λ2∂
2
zzθ = 0 (1e)

for unknown functions u, v, w, p and θ : [0, T ) × U → R. We consider U ⊆ R3 an open
bounded set. The parameters T , λ1, and λ2 are given positive real constants without addi-
tional restrictions. We will also denote Q = (0, T )× U .

When modeling the large scale behaviour of oceans or the atmosphere, one spatial scale
(vertical) is essentially smaller than the other (horizontal) ones. The primitive equations,
which are also considered, can be obtained as a formal singular limit of the Boussinesq
equations in the way that the convective derivative of the vertical velocity coordinate is
neglected. The momentum equation for the vertical velocity component is then replaced
by the hydrostatic approximation. Under the already given notation, the inviscid primitive
equations consist of the following system of partial differential equations:

∂tu+ u · ∇xu− Ωzv + Ωyw + ∂xp = 0, (2a)

∂tv + u · ∇xv + Ωzu− Ωxw + ∂yp = 0, (2b)

∂zp = −θ, (2c)

divu = 0, (2d)

∂tθ + u · ∇xθ − λ1(∂
2
xx + ∂2

yy)θ − λ2∂
2
zzθ = 0. (2e)

To complete both systems, we assume the “no-flow” boundary condition for (u, v, w) and
homogeneous Dirichlet condition for θ:

u(t,x) · η(t,x) = 0 on (0, T )× ∂U, (3a)

θ(t,x) = 0 on (0, T )× ∂U, (3b)

where η denotes the exterior normal to the boundary ∂U . Both systems describe the time
evolution of u, v and θ and therefore it makes sense to prescribe initial conditions for these
quantities. We assume that

u(0, ·) = u0, v(0, ·) = v0 and θ(0, ·) = θ0 in U. (4)

For the Boussinesq equations, we also prescribe the initial vertical velocity

w(0, ·) = w0 in U. (5)

Remark. The main results of the article hold also for other boundary conditions for θ for
which solutions of (1e) or (2e) with u ∈ L∞(Q;R3) belong to C(Q).

Let us recall known results about the mentioned systems. The system (1) shares many
similarities with the Euler system (i. e. when θ = 0). In two dimensions, the global well–
posedness for regular initial data was established in [6] (see also [9] for the recent develop-
ment).

To the best of our knowledge, the question of the existence of global solutions of (1) in
3D remains open. We give a positive answer to this question in the case of weak solutions.
A similar system, namely (1) in dimension 2 with λ1 = λ2 = 0 and without the temperature
in (1c), was treated in [3] using a slightly different approach.
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Considering three spatial dimensions, there are a few mathematical results connected to
the viscid (Navier-Stokes-like) analogue of system (2). The local in time existence of regular
solutions was presented in [20], where a proof of the global in time existence of weak solutions
can also be found. The existence of global regular solutions under the assumption that initial
data are slowly varying in the z–variable was proved in [18]. Cao and Titi demonstrated in
[5] that the solutions emanating from regular initial data stay regular for all times t > 0.
The regularity was also shown in the case of homogeneous Dirichlet boundary conditions
in [19]. Very recently, global strong well-posedness in Lp was given in [17]. These results
should be put into comparison with the similar Navier-Stokes system for which the question
on the global regularity is still open. Very recently, it was shown in [4] that if one drops
the viscous term and considers the system (2) with suitable boundary conditions then a
finite time blow-up occurs for some specific regular initial data. Local existence of regular
solutions for inviscid primitive equations in 2D was given in [2].

A question remaining open is whether there exist global weak solutions for any (suitably
regular) initial data for (2) with (3). At first glance, there is almost no hope in any kind
of positive answer. The inviscid primitive equations differ notably from the incompressible
Euler system. In comparison to the Euler system, primitive equations are degenerate with
respect to w. It is known that the system is not hyperbolic and that the boundary value
problem is ill-posed for pointwise boundary conditions, see [21] and also [22]. On the other
hand, we recall that De Lellis and Székelyhidi (see e. g. [10], [11]) extended the possibility to
use techniques of convex integration on the Euler system. They constructed infinitely many
“oscillatory" weak solutions satisfying even different admissibility criteria, yet exceptionally
non-unique. The aim of this paper is to demonstrate that the inviscid primitive equations
also admit such oscillatory solutions. We will employ the recent refinements of the De Lellis
and Székelyhidi approach, carried out in [13] and in [8] for the Euler-Fourier system or in
[14] for Savage-Hutter model.

We give the reader the outline of the rest of the article: in Section 2 we define the notion
of weak solution and formulate the main results. In Section 3 we give a reformulation of
the given systems into an abstract Euler-type problem. In Sections 4 and 5 we present the
proof of existence of infinitely weak solutions with general initial conditions for the abstract
problem combining approaches from [10], [11], [7], [8] and [15]. The result is extended in
Section 6, where the existence of some suitable initial data allowing for infinitely many
dissipative weak solutions is proven. For the reader’s convenience, Section 7 contains some
auxiliary results which are employed in the article.

2 The main results

We will denote by C([0, T ];Xw) the set of continuous functions from [0, T ] with values in
a Banach space X equipped with the weak topology. For B ⊆ Rd open we denote D(B)
the topological vector space of smooth functions with compact support in B and D′(B) its
topological dual.

3



2.1 The Boussinesq equations

We start with introducing the definition of weak solutions to the problem (1) supplemented
by (3) and (4), (5).

Definition 1. We call the quintet of functions (u, v, w, p, θ) a weak solution of the inviscid
Boussinesq equations with (3), (4) if

• u, v, w ∈ C([0, T ];L2
w(U)), p ∈ L1(Q) and equations

∫ T

0

∫

U

u∂tφ1 dx dt +

∫ T

0

∫

U

uu · ∇xφ1 dx dt +

∫

U

u0(·)φ1(0, ·) dx (6)

+

∫ T

0

∫

U

(−Ωyw + Ωzv)φ1 dx dt +

∫ T

0

∫

U

p∂xφ1 dx dt = 0,

∫ T

0

∫

U

v∂tφ2 dx dt +

∫ T

0

∫

U

vu · ∇xφ2 dx dt+

∫

U

v0(·)φ2(0, ·) dx (7)

+

∫ T

0

∫

U

(Ωxw − Ωzu)φ2 dx dt+

∫ T

0

∫

U

p∂yφ2 dx dt = 0,

∫ T

0

∫

U

w∂tφ3 dx dt +

∫ T

0

∫

U

wu · ∇xφ3 dx dt +

∫

U

w0(·)φ3(0, ·) dx (8)

+

∫ T

0

∫

U

(−Ωxv + Ωyu)φ3 dx dt +

∫ T

0

∫

U

p∂zφ3 dx dt =

∫ T

0

∫

U

θφ3 dx dt

are satisfied for any φ1, φ2, φ3 ∈ D([0, T )× U),

• uχQ solves (1d) in D′((0, T )× R
3), i. e.

∫ T

0

∫

U

u · ∇xφ dx dt = 0 for every φ ∈ D((0, T )× R3), (9)

• θ ∈ W 1,p ((0, T );Lp(U)) ∩ Lp
(

(0, T );W 2,p(U) ∩W 1,p
0 (U)

)

for a p ∈ (1,∞) and (1e)
holds almost everywhere in Q and θ(0, ·) = θ0(·) in the sense of time traces.

Theorem 2.1. Let T > 0, U be a bounded open set with ∂U ∈ C2, u0 ∈ L∞(U ;R3)∩C(U ;R3)
with divx (u0χU) = 0 in the sense of distributions, θ0 ∈ L∞(Q) ∩ C2(Q) and Ω = Ω(x) ∈
L∞(U ;R3). Then there exist infinitely many weak solutions to the Boussinesq equations in
the sense of Definition 1.

For the Boussinesq equations, the total energy is defined as the sum of the kinetic and
potential energy:

EBous(t) =

∫

U

1

2
|u(t,x)|2 + zθ(t,x) dx,

see also [23]. Referring to [12], we recall that the Boussinesq equations violate the principle of
conservation of total energy. The quantity EBous would be conserved if the heat dissipation
were neglected.
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Definition 2. We say that a weak solution of the Boussinesq equations satisfies the strong
energy inequality if EBous(t) is non-increasing on [0, T ). We also call such solutions dissipa-
tive.

Let us mention that the weak solutions given by Theorem 2.1 are violating the strong
energy inequality, particularly

lim inf
t→0+

EBous(t) > EBous(0).

Theorem 2.2. Let Ω ∈ L∞(U ;R3)) and θ0 ∈ L∞(U) ∩ C2(U). Then there exists u0 ∈
L∞(U ;R3) for which we can find infinitely many weak dissipative solutions of the Boussinesq
equations emanating from u0.

2.2 The primitive equations

Analogously, we present the definition of the weak solutions to (2):

Definition 3. We call the quintet of functions (u, v, w, p, θ) a weak solution of the inviscid
primitive equations with (3), (4) if

• u = (u, v, w) ∈ L2(Q;R3), u, v ∈ C([0, T ];L2
w(U)), p ∈ L1(Q), ∂zp ∈ L1(Q) and

equations (6) and (7) are satisfied for any φ1, φ2 ∈ D([0, T )× U),

• uχQ solves (9),

• θ ∈ W 1,p ((0, T );Lp(U)) ∩ Lp
(

(0, T );W 2,p(U) ∩W 1,p
0 (U)

)

for a p ∈ (1,∞) and (2e)
holds almost everywhere in Q and θ(0, ·) = θ0(·) in the sense of time traces.

• equation (2c) holds for the weak derivative of p almost everywhere in Q.

As we will see, the problem of finding weak solutions of the primitive equations is highly
underdetermined. Let us fix a function p and supplement the system by an equation de-
scribing the evolution of w:

∂tw + u · ∇xw + Ωxv − Ωyu+ ∂zp = 0. (10)

The equations (2a), (2b) and (10) can be recast in the usual vector form

∂tu+ divx(u⊗ u) + Ω× u+∇xp = 0,

where u = (u, v, w). We use the notion extended primitive equations for the system (2)
coupled with (10) together with an additional initial condition for w. For the sake of com-
pleteness, we present the definition of the corresponding weak solution.

Definition 4. We call (u, p, θ) a weak solution of the extended primitive equations with (3),
(4), (5) if

• (u, p, θ) is a weak solution of the inviscid primitive equations with (3), (4)
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• w ∈ C([0, T ];L2
w(U)) and

∫ T

0

∫

U

w∂tφ3 dx dt+

∫ T

0

∫

U

wu · ∇xφ3 dx dt +

∫

U

w0(·)φ3(0, ·) dx (11)

+

∫ T

0

∫

U

(−Ωxv + Ωyu)φ3 dx dt +

∫ T

0

∫

U

p∂zφ3 dx dt = 0

is satisfied for any φ3 ∈ D([0, T )× U).

Remark. Because of the well-posedness result, it seems to be unreasonable to work with the
extended primitive equations. However, all the results following the approach of De Lellis
and Székelyhidi (see e. g. [10], [11], [13] or [8]) are foreshadowing that weak formulations
of inviscid problems in fluid dynamics are surprisingly highly underdetermined. The main
results of this paper, namely Theorem 2.3, 2.5 and Corollary 2.4, are in agreement with this
observation.

Theorem 2.3. Let T > 0, U be a bounded open set with ∂U ∈ C2, u0 ∈ L∞(U ;R3)∩C(U ;R3)
with divx (u0χU) = 0 in the sense of distributions, θ0 ∈ L∞(Q)∩ C2(Q) and Ω ∈ L∞(U ;R3).
Then there exist infinitely many weak solutions to the extended primitive equations with (3),
(4) and (5).

Corollary 2.4. Let θ0 ∈ L∞(Q) ∩ C2(Q), Ω = Ω(x) ∈ L∞(U ;R3) and let u0, v0 ∈ L∞(U) ∩
C(U) be such that exists w0 ∈ L∞(U) ∩ C(U) satisfying

divx((u0, v0, w0)χU) = 0 (12)

in the sense of distributions on R3. Then there exist infinitely many weak solutions to the
primitive equations with (3) and (4).

Remark. The technical assumption on u0 and v0 is needed only because we are considering
boundary conditions (3a). If we took U = T3 then the additional condition leading to (12)
would be ∂xu0 + ∂yv0 ∈ L∞(U) ∩ C(U).

To the best of our knowledge, there are no a priori estimates on (u, v, w) in the case
of inviscid primitive equations. Still, it is possible to find initial data for which there exist
infinitely many weak solutions of the primitive equations satisfying the conservation of the
kinetic energy or which are dissipating the mechanical energy. Let us define

EPrim(t) =

∫

U

1

2

(

|u(t,x)|2 + |v(t,x)|2 + |w(t,x)|2
)

dx.

Definition 5. We say that a weak solution of the extended primitive equations or primitive
equations satisfies the strong energy inequality if EPrim(t) is non-increasing on [0, T ). We
also call such solutions dissipative.

Similarly to the previous section the weak solutions given by Theorem 2.3 are violating
the strong energy inequality, particularly

lim inf
t→0+

EPrim(t) > EPrim(0).
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Theorem 2.5. There exists u0 ∈ L∞(U ;R3) for which we can find infinitely many weak
dissipative solutions of the extended primitive equations emanating from u0.

Remark. To obtain the largest possible space for initial temperatures in which the given
method holds, we can apply the theory of maximal regularity for parabolic equations (see
e. g. [1]). Particularly, θ0 can be taken arbitrarily from the interpolation space [Lp,W 2,p]α for
a suitable p ∈ (1,∞) and α ∈ (0, 1).

3 Abstract Euler-type system

To use the techniques from [10], [11], we will follow [14], [15] and reformulate the Boussinesq
and the extended primitive equations as an Euler-type equation. Let us denote by u⊙ u =
u⊗u− 1

3
|u|2I the traceless part of the symmetric matrix u⊗u. We will introduce operators

H : L∞(Q;R3) → L1(Q;R3×3
0,sym), Π: L∞(Q;R3) → L1(Q) and consider the abstract Euler-

type system

∂tu+ divx (u⊙ u+H(u)) +∇x

(

Π[u] +
1

3
|u|2

)

= 0 in Q, (13a)

divx(u) = 0 in Q, (13b)

u · η = 0 on (0, T )× ∂U, (13c)

u(0) = u0 in U, (13d)

For the sake of completeness, we add a definition of weak solutions of (13):

Definition 6. We say that u : Q → R
3 is a weak solution of the abstract Euler system (13)

if

• u ∈ C([0, T ];L2
w(U)),

• u satisfies (13a) in D′(Q),

• uχU satisfies (13b) in D′((0, T )× R3),

• u(0) = u0.

Theorem 3.1. Let T > 0, u0 ∈ L∞(U ;R3) ∩ C(U ;R3) with divx (u0χU) = 0 in the sense of
distributions. Assume that the H and Π have the following properties:

• H is continuous from C([0, T ];Lq
w(U)) to C(Q;R3×3

0,sym) and mapping bounded sets to
bounded sets (with respect to the mentioned topologies).

• Π is continuous from C([0, T ];Lq
w(U)) to C(Q) and there exists Π ∈ R such that

Π[u] < Π for every u ∈ L∞(Q;R3). (14)

• For u, w ∈ L∞(Q;R3) with suppw ⊆ (τ, T )× U

Π[u+w] = Π[u], H[u+w] = H[u], almost everywhere in (0, τ)× U. (15)
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Then there exist infinitely many weak solutions to (13) which moreover satisfy

3

2
Π[u](t,x) +

1

2
|u(t,x)|2 =

3

2
Z(t) for every t ∈ (0, T ), almost everywhere in U, (16)

for any function Z(t) continuous on [0, T ] satisfying supt∈[0,T ] Z(t) > Π.

In the first part of this Section, we will show that Theorem 2.1 and 2.3 follow directly
from Theorem 3.1 after suitable choices of H and Π. In the second part, we will present the
notion of subsolution for (13) and important properties of the set of subsolutions.

3.1 Reformulation of the Boussinesq equations

Assume that θ0 and Ω comply with the assumptions of Theorem 2.1. Using the classical
theory of parabolic equations (see e. g. Lemma 7.3) we can define an operator Θ = Θ[u] from
L∞(Q;R3) to C([0, T ]× U) such that θ = Θ[u] solves (1e) in the sense of Definition 1. The
operator u 7→ Θ[u] is continuous from C([0, T ];Lq

w(U)) to C([0, T ]×U) (for q large enough).
Using Corollary 7.2, we obtain the existence of a linear operator HBous = HBous[u] from

L∞(Q;R3) to C(Q;R3×3
0,sym) such that

divx(HBous[u]) = Ω× u+





0
0

Θ[u]



−∇

(

2

3
zΘ[u]

)

.

Define ΠBous[u] =
2
3
zΘ[u]. The operator ΠBous is continuous from C([0, T ];Lq

w(U)) to C(Q)

and HBous is continuous from C([0, T ];Lq
w(U ;R3)) to C(Q) for any q > 3. Both operators are

mapping bounded sets from L∞(Q) on bounded sets in C(Q). Using the maximum principle
for (2e), see Lemma 7.3, we obtain

|ΠBous[u](t,x)| ≤
2

3
‖z · θ0‖L∞(U) < ∞ for every (t,x) ∈ Q.

The condition (15) holds from the defition of the operators. Indeed, Θ: L∞(Q;R3) is a
unique solution of an evolutionary equation and v = 0 is the only solution of (28) with
g = 0 with zero boundary conditions. If u is a weak solution of (13) then the triplet
(u, p, θ) = (u, 0,Θ[u]) is a weak solution of (1), hence Theorem 2.1 is a corollary of Theorem
3.1.

3.2 Reformulation of the extended primitive equations

Assume that θ0, u0, P and Ω comply with the assumptions of Theorem 2.3. For a given u

we can extend Θ[u] continuously with respect to space on [0, T ] × R
3. As U is bounded,

one can define an extension Θ[u] such that it has compact support. Let us take arbitrary
function P ∈ C([0, T ]× R2). The function p : Q → R defined by

p(t, x, y, z) = P (t, x, y)−

∫ z

−∞

Θ[u](t, x, y, s) ds

8



satisfies (2c) and the operator ΓPrim = ΓPrim[u] : u 7→ p maps functions from L∞(Q;R3) to
C(Q). The operator ΓPrim is continuous from C([0, T ];Lq

w(U))) to C(Q). Using Corollary 7.2,
we obtain existence of a linear operator HPrim = HPrim[u] from L∞(Q;R3) to C(Q;R3×3

0,sym)
such that

divx(HPrim[u]) = Ω× u+∇ΓPrim[u].

Similarly to the Boussinesq equations, HPrim is continuous from C([0, T ];Lq
w(U ;R3)) to C(Q)

for any q > 3. Both operators are mapping bounded sets from L∞(Q) on bounded sets
in C(Q). For any weak solution u of (13) the triplet (u, p, θ) = (u,ΓPrim,Θ[u]) is a weak
solution of the extended primitive equations. Therefore also Theorem 2.3 is a corollary of
Theorem 3.1.

3.3 Subsolutions for the abstract Euler equation

Let u0 comply with the assumptions of Theorem 3.1. Observe that the abstract system is
invariant with respect to adding a continuous function Z = Z(t) to the pressure term Π[u].
Moreover, Π̃[u] = Π[u] + Z satisfies the same qualitative properties as Π in Theorem 3.1.

Let us fix Z = Z(t) continuous on [0, T ] such that

Π[v(t,x)] < Z(t) for (t,x) ∈ Q

for any v ∈ L∞(Q;R3). Such function Z exists due to the boundedness of Π. We restrict
our attention only on the so-called pressureless case, i. e. when solutions are satisfying

Π[u] +
1

3
|u|2 − Z(t) = 0 in Q.

Mimicking the strategy of De Lellis and Székelyhidi we recast the abstract system into a
linear system supplemented by implicit constitutive (possibly non-algebraic) relations:

∂tu+ divxV = 0, (17a)

divx u = 0, (17b)

V = u⊙ u+H(u), (17c)

1

2
|u|2 =

3

2
(Z(t)− Π[u]) . (17d)

To introduce a suitable notion of subsolution we put

e[u] =
3

2
(Z(t)− Π[u])

and

e(u,V) =
3

2
λmax[u⊗ u+H[u]− V],

where λmax(U) denotes the maximal eigenvalue of U ∈ R3×3
sym. One has for any v ∈ R3 and

U ∈ R
3×3
0,sym the following inequality

1

2
|v|2 ≤

3

2
λmax (v ⊗ v + U) (18)
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and the equality holds if and only if

U = v ⊗ v −
1

3
|v|2I. (19)

It is possible to estimate U by the means of |e(v,U)|, particularly

|U|ℓ∞ ≤ 2|λmin(U)| ≤
4

3
e(v,U). (20)

Analogously to [15]:

Definition 7. We call a pair (u,V) a subsolution of the abstract Euler system (or briefly a
subsolution) if

1. u ∈ C([0, T ];L2
w(U ;R3)) ∩ C(Q;R3) and V ∈ L∞ ∩ C(Q;R3×3

0,sym),

2. the pair (u,V) satisfies (17a) in the sense of distributions on Q and uχU solves (17b)
in the sense of distributions on (0, T )× R3,

3. u(0) = u0,

4. for every 0 < τ < T ess inf t∈(τ,T ), x∈U (e[u](t,x)− e(u(t,x),V(t,x))) > 0.

We denote X0 the set of all u for which exist V such that (u,V) is a subsolution of the
abstract Euler type system. Let us remark that there exists a constant E > 0 such that
e[u] ≤ E for every u ∈ X0. Observe that (14), (18) and (20) imply the boundedness of X0

in L∞(Q;R3).
We consider for each τ ∈ (0, T/2) a negative functional Iτ on X0 defined by

Iτ (u) = inf
t∈(τ,T−τ)

∫

U

1

2
|u(t,x)|2 − e[u(t,x)] dx.

Lemma 3.2. Let {(un,Vn)}n∈N be subsolutions. Then there exists a pair (u,V) such that
for a suitable subsequence (not relabeled)

un → u strongly in C([0, T ];L2
w(U ;R3)) and weakly-∗ ∈ L∞(Q;R3) (21)

Vn → V weakly-∗ in L∞(Q;R3×3
0,sym) (22)

holds. The limit (u,V) is satisfying all conditions on subsolutions except condition 4, where
only (nonstrict) inequality holds. Moreover, if

Iτ (u) = 0 for each τ > 0 (23)

then u is a weak solution of the abstract Euler system (13) satisfying (16) for suitable func-
tions Z.

Proof. As X0 consists of functions bounded in L∞(Q;R3), un resp. Vn are also uniformly
bounded in L∞(Q;R3) resp. L∞(Q;R3×3

0,sym). The standard time regularity for weak solutions
together with the Arzelà-Ascoli theorem implies the existence of u and V such that (21) holds
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for a suitable subsequence. With respect to Lemma 7.4, the pair (u,V) satisfies all conditions
on subsolutions except condition 4.

If, moreover, Iτ (u) = 0 for every τ ∈ (0, T ) then 1
2
|u|2 = e[u] = 3

2
(Z(t)−Π[u]) every-

where in (0, T ) and a.e. in U and (19) hold almost everywhere in (0, T )×Ω. Hence, thanks
to the hypothesis of the lemma

V = H[u] + u⊗ u−
1

3
|u|2I a. e. in (0, T )× Ω

and u is a weak solution of (17).

4 Existence result for the abstract Euler-type system

An important step on the way to find u ∈ X satisfying (23) is the following possibility to
appropriately perturb any subsolution so that I increases. The proof of the following lemma
is postponed until Section 5.

Lemma 4.1 (Oscillatory lemma). Let u ∈ X0 and (u,V) be a subsolution and τ > 0. Then
there exist sequences {wn}n∈N ⊆ D((τ, T ) × U ;R3) and {Wn}n∈N ⊆ D((τ, T ) × U ;R3×3

0,sym)
such that:

• (u+wn,V+Wn) are subsolutions,

• wn → 0 in C([0, T ];L2
w(U)),

• there exists c = c(E) > 0 such that

lim inf
n→∞

Iτ (u+wn) ≥ Iτ (u) + c(E) (Iτ (u))
2 . (24)

Remark. The constant c(E) does not depend on u or τ .

The existence of infinitely many weak solutions is then concluded from a Baire category
argument similar to e. g. [10].

Lemma 4.2. Let (X, d) be a complete metric space, I : X → (−∞; 0] a function of Baire
class 1. Let X0 be a nonempty dense subset of X with the following property: for any β < 0
there exists α = α(β) > 0 such that for any x ∈ X0 satisfying I(x) < β < 0 there exists
xn ∈ X0 with

• xn → x in (X, d) and

• lim infn→∞ I(xn) ≥ I(x) + α(β).

Then there exists a residual set S ⊆ X such that I(x) = 0 on S.

Proof. As (X, d) is complete, the set of points of continuity of functions of Baire class 1 on
X is residual. To complete the proof, it is sufficient to show that I = 0 on the set of points
of continuity. We prove that by contradiction. Let x be a point of continuity of I such
that I(x) < β < 0. Then from the density of X0, there exists a sequence {xn}n∈N ⊆ X0,
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converging to x and I(xn) → I(x). Without loss of generality, we may assume that I(xn) <
β. For each n ∈ N there exists sequence {xn,k}k∈N satisfying the conditions given by the
hypothesis of the lemma. By a diagonal argument we can find a subsequence {xn,k(n)}n∈N ⊆
X0 such that xn,k(n) → x and

lim inf
n→∞

I(xn,k(n)) ≤ I(xn) + α (β) .

This contradicts the assumption that x is a point of continuity of I.

Proof of Theorem 3.1. Let X0 be the set of subsolutions to the abstract Euler system. X0

consists of functions u : [0, T ] → L2(U) taking values in a bounded subset Y of L2(U). Hence
Y is metrizable with respect to the weak topology of L2. Correspondingly, we consider
the metric d naturally defined on C([0, T ]; Y ) which induces a topology equivalent to the
topology of C([0, T ]; Y ) as a subset of C([0, T ];L2

w(U)). We denote by X the completion of
X0 in C([0, T ];L2

w(U)) with respect to the metric d. Obviously, X is bounded in L∞(Q;R3).
The set X0 is non-empty as it makes no difficulty to check that u(t) = u0 with V = 0 defines
a subsolution.

For each τ ∈ (0, T/2), Iτ can be extended on a lower-semicontinuous functional on X and
therefore is of Baire class 1. Indeed, observe that e is continuous from (X, d) to C(Q), hence,
the semicontinuity follows from the case when e is a constant function (see [11, Lemma 5]).

Finally, a combination of Lemma 4.1, 4.2 and 3.2 implies the existence of residual sets

Sτ = {x ∈ X : Iτ (x) = 0}.

The set S = ∩∞

n=1S 1

n

is also residual, especially nonempty and of infinite cardinality. Due
to Lemma 3.2, all functions in S are weak solutions to the abstract Euler problem with
u(0,x) = u0 and such that (16) holds.

5 Proof of Lemma 4.1

We start with a special case of the oscillatory lemma when the operators H and e are not
depending on u. Let us define ẽ : R3 × R

3×3
0,sym × R

3×3
0,sym → R by

ẽ(u,V,G) =
3

2
λmax (u⊗ u+G− V) .

For f ∈ L∞ ∩ C(Q) and G ∈ L∞ ∩ C(Q;R3×3
0,sym) we denote X0,G,f the set of all functions u

satisfying

1. u ∈ C([0, T ];L2
w(U ;R3)) ∩ C((0, T )× U ;R3),

2. exists V ∈ L∞ ∩ C((0, T ) × U ;R3×3
0,sym) such that the pair (u,V) satisfies (17a) in the

sense of distributions on (0, T )× U and uχU solves (17b) in the sense of distributions
on (0, T )× R

3,

3. u(0) = u0,

4. for every τ > 0 inft∈(τ,T ),x∈U (f(t,x)− ẽ(u(t,x),V(t,x),G(t,x))) > 0.

12



The following auxiliary result was proven in [13] for Iτ defined using integrals with respect
to time and space. In our case, the proof remains the same and we will omit it (see also [11]
where the functional setting is the same as ours).

Lemma 5.1. Let O = (τ1, τ2) × U ⊆ Q be an open set, G and f be as above with f > 0
in Q. Assume that u ∈ X0,f,G. Then exists Λ > 0 and sequences {wn}n∈N ⊆ D(O;R3) and
{Wn}n∈N ⊆ D(O;R3×3

0,sym) such that (u+wn,U+Wn) ∈ X0,f,G,

wn → 0 in C([0, T ];L2
w(U))

and

lim inf
n→∞

inf
t∈(τ1,τ2)

∫

U

|u+wn|
2 dx ≥ inf

t∈(τ1,τ2)

∫

U

|u|2 dx + Λ

(

inf
t∈(τ1,τ2)

∫

U

f −
1

2
|u|2 dx

)2

, (25)

where Λ = Λ(sup(t,x)∈Q |f |) (namely, Λ does not depend on O or un).

Let us show that Lemma 4.1 follows from Lemma 5.1 using a perturbation argument.

Proof of Lemma 4.1. If u ∈ X0 then there exists an increasing continuous function δ : (0, T ) →
(0,+∞) such that for any s ∈ (0, T )

inf
t∈(s,T ), x∈U

(e[u]− e(u,V)) > δ(s).

Hence, u ∈ X0,e[u]−δ,H[u] and we obtain sequences {wn}n∈N and {Wn}n∈N satisfying Lemma
5.1 with f = e[u] − δ and G = H[u]. Moreover, due to the boundedness of wn and Wn, we
have

wn → 0 in C([0, T ];Lp
w(U)) for any p ∈ [1,∞),

see Lemma 7.4. Inequality (24) follows directly from (25) as e[u+wn] → e[u] uniformly in
Q. Hence, to finish the proof, it is sufficient to check that u +wn ∈ X0 at least for indices
large enough. As u+wn ∈ X0,e[u]−δ,H[u], we get

e(u+wn,V+Wn) = ẽ(u+wn,V+Wn,H[u])+ rn < e[u]− δ+ rn = e[u+wn]− δ+ rn+ tn,

where
rn = ẽ(u+wn,V+Wn,H[u+wn])− ẽ(u+wn,V+Wn,H[u])

and
tn = e[u]− e[u+wn].

The function A 7→ λmax(A) restricted on the symmetric positive semidefinite matrices is
equal to ℓ2 → ℓ2 operator norm, hence it is 1–Lipschitz. Thus, using the continuity of H and
e, we obtain

rn + tn → 0 uniformly in [τ, T ]× U.

Having in mind (15), we claim that rn + tn = 0 for (t,x) ∈ (0, τ)× U , therefore

e(u+wn,V+Wn) < e[u+wn]−
δ

2

holds on Q for sufficiently large n.

13



6 Dissipative solutions

This Section is devoted to the proofs of Theorems 2.2 and 2.5. Thanks to the reformulation
of the Boussinesq and the extended primitive equations in the framework of abstract Euler–
type systems carried out in Section 3, Theorems 2.2 and 2.5 can be reduced to prove the
following more general theorem on the abstract system.

Theorem 6.1. Under the same hypotheses on H and Π of Theorem 3.1, there exists u0 ∈
L∞(U ;R3) for which we can find infinitely many weak solutions to (13) emanating from u0

and such that the functional

Eabs(t) :=

∫

U

(

3

2
Π[u](t,x) +

1

2
|u(t,x)|2

)

dx is non–increasing on [0, T ). (26)

Remark. Thanks to Theorem 3.1, and in particular to the property (16), the conclusion that
the functional Eabs(t) is non–increasing on (0, T ) can be achieved for any u0 ∈ L∞(U ;R3) ∩
C(U ;R3) with divx (u0χU) = 0 by simply choosing the function Z(t) to be non–increasing on
(0, T ). But in order to obtain dissipative solutions for the Boussinesq and primitive equations
the property (26) is required up to time t = 0: this forces the construction of suitable initial
data u0 ∈ L∞(U ;R3).

We now show how Theorems 2.2 and 2.5 follow from Theorem 6.1.

Proofs of Theorems 2.2 and 2.5. Due to the reformulations of the Boussinesq and extended
primitive equations of Section 3, the respective choices for Π are ΠBous[u] =

2
3
zΘ[u] and

ΠPrim = 0. These choices allow to obtain from Eabs exactly EBous and EPrim respectively.
Hence the conclusion of Theorem 6.1 implies the existence of infinitely many dissipative solu-
tions to the Boussinesq and extended primitive equations starting from suitably constructed
initial data u0, as stated in Theorems 2.2 and 2.5.

6.1 Construction of initial data

The abstract Euler system (13) fits the framework introduced by Feireisl in [15]. In particular,
we can apply Theorem 6.1 therein to obtain strong continuity in L2 at time t = 0. For the
sake of completeness, we report here a version of [15, Theorem 6.1] adapted to our context.
For other variants of the following result we refer to [11] and also to [7], [8].

Lemma 6.2. Let H and Π satisfy the hypotheses of Theorem 3.1. Then there exist a set of
times R ⊂ (0, T ) dense in (0, T ) such that for any τ ∈ R there is u ∈ X with the following
properties

(i) u ∈ C(((0, τ) ∪ (τ, T ))× U) ∩ C([0, T ], L2
w), u(0, ·) = 0,

(ii) there exists V ∈ C(((0, τ) ∪ (τ, T )) × U ;R3×3
0,sym) the pair (u,V) satisfies (17a) in the

sense of distributions on Q and uχU solves (17b) in the sense of distributions on
(0, T )× R3,

(iii) (e[u](t,x)− e(u(t,x),V(t,x))) > 0 for all (t,x) ∈ ((0, τ) ∪ (τ, T ))× U ,
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(iv) 1
2
|u(τ,x)|2 = e[u](τ,x) a.e. in U

where we recall that

e[u](t,x) =
3

2
(Z(t)− Π[u](t,x))

for a continuous function Z(t) satisfying supt∈[0,T ] Z(t) > Π.

Remark. Lemma 6.2 provides subsolutions which are strongly continuous at the point τ and
allow to obtain the desired strong energy conditions.

For the proof we refer the reader to [15].

Proof of Theorem 6.1. The proof consists in finding an initial datum u0 ∈ L∞(U ;R3) and a
function Z(t) with the following properties

1

2
|u0(x)|

2 = e[u0](x) a.e. in U ; (27)

• Z(t) continuous on [0, T ] and supt∈[0,T ] Z(t) > Π,

• Z ′(t) ≤ 0 for all t ∈ [0, T )

and such that the set X0 of subsolutions u associated to this datum is non–empty. First of
all, we notice that we can easily choose Z(t) = CZ for some constant CZ > Π. Once Z has
been chosen, then we apply Lemma 6.2 which provides the existence of a time τ ∈ R and a
function u for which (i)–(iv) hold. We define the initial datum u0 to be u0(·) = u(τ, ·) in U .
To such a datum we associate, as in Section 3, the set of subsolutions X0 and we can prove
that it is non–empty by choosing as eligible element the following subsolution

ū(t,x) =

{

u(t+ τ,x) for t ∈ [0, T − τ ]

u(t− (T − τ),x) for t ∈ [T − τ, T ]

with relative matrix field V̄ analogously defined. Indeed from (27), redoing the proof of
Theorem 3.1, we would now obtain infinitely many solutions to (13) emanating from u0 and
such that

(

3

2
Π[u](t,x) +

1

2
|u(t,x)|2

)

=
3

2
CZ for all t ∈ [0, T ) and a.e. in U

(we remark that the equality now holds up to time t = 0) which implies Theorem 6.1.

7 Appendix

7.1 The Lamé system

Let us denote

D0(v) =

(

∇v +∇vT −
2

3
divx vI

)
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and let g : U → R3. The Dirichlet boundary value problem for the Lamé system is a whether
there exists a function v : U → R3 with zero trace on ∂Ω such that

divx D0(v) = g. (28)

Lemma 7.1. Let U ⊆ R3, ∂U ∈ C2, g ∈ Lp(U,R3) and p ∈ (1,∞). Then there exists
a unique v ∈ W 2,p(U,R3) with zero trace satisfying (28) almost everywhere in U and the
operator g 7→ v : Lp(U ;R3) → W 2,p(U ;R3) is continuous.

Proof. We only show that the elliptic operator in (28) satisfies the Legendre-Hadamard
conditions. As the operator has constant coefficients, the existence, uniqueness and regularity
follows directly from the standard theory of elliptic systems (see for example [16]). Let us
denote Aα,β

i,j , where α, β, i, j ∈ {1, 2, 3} the coefficients of the elliptic system (28) (for the
notation check [16]). Then

3
∑

α,β,i,j=1

Aα,β
i,j ξαξβη

iηj = ξ ⊗ η :

(

ξ ⊗ η + (ξ ⊗ η)T −
2

3
ξ · ηI

)

= |ξ|2|η|2 +
1

3
|ξ · η|2 ≥ |ξ|2|η|2.

Corollary 7.2. Let U ⊆ R3, ∂U ∈ C2 and p ∈ (1,∞). Then there exists a continuous
operator G : Lp(U,R3) → W 1,p(U ;R3×3

sym,0) such that

divx(G[g])) = g.

7.2 Parabolic regularity

The standard regularity result for parabolic equations (see e. g. [1]) gives

W 1,q((0, T );Lq(U)) ∩ Lq((0, T );W 2,q(U) ∩W 1,q
0 (U)) →֒ C([0, T ];W 1,q

0 (U)) →֒ C([0, T ]× U)
(29)

whenever q > 3. Therefore we have:

Lemma 7.3. Assume that q ∈ (3,∞). Let θ0 ∈ W 1,q
0 (U) and u ∈ L∞(Q;R3). Then exists a

unique
θ ∈ W 1,q((0, T );Lq(U)) ∩ Lq((0, T );W 2,q(U) ∩W 1,q

0 (U))

which satisfies (2e) almost everywhere and θ(0) = θ0. Moreover, the operator u 7→ Θ[u] is
continuous from L∞(Q) to C([0, T ] × U) and the comparison principle holds, i. e. for two
solutions θ1, θ2 emanating from θ10, θ

2
0 holds that

if θ10 ≤ θ20 a. e. in U then θ1(t,x) ≤ θ2(t,x) a. e. in Q.

Moreover,

‖θ‖
W 1,q((0,T );Lq(U))∩Lq((0,T );W 2,q(U)∩W 1,q

0
(U)) ≤ C(‖θ0‖W 1,q + ‖u‖L∞),

therefore given θ0 ∈ W 1,q, the solving operator

u 7→ Θ[u]

is continuous from C([0, T ];Lq
w(Ω) to C([0, T ]× U).
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7.3 Convergence in linear conservation laws

For the reader’s convenience, we also recall the following standard weak compactness result
for linear conservation laws.

Lemma 7.4. Let {un,0}n∈N converges weakly-∗ in L∞(U ;R3) to u0. Let {un}n∈N be a
bounded sequence in (L∞(Q;R3)) and {Vn}n∈N be a bounded sequence in (L∞(Q;R3×3

0,sym))
satisfying

∂tun + divx Vn = 0 in D′(Q;R3), (30)

divx(unχU) = 0 in D′(R3), (31)

un(0) = un,0. (32)

Then {un}n∈N is precompact in C([0, T ];Lp
w(U)) for every p ∈ [1,∞). Moreover, if (u,V) is

a limit of any weakly-∗ convergent subsequence of {(un,Vn)}n∈N then (u,V) satisfies (30),
(31) and u(0, ·) = u0(·).
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