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Abstract
Ongoing changes in world demographics and the prevalence of unhealthy lifestyles are impos-

ing a paradigm shift in healthcare delivery. Nowadays, chronic ailments such as cardiovascular

diseases, hypertension and diabetes, represent the most common causes of death according

to the World Health Organization. It is estimated that 63% of deaths worldwide are directly or

indirectly related to these non-communicable diseases (NCDs), and by 2030 it is predicted

that the health delivery cost will reach an amount comparable to 75% of the current GDP.

In this context, technologies based on Wireless Sensor Nodes (WSNs) effectively alleviate

this burden enabling the conception of wearable biomedical monitors composed of one or

several devices connected through a Wireless Body Sensor Network (WBSN). These resource-

constrained systems allow for long term recording of biological signals and perform embedded

advanced digital signal processing (DSP) enabling autonomous diagnosis even outside a hos-

pital environment. Energy efficiency is of paramount importance for these devices, which

must operate for prolonged periods of time with a single battery charge. Therefore, in order

to minimize power consumption, both the software executing in these platforms and the

underlying hardware require a carefully tailored design.

In this thesis I propose a set of hardware/software co-design techniques to drastically increase

the energy efficiency of biomedical monitors. To this end, I jointly explore different alterna-

tives to reduce the required computational effort at the software level while optimizing the

power consumption of the processing hardware by employing ultra-low power multi-core

architectures that exploit DSP application characteristics.

First, at the sensor level, I study the utilization of a heartbeat classifier to perform selective

advancedDSP on state-of-the-art ECG biomedical monitors. To this end, I developed a frame-

work to design and train real-time, lightweight heartbeat neuro-fuzzy classifiers, detailing

the required optimizations to efficiently execute them on a resource-constrained platform.

Then, at the network level I propose a more complex transmission-aware WBSN for activity

monitoring that provides different tradeoffs between classification accuracy and transmission

volume. In this work, I study the combination of a minimal set of WSNs with a smartphone,

and propose two classification schemes that trade accuracy for transmission volume. The

proposed method can achieve accuracies ranging from 88% to 97% and can save up to 86% of

wireless transmissions, outperforming the state-of-the-art alternatives.

Second, I propose a synchronization-based low-powermulti-core architecture for bio-signal

processing. I introduce a hardware/software synchronization mechanism that allows to

achieve high energy efficiency while parallelizing the execution of multi-channel DSP appli-
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cations. Then, I generalize the methodology to support bio-signal processing applications

with an arbitrarily high degree of parallelism. The proposed technique includes a dedicated

lightweight synchronizer and an instruction set extension (ISE) of the processing cores. Due to

the benefits of SIMD execution and software pipelining, the architecture can reduce its power

consumption by up 38% when compared to an equivalent low-power single-core alternative.

Finally, I focus on the optimization of the multi-core memory subsystem, which is the major

contributor to the overall system power consumption. First I considered a hybridmemory

subsystem featuring a small reliable partition that can operate at ultra-low voltage enabling

low-power buffering of data and obtaining up to 50% energy savings. Second, I explore a two-

level memory hierarchy based on non-volatile memories (NVM) that allows for aggressive

fine-grained power gating enabled by emerging low-power NVM technologies and monolithic

3D integration. Experimental results show that, by adopting this memory hierarchy, power

consumption can be reduced by 5.42x in the DSP stage.

Key words: Bio-signal processing; Ultra-low Power Architectures; Hardware/Software Co-

Design; Biomedical Monitors; Multi-Core Code Synchronization; Energy-Efficient Multi-Core

Platforms; Electrocardiogram Embedded Processing; Lightweight Heartbeat Classification;
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Résumé
La croissance démographique actuelle et l’augmentation des modes de vie malsains à l’échelle

mondiale, imposent des changements significatifs en ce qui concerne les prestations de soins

de santé. De nos jours, les maladies chroniques telles que les maladies cardiovasculaires, l’hy-

pertension et le diabète, représentent les causes principales de décès d’après l’Organisation

Mondiale de la Santé. Il a été estimé que 63% des décès à l’échelle mondiale sont directement

ou indirectement en lien avec ces maladies chroniques. Par ailleurs, d’ici 2030, il a été prévu

que le coût des soins atteindra environ 75% du PIB actuel. Dans ce contexte, les technologies

basées sur les Nœuds de Capteurs Sans-Fil (WSN en anglais), réduisent efficacement les coûts

engendrés lors des soins des maladies mentionnées ci-dessus, ce qui à terme pousse à la

conception d’équipements biomédicaux portables, composés d’un ou de plusieurs appareils

interconnectés au sein d’un Réseau de Capteurs Corporels Sans-Fil (WBSN en anglais). Ces sys-

tèmes disposant de ressources limitées, permettent un enregistrement long durée de signaux

biologiques et effectuent sur ces derniers un traitement numérique avancé, afin de délivrer de

façon autonome un diagnostic médical, et cela même en dehors d’un environnement hospi-

talier. L’efficacité énergétique de ces appareils est d’importance capitale, étant donné qu’ils

doivent fonctionner sur de longues périodes de temps, avec pour seule source d’énergie une

unique batterie. C’est pourquoi, afin de minimiser la consommation énergétique, les parties

logicielles et matérielles de ces appareils doivent être développées avec le plus grand soin.

Dans cette thèse, je propose un ensemble de techniques de conception mixtes logiciel/maté-

riel, permettant d’augmenter de façon significative, l’efficacité énergétique de ces appareils

de surveillance biomédicale. Afin d’atteindre cet objectif, j’explore conjointement différentes

solutions dans le but de réduire l’effort en terme de calcul au niveau du logiciel, tout en opti-

misant la consommation énergétique de la partie matérielle, en employant une architecture

multi-cœurs ultra-basse consommation, qui exploite les caractéristiques des applications

logicielles effectuant le traitement numérique des signaux biologiques.

En premier lieu, au niveau des capteurs, j’effectue une étude de l’utilisation d’un classificateur

de battement de cœurs, afin d’effectuer un traitement numérique sélectif sur des signaux

cardiaques, à l’aide d’appareils de surveillance biomédicale de dernière génération. Pour ce

faire, j’ai développé une plateforme me permettant de concevoir et de tester des classifica-

teurs de battement de cœurs, afin d’établir la liste des optimisations nécessaires, dans le but

d’exécuter efficacement ces classificateurs sur des systèmes à ressource limitée. Par la suite,

au niveau réseau, je propose un WBSN plus élaboré, utilisé pour la surveillance de l’activité

des patients et qui propose différents compromis entre précision de la classification des bat-
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tements de cœurs et le volume de données transmises. Dans ce travail, j’étudie l’association

d’un ensemble restreint de WSN connecté avec un smartphone, et je propose deux modèles

de classifications qui comparent l’évolution de la précision en fonction de la quantité de

données transmises. L’intervalle de qualité de la classification évolue entre 88% et 97%, tout

en permettant d’économiser jusqu’à 86% des transmissions sans fil, dépassant même, les

performances des solutions de dernière génération.

En second lieu, je propose une architecture multi-cœurs basse consommation, reposant

sur un mécanisme de synchronisation et conçu pour le traitement des signaux biologiques.

J’introduis lors de cette recherche, un mécanisme de synchronisation matériel/logiciel, per-

mettant d’atteindre un haut niveau d’efficacité énergétique, tout en parallélisant l’exécution

des applications de traitement des signaux biologiques. Ensuite, je généralise la méthodologie

afin de supporter différentes applications disposant d’un degré arbitraire de parallélisme

au sein de leur exécution. La technique proposée incorpore un synchroniseur à faible en-

combrement et une extension du jeu d’instructions pour les différents cœurs de traitement.

De par les bénéfices prodigués par le mode d’exécution Single-Instruction Multiple-Data

(SIMD) et l’exécution logiciel en pipeline, l’architecture atteint une réduction jusqu’à 38%

de sa consommation énergétique, en comparaison avec un système basse consommation

mono-cœur.

Pour finir, je me suis concentré sur l’optimisation de la hiérarchie mémoire du système multi-

cœur, qui consomme une part majoritaire de l’énergie totale utilisée par le système. En premier

lieu, j’ai considéré une hiérarchie mémoire hybride, intégrant une petite partition mémoire

protégée et pouvant fonctionner avec une très basse tension d’alimentation, et permettant

d’atteindre ainsi, 50% d’économie d’énergie. En second lieu, j’explore une hiérarchie mémoire

à deux niveaux, basée sur une technologie à cellules Mémoire Non-Volatile (NVM en anglais),

permettant d’effectuer un “power gating" avec une granularité très fine, soutenue par les

technologies émergentes telles que : NVM basse tension et fabrication monolithique tridimen-

sionnel de circuits. Des résultats expérimentaux montrent qu’en adoptant cette hiérarchie

mémoire, la consommation énergétique peut être divisée par 5,42 dans l’étage de traitement

numérique des signaux.

Mots clefs : Traitement de Signaux Biologiques, Architectures Ultra-basse Consommation,

Conception Mixte Matériel/Logiciel, Systèmes de Surveillance Biomédicale, Synchronisation

de Systèmes Multi-Cœurs, Plateforme Multi-Cœurs à Haut Rendement Energétique, Traite-

ment Embarqué d’Electrocardiogramme, Classification de Battements de Cœur
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1 Introduction

It is estimated that during the past decade, non-communicable diseases (NCDs) have been

the responsible of more than 300 million deaths worldwide [1]. NCDs are chronic ailments of

long duration and slow progression that are not passed among persons. Most popular NCDs

are cardiovascular diseases (like heart attacks and stroke), cancer, chronic respiratory diseases

(such as chronic obstructed pulmonary disease and asthma) and diabetes. In general, the

proliferation of these diseases is driven by the globalization of unhealthy lifestyles that include

habits such as tobacco use, alcohol intake, lack of physical activity and unbalanced diets. In

fact, the health impact of such habits can induce rise of blood pressure, increase of blood

glucose and lipids levels, and ultimately obesity. All these are known to be intermediate risk

factors that can lead to cardiovascular conditions [2].

NCDs are the major cause of global deaths among young to mid-age population. As depicted

by Figure 1.1, more than 50% deaths worldwide are directly related to NCDs and the 37% of

this fatalities are related to cardiovascular diseases (CVDs). In addition, the world population

is growing exponentially and its age composition is changing. According to the United Nations

[3], in the period from 2000 to 2015, the amount of people aged 60 years or more increased by

48% up to 901 million, and among those, the group of subjects aged 80 or over grew by 77%.

As a result, the incidence of chronic age-related diseases, such as most NCDs, is also expected

to suffer a proportional increase. Moreover, it is estimated that already today, CVDs represent

the major cause of mortality accounting for one third of worldwide deaths as of 2012 [4], [5].

Nowadays, healthcare delivery is performed on demand and in hospital environments where

diseases are treated after symptom-based diagnosis. In order to do a follow-up of these age-

related and lifestyle-induced NCDs, continuous supervision becomes mandatory. Given the

aforementioned estimations, an unsustainable amount of medical resources (staff, equipment

and facilities) will be required, leading to unaffordable healthcare costs [6]. Therefore, there is

an urgent need for a paradigm shift towards a more prevention-oriented healthcare delivery

model in which early diagnosis and personalized monitoring is prioritized in order to minimize

the associated costs.
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Figure 1.1 – Proportion of global deaths under the age of 70 years (extracted from [5])

In this context, technology breakthroughs in embedded system design and circuit integration

have enabled the emergence of Wireless Sensor Nodes (WSN), which are autonomous devices

able to sample, process and transmit different types of data. The application of this technology

in the field of healthcare and personal monitoring has facilitated the conception of wearable

biomedical monitors. These miniaturized battery-powered devices can acquire biological

signals (e.g. body temperature, perspiration) behavioral information (e.g. movements) and

environmental data (e.g. light, temperature). Several of these WSNs can be deployed thorough

the body creating a network, known as Wireless Body Sensor Network (WBSN).

A WBSN-based biomedical monitor as the one depicted in Figure 1.2 is typically composed

of one or several nodes that communicate through a wireless channel. Each of the nodes is

normally responsible for acquiring a specific physiological signal and performing the necessary

manipulations before transmission. In the example of the figure, different nodes acquire

several signals, such as electrocardiogram (ECG), peripheral oxygen saturation (SpO2) or

accelerometer data. The signals are then transmitted to a central coordinator that can make
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1.1. Embedded Bio-Signal Processing

Figure 1.2 – biomedical monitor example (extracted from [7])

further processing or directly transmit them through a gateway possibly connected to the

Internet (a PDA in Figure 1.2).

In order to minimize the subject’s discomfort while wearing a WBSN-based biomedical moni-

tor for a prolonged time, the amount and dimensions of the nodes must be minimized. This

requirement restricts the size and capacity of the batteries used by the WSNs, thus forcing

them to limit their computational effort and the volume of data they transmit [8]. Therefore,

optimizing the energy efficiency of biomedical monitors is of paramount importance.

In the remaining of this chapter first I briefly discuss about the embedded bio-signal processing

performed by biomedical monitors and the potential opportunities for energy savings. Then I

describe some of the state-of-the-art approaches to build low-power processing platforms

and their main limitations. Afterwards, I detail the contributions of this thesis. Finally, in the

last section, I provide a short outline of the document.

1.1 Embedded Bio-Signal Processing

A common approach to reduce the power consumption of WBSN-based biomedical monitors

is to perform a preliminary extraction of a set of key parameters (also known as features)

3
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from the acquired bio-signals [9], which are relevant for the target application. For instance,

cardiac monitors extract and report periodically the average heart rhythm instead of the

full electrocardiogram signal when they are employed to asses performance while doing

sports. These computations are performed by the onboard micro-controller which normally

incorporates an embedded processor that typically provides very limited computational power.

By transmitting only the computed relevant data, the utilization of the radio link is drastically

decreased and therefore the platform power consumption is reduced [10].

Bio-signal processing applications usually implement algorithms to condition acquired signals,

extract important parameters or features and interpret them to perform an early analysis to

detect a target diseases. Even though the extraction of these features greatly increases the

battery life of these systems due to the reduction of information to be sent, the performed

on-node DSP becomes one of the main contributors to the power consumption of the system

[11] requiring a non-negligible amount of computing power. Moreover, thank to the advances

in low power sensing technologies and the optimization of transmission schemes in ultra-low

power protocols, the DSP stage can even become the dominant part of the overall system

consumption.

As a consequence, when the on-node extracted features are not of clinical relevance, the

performed computations can be considered as unnecessary and thus, inefficient from a power-

consumption viewpoint. For instance, in the case of ECG monitors, the extraction of features

such as the heartbeat rate or the duration and exact amplitude of the ECG characteristic waves

may only be required during pathological episodes such as an arrhythmia or when there is

certain abnormality in the morphology of the signal. In the case of a network of nodes, the

energy cost of performing unnecessary processing is even higher since each node is sensing

and manipulating its corresponding signals and sending the results through the WBSN.

As a conclusion energy- and transmission-aware embedded software design is of vital impor-

tance to avoid situations in which power consumption is unnecessarily increased. Further-

more, the battery life of the biomedical monitors will be greatly influenced by the efficiency of

the featured processing hardware. For this reason, hardware/software co-design is of vital im-

portance. On the one hand, application- or domain-specific characteristics can be leveraged

at the hardware level to obtain high energy efficiency. On the other hand, specific processing

hardware capabilities can be exploited at the software level to optimize power consumption.

1.1.1 Energy-Saving Opportunities in Bio-signal Processing Applications

Bio-signal processing applications follow in many cases a feedforward structure in which

numerous algorithmic steps are applied sequentially over the input signals. These steps can be

moderately complex and can be applied over different streams of data (e.g. filtering of a multi-

input signal as in Figure 1.3). As proved by the authors of [10] and [12], these advanced DSP

routines can be adapted to be executed in resource-constrained embedded platforms without

sacrificing accuracy. Moreover, recent low-power multi-core architectures can benefit from
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Figure 1.3 – Bio-signal processing application example

the intrinsic parallelism in bio-signal processing applications, allowing for more aggressive

voltage scaling than a single-core alternative.

Figure 1.3 represents the application structure of a simple application running on a ECG

biomedical monitor. The multi-channel application receives three input signals. It first cleans

each of the signals by applying a filter and then analyzes all of them together to extract relevant

features. Two levels of parallelism that can be identified in Figure 1.3 are inherent to bio-signal

processing applications:

1. As previously introduced, bio-signal processing applications can be naturally parti-

tioned into a set of sequential algorithmic steps. Each of this phases can be executed

on a different processing core in a software pipeline. In the example of Figure 1.3, the

two phases are conditioning and analysis. As a result, the workload is spread among

different cores.

2. At the same time, each of the phases can work over different datasets. This scheme

can be easily parallelized by performing the manipulations of each of the channels

concurrently in a different core. Again, the workload is divided among different cores.

Multicore architectures, as shown in [13] and [14] are good candidates for this strategy, because

they can distribute the workload over different computing elements, each of them operating

at a low frequency in a near-threshold regime. In such a scenario, aggressive voltage scaling

leading to considerable energy savings can be applied.

1.2 Low Power Architectures for Bio-Signal Processing

The applicability of WBSN-based biomedical monitors has been investigated in a variety of

scenarios [15], ranging from automated analysis of ECGs [10], to respiration rate estimation

[16] to the detection of epileptic seizures [17]. Recently, dedicated architectures have been

proposed to support these workloads at ultra-low-power levels. Toward this goal, the authors

5



Chapter 1. Introduction

of [18] and [19] advocate the use of custom accelerators (such as FFT and Cordic engines) to ef-

ficiently support commonly-used routines. This approach is of limited flexibility, as it assumes

the knowledge at design time of the computationally-intensive segments of applications.

A different strategy, illustrated in [20], is instead to aggressively scale the supply voltage to

decrease both static and dynamic power. Voltage scaling has been extensively analyzed in

the literature, including its limitations and disadvantages [21] [22] [23]. One of the main

issues with low-voltage operation is performance degradation, which can limit the degree of

achievable voltage scaling for the given processing requirements, as explained later.

1.2.1 Low-power Design Limitations

While reducing the system clock constraint thanks to the parallelization of the applications

allows to relax the voltage supply, traditional SRAM memories pose a lower bound on the

operating voltage of these platforms, dictated by the minimum level at which data can be

reliably accessed [24]. Due to their construction, SRAM cells can suffer from different types of

errors if they are not supplied with a minimum voltage level.

Following a different approach, the use of non-volatile memories (NVMs) as main memories,

do not present this limitation, hence allowing the complete gating of the power supply of

computation and memory elements without losing the stored data. Today’s WBSN-based

biomedical monitor typically use FLASH memory for non-volatile storage. FLASH memory

stores the program and data memory contents when the system is switched off so that they

can be restored later. At boot-up, its contents are transferred to the on-chip SRAM and the

execution can start/resume normally.

In general, bio-signals are acquired at rather low sampling frequencies (in the order of few

hundreds of hertzs) and the workload profile of the embedded digital signal processing stage

is dictated by the availability of enough data to process (i.e. a window of samples). As a conse-

quence, the required computational effort follows a cyclic trend combining short periods of

intense work (bursts of computations) with intervals of low activity (data buffering). Although

power-gating the platform during sensing periods would represent a very interesting saving

technique, data needs to be collected and stored periodically at the pace dictated by the

sampling frequency.

Power-gating at such a fine grain is not possible with state-of-the-art FLASH memories for two

reasons. First, strict real-time deadlines for this application domain can no longer be met due

to very long write latencies (the time required to write a word into FLASH, ≈120μs for small

arrays [25], [26]); i.e., the time needed to store the system state would exceed the inter-sample

time. Second, the energy cost of shadowing the full data memory several hundreds of times

per second can exceed the potential savings obtained from the power-gating.
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1.3 Thesis contributions

The main goal of this thesis is to develop a set of hardware/software co-design techniques to

improve the energy efficiency of biomedical monitors. To do so, I explore different alterna-

tives to reduce the required computational effort of embedded software while optimizing the

underlying processing hardware by employing an enhanced low-power multi-core architec-

ture that exploits the characteristics of bio-signal processing applications. In particular, the

contributions of my work can be grouped as follows:

Optimized Embedded Digital Signal Processing

In this field, I focus on reducing the computational requirements of state-of-the-art embed-

ded processing applications by applying two different strategies. First, at the sensor node

level, I propose to selectively activate advanced and computationally intensive DSP routines

only in case of necessity (e.g. in case of detecting an abnormal or potentially problematic

situation). Second, at a sensor network level, I propose a transmission- and energy-aware

wireless body sensor network (WBSN) for the energy-efficient monitoring of physical activity.

More specifically, the detailed optimizations are:

1. Selective advanced DSP in ECG biomedical monitors: In the context of ECG biomed-

ical monitors, I investigate the utilization of a heartbeat classifier that analyzes the

signal morphology to detect abnormal situations. In those cases, the typical advanced

multi-channel analysis application is activated in order to extract the features of interest.

More precisely, the contributions of the proposed work are:

• An abnormality detector based on a lightweight neuro-fuzzy classifier (NFC) to

perform embedded real-time heartbeat classification.

• A novel dimensionality reduction method based on Random Projections (RP) to

reduce the classification complexity.

• An automated two-step training framework, which trains the NFC and concur-

rently searches for a performant RP matrix. The process is guided by a genetic

algorithm that evaluates the performance of the RP-NFC pair.

• A set of optimizations to reduce the computational complexity and memory foot-

print of the RP-based NFC. The proposed manipulations are platform-independent

and aim at adapting the code to be executed in resource-constrained platforms.

2. Transmission-awareWBSN for physical activity monitoring: The system consists of a

reduced set of kinetic sensors deployed throughout the subject’s body that cooperate

with a smartphone to periodically identify the activity that the subject is performing (e.g.

walking, sleeping, running). The detailed contributions of this work are:

• A high precision NFC-based classification scheme that leverages the higher com-

putational resources available in the smartphone.
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• An on-node classification scheme that reduces transmission volume trading ac-

curacy using a simpler decision tree, which can be implemented on the target

sensors.

• A smart feature extraction strategy for the on-node variant, which only computes

and transmits the necessary features within the WBSN instead of the full set re-

quired by the NFC option.

• An exhaustive study of the best placement and the optimal number of nodes to

obtain the most accurate classification output.

Low-powermulti-core architecture for bio-signal analysis

I propose a synchronization-based ultra-low power (ULP) parallel architecture devoted to

the execution of bio-signal processing applications. The workload division among cores

allows to relax the system clock constraints enabling the possibility to apply voltage scaling

and maximize energy savings. First, I develop a synchronization technique that enhances

low-power multi-core architectures enabling the efficient execution of massively parallel

applications. Then, a generalization of the synchronization technique allows to efficiently run

any existing bio-signal application into the proposed ULP multi-core platform. In particular,

the details of the proposed architectures and techniques are the following:

3. Synchronization technique for multi-channel parallel DSP applications: An ultra-

low power architecture able to recover synchronization after data-dependent branches

when executing multi-channel bio-signal analysis applications is presented. In particu-

lar, the contributions are:

• A state-of-the-art parallel architecture featuring a set of low-power processing

cores interfaced to multi-banked instruction and data memories, which supports

aggressive voltage scaling.

• A synchronization strategy to counteract the two major events leading to cores

de-synchronization, namely, data memory access conflicts and data-dependent

conditional execution of code.

• A description of the required hardware/software support including a dedicated

lightweight synchronizer and an instruction set extension (ISE) of the processing

cores.

• An experimental evaluation of the benefits of synchronization when executing

multi-input DSP applications.

4. Generalized synchronization technique for bio-signal processing applications: The

synchronization technique is enhanced to additionally support core-to-core notifica-

tions. This improvement allows to execute any kind of bio-signal processing application

in the ultra-low power platform regardless of its degree of parallelism. The detailed

contributions of this work are:
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• A modification of the synchronization technique to support producer-consumer

relationships among cores by implementing an efficient core-to-core notification

mechanism. This approach allows to exploit the benefits of software pipelining

by executing different algorithmic steps in parallel employing different cores in a

pipeline manner.

• The necessary hardware modifications at the synchronizer level and the extension

of the cores ISE to support the new feature.

• A detailed description of the required steps to adapt any existing bio-signal appli-

cation analysis.

Energy-efficientmemory subsystems for ULPmulti-core architectures

In this context, I proposed different alternatives to decrease the overall power consumption

of the low-power multi-core platforms by optimizing the memory subsystem, which in turn

is one of the major contributors at the system level. In particular, I study two different

approaches that reduce static power (leakage) by reducing the power consumption while

the platform is idle (i.e. not processing). First I explore a hybrid memory subsystem based

on data memory banks featuring a reliable small partition implemented as standard cell

memory (SCM). Second, I completely re-design the memory subsystem to include a non-

volatile memory (NVM) partition as new main memory unit. More precisely, I propose two

ULP multi-core architectures, each of them featuring one of the following alternatives:

5. Hybrid SCM-basedmemory subsystem: Aggressive voltage scaling below certain levels

has shown to be an unsuitable strategy for on-chip SRAM memories. I propose a hybrid

memory bank arrangement that includes a minimal reliable partition implemented with

SCM. The voltage of these banks can be safely reduced if only the reliable partition is

accessed at low-voltage regimes. Following this idea, the multi-core platform is extended

to support a sensing mode during which data is buffered in the SCM while the platform

remains clock-gated. More specifically, the contributions of this work are:

• A new memory subsystem based on hybrid memory banks featuring a small re-

liable memory partition able to operate at ultra-low voltage. This new scheme

tolerates an aggressive reduction of the supply voltage without compromising the

data integrity as long as the non-reliable big partition is not accessed at this level.

• A new power management strategy that seamlessly transits between processing

and sensing modes without requiring any modification at the application level. To

implement this mechanism, a description of the required hardware modifications

at the synchronizer level is also provided.

• A study of the optimal size of the reliable partitions that provides the best tradeoff

in terms of power consumption and system area overhead.

6. NVM-based two-levelmemoryhierarchy: In this case I propose a completely re-designed
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memory subsystem that allows for fine-grained power-gating of the platform when all

the processors are idle. To that end, the new memory subsystem employs a low-voltage

NVM and a set of volatile small instruction and data page buffers that collectively act as

a cache. This work presents a promising solution for next generation ultra-low power

architectures for biomedical monitors. The detailed contributions are:

• A fully re-design two-level memory subsystem including a non-volatile main level

based on emerging low-voltage NVM technologies such as Spin-transfer torque

RAM (STTRAM), and a cache-like volatile level implemented as a set of small page

buffers.

• A study of the ultra-low power multi-core system integration employing new fabri-

cation processes enabled by monolithic 3D integration.

• A new power management that allows for fast power-gating and recovery of the full

platform over short but recurrent idle periods happening between the sampling of

consecutive windows of samples.

• Description of the lightweight Memory Management Unit (MMU) that interfaces

the NVM unit with the volatile level. This unit cooperates with the hardware

synchronizer to properly orchestrate the cores execution.

1.4 Thesis Outline

The remainder of this thesis follows the same structure than the one detailed in the previous

section. Each chapter will provide the necessary background and a separate review of the

related works. In particular, the content is organized as follows:

Chapter 2 presents the software optimizations that I proposed in this thesis to improve the

energy efficiency of biomedical monitors. First, at the WSN level, I introduced the selective

processing approach based on the RP-based NFC, which performs on-node heartbeats classi-

fication to decide when to perform advanced signal processing. Then, at the network level, I

discuss a WBSN for physical activity monitoring, which can be configured with two classifica-

tion schemes: a highly accurate smartphone-centric classification and a transmission- and

energy-aware node-centric alternative.

Chapter 3 describes the synchronization-based ultra-low power multi-core architecture opti-

mized to execute bio-signal processing applications. In the first part of the chapter, I detail the

target multi-core system and the proposed synchronization technique to efficiently execute

multi-channel bio-signal processing applications. In the second part, I present the general-

ized technique that allows the mapping of any application with an arbitrarily high degree of

parallelism.

Chapter 4 details two approaches that I followed to reduce the overall consumption of ultra-

low power multi-core platforms by optimizing the memory subsystem. Firstly, I investigate

the utilization of hybrid memory banks provided with a small region of reliable standard cell
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memory, which is able to operate at ultra-low voltage levels without loosing data integrity.

This region is used to buffer data over prolonged periods of time during which the processing

platform remains clock-gated and the supply voltage is aggressively reduced. Secondly, I

propose a radically different memory subsystem based on a new two-level hierarchy enabled

by recent emerging technologies such as 3D monolithic integration and low-voltage on-chip

non-volatile memory (NVM). This novel memory arrangement, which incorporates an NVM

as the main storage unit, allows to perform fine-grained power-gating drastically improving

the system energy efficiency.

Chapter 5 concludes the thesis by summarizing the key contributions and providing pointers

for future research in the same direction.
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2 Optimized Embedded Digital Signal
Processing for Health Monitoring

2.1 introduction

Ongoing changes in world demographics and the prevalence of unhealthy lifestyles are im-

posing a paradigm shift in the healthcare landscape. Nowadays, chronic ailments such as,

cardiovascular diseases, hypertension and diabetes, represent the most common causes of

death [4]. These non-communicable diseases (NCD) are today involved in 63% of all deaths

worldwide, and are predicted to account for 75% of the current GDP by 2030. Continuous

monitoring, needed for the supervision of patients affected by a NCDs, strains the resources of

healthcare systems. Technologies based on Wireless Sensor Nodes (WSNs) effectively alleviate

this burden, allowing for long term and autonomous recording of biological signals, even

outside a hospital environment.

WSNs are miniaturized, wearable embedded devices able to acquire and wirelessly transmit bi-

ological bio-signals. The sensing hardware equipped in these devices enables them to sample

signals of different nature such as bio-potentials (e.g.: electromyogram, electroencephalo-

gram), body kinetics (e.g.: accelerometer or gyroscopic data) or environmental parameters

(e.g.: light, temperature, noise). Body sensor nodes allow long term monitoring of subjects,

while producing little discomfort and requiring minimal medical supervision. Several of these

devices can be used concurrently to work in a distributed manner recording signals within a

low-range body area network, known as a Wireless Body Sensor Network (WBSN).

Over the last years, WBSNs have emerged as a leading technology that is poised to drastically

change healthcare delivery and the everyday life of subjects. Thanks to a combination of

wearable low-power WSNs that communicate through a wireless channel, these networks

enable the continuous and unobtrusive monitoring of physiological signals and activities,

both for personal and medical purposes. The functionalities and the ease of use of these

systems have also received a significant boost thanks to the spread of handheld devices (such

as smartphones) [27], which represent the ideal high-performance complement to wearable

nodes. In fact, smartphones can provide advanced features such as data logging, transmission

to a remote location, and user interface, without affecting the nomadic nature of WBSNs.
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A major field of application of WSNs is the ambulatory acquisition of electrocardiograms

(ECGs), which represent the electrical activity of the heart. ECGs are the primary instruments

for monitoring the heart activity and for early detection of heart pathologies. A breakthrough

in the practice of ECGs recording and analysis has been possible thanks to the emergence

of smart WSNs [28][29] able to autonomously interpret the ECG data [30][31] by performing

on-node digital signal processing (DSP).

While signals like ECG can be recorded using a single wearable device, some other applications

require a multi-parametric approach in which several nodes are employed within a more com-

plex WBSN. In particular, in the context of personal monitoring, physical activity recognition

attracts a high interest from researchers [9, 32]. Activity monitoring finds application mainly

in the healthcare domain, such as in the supervision of patients affected by Parkinson’s disease

[33], but it is also employed in sports and home monitoring [9]. The activity of a subject can

be determined from kinetic data, such as acceleration [34] and orientation, collected by a set

of nodes located on parts of the body that convey most of the information, such as limbs and

joints.

2.1.1 Embedded Processing and Limitations

In order to minimize the subject’s discomfort while wearing a WBSN for a prolonged time, a

minimum number of nodes has to be deployed, and their size has to be miniaturized. The

latter requirement poses significant limitations on the size of the batteries used by the WSNs,

thus forcing them to limit their computational effort and the volume of data they transmit [8].

A common strategy to increase the lifetime of a WBSN [9] is the preliminary extraction of a

set of parameters from the sensed data. This operation, performed directly on the wearable

node, massively reduces the amount of transmitted data. By transmitting only this relevant

information instead of the full raw signals, energy efficiency can be considerably increased by

minimizing communication on the power-hungry wireless link as proved by [10].

Smart WSNs applications usually implement algorithms to filter acquired signals, extract

important parameters or features and interpret them to perform an early analysis to detect

a target health condition. Even though the extraction of these features greatly increases the

battery life of these systems due to reduction of information to be sent, the performed on-

node DSP becomes one of the main contributors to the power consumption of the system [11]

requiring a non-negligible amount of computing power.

In this context, the features continuously extracted on-node may not be of clinical relevance

for the full monitoring period but only in the cases of abnormal episodes. For instance,

cardiac parameters such as heart rate or the duration of the ECG characteristic waves, which

are computed onboard in state-of-the-art ECG monitors, may only be necessary during

arrhythmia episodes or when there is certain abnormality in the morphology of the signal. As

a result, the computation of these features in the absence of abnormalities is unnecessary and
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therefore inefficient from a power-consumption point of view. This wasting effect is more than

multiplicative in the case of a WBSN, where each of the sensing nodes sample and process its

corresponding signals transmitting all the computed features through the network up to the

gateway.

2.1.2 Contributions and Outline of this Chapter

In this chapter I propose two complementary strategies to improve the energy efficiency of

biomedical monitors addressing the aforementioned issues. First, at the WSN level, I propose

a new and more complex application scheme for cardiac monitors that performs advance DSP

only in the case of detecting abnormalities in the ECG signal. In order to do so, I implemented

a lightweight heartbeat classifier that can discern in real time between normal and abnormal

heartbeats triggering the costly feature extraction DSP routines only in the latter case. Second,

at the network level, I propose a transmission-aware classification scheme to perform physical

activity monitoring based on a WBSN. In particular the key contributions of this chapter are:

Selective advanced ECG processing based on lightweight heartbeat classifier:

• I propose to employ a neuro-fuzzy classifier (NFC) to analyze heartbeats in order to

identify abnormalities in their morphology. The NFC is incorporated to a state-of-the-

art multi-lead ECG processing application in order to activate the advanced DSP only in

the cases where the classifier detects an anomalous heartbeat.

• I study the utilization of Random Projections (RP) to reduce the dimensionality of the

representation of the heartbeats and propose a hybrid training framework that optimizes

the NFC searching for the optimal RP configuration at the same time. The classification

strategy is compared to other existing methods such as Principal Component Analysis.

• I describe the required optimization steps to implement and execute the RP-based NFC

in a state-of-the-art embedded platform. The adaptations are performed to reduce the

computational complexity and memory footprint of the application minimizing the loss

of accuracy.

• The experiments show that the lightweight RP-based NFC provides high accuracy (up to

98.9% of sensitivity) when identifying abnormal heartbeats while keeping a low rate of

false positives. It is also proved that the proposed selective advanced DSP processing

strategy increases the overall energy efficiency of the system.

Transmission-awareWBSN for efficient physical activity monitoring:

• I propose a Wireless Body Sensor Network (WBSN) for activity monitoring in which

several sensors cooperate with a smartphone to perform continuous subject monitoring.

• I propose two different classification schemes. In the first one, classification is per-
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formed on the smartphone after receiving features extracted in the sensors. In a more

energy-efficient version, classification is also performed in the nodes and the smart-

phone is only used to report the results.

• I performed an study of the best WBSN configuration in order to reduce the amount of

deployed nodes while maximizing the accuracy of the classification.

• Both classification schemes are evaluated in terms of accuracy obtaining high classifica-

tion quality in both cases. The results show that by using a node-based classification

scheme, data transmission through the WBSN can be reduced up to 86% while obtaining

a misclassification rate of only 12%.

The remaining of this chapter is organized as follows. Section 2.2 gives a brief introduction to

some of the existing advanced DSP methods used in the field of electrocardiogram processing.

Then, Section 2.3 presents the proposed strategy to perform selective DSP on ECG biomedical

monitors and describes the implementation of the employed lightweight heartbeat classifier.

After that, Section 2.4 details the proposed transmission-aware WBSN for physical activity

monitoring and evaluates the different tradeoffs in terms of classification quality and data

transmission. Finally, Section 2.5 concludes the chapter summarizing the main achievements.

2.2 Existing Advanced Embedded Signal ProcessingMethods

State-of-the-art ECG biomedical monitors perform on-node digital signal processing of the

cardiac signals. In particular, after being conditioned, the signals are used to delineate individ-

ual heartbeats, retrieve their characteristics and interpret them to detect pathologies. The first

two steps, (conditioning and delineation), present the most challenging real-time constraints,

because they deal with the manipulation and analysis of digital signals [35][36][37] and have

been the focus of researchers in the last few years. Apart from conditioning and delineation,

when the raw signals need to be transmitted through the radio-link, some embedded compres-

sion techniques [11] [38] have been proposed in the literature in order to reduce the amount of

data to be transmitted. Hereafter, I review the most relevant methods in the field of embedded

ECG processing focusing on those that are employed throughout this thesis.

2.2.1 ECG Conditioning

ECG signals are usually corrupted due to several sources of noise. Automatic diagnosis al-

gorithms need to remove these artifacts before interpreting the signals. There are two main

sources of signal noise, namely baseline wander and high-frequency muscular noise. The

baseline wander consists of a low-frequency component in the ECG signal (from 0.05 to 1Hz),

that can be caused by patients’ respiration, perspiration or even the misplacement of the

sensing electrodes. On the other side, muscular or electromyographic noise can add an extra

high-frequency component to the ECG signal (over 50 Hz) and is usually originated by the

contraction of body muscles during movements.
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Figure 2.1 – Acquired signal (top) and its baseline estimations using morphological filtering
(middle) and spline interpolation (bottom).

While traditional filtering techniques can be applied to clean the ECG signals, the imple-

mentation of suitable algorithms to perform this task on embedded platforms have caught

the attention of researchers in this domain. In particular, two main techniques have been

proposed and widely used for this purpose:

2.2.1.1 Spline Filtering (SF)

This method firstly introduced in [39], is only suitable to remove baseline wander from the ECG

signal. It assumes that several time intervals of an ECG stream are silent, i.e., they are devoid

of any heart activity [40]. One such segment is the interval between the P and the Q waves (PR

segment in Figure 2.2). Stemming from this observation, it is then possible, by placing knots

on the PQ segment and fitting a cubic polynomial in successive triplets of knots, to estimate

the baseline. For each interval between heartbeats [i , i +1], the knots identified for the beats

i , i + 1 and i + 2 are considered to derive the estimated baseline. Determining the knots

position requires an estimation of the QRS complex onset, which can be implemented using a

lightweight version of an embedded delineator as the ones described later in Section 2.2.2.

2.2.1.2 Morphological Filtering (MF)

This technique is based in the work of [37] where the authors employ morphological operators

to perform filtering of the ECG signal. In particular, the morphological operators dilation (⊕)

and erosion (�) are defined as:

Dilation : ( f ⊕ gs)(x) = max
t∈(Gs∩Dx )

{ f (x− t )+ gs(t )} (2.1)

Erosion : ( f � gs)(x) = min
t∈(Gs∩Dx )

{ f (x+ t )− gs(t )} (2.2)
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Figure 2.2 – ECG heartbeat showing the main characteristic waves and some of the clinically
relevant periods of interest

where f (x) is a discrete ECG signal and Dx is D translated by x. These operators are combined

to generate the opening and closing functions. Opening (◦) of a function f using a structuring

element gs is defined as:

f ◦ gs = ( f � gs)⊕ gs (2.3)

If gs is flat, these manipulations remove from f peaks of length smaller than s. Dually, closing

(•), defined as:

f • gs = ( f ⊕ gs)� gs (2.4)

removes pits of length smaller than s. By employing structuring elements of length greater

than the longest ECG wave (typically, the T wave), it is then possible to derive the appropriate

baseline, that can then be subtracted from the acquired signal. These morphological methods

can be used also to filter high-frequency muscular noise using structuring elements that

shorter than the shortest ECG wave.

2.2.2 ECG Analysis: Delineation

ECG delineation consists in accurately delimiting the ECG characteristic waves. In a typical

smart WSN scenario, filtered signals are analyzed by a delineation pass to find the fiducial

points of each heartbeat, corresponding to the onset, peak and end of its characteristic

waves: P, QRS complex and T (Figure 2.2). Abnormalities in the length of ECG waves are

important markers of different heart conditions and the output of this delineation phase

can be used in a later stage to implement autonomous detectors. Many approaches have

been proposed to automate ECG delineation. Some of them (such as methods based on low-

pass differentiation [35], neural netwoks [41] or hidden Markov models [42]) present a high

computational complexity, so that they cannot be adopted in WSNs. Two possible options

compatible with the available resources in WSNs are based on Digital Wavelet Transforms
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Figure 2.3 – DWT decomposition of an ECG heart beat. Maximum-minimun intervals exam-
ined to find the R peak are highlighted in gray.

(DWTs) [43] [44] and Multi-scale Morphological Derivatives (MMDs) [36], which in spite of

being conceived as off-line algorithms, have been optimized to execute in embedded platforms

[45] [10].

2.2.2.1 Wavelet-based Delineation (DWT)

This delineation method based on the dyadic wavelet transform (hence, DWT delineation)

considers a decomposition of acquired signals in five dyadic scales, which can be efficiently

computed using a filter bank composed of low- and high- pass FIR filters. Scales represent

derivatives of smoothed versions of the input ECG signals, as exemplified in Figure 2.3. To en-

sure time-invariance among different scales, the filter impulse response is interpolated using

the algorithme á trous method, illustrated in [46]. Because the different characteristic waves of

beats present distinct frequency contents, their fiducial points are retrieved at different scales,

the QRS complex being reflected in scales 21 to 24, while P and T waves presents their major

components in scales 24 and 25.

As scales are computed, the DWT delineator searches for maximum-moduli points at the

different scales, reflecting points of maximum slope in the acquired signals. The R peak

is identified as the zero-crossing point at scale 21 in-between tuples of maximum moduli

with different signs across scales from 21 to 24. Dynamic thresholding is performed to reject
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maximum moduli with small absolute values.

QRS onset is identified at scale 24 by a back-search for the point where its absolute value

becomes smaller than one-fourth of the peak associated with the wave. Similarly, the QRS end

is retrieved by a forward search for the point where scale 24 becomes smaller than three-fourths

of its maximum absolute value.

Focusing on search windows before and after the QRS complex, P and T peaks are identified

as the zero-crossing points at scale 23 between two maximum moduli either at scale 24 or, if

not such tuple is found, at scale 25. Even for P and T waves, dynamic thresholding is employed

to filter maximum moduli. Calculation of the onset and end of P and T waves is then similar to

the QRS case.

2.2.2.2 Multi-scale Morphological Derivative-based Delineation (MMD)

In this case a multi-scale morphological derivate of the ECG signal is employed to delineate

the ECG signal (hence MMD delineation). The morphological derivative Md
f of a discrete

signal f : D ⊂R→R at scale s is defined as:

Md
f (x) = ( f ⊕ gs)(x)+ ( f � gs)(x)−2 f (x)

s
(2.5)

where gs : Gs ⊂ R→ R is a structuring element of length s and ⊕ and � are the dilation and

erosion morphological operators defined in equations 2.1 and 2.2 respectively.

If a flat structuring element is chosen, computing the morphological derivative of f can be

performed by sliding a window of size s over the signal, and calculating the maximum and

minimum of the signal as well as its value in the central point of the window:

Md
f (x) = max{ f (t )}t∈I +min{ f (t )}t∈I −2 f (x)

s
(2.6)

where I = [x− s,x+ s].

As Figure 2.4 shows, the morphological transformation translates peaks on the input signal in

pits on the transformed one, while peaks or sudden change in slope of the transformed signal

highlights onsets or ends of waves in the input signal. A search on the MMD transform for a

negative value exceeding a dynamically-adjusted threshold retrieves the peak of the R wave;

peaks (or sudden change in slope) around it retrieve the onset and end of the QRS complex.

Before and after the found QRS complex, tuples of zero-crossing points mark the presence of

the P and T waves respectively. P and T peaks are identified by the minimum value in-between

the crossing points, while their onset and end by the maximum values before and after the

crossing points.
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Figure 2.4 – Acquired signal (top) and its MMD-transformed version (bottom).

Figure 2.5 – Three-leads acquisition and corresponding RMS-combined signal.

2.2.3 Multi-Channel Signal Fusion

WSN devices usually acquire multiple ECG channels or leads concurrently, giving the opportu-

nity to increase the delineation performance by fusing acquired data sampled from different

sources. While a traditional arithmetical mean would work for the combination of signals

with similar morphologies, a more robust approach is required when the shape of the sensed

signal depends on the electrode placement as in the case of ECG. An RMS (Root Mean Square)

combination has been proposed and successfully adapted to execute on WSNs [10]. The

combination for N channels is performed following the equation:

x(t )RMS =
√√√√ 1

N

N∑
i=1

(xi (t )2) (2.7)

The example in Figure 2.5 showcases its benefits: as this figure shows, lead I presents a small P

wave, while lead III is noisy and has a low T wave. However, their combination has a higher

quality compared to each lead in isolation. To properly RMS-combine signals, they must be

firstly centered on the iso-electric line, eliminating low-frequency baseline wandering.

Multi-channel data fusion becomes an effective technique to counteract the effect of noise
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Figure 2.6 – Relative improvement in sensitivity of two- and three-leads delineation with
respect to single-lead delineation. Black = 2 leads, White = 3 leads.

when it cannot be completely removed by filtering algorithms. Figure 2.6 reports the relative

change in delineation quality (i.e. sensitivity) with respect to single-lead when either two or

three leads are RMS-combined after filtering and then used for delineation. For conciseness,

only data referring to P onset and T end is reported, being the most challenging points. Even

if some outliers are present, in most cases fusing data from different leads resulted in an

increased delineation quality. The presented algorithms in Sections 2.2.1 and 2.2.2 have been

combined to showcase the different changes in performance thanks to the multi-lead data

fusion.

2.2.4 ECG Compression: Compressed Sensing

As previously introduced, a common strategy to reduce the data transmitted through the

radio-link in nowadays biomedical monitors consists in performing on-node digital signal

processing in order to only send the clinically relevant parameters. However, in some scenarios

in which a visual inspection of the ECG is needed, transmitting the raw signal is still strictly

required. ECG is usually sampled at a rather high sampling frequency (up to 1 KHz) and

as a consequence the amount of data to transmit while streaming the signal is too large

leading to a prohibitive energy cost. In this context, compressing the data by doing some

pre-processing helps to reduce the utilization of the wireless link and therefore improves

energy efficiency. Compressed Sensing (CS) [47] has been proposed recently to be applied in

the field of electrocardiography. CS relies on the fact that ECG signals are sparse and can be

efficiently compressed by computing:

y =φx (2.8)

where x ∈Rn is the input vector of ECG samples, φ ∈Rk×n with k < n is the so-called sensing

matrix and y ∈Rk is the resulting compressed vector. By performing the vector-matrix mul-

tiplication, φ maps the input vector x into y with a compression ratio of n/k. The amount

of data to be sent can be largely reduced by using a big compression ratio. However, the
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reconstructed (decompressed) signal may suffer quality loss [47]. In [11], the authors have

proved that ECG signals compressed by 50% can be reconstructed with a very good signal

quality, which represents a good tradeoff.

The computational complexity of CS resides in the matrix multiplication expressed in Equa-

tion 2.8. However, the main drawback of this algorithm is the high memory footprint due to

the large size of the sensing matrix. For instance, assuming a 50% compression ratio over a

window of 1024 ECG samples, the necessary random matrix would require up to 2 megabytes

of memory to be stored. Nevertheless, in [11] it has been shown that choosing a proper random

sparse sensing matrix with few non-zero components per column leads to a low-complexity

implementation, which still preserves the compressed data integrity making possible a good

signal reconstruction. Moreover, when the non-zero components are forced to be 1 and the

amount of ones per column is fixed, the sensing matrix memory footprint can be greatly

compacted.

2.3 Proposed Selective ECG Processing Based on Embedded Heart-

beats Classification

Early classification of heartbeats has potential benefits both in the clinical practice and in the

design of WSNs. On the diagnostic side, it can provide helpful information for speeding up the

visual inspections of lengthy ECG recordings by the medical staff, who can focus only on those

beats presenting pathological characteristics. From the perspective of system design, the

advantages are two-fold: first, if a detailed diagnosis is performed off-node, it can be desirable

to transmit or store only pathological beats on the WSN, thus greatly reducing either the energy

employed for wireless transmission or the data storage requirements, respectively. Second,

if the detailed analysis of heartbeats is executed on the WSN, computation effort can be

reduced by activating these advanced algorithms only when abnormal beats are detected, thus

drastically decreasing the computational requirements and therefore the power consumption.

2.3.1 Target Application

The target scenario is depicted in Figure 2.7 where a new module is responsible of detecting

abnormal morphologies in the heartbeats of the acquired ECG signal. By decoupling early and

detailed analysis, and performing the latter only on a small fraction of the acquired bio-signal,

this new scheme aims to maximize the energy efficiency of autonomous devices for personal

health monitoring. Without loss of generality, this work assumes a context where pathological

heartbeats occur less frequently than normal ones, which is the usual case in long-term ECGs

acquisitions.
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Figure 2.7 – Target system featuring a classification block that selectively activates a detailed
digital signal processing chain.

2.3.2 State of the Art and ProblemChallenges

In the field of clinical electrocardiography, an important application of smart wireless nodes

consists in separating normal and pathological heartbeats, performing an early diagnosis

step. For this task, many off-line algorithms have been proposed in the literature based on the

morphology of the heartbeat [48, 49, 50]. However, the implementation of these algorithms

on WSNs represents an important challenge due to the high run-time demands. One of the

most important aspects when devising on-node classification is the high dimensionality of

the faced problem which is not only affected by the chosen classification method but also by

the size of the input samples to classify (the heartbeats in this case). Using standard off-line

techniques, tens of samples before and after the center peak of the heartbeat are required to

perform a reliable classification. Dimensionality reduction in these problem is traditionally

carried out by extracting a rather small but meaningful enough set of features from the input

samples.

Several state-of-the-art strategies for off-line classification of ECGs can be found in the litera-

ture. They can be distinguished based on the methodology employed to extract the features of

individual heartbeats, which later are the input of the classifier. A first methodology considers

the extraction of the most important component in the ECG signal in an appropriate sub-

space, employing either independent or principal component analysis (ICA [51] or PCA [49],

respectively). A different approach, introduced in [52] and [53], relies instead on the detection

of morphological features, such as the presence, duration and shape of the heartbeat charac-

teristic waves. A third methodology focuses on (possibly trained) random linear combinations

of the input samples, employing Random Projections (RP) [54, 55] for representing heartbeats

with a few coefficients. In particular, Achlioptas projections [56] adopt matrices consisting

only of the elements 0, 1 and −1, thus allowing a compact representation of the projection

matrix and requiring low run-time resources. In a preliminary study presented in [57], I

showed how neuro-fuzzy classifiers (NFCs) [58] can be optimized for and implemented on the

constrained resources typically available on WSNs, while still providing high classification

accuracy and meeting real-time constraints. To reduce the amount of data and cope with
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Figure 2.8 – Multi-layer neuro-fuzzy classifier.

the limited resources of WSNs, in that study I chose a dimensionality reduction based on the

previously mentioned Random Projections. Herein, I propose and comparatively evaluate

different approaches allowing a compact representation of heartbeats: Random Projections

(RPs) [56], Principal Component Analysis (PCA) [59] and morphological features resulting

from an automated Fiducial Points Detection (FPD) [36].

2.3.3 ClassificationMethod

As opposed to the existing approaches for off-line classification of heartbeats based on mor-

phology analysis ([48, 49, 50]), on-node classification has to cope with the limited computation

resources that are available on a WSN while providing a comparable accuracy.

Among the classification techniques that could be adapted to on-node execution, neuro-

fuzzy classifiers (NFCs) [58] represent a promising option. Their ability to explicitly express

uncertainty in classification, given by the employed fuzzy values, makes them particularly

well-suited to the problem of heartbeat classification [60, 61]. NFCs consist of a simple feed-

forward multi-layered structure as the one depicted in Figure 2.8. A first membership layer

employs Membership Functions (MFs) to compute, for each input value uk , a membership

grade μk,l for each of the target classes l . After the training of the NFC, the obtained MFs are

gaussian curves, defined by their center c and variance σ:

μk,l (uk ) = exp

(
−(uk −ck,l )2

2σ2
k,l

)
(2.9)

where l is the corresponding class from the set of target classes. In the subsequent fuzzification

layer, the membership grades of all the coefficients for each class are combined by means of a
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weighted product according to the following expression:

fl =
∏
k

wk,lμk,l (2.10)

The resulting fuzzy values quantify how likely the examined heartbeat belongs to that specific

class. Finally the third defuzzification layer of the NFC labels the input sample as one of the

target classes based on the fuzzy values: the largest fuzzy value with respect to the values of

the other classes dictates the final decision.

NFCs can be effectively trained using established methods, the most common being the gradi-

ent descent algorithm described in [61] and the scale conjugate gradient algorithm introduced

in [62] and [63], which I employed in the proposed approach. NFCs are computationally

simpler and present lower memory requirements than other existing techniques such as gaus-

sian Support Vector Machines (SVMs) [48], while being more accurate than simpler solutions

based on linear SVMs and Linear Discriminant Analysis (LDA) [64]. The possible utilization of

these techniques is later studied in Section 2.3.8 where the performance and limitations of the

different alternatives are discussed.

2.3.4 Dimensionality Reduction Techniques

Reducing the dimensionality of the heartbeat is an effective technique to simplify the complex-

ity of the classification problem. I explored three different solutions to achieve this objective,

which are compatible with the limitations of WSN processing architectures.

RandomProjections (RPs) Random projections allow to represent the ECG by means of a low

number of coefficients, which are obtained by multiplying the input vector of samples by a

random projection matrix. In order to improve the run-time performance of the classification,

we require the RP matrix to be sparse. This requirement is fulfilled by a k×d Achlioptas matrix

(P) [56], where d is the number of digital samples acquired for each heartbeat and k is the

number of desired coefficients in the random projection, with k 
 d . The elements of P are

defined as:

Pk,d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+1 with probability 1

6

−1 with probability 1
6

0 with probability 2
3

(2.11)

The dimensionality reduction is then achieved by random-project the vector v according to

the following equation:

uRP =Pv (2.12)

Because of the structure of the Achlioptas matrix, each row of P indicates which elements of

v have to be added to (or subtracted from) to derive the corresponding vector uRP , without
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using an actual multiplication. Even though the approximation error introduced by random

projections is theoretically bounded [54], in practice it is observed that certain RP matrices

perform better than others [57]. As a consequence, the generation of P requires a training

process (Figure 2.10a). The aim of the training is to derive a matrix P which leads to a high-

quality classification, resulting in a joint optimization process of the RP matrix and of the

NFC.

Principal Component Analysis (PCA) Principal component analysis retrieves the set of linear

projections on a set of orthonormal axis, where the variance in the input data is maximized

[49]. The columns of the PCA projection matrix T of size k ×d , with k 
 d , are the k leading

eigenvectors of the covariance matrix of the input data, which is defined as:

S = 1/N
N∑

i=1
(vi −E[v])T (2.13)

where N is the number of elements in an initial training set of heartbeats (training_set_1), vi

is the i -th element of the vector containing the digital samples of a heartbeat, and E[v] is their

mean value. As in the case of RPs, dimensionality reduction is performed by a matrix-by-vector

multiplication: uPC A =Tv .

The extraction of the PCA matrix T only depends on the algebraic properties of the input

vector v and on the numbers of projection axis k, therefore it can be performed independently

from the NFC classifier training (Figure 2.10b). On the other hand, as opposed to the RP

case, T is not sparse in general, leading to a more complex run-time implementation that in

addition involves multiplications to compute uPC A (RPs can be implemented using exclusively

additions and subtractions).

Fiducial Points Detection (FPD). Differently from RPs and PCA, the detection of morpholog-

ical features explicitly interprets the input ECG signal. In particular, FPD aims at retrieving

the position of the fiducial points (onset, peak and end of the P and T waves, and the begin-

ning and end of the QRS complex) of each heartbeat with respect to the position of the R

peak (Figure 2.9). The considered fiducial points (8 in total) constitute the coefficients of the

vector uFPD , which is the dimensionally-reduced representation of v , and which is used to

subsequently feed the NFC classifier.

In the proposed framework (Figure 2.10c), we perform FPD using the lightweight algorithm

described in Section 2.2.2.1. The algorithm is based on the digital wavelet transform (DWT)

decomposition, which transforms each characteristic ECG wave into tuples of maxima and

minima in the DWT domain. Since the different waves present distinct frequency contents,

their fiducial points are retrieved at different scales, the QRS complex having a stronger

component at lower scales than the P and T waves. The DWT delineation shows good run-time

properties [10] that make it suitable for on-node fiducial point extraction, and its robustness

makes it a good choice to deal with pathological beats with abnormal morphologies.
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Figure 2.9 – Delineated normal heartbeat [65].

2.3.5 Proposed Training Framework

The high-level scheme of the proposed framework for on-node early classification of normal

and pathological heartbeats is shown in Figure 2.10. The framework can be divided into an

off-line training phase (Figure 2.10, top), in which the parameters of both the classifier and

the dimensionality reduction technique are derived, and a test phase (Figure 2.10, bottom),

discerning normal and pathological heartbeats at run-time on the WSN.

Different dimensionality reduction strategies require a different training approach, as illus-

trated in Figure 2.10a–c. In the case of PCA (Figure 2.10b), principal components are derived

from an initial set of heartbeats before the neuro-fuzzy classifier is trained. In particular, the

PCA matrix is derived according to the iterative solution presented in [66].

Conversely, when random projections are used (Figure 2.10a), a concurrent optimization of

the NFC classifier and the random projection matrix is required. The selection of the best

combination is achieved by means of a genetic algorithm [67]. The algorithm starts from

an initial population of random matrices and, for each of them, trains the corresponding

NFC employing the previously mentioned scale conjugate method [62] using a set of random-

projected heartbeats (training_ set_1). Each of the obtained RP-NFC pairs is then evaluated

over a different and larger set of heartbeats (training_set_2). According to the result of the

evaluation, the genetic algorithm selects the proper chromosomes (i.e., the best P matrices)

and performs mutation and crossover over them to refine the random projection. According

to the realized experiments, an initial population of 20 randomly-generated matrices, and an

exploration of 30 generations by the genetic algorithm, are sufficient to converge to a matrix P

that provides a close-to-optimal performance (results are shown in Section 2.3.7.2).

In the third case, when the heartbeat dimensionality is reduced by using Fiducial Points

Detection, no specific optimization is required, as they are extracted from the heartbeats by

means of a delineation algorithm, hence in this case only the NFC has to be trained once

(Figure 2.10c) using the fiducial points of the initial set of heartbeats (training_ set_1).
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Figure 2.10 – Classification framework: Top (PC-side): NFC training using Random Projections
(a), Principal Component Analysis (b) and Fiducial Points Detection (c). Optimization for
WSNs (d). Boottom (WSN side): Real time execution of the optimized implementation (e).

It is important to mention that the training and test phases of the classification framework

have different constraints. On the one hand, the training phase is performed off-line on a

host workstation, which employs high-precision floating-point data representation in order

to obtain an accurate framework set-up. On the other hand, the test phase and the actual

classifier is eventually executed on an embedded WSN, being therefore tightly constrained

in terms of memory footprint and computation resources, since only integer arithmetic is

admitted and no exponential operations are possible in the architectures devoted for the

WSN domain. As a consequence, it is mandatory to transform the classifier after the training

(Figure 2.10d) to lower its computational requirements according to the embedded platform

capabilities. This step is detailed in Section2.3.6.

Finally, the choice of a proper defuzzification coefficient αtr ain gives the flexibility to unbal-

ance the classifier training process (i.e., it allows to define an upper bound on the number of

abnormal beats that are incorrectly classified as normal). Once this percentage is fixed, the
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performance metric used to train and score the classifier is then the percentage of normal

beats correctly detected, and therefore discarded for detailed analysis.

2.3.6 Resource-Constrained Optimization Phase

The dimensionality reduction technique and the trained classifier cannot be employed as

they are on a WSN platform, due to the available limited resources. In this regard, several

considerations have to be taken into account. First, data must be represented in the integer

domain, as opposed to the floating-point format used in the training phase. Then, the complex

MFs employed in the NFC, which require prohibitive exponential operations for embedded

platforms, must be simplified. In addition, the NFC fuzzification layer needs to be analyzed

to prevent overflows when performing the product operation. Finally, special care must be

taken regarding the memory required to store tables such as the RP matrix, or to represent the

different parameters derived during the training phase. In this section, I detail the devised

strategies performing these steps (Figure 2.10d), thus enabling the implementation of the

proposed classifier on a WSN.

Membership functions linearization: I proposed a linear segmentation of each gaussian MF

in the classifier, to avoid the computation of exponentials. Given the centre c and standard

deviation σ of a MF, we map it onto the integer range [0,(216 −1)] (i.e., a 16-bit representation)

according to the following scheme:

MFlin(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |c −x| ≥ 4S

1 if 4S > |c −x| ≥ 2S

l in.approx1 if 2S > |c −x| ≥ S

l in.approx2 if S > |c −x|

(2.14)

where MFlin is the linearized MF and S = 2.35σ. The linear approximation segments are

graphically represented in Figure 2.11. As 1 is the smallest non-zero value that can be repre-

sented in the chosen integer space, this formulation has the desirable property to be positive

in a large range, hence it is rare that a fuzzy value becomes 0 after the defuzzification (product)

stage.

Fuzzification: In the defuzzification layer, when all the weighting factors (see Section 2.3.3) are

set to 1, only the ratio between the fuzzy coefficients fl is relevant, as opposed to their absolute

values. The realized optimizations of the fuzzification step stem from this observation, and

consist in retaining the maximum precision given the 32-bit representation used for the

accumulators of the fuzzification products. In the proposed framework, we first force the

weighting factors to be 1 (i.e., irrelevant) during the NFC training process. Then, in the WSN

implementation of the fuzzification step, the membership grades μk,l related to the two first

coefficients are multiplied for each of the target classes. The resulting numbers are left-shifted

to the maximum amount so that none of them overflows, and then the least significant 16 bits
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Figure 2.11 – Linear approximation of gaussian MFs in the range [−4.7σ, 0], compared to a
gaussian curve.

are discarded. All the subsequent membership grades are then processed in a similar way,

thus obtaining the fuzzy values of the beats for the different classes with the highest possible

precision.

Defuzzification: The defuzzification stage has been adapted in two phases. First, the decision

process has been modified to be easily implementable in the resource-limited WSN archi-

tecture by avoiding complex manipulations such as divisions. Second, the configuration of

the classifier has been unbalanced to guarantee a minimum sensitivity for one of the classes

(in this case the pathological class). The proposed implementation of the defuzzification

layer marks each beat as either normal or pathological, by considering the two largest fuzzy

values (M1 f , M2 f ) and the sum of all of them S = ∑
l

fl . If (M1 f −M2 f ) ≥ αtr ain · S (with

αtr ain ∈ [0,1]), the beat is assigned to the class with the maximum fuzzy value. Otherwise,

the beat is marked as unknown and considered as potentially pathological. All these manipu-

lations do not employ divisions, and can therefore be efficiently implemented in WSNs. To

unbalance the classifier decision to ensure a certain quality, it is possible to choose a defuzzifi-

cation coefficient αtest different from the αtr ain that was obtained during the training phase

(described in Section 2.3.5), allowing to adjust the ratio of detected normal and abnormal beats

and therefore obtaining the desired sensitivity of a desired class (i.e., pathological heartbeats).

Memory-Aware Representations: As mentioned in Sections 2.3.4, random projection matri-

ces are composed of only three values (+1,−1 and 0) and are sparse by construction, thus

admitting a compact representation where each element can be coded using only two bits. It

therefore requires 1/4 of the memory with respect to a corresponding matrix of 8-bits values.

On the other hand, this compression is not possible for the PCA matrices which have to be

stored employing 16-bit words. While resulting in a memory footprint still compatible with
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Figure 2.12 – Experimental scenario: classification is used to activate an accurate multi-lead
morphological delineation only in case of heartbeat abnormality.

a WSN implementation, the footprint is significantly higher with respect to the compact RP

case.

2.3.7 Experimental Results

I evaluate hereafter the effectiveness of the proposed framework in terms of performance and

workload. In the next subsections, I detail the employed set-up for the evaluation, detailing

the target embedded platform and defining the studied metrics. Then, I discuss the performed

study to assess the classification accuracy achieved by coupling the proposed neuro-fuzzy

classifier with the different dimensionality reduction techniques presented in Section 2.3.4. In

Section 2.3.7.3 I compare their run-time performance in terms of execution time and memory

requirements. Finally I prove how the proposed methodology contributes to the system-level

reduction of the WSN energy consumption.

2.3.7.1 Experimental Set-up

To comparatively evaluate the proposed classification strategies I investigated their perfor-

mance when identifying three type of heartbeat morphologies considered of clinical interest

in the field of cardiac analysis. In particular, I considered normal heartbeats (hereafter labeled

as N ) and heartbeats affected by premature ventricular contraction and left bundle branch

block (labeled V and L respectively), which present abnormal morphologies. The heartbeats

are extracted from the MIT-BIH Arrhythmia Database (publicly available on the PhysioNet

website [68]). The considered heartbeats were extracted from the MLII lead of each recording.

The ECG recordings in the database are acquired at 360 Hz and we define each heartbeat as

the 100 samples preceding the R peak (cf. Figure 2.9), and the 100 samples that follow it.

The real-time performance of the proposed classifier is evaluated by means of its actual

implementation on a physical embedded platform. In this work, we have employed the state-
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of-the-art IcyHeart System-on-Chip (SoC) [69], which integrates a low-power microprocessor

featuring a clock frequency of 6 MHz and an embedded RAM of 96 KBs.

As introduced in Section 2.3.1, the goal of the classification is to distinguish between normal

and pathological beats, in order to trigger a detailed analysis for abnormal beats only. The

general structure shown in Figure 2.7 is embodied by the application whose diagram is detailed

in Figure 2.12, where the advance signal analysis is represented by a three-lead morphological

delineation (MMD) ([36], Section 2.2.2.2). The employed R-peak detector is a simplified

version of the wavelet-based technique proposed in [10] (Section 2.2.2.1).

In order to assess the performance of the system in terms of accuracy, two specific metrics

have been defined according to the match between manual annotations from the database

and automatic classifications made by the NFC. When a heartbeat that is manually annotated

as normal is classified as such, it is considered as a True Normal (TN ). In case the heartbeat

is misclassified, it is considered as a False Normal (FN ). Similarly, both types of matching,

True Abnormal (TA) and False Abnormal (FA), are defined for the abnormal class. With this

matching criteria, I considered two figures of merit: Normal Discard Rate (NDR) and Abnormal

Recognition Rate (ARR). The NDR assesses the rate of normal beats that are correctly identified

with respect to the total number of normal heartbeats, and thus they are discarded for further

analysis according to the following expression:

NDR = TN

TN +FN
(2.15)

Conversely, ARR reports the percentage of pathological heartbeats that are correctly identified

with respect to the total number of abnormal heartbeats:

ARR = TA

TA +FA
(2.16)

It is important to note that both metrics are not complementary and that the best performance

is achieved when both figures reach the value 1. Across the experiments a lower bound of 95%

on the ARR metric is forced, therefore the training process will tune the defuzzification coeffi-

cient αtr ain to meet this requirement. This self-imposed constraint comes from the clinical

requirements of an automated system that needs a minimum sensitivity of abnormalities to

be considered.

Obtained results are derived from a 4-fold cross-validation process, with heartbeats of the

different classes proportionally and randomly divided across folds. Four rounds of experi-

ments have been performed to compute all the results, using a different fold in each round as

the test set (test_set in Figure 2.10) and the remaining 3 folds as the training set (train_set_2

in Figure 2.10). A random subset of the training set (train_set_1 in Figure 2.10) was used to

compute the membership functions of the NFC classifier (regardless of the specific dimen-

sionality reduction technique), and to derive the PCA matrix. In train_set_1, the classes are

equally represented, in order not to overfit the classifier on the largest class (in this case, class
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Table 2.1 – Composition of the sets of heartbeats employed in the different experiments.

N V L Total

MIT-BIH Arrhythmia Database 74,064 6608 8032 88,704
train_set_1 150 150 150 450
train_set_2 (3 folds) 55,548 4956 6024 66,528
test_set (fold size) 18,516 1652 2008 22,176

N ). Train_set_2 is used to adjust αtr ain during the training and, in the case of using RPs, to

drive the genetic algorithm that derives the optimal projection matrix. The composition of the

different heartbeat sets is detailed in Table 2.1.

2.3.7.2 Classification Accuracy

In this section, we aim to compare the classification accuracy obtained by combining the

different dimensionality reduction techniques (RPs, PCA and FPD) with a neuro-fuzzy classifier

structure.

When employing RPs and PCA, we considered two different implementations that reduce the

dimensionality of the heartbeat to either 8 or 16 coefficients. A larger coefficient set impacts

both the size of the RP or PCA matrix and the complexity of the NFC, therefore the decision

among the different implementations is a trade-off between classification accuracy and real-

time performance (in terms of run-time and required memory). Fiducial points detection

(FPD) does not present this flexibility, as each heartbeat is always represented by 8 values, as

discussed in Section 2.3.4: the position of the onset, peak and end points of the P and T waves,

plus the onset and the end of the QRS complex, relative to the main R peak (Figure 2.9). If a

point is not detected, its position is assumed to be the one of the detected neighbor fiducial

point that is closer to the R peak.

We also explored two combined solutions, in which 8 coefficients derived from projections (ei-

ther PCA or RP) are concatenated to the 8 detected fiducial points, resulting in 16 input values

for the classifier. In these cases, the fiducial points are added after performing dimensionality

reduction over the sample vector of the heartbeat and before training the NFC.

In the first set of experiments, the different studied dimensionality reduction techniques were

tested, when αtr ain is trained to obtain a minimum ARR of 95%. The corresponding NDR

figures for the different configurations are detailed in Table 2.2. Three main considerations

can be derived from these results. First, results using only FPD are considerably poorer than

the ones achieved by the other classification techniques, showing that the information con-

tained in the delineation of the ECG characteristic waves is not sufficient to perform accurate

classification. Second, it can be observed that for those methods in which different number of

coefficients can be employed (i.e., RP and PCA), the performance does not vary significantly

when using a larger dimensionality, as the maximum improvement does not exceed two per-
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Table 2.2 – Average Normal Discard Rate (NDR) in the 4-fold cross validation process for a
fixed minimum Abnormal Recognition Rate (ARR) of 95%.

Dimensionality NFC Coefficients
reduction 8 16

FPD 70.25% -
RP 94.80% 94.92%
RP + FPD - 94.19%
PCA 88.15% 90.92%
PCA + FPD - 90.04%

centage points. Third, with the given constraint on the minimum ARR, combining RP or PCA

with FPD does not improve the NDR. Although this may seem counterintuitive, the reason for

this behavior is that including inputs of different nature tends to increase the number of beats

that are classified as unknown in the defuzzification stage. This forces the training process

to slightly increase the value of αtr ain to meet the minimum ARR requirement, at the cost of

negatively affecting the NDR.

In a second set of experiments, I investigated the flexibility of the proposed solutions varying

the ARR constraint. In particular, even though αtr ain is still tuned to get a minimum ARR of

95% on the training set, we scaled the coefficient αtest to obtain different NDR/ARR trade-offs

over the 4 rounds of the cross validation process. Figure 2.13 compares the NDR/ARR Pareto

curves obtained for RP (16 coefficients), PCA (16 coefficients), FDP, and the combination of 8

coefficients from RP and PCA with the 8 fiducial points. Two main conclusions can be derived

from the results. On the one hand, when the ARR constraint is set below 97%, RP-based

solutions outperform the PCA-based methods reaching an NDR of 94.9% and not requiring

the utilization of fiducial points. On the other hand, when the accuracy on the recognition

of abnormalities is forced to be closer to 100%, the addition of FPD to the standard RP- and

PCA-based methods makes the approach more robust, and leads to high values of NDR and

ARR (PCA+FPD being the most reliable alternative). Conversely, as we explained above, using

FPD alone for the classification does not provide competitive results w when compared to the

other methods.

2.3.7.3 Run-time Analysis

As introduced earlier in Section 2.3.1 and depicted in Figure 2.12, the role of the classifier

is to activate a detailed analysis for abnormal heartbeats in order to perform selective and

computationally intensive advanced processing. In order for the system in Figure 2.12 to be

effective, early detection of pathological heartbeats must not be the computation bottleneck

during real-time execution. Therefore, classification should require considerably less effort

than performing continuous analysis over the acquired signal.

In this section, I analyzed a fully functional and realistic diagnosis application (system (4) in
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Figure 2.13 – Pareto curves of the NDR/ARR relations for various classification methods
obtained by averaging the different values extracted from the 4-fold cross validation process.

Figure 2.12), in which the classification framework is used to trigger the detailed heartbeat

analysis. The early heartbeat classification is performed on a single lead (sub-system (2)),

whereas the detailed analysis is implemented by a three-lead delineation block (sub-system

(3)).

Figure 2.12 shows that, apart from the classifier itself (sub-system (1)), two additional stages

need to be incorporated to complete the proposed one-lead early classification (sub-system

(2)). Firstly, a filtering stage is required to remove artifacts and baseline wandering caused by

respiration and muscle contractions usually corrupting ECG signals. Secondly, a peak detector

has to be employed to identify the heartbeats to classify.

We employed state-of-the-art solutions for the filtering stages, the peak detector and the

delineation block, proposed by the authors of [10]. Filtering is performed using morphological

operators, a wavelet-based algorithm is used for peak detection and a delineation algorithm

using multi-scale morphological derivatives (MMDs) is executed over the root mean square

(RMS) combination of the three filtered leads in subsystem (3). Their implementation has

been optimized for execution on embedded WSNs.

Tables 2.3 and 2.4 report the computational and memory requirements of the different parts of

the considered system depicted in Figure 2.12, when executed on the IcyHeart WSN operating

at 6 MHz. The first column of the two tables lists the investigated implementations, based on

RP, PCA, FPD, and the combined strategies described in Section 2.3.7.2. In order to make a
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Table 2.3 – Duty cycle (%) of the sub-systems identified in Figure 2.12. Tests performed on the
IcyFlex WSN running at 6 MHz.

Dimensionality Sub-system
reduction (1) (2) (3) (4)

FPD 0.63 17.63 54.59
RP (16) 1.34 18.34 33.52
RP (8) + FPD 1.32 18.32 83.01 34.46
PCA (16) 1.24 18.24 34.99
PCA (8) + FPD 1.33 18.32 36.45

Table 2.4 – Memory footprint (kB) of the sub-systems identified in Figure 2.12. Tests performed
on the IcyFlex WSN running at 6 MHz.

Dimensionality Sub-system
reduction (1) (2) (3) (4)

FPD 7.75 36.43 82.82
RP (16) 3.04 31.72 78.11
RP (8) + FPD 8.58 37.25 46.39 83.65
PCA (16) 5.33 34.01 80.40
PCA (8) + FPD 10.87 39.55 85.94

fair comparison, experiments have been performed using 16 coefficients as input of the NFC,

except in the case of FPD, which only employs 8. The second column reports the experimental

results obtained for the classifier block (sub-system 1), while the third one also considers

the filtering and peak detection (sub-system (2)). In the fourth column, a state-of-the-art

implementation of a system performing three-lead MMD delineation (see Section 2.2.2.2)

over the full input signal is reported for comparison. This setting reflects the performance

of the advanced processing block running continuously, thus analyzing both normal and

pathological heartbeats. As it can be seen in the tables, its run-time behavior does not depend

on the classification methodology. Finally, in the right-most column of the tables, we provide

the values for the complete target system where delineation is performed only on heartbeats

marked as abnormal.

By observing the behavior of the classification block, two conclusions can be extracted. On one

hand, the memory footprints of the different investigated methods are different, the RP with

16 coefficients being the least demanding one. On the other hand, the necessary additional

computational effort for feature extraction and classification is minimal once the heartbeat

is filtered and isolated (less than 1.5% of the duty cycle in all cases). Additionally, the FPD

method benefits from the wavelet decomposition that is already performed during the R peak

detection block.

As an assessment of the run-time efficiency of the proposed classification methods, it can be
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noticed that the main bottlenecks of the classification chain (sub-system (2)) are represented

by the input data filtering plus the peak detector, and not by feature extraction and classifica-

tion. Among the proposed implementations, the RP with 16 coefficients emerges as the best

trade-off, providing a comparable performance with the rest of the methods with the lowest

memory requirements.

The final, and most important, result is that the duty cycle of the complete system is always

substantially lower than an equivalent one that performs a full detailed analysis on all the

beats. Analyzing all the beats of the database described in Table 2.1 and considering numbers

on Table 2.2, experimental evidence shows that the run-time of sub-system (4), which employs

early classification, is 60% lower than the one of sub-system (3), which performs a detailed

analysis of each heartbeat, while presenting a small memory overhead (32 kB in the case

of RP with 16 coefficients) still affordable for the target WSN architecture. Moreover, all the

dimensionality reduction techniques we proposed achieve savings in terms of duty cycle, even

when the classification accuracy is low, i.e., in the case of FPD, showcasing the benefits of early

classification.

2.3.7.4 Communication Savings

Computation and wireless communication are two major contributors to the power budget of

embedded platforms, accounting for approximately 34% of the total energy consumption in

a typical WSN, as shown in [10]. In addition to the reduction in computation requirements

discussed in the previous section, the detection of pathological heartbeats contributes to

obtain considerable gains in terms of energy efficiency, as the data to be transmitted can be

greatly reduced.

In a scenario such as the one illustrated in Figure 2.12, where the WSN reports only the R

peak of normal heartbeats and all the fiducial points in case of abnormality detection, the

usage of the wireless link can be substantially reduced with respect to the case in which all the

fiducial points of all the heartbeats are communicated. In the case of the proposed application

(system 4 in Figure 2.12), where RP with 16 coefficients is used to perform feature extraction

before classification, and considering all the heartbeats of the employed database (described

in Table 2.1) as input signals, we achieve a 63% energy consumption reduction in the wireless

module. Moreover, the proposed methodology results in a 60% reduction in the required

computational effort and, consequently, energy employed for digital signal processing on an

embedded microcontroller.

Overall, the proposed classification-based application in which only pathological heartbeats

are analyzed can achieve an estimated 21% total energy reduction on a typical WSN platform,

which includes acquisition, processing and wireless transmission, while still being able to

report detailed information related to pathological heartbeats and meeting the strict real-time

constraints of the domain.
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Table 2.5 – Classification performance and number of parameters for different classifiers.

Classifier NDR ARR Required operations

SVM-linear 93.4% 90.14% Linear combination of the feature vector (16 elements)

SVM-gaussian 96.08% 96.93%
One norm and one gaussian function per SV
(210 in total), and their linear combination

LDA 93.68% 90.47% Linear combination of the feature vector (16 elements)

NFC 94.19% 96.1%
One gaussian function for each class-feature pair (48 in total)

and their product aggregation

2.3.8 Comparison of ClassificationMethods

The flexibility of the proposed framework allows for different classification strategies to be

employed after the dimensionality reduction stage. While the previous sections have focused

on a neuro-fuzzy implementation, I herein evaluate the performance and computational cost

of multiple popular alternatives, either based on Linear Discriminants Analysis (LDA) or on

Support Vector Machines (SVMs) with linear or gaussian kernels.

SVMs separate test data into two classes (here, normal and abnormal heartbeats) through a

hyperplane, whose coordinates maximize the separation between instances of the two classes

in the training set. A linear SVM assumes that the elements belonging to different classes

are linearly separable. Under this condition, classification is performed by pre-computing

the separating hyperplane parameters, defined by its normal vector w and its offset from the

origin b. At run-time, an input vector u is classified with a simple dot-product operation:

si gn(w ·u+b). SVMs can be generalized to non-linear forms by applying the kernel trick, i.e.,

mapping the inputs in a high-dimensional space with a suitable non-linear kernel function,

such as a gaussian radial function. Run-time classification using non-linear SVMs requires the

evaluation of the input elements against a large number of support vectors (SVs), necessitating

therefore a much higher workload to evaluate the kernel functions, and a higher memory

footprint to store the support vectors. Finally, LDA classifiers utilize a linear combination

of the input feature vector, to assign it to one of two classes. Under the assumption that the

probability density functions of the classes are normally distributed with identical co-variance,

classification is again performed by executing the dot-product of the feature vector with the

normal of the separating hyperplane.

These classifiers are quantitatively compared in Table 2.5, which reports the achieved Normal

Discard Rates and Abnormal Recognition Rates when performing heartbeat classification. For

all the experiments, a 4-fold cross-validation has been performed, and the input feature vector

is composed of an 8-coefficient random projection of the signal, plus the fiducial points. A

minimum threshold of 95% is originally set on the ARR, and it is progressively reduced with a

step of 1% when the training algorithm, based on the scheme depicted in Figure 2.10a, cannot

converge to a solution. Table 2.5 also summarizes the main operations that are required to

perform the classification of a given feature vector.
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It can be observed that, on the one hand, linear classifiers (SVM-linear and LDA) have limited

workload requirements, but on the other hand they incur in more mis-classifications, showing

that the feature vectors are not well separated in a linear space. In particular, none of them is

able to meet the minimum threshold of 95% set on the ARR. The SVM-gaussian strategy has

better classification performance, but at a price of a memory footprint and a computational

effort that is not compatible with a WSN implementation. In fact, 6KB of memory must be

employed only to store the 210 support vectors, a computationally expensive square root

operation is required to compute one norm for each SV, and the number of (linearized)

gaussian functions for each heartbeat is an order of magnitude higher with respect to a neuro-

fuzzy classifier. Experimental evidence previously detailed in Sections 2.3.7.2 and 2.3.7.3 shows

that the proposed NFC-based classification scheme offers the best tradeoff between accuracy

and complexity, achieving similar performance with respect to a SVM-gaussian, while having

a small computation and memory overhead with respect to simpler linear strategies.

2.4 Proposed Energy-aware Distributed Wireless Body Sensor Net-

work (WBSN) for Physical Activity Monitoring

Activity monitoring has been an active research field over the past years, and it finds appli-

cation in a large variety of domains. These include medical applications, to assist patients

affected by chronic conditions [70] [33], as well as personal monitoring during home and

sport activities [9]. Recently proposed WBSNs have emerged as a promising technology to

perform a more personal and fine-grained health monitoring. Thanks to a combination of

wearable low-power WSNs that communicate through a wireless channel, these networks

enable nonstop and unobtrusive analysis of subjects bio-signals, habits and environment,

both for personal and medical purposes.

In the last few years, the versatility of these WBSNs have suffered a boost thanks to the ever-

growing utilization of smartphones in our everyday life [27], which can provide advanced

features such as data logging, transmission to a remote location, and user interface. In

addition, the smartphone can become a dedicated high-performance node of the WBSN

where to offload heavy processing workloads from the weaker WSNs. Stemming from this

observation, herein I propose and study a Wireless Body Sensor Network (WBSN) for activity

monitoring that combines wireless sensor nodes and a smartphone, in order to provide

different tradeoffs between classification accuracy and transmission volume (which, in turn,

has a major impact on energy consumption).

A large range of classification techniques for activity monitoring has been proposed in the

literature [71] [9]. Among them, several techniques show low complexity – including Naïve

Bayes classifiers, while more complex approaches employ algorithms with floating point

operations, such as nearest neighbor and support vector machines (SVM). Other approaches

based on simple feed-forward artificial neural networks [72] have also shown competitive

accuracies on activity monitoring applications. The adaptation of such complex algorithms
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for resource constrained platforms has shown clear benefits for some applications such

as heartbeat classification (see Section 2.3 and [57]) but typically lead to a non-negligible

classification accuracy loss when multi-modal signals are combined, thus making the porting

to wearable devices impractical. Therefore, in this work I propose two different approaches

(later detailed in Section 2.4.2):

• In an accuracy-oriented configuration, the nodes of the proposed network send their ex-

tracted features to the smartphone, which performs a precise and complex classification

thanks to its high computational capabilities.

• In a transmission-aware configuration, one of the wearable nodes is in charge of per-

forming the classification and sending the result to the smartphone, which acts only as

a gateway toward the user.

2.4.1 State-of-the-art and Challenges

An extensive survey of the literature related to activity monitoring is available in [9], which

also provides a quantitative comparison of the accuracy of the existing solutions. In particular,

the work in [72] reaches the highest classification accuracy (95%) by employing an artificial

neural network that processes acceleration data coming from the wrist. Although the authors

successfully manage to employ only accelerometer data, the classification is performed of-

fline, and no indication regarding how the proposed technique would behave on portable

devices with limited resources is provided. Conversely, in [73], the authors propose an online

monitoring technique using a watch-like sensor on the wrist, which acquires data from ac-

celerometers, a microphone and light sensors. The system employs feature extraction both in

the time and in the frequency domain and a nearest neighbors classifier reaching an accuracy

of approximately 91% but only on arm-related movements.

The work in [32] proposes a network to monitor general-case activities (similar to the ones

targeted in this work) using a hidden Markov model, which acts on data coming from sensors

on shoulder, chest and wrist. The proposed classification achieves accuracies of up to 90%,

but the confusion matrices show pronounced difficulties in discriminating activities where

the upper body is static (e.g., sitting and standing). In [34], the authors propose a system for

online monitoring focused on activity changes. The network is able to perform most of the

computations on a node located on the chest, and to this end it employs a computationally

simpler classifier based on a decision tree. The proposed methodology, combined with a set of

custom features, leads to an overall accuracy of 90.8%. However, although the system achieves

peaks of accuracy when detecting transitions, the performance while monitoring ongoing

activity shows high classification degradations.

One of the most recent works in the field of activity monitoring is discussed in [33], where

a system for monitoring patients affected by Parkinson’s disease is discussed. The authors

propose a power saving technique that reduces sampling frequency during static activities,
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such as lying and sitting. They reduce the sampling rate down to 30 Hz during sleep periods

while requiring high sampling frequency (up to 200 Hz) during most of the other activities.

Although this policy proves to be effective in the target scenario, where the patients are

spending the majority of their time on static activities, in a general case it is not optimal. In

addition it requires a subject-dependent training.

Multiple conclusions can be derived from this analysis, regarding both architectural and

methodological aspects. First, a large variety of node placements has been proposed over the

years, including wrist, upper arm, chest, hip, thigh, crus, ankle, and several combinations

of them. However, not all the existing solutions aim at minimizing the patient’s discomfort,

often purposely increasing the number of sensors to collect a larger amount of data. Second,

common patterns can be identified to increase the system lifetime: on-node feature extraction

– which heavily reduces data transmission– is applied in most circumstances, and efforts to

reduce the sampling frequency can also be found. However, most of the existing works still em-

ploy sampling rates of more than 100 Hz because of the dynamic nature of activity recognition,

and this has a negative impact on the system power consumption due to the sensing circuit.

Finally, most of the existing classification techniques fail to reach accuracies above 90%, and

the best results are achieved by sensors on the chest and on highly-dynamic joints (such as

wrists and ankles), the latter creating major discomfort during everyday activities. In this work,

we aim at minimizing the invasiveness of the network. In fact, while some requirements of

the proposed system are related to its confort and usage,the implementation of such a WBSN

entails several design challenges:

• The distribution of sensors over the body imposes the necessity of transmitting the

sampled data throughout a network. A proper selection of the data to be sent requires

an exhaustive study of the amount of processing that can be performed at each node

and to determine the most relevant parameters that need to be employed instead of the

raw signal.

• In addition, the studied kinetic signals (e.g. accelerometers or gyroscope data) usually

need to capture body movements that typically impose a high sampling frequency. The

nature of these signals will directly impact the computational and memory require-

ments of the algorithm which usually become the main obstacle to perform embedded

advanced processing on WBSN nodes.

• As a consequence, the accuracy of the activity recognition can be affected not only

by the chosen classification technique but also by the sensed signal and the extracted

parameters on node. Moreover, as previously introduced, state-of-the-art classifiers are

not suitable to be executed on-node without loss of quality in the classification. Thus,

a proper selection and optimization of the classification scheme is needed possibly

leveraging the computational power offered by the smartphone at the cost of high data

transmission from the WBSN.
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2.4.2 Target SystemDefinition

The proposed WBSN for activity monitoring is illustrated in Figure 2.14 and it aims at detecting

seven different activities of clinical relevance:

• Walking (Wa): moving in any direction at a slow to normal speed.

• Sitting (Si): resting in a sitting position with or without moving the upper half of the

body.

• Standing (St): resting in a vertical orientation without moving in any direction.

• Laying (La): resting in a horizontal orientation.

• Running (Ru): moving in any direction at a moderate to high speed.

• Walking upstairs (Up).

• Walking downstairs (Dw).

The network is composed of several wearable devices deployed throughout the body of the

subject, in order to sense data related to acceleration, orientation, and optionally other bio-

signals of general interest, such as the ECG. In addition, a smartphone is also incorporated in

the network to provide higher computation capabilities that can be exploited either during the

activity detection, or for enhanced high-level functionalities. The workload balance among

the devices has an impact on the quality of the classification and on the amount of transmitted

data, which in turn plays a major role for the overall energy consumption. Two tradeoffs

between accuracy and transmission are identified for the proposed system, and they are

discussed in depth in the following.

2.4.2.1 Device Taxonomy

As previously introduced, the proposed WBSN includes two classes of devices, each one

characterized by its different computation capabilities, size and energy budget. In particular,

the network is composed of:

• A set of wearable sensor nodes, which are in charge of sampling the signals of interest

by incorporating accelerometers, gyroscopes, and optionally other sensors. These

devices are battery-powered and are required to be small to minimize the subject’s

discomfort: the combination of these requirements leads to a limited energy budget,

which translates into low-power systems with limited computation capabilities. In fact,

wearable nodes typically feature very basic microcontroller architectures with integer

arithmetic modules and modest memory resources, thus imposing significant limits

on the complexity of the algorithms they can execute. It is important to note that, the

embedded radio component which enables wireless communication within the WBSN
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Figure 2.14 – Overview of the proposed WBSN. The three nodes in yellow are the ones belonging
to the final configuration (see Section 2.4.5.3), whereas the remaining nodes have only been
used for data collection purposes

typically represents the most energy-hungry hardware of the system [8] in systems as

the targeted one where a high volume of traffic is required.

• A smartphone, which provides higher computational capabilities due to more complex

processing cores, and larger batteries that are generally recharged on a daily basis. These

devices typically include hardware support for floating point operations, larger volatile

and non-volatile memories, and multiple wireless interfaces. As a consequence, these

devices are ideal for executing complex and accurate classification algorithms, as well

as high-level operations, e.g., interfacing with the user, logging the recorded data, and

possibly communicating this data to a remote service over the internet.

The two kinds of devices have different roles in the WBSN. In particular, the classification

can be performed either on a selected wearable node, which collects the data from the other

sensors and then executes the classification algorithm, or by the smartphone, which receives

the data from all the sensor nodes. These two strategies generate different traffic volumes

through the WBSN and, while the former approach is only applicable when the classifica-

tion algorithm is relatively simple, the latter provides a more general solution that allows to

implement complex classifiers with higher precision.
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2.4.2.2 Network Topology and Task Assignments

In the proposed WBSN, several wearable nodes are placed on the body, as shown in Figure 2.14:

two nodes including accelerometers are located in each limb, and a more complex node that

also includes gyroscopes is located on the chest. The node on the chest can be optionally used

to sense and analyze the ECG signal [74, 45], thus extending the functionality of the network.

The aim of this work is obtaining a high classification accuracy deploying a reasonably small

network. The size of the WBSN is reduced by identifying a subset of nodes that allows to obtain

minimal loss of accuracy and discomfort. In particular, the position of the nodes in the final

WBSN is selected after a detailed analysis of multiple possible combinations, which is reported

in Section 2.4.5.3.

The structure of the communication among the nodes, as well as the workload distribution

throughout the network, is dictated by a tradeoff between the volume of transmitted data

and the final classification accuracy, and can possibly be changed dynamically. A network

with localized workload would send a lower amount of data through the wireless channel, but

most of the computation would be performed with lower precision on microcontrollers with

limited resources. In order to tackle this tradeoff, we propose two alternative methods, which

are illustrated in Figure 2.15. The two strategies are defined as follows:

• Smartphone-based classification (Figure 2.15a): in this configuration, each wearable

node performs a local feature extraction on the data, and then sends the resulting

information to the smartphone, which acts as the center of a star topology. Then, the

smartphone performs a complex real-time classification on its CPU, enabled by the

floating point support and the larger amount of resources available on the device. This

configuration allows a more accurate classification, but also requires all the nodes to

transmit their data, thus generating a high traffic volume;

• On-node classification (Figure 2.15b): in this configuration, a selected wearable node

is in charge of collecting data from the other devices, performing a local classification,

and then sending the result to the smartphone only when a change of activity is de-

tected (periodic packets are also exchanged between the node and the smartphone

to probe the connectivity). However, the on-node classification is less accurate than

the classification performed on the smartphone, because of the limited computational

resources. In the proposed network, the node on the chest is selected as the center of

the network, as it can be assumed to have a clearer transmission path to the smartphone

with respect to the devices on the leg. Moreover this node is responsible of sensing a

higher number of channels (i.e., accelerometers and gyroscope) and selecting it as the

center of classification reduces the amount of data to be transmitted within the network.

Finally, as the node on the chest is worn over a cardio belt, its size and its battery can be

enlarged to ensure a sufficient lifetime in spite of the higher workload.
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Figure 2.15 – The two proposed classification strategies: smartphone-based (a), and on-node
(b). In both scenarios, the phone acts as network coordinator.

2.4.3 On-node Feature Extraction

In both strategies defined in the previous section, the wearable nodes are in charge of per-

forming feature extraction on the sensed signal. This is a common technique [9] to avoid

the transmission of the entire signal, which would not be feasible for small battery-powered

devices. After acquiring the samples from the sensor, each wearable node extracts relevant

information from the raw data stream using the embedded microcontroller. This strategy also

has a positive effect on the classification because of two reasons. First, the classifier can act

on data with a low degree of redundancy and second, the size of the classification problem

is effectively reduced following the same rationale as in the case of heartbeat classification

introduced in Section 2.3.

Multiple features can be computed on a wearable node, each one conveying different infor-

mation, and requiring different computational efforts to be extracted. In the literature [9],

features are typically classified into four groups:

• Time-domain features, which include mean, standard deviation, median, percentiles,

derivatives, zero crossings, and many others. They are extracted directly from the signal,

and provide relevant information about its waveform and its statistical behavior. Their

computation complexity is linear with respect to the signal size, thus making them ideal

for low-power on-node extraction;

• Frequency-domain features, which can be derived from the fast Fourier transform (FFT)

of the signal, and include the spectral energy and entropy, the principal frequency energy,

and a selection of the first n coefficients of the FFT. Their complexity is superlinear;
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• Wavelet features, which include the coefficients of the wavelet transform of the signal,

and can detect variations in the frequency components over time;

• Custom features, which are derived ad hoc from domain-specific considerations about

the target problem. In the context of activity monitoring, these features include signal

magnitude area [34], inter-axis correlation [75], and time-domain gait detection [76].

A quantitative comparison of different feature sets is provided in [71], though the reference

classifier is different from the ones employed in the proposed WBSN. Results show that, while

frequency-domain features lead to the best classification accuracy, time-domain features

provide the most intriguing trade-off between accuracy and complexity. Conversely, wavelet

features provide good results when detecting transitions among different activities [9], but

they do not perform well overall [71]. In the proposed WBSN, we extract two time-domain

features for each axis of the accelerometers and the gyroscope: mean and standard deviation.

These features, along with the aforementioned low computational effort, lead to the high

classification accuracy as later shown in Section 2.4.5.3.

In order to derive the features from the stream of samples, a segmentation based on the

common sliding window technique [77] is included on each node. The selected time-domain

features are then extracted over a set of L consecutive samples, which form a window, before

moving to the next set of samples, which may partially overlap with the previous window. The

overlapping between two consecutive windows determines the time that elapses between the

production of two features, and hence the responsiveness of the WBSN.

Finally, it is important to point out that no filtering is applied on the sensed data. Even

though the samples are affected by high-frequency noise, the hardware-level low-pass filtering

inherently applied by the sensor has been shown to be sufficient for classification purposes

[78], without explicit data filtering via digital signal processing on the resource-constrained

microcontroller.

2.4.4 Classification Framework

The classification algorithm is in charge of estimating the current activity, starting from

the features transmitted by the nodes. As mentioned in Section 2.4.2, the complexity and

the accuracy of the algorithm is influenced by the execution environment, namely, by the

availability of hardware support for floating point arithmetic and by the memory size of the

target device.

In the proposed WBSN, we advocate two separate classifications techniques, depending on

the device that performs the classification. In the context of smartphone-based classifica-

tion, a neuro-fuzzy classifier (NFC) is employed. Thanks to a set of well-established training

techniques [57], an NFC can handle the number of classes required for activity monitoring

applications with high accuracy, even when subject-independent training is employed. In
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addition, an NFC has a simpler structure with respect to most of the mentioned classifiers,

which translates into lower computational complexity and memory requirements, making it

suitable for mobile applications.

2.4.4.1 On-Node Classification

Similarly to many floating point classifiers, NFCs also show a perceivable loss of accuracy when

integer approximations are used [57]. For this reason, in the case of on-node classification,

we introduce a simplified algorithm based on a decision tree. The decision tree is a set of

thresholding rules that discriminate activities based on the value of one feature at a time. If

the tree is properly balanced, the complexity of this technique is logarithmic in the number

of classes, it has limited memory requirements, and it can be efficiently implemented in a

microcontroller without floating point support. In addition, the rules that we derive for activity

monitoring are sufficiently general to ensure that the same decision tree can maintain its

performance across different subjects.

In particular, in the proposed on-node classification configuration, a simplified decision

tree is used to classify the current activity on the microcontroller of the node located on the

chest. The node then sends a notification to the mobile phone only when the activity changes,

thus greatly reducing data transmission. The proposed decision tree is based on an analysis

of the parameters that are expected to discriminate different activities, and its structure is

summarized in Figure 2.16. For example, the variance of the accelerometer data coming from

the x-axis on the crus can discriminate static activities (sitting, standing and laying) from

dynamic ones: a high value of the standard deviation indicates a movement on that axis, thus

indicating a dynamic activity. It can be observed that, excluding the features that are directly

sensed on the chest, the nodes on the legs are only required to transmit three features (the

standard deviation of the x-axis of the crus, the mean of the z-axis of the crus, and the mean

of the x-axis of the thigh), thus greatly reducing the transmission workload.

The selection of these features and the thresholds have been determined by analyzing the

data of three different subjects and after studying the best configuration of the WBSN as later

shown in Section 2.4.5.3. Moreover, because of the general nature of the rules included in the

tree, this on-node classification has proven to be suitable for cross-subject utilization.

2.4.4.2 Smartphone-Based Classification

In the proposed smartphone-based classification, the handheld device is in charge of receiving

the features from all the wearable nodes, and assign the current activity to one of the 7

target classes. The decision is taken using a neuro-fuzzy classifier similar to the one used

for heartbeat classification in Section 2.3, which follows the feed-forward structure shown in

Figure 2.17.

As shown in the figure, this NFC structure is composed of the standard three layers. The first
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Figure 2.16 – Structure of the proposed tree for on-node classification

membership layer takes as input the features extracted by the nodes, and for each feature

computes a membership grade for each of the activities. In particular, the grade γi ,k for the

i th feature and class k is defined according to a membership function MFi ,k , i.e., a gaussian

distribution with a mean value μi ,k and a standard deviation σi ,k . These statistical parameters

are determined during the training phase, and at run-time these values are employed to

compute the membership grade γi ,k

γi ,k (xi ) = MFi ,k (xi ) = exp

(
−(xi −μi ,k )2

2σ2
i ,k

)
, (2.17)

where xi denotes the value of the i th feature. In the subsequent fuzzification layer, the

membership grades of the same class are multiplied as:

fk =∏
i
γi ,k (2.18)
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Figure 2.17 – Structure of the proposed neuro-fuzzy classifier

The resulting value represents how likely the activity belongs to class k. In the third defuzzi-

fication layer, the maximum among the different values of fk is selected, and the activity is

classified accordingly.

2.4.5 Experimental Evaluation

The proposed WBSN has been implemented and tested on three subjects for training and

testing purposes. As discussed previously, the proposed network is able to generate a new

activity classification every 2 s, and able to display the output on the smartphone thanks to an

application developed as user interface.

2.4.5.1 Experimental Set-up

The proposed WBSN is implemented using two different kinds of custom nodes: one targeting

the chest, and one targeting the limbs. All the nodes in the network embed a Jenic JN5148

microcontroller [79] specifically designed for ZigBee applications, and comprising the IEEE

802.14.4 transceiver [80], 128 kB of ROM, and 128 kB of RAM. The node on the chest addi-

tionally includes an LSM330DLC inertial module by STMicroelectronics [81], which features

a triaxial accelerometer and gyroscope. The nodes targeting the limbs, on the other hand,

include an LIS3LV02DQ inertial sensor by STMicroelectronics [82], which only features a triax-

ial accelerometer. Finally, the mobile phone is a mid-range Sony Xperia U running Android

4.1.2, which interfaces towards the ZigBee network by means of a custom dongle, which also

embeds a Jenic chip and a serial converter by FTDI.
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The accelerometer and gyroscope sensors were configured to sample at a frequency of 50 Hz

for any activity being monitored, which is a major improvement with respect to the state of the

art [33]. In order to perform segmentation with the sliding window technique, the nodes use

part of the available RAM to store windows of 4 s, with an overlap of 2 s. The window length

was selected to store a large number of samples, thus avoiding outliers and inconsistencies, as

the target feature is expected to have a smooth behavior over such a long time interval. This

overlap determines the responsiveness of the network: in the proposed implementation, a

new estimation of the activity is produced every 2 s, which fits the slow dynamics of human

movements.

In order to perform the offline training of the NFC, a traditional scaled conjugate gradient

method has been employed [62]. The training has been performed on a high-performance

workstation machine using data collected from three different subjects. This strategy ensures

a high accuracy without requiring a personalized training phase, and makes the WBSN robust

when operating in conditions that differ from the training setup.

2.4.5.2 Data Collection Network

The aforementioned offline training of the classification algorithms requires the collection of a

large amount of data from different subjects, while they perform multiple activities. This step

is also needed to evaluate the goodness of the selected feature set, and the most suitable node

placement on the subject’s body. In order to perform these analyses, data needs to be collected

with no on-node manipulation, and many different node positions have to be evaluated at the

same time.

The data collection network, which is more invasive than the final system, includes 9 wearable

nodes: two for each arm (upper arm and forearm), two for each leg (thigh and crus), and one

on the chest, as shown in Figure 2.14. Each node collects the data from the available sensors –

i.e., accelerometers on the limbs, accelerometer and gyroscope on the chest–, and sends it to

an external network coordinator connected to a workstation.

The main design challenge in the data collection network is handling the high throughput

generated by the nodes. In fact, ZigBee natively supports moderate data rates of up to 250 kbps,

but in practice the overall network throughput is heavily reduced by contention, interference

and data framing [83]. As a consequence, in order to avoid dropped packets, each node is

allowed to buffer the data up to its maximum memory capacity, and then is synchronized by

the central coordinator to be the only transmitting node while flushing its buffer contents, thus

emulating a collision-free burst transmission. As an additional measure to avoid bottlenecks

and data losses, the data gathering was performed in a controlled environment and during

short sessions (approximately of one minute), in which one activity at a time is monitored.

The data collection phase has been iterated on multiple subjects to gather the samples used

for training and cross-validation of the proposed classifiers. The corresponding results are
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reported in the following section.

2.4.5.3 Classification Accuracy

We first investigate the accuracy of the proposed classification methodologies, and we motivate

the selected node placement, in order to assess the performance gap between the wearable

nodes and the smartphone, which is due to the higher computational capabilities of the latter.

The accuracy results of the proposed neuro-fuzzy classifier, implemented on the smartphone

using floating point precision, are reported in Figure 2.18. The accuracy was determined

using an 8-fold cross validation process over the data coming from three different subjects,

gathered using the collection network discussed in Section 2.4.5.2. Thanks to the availability of

data from the limbs and the chest, we have performed an exhaustive comparison among the

possible node placements. As explained in Section 2.4.5.2, 9 nodes have been used to perform

the data collection. As a result, up to 512 configurations, including one or several nodes, are

possible. However, given the nature of the target activities, which are equally influenced by

movements in both right and left sides of the body, this design space can be drastically reduced

by analyzing the characteristics of the acquired signals and discarding those configurations

that present symmetrical sources (i.e. similar data from a node and the equivalent one on

the opposite side). For instance, a configuration presenting nodes placed on the right and

left upper arms (RUA+LUA) provides a similar classification quality that the configuration

presenting one of them. In addition, mirrored configurations (e.g., LLL+RUL and RLL+LUL)

provide similar performances and therefore considering only one of them is sufficient.

Figure 2.18 shows the classification quality of the considered configurations that achieve more

than 85% accuracy. According to the depicted data, the configuration that achieves the best

results with a limited number of nodes is the one comprising the chest, and two sensors

located on the right thigh and on the left crus. This result reflects the ability of the nodes

on the legs to discriminate among static activities, and the ability of the node on the chest

to distinguish among dynamic ones. Overall, the proposed WBSN effectively exploits the

information coming from the three sensors to achieve an accuracy of 97.2%, thus improving

the results of [72] (95%), which is based on a similar classification method and is currently the

most accurate work in the literature.

Table 2.6 shows the row-normalized confusion matrix for the NFC. As expected, most of the

activities are correctly predicted. The main source of error is the distinction between walking

upstairs and downstairs: this can be explained by the similar mechanics of the two activities,

which are discriminated by the classifier relying only on the orientation of the chest.

On the other hand, the node-based classification (using the decision tree discussed in Sec-

tion 2.4.4.1) achieves lower accuracy, which is caused by the limited computational capabilities.

In particular, the proposed classifier achieves an accuracy of 88% with the three selected nodes,

a result that is comparable to the existing approaches based on decision trees [9]. Although

the on-node classification is 9.2% less accurate than the NFC running on the smartphone, it
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Figure 2.18 – Classification accuracies of the proposed NFC for smartphone-based classifica-
tion, with multiple combinations of node placements

requires a considerably lower overhead in terms of power consumption and data transmission,

as discussed in the following section.

2.4.5.4 Transmission Volume Reduction

While the smartphone-based classification is the best option from the accuracy point of

view, the required transmission bandwidth of the on-node classification alternative makes

it more competitive when analyzed from an energy efficiency perspective. In order to study

the transmission-accuracy tradeoff, a quantitative analysis of the bandwidth required by the

on-node and the smartphone-based classification strategies is presented in this section. In

both configurations the traditional feature extraction provides a massive reduction of data

transmission with respect to raw data streaming, which can be estimated to be approximately

98.4% with the selected sampling frequency (50 Hz). On top of this, significant savings can

be achieved by employing on-node classification, and by accepting its lower accuracy. For

the sake of illustration, the reported bandwidth estimations do not account for the packet

overhead introduced by the underlying transmission protocol.
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Table 2.6 – Confusion matrix of the proposed Neuro-Fuzzy Classifier (The values are row-
normalized)

Dw Up Si La St Wa Ru

Downstairs (Dw) 88.7 4.1 1.0 4.1 0.0 2.1 0.0
Upstairs (Up) 3.4 95.5 0.0 0.0 0.0 1.1 0.0

Sitting (Si) 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Laying (La) 0.0 0.0 0.0 100.0 0.0 0.0 0.0

Standing (St) 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Walking (Wa) 3.3 0.0 0.0 0.0 0.0 96.7 0.0
Running (Ru) 0.0 0.0 0.0 0.0 0.0 0.0 100.0

On the one hand, in the proposed smartphone-based classification, each of the nodes sends

a new set of features to the smartphone with a rate of ρ transmissions per second (in the

proposed WBSN, ρ = 1/2, i.e., a new set every 2 s). Each of the features is encoded with 2 Bytes.

Hence, a total of 48 Bytes is required to encode all the 24 transmitted features, (i.e., the mean

and the variance of the three axes of all the accelerometers, plus the mean and variance of

three axes of the gyroscope on the chest). As a consequence, the required bandwidth for the

proposed network is 48 Bytes·ρ =24 Bytes/s.

In the proposed on-node configuration, on the other hand, only the two sensors on the legs

are sending features to the node on the chest, and only three of these features are required

(see Figure 2.16): the standard deviation of the x-axis of the crus, the mean of the z-axis of the

crus, and the mean of the x-axis of the thigh, totaling to 6 Bytes. The node on the chest is in

charge of transmitting the following data to the smartphone:

• One byte to communicate a new activity, every time a change is detected. This contribu-

tion to the overall bandwidth can be further divided into two parts: the first one is due to

the actual number of times the subject changes activity during the observation period

(let us denote this number by Δ). The second contribution is due to the situations when

the classifier incorrectly predicts the current activity: in the worst case, this requires

a transmission to communicate the erroneous activity, and a second one when the

prediction is corrected. Let us denote the accuracy of the on-node classifier by αnode

(in the proposed network, it is equal to 88%). The traffic generated due to erroneous

classification can thus be estimated as 2(1−αnode )ρ Bytes/s;

• A periodic probe message (1 Byte) to check whether the connection is alive. We denote

this overhead traffic by Ω (measured in Bytes/s).

Overall, the number of packets transmitted in the on-node classification scenario is equal to:

Bon−node = 6 ·ρ+Δ+2 · (1−αnode ) ·ρ+Ω [Bytes/s] (2.19)

Assuming that the actual activity changes (Δ) are in the order of ten times per hour (which is
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realistic, considering that sleep periods are also included in the average), and that the overhead

(Ω) was unfavorably assumed to be in the order of 1 packet per minute, the contribution

of the mispredicted activities dominates the traffic between the node on the chest and the

smartphone. Still, according to this worst-case estimation, the global network traffic is equal to

approximately 3.14 Bytes/s, i.e., 86.9% savings with respect to the more accurate smartphone-

based classification.

2.5 Summary and Concluding Remarks

In this chapter I have introduced two complementary strategies to improve energy efficiency

of state-of-the-art applications executing in WBSN-based biomedical monitors. On the one

hand, at the sensor node level, I have proposed the utilization of a heartbeat classifier to

perform selective advanced DSP in ECG single-node biomedical monitors. The classifier only

activates the costly DSP analysis routines in case of detecting an abnormality in the heartbeat

morphologies. The proposed implementation consists of a lightweight, heartbeat neuro-

fuzzy classifier coupled with a feature extraction technique based on Random Projections.

Experimental results show that the accuracy of the proposed classifier when identifying

abnormalities can reach up to 98.9% keeping a low rate of mis-classifications. With respect to

a typical system that is continuously performing DSP analysis, my proposed approach can

reduce the duty cycle and transmission volume of an ECG biomedical monitor by up to 60%

and 64%, respectively.

On the other hand, at the sensor network level, I have proposed an energy- and transmission-

aware WBSN devoted to the identification of physical activities. The system is composed of

several nodes deployed throughout the body of the subject and interfaced with a smartphone.

In particular, two classification schemes, which trade accuracy for transmission volume, are

proposed. First, the highly accurate smartphone-centric alternative is based on an NFC

that exploits the high computational resources available on the mobile phone. Second, the

transmission-aware scheme performs on-node classification employing a decision tree and

minimizing the data transmission. According to the experimental results, the high-precision

classification reaches 97.2% accuracy while the on-node option reduces the transmission

volume by up to 86% with a small classification degradation, leading to a 88% accuracy.
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3 Synchronization-Based Ultra-Low
Power Multi-Core Architectures

3.1 Introduction

Recent advances in embedded bio-signal analysis have changed the landscape of health

monitoring applications, allowing for continuous digital signal processing (DSP) directly on

low-power Wireless Body Sensor Nodes (WBSNs) [15]. In addition to acquisition and wireless

transmission of sampled data, state-of-the-art WBSNs embed advanced real-time applications,

able to automatically retrieve relevant diagnostic data such as the analysis of respiration or

heart rhythm [16] and the detection of epileptic seizures [17].

Energy efficiency is a fundamental aspect of this portable autonomous systems devoted to

perform bio-signal analysis, where a considerable amount of processing is performed with

limited energy supplies. An effective technique to achieve computational power savings is

supply voltage scaling, all the way to the sub-threshold region. In the literature, voltage scaling

has been extensively analyzed, including its limitations and disadvantages [21] [22] [23].

One of the main issues with low-voltage operation is performance degradation, which can

limit the degree of achievable voltage scaling for a given processing requirement. Parallel

computing using multiple cores can alleviate this issue, provided that applications can be

parallelized. To this end, in [84] near threshold low-power multi- and single-core architectures

are compared in terms of power and performance ability for several multi-channel bio-signal

processing applications. It has been shown that the multi-core approach achieves better

energy efficiency compared to the single-core approach for medium and high workloads [85].

3.1.1 Parallelism in Bio-signal Processing Applications

Bio-signal analysis applications consist mostly of moderately complex sequences of arithmetic

manipulations on single- or multi-input biological signals. As shown in [10] and [12], this ad-

vanced signal processing can be carefully optimized to run in real-time on typical embedded

low-power micro-controllers. The analysis of these multiple-input signals highlights consider-
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able parallel computation opportunities, which can be exploited on multi-core processing

platforms in conjunction with low voltage operation to achieve energy savings.

First, DSP algorithms applied over multiple streams of data can be parallelized to execute

in low-power multi-core platforms by performing the processing of each of the streams in a

different core. This strategy follows the single-instruction multiple-data (SIMD) paradigm

and has been previously studied in the literature [84], [86]. However, this technique offers

good energy savings only when executing purely parallel applications (i.e. without conditional

segments of code).

Second, software pipelining of different algorithmic phases can be exploited by executing

each of the phases in one or many cores. As in the SIMD case, this arrangement divides the

application workload into different cores, thus reducing the required system clock frequency.

Nevertheless, this workload division requires efficient core-to-core notification mechanisms

to properly manage producer-consumer relationships in order to avoid costly active waitings

or imprecise periodic polling.

3.1.2 Contributions and Outline of this Chapter

In this chapter I first present a low-power multi-core architecture featuring a hybrid hardware/-

software synchronization technique that allows maximizing SIMD execution while executing

multi-channel parallel applications. This architecture is the result of a research collabora-

tion between Jeremy Constantin from the Telecommunications Systems Laboratory (EPFL,

Switzerland), Ahmed Dogan from the Embedded Systems Laboratory (EPFL, Switzerland) and

the author of this thesis, Rubén Braojos. More precisely, the proposed architecture is able to

recover synchronization after data-dependent branches by forcing the cores to wait for others

in order to continue executing in lock-step. In the second part of this chapter, I generalize the

synchronization technique in order to support any existing bio-signal processing application.

To this end, the first proposed architecture is minimally modified and a new synchroniza-

tion mechanism to efficiently support producer-consumer relationships is implemented. In

particular the key contributions of this chapter are:

Synchronization-basedmulti-core architecture for parallel bio-signal processing:

• I present a low-power architecture featuring a novel synchronization methodology

based on the insertion of dedicated instructions to recover lock-step execution among

cores after diverging in data-dependent segments of code.

• I describe the required hardware and software support, namely a full-custom lightweight

hardware synchronizer and a dedicated instruction set extension of the processing cores.

• I detail the mechanism employed to achieve the re-synchronization after execution of

conditional segments of code.
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• The obtained results show that the target low-power multi-core architecture achieves

high energy savings of up to 38% while only increasing its area footprint by 2%.

Advanced synchronization technique for arbitrarily parallel bio-signal DSP applications:

• I propose a generalization of the previously mentioned synchronization technique

in order to efficiently support the management of producer-consumer relationships

among cores.

• I describe the necessary steps to adapt any existing bio-signal processing application to

adopt the proposed synchronization strategy.

• I study the performance and power consumption of three different state-of-the-art

benchmarks from the field of embedded ECG processing, which represent real-world

applications with different workloads and runtime characteristics.

• The experimental evaluation shows that the target low-power multi-core architecture

employing the proposed advanced synchronization technique can obtain up to 40%

energy savings while executing the studied benchmarks.

The remaining of this chapter is organized as follows. First, Section 3.2 reviews the main

efforts in the field of low-power embedded singe-core and parallel multi-core architectures.

It gives a detailed description of the MIMD parallel architecture proposed by [84] and the

TamaRISC core, which are the base of the work presented in this chapter. Then in Section 3.3, I

propose a low-power multi-core platform featuring a synchronization technique that provides

high energy efficiency while executing multi-channel bio-signal applications. Afterwards, in

Section 3.4, I present a generalization of the synchronization technique that allows efficient

execution of any DSP application regardless off its degree of parallelism. Finally, Section 3.5,

summarizes the content of this chapter and discusses the possible improvements that can be

explored to make the proposed architectures more energy efficient.

3.2 Low-Power Single- andMulti-Core Architectures for Bio-Signal

Processing: State of the Art

In this section I provide a summary of the most relevant works in the field of low-power

architectures devoted to embedded processing, highlighting those contributions that focus on

performing energy-efficient bio-signal processing.

3.2.1 Low-Power Single-Core Architectures for Bio-Signal Analysis

In the field of low-power embedded architectures, several different strategies have been

proposed to reduce the consumption of the proposed systems. These adopted strategies can

be classified according to the flexibility of the platforms, which in general is traded for a higher

59



Chapter 3. Synchronization-Based Ultra-Low PowerMulti-Core Architectures

energy efficiency. For instance, application-specific integrated circuits (ASICs) have been

widely proposed for some specific bio-signal processing applications providing a very low

energy consumption [18] at the price of a very limited applicability. On the opposite side,

general purpose processors for embedded processing (e.g. ARM-based architectures [87])

are commonly used to implement portable and handheld monitoring devices due to their

flexibility. However, due to the low energy efficiency of these architectures, such devices are

frequently employed during short periods of time.

While ASICs have been integrated in many proposed platforms for health monitoring and

specially in the field of ECG processing [88] [89] [90] [91], these options do not provide any

programability or configurability, reducing the field of application to the specific task for which

they were designed, and therefore making them not suitable for more general biomedical

monitors, which need to cover an extensive diversity of bio-signal processing applications.

Some of the routines present in these applications have been optimized to be executed in

accelerators that are integrated in hybrid systems in which a more general processing unit is

employed [92] [93] [94] [38], providing a higher versatility. Such systems can be composed of

several of these accelerators interfaced with a programable processing unit that can execute

the tasks that cannot be performed by the dedicated hardware. For instance, in [18], the

proposed heterogenous system can achieve a high energy efficiency thank to the utilization of

ad-hoc accelerators for bio-signal processing subroutines such as the ones involved in Finite

Impuluse Resopnse (FIR) filters and Fast Fourier Transform (FFT). In practical terms, this

type of systems can be employed in a wider application domain but their energy efficiency is

influenced by several factors. First, the algorithmic steps to be accelerated need to be known at

design time and the corresponding dedicated hardware needs to be specifically designed and

integrated in the system, which has a non-negligible impact in chip area and design difficulty.

Second, those tasks that are not performed by the ad-hoc modules are executed in the general

purpose processor of the system, which is typically much less energy-efficient, impacting

negatively in the overall system consumption.

In an effort to increase the versatility of bio-signal processing platforms, many studies [95]

[96] [97], have employed commercial off-the-shelf (COTS) general purpose low-power pro-

cessors. One of the most important one is the MSP430 System-on-chip (SoC) from Texas

Instruments [98], which is employed in research and commercial platforms [99] [30] [100].

Apart from the MSP430 family, other alternatives such as system-based on the ARM processor

[87], have gained a lot of popularity in the last decade in the field of wearable sensor nodes

and handheld devices due to the availability of basic low-power configurations. In general,

COTS are very constrained, featuring few kilobytes of memory, and running at very low clock

frequencies (e.g. MSP430 is clocked at 8MHz) in order to obtain maximum savings. Even

though these platforms offer different sleeping or inactive regimes to achieve energy efficiency,

some low-power techniques such as voltage scaling cannot be exploited due to performance

degradation that would not allow meeting the computational requirements of bio-signal

processing applications.
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In this context, several works have adopted a different approach by proposing custom im-

plementations of existing general purpose Instruction Set Architectures (ISAs) to achieve a

superior energy efficiency by applying low-power techniques when compared to the corre-

sponding COTS alternative. For instance, in [101] the authors show how a custom implemen-

tation of PIC16 ISA, one of the well established ISAs from Microchip Technology, can achieve

up to 100x energy reduction per instruction with respect to an equivalent MSP430-based

COTS micro-controller [102]. Several of these works target low-power systems devoted to

perform long-term monitoring at very low sampling frequency without requiring high com-

putational power. These options are not suitable for low-power wearable monitors, which

perform complex and continuous bio-signal processing in real time. In this direction, Domain

Specific Instruction-Set Processors (DSIPs [103]) are designed for a specific application do-

main, such as the bio-signal processing one, but not for a specific functionality. Recent works

described in the following subsections have proposed specific ISAs that provide the neces-

sary performance at low power thank to their energy-aware design. The first, named Firat

[13], is a PIC-compatible ISA for bio-signal processing that showcases how near-threshold

voltage scaling can be applied to obtain energy efficiency in well established general purpose

architectures. The second, TamaRISC [104], is a simpler and custom reduced-instruction-

set-computing (RISC) architecture, which is a cornerstone of the proposed ultra-low power

multi-core architectures described in the remaining of this thesis.

3.2.1.1 Firat: A Low Power PIC-compatible ISA

Firat is a RISC architecture based on the instruction set of the PIC24 [105] featuring a Harvard

memory model. In particular, Firat implements a subset (66 instructions) of the PIC24 stan-

dard excluding those that are intended to access big amounts of data stored in the program

memory through the data-path. The instruction types include arithmetic logic unit (ALU)

operations, program flow and control operations, bit-oriented operations, single- or multi-bit

shifts and data-move operations. The ALU instructions comprise addition and subtraction

with and without carry, logic operations (XOR, AND, OR) and 16-bit signed and unsigned

multiplication. The ALU features in addition hardware support for integer division, based

on an iterative non-restoring algorithm. Both arithmetical and logic shift operations are sup-

ported employing a typical barrel shifter. The program flow and control operations (CALL and

RETURN) can address the instruction memory with a direct mode or relative to the program

counter. Furthermore, branching is possible in direct or indirect modes, with different con-

dition modes dependent on the ALU status register consisting on the commonly used carry,

zero, negative, and overflow flags. Move instructions perform single or double data transfers

between the register file and the data memory. Finally, the ISA also has support to manage

interrupt sources and to clock-gate the entire architecture (SLEEP) by means of specialized

instructions.

While the bit-width of the built-in data-path is 16 bits, Firat supports 32-bit operations. Each

instruction however is encoded in 24 bits and the access to memory can be performed at a
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Figure 3.1 – Firat core architecture [107].

byte level. Firat provides a low CPI (cycles per instruction), since all the instructions, except

CALL and RETURN, are executed in a single clock cycle, which, as shown by the authors of

[106] leads to high energy efficiency. The internal core architecture depicted in Figure 3.1,

is implemented as a traditional three-stage pipeline including fetch, decode and execution

stages. On the storage side, Firat features an internal register file including 16 working registers

and can access to data memory through two dedicated read and write ports. To minimize the

CPI, Firat includes a single-instruction prefetch mechanism and allows for data bypassing

from the execution stage to the register file in order to avoid read-after-write hazards. When

supplied with the nominal voltage of the library used to implement it (90nm CMOS technology,

1.2V), the average energy spent by each instructions reaches 30 pJ. In comparison to an

equivalent PIC-based COTS, the architecture con obtain up to 890x energy savings [107]

providing even better performance for bio-signal analysis applications due to the feature

data-path optimizations. Even though this improved energy efficiency outperforms the state-

of-the-art architectures, the DSP stage on bio-signal processing systems remains one of the

main contributors to the overall power consumption highlighting the necessity of even more

energy-efficient implementations.
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3.2.1.2 TamaRISC: a custom low-power ISA for Bio-Signal Processing

TamaRISC was proposed in [104] as an alternative simplified RISC architecture to perform

bio-signal processing. Current RISC ISAs, as the previously discussed Firat, can obtain great

energy efficiency and reduced CPI but are still very complex due to the availability of specific

hardware that a-priori may not add extra benefits for bio-signal processing applications (e.g.

advanced addressing mechanisms and decoding logic). Instead, TamaRISC offers an extremely

reduced set of instructions (11 against the 66 available in Firat), that can cope with all the

typical computational requirements of bio-signal processing reducing a lot the hardware

complexity of the architecture.

TamaRISC implements a Harvard-like architecture featuring a three-stage pipeline including

fetch, decode and execution stages. The diagram of the core architecture is depicted in

Figure 3.2. The data-path width is 16 bits and it incorporates a local register file of 16 registers

(16 bits each). In addition, the core is interfaced to the instruction memory (IM) through a

read port and to the data memory (DM) through two ports, one for reading and another one

for writing respectively.

As mentioned before, the core simplification relies on the aggressive reduction of the instruc-

tion set that includes 11 base instructions and the possibility to be extended with custom

instructions. The instruction types include 8 arithmetic-logic (ALU) operations, 2 program

flow instructions and 1 general data move operation. The ALU instructions comprise addition

and subtraction with and without carry, logic operations (XOR, AND, OR), right and left shift

(arithmetic and logic) and 16-bit signed and unsigned multiplication (with 32 bit results).The

general branching instruction supports direct and register indirect mode, as well as by offset

with respect to the program counter, and it can be conditionally executed according to the

commonly used carry, zero, negative and overflow flags. In addition, an instruction to perform

function calls (CALL) is supported implemented as a "branch and link" to a fixed address.

Conversely to Firat, all instructions take a single cycle to be executed in TamaRISC. This is

possible thank to the bypassing of data from the execution to the decode stage that allow single-

cycle memory-to-memory instructions. Moreover, the architecture complexity is considerably

reduced thanks to the regular 24-bit instruction encoding that allows for simplified decoding

hardware. In addition, all the ALU operations in the execution stage receive 3 operands that

are obtained by using the same addressing modes, greatly lowering the complexity of the

required logic devoted to this task.

Regarding the energy efficiency of TamaRISC, the ISA outperforms state-of-the-art equivalent

architectures obtaining an average 17.1 pJ per instruction when supplied with the nominal

voltage of 1.2V. In addition, TamaRISC supports voltage scaling as shown in [13] allowing

for a further energy efficiency. For instance, at 1.0V and for the same workload, TamaRISC

outperforms by 4x the work of [18]. The simplified architecture and high CPI allows obtaining

very good performance at a low power consumption.
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Finally, TamaRISC allows for instruction set extensions (ISEs) that can be leveraged to fur-

ther improve the performance and efficiency of the platform. For example, the authors of

[38] proved that by adding a minimal hardware support and an extra instruction to the ISA,

TamaRISC could improve its energy efficiency by a factor of 11.6x obtaining a 62x execution

speed-up while performing ECG Compression (see Section 2.2.4 in Chapter 2). TamaRISC and

an ISE are later used in this thesis to implement an efficient synchronization mechanism when

multiple instances of the processor are combined in a ultra-low power multi-core architecture.

3.2.2 Low-PowerMulti-Core Architecture for Bio-Signal Processing

Aggressive voltage scaling has been proposed as an energy-saving strategy to reduce power

consumption of low-power systems. However, the degradation suffered by the transistors when

approaching the near-threshold regime reduces drastically the computational capabilities of

these platforms, leading to a performance loss that is incompatible with the requirements of

bio-signal processing. In this context, low-power parallel architectures, such as multi-core

systems, have been proposed as an alternative to first improve performance, and second

counteract the degradation effect while still exploiting aggressive voltage scaling.

Many parallel architectures have been proposed in the literature to perform digital signal
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processing at low-power regimes. In particular, near-threshold memories [108] [109] have

raised an important interest in the last few years since they provide low power consumption at

the cost of suffering from reliability issues that can be tolerated by employing low-overhead

mitigation techniques. Following the path of near-threshold computing, the work of [110]

proposes a parallel architecture based on a cluster of multi-core tiles that shared locally a fast

cache memory. However, the multi-level memory hierarchy is complex and voltage scaling is

only applied over the processing cores requiring the utilization of voltage level converters and

extra logic to manage the different voltage regions. On a more specific domain, the inclusion

of dedicated hardware that exploits parallelism while working at near-threshold technique

has been also proposed in [111], where a JPEG compression application is executed by means

of a co-processor able to counteract the performance loss suffered by reduction of the voltage

supply.

Following a different approach, the authors of [112] and [113] proposed architectures that

exploit parallelism at the application level by featuring several execution lanes in their data-

paths. The first one consists of a custom-design architecture featuring hardware support to

perform single-instruction-multiple-data (SIMD) operations at the micro-architecture level.

The second one, instead is a VLIW architecture to perform multi-signal parallel processing.

Nevertheless, both architectures target computing-intensive signal processing tasks and min-

imize energy consumption delivering the necessary throughput at high clock frequencies,

exploiting aggressive power-gating during long idle periods.

Finally, in the field of low-power embedded platforms, [84] show a good evaluation of existing

single- and multi-core configurations for bio-signal processing. In particular, the authors

propose a parallel architecture that compensates the performance degradation due to voltage

scaling by exploiting the intrinsic parallelism of bio-signal processing applications. This

multiple-instruction multiple-data (MIMD) architecture is described in detail in the following

section and can be considered the precursor architecture of the ultra-low power architecture

proposed in this thesis.

3.2.2.1 Low-PowerMulti-coreMIMDParallel Architecture

The parallel platform proposed by [84] depicted in Figure 3.3 consists of a multi-core Harvard

architecture in which several processing units (i.e. cores) are interfaced to shared but separated

instruction and data memories (IM and DM respectively). In particular, the architecture

features 8 TamaRISC processing cores (c.f. Section 3.2.1.2), which offer one of the best tradeoffs

in terms of performance and energy per instruction providing a very reduced instruction set

with enough hardware support to efficiently perform bio-signal processing. As dictated by

these processors, the base architecture data bit-width is 16 bits while the instructions are

encoded in 24 bits. Both instruction (32K words of 24 bits) and data memory (32K words or

16 bits) are implemented as multi-banked separated memories interfaced to the cores by

instruction and data crossbars (I-Xbar and D-Xbar respectively).

65



Chapter 3. Synchronization-Based Ultra-Low PowerMulti-Core Architectures

CoreBank-0

Bank-1

Bank-7

Bank-0

Bank-1

IM CORES DM

I-
X
ba

r

D
-X

ba
r

PID=0

PID=1

PID=7

Core

Core Bank-15

Figure 3.3 – Low-power multi-core MIMD parallel architecture presented in [84].

The design of the interconnects between cores and memories is a key aspect carefully opti-

mized in this platform. The D-Xbar and I-Xbar are implemented as separate Mesh-of-Trees

(MoT) networks to support high-speed combinational access from the cores to the memo-

ries at a low-power regime [114]. While the I-Xbar supports only read access, the D-Xbar is

implemented as two independent MoTs that support concurrently write and read accesses.

In all cases the latency of the memory is one clock cycle unless there is a conflicting request

in which two or more cores request different words from the same memory bank during the

same clock cycle. In those cases, the interconnect is able to serialize the access serving them

in order following a round-robin-like strategy. In addition, I-Xbar is provided with a novel

broadcasting mechanism that merges several read requests to the same word during the same

clock cycle into a single memory access that is then forwarded to all the requesting cores. As

shown by the authors of [84], this design choice is specially beneficial in parallel bio-signal

processing applications where algorithmic steps are performed concurrently over different

streams of data. However, the exploration of further optimized interconnects is an extensive

field of research that falls out of the main scope of this thesis.

The energy-aware memories are evenly divided into different banks that can be individually

power-gated at boot time if not needed by the desired parallel application. More precisely, the

instruction memory is divided into 8 banks while the data memory is divided into 16. This

configuration, justified in [107], may result intuitive since a core can only access an instruction

memory location at a time, thus, requiring 8 IM banks if, in the best possible case, each core

accesses one bank. Similarly, a core can access two data locations within a clock cycle (one
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read request and one write request), thus, justifying the division in 16 banks. At the logic level,

the address space of the data memory is split in a shared region common for all cores and a

private one that is equally divided into subspaces (one per core) managed by a lightweight

address translator equipped in the TamaRISC micro-architecture.

The platform targets energy efficient execution of multi-channel bio-signal analysis appli-

cations maximizing the benefits of a single-instruction multiple-data (SIMD) strategy while

still providing MIMD support. Therefore, only purely parallel applications lacking from any

data-dependent code can fully exploit the benefits offered by this architecture. While this type

of applications may be present in the bio-signal DSP domain, it is not representative as, first,

not all applications perform parallel processing over multiple streams of data, and, second,

conditional code execution is normally required in the involved algorithms. However, the

authors showed that for a multi-lead ECG Compress Sensing application (c.f. Section 2.2.4 of

Chapter 2) the proposed platform can achieve up to 38% extra energy savings with respect to

an equivalent multi-core architecture. The energy efficiency improvement is dominated by

the great reduction (up to 40.6%) in the active power consumption of the instruction memory

thanks to the syncrhonuous access and the implemented broadcasting mechanism. However,

these gains are diminished when cores lose synchronization leading to a minimal reduction

in power consumption and low possibilities to exploit the intrinsic parallelism of bio-signal

processing applications.

3.3 ProposedSynchronization-BasedMulti-CoreArchitecture forPar-

allel Bio-Signal Processing Applications

As previously highlighted, one of the key contributors to the overall power consumption that

can be improved by employing a parallel architecture is the active power dissipated by the

instruction memory due to the high amount of accesses. In fact, a first attempt to alleviate

this issue, previously described in Section 3.2.2.1, was presented in [84] where the authors

propose to reduce accesses to the instruction memory by employing a crossbar interconnect

that supports broadcasting. However, the benefit of broadcasting (up to 40.6% active power

savings [84]) relies on lockstep execution of algorithm parts that can be performed using the

single instruction multiple data (SIMD) processing paradigm. As a consequence, substantial

power savings can only be achieved by synchronous instruction execution, which even for

many embarrassingly parallel applications is not guaranteed, due to data dependent program

flow as well as data memory access conflicts, which bring the processing cores out of lockstep.

Barrier insertion techniques are widely used in parallel computing architectures to achieve

synchronization [115]. Cores are synchronized at certain barrier points of execution, i.e., a

core is stalled until all other cores reach the same point. In the literature, many software-

only [116] and software-hardware hybrid implementations of barriers are proposed [117].

However, these techniques are rather complex for an embedded lower-power platform, where

both energy efficiency and low complexity, due to real-time applications, are critical. More-
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over, mainstream SIMD architectures (e.g., GPUs) lack the flexibility needed for dynamically

managing lockstep execution of cores during data-dependent program flows. Multi-core

synchronization has been mostly proposed for high-performance computing (HPC) [118].

However, software-based HPC protocols cannot be applied in a scenario such as the targeted

embedded multi-core processors. First, these platforms typically do not embed an operating

system capable of providing the necessary runtime support for such protocols. Second, the

resources of these platforms are very limited, usually delivering a throughput of few mega-

operations per second and featuring some tens of kilobytes of memory. As a consequence, the

energy overhead due to the utilization of complex software-based protocols would not com-

pensate for the potential savings. For all these reasons, in this thesis I propose a light-weight

hardware/software synchronization mechanism, which provides the necessary support to

achieve reduced power consumption on low-power multi-core architectures.

3.3.1 Target Multi-Core Processing Architecture

The target multi-core architecture (c.f. Fig. 3.4) is an extension of the one proposed in [84],

which is described in Section 3.2.2.1. The resulting architecture was developed and imple-

mented with the help of Jeremy Constantin, who defined the model of the processing cores,

and Ahmed Dogan, who made the HDL implementation of the multi-core platform and the

power/area characterization. It consists of 8 processing TamaRISC cores (c.f. Section 3.2.1.2),
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a shared data memory (DM, 64 kByte in total, divided into 16 banks) and a shared instruction

memory (IM, 96 kByte in total, divided into 8 banks). Central data and instruction crossbars

(hereafter D-Xbar and I-Xbar, respectively) interconnect the shared memories and the process-

ing cores. In case of multiple conflicting memory access requests (occurring when a memory

bank is accessed by more than one core at different memory locations), the cores are served

in sequence and the waiting cores are clock gated. Each TamaRISC core consists of a custom

16-bit reduced instruction set computing (RISC) architecture [85], providing a complete RISC

instruction set including instructions for interrupt and sleep mode support. The sleep mode

allows external clock gating of the entire core, until a wakeup event occurs.

The platform aims at supporting SIMD operation to exploit data level parallelism typical in

bio-signal processing applications. To this end, this new multi-core architecture improves the

one in [84] by featuring a light-weight hardware synchronizer that cooperates with the cores

to coordinate lockstep execution of code.

3.3.2 Proposed Synchronization Technique

The substantial power savings achieved through SIMD operation highly rely on synchronous

code execution among the cores. A loss of synchronization between the cores can occur

mainly due to two reasons: data access conflicts and data-dependent program flow.

A data access conflict occurs when a DM bank is accessed by more than one core at different

memory locations during the same clock cycle. In this case, the cores that have been served

continue their code execution while the rest of the cores wait for data to be served. The

proposed technique aims at addressing this issue by enforcing lockstep execution. This

enhancement stalls synchronous cores until all of them have been served successfully. When

a data access conflict occurs, to detect whether the cores are synchronous, their program

counters are compared and monitored in combination to the stall signals provided by the

crossbar interconnect when conflict arbitration is needed.

The second reason leading to a loss of synchronization is related to the conditional change

of the program flow. Many applications involve data-dependent code sections which lead

to conditional execution of different parts of the code and, consequently, a natural de-

synchronization. we propose to address this problem with a lightweight synchronization

technique characterized by the following steps:

1. The target application needs to be analyzed in order to find data-dependent code

sections. For instance, for the Code Excerpt 3.1, Figure 3.5 depicts the program flow.

In the figure, A, B and C (herein referred as check-in points) are the beginning of the

data-dependent code sections, whereas A’, B’ and C’ (referred as check-out points) are

the points where the corresponding data-dependent code sections end. As shown by the

figure, the conditional segments of code can contain more data-dependent segments

that also must be identified.
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Code Excerpt 3.1 Example of data-dependent code excerpt

1: function data_dependent_example()
2: {

3: ... in lock-step

4: switch(condition_1) //...check-in A

5: {

6: case 1:
7: switch(condition_2) { //... check-in B

8: case 1:
9: conditional_code_1();

10: break;
11: case 2:
12: conditional_code_2();

13: break;
14: case 3:
15: conditional_code_3();

16: break;
17: } //...check-out B’

18: break;
19: case 2:
20: conditional_code_4();

21: break;
22: default:
23: if(condition_3) //... check-in C

24: conditional_code_5();

25: else
26: conditional_code_6();

27: end

28: break; //... check-out C’

29: } //... check-out A’

30: ...continue in lock-step

31: }

2. For each data-dependent section, a memory position (synchronization point) is reserved

in memory to annotate the execution status when a core arrives to the check-in and

check-out points. In these memory positions (see Figure 3.6), 1-bit core identity flags

and total number of cores currently running the corresponding data-dependent code
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section are stored.

3. Once a core arrives to a check-in point, the corresponding synchronization point is

modified by setting the identity flag and incrementing the core counter indicating that a

core has started but not finished the data-dependent segment of code.

4. When a core arrives to a check-out point, the core counter is decremented leaving the

identity flag untouched and indicating that the core has finished the conditional piece

of code. The arriving core is forced (clock-gated) to wait for the other cores, expected to

arrive at the same check-out point, to resynchronize. Once all the expected cores reach

the check-out point, the core counter becomes zero which indicates that all the cores

can continue their execution in lockstep (clock-gating can be disabled).

3.3.2.1 Software Support: Dedicated Synchronization Instructions

To support the above-described strategy, we implemented a custom instruction set extension

(ISE) of the target TamaRISC architecture and added two dedicated instructions (SINC and

SDEC) and a core output (lock signal) to support the check-in and check-out processes.

More specifically, SINC and SDEC are dedicated to the check-in and check-out processes,

respectively, whereas the lock output signal is used to ensure atomicity in the read-modify-

write operation serializing concurrent check-in/check-out processes.

Apart from the ISE, the microarchitecture of the core has suffered small changes to support

the new functionality. First, a specific core register (Rsync ) is used to store the base address of

the reserved DM region where the synchronization points are stored. Second, based on this

register and the only input operand of the synchronization instruction (a literal indicating

which synchronization point to modify), the core address generator of the decode stages has

been accordingly modified. Third, the new lock signal has been implemented to be activated

during the realization of the synchronization instruction (2 cycles). The details of the ISE are

the following:

• SINC: The assembler semantic is: SINC #literal. The literal stands for the synchro-

nization point index which addresses the position of the synchronization point in the

assigned DM reserved region. The instruction reads data from the memory address,

calculated by adding the literal value to the Rsync base address register. This read data is

forwarded to the write port (without any manipulation since the corresponding modifi-

Figure 3.6 – Example of dedicated synchronization point stored in data memory. The values
show that 3 cores have checked-in and only one has reached the check-out point.
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cations are performed in the synchronizer), and the core output indicating a check-in

request to the synchronizer is activated (c.f. Fig 3.4).

• SDEC: The assembler semantic is: SDEC #literal. It is similar to SINC, but the output

indicates a check-out request. In addition, after requesting the check-out the core goes

into sleep mode (self clock-gating) until a wake up occurs (i.e., when all expected cores

reach to the check-out point).

• Lock Output Signal: This output is activated when SINC and SDEC instructions are

executed. This signal locks the memory position, accessed via the instructions, until it

has been modified with the new value for serializing not synchronous memory accesses

among the cores in sequential check-in/check-out processes.

3.3.2.2 Hardware Support: Synchronizer

In order to follow the strategy previously defined, the ISE is not enough to orchestrate the

execution of code. For instance, self-clock-gated cores, after performing a SDEC instruction,

need to be waken-up to resume execution when all involved cores in the data-dependent

segment of code have reached the corresponding check-out point. To this end, as depicted in

Figure 3.4, a new synchronization unit responsible for providing this functionality has been

interfaced to the system.

Usually, several cores reach a check-in point together and then the cores may branch to

different conditional code path. Depending on the taken conditional code sections, the

cores can reach the corresponding check-out point together, separately, or some of them

together while the others separately. To check-in/check-out a core needs two clock cycles,

since a memory read and then a memory write are needed. The synchronizer merges multiple

check-in/check-out requests for a synchronization point and modifies the assigned memory

position, accordingly. The synchronization point status is updated with the new identity flags

and the core counter (incremented for check-in and decremented for check-out). Merged

check-in/check-out requests are also executed in two clock cycles.

As previously mentioned, when all the expected cores reach a check-out point, the core counter

becomes zero. In this case, the synchronizer wakes up all cores waiting to be resynchronized

(indicated by the core identity flags), and the corresponding memory word is reset to zero.

In addition to managing re-synchronization after data-dependent branches, this unit also

enforces lock-step execution when one or more synchronous cores suffer a memory conflict

while accessing data memory. In such cases, the synchronization unit clock-gates all the

synchronous cores (identified by their equal program counter value) until all memory conflicts

are solved and cores can continue in lockstep.
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3.3.2.3 Synchronization Instructions Insertion

The proposed synchronization strategy requires the insertion of the SINC/SDEC instructions

between and after data-dependent segments of code. To this end, a small compiler modifica-

tion allows for inserting assembly instructions in the required locations by means of pragma

codes added directly to the application C code. For a given code the check-in and check-out

instructions are inserted as shown in the Code Excerpt 3.2.

Code Excerpt 3.2 Synchronization Points Insertion

1: function instruction_insertion_example()
2: {

3: ...in lock-step

4: SINC(<synch_point_X >)
5: if(<some condition >) {
6: conditional_code_B()

7: }

8: else {
9: conditional_code_C()

10: }

11: SDEC(<synch_point_X >)
12: ...continue in lock-step

13: }

These check-in and check-out instructions are inserted on each data-dependent conditional

statement (while/for loops, case/if-else statements, etc.). While manually implemented in

the current status of the work, this step can in principle be automated during the compilation

process by adding the proper rules in the compilation toolchain. However, this improvement

needs a deep knowledge of the compiler technology as well as a formal verification which is

out of the scope of this thesis, and therefore remains as an open topic for future work.

3.3.3 Experimental Results

I evaluate hereafter the effectiveness of the proposed synchronization strategy when used in

a low-power multi-core architecture. In the next subsections, I detail the employed set-up

for the experimental evaluation. Then I discuss the obtained performance metrics. Finally, I

evaluate the runtime performance, energy efficiency and area footprint of the target multi-core

architecture featuring the proposed synchronization technique.

3.3.3.1 Experimental Setup

To assess the proposed synchronization paradigm in terms of power and performance, we

implemented two multi-core designs, with and without the synchronization feature. Both

designs are synthesized in a 90 nm low-leakage process technology. For an accurate power
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analysis of the designs, toggling information while running the reference benchmarks is

obtained by simulating a fully routed design (including the clock tree) with back-annotated

timing information. The power values at scaled voltages are calculated considering that the

power decreases with the square of the supply voltage as shown in [107]. The scaling of the

operating voltages is limited to the transistor threshold voltage level to avoid performance

variability and functional failures occurring mainly at sub-threshold voltages.

In order to explore the power and performance of the synchronization strategy, three different

multi-channel benchmarks have been employed:

• Morphological Filtering (MF): This benchmark removes baseline wander and high-

frequency noise from the ECG signals employing the algorithm introduced by [37] as

described in Section 2.2.1.2 of Chapter 2. The algorithmic steps in this benchmark

present numerous blocks of conditional segments of code.

• Multi-scale Morphological Delineation (MMD): This application finds the so-called

ECG fiducial points, i.e. the onset, peak and end of the main ECG characteristic waves

(c.f. Figure 2.9). To this end, the algorithm decomposes and interpret the input ECG

signal by means of a morphological derivate [36] as explained in Section 2.2.2.2 of

Chapter 2. The underlying code presents few data-dependant branches of usually large

blocks of code.

• RMS Multi-channel combination (RMS): This benchmark is the smallest but more

computing intensive one. For a given set of multi-channel ECG samples acquired at

time t , the algorithm performs a root mean square (RMS) combination of the N input

channels as described in Section 2.2.3 of Chapter 2. The only conditional block of code

is located in the root square computation which is implemented following the iterative

algorithm described in [119].

The achieved minimum critical path delay at the nominal voltage (1.2 V) is 8.9 ns and 9.6 ns

for the architectures without and with the synchronization feature, respectively. The targeted

applications do not require such high clock frequencies, thus no vital timing issue is present.

A relaxed constraint of 12 ns gives good power results for both designs with and without the

synchronization feature [84], while still allowing for considerable voltage scaling.

3.3.3.2 Performance Results

In order to evaluate the improvement in performance obtained thanks to the proposed syn-

chronization technique, I report in table 3.1 the average amount of active cycles executed in

each of the studied benchmarks when processing a fixed window of samples. It is important

to note that an effective active cycle is counted as such when the architecture is not fully

clock-gated (i.e. at least one core is not clock-gated). In addition, all benchmarks have been

compiled using the same optimization flags and the instance of the benchmarks running
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Table 3.1 – Average number of cycles required to process a sample for the different studied
benchmarks

Baseline multi-core architecture Target multi-core architecture
without synchronizer with synchronizer

MF 779 328
RMS 652 352
MMD 1224 609

on the target system have been modified to include the specialized synchronization instruc-

tions. As a consequence, the runtime metrics reported for this system include the overhead of

executing the synchronization instructions.

As reported in Table 3.1, thanks to the resynchronization process, the average number of active

cycles per sample have been greatly reduced due to the synchronous access to IM that avoid

memory conflicts. As a result, considerable speed-up (up to 2.4x) have been achieved on

all the benchmarks despite the synchronization overhead. The target architecture featuring

the synchronization achieves between 2.5 and 5.2 instructions per clock cycle, whereas the

baseline multi-core architecture can only reach 2.0 for the best of the studied benchmarks.

3.3.3.3 Area Footprint

The total area footprint of the target system featuring the proposed synchronization technique

is 1154.8 kilo-Gates-Equivalent (kGE, where 1 GE≈3.136 μm2), which represents only a 2%

increase with respect to the multi-core baseline [84] (1128.8 kGE). In fact, the area footprint of

the chip is dominated by the instruction and data memory banks, which account for more

than 85% of the total area and remain unmodified.

At the processors level, for the baseline architecture the 8 TamaRISC instances were occupying

an area equivalent to 87.3 kGE, whereas in the new implementation the cores have been

modified to adopt the proposed ISE leading to a 16.1% increase (101.7 kGE in total).

Finally, the new synchronization logic adds an almost negligible amount of area to the total

account requiring only 4.6 kGE for the new block managing the check-in and check-out

points in data-dependent branches and 6.6 kGE for the necessary circuitry that forces lockstep

execution in case of memory conflicts.

3.3.3.4 Power Consumption

Table 3.2 reports the breakdown of the average power consumption of the multi-core base-

line and target platforms. The architecture featuring the proposed synchronization strategy

achieves up to 60% savings for the total number of IM bank accesses when running the em-

ployed bio-signal processing benchmarks. This reduction in memory accesses greatly impacts
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Table 3.2 – Dynamic power distribution of the architectures while running reference bench-
marks at 8 MOps/s and 1.2 V

Baseline multi-core architecture Target multi-core architecture
without synchronizer with synchronizer

Total 0.64 mW < P < 0.94 mW 0.47 mW < P < 0.58 mW
Cores 0.14 mW 0.16 mW
IM 0.20 mW < P < 0.36 mW 0.09 mW < P < 0.15 mW
DM 0.05 mW < P < 0.08 mW 0.06 mW < P < 0.08 mW
D-Xbar 0.06 mW 0.05 mW
I-Xbar 0.03 mW 0.02 mW
Syncronizer - 0.01 mW
Clock Tree 0.09 mW < P < 0.16 mW 0.05 mW < P < 0.08 mW

the power consumed by the IM, as seen in Table 3.2. However, on the other hand, due to the

synchronization overhead that requires to read and write the reserved positions for the syn-

chronization points in every check-in and check-out point, the total number of DM accesses

is incremented leading to a small increase in the power consumed by the DM. In addition, the

synchronizer unit adds up to a 2% overhead to the overall consumption. Nevertheless, the

amount of additional DM accesses is affordable since it remains below 10% and the incurred

power consumption overheads are more than compensated by the savings obtained in the

IM. The cores in the improved architecture consume on average 15% more power than those

of the baseline architecture due to the hardware requirements for the introduced ISE. This

effect is counteracted by savings in the interconnects due to increased SIMD operation, which

effectively reduces the signal activity in the crossbars. Moreover, the improved architecture

achieves 2x power savings in the clock tree, since it requires lower clock frequency for a given

workload compared to the architecture without the synchronization feature. In total and

without exploiting voltage scaling, the proposed synchronization strategy provides up to 38%

dynamic power savings for a fixed workload.

The benefits of the proposed synchronization technique goes beyond energy savings when

high performance is required. For instance, Figure 3.7 compares the power consumption

of the multi-core platform with and without implementing the proposed synchronization

technique while executing the three used benchmarks. It can be observed that, at maximum

voltage (i.e. 1.2 V), the highest possible throughput is boosted by 2.4x for a workload profile

like MF (211 MOps/s vs 89 MOps/s), 1.86x for RMS (290 MOps/s vs 156 MOps/s) and 2.0x for

MMD (336 MOps/s vs 167 MOps/s).

The target multi-core architecture featuring synchronization further improves its energy effi-

ciency when voltage scaling is considered. When the average workload of a given application

is bounded, the target system, which is more performant, can deliver the necessary through-

put with a much lower system clock frequency. This allows for reducing the supply voltage

and therefore obtain larger energy savings. Given the studied benchmarks and the curves
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Figure 3.7 – Total Power Consumption of the multi-core architectures while running the
different employed benchmarks

of Figure 3.7, when the sampling frequency of the input signal is fixed to the standard high-

resolution ECG rate of 1KHz, the target system can obtain energy savings of more than 50% for

all the studied benchmarks. However, even though synchronization always makes the multi-

core architecture more energy efficient, for low workloads (e.g. few KOps/s), a single-core

alternative would be more appropriate since the gains in dynamic power consumption would

not compensate the extra leakage consumed by the bigger and more complex system.

3.4 Proposed Advanced Synchronization Technique for Arbitrarily

Parallel Bio-Signal Processing Applications

Energy efficiency is of paramount importance for battery-supplied biomedical monitors,

which must operate autonomously for prolonged periods of time. To minimize energy con-

sumption, processing on these devices requires a carefully tailored computing architecture. As
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Figure 3.8 – Block scheme of a smart WBSN platform.

previously shown, an effective method to decrease power consumption is voltage-frequency

scaling (VFS), which trades-off the voltage supply (and, consequently, energy consumption)

for peak clock frequency [21] [22] leading to a performance loss below the requirements

bio-signal processing applications.

In this context, low-power multi-core architectures can improve energy efficiency, exploiting

the benefits of single-instructions-multiple-data (SIMD) architectures when executing code

synchronously thanks to the technique detailed in Section 3.3. However, the maximum energy

savings of these architectures are only achieved for a subset of the application domain where

multiple cores execute the same phases of an application (e.g., conditioning in Figure 3.8)

on multiple acquired inputs. However, these synchronization approaches do not provide the

necessary flexibility to perform parallel processing of streams on multiple cores, while also

supporting efficient producer-consumer relationships among cores.

Herein, I propose a generalized synchronization technique for the proposed low-power multi-

core platform, enabling the efficient parallel execution of embedded bio-signal processing

applications presenting an arbitrarily degree of parallelism. The solution stems from the ob-

servation that applications in this field [16] [120] [10] [12] are divided into several consecutive

phases. In the illustrative example of Figure 3.8, multiple signals are acquired in parallel and

independently processed, and outputs are subsequently combined and transformed into a

single data stream or set of features that are later analyzed. Similar schemes are found in most

bio-signal processing applications [15].

In particular, with this technique I generalize the concept of low-power multi-core execution

to more complex applications presenting multiple internal phases, with an arbitrarily large

degree of parallelism and producer-consumer relationships among phases. To achieve this

goal, I propose a novel synchronization mechanism, allowing an efficient mapping of advanced

bio-signal processing applications.

3.4.1 Target Multi-Core Processing Architecture

The proposed technique has been designed for the previously employed low-power multi-core

architecture [84] (c.f. Section 3.3). Nevertheless, the methodology could be applied to any

low-power multi-core system as the one depicted in Figure 3.9. Three properties, common in
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Figure 3.9 – Hardware architecture of a multi-core WBSN. In red, HW support for the proposed
synchronization technique

this family of systems, must be satisfied by the platform to obtain the maximum benefits from

the proposed synchronization method:

1. Instruction and data memories (IM and DM respectively) must be divided into several

banks so that they can be read/written independently and power-gated if not used in

order to save energy. Alternatively, a multi-port implementation would also suffice but

the unused memory could not be power-gated leading to less energy savings.

2. The logical address space of the data memory needs to be divided into shared and

private sections, each core having its dedicated region.

3. In order to maximize the savings, the interconnect network between the memories and

the processing units need to implement a broadcasting mechanism similar to the one

described in Section 3.2.2.1. This mechanism merges multiple read requests from the

same location in memory and in the same clock cycle into a single memory access.

3.4.2 SynchronizationMethodology

In this section I describe in detail the proposed synchronization mechanism, the required

modifications at the hardware and software levels and how any existing bio-signal processing

application can be adapted to obtain maximum energy savings when mapped onto a low-

power multi-core platform.

3.4.2.1 Hardware/Software additional support

The proposed approach is an extension of the previously introduced synchronization tech-

nique (Section 3.3) and consists of a hybrid hardware/software synchronization mechanism

enabled by an instruction set extension (ISE) of the cores that cooperate with a dedicated

lightweight synchronization unit.
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Figure 3.10 – Examples of synchronization points values. a) cores 0, 1 and 2 should jointly
produce data for core 4; data is not yet available. b) cores 0, 1 and 2 have entered a data-
dependent branch, core 0 has finished executing it.

On one side, software support is provided by a set of dedicated instructions (SINC, SDEC

and SNOP), employed to synchronize code execution. These instructions use reserved lo-

cations (synchronization points) in the shared data memory, which store information about

the execution flow. Synchronization instructions modify synchronization points, which are

divided in two fields: their most significant bits contain 1-bit identity flags corresponding to

the identifiers of each core, while the least significant bits are used as an up/down counter

(as illustrated in Figure 3.10). The newly introduced SNOP(#lit) instruction appends the

identification flag of the issuing core to the #lit synchronization point, without modifying

the core counter. SINC(#lit) also sets the core identification flag, but in addition increases

by one the counter. Finally, the SDEC(#lit) instruction, without modifying the identification

flags, decreases the counter. Conversely to the SDEC implementation described in Section 3.3,

in this extension, SDEC does not clock-gate the issuing core after execution. Instead, the

execution continues normally and a SLEEP instruction after SDEC is needed to intentionally

requests the synchronizer to clock-gate the issuing core until the next synchronization event

happens.

On the other side, hardware support for synchronization is provided by a lightweight syn-

chronizer (Section 3.3.2.2) unit that manages the interaction among cores, ensuring lock-step

execution when possible, avoiding de-synchronization due memory access conflicts and keep-

ing track of the execution flow. To this end, the unit can clock-gate (pause) cores and resume

them, according to the received interrupts and the synchronization instructions issued by the

cores. This unit is able to merge several concurrent synchronization instructions so that the

synchronization point is updated correctly.

3.4.2.2 SynchronizationMechanism

The dedicated synchronization instructions are used both to manage producer-consumer

relationships and to enforce lock-step execution after data-dependent branches.

In the first case, producer-consumer relationships require the consumer cores waiting for data

to execute a SNOP instruction, registering themselves in the corresponding synchronization
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Figure 3.11 – Execution flow of a producer-consumer relationship employing the proposed
synchronization technique

point. Afterwards, such cores request to be clock-gated by issuing a SLEEP instruction, thus

avoiding active waiting. Producers, instead, use SINC to register in the synchronization point

when starting to compute data for the consumer cores, and SDEC when data is ready. The

synchronizer detects when all the necessary input data from the producers is available (i.e.

all the producers have issued the SDEC instruction) when the value of the counter in the

synchronization point reaches zero (Figure 3.10-a), and resumes execution of all the registered

cores. Pseudo-code excerpts presented in Code Excerpts 3.3 and 3.4 showcase a generic

example of a producer-consumer relationship, which is also represented on the diagram

depicted in Figure 3.11.

Code Excerpt 3.3 Example of producer code

1: function producer_example()
2: {

3: SINC(<synch_point_B >)
4: produce_new_data()

5: SDEC(<synch_point_B >)
6: }

Code Excerpt 3.4 Example of consumer code

1: function consumer_example()
2: {

3: while(<no data to consume >) {
4: SNOP(<synch_point_B >)
5: SLEEP()
6: }

7: consume_data()

8: }

To enforce lock-step execution after data-dependent blocks of code, each core executes a

SINC instruction before conditional branches, to notify the synchronizer about a possible

desynchronization. When the core finishes executing the branch, it issues a SDEC and enables

clock gating with a SLEEP instruction. When all cores that initially entered the branch finish
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executing it, the core counter of the synchronization point becomes zero, and cores are

notified by the synchronizer to resume their execution in lock-step. A example showcasing a

simple code excerpt causing a potential de-synchronization due to a data-dependent branch

is presented in Code Excerpt 3.5.

Code Excerpt 3.5 Example of lock-step code

1: function lock_step_example()
2: {

3: ...in lock-step

4: SINC(<synch_point_A >)
5: if(<some condition >) {
6: conditional_code_B()

7: }

8: else {
9: conditional_cod_C()

10: }

11: SDEC(<synch_point_A >)
12: SLEEP();
13: ...continue in lock-step

14: }

In the common case when more than one synchronization instruction are issued on the same

memory location, the synchronizer merges the requests to perform a single and consistent

memory modification. Apart from another core, the data producer can be an external pe-

ripheral, such as an analog-to-digital converter (ADC) sampling a bio-signal at a constant

frequency and providing a data-ready interrupt that will be connected to the synchronizer

(as shown in Figure 3.9. When processing cores need new data but this is not available, cores

subscribe to the interrupt line through a memory-mapped register, execute a SLEEP instruc-

tion and remain clock-gated by the synchronizer until the arrival of an interrupt from the

registered source is forwarded by the synchronizer.

3.4.2.3 ApplicationMapping

The proposed synchronization technique enables to theoretically adapt any existing bio-

signal processing application to be efficiently executed on the target low-power multi-core

architecture. Starting from the C source code of a standard single-core implementation, three

steps have to be performed to parallelize and execute an application using the proposed

synchronization method, namely:

1. Partitioning: The different algorithmic phases (or tasks) of the application have to be

identified so that workload is divided among cores. As one or more of these phases may

be applied over several streams of data, to exploit lock-step execution, the processing of

each data stream should be assigned to different cores. Partitioning naturally follows
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Figure 3.12 – Partitioning and mapping of the application in Figure 3.8 on a multi-core platform
embedding 4 computer units, 4 IM banks and 4 DM banks.

the structure of bio-signal processing algorithms in which one or several bio-signals are

taken as input and processed in sequential steps.

2. Insertion of synchronization instructions: First, for producer-consumer relationships

among the identified phases, SNOP instructions are added to consumer cores, while

SINC and SDEC to producers as explained previously in Section 3.4.2.2. Similarly, SINC

and SDEC pairs are also inserted before and after data-dependent code segments execut-

ing on cores assigned to parallel computation streams. For each data-dependent branch

and producer-consumer relationship, a dedicated synchronization point is reserved

in memory. The insertion of synchronization instructions is performed manually in

the source code by placing the assembly statements in the corresponding points of the

code.

3. Mapping: Binary code of the different phases is placed in different IM banks in order to

avoid access conflicts and benefit from broadcasting. Moreover, the threshold between

shared and private sections in memory and the number of synchronization points must

be configured. This last process is handled automatically by a set of scripts that receive

a set of compilation directives to specify the different code regions and parameters. The

compilation and linking process of the final application is then performed.

Figure 3.12 graphically shows the result of applying these steps to the application introduced

in Figure 3.8. First, the application is divided into two phases: conditioning and processing.

Because conditioning is performed in three different inputs, it is assigned to three different

cores that execute the task in parallel exploiting the SIMD capability, each of them processing

one input. The processing phase is assigned to a fourth core that consumes the data produced

by the first three. SNOP and pairs of SINC and SDEC are placed properly to manage the

producer-consumer relationship and ensuring lock-step execution. In the mapping step, code

dedicated for the different phases is placed in different IM banks, with cores executing the

same application phase sharing the same bank.
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3.4.3 Experimental Set-up

Before reporting the results of the evaluation performed to assess the effectiveness of the

proposed technique, in this section I detail the main characteristics of the experimental set-up.

First, I define the systems taken under consideration, then I detail the simulation framework

developed to evaluate the proposed strategy and finally I described the employed benchmark

suite.

3.4.3.1 EvaluatedMulti-core and Baseline Single-core Systems

The target multi-core system (Section 3.3) employs 8 TamaRISC cores (c.f. Section 3.2.1.2),

interfaced with a 96 KByte instruction memory (32 KWords of 24 bits width) divided into 8

banks and a 64 KByte data memory (32 KWords of 16 bits width) divided into 16 banks. Cross-

bars are sized accordingly and a three-channels analog-to-digital converter (ADC) module is

interfaced to the system using memory mapped registers located in shared DM. Data-ready

interrupt lines coming from the ADC were connected to the synchronizer, which forwards

them to cores when required.

In the experiments, it is considered as baseline configuration a single core connected to

the same memory subsystem as in the previous case, so that unused memory banks can be

powered-off. To manage the memory interface in this system, simpler decoders can be used

instead of crossbars allowing higher clock frequencies at the same voltage level. In addition,

for the power consumption evaluation a multi-core system that does not feature the proposed

synchronization technique is also considered.

3.4.3.2 Simulation Framework

The simulation framework developed to evaluate the proposed method is composed by the

programming tool-chain (compiler, builder and linker) and the simulation environment. The

former allows for the compilation of code to be loaded and executed on the platform and

requires a set of building directives, which guide the automatic linking process (c.f. Sec-

tion 3.4.2.3). The latter includes a synthesizable RTL description and a System-C architectural

simulator of the target platform, which encapsulates the model of the employed TamaRISC

cores.

The baseline and target architectures were characterized executing bio-signal processing

applications, at two levels of abstraction. At the lower level, post-layout RTL simulations (using

a 90nm low-leakage process) are employed, measuring the average energy consumption of

each architectural element when executing small code sections. Data gathered from the

simulations is then used to annotate a System-C model of the system, from which application-

wide energy consumption figures are extracted in different settings.

Output of the framework is then the average power consumption obtained from an extended
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period of simulated time (60 seconds for all the performed experiments), which would not

be possible to obtain with time- and resource-consuming post-place-and-route simulations.

This aspect is of great relevance for target bio-signal processing applications, as the input

bio-signals have slow dynamics (e.g., in the example of heart monitoring, the normal heart

rate ranges from 60 to 100 beats-per-minute), requiring extended simulations to capture a

good measure of the average power consumption of the different architectural configurations.

3.4.3.3 Benchmark Applications

I considered three highly optimized applications, from the field of embedded electrocardio-

gram (ECG) signal processing that represent different types of applications with different

workloads and runtime characteristics.

• 3-leadmorphological filtering (3L-MF): This benchmark (Figure 3.13a) performs three-

lead morphological filtering [37], which removes unwanted components from acquired

ECG signals, and operates in parallel on three different input streams (c.f. Section 2.2.1.2

in Chapter 2). When mapped on three cores, the application does not employ producer-

consumer relationships, so that synchronization primitives are only used to recover

lock-step execution among cores.

• 3-leadmulti-scalemorphological-baseddelineation (3L-MMD): This benchmark (Fig-

ure 3.13a), performs a three-lead delineation using a multi-scale morphological deriva-

tives (c.f. Section 2.2.2.2 in Chapter 2). In addition to filtering the three input signals

using a similar scheme to 3L-MF, 3L-MMD also aggregates using an RMS Combination

algorithm as the one described in Section 2.2.3 of Chapter 2. Them, the application

analyses the resulting combined streams to automatically detect the ECG fiducial points.

Consequently, as opposed to 3L-MF, it cannot be mapped using the technique described

in Section 3.3. The application is mapped onto five cores, of which three perform filter-

ing in parallel and two are employed to combine the signals and identify the fiducial

points, respectively.

• Selective ECG delineation based on a heartbeat classifier (RP-CLASS): This applica-

tion employs a heartbeat classifier operating on a single lead to discern normal from

pathological heartbeats as described in Section 2.3 of Chapter 2. When an abnormal

situation is detected, a three-lead delineation is activated only for the pathological

heartbeat. RP-CLASS is mapped onto six cores (Figure 3.13b), and showcases the ability

of our proposed synchronization technique to manage both control and data flows

among cores. It also exemplifies a case where workload is not uniform: as abnormal

heartbeats are rare, in fact, the four cores in the delineation chain are seldom activated.

Across experimental tests, standard multi-lead ECG inputs have been used. To evaluate the

3L-MF and 3L-MMD, a multi-lead signal from a healthy subject of the CSE Database [121]
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(a)

(b)

Figure 3.13 – Block schemes of benchmark applications: a) 3L-MF and 3L-MMD; b) RPCLASS
Conditionally activated blocks are indicated with grey background.

has been employed. For the RP-CLASS application, 20% of pathological beats were inserted,

representing the average presence of abnormalities in the CSE database.

The configurations of the considered single-core and multi-core platforms for each of the

benchmarks are detailed in Table 3.3.

3.4.4 Experimental results

Three aspects are investigated in this section. First, the run-time requirements of the described

benchmarks are analyzed while executed in the baseline and target architectures. Then, the

power consumption of the building components of both systems is shown and the obtained

numbers are discussed. Finally, the most complex of the evaluated benchmarks, RP-CLASS, is

further employed to demonstrate the effectiveness of the proposed synchronization technique

in reducing the power consumption of the multi-core system even in the case of unbalanced

workload and not lock-step code execution.
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3L-MF 3L-MMD RP-CLASS
SC MC SC MC SC MC

Active Cores 1 3 1 5 1 6
Active IM banks 1 1 3 4 4 6
Active DM banks 3 16 3 16 11 16
Min. Clock (MHz) 2,3 1,0 3,4 1,0 3,3 1,0
Min. Voltage (V) 0,6 0,5 0,6 0,5 0,6 0,5

Table 3.3 – Platform configurations of the single-core (SC) system and the multi-core (MC) one
for the different studied benchmarks

3L-MF 3L-MMD RP-CLASS

IM Broadcast (%) 40,36 23,44 10,30
DM Broadcast (%) 3,74 2,82 1,07
Code Overhead (%) 2,57 0,92 0,69
Run-tim Overhead (%) 1,65 0,96 0,60
Avg. Power (μW) 31,8 50,3 56,9

Table 3.4 – Obtained results for the different benchmarks while executing on the multi-core
platform featuring the proposed synchronization technique.

3.4.4.1 Performance andMemory Footprint Comparison

The evaluated benchmarks were optimized to be executed in both the single- and multi-core

architectures, considering in each case the least possible amount of memory and computa-

tional requirements while meeting real-time constraints. In particular, the unused memory

banks are powered-off and the system clock frequency is reduced to the minimum in order to

exploit the benefits of voltage-frequency scaling (VFS). Details of the executed experiments

are shown in Tables 3.4 and 3.3. Three main conclusions can be drawn from these numbers.

First, all applications can run in real-time and at a lower clock frequency in the case of the

multi-core architecture, which allows performing aggressive voltage scaling (see Table 3.3).

Indeed, higher demands of computing power are solved using a larger number of cores instead

of increasing the system clock frequency.

Second, the single-core architecture presents lower memory requirements. In fact, the map-

ping of code in the IM is less constrained, whereas in the multi-core platform instructions

need to be placed in different memory banks to avoid access conflicts. In addition, in order to

support the division of the data memory into shared and private sections, all the data memory

banks of the multi-core platform need to be active due to the design of the ATU unit.

Third, the introduced overhead due to the proposed methodology is very low. In the worst

case (3L-MF), the inserted special instructions add-up less than 3% of the total code while, at
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Figure 3.14 – Power consumption decomposition of the single-core (SC) and multi-core (MC)
systems with and without the proposed synchronization approach.

run-time, the issued synchronization primitives represent 1,65% of the active cycles .

3.4.4.2 Single- and-Multi-core Energy Consumption

Power consumption numbers from Table 3.4 show a considerable reduction of up to 40%

when employing the proposed approach in the multi-core platform. Figure 3.14 presents a

decomposition of the power consumption of the building components of both architectures.

Moreover, it shows the power consumption of a multi-core system that does not employ

the proposed synchronization approach as the one introduced by [84], in which producer-

consumer relationships need to be implemented performing inefficient active waiting.

The experiments show that the multi-core system adds a non-negligible overhead (e.g. up to

34% of the total energy in 3L-MF) due to the extra necessary components (crossbars, logic and

a more complex clock tree). In addition, when the synchronization technique is not employed,

the total power consumption of the multi-core platform can be lower, comparable or higher

(e.g. 3L-MF, 3L-MMD and RP-CLASS respectively) than the consumption of the single-core

architecture, depending on the workload balance among cores. However, if our proposed

approach is used, the energy requirements are drastically reduced in all the cases, achieving

important savings thanks to the benefits of VFS.

As Figure 3.14 shows, one of the advantages of our technique is the reduction of the program

memory consumption due to instruction broadcasting. In addition, although the synchro-

nization technique slightly increases memory usage, the DM consumption is not incremented

significantly. In fact, when the application memory footprint is large, like in RP-CLASS, the

multi-core DM becomes more energy-efficient, since it operates at a lower voltage level and
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Figure 3.15 – Power consumption (left axis in μW) of the single-core (SC) and multi-core (MC)
systems and the respective reduction (right axis, in percentage) when employing the proposed
approach in the multi-core platform

only few banks can be powered-off in the baseline system.

Finally, although the multi-core system adds an overhead (e.g. 34% of the total energy in

3L-MF) due to the extra necessary components (crossbars, synchronizer and a more complex

clock tree), the total power consumption is drastically reduced thanks to the benefits of

voltage-frequency scaling and lock-step execution, achieving savings of up to 40%.

3.4.4.3 Synergies Between VFS and Broadcasting

The proposed synchronization methodology allows exploiting the benefits of voltage-frequency

scaling and broadcasting. These two features, on their own, improve the energy efficiency of

low-power multi-core systems ([21] [20] [86] [122]), and in combination lead to even greater

savings. Figure 3.15 shows the energy consumption of the baseline and the target architectures

and the percentage reduction while executing the RP-CLASS applications with different inputs,

varying the amount of pathological heartbeats. For all tests the abnormal heartbeats have

been distributed uniformly.

When there are no pathological heartbeats, the analysis chain (4 cores) is never activated and

no parallel computation is carried out. However, energy savings of 17% are still obtained due

to voltage-frequency scaling since the workload is divided and pipelined among cores in the

multi-core system. In addition, when abnormalities are present, broadcasting reduces the

consumption when the analysis chain is activated due to the lock-step execution of code.

In that case, the benefits of both features combined allow for improvements in the energy

efficiency of up to 38% in the best case.
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3.5 Summary and Concluding Remarks

In this chapter I have presented an ultra-low power multi-core architecture featuring a syn-

chronization technique that allows efficient execution of bio-signal processing applications.

The platform is composed of 8 processing cores interfaced with multi-banked memories

through combinational crossbar interconnects. The architecture aims at minimizing power

consumption by relaxing the system clock constraint and applying voltage scaling. To that

end, the applications are parallelized dividing the workload among the different cores.

First, I have proposed a hardware/software technique devoted to maximize lock-step execu-

tion in multi-channel parallel applications following a single-instruction multiple-data (SIMD)

paradigm. It consists of a dedicated hardware synchronizer and an instruction set exten-

sion, which jointly enable to recover synchronization after the execution of data-dependent

segments of code. The obtained results show that, when compared with a state-of-the-art

multi-core equivalent, the proposed synchronization-based architecture provides up to 38%

energy savings while only increasing the area footprint by 2%.

Second, I have generalized the technique to any bio-signal processing application present-

ing an arbitrarily high degree of parallelism. I have proposed mechanisms to concurrently

manage lock-step execution of code and producer-consumer relationships among cores. The

methodology describes the necessary hardware and software support as well as the steps to

adapt an existing application in order to adopt the proposed technique. According to the

experimental results, the proposed architecture can obtain up to 40% energy savings while

running real-world ECG processing benchmarks.
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4 Optimized Memory Subsystems for
Ultra-Low Power Multi-Core
Architectures
4.1 Introduction

The increasing social impact of chronic cardiovascular disorders presents a major challenge

for healthcare provision [4]. In this context, wearable and miniaturized health monitoring

systems, termed Wireless Body Sensor Nodes (WBSNs), offer a large-scale and cost-effective

solution [15] that have enabled the conception of smart biomedical monitors.

These devices are able to perform complex on-node Digital Signal Processing (DSP) routines,

such as Electrocardiogram (ECG) compression [11], automated feature extraction [10] and

classification [57]. DSP applications embedded in biomedical monitors greatly reduce the

required transmission bandwidth, thus increasing the overall energy efficiency of the system.

In fact, in this scenario only the retrieved features, as opposed to the acquired samples, have

to be sent over the power-hungry wireless link. This improvement has lead to a change of the

dominant contributor to the power consumption of these platforms, which now resides in

the embedded DSP stage as shown in Figure 4.1. To maximize the efficiency of biomedical

monitors, signal processing must be supported within a tight power budget, while at the

same time respecting real time constraints. Bio-signal processing architectures must therefore

be carefully designed targeting ultra-low power (ULP) consumption. In this regard, many

efforts have been made in the last years, proposing solutions ranging from ad-hoc accelerators

[112, 123] to ultra-low-power synchronization-based multi-core architectures [84, 124] as

the ones presented in Chapter 3. Low-power multi-core architectures rely on the inherent

parallelism of bio-signal processing applications to divide the workload among different cores

and reduce the system clock frequency. This timing constraint relaxation allows for lowering

the supply voltage. This technique has been widely exploited in the literature [125] [86] but

its application is reaching a reliability limit. In fact, SRAMs typically embedded in bio-signal

processing architectures start to suffer from errors when operating at ultra-low voltages [126],

posing a hard limit on the voltage range that can be safely employed.

In addition, the workload profile of bio-signal processing applications is dictated by the

sampling frequency of the sensed data, which is typically in the order of few hundreds of
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Figure 4.1 – Energy consumption breakdown of a biomedical monitor, scheme of a typical bio-
signal processing application and generic block diagram of a state-of-the-art ULP multi-core
architecture.

hertzs. Even when supplied with the minimum reliable voltage, highly optimized multi-core

architectures can deliver the necessary throughput within a shorter time than the sampling

period, leading to short but recurrent intervals of inactivity during which the processing

platform remains idle but leaking. This power consumption could be reduced by employing

advanced power management policies allowing for low-power sensing modes. To this end,

different solutions have been proposed in the literature based on the utilization of different

voltage domains or aggressive power gating. Nevertheless, the former entails an increase of

the design complexity necessitating the integration of voltage level shifters while the latter

is unfeasible in the bio-signal processing domain due to the short length of the idle periods,

which would not allow to store and recover the system state in persistent memories.

4.1.1 Contributions and Outline of this Chapter

In this chapter I present two enhanced ULP multi-core architectures that allow to obtain

further energy savings by exploiting application-specific opportunities. More precisely, I

propose important changes at the memory subsystem level in order to support more energy

efficient regimes during idle periods. In the first half of the chapter, I study the utilization

of hybrid memory banks, which combine Standard Cell Memories (SCM) with traditional

SRAM memories in order to support ultra-low system-level voltage regimes. In the second

part of the chapter, I introduce a completely redesigned memory subsystem consisting on
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a 2-level hierarchy that includes a low latency Non-Volatile Memory (NVM), which enables

fine-grained power-gaiting during idle periods. In particular, the most relevant contributions

of this chapter are the following:

ULPmulti-core architecture featuring SCM-based hybrid-memory

• I propose the utilization of a new hybrid memory subsystem in order to support low-

voltage regimes. The banks of the new memory subsystem are composed of a small

reliable memory partition implemented as SCM and a large region realized as regular

SRAM.

• I extend the synchronization technique presented in Chapter 3 in order to support

the new power management policy. The synchronizer unit is modified accordingly to

seamlessly orchestrate the transitions between different working regimes.

• I study the best partitioning of the hybrid banks in terms of power consumption and area

footprint. Obtained results show that, for the target bio-signal processing applications, a

small amount of only 64 Bytes of SCM (2 words per bank) suffices to obtain large energy

gains with an area footprint below 0.1%.

• Energy-wise, the new ULP architecture can improve its efficiency by up to 50% while

spending more than 90% of the time in low-power mode.

Nano-engineeredULPmulti-core architecture featuringa2-levelNVM-basedmemory sub-

system

• I propose a fully re-designed 2-level memory subsystem. On the persistent level, I

employed emerging low-latency low-voltage NVM based on Spin-Transfer Torque RAM

(STTRAM) and Resistive RAM (RRAM). On the volatile level, I include a full-custom set

of small page buffers that collectively act as a cache.

• I study and characterize the resulting ULP multi-core platform which is modeled to be

fabricated employing emerging 3D monolithic integration.

• I describe the necessary architectural changes such as the inclusion of a lightweight

Memory Management Unit (MMU) that manages page transfers between the NVM and

the volatile buffers, or the modification at the synchronizer level to orchestrate the cores

execution.

• I detail a new power management policy that allows seamless fine-grained power-gating

of the entire architecture during periods of inactivity.

• The obtained simulated results show that the resulting architecture would reduce its

area footprint by up to 5x and improve its energy efficiency by up to 5.42x.

The remaining of the chapter is organized as follows. First, Section 4.2 describes the ULP
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architecture featuring the SCM-based hybrid memory subsystem. Then, in Section 4.3, the

nano-engineered architecture featuring the NVM-based 2-level memory subsystem is pre-

sented. Finally, Section 4.4 concludes the chapter summarizing the main achievements.

4.2 ProposedULPMulti-CoreArchitectureFeaturingSCM-basedHy-

bridMemory

Current most optimized platforms for bio-signal processing, such as the ones previously

presented in Chapter 3, usually require a small fraction of the time spent in data acquisition

to make all the necessary computations. As a consequence, the workload profile of bio-

signal processing application presents periods of low activity, where only data collection is

performed. System clock frequency scaling is sometimes proposed to reduce the dissipated

dynamic energy but in general, voltage cannot be reduced under certain levels.

In this work, I propose a novel ULP multi-core architecture for bio-signal processing, which

leverages the energy-saving opportunities derived from real-world workloads in this domain.

The platform embeds a low-overhead strategy to synchronize computing elements, and allows

different execution modes operating at different voltage supplies. The work is motivated by the

limits of conventional Dynamic Voltage Frequency Scaling (DVFS), especially when applied

to the memory subsystem. In fact, the failure probability of the conventional 6-Transistors

(6T) SRAM cells increases considerably as the supply voltage is reduced [126]. This situation

results in 6T-SRAM memories being the limiting factor for aggressive voltage scaling. At the

same time, other low-voltage memory implementations such as Standard-Cell Memories

(SCM) lead to substantial area overheads, as outlined in [24], due to the relatively large storage

requirements of biomedical DSP applications.

Stemming from these observations, I propose a hybrid memory scheme, combining dense

6T memories with SCMs, which present an extended reliable voltage range, but are less area-

efficient. By adopting this scheme, the target architecture can efficiently support two different

operating modes, namely sensing and processing. These two modes are characterized by

different voltage levels and working frequencies.

• In sensing mode, the system works in a low-voltage/low-power regime, where only a

small memory region, implemented as SCM, can be accessed in order to store input

samples. The vast majority of the memory cells, realized as 6T-SRAM, while not accessible

at this low-voltage supply level, still reliably retain their content.

• In processing mode, the system operates at a higher voltage level, so that the whole

memory (and the computing elements) are active and can be reliably utilized.

This strategy goes beyond DVFS, by trading off the voltage supply level with the memory

portion which can be reliable accessed at the given operation mode. State-of-the-art works
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use multiple voltage islands to achieve low-voltage and low-power operations in the logic,

while ensuring reliable access in the memory. Conversely, the presented approach requires a

single voltage domain, avoiding the design overheads of multi-Vdd designs [127]. Moreover, by

coupling standard 6T-SRAM and SCM regions, it enables reliable operations in the full voltage

swing, without requiring complex mechanisms for error detection and/or correction.

The proposed architecture further improves its energy efficiency, when executing in the high-

workload processing mode, by adopting fine-grained synchronization among cores allowing

for efficient producer-consumer notification and lock-step execution of parallel algorithms

with data-dependent branches thanks to the strategies described in Chapter 3.

4.2.1 RelatedWork

Power consumption is a first-grade optimization goal in the design of digital architectures;

as such, it is the focus of a vast body of research, as summarized in [128]. At the architectural

level, the support of low-voltage operation modes is a widely used strategy to increase the

energy efficiency of processors [129], because of its generality and flexibility. Nonetheless,

voltage scaling limits the maximum operating frequency of systems, ultimately penalizing

their performance.

To overcome this performance loss, processors can be enriched with application-specific

custom instructions or accelerators [130], that efficiently support the most frequent oper-

ations of a target domain. In the WBSN context, the authors of [112], [123] and [18] have

indeed proposed systems employing dedicated filtering, signal compression and FFT engines.

The presence of single-function hardware blocks can nonetheless lead to over-specialized

architectures, resulting in a loss of flexibility that can only be partially palliated by adopting

reconfigurable accelerators [131].

A more generic approach adopted in the proposed architecture is to employ multiple and

homogeneous processing units, able to support a target workload at a low clock frequency.

This second strategy, popular in many domains such as multimedia [14, 132], is particularly

effective in the bio-signal DSP scenario, where multiple signals are usually acquired in parallel

and processed within a time window [112, 133].

Dynamic Voltage Frequency Scaling (DVFS), carried out by adjusting the performance and

the power consumption at run-time according to the workload [125] [86], is often used in

conjunction with a multi-core strategy. For bio-signal analysis applications, such workload

is dictated by the acquisition rate of signals, resulting in the presence of both high-activity

and idle periods, which can be exploited by the adoption of deep sleep modes to increase

the energy efficiency [20]. Nonetheless, the reliability of SRAMs decreases when operating at

ultra-low voltages [126], posing a hard limit on the voltage range that can be safely employed.

To overcome such a problem, the authors of [133] propose a system where different voltage

domains are used for computing and storage resources. As opposed to the this work, these
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choices mandate the use of voltage level shifters, that present a non-negligible area [127].

A striking alternative is offered by specialized SRAM implementations that, while larger than

standard six-transistors (6T) SRAMs [134] [126], can reliably operate at extremely low Vdd .

Similarly to [135], [24] and [136], herein I explore the benefits of a hybrid solution, which

employs large and low-power SRAM cells only for a small portion of the memory subsystem.

As opposed to [136] and [24], the proposed solutions do not incur in any error on the compu-

tations related to the 6T memory at low voltages. Moreover, compared to [136] and [135], I

employ only a single and tunable voltage domain for the entire system, resulting in a simpler

and leaner implementation.

The run-time management of multiple resources under tight run-time and memory con-

straints is a challenging task. To this end, the authors of [116] introduced an approach based

on software libraries, that nonetheless incurs in substantial overheads due to busy waitings

and system calls. Alternatives relying on hardware locks [117] are also resource-intensive, thus

not suited for low-power computing architectures such as the ones embedded in biomed-

ical monitors. As exposed in Chapter 3, run-time synchronization among different cores

is supported with dedicated instruction set extensions, presenting a small area and timing

footprint. In [84] and[124], synchronization is only supported to manage parallelism. Herein,

I extend this methodology to orchestrate both parallel execution on multiple resources and

dynamically set the working operating voltage. In this last respect, leveraging a domain-

specific heterogeneous memory system, I aim at going beyond classic DVFS, trading off the

accessibility of resources (in addition to the operating frequency) with power consumption.

4.2.2 Target Multi-Core Processing Architecture

The proposed architecture employs a joint synchronization policy to transition between op-

erating modes at different voltage levels, as well as to perform clock gating of individual

computing units. These two strategies target different time granularities: at a coarser gran-

ularity, an ultra-low voltage operating point of the entire system is adopted when only data

buffering is required (i.e.: during sensing phases), as dictated by the workload of the DSP appli-

cation and the data acquisition rate. At a finer granularity and while in processing mode, clock

gating enables an efficient synchronization of cores executing code in lock-step or waiting

for input data in a producer-consumer relationship, as already described in Chapter 3. Both

energy-saving strategies are embedded in the target multi-core platform, which is composed

by an array of Computing Units (CUs) interfaced to Instruction and Data Memories (IM and

DM), as depicted in Figure 4.2. IM and DM are divided into multiple banks, so that each

can be accessed independently and power-gated if they are not required by the application.

Each DM bank is itself composed by an area-efficient 6T region (6T-DM) and a highly-reliable

SCM region (SC-DM). The communication between cores and memories is based on a high

bandwidth logarithmic interconnects, implementing a mesh-of-trees topology and supporting

single-cycle communication between cores and memory banks [114]. On the other hand, in
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Figure 4.2 – Target architecture, featuring hybrid DM banks and HW synchronization unit
(SU).

case of no banking conflicts, data routing is done in parallel for each core, thus enabling a

high sustainable bandwidth for processors-memories communication. In addition, the inter-

connect allows to merge simultaneous read requests to the same memory address, reducing

the memory accesses and therefore increasing the energy efficiency of the system [124].

A Synchronization Unit (SU in Figure 4.2) as the one described in Section 3.3.2.2 of Chapter 3 is

employed. This synchronizer has been extended to, in addition to orchestrate the execution of

the system, dynamically select the voltage supply level and, therefore, the operating mode. The

synchronizer pauses and resumes cores, either after data-dependent branches (to recover lock-

step execution) or to manage producer-consumer relationships. Moreover, the it also dictates

the voltage supply of the platform. At the high-Vdd processing supply level, all computing and

storage elements can be reliably employed. Conversely, when all the cores are idle waiting for

a window of samples to be acquired, the low-Vdd sensing mode is enforced, in which only

the SC-DM regions are reliably accessible, while the 6T-DM memory are state-retentive. In

sensing mode, the analog-to-digital converter (ADC) is in charge of periodically moving the

data sampled by the analog front-end to the SC-DM region.

4.2.3 HybridMemoryManagement

Considering typical sampling frequencies for biomedical signals (typically around few hun-

dreds of Hertzs), the time needed to acquire a window of samples exceeds the time to perform

the required computation. Therefore, the workload profile of bio-signal processing application

presents periods of low activity, where only data collection is performed. In this sensing state,

the only requirement for the architecture is to make available enough memory to store locally

the data sampled by the ADC. As shown in Figure 4.3, the only active elements during sensing

are the ADC and the reliable SC-DM, where samples are stored for future analysis. In this mode,

all the cores, the 6T-DM portion and the IM do not perform any activity. Memory elements
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beside the SC-DM (i.e. 6T-DM, cores register files an system registers) are not accessible, but

their content is reliably retained. Once the ADC has transferred the desired number of samples

to the data memory, the system switches to execution mode (cf. Figure 4.3), performing a

burst of computation on the available data. This operating point is characterized by a high

workload, being the required processing elements active and working on the sampled data.

It also presents a larger data memory footprint with respect to the sensing mode, due to the

intermediate data being generated during processing. The execution mode requires a reliable

access to IM and DM banks storing the binary code and application data.

To support this run-time behavior, in this work I considered a hybrid data memory architecture,

which overcomes the limitation imposed by classic 6T-SRAM when operating under aggressive

voltage scaling. The memory bank structure combines 6T and SCM regions, extending the

reliable operating range to low supply voltages. In the case of the target CMOS technology, the

SCM portion of the DM is able to reliably operate down to 600 mV, while the 6T portion of the

DM can be reliably accessed at a minimum level of 800 mV. Due to the utilization of a single

voltage domain, the proposed strategy allows a low-overhead transition between sensing and

processing modes, which is only dependent on the rise time of the voltage supply level.

4.2.3.1 Synchronization Strategy

To determine the dynamic voltage supply level of the platform, as well as to properly clock-gate

individual cores, I propose a hybrid hardware/software (HW/SW) synchronization mechanism

extending the one described in Chapter 3 by also including the management of multiple

operation modes. Its hardware support is provided by the above-mentioned synchronizer unit,

which orchestrates the execution of the multi-core system based on the received interrupts

from the ADC and the synchronization instructions issued by the cores. Software support

consists of a set of dedicated instructions (SINC, SDEC and SNOP), which modify a number

of reserved locations (synchronization points) in the data memory. Synchronization points,

implemented as single data words, store the information regarding (i) which cores have started

and ended the execution of a data-dependent branch, and (ii) which consumer cores are clock-
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gated while waiting for data from producer cores. One synchronization point is therefore

required for each data-dependent branch and each producer/consumer relationship. In

addition to the synchronization instructions, a SLEEP instruction requests the synchronizer

to clock-gate the issuing core until the next synchronization event happens (e.g. new data to

process is available).

4.2.3.2 Software Adaptations andMapping

As described in Section 3.4.2.2 of Chatper 3, to enforce lock-step execution after data-dependent

blocks of code, each core executes a SINC instruction before conditional branches, to notify

the synchronizer about a possible desynchronization. When the core finishes executing the

branch, it issues a SDEC and enables clock gating with a SLEEP instruction. After all cores that

diverged finish executing the conditional section, the synchronizer wakes them up to resume

their execution in lock-step. A graphic representation and a time diagram of this run-time

behavior is also depicted in Figure 4.4-a.

Producer-consumer relationships require the consumer cores waiting for data to execute a

SNOP instruction, registering themselves in the corresponding synchronization point. After-

wards, such cores request to be clock-gated by issuing a SLEEP instruction, thus avoiding

active waiting. Producers, instead, use SINC to register in the synchronization point when

starting to compute data for the consumer cores, and SDECwhen data is ready. The synchro-

nizer detects when all the necessary input data from the producers is available (i.e. all the

producers have issued the SDEC instruction), and resumes execution of all the registered cores.

Figure 4.4-b, represents graphically a producer-consumer relationship, the run-time sequence

of issued instructions and the differentiation between sensing and processing phases.

To map an application into the proposed platform starting from an equivalent single-core

implementation, the program flow must be partitioned into phases that can be executed

in parallel in a pipelined manner (c.f. Section 3.4.2.3 of Chapter 3). Each phase is then

assigned to a number of computing units corresponding to the number of parallel computing

streams within a phase (e.g., three cores are assigned for the “conditioning" phase in Figure

4.1). Subsequently, the custom synchronization instructions are properly placed to manage

data-dependent branches and producer/consumer relationships. Finally, linking directives

indicating the manually performed application partition are provided to place the IM content

referring to different phases in disjoint IM banks, which subsequently reduces access conflicts.

4.2.3.3 Hardware Support: Synchronization Unit

The aforementioned Synchronization Unit is interfaced between the read-write ports of the

cores and the interconnect networks, to monitor the state of each computing unit and or-

chestrate their execution. In addition, this module receives an ADC interrupt line for each

of the sensed channels and the stall, sleep and wake-up pins from each of the cores. The
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Figure 4.4 – Synchronization in a diverging data-dependent branch (a) and in a producer-
consumer relationship processing windows of 2 samples (b).

synchronizer is composed by a sequential and a combinational part, which are detailed in the

following and whose behaviors are depicted from a high level of abstraction in the flowcharts

in Figure 4.5. On one hand, the sequential (clocked) logic is responsible for controlling the

transitions between sensing and processing modes (cf. Figure 4.5-a). A lack of activity while

in processing mode (i.e. when all cores have issued a SLEEP instruction as showcased in the

producer-consumer relationship of Figure 4.4-b) triggers a transition towards the low-power

state. This condition is detected by the synchronizer, which lowers the clock frequency and the

voltage supply to the low-Vdd level, setting the system to sensing mode. When a new window

of data becomes available, the ADC makes the system transit to the processing mode. In such

a case, the synchronizer raises the platform voltage, waits for a stabilization period, increases

the clock frequency and wakes up the corresponding cores.

On the other hand, the combinational circuitry coordinates the execution among cores while

in processing mode (cf. Figure 4.5-b). First, explicit stalls due to memory conflicts coming from

the interconnect are handled and forwarded to the corresponding cores. Second, lock-step

execution is ensured among all those cores issuing the same instruction during the same clock

cycle by stalling all of them if one is explicitly stalled due to a memory conflict. Third, in the

case of issuing a synchronization instruction, the value to be written into the corresponding

synchronization point is derived by setting the necessary flags, modifying the core counter

and merging into a single write requests the results of possibly concurrent manipulations of

the same point. Moreover, the synchronizer is also in charge of waking-up the registered cores

when the core counter to be stored reaches zero.
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Figure 4.5 – Flowchart describing the synchronizer’s behavior: (a) Clocked logic governing
transitions between platform modes. (b) Combinational part orchestrating execution while in
processing mode.

4.2.4 Experimental Set-up

In this section I present the chosen set-up and simulation framework. Then, I briefly described

the bio-signal processing benchmark suite employed to assess the performance of the target

platform.

4.2.4.1 Simulation Set-up

I considered a target system composed by 8 ULP TamaRISC cores (c.f. Sectio 3.2.1.2) as the

ones employed in the architectures described in Chapter 3. Nonetheless, different cores can
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be embedded in the proposed system, as long as they allow extensions to incorporate the

custom synchronization instructions described in previous sections. Cores are interfaced

with a 96 KByte Instruction Memory (32 KWords of 24 bits width) divided into 8 banks, and

a 64 KByte Data Memory (32 KWords of 16 bits width) divided into 16 banks. Each DM bank

presents a reliable region of SCM cells and an area-efficient one implemented as 6T cells.

The system clock frequency in the processing mode is 20 MHz (the maximum possible in the

chosen technology for the target system with 800 mV supply voltage), while in sensing mode

the clock is set at 10 KHz to minimize the dissipated dynamic power due to the clock-tree. The

resources that are not required to be active by the application, such us unnecessary cores and

IM banks, can be powered down at boot time.

Similarly to [124], the developed experimental framework combines detailed post-layout

characterization of the system with faster cycle-accurate simulations of complex bio-signal

analysis applications. First, the energy characterization of the architectural components of the

multi-core system is performed at a 40 nm technology node through an EDA toolchain: Design

Compiler from Synopsys and Encounter from Cadence are used in the synthesis and place-

and-route steps, while Modelsim from Menthor Graphics is employed to retrieve switching

activity of the platform when executing synthetic benchmarks. In a later step, the obtained

energy values are used to parametrize a cycle-accurate SystemC simulator of the platform,

allowing the evaluation of its energy efficiency when executing real-world applications under

different architectural configurations.

4.2.4.2 Bio-signal Processing Benchmarks

Four bio-signal processing benchmarks, which are widely used in the field of electrocardio-

gram embedded analysis [124], [38], [122] [11] are considered. These applications present

different levels of complexity and parallelism as well as diverse tradeoffs in terms of results

elaboration and runtime requirements (i.e. computational and memory resources). Their

characteristics are summarized next.

• Compressed Sensing (8L-CS): This signal compression algorithm has been extensively

investigated in different domains, including low-power sensing and ECG processing (c.f.

Section 2.2.4 of Chapter 2). The algorithm used in this benchmark utilizes a software

version of the energy-efficient pseudo-random number generator introduced in [38]

to generate the sensing matrix used to achieve a 50% compression. The resulting 8L-

CS does not present any data-dependent branch nor code divergence leading to an

almost full lockstep execution of code among cores. In the proposed implementation,

eight ECG leads (8L) are processed in parallel employing all the cores of the platform as

depicted in Figure 4.6a.

• Morphological Filtering (3L-MF): Morphological filtering removes noise from ECG sig-

nals as described in Section 2.2.1.2 of Chapter 2. Herein, I considered an optimized
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(a) (b)

(c)

Figure 4.6 – Block schemes of benchmark applications: a) 8L-CS; b) 3L-MF and 3L-MMD; c)
RPCLASS. Conditionally activated blocks are indicated with grey background.

version of this algorithm [10], which removes both low and high frequency noise com-

ponents. This benchmark filters in parallel ECG signals from a standard three-channel

acquisition using three computing cores as depicted in Figure 4.6b. In contrast to 8L-CS,

the presence of numerous data-dependent branches in the 3L-MF code highlights the

ability of the platform to recover lockstep execution after diverging sections of code.

• ECGDelineation (3L-MMD): This delimits the starting, and a peak points of the three

ECG main waves (c.f. Section 2.2.2.2 of Chapterch:sw). On top of the filtering stage of

3L-MF, this benchmark performs a Root Mean Square (RMS) fusion of the filtered signals

resulting in a single ECG stream, that is later processed to search for the desired points.

This benchmark requires synchronization for both lockstep execution and producer-

consumer notifications to transfer data among the three processing stages, namely

filtering, combination and delineation. 3L-MMD employs five cores of the platform,

three of them executing code in lockstep as depicted in Figure 4.6b.

• Selective ECGprocessing (RP-CLASS): This benchmark, detailed in Section 2.3 of Chap-

ter 2, embeds a neuro-fuzzy classifier that detects abnormal heartbeats. When a detec-
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Figure 4.7 – Power consumption and area overhead varying the SCM-DM size. The minima
are highlighted by a rounded marker.

tion occurs, a further analysis is executed on the abnormal heartbeat. By default a single

ECG channel is filtered and analyzed by the classifier. Only for abnormal heartbeats,

three-channels filtering and delineation is performed. This benchmark presents a com-

plex structure, requiring lockstep execution only in some situations and a sophisticated

control flow across cores. As depicted in Figure 4.6c, RP-CLASS utilizes 6 cores of the

platform and benefits from both proposed synchronization mechanisms.

4.2.5 Experimental Results

In this section I first make a detailed exploration to choose an optimal balance between the

SCM and the 6T memory regions composing the data memory sub-system. Then, I briefly

discuss on the run-time performance obtained by the architecture for the studied benchmarks.

Finally, I comparatively evaluate the energy efficiency of the studied architecture featuring the

proposed hybrid memory hierarchy with synchronization support.

4.2.5.1 Reliable Memory Requirements

In the first round of experiments I explored the energy efficiency of the multi-core platform

when different sizes of highly-reliable SCMs are employed (Figure 4.7). The considered SCM

design uses a cross-coupled pair of AND-OR-INV (AOI) as the storage element, which is more

energy efficient than 6T-SRAM. The choice of this memory element, combined with the use

of regular place and route, results in more than 3x area saving [24] compared to the SCM

design in [137] that uses a latch as the storage element. In applications with multiple producer-

consumer computation phases, the availability of a large SCM region enables the acquisition

of wider samples windows and thus maximizes the pipelined execution of different phases.

For what concerns the supply voltage levels for sensing and processing, such values were
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determined considering the measurements results presented in [24]. The minimum operating

voltage point was measured by the authors of [24] over nine chips and the results show that

for the majority of the chips, the SCMEM operated correctly at voltages below 0.4 V and on

average it has 400 mV lower minimum operating voltage point than the 6T memory. However,

the worst case scenario have been considered, i.e. the highest minimum voltage for both

SCMEM and 6T among the different measured chips, which conservatively lead to 600 mV for

sensing and 800 mV for processing.

As shown in Figure 4.7, the illustrated trade-off results in an optimal size of the SCM region

of 64 bytes for three out of four of the considered benchmarks. Thus, I used this size in the

experiments of the following sections. This choice increases the area of the data memory

by 0.2% and leads to a negligible system area overhead (≈ 0.1%) with respect to a design

including only 6T-SRAM. Since irregular 6T memory banks cannot be generated with standard

memory compilers, the addition of small SCM regions does not imply a reduction of the

6T part but a superposition. As expected, the benefits of employing wider SCM regions are

most evident in the 3L-MMD and RP-CLASS benchmarks, which expose producer-consumer

relationships. For these cases, the ability to process a larger window of data in a pipelined

fashion across multiple processors is leveraged to increase parallelism and reduce the time

spent in processing mode. For the other two benchmarks, only modest gains can be achieved

by employing bigger SCMs due to the reduced number of transitions between sensing and

processing modes. Such time overhead, due to transitioning between processing and sensing

modes, has been conservatively modeled as 100 ns in the experiments, taking into account

wide margins with respect to silicon implementations [123, 138].

4.2.5.2 Runtime Performance

Table 4.1 reports the most relevant workload characteristics obtained while executing the four

bio-signal processing benchmarks considered in this work on the target multi-core platform.

Three main conclusions can be drawn from these numbers.

First, it can be observed the small overhead caused by the insertion of synchronization instruc-

tions, in terms of run-time as well as code size (Synch. Cycles and Code Overhead in Table 4.1,

respectively). Second, the obtained instructions per cycle (IPC) is always over 1, highlighting

the exploited parallelism by the synchronization technique. Finally, the table shows that the

sensing periods, where the processing cores stay idle, are dominant, accounting in all the

cases for more than 90% of the time.

4.2.5.3 Power Consumption Evaluation

Table 4.2 reports the obtained values for leakage and dynamic power for both processing and

sensing phases. In all cases, leakage power is effectively reduced by ≈ 40% when transitioning

to the state-retentive sensing mode. In the context of biomedical monitors applications, this
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Table 4.1 – Relevant runtime characteristics of the bio-signal processing benchmarks

8L-CS 3L-MF 3L-MMD RP-CLASS

Active cores 8 3 5 6
Active IM banks 1 1 4 6
Parallelism (IPC) 7.99 2.98 2.24 3.65
Code overhead (%) 0 2.55 0.91 0.71
Sensing time (%) 94.71 95.11 90.97 92.06
Processing time (%) 5.29 4.89 9.03 7.94
Synch. cycles (%) 0 1.67 0.96 0.62

aspect is particularly relevant, since the benchmarks spend in this state up to 95% of their

execution time. As expected, dynamic power is negligible during the sensing periods where

most of the system is clock gated and the voltage is reduced. To highlight the efficiency of

Table 4.2 – Leakage and dynamic power of the target platform for the bio-signal processing
benchmarks during sensing and processing phases.

Avg. Power Consumption (uW)

Processing Sensing

Leakage Dynamic Leakage Dynamic

3L-MMD 2.09 276.52 1.24 0.06
RP-CLASS 2.39 339.92 1.41 0.06
8L-CS 1.81 588.47 1.12 0.06
3L-MF 1.62 298.77 0.98 0.06

the proposed proposed solution, I compared it with two different baseline systems. The first

baseline system (no Hybrid in Figure 4.8) does not implement the hybrid memory subsystem

and it is always running at the higher voltage level of 800 mV, while still employing synchro-

nization for managing lock-step execution and efficient producer-consumer waiting. In the

second case (no Sync in Figure 4.8), I employ active waiting instead of clock gating to manage

producer-consumer relationships and lock-step execution is disabled, but I still allow the

system to transit to the low-power sensing mode when all the cores are idle. To make a fair

comparison, in this last setting I reduce access conflicts by assigning different IM and DM

banks to each processor, even when they execute the same computing phase.

Figure 4.8 shows the breakdown of the average power consumption for 60s of activity for all

the three architectures considering the time spent in sensing and processing modes. Two

main conclusions can be drawn from this comparison. First, energy savings are consistently

achieved in all benchmarks by employing different operation modes supported by a hybrid

data memory. Savings derive from a reduction of up to 32% in leakage power of all system

components, as well as from the dynamic power of the clock tree (reaching 60% reduction in

3L-MF) due to the lower frequency employed in sensing mode. Second, synchronization can
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Figure 4.8 – Power consumption of the target and baseline systems (no Hybrid and no Sync)
for the considered bio-signal processing benchmarks.

effectively increase the system efficiency. In fact, synchronization allows merging memory

requests of data and instruction words, thus minimizing the accesses to memories and the

number of active banks, leading to a reduction in leakage and dynamic energy. These two

aspects are especially beneficial when multiple cores execute the same processing phase, as in

the case of 8L-CS where memory consumption is reduced by 83%.

The combined benefits of efficient parallel execution and operation modes (shown in Fig-

ure 4.8) are more than additive. By effectively distributing the workload over multiple comput-

ing units, it is in fact possible to reduce the ratio between processing and sensing time, giving

ample opportunity for dynamic voltage scaling.
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Figure 4.9 – Power consumption breakdown on a WBSN-based biomedical monitor executing
a multi-channel biosignal processing application. Values are computed based on [124], [139]
and [140]

Figure 4.10 – Activity of different contributors of a typical biomedical monitor while performing
bio-signal DSP

4.3 ProposedNano-engineeredULPMulti-CoreArchitecture featur-

ing a 2-level NVM-basedmemory subsystem

With the reduction of the energy required by signal transmission and data sampling, the

efficient implementation of the digital signal processing (DSP) stage is a key aspect in order to

minimize the power consumption of biomedical monitors. As shown in Figure 4.9, most of the

power dissipated by these devices is due to the processing of the acquired samples. To perform

complex bio-signal processing routines within an ultra-low-power envelope, embedded digital

platforms must be carefully tailored to the specific domain and its workload characteristics. For

instance, the state-of-the-art electrocardiogram (ECG) compression and filtering algorithms

experience extended idle periods (>90% of the inter-signal arrival time), when executed on a

common bio-signal processing platform [11] [124]. This is primarily due to the low sampling

frequency of the acquired signals (with low processing requirements). The long idle periods

(cf. Figure 4.10) increase the leakage power of the overall system, which reaches up to 86% of

the total power consumption.

Stemming from these observations, herein I propose a nano-engineered bio-signal processing

architecture that addresses the previously mentioned limitations. The platform leverages

the benefits of emerging nanotechnologies, focusing on low-voltage, non-volatile memory
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structures (STTRAM [141], RRAM [142]), in conjunction with ultra-dense, fine-grained 3D

integration (termed monolithic 3D [143], [144]).

In particular, I introduce a new ultra-low-power and domain-specific platform, aggressively ex-

ploiting the characteristic of upcoming technological breakthroughs to fully exploit application-

level energy saving opportunities. The key aspect of this new architecture is the fully re-

designed memory subsystem enabled by the utilization of emerging technologies such as

the ones previously mentioned. In addition, I present a novel system management policy,

which allows the low-overhead power gating of computational as well as storage elements to

substantially decrease both active and leakage power consumption.

The achieved power savings derive from the adopted synergistic approach. NVM enables

power gating of the system at idle times. The proposed architecture considers the domain ap-

plication nature, and the NVM limitations by building a 2-level memory hierarchy (latch-based

cache-like level 1 and NVM-based level 2). The ultra-dense monolithic 3D integration enables

the efficient transfer (1-cycle transfer) between the memory levels for a quick power gating

application. The required interconnection density is provided by Monolithic 3D integration

resulting in negligible area overheads with respect to the ones achievable by state-of-the-art

Through Silicon Vias (TSVs) [145].

4.3.1 Technology Background

Ultra-low-power bio-signal analysis platforms have to abide to conflicting requirements, as

complex applications must be supported within real-time constraints, at the same time retain-

ing a high flexibility, which allows to execute a wide range of bio-signal processing algorithms.

In this section I describe how non-volatile memories and 3D-integration fabrication pro-

cesses become technological enablers to achieve this goal at high degree of energy efficiency,

targeting multi-core WBSNs architectures.

4.3.1.1 Non-Volatile Memories

Emerging low-voltage non-volatile memories (NVM) have caught significant attention in

the last years, and have been explored in various computing domains (from embedded to

high-performance) [146] [147] [148] [149] [150] [151] [152] [153] [154]. In this work, I focus

on STTRAM and RRAM, but the same approach can be extended to other low-voltage NVMs

such as Conductive-Bridge RAM (CBRAM) [142]. FLASH memory is also examined to illustrate

the efficacy of emerging memory technologies at the system level. Table 4.3 shows a quali-

tative comparison of emerging memory technologies versus key representatives of current

embedded memory (volatile and nonvolatile) technologies. Three important considerations

can be derived from it. First, non-volatile memories provide significant area savings over

traditional SRAM designs, due to their small cell size. Second, their non-volatility provides

massively lower leakage power on a system level. The third, and most important, observation
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SRAM STTRAM RRAM FLASH

Cell Size
(F2)

Big
(∼ 120)

Small
(∼ 6)

Small
(∼ 4)

Small
(∼ 4)

Read Latency
(ns)

Low
(< 10)

Low
(< 10)

Low
(< 10)

High
(> 100)

Write Latency
(ns)

Low
(< 10)

Med
(10’s)

Med
(10’s)

High
(> 104)

Read Energy
(pJ/bit)

Low
(< 1)

Low
(< 2)

Low
(< 2)

High
(> 100)

Write Energy
(pJ/bit)

Low
(< 1)

Med
(1−10)

Ned
(5−20)

High
(> 1000)

Leakage High Low Low Low
Volatility Yes No No No

Endurance
(writes/bit)

High
(> 1015)

High
(1015)

Med
(1012)

Low
(106)

Availability Yes
Mostly

Experimental
Mostly

Experimental
Yes

Table 4.3 – Comparison between different memory technologies. Latency and energy values
are observed from literature

is that they enable aggressive energy-saving run-time strategies. In fact, they provide the

ability to completely power down a digital circuit, while still retaining data integrity. This

characteristic can potentially result in significant system energy reduction, especially when

the total execution time is dominated by idle periods, as in the considered case. Although

cycling endurances of STTRAMs and RRAMs are significantly lower than those figures for

SRAM memories (particularly RRAM), architectural changes to the system design can still

be made to exploit their area and energy benefits without any performance loss. A second

drawback of low-voltage NVMs is that their write latencies are much higher than that of volatile

alternatives. This aspect may pose a challenge for high-performance applications, but is less

crucial in an ultra-low power scenario, where deeply scaled voltage supply levels are adopted,

resulting in low operating frequencies. For example, a system cycle time of 50ns (20MHz),

encapsulates both the read and write latencies of the considered NVM memories (read 1-2ns,

write 10-20ns) [141], so that read and write operations consume a single cycle. Moreover, the

low operating frequencies can be exploited to further lower the read and write energy of the

considered memory technology, without any device-level modifications. This is indeed key to

increase the energy-efficiency of low-power computing systems. The required write current

(or voltage) can be relaxed by increasing the write pulse width. This relaxation is accompanied

by a reduction of voltage (or current), due to the I-V characteristics of the access transistor.

In this work this methodology is followed to reduce the write energy of STTRAM and RRAM,

while doing the circuit level characterization, based on the following relationships.

STTRAM writing and reading current can be tuned to benefit from low operating frequencies,
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based on the relationship between writing current (Ic ) and pulse width (t: time needed to

change the magnetic material state) [155]:

Ic = Ico

(
1− 1

Δ
ln

(
t

τ0

))
(4.1)

where Ico is the threshold write current (STTRAM-material dependent), Δ is the thermal

stability factor (STTRAM-material dependent and affects the retention time of the memory)

and is the nominal switching time ( 1ns). This relationship enables the tuning of write current,

hence reducing the write energy of STTRAM.

Similarly, for RRAM, the applied write voltage can also be reduced to relax the pulse width

[156]:

τset = ΔΦ

A
exp

⎛
⎝ EA −aqV

kT0 + V 2

8ρkth

⎞
⎠ (4.2)

where ΔΦ is the change in conductive filament required for a sufficient change of resistance, A

is the filament diameter, EA is the activation energy required to set, ρ is the electrical resistivity

of the conductive filament, kth is the thermal conductivity of the conductive filament, and T0

is the ambient temperature. However, τset increases faster than quadratically with decreasing

V . Thus, the write energy increases as the voltage is increased since Ewr i te ∝V 2τset .

4.3.1.2 3D Integration

Vertical (3D) integration of circuits, whereby circuits are stacked vertically over one another,

offers benefits ranging from processing and circuit-level optimization to architecture and

system-level optimization. In this work I capitalize on the following key benefits of 3D integra-

tion:

1. Massive connectivity between various components, that are otherwise infeasible or very

hard in planar 2D integration (with reasonable routing overhead).

2. Heterogeneous technology integration of the various tiers, to maximize the efficiency of

the overall systems (area, performance, energy, cost, etc.).

Traditionally, 3D integration relies on through-silicon via (TSV) technology. However, these

TSVs can occupy significantly large area footprint [157]. Moreover, they require large keep-out-

zones where no transistors may be placed, further inhibiting the ability for dense integration.

To achieve fine-grained integration, one can rely on monolithic 3D integration, whereby each

vertically-stacked tier of circuits is fabricated directly over previous fabricated tiers [158] [143].

This technology enables using traditional inter-layer vias (ILVs) to connect each tier of circuits.

The significantly smaller via size and absence of keep-out-zones, compared to TSVs, allows

the design of a massive vertical connectivity, without prohibitively large area overheads.
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Such solution is adopted in the proposed platform to link non-volatile and volatile memory

elements. The low overhead of data/instructions transfer granted by ultra-wide ILV-based

interconnect, coupled with the high locality characterizing the applications, result in an

energy-efficient and low-overhead nano-engineered architecture.

Contrary to TSV-based 3D, monolithic 3D integration requires stacked subsequent tiers of cir-

cuits to be fabricated with low temperature (<400◦C) to preserve the performance of the ones

already finished. The considered NVM can be manufactured at the required low temperature

[159]. However, silicon requires high temperature in the fabrication process (temperature

exceeding 1000oC is needed for various steps such as dopant activation [160]), which renders

it unusable in any tier, except the first one. While there are efforts to overcome such limita-

tion [158] [161], carbon nanotube field-effect transistors (CNFETs) naturally overcome this

temperature barrier since all processing steps on the main wafer are below 200◦C. Systems

that monolithically integrate non-volatile memories and CNFETs on silicon CMOS technology

have already been experimentally demonstrated [144].

I use low-voltage NVM and monolithic 3D integration to reduce energy consumption and

overall area footprint in combination with a state-of-the-art low-power multi-core architecture

for bio-signal processing. CNFETs are monolithically integrated on top of traditional silicon

CMOS logic to construct the non-volatile memory system cells. Although CNFETs have been

projected to provide an order of magnitude energy-efficiency improvement over traditional

silicon CMOS [162], I only use CNFET in the NVM access circuitry (e.g., row decoders, selection

transistors) found in upper tiers, thus, neglecting the potential energy-efficiency impact of

CNFET in those circuits.

4.3.2 Proposed Nano-Engineered Architecture

To fully exploit the synergistic combination of ultra-low-power architectures for biomedical

monitors and new technological devices, I propose a novel system that enables high energy

efficiency with a low area footprint, thanks to the new opportunities provided by the low-

energy NVM and ultra-dense 3D integration technologies.

4.3.2.1 System Architecture

The target platform, presented in Figure 4.11, consists of a multi-tier chip with the bottom tier

hosting the processing logic and the upper tier hosting the non-volatile storage. High-density

vertical connections link the tiers among them.

The architecture of the bottom tier is similar to the one introduced in Chapter 3. It features

eight low-power RISC cores interfaced to 16 data memory and 8 instruction memory banks.

The data interface is 16-bit wide, while each instruction word is 24-bits wide. The links between

cores and memory banks are implemented by a mesh-of-trees logarithmic interconnect [114],

that provides single-cycle access to the banks and perform arbitration in case of conflict among
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Figure 4.11 – Block diagrams of the a) multi-core architecture introduced in Chapter 3, featur-
ing volatile SRAM and b) the target NVM-based platform

several memory requests. In the baseline architecture, the entire program and data content

reside in the above-mentioned banks, resulting in a flat (SRAM-based) memory structure.

Conversely, in the proposed nano-engineered system those volatile memories are realized as

page buffers of only few words each, collectively acting as a cache for the non-volatile storage

residing in the upper tier. The small size of the buffers, in conjunction with the high-density

inter-tier connectivity enabled by monolithic integration, enables data transfers in-between

buffers and NVMs with low overheads (as detailed later). It is also crucial for the efficient

implementation of the deep-sleep mode, in which both the top (non-volatile) and the bottom

(volatile) tiers are power gated during idle periods.

The architecture proposed in this section can also leverage the benefits of the multi-core

approach introduced in [84]. By allocating workloads on several resources, a low system clock

frequency of only few MHzs can be adopted, enabling aggressive voltage/frequency scaling

without violating real time constraints. Crucially, a low frequency operating point also allows

single-cycle transfers to and from the non-volatile sub-system, even when the longer latencies

of RRAMs and STTRAMs with respect to SRAMs are considered.

Furthermore, the system supports multiple-instruction multiple-data (MIMD) and single-

instruction multiple-data (SIMD) execution modes. MIMD is beneficial for bio-signal applica-
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tions consisting of a sequence of algorithms applied over a stream of data [10], while SIMD

increases the efficiency when the same DSP is applied on multiple sources, by dramatically

reducing the number of required instruction fetches [84].

A hardware synchronizer unit derived from the one described in Section 3.3.2.2 orchestrates

the run-time behavior of the system. First, this unit manages SIMD and MIMD execution,

keeping track of data-dependent branches and producer-consumer relationships among cores,

respectively. Second, it interfaces with the Memory Management Unit, stalling cores who

experience a miss in the data or instruction buffers. Third, it allows the system to transition to

(and recover from) deep-sleep sensing, signaling the processors to store and read back their

state in the non-volatile storage. These last two features are here introduced for the first time

and become essential for the correct operation of the proposed NVM-based system.

4.3.2.2 MemoryManagement Approach

The full-custom page buffers have been implemented as arrays of latches that incorporate

a direct input line connected to each bit cell allowing a single-cycle page storage or readout.

These massively parallel transactions require an ultra-wide connection with the NVM. While

this arrangement can be realized with 2D, 3D TSV or monolithic 3D integration, the area

overhead favors monolithic integration, as shown later in the experimental evaluation.

Targeting low-voltage RRAM or STTRAM NVMs significantly reduces the access energy with

respect to standard solutions, such as FLASH-based NVMs. Therefore, the size of volatile

buffers can be much smaller than the application data and instruction size, avoiding full

shadowing and relying instead on on-demand page transfers to volatile banks. A proper

selection of the size of the page buffer is therefore essential to maximize efficiency, since

the memory power consumption will depend on the page transfer rate (which decreases

when buffers are large) and the leakage and energy per access of these caches (which, on the

contrary, favors the usage of small buffers).

The decision of issuing a page transfer is taken by a light-weight Memory Management Unit

(MMU), which, in conjunction with the synchronizer, coordinates the page transfers between

the NVM and the buffers, stalling the cores’ execution while transfers are in progress. This unit

works as a simple content-addressable-unit (CAM), which makes the translation between the

address of a word request and the location of the corresponding page, checking if it is available

in any of the buffers. Otherwise, the unit selects the page to be replaced.

4.3.2.3 Deep-sleep Sensing

The run-time management of bio-sensing analysis systems based on non-volatile memories

present a marked different with respect to volatile-based alternatives. In the latter case, goal

of the power manager is usually to minimize the idle time by setting a clock frequency that

barely meets real time constraints [84] [20]. Conversely, for platforms embedding NVMs higher
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operating frequencies are desirable during computing bursts, in order to reduce active time.

In fact, in idle mode, the full digital architecture can be power gated, while new samples are

acquired. I term this state “deep-sleep sensing”. This strategy is possible thanks to the avail-

ability of persistent memory provided by the NVM. Before entering deep-sleep sensing, a copy

of the application state, namely the the data in the page buffers and the processor registers,

is transferred to non-volatile storage. At this point, both the memories and the processing

elements can be safely power-gated. At power up, each processor reloads the content of its

own registers and execution can seamlessly resume from where it was interrupted.

The transition from and to the power gated state is managed by monitoring the activity of

each individual core and by the built-in ADC module. The system is power gated when all

processors are idle and resumed when new samples are available.

4.3.3 Experimental Framework

The following sections show the performed evaluation to highlight the benefits of the proposed

nano-engineered ultra-low power architecture for bio-signal processing system.

4.3.3.1 Circuit-level Characterization

A full physical design (through place and routing) of various components (i.e., processing

core, SRAM-based memory, latch-based page buffers, and the integration of NVM memory

with such system to account for the ILV energy and delay overhead) was performed using a

28nm process design kit (PDK) (1.0V VDD) to extract area, power and performance charac-

teristics. Inter-component wiring was considered while extracting the previously mentioned

characteristics, in all the studied 2D and 3D (TSV-based and monolithic) architectures. The

operating frequency was set to 20MHz for the studied NVM-based configurations (c.f. Sec-

tion 4.3.3.3). It is important to note that, while a platform featuring multiple voltage islands

(e.g. higher voltage level for the NVMs) would lead to further energy savings on the logic side

(i.e. processors, volatile memory, etc.), the overhead of the resulting platform due to its higher

complexity would not compensate for the potential energy savings. In particular, this feature

would require a more complex access circuitry for the non-volatile cells and therefore, both

area- and energy-wise, this component would become less efficient. As a consequence, in this

work, I consider a single-voltage domain targeting the nominal voltage given by the employed

PDK.

For the considered NVM, the required read and write current values and pulse widths based

on the equations 4.1 and 4.2 were identified to fully benefit from the long cycle time (50ns),

while device-level parameters were obtained from the literature [142]. In particular, the write

pulse width of the NVM cells was set to 25ns to account for the additional overhead spent

in memory access circuitry. Then, detailed SPICE simulations were performed to deduce

the applied voltage on the associated transistors with the NVM cells and the transistor width
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Dyn. Energy (pJ/bit) Leakage (μW)

Processing core 10.9 (pJ/operation) 41.37
8x12 KB PM SRAM Bank 0.2 (rd) 3.53
16x4 KB DM SRAM Bank 0.23 (rd) 0.27 (wr) 1.90
24 B PM Page buffer 0.01 (rd) 6.81
16 B DM Page buffer 0.01 (rd) 0.02 (wr) 4.65
96 KB STTRAM PM 0.13 (rd) 1.05
64 KB STTRAM DM 0.13 (rd) 1.13 (wr) 0.66
96 KB RRAM PM 3.2 (rd) 3.46
64 KB RRAM DM 3.3 (rd) 6.7 (wr) 2.31

Table 4.4 – Parameters of various key components of the studied nano-engineered architec-
tures

required to provide the current needed to program the considered NVM. Finally, the values

deduced form SPICE were linked with NVSim [146] to estimate the corresponding parameters

of the overall memory array (including memory interface circuitry). Table 4.4 summarizes the

power consumption of the main blocks of the target system.

4.3.3.2 Bio-signal Processing Benchmarks

In order to evaluate the considered architectures, in this study I have employed the bio-signal

processing benchmarks descried in Section 4.2.4.2. Hereafter I only provide a brief description

of each of the applications:

• 8L-CS:Eight-lead Compressed Sensing based on the algorithm described in Section 2.2.4

of Chapterch:sw. It is mapped on 8 processing cores.

• 3L-MF: Three-lead Morphological filtering based on the algorithm described in Sec-

tion 2.2.1.2 of Chapter 2. It is mapped in 3 processing cores.

• 3L-MMD: Three-lead Morphological Delineation performs morphological filtering, RMS

combination and delineation of the resulting signal based on the algorithm described

in Section 2.2.2.2 of Chapterch:sw. It is mapped on 5 processing cores.

• RPCLASS: Selective advanced ECG processing triggered by an abnormality detector

implemented as a neuro-fuzzy classifier described in Section 2.3 of Chapter 2. It is

mapped on 6 processing cores.

4.3.3.3 Explored Nano-engineered Architectures

An exhaustive design-space-exploration (DSE) was performed according to two main charac-

teristics of the studied architecture: memory volatility and 3D integration technology. As a

result, the following four platforms were considered:
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• 2D_Baseline: As in [124], this platform only employs SRAM memories and a planar

arrangement. Therefore, it does not include neither NVMs nor 3-dimensional integra-

tion of any kind. The system implements the synchronization mechanism described in

Section 3.4.2.2 of Chapter 3 and is able to power gate unused program memory banks at

boot time.

• 2D_NVM: This platform adopts the architectural concept described in this work, while

integrating the proposed memory subsystem, even including the NVM, in the same die

as the processing logic and latch-based page buffers

• 3D_TSV: In this platform NVM is placed on another tier than the cores and the page

buffers, while through-silicon vias (TSVs) are used to connect those tiers. The TSV

dimensions for this architecture are optimistically deduced from [163] assuming a 5 μm

pitch (i.e., TSV keep-out zone).

• 3D_TARGET: This platform is the target system where monolithic 3D integration is used

to connect the processing logic tier with the NVM tier. The impact of monolithic 3D

integration (i.e., ILVs) are taken into account for all analysis performed later.

The comparative evaluation does not consider volatile three-dimensional systems, as such

strategy would not lead to an energy-efficient implementation. In fact, the in this case at least

the upper layer would always be powered (even during idle periods) to save the system state,

resulting non-zero power due to leakage. Dissipation can be reduced, but not eliminated, by

putting the memory in a retentive state, that is, powering it at a really low level, in which it

cannot be accessed but still holds the stored values. This approach, previously introduced in

Section 4.2 is therefore in-between the 2D_Baseline and 3D considered architectures. Area-

wise, it would also not be particularly appealing, as 85% of the area is devoted to memories in

2D_Baseline.

I also examine FLASH as a NVM option, for both 2D and 3D cases. The long write latency (i.e.,

120μs [25] [164]) of FLASH memory renders the entire system non real-time. The time needed

to write to the NVM in this case exceed the idle periods between subsequent samples. As a

result, deep sensing policy could not be applied.

4.3.4 Experimental Evaluation

4.3.4.1 Page Buffer Sizing

The memory hierarchy of the 3D_TARGET platform comprises NVM blocks (in the upper

tier) and smaller latch-based volatile page buffers (in the lowest one, along with processing

elements). These are connected on one side to the crossbars and, ultimately, to the multiple

cores, on the other side to the NVM via an ultra-dense vertical interconnect.

Program and data page buffers can be sized differently, since they are interfaced to the cores
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(a) (b)

Figure 4.12 – Average power consumption of 3D_TARGET employing different instruction
page buffer (I-PB) and data page buffer (D-PB) sizes (in number of words). Local minima are
marked with a red dot

through independent networks. Figure 4.12 shows an exploration of the proposed architecture

employing 7 different page buffer sizes ranging from 8 to 512 words and executing all the 4

studied benchmarks. 49 different configurations have been tested for each of the applications.

As it can be observed, variants employing page buffers with reduced amounts of words perform

better. This situation highlights, the inherent code locality present in embedded bio-signal

processing algorithms, which favors more compact implementation, having to lower leakage

and energy-per access, even at the cost of an increased amount of page transfers. Among the

different options, the best alternative, used hereafter to perform the rest of the experiments, is

the one utilizing 8-word banks for both instruction and data page buffers.

4.3.4.2 NVMOptimization

I explored various properties of the considered STTRAM and RRAM technologies and their

corresponding impact on the overall nano-engineered performance. In particular, I studied

the impact on: 1) energy consumption; 2) footprint; and 3) endurance.

By optimizing both NVM technologies, through increasing the write pulse width and corre-
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Figure 4.13 – Average page write frequency for the four studied benchmarks

spondingly reducing the write current and or voltage, STTRAM provides lower energy than

RRAM by 5x, as shown in Table 4.4. At the system level, the results indicate STTRAM increases

the energy-efficiency by 50% compared to RRAM-based configuration.

While STTRAM enhances the energy efficiency of the target system, RRAM is denser enabling

higher memory capacity per unit footprint. As Table 4.3 shows, RRAM cell is 33% smaller than

STTRAM. Thus, for a fixed-capacity memory with high area efficiency (most of the footprint is

occupied by only the cells, while less area is occupied by the interface circuitry), it is expected

that RRAM-based memory would have smaller footprint. In the case of 3D_TARGET however,

the NVM has 30% area efficiency, which resulted in similar footprint in both memories.

I studied endurance of both NVM technologies, to deduce the lifetime of the platform until a

cell cannot be used. STTRAM provides a better write endurance (∼ 1015 writes) than RRAM

(up to 1012), which makes STTRAM favorable. However, by studying the specific write patterns

of the targeted applications to the NVM via the studied architectures, I observed that a high

endurance may not be needed in the target scenario. Figure 4.13 shows average write rates of

the most used pages for the studied benchmarks. With a maximum of 1500 writes/second,

a write endurance of 1012 is sufficient for a lifetime of >20 years. This low-endurance re-

quirement is a significant advantage for RRAM. When this combined with the manufacturing

advantages of RRAM (RRAM is favorable as it uses materials that are common in current

semiconductor manufacturing [142]), RRAM may be seen as a more suitable NVM. From a

research perspective, however, in this work I opt to use STTRAM in the following sections due

to its energy superiority over RRAM.

4.3.4.3 Run-time Performance

The benefits of the proposed memory management enabled by the NVM integration can be

observed in detail in Table 4.5. As a first observation, the amount of processing time is below

10% for all the evaluated benchmarks allowing for long periods of deep-sleep sensing in which

the platform is inactive. In addition, for the chosen configuration, the amount of active cycles
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8L-CS 3L-MF 3L-MMD RPCLASS

Processing time (%) 5.49 4.67 8.16 7.04
Data exchange cycles (%) 2.31 5.39 4.30 5.79
NVM → Buffer (Avg. MB/s 44.60 51.41 79.34 137.36
Buffer → NVM (Avg. MB/s 18.25 30.96 28.60 32.57

Table 4.5 – Runtime metrics of the analyzed benchmarks using 8-word program and data page
buffers

devoted to page transfer among the NVM and the page buffers is in the worst case 5.79%,

which minimally impacts the overall power budget.

Moreover, Table 4.5 shows that the utilization of the MMU does not dominate the execution

time, so that even a poor choice for the replacement policy cannot determine run-time bot-

tlenecks. The low amount of processing time will always allow to meet real-time constraints

with ample margins, justifying the choice of focusing on average, instead of worst case, exe-

cution times. Finally, the ultra-wide interconnect between the processing tier and the NVM

tier can support high transfer rates between the NVM and the page buffers with negligible

performance degradation.

4.3.4.4 Area Footprint

Out of the studied architectures, 2D_NVM presents the largest area footprint (0.4568 mm2). In

Figure4.14, I compare the area breakdown of the other three evaluated architectures against

the one of this system. 2D_Baseline is smaller than 2D_NVM, due to the inclusion of the 2-level

memory structure. The ensuing overhead is chiefly determined by the bit-level interconnect

between page buffers and non-volatile memories, when realized in a planar technology.

Such complex routing can be much more effectively implemented in a three-dimensional

circuit. However, in the case of 3D_TSV, the space dedicated to the through-silicon-vias

is considerable, accounting for more than 60% of the whole NVM tier, reaching an overall

reduction with respect to 2D_NVM of 49.1%. It is worth mentioning that the TSVs area

overhead directly impacts the NVM as the TSVs connect the metal layers of the processing

cores to the metal layer of the NVM by passing through the NVM active layer (i.e., the layer

with the transistors used to access the NVM cells). Nevertheless, the choice of the monolithic

integration strategy used in the 3D_TARGET architecture provides the most compact design

resulting in a 4.98X and 2.53X area saving when compared to 2D_NVM and 3D_TSV respectively.
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Figure 4.14 – Area breakdown for the studied nano-engineered architectures

4.3.4.5 Power Consumption

Figure 4.15 shows the power consumption comparison for each of the studied benchmarks

and the corresponding breakdown of the three main contributors, namely memory, compute,

and leakage (similar to the breakdown in Figure 4.15). Only results of 3D_TARGET are reported

since according to the performed experiments, 3D_TSV consumes at least 1% more energy in

all the cases. Figure 4.16 also shows the detailed power breakdown of all the components in

3D_TARGET. The energy consumption of the target nano-engineered bio-signal processing

architectures is hugely decreased with respect to the baseline implementation, thanks to

deep-sleep sensing enabled by the non-volatility. In particular, compared to 2D_Baseline,

the other alternatives improve their energy efficiency up to 81% (in the case of 3D_TARGET).

The efficiency of the NVM-based memory subsystem leads to 4x energy gains with respect to

the volatile SRAM of 2D_Baseline, resulting in large savings in both 2D and 3D architectures.

These savings are mainly derived from the adopted power gating strategy, which turns off the

entirety of the platform when it is not actively processing.

4.4 Summary and Concluding Remarks

In this chapter, I have explored two different approaches to improve the energy efficiency

of low-power multi-core platforms by redesigning their memory subsystem. First, I explore

the utilization of hybrid memory banks provided with a small reliable memory region imple-

mented with standard cell memories. This small memory portion can operate at ultra-low

voltage levels without suffering of data degradation. Thanks to this memory arrangement, the

architecture can adopt a more efficient power management strategy. During sensing periods,

data is buffered into the reliable memory section and when enough data is available, the

platform voltage is raised and the data is processed accordingly. Experimental results show
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Figure 4.15 – Power consumption of the studied architectures. The breakdown on the right
half of the figure is in μW

that up to 50% power consumption can be saved adopting this strategy while only increasing

the overall system area by 0.1%.

Second, I have proposed a completely re-designed two-level memory subsystem that incorpo-

rates a non-volatile memory. The new subsystem is provided with a volatile level consisting of

a set of small page buffers that collectively act as a cache for the NVM. These much smaller

buffers replace the typical SRAM banks and can be accessed respecting a latency of only one

clock cycle. Page transfers between the NVM and the volatile buffers can be also performed in

a single clock cycle due to the existing bit-level ultra-wide interconnect enabled by the chosen

fabrication technology. The architecture is realized as a two-tier monolithically 3D-integrated

chip, in which processing logic and volatile memories reside in the bottom tier while the NVM

is hosted in the upper one. The data transfers between instruction/data page buffers and the

NVM are managed by a custom-design lightweight Memory Management Unit (MMU), which

collaborates with the hardware synchronization unit to orchestrate the runtime execution. An

advanced power management strategy allowing for fine-grained power-gating can be adopted

thanks to this memory arrangement. Experimental results show that, the obtained chip is 5x

more compact than the 2D one based on SRAMs or hybrid memories. Moreover, the proposed

architecture can reach up to 5.42x reduction thanks to the decreasing in leakage power.
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Figure 4.16 – Power consumption breakdown of all considered applications when executed on
3D_TARGET
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5 Conclusions and Future Work

To conclude this thesis, hereafter I list the main contributions of my research work and

highlight the impact that it has had in the international community. Then, at the end of this

chapter, I provide several research directions for future work based on the results obtained in

this thesis.

5.1 Summary and Contributions

In this thesis I have proposed a set of hardware/software co-design techniques to improve

the energy efficiency of biomedical monitors. In order to do so, I have explored different

alternatives to reduce the computational power and transmission volume required by state-

of-the-art bio-signal processing applications executing on these devices. At the same time, I

have proposed optimized ultra-low power multi-core architectures that exploit some of the

application domain-specific characteristics to achieve the desired energy efficiency.

The following list provides a more detailed summary of the contributions introduced in the

different chapters, and discusses the results of this thesis:

• Optimized Embedded Digital Signal Processing for HealthMonitoring: In Chapter 2,

I have discussed two complementary strategies to optimize state-of-the-art embedded

bio-signal processing applications by reducing their computational complexity. On

the one hand, at the sensor node level, I have introduced the utilization of a heartbeat

classifier to perform selective advanced DSP in ECG single-node biomedical monitors.

The classifier only activates the costly DSP analysis routines in case of detecting an

abnormality in the heartbeat morphologies. The proposed implementation consists of a

lightweight, yet accurate, heartbeat classifier based on a neuro-fuzzy structure coupled

with a novel technique to perform feature extraction. This technique employs Random

Projections to reduce the high dimensionality of the heartbeats representation down to

a small set of features that are fed to the optimized classifier. Experimental results show

that the accuracy of the proposed classifier when identifying abnormalities can reach
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up to 98.9% keeping a low rate of mis-classifications. With respect to a typical system

that is continuously performing DSP analysis, my proposed approach can reduce the

duty cycle and transmission volume of an ECG biomedical monitor by up to 60% and

64%, respectively.

On the other hand, at the sensor network level, I have proposed an energy- and transmission-

aware WBSN devoted to the identification of physical activities. The system is com-

posed of several nodes deployed throughout the body of the subject and interfaced

with a smartphone within the same network. In particular, two classification schemes,

which trade accuracy for transmission volume, are proposed. On the one side, the

highly accurate smartphone-centric alternative is based on an NFC that exploits the

high computational resources available on the mobile phone. On the other side, the

transmission-aware scheme performs on-node classification employing a less complex

decision tree and minimizing the data transmission. According to the obtained results,

the high-precision classification reaches 97.2% accuracy, outperforming the state-of-

the-art alternatives. Moreover, the on-node option reduces the transmission volume by

up to 86% with a small classification degradation, leading to a 88% accuracy.

Publications: The work presented in this chapter has been welcomed by the embedded

system community. First, the heartbeat classifier was outlined in a publication at

the Design Automation and Test in Europe (DATE) Conference [57] and then extended

and accepted for publication on MDPI Sensors Journal [12]. The WBSN for activity

monitoring was presented at the IEEE EUC Conference [165].

Patent: A patent application has been granted by the U.S. Patent and Trademark Office

(USPTO) containing the work about the embedded heartbeat classifier (Patent "Method

for detecting abnormalities in an electrocardiogram", no. US 9468386).

• Synchronization-Based Ultra-Low Power Multi-Core Architectures: In Chapter 3, I

propose an ultra-low power multi-core architecture featuring a synchronization tech-

nique that allows to efficiently execute bio-signal processing algorithms exploiting the

intrinsic parallelism of these applications. The platform is composed of 8 TamaRISC

processing cores interfaced with multi-banked instruction and data memories through

combinational crossbar interconnects. The architecture aims at minimizing power

consumption by relaxing the system clock constraint and applying voltage scaling. To

that end, the application is parallelized dividing the workload among the different cores.

In a first version, I propose a hardware/software technique devoted to maximize lock-

step execution in multi-channel parallel applications following a single-instruction

multiple-data (SIMD) paradigm. It consists of a dedicated hardware synchronizer and

an instruction set extension, which jointly allow to recover synchronization after the

execution of data-dependent segments of code. The obtained results show that, when

compared with a state-of-the-art multi-core equivalent, the proposed synchronization-

based architecture provides up to 38% energy savings while only increasing the area

footprint by 2%.
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In a second version, I generalize the technique to any bio-signal processing application

presenting an arbitrarily high degree of parallelism. I propose mechanisms to con-

currently manage lock-step execution of code and producer-consumer relationships

among cores. Apart from an SIMD-like strategy, the technique employs the software

pipelining paradigm to split the application workload among cores. The methodology

describes the necessary hardware and software support as well as the steps to adapt

an existing application in order to adopt the proposed technique. According to the

experimental results, the proposed architecture can obtain up to 40% energy savings

while running real-world ECG processing benchmarks.

Publications: This work has been highly appreciated by the community and has lead

to two consecutive publications at the Design Automation and Test in Europe (DATE)

Conference. More precisely, the first version of the technique was published in 2013 [122]

and the second one in 2014 [124].

• Energy-EfficientMemory Subsystems forULPMulti-Core Architectures: In chapter 4,

I explore two different approaches to improve the energy efficiency of low-power multi-

core platforms by redesigning their memory subsystem. First, I explore the utilization of

hybrid memory banks provided with a small reliable memory region implemented with

standard cell memories. This small memory portion can operate at ultra-low voltage

levels without suffering of data degradation. Thanks to this memory arrangement, the

architecture can adopt a more efficient power management strategy. When no data is

available to be processed, the full processing architecture is stalled (clock-gated) and

the system supply voltage is aggressively reduced. During these sensing periods data is

buffered into the reliable memory section. When enough data is available, the platform

voltage is raised and the data is processed accordingly. Experimental results show that

up to 50% power consumption can be saved adopting this strategy while only increasing

the overall system area by 0.1%.

Second, I propose a completely re-designed two-level memory subsystem that incor-

porates a non-volatile memory as the new main storage feature. The new subsystem is

provided with a volatile level consisting of a set of small page buffers that collectively act

as a cache for the NVM. These much smaller buffers replace the typical SRAM ones and

can be accessed respecting a latency of only one clock cycle. Page transfers between the

NVM and the volatile buffers can be also performed in a single clock cycle due to the ex-

isting bit-level ultra-wide interconnect among them. Such a high bandwidth is possible

thanks to the chosen fabrication technology. The architecture is realized as a two-tier

monolithically 3D-integrated chip, in which processing logic and volatile memories

reside in the bottom tier while the NVM is hosted in the upper one. The data transfers

between instruction/data page buffers and the NVM are managed by a custom-design

lightweight Memory Management Unit (MMU), which collaborates with the hardware

synchronization unit to orchestrate the runtime execution. Thanks to this memory

organization, a more advanced power management strategy allowing for fine-grained

power-gating is adopted. Experimental results show that, the obtained chip is 5x more
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compact than the typical 2D one based on SRAMs or hybrid memories. Energy-wise,

the proposed architecture can reach up to 5.42x reduction thanks to decreasing leakage

power consumption by more 80%.

Publications: These works have recently been submitted and very well received by the

embedded system and computer architecture community. The work of the platform fea-

turing the hybrid memory subsystem has been accepted for publication in the journal

IEEE Transactions on Computers [166]. In addition, the 3D-integrated NVM-based archi-

tecture was presented at the International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS) [167].

5.2 FutureWork

Based on my research findings exposed in this thesis, in this section I provide some research

directions that can be taken in the field. In particular, I highlight some of the short- and

long-term lines that can derive from my work.

A set of short-term developments that continues the proposed approach to achieve higher

energy-efficiency in biomedical monitors can be summarized as follows:

• Development of Energy-Efficient Domain-Specific Processing Architectures: While

in this thesis I have not covered this aspect, there is an important opportunity to obtain

large energy gains by offloading the execution of complex algorithms to more efficient

dedicated hardware units. This option, which in principle may sound counterintuitive

due to its limited flexibility, does not have to be studied in a per-application basis but at

the target domain level (i.e. bio-signal processing applications) where some basic com-

puting intensive routines may be shared by the different applications. In addition, and

as an extension to the work presented in Chapter 4, the energy efficiency of this subset of

architectures can be greatly improved by carefully tailoring the memory subsystems, ex-

ploiting some domain-specific application characteristics [168], or employing standard

memories in combination with error correction techniques to work at near-threshold

regimes [109].

• Exploration of Heterogeneous Architectures: In this thesis, I have focused in the uti-

lization of general purpose low-power homogeneous multi-core architectures. However,

an interesting area of research is the integration of processing units of different nature

(e.g. general purpose cores, parallel digital signal processors, hardware accelerators, etc.).

In this context, some preliminary works have already shown to provide promising results.

At the Embedded Systems Laboratory of EPFL (Switzerland), it has been proved that, by

incorporating a Coarse-Grained Reconfigurable Array to a low-power multi-core sys-

tem, considerable energy savings can be attained when executing computing-intensive

kernels [169].

• Advanced Low-overheadMemory Protection and Correction: In this thesis I have pro-
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posed two optimized memory subsystems assuming that no error can be tolerated at the

application level. However, bio-signal processing algorithms present some resilience to

errors that can be exploited in order to reduce the power consumption of the system.

For instance, big data buffers stored in data memory may tolerate different kind of static

or dynamic bit-flips with no major impact in the quality of results. This aspect can be

leveraged in order to apply a more aggressive voltage scaling. At the same time, some

already existing error detection and correction techniques could be applied in order

to improve the robustness of the application, leading to a tradeoff between area and

energy consumption.

• Approximate Computing for Bio-Signal Processing: Following the same rationale, ap-

proximate computing relies on the ability of applications and systems to tolerate some

inaccuracies in the computed results. By relaxing the need for fully precise or com-

pletely deterministic operations, approximate computing techniques allow consider-

able improvements in energy efficiency. Given the algorithmic resilience of bio-signal

processing applications, this technique can be applied to further reduce the power

consumption of the architectures proposed in this thesis.

• Advanced Hybrid Classification Framework: Given the classification framework pre-

sented in the Chapter 2 of this thesis, several techniques can be employed to further

improve its accuracy and energy efficiency. On the one hand, the classification frame-

work based on an optimized embedded neuro-fuzzy classifier can be improved by

employing advanced arithmetic manipulations in the logarithmic domain while com-

puting the fuzzification values, which would reduce the complexity of the calculations

while keeping the precision obtained by the proposed piecewise approximation. In

addition, the compression of the RP matrix and the projection itself can be done by

means of incorporating a hardware accelerator coupled to the data memory unit of the

target platform. On the other hand, the proposed WBSN for activity monitoring can be

updated to efficiently combine the two presented configurations by employing a hybrid

classification scheme. This new system could perform a computationally intensive clas-

sification on the smartphone periodically or when a sudden change is detected on the

node-based classifier and use the outcome to correct and re-configure the implemented

on-node decision tree.

In addition and stemming from the proposed work, some long-term research lines, which

would reduce the power consumption and increase the reliability and performance of next

generation biomedical monitors, are the following:

• Logic Error Detection andMitigation: In the nano-scale era many reliability issues will

affect the performance and correct functioning of logic circuits, as long as we keep on

advancing in the trend of reducing transistor dimensions. Ultra-low power architectures,

such as the ones presented in this thesis, will also need to cope with this problems,

specially when voltage scaling is applied. Transistors performance degradation can
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lead to combinational logic failures in the form of timing violations that result in circuit

functional errors. In this context, Negative Bias Temperature Instability (NBTI) is one of

the major threats, which affects the PMOS transistors under a negative gate stress tem-

porary degrading their performance. The online preliminary detection of this spurious

errors and its mitigation represents a challenging area of research that not only applies

to the specific field of low-power architecture design but in general to the digital circuit

design domain.

• 3D-Integration Exploiting Emerging Nano-Technologies: Building upon the 3D-inte-

grated architecture proposed in the Chapter 4 of this thesis, new emerging nano-

technologies such as carbon nanotubes field-effect transistors (CNFETs) could be em-

ployed to further improve the energy efficiency and performance of ultra-low-power

architectures devoted to bio-signal processing. In addition, even though the presented

platform has been characterized using experimental evidence obtained in academic

facilities [144], the employed fabrication processes have not been validated yet in an

industrial scenario, which may impose further design constraints not considered in this

work.
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[63] B. Cetişli and A. Barkana, “Speeding up the scaled conjugate gradient algorithm and its

application in neuro-fuzzy classifier training,” Soft Computing, vol. 14, no. 4, pp. 365–

378, 2009.

[64] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of heartbeats using

ECG morphology and heartbeat interval features,” IEEE Transactions on Biomedical

Engineering, vol. 51, pp. 1196–1206, July 2004.

[65] R. Braojos, G. Ansaloni, D. Atienza, and F. J. Rincon, “Embedded real-time ECG delin-

eation methods: A comparative evaluation,” in Bioinformatics Bioengineering (BIBE),

2012 IEEE 12th International Conference on, pp. 99–104, Nov 2012.

[66] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for principal component

analysis,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 3, pp. 1100–1124,

2010.

[67] J. Yang and V. Honavar, Feature Extraction, Construction and Selection: A Data Mining

Perspective, ch. Feature Subset Selection Using a Genetic Algorithm, pp. 117–136. Boston,

MA: Springer US, 1998.

[68] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.

Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and

PhysioNet: Components of a new research resource for complex physiologic signals,”

Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13).

136



Bibliography

[69] M. Milis, K. Michaelides, A. Kounoudes, G. Ansaloni, D. Atienza, F. Giroud, P. F. Ruedi, and

F. Masson, “Icyheart: Highly integrated ultra-low-power soc solution for unobtrusive

and energy efficient wireless cardiac monitoring: Research project for the benefit of

specific groups (fp7, capacities),” in Bioinformatics Bioengineering (BIBE), 2012 IEEE

12th International Conference on, pp. 105–109, Nov 2012.

[70] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel, P. Bonato, and M. Welsh,

“Mercury: A wearable sensor network platform for high-fidelity motion analysis,” in

Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys

’09, (New York, NY, USA), pp. 183–196, ACM, 2009.

[71] S. J. Preece*, J. Y. Goulermas, L. P. J. Kenney, and D. Howard, “A comparison of feature

extraction methods for the classification of dynamic activities from accelerometer data,”

IEEE Transactions on Biomedical Engineering, vol. 56, pp. 871–879, March 2009.

[72] J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, “Using acceleration measurements for activity

recognition: An effective learning algorithm for constructing neural classifiers,” Pattern

Recognition Letters, vol. 29, no. 16, pp. 2213 – 2220, 2008.

[73] C. Lombriser, N. B. Bharatula, D. Roggen, and G. Tröster, “On-body activity recognition

in a dynamic sensor network,” in Proceedings of the ICST 2Nd International Conference

on Body Area Networks, BodyNets ’07, (ICST, Brussels, Belgium, Belgium), pp. 17:1–17:6,

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 2007.

[74] F. Rincón, N. Boichat, V. Barbero, N. Khaled, and D. Atienza, “Multi-lead wavelet-based

ECG delineation on a wearable embedded sensor platform,” in Computers in Cardiology,

2009, pp. 289–292, Sept 2009.

[75] L. Bao and S. S. Intille, Pervasive Computing: Second International Conference, PERVA-

SIVE 2004, Linz/Vienna, Austria, April 21-23, 2004. Proceedings, ch. Activity Recognition

from User-Annotated Acceleration Data, pp. 1–17. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2004.

[76] G. Bieber and C. Peter, “Using physical activity for user behavior analysis,” in Proceed-

ings of the 1st International Conference on PErvasive Technologies Related to Assistive

Environments, PETRA ’08, (New York, NY, USA), pp. 94:1–94:6, ACM, 2008.

[77] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time

series,” in Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference

on, pp. 289–296, 2001.

[78] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition from accelerom-

eter data,” in Proceedings of the 17th Conference on Innovative Applications of Artificial

Intelligence - Volume 3, IAAI’05, pp. 1541–1546, AAAI Press, 2005.

137



Bibliography

[79] NXP, JN5148-001 IEEE802.15.4 Wireless Microcontroller (JN-DS-JN5148-001 1v9) [Online],

2013.

[80] IEEE, “IEEE Std 802.15.4-2006 (revision of IEEE Std 802.15.4-2003),” 2006.

[81] STMicroelectronics, LSM330DLC iNEMO inertial module: 3D accelerometer and 3D

gyroscope [Online], 2012.

[82] STMicroelectronics, LIS3LV02DQ MEMS Inertial Sensor [Online], 2005.

[83] T. R. Burchfield, S. Venkatesan, and D. Weiner, “Maximizing throughput in ZigBee

wireless networks through analysis, simulations and implementations,” in Proceedings

of the 1st International Workshop on Localized Algorithms and Protocols for Wireless

Sensor Networks, 2007.

[84] A. Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, and D. Atienza, “Multi-core architecture

design for ultra-low-power wearable health monitoring systems,” in Proceedings of the

Conference on Design, Automation and Test in Europe, pp. 988–993, EDA Consortium,

2012.

[85] A. Y. Dogan, J. Constantin, D. Atienza, A. Burg, and L. Benini, “Low-power processor

architecture exploration for online biomedical signal analysis,” IET Circuits, Devices

Systems, vol. 6, pp. 279–286, Sept 2012.

[86] M. Ashouei, J. Hulzink, M. Konijnenburg, J. Zhou, F. Duarte, A. Breeschoten, J. Huisken,

J. Stuyt, H. de Groot, F. Barat, J. David, and J. V. Ginderdeuren, “A voltage-scalable

biomedical signal processor running ECG using 13pJ/cycle at 1MHz and 0.4V,” in 2011

IEEE International Solid-State Circuits Conference, pp. 332–334, Feb 2011.

[87] “Cortex-m0 processor.” http : / / www. arm . com / products / processors / cortex-m /

cortex-m0.php. Last accessed on Jun. 17th, 2016.

[88] W. Massagram, N. Hafner, M. Chen, L. Macchiarulo, V. M. Lubecke, and O. Boric-Lubecke,

“Digital heart-rate variability parameter monitoring and assessment ASIC,” IEEE Trans-

actions on Biomedical Circuits and Systems, vol. 4, pp. 19–26, Feb 2010.

[89] X. Liu, Y. Zheng, M. W. Phyu, F. N. Endru, V. Navaneethan, and B. Zhao, “An ultra-low

power ECG acquisition and monitoring ASIC system for WBAN applications,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, pp. 60–70, March

2012.

[90] S.-C. Huang, H.-M. Wang, and W.-Y. Chen, “A ±6ms-accuracy, 0.68mm2, and 2.21 μw

qrs detection ASIC,” VLSI Des., vol. 2012, pp. 20:20–20:20, Jan. 2012.

[91] M. W. Phyu, Y. Zheng, B. Zhao, L. Xin, and Y. S. Wang, “A real-time ECG QRS detection

ASIC based on wavelet multiscale analysis,” in Solid-State Circuits Conference, 2009.

A-SSCC 2009. IEEE Asian, pp. 293–296, Nov 2009.

138



Bibliography

[92] S. Y. Hsu, Y. L. Chen, P. Y. Chang, J. Y. Yu, T. F. Yang, R. J. Chen, and C. Y. Lee, “A micropower

biomedical signal processor for mobile healthcare applications,” in Solid State Circuits

Conference (A-SSCC), 2011 IEEE Asian, pp. 301–304, Nov 2011.

[93] C. Y. Chiang, H. H. Chen, T. C. Chen, C. S. Liu, Y. J. Huang, S. S. Lu, C. W. Lin, and L. G.

Chen, “Analysis and design of on-sensor ECG processors for realtime detection of vf, vt,

and pvc,” in 2010 IEEE Workshop On Signal Processing Systems, pp. 42–45, Oct 2010.

[94] J. D. Boeck, “Game-changing opportunities for wireless personal healthcare and

lifestyle,” in 2011 IEEE International Solid-State Circuits Conference, pp. 15–21, Feb

2011.

[95] F. Aihua, B. Chunhua, N. Xinbao, H. Aijun, and Z. Jianjun, “Portable electrocardiogram

monitor based on ARM,” in 2008 International Conference on Information Technology

and Applications in Biomedicine, 2008.

[96] J. Justesen and S. C. Madsen, “Wearable wireless ECG monitoring hardware prototype for

use in patients own home,” in 2009 3rd International Conference on Pervasive Computing

Technologies for Healthcare, pp. 1–3, IEEE, 2009.

[97] C. Ghule, D. Wakde, G. Virdi, and N. R. Khodke, “Design of portable ARM processor

based ECG module for 12 lead ECG data acquisition and analysis,” in 2009 International

Conference on Biomedical and Pharmaceutical Engineering, pp. 1–8, IEEE, 2009.

[98] “Texas instruments MSP430 family [online].” http : / / www . ti . com / lsds / ti /

microcontrollers_16-bit_32-bit/msp/overview.page?DCMP=MCU_%2520other&

HQS=msp430. Last accessed on Sep. 4th, 2016.

[99] M. Johnson, M. Healy, P. van de Ven, M. J. Hayes, J. Nelson, T. Newe, and E. Lewis, “A

comparative review of wireless sensor network mote technologies,” in Sensors, 2009

IEEE, pp. 1439–1442, Oct 2009.

[100] “Shimmer [online].” http://www.shimmersensing.com/. Last accessed on Sep. 4th,

2016.

[101] S. C. Jocke, J. F. Bolus, S. N. Wooters, A. Jurik, A. Weaver, T. Blalock, and B. Calhoun,

“A 2.6-μw sub-threshold mixed-signal ECG SoC,” in 2009 Symposium on VLSI Circuits,

pp. 60–61, IEEE, 2009.

[102] Y. Zhang, Y. Shakhsheer, A. T. Barth, H. C. Powell Jr, S. A. Ridenour, M. A. Hanson, J. Lach,

and B. H. Calhoun, “Energy efficient design for body sensor nodes,” Journal of Low

Power Electronics and Applications, vol. 1, no. 1, pp. 109–130, 2011.

[103] R. Fasthuber, F. Catthoor, P. Raghavan, and F. Naessens, Energy-efficient communication

processors. Springer, 2013.

[104] J. H.-F. Constantin, “Processor development in LISA for biomedical applications,” Mas-

ter’s thesis, Eidgenössische Technische Hochschule Zürich (EPFL), 2010.

139



Bibliography

[105] “Microchip 16-bit PIC24 MCUs family [online].” http : / / www. microchip. com /

design-centers/16-bit. Last accessed on Sep. 4th, 2016.

[106] C. Piguet, J.-M. Masgonty, C. Arm, S. Durand, T. Schneider, F. Rampogna, C. Scarnera,

C. Iseli, J.-P. Bardyn, R. Pache, et al., “Low-power design of 8-b embedded coolrisc

microcontroller cores,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1067–1078,

1997.

[107] A. Dogan, Energy-Aware Processing Platform Exploration for Embedded Biosignal Analy-

sis. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), 2013.

[108] T. Gemmeke, M. M. Sabry, J. Stuijt, P. Raghavan, F. Catthoor, and D. Atienza, “Resolving

the memory bottleneck for single supply near-threshold computing,” in 2014 Design,

Automation Test in Europe Conference Exhibition (DATE), pp. 1–6, March 2014.

[109] C. Silvano et al., Near Threshold Computing. Springer International Publishing, 2016.

[110] R. G. Dreslinkski, B. Zhai, T. Mudge, D. Blaauw, and D. Sylvester, “An energy efficient

parallel architecture using near threshold operation,” in Proceedings of the 16th Inter-

national Conference on Parallel Architecture and Compilation Techniques, PACT ’07,

(Washington, DC, USA), pp. 175–188, IEEE Computer Society, 2007.

[111] Y. Pu, P. de Gyvez, H. Corporaal, Y. Ha, et al., “An ultra-low-energy multi-standard jpeg

co-processor in 65 nm CMOS with sub/near threshold supply voltage,” IEEE Journal of

Solid-State Circuits, vol. 45, no. 3, pp. 668–680, 2010.

[112] H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof,

and R. F. Yazicioglu, “A configurable and low-power mixed signal soc for portable ECG

monitoring applications,” IEEE transactions on biomedical circuits and systems, vol. 8,

no. 2, pp. 257–267, 2014.

[113] B. Biisze, F. Bouwens, M. Konijnenburg, M. De Nil, M. Ashouei, J. Hulzink, J. Zhou,

J. Stuyt, J. Huisken, H. De Groot, et al., “Ultra low power programmable biomedical soc

for on-body ECG and EEG processing,” in Solid State Circuits Conference (A-SSCC), 2010

IEEE Asian, pp. 1–4, IEEE, 2010.

[114] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A fully-synthesizable single-cycle inter-

connection network for shared-l1 processor clusters,” in 2011 Design, Automation Test

in Europe, pp. 1–6, March 2011.

[115] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hardware/software

approach. Gulf Professional Publishing, 1999.

[116] C. Ferri, R. I. Bahar, M. Loghi, and M. Poncino, “Energy-optimal synchronization prim-

itives for single-chip multi-processors,” in Proceedings of the 19th ACM Great Lakes

Symposium on VLSI, GLSVLSI ’09, (New York, NY, USA), pp. 141–144, ACM, 2009.

140



Bibliography

[117] C. Stoif, M. Schoeberl, B. Liccardi, and J. Haase, “Hardware synchronization for em-

bedded multi-core processors,” in 2011 IEEE International Symposium of Circuits and

Systems (ISCAS), pp. 2557–2560, May 2011.

[118] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, “The

nyu ultracomputer - designing an mimd shared memory parallel computer,” IEEE

Transactions on Computers, vol. C-32, pp. 175–189, Feb 1983.

[119] T. J. Rolfe, “On a fast integer square root algorithm,” SIGNUM Newsl., vol. 22, pp. 6–11,

Oct. 1987.

[120] J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb, and A. P. Chandrakasan, “An

8-channel scalable eeg acquisition soc with patient-specific seizure classification and

recording processor,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 214–228, Jan 2013.

[121] J. Willems, P. Arnaud, J. van Bemmel, R. Degani, P. Macfarlane, and C. Zywietz, “Common

standards for quantitative electrocardiography: goals and main results. CSE working

party,” Methods of information in medicine, vol. 29, pp. 263–271, September 1990.

[122] A. Y. Dogan, R. Braojos, J. Constantin, G. Ansaloni, A. Burg, and D. Atienza, “Synchro-

nizing code execution on ultra-low-power embedded multi-channel signal analysis

platforms,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2013,

pp. 396–399, March 2013.

[123] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks, “System level analysis of fast, per-core

dvfs using on-chip switching regulators,” in 2008 IEEE 14th International Symposium

on High Performance Computer Architecture, pp. 123–134, Feb 2008.

[124] R. Braojos, A. Y. Dogan, I. Beretta, G. Ansaloni, and D. Atienza, “Hardware/software

approach for code synchronization in low-power multi-core sensor nodes,” in Design,

Automation and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–6, March

2014.

[125] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic voltage

scaling algorithms,” in Proceedings of the 1998 International Symposium on Low Power

Electronics and Design, ISLPED ’98, (New York, NY, USA), pp. 76–81, ACM, 1998.

[126] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise margin for sub-threshold

SRAM in 65nm CMOS,” in Proceedings of the 31st European Solid-State Circuits Confer-

ence, 2005. ESSCIRC 2005., pp. 363–366, Sept 2005.

[127] W.-K. Mak and J.-W. Chen, “Voltage island generation under performance requirement

for soc designs,” in Proceedings of the 2007 Asia and South Pacific Design Automation

Conference, ASP-DAC ’07, (Washington, DC, USA), pp. 798–803, IEEE Computer Society,

2007.

141



Bibliography

[128] W. Nebel and J. Mermet, Low power design in deep submicron electronics, vol. 337.

Springer Science & Business Media, 2013.

[129] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling on a low-power

microprocessor,” in Proceedings of the 7th Annual International Conference on Mobile

Computing and Networking, MobiCom ’01, (New York, NY, USA), pp. 251–259, ACM,

2001.

[130] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruction generation

for configurable processor architectures,” in Proceedings of the 2004 ACM/SIGDA 12th

International Symposium on Field Programmable Gate Arrays, FPGA ’04, (New York, NY,

USA), pp. 183–189, ACM, 2004.

[131] K. H. Lee and N. Verma, “A low-power processor with configurable embedded machine-

learning accelerators for high-order and adaptive analysis of medical-sensor signals,”

IEEE Journal of Solid-State Circuits, vol. 48, pp. 1625–1637, July 2013.

[132] Y. Pu, J. P. de Gyvez, H. Corporaal, and Y. Ha, “An ultra-low-energy/frame multi-standard

jpeg co-processor in 65nm CMOS with sub/near-threshold power supply,” in 2009

IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 146–

147,147a, Feb 2009.

[133] J. Hulzink, M. Konijnenburg, M. Ashouei, A. Breeschoten, T. Berset, J. Huisken, J. Stuyt,

H. de Groot, F. Barat, J. David, and J. V. Ginderdeuren, “An ultra low energy biomedical

signal processing system operating at near-threshold,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 5, pp. 546–554, Dec 2011.

[134] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold SRAM employing

sense-amplifier redundancy,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 141–149,

Jan 2008.

[135] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw, D. Sylvester, and K. Flautner, “Recon-

figurable energy efficient near threshold cache architectures,” in 2008 41st IEEE/ACM

International Symposium on Microarchitecture, pp. 459–470, Nov 2008.

[136] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid SRAM architecture

for aggressive voltage scaling in video applications,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 21, pp. 101–112, Feb 2011.

[137] O. Andersson, B. Mohammadi, P. Meinerzhagen, A. Burg, and J. N. Rodrigues, “Dual-VT

4kb sub-VT memories with <1 pW/bit leakage in 65 nm CMOS,” in ESSCIRC (ESSCIRC),

2013 Proceedings of the, pp. 197–200, Sept 2013.

[138] W. Kim, D. Brooks, and G. Y. Wei, “A fully-integrated 3-level dc-dc converter for

nanosecond-scale dvfs,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 206–219, Jan

2012.

142



Bibliography

[139] F. Zhang, J. Holleman, and B. P. Otis, “Design of ultra-low power biopotential amplifiers

for biosignal acquisition applications,” IEEE Transactions on Biomedical Circuits and

Systems, vol. 6, pp. 344–355, Aug 2012.

[140] “2.4-ghz Bluetooth© low energy system-on-chip.” http://www.ti.com/lit/ds/symlink/

cc2540.pdf. Last accessed on Jun. 17th, 2016.

[141] A. D. Kent and D. C. Worledge, “A new spin on magnetic memories,” Nature nanotech-

nology, vol. 10, no. 3, pp. 187–191, 2015.

[142] H.-S. P. Wong, C. Ahn, J. Cao, H.-Y. Chen, S. W. Fong, Z. Jiang, C. Neumann, S. Qin,

J. Sohn, Y. Wu, S. Yu, and X. Zheng, “Stanford memory trends,” tech. rep. Last accessed

on June 17th, 2016.

[143] H. Wei, M. Shulaker, H. S. P. Wong, and S. Mitra, “Monolithic three-dimensional integra-

tion of carbon nanotube fet complementary logic circuits,” in 2013 IEEE International

Electron Devices Meeting, pp. 19.7.1–19.7.4, Dec 2013.

[144] M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, H. S. P. Wong, and S. Mitra,

“Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM,

and silicon FETs,” in 2014 IEEE International Electron Devices Meeting, pp. 27.4.1–27.4.4,

Dec 2014.

[145] M. M. Shulaker, T. F. Wu, M. M. Sabry, H. Wei, H. S. P. Wong, and S. Mitra, “Monolithic 3D

integration: A path from concept to reality,” in 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), pp. 1197–1202, March 2015.

[146] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement,”

in Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 554–559, June

2008.

[147] A. Nigam, C. W. Smullen, IV, V. Mohan, E. Chen, S. Gurumurthi, and M. R. Stan, “Deliver-

ing on the promise of universal memory for spin-transfer torque RAM (STT-RAM),” in

Proceedings of the 17th IEEE/ACM International Symposium on Low-power Electronics

and Design, ISLPED ’11, (Piscataway, NJ, USA), pp. 121–126, IEEE Press, 2011.

[148] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Energy-efficient architecture

for advanced video memory,” in Proceedings of the 2014 IEEE/ACM International Confer-

ence on Computer-Aided Design, ICCAD ’14, (Piscataway, NJ, USA), pp. 132–139, IEEE

Press, 2014.

[149] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of the 3D stacked MRAM

L2 cache for CMPs,” in 2009 IEEE 15th International Symposium on High Performance

Computer Architecture, pp. 239–249, Feb 2009.

143



Bibliography

[150] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing non-

volatility for fast and energy-efficient STT-RAM caches,” in 2011 IEEE 17th International

Symposium on High Performance Computer Architecture, pp. 50–61, Feb 2011.

[151] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu, “Multi retention level

STT-RAM cache designs with a dynamic refresh scheme,” in Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-44, (New

York, NY, USA), pp. 329–338, ACM, 2011.

[152] W. Xu, H. Sun, X. Wang, Y. Chen, and T. Zhang, “Design of last-level on-chip cache using

spin-torque transfer RAM (STT RAM),” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, pp. 483–493, March 2011.

[153] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-running compu-

tation on rfid-scale devices,” in Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI,

(New York, NY, USA), pp. 159–170, ACM, 2011.

[154] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A low overhead hw/sw ap-

proach for enabling computations across power cycles in transiently powered comput-

ers,” in 2014 27th International Conference on VLSI Design and 2014 13th International

Conference on Embedded Systems, pp. 330–335, Jan 2014.

[155] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang, and C. H. Kim, “A scaling roadmap

and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for

high-density cache memory,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 598–610,

Feb 2013.

[156] D. Ielmini, “Modeling the universal set/reset characteristics of bipolar RRAM by field-

and temperature-driven filament growth,” IEEE Transactions on Electron Devices, vol. 58,

pp. 4309–4317, Dec 2011.

[157] Z. Xu and J. Q. Lu, “Through-silicon-via fabrication technologies, passives extraction,

and electrical modeling for 3-D integration/packaging,” IEEE Transactions on Semicon-

ductor Manufacturing, vol. 26, pp. 23–34, Feb 2013.

[158] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. Weber, F. Andrieu,

L. Tosti, L. Brevard, B. Sklenard, P. Coudrain, S. Bobba, H. B. Jamaa, P. E. Gaillardon,

A. Pouydebasque, O. Thomas, C. L. Royer, J. M. Hartmann, L. Sanchez, L. Baud, V. Car-

ron, L. Clavelier, G. D. Micheli, S. Deleonibus, O. Faynot, and T. Poiroux, “Advances,

challenges and opportunities in 3D CMOS sequential integration,” in Electron Devices

Meeting (IEDM), 2011 IEEE International, pp. 7.3.1–7.3.4, Dec 2011.

[159] S. Wong, A. El, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, “Monolithic 3D integrated

circuits,” in 2007 International Symposium on VLSI Technology, Systems and Applications

(VLSI-TSA), pp. 1–4, April 2007.

144



Bibliography

[160] A. L. P. Rotondaro, M. R. Visokay, J. J. Chambers, A. Shanware, R. Khamankar, H. Bu, R. T.

Laaksonen, L. Tsung, M. Douglas, R. Kuan, M. J. Bevan, T. Grider, J. McPherson, and

L. Colombo, “Advanced CMOS transistors with a novel HfSiON gate dielectric,” in VLSI

Technology, 2002. Digest of Technical Papers. 2002 Symposium on, pp. 148–149, June

2002.

[161] F. Carta, S. M. Gates, A. B. Limanov, J. S. Im, D. C. Edelstein, and I. Kymissis, “Sequential

lateral solidification of silicon thin films on cu beol-integrated wafers for monolithic

3-D integration,” IEEE Transactions on Electron Devices, vol. 62, pp. 3887–3891, Nov

2015.

[162] D. Frank and L. Chang, “Technology optimization for high energy-efficiency computa-

tion,” 2012. IEDM Short Course.

[163] M. Jung, J. Mitra, D. Z. Pan, and S. K. Lim, “TSV stress-aware full-chip mechanical

reliability analysis and optimization for 3D IC,” Commun. ACM, vol. 57, pp. 107–115, Jan.

2014.

[164] M. Nakashima, “High performance and highly reliable ssd,” 2015.

[165] R. Braojos, I. Beretta, J. Constantin, A. Burg, and D. Atienza, “A wireless body sensor

network for activity monitoring with low transmission overhead,” in Embedded and

Ubiquitous Computing (EUC), 2014 12th IEEE International Conference on, pp. 265–272,

Aug 2014.

[166] R. Braojos, D. Bortolotti, A. Bartolini, G. Ansaloni, L. Benini, and D. Atienza, “A

synchronization-based hybrid-memory multi-core architecture for energy-efficient

biomedical signal processing,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1–1,

2016.

[167] R. Braojos, D. Atienza, M. M. S. Aly, T. F. Wu, H.-S. P. Wong, S. Mitra, and G. Ansaloni,

“Nano-engineered architectures for ultra-low power wireless body sensor nodes,” in Pro-

ceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, CODES ’16, (New York, NY, USA), pp. 23:1–23:10, ACM,

2016.

[168] F. Catthoor, P. Raghavan, A. Lambrechts, M. Jayapala, A. Kritikakou, and J. Absar, Ultra-

low energy domain-specific instruction-set processors. Springer Science & Business

Media, 2010.

[169] L. G. Duch, S. S. Basu, R. Braojos Lopez, G. Ansaloni, L. Pozzi, and D. Atienza Alonso,

“A multi-core reconfigurable architecture for ultra-low power bio-signal analysis,” in

Biomedical Circuits and Systems (BioCAS), no. EPFL-CONF-220721, 2016.

145





 

Rubén    Braojos   López
Avenue   du   Chablais,   42     ●     Lausanne,   1007     ●     Switzerland 
E-mail:    r ubenbraojoslopez@gmail.com   ●        Mobile:    (+41)   76   712   63   18   -   (+34)   647   941   299 
Date   and   place   of   birth:    4th   May,   1987.   Toledo   (Spain) 
 

INTERESTS
Computer Architecture, Low-power Mul -Core Pla orms, Embedded Systems, Wireless Body Sensor Networks,           
Bio-signal   Processing,   Embedded   So ware   Op miza on 

EDUCATION

09/2011-  PhD   candidate   at   the   Embedded   Systems   Laboratory   (ESL) 
École   Polytechnique   Fédérale   de   Lausanne   (EPFL),   Switzerland. 

  
08/2009-07/2010 Erasmus   Exchange   Scholarship. 

École   Polytechnique   Fédérale   de   Lausanne   (EPFL),   Switzerland. 
(Last   year   of   the   degree   in   Computer   Engineering) 

 
09/2005-07/2010 Bachelor   of   Science   and   Master   of   Science   in   Computer   Engineering. 

Universidad   Complutense   de   Madrid,   Spain. 

WORK   EXPERIENCE

06/2015-07/2015 Research   Intern  
IMEC   Belgium 

 
05/2011-09/2011 So ware   Engineer 

Credit   Suisse   AG,   Lausanne,   Switzerland 
 

07/2010-05/2011 Embedded   So ware   Engineer 
Embedded   Systems   Laboratory   (ESL),   Switzerland 

TEACHING:

2010-2016 Teaching   assistant   for   the   Bachelor-level   course   “Microprogrammed   Embedded 
 Systems”   (EE-310) 

   École   Polytechnique   Fédérale   de   Lausanne   (EPFL),   Switzerland. 

TECHNICAL   SKILLS

OPERATING 
SYSTEMS 

UNIX   based   OS   (Linux,   MacOS,   iOS),   Windows   Family   OS,   Real   Time   OS   (uCOS-II,   TinyOS) 

HARDWARE 
DESIGN 

VHDL,   Verilog,   SystemC 

PROGRAMMING 
LANGUAGES 

C/C++, Java, Pascal, PHP, ARM Assembly Language, Matlab, Shell scrip ng, Perl,           
databases   (MySQL) 

 

 
147



 

LANGUAGES

Spanish :      Na ve   Speaker  English :    Proficient   (C2)  
French : Post-intermediate   (B2/C1) 

SELECTED   PUBLICATIONS

● R. Braojos , T. F. Wu, G. Ansaloni, M. Sabry, S. Mitra, H.-S. P. Wong and D. A enza.  “Nano-Engineered                  
Architectures for Ultra-Low Power Wireless Body Sensor Nodes.” Interna onal Conference on           
Hardware/So ware   Codesign   and   System   Synthesis   (CODES+ISSS),   2016 

● R. Braojos , D. Bortolo , A. Bartolini, G. Ansaloni, L. Benini, and D. A enza.  “ A Synchroniza on-Based               
Hybrid-Memory Mul -Core Architecture for Energy-Efficient Biomedical Signal Processing” , accepted at          
IEEE   Transac ons   on   Computers 

● R. Braojos ,  I. Bere a ,  G. Ansaloni and  D. A enza .  “ Early Classifica on of Pathological Heartbeats on               
Wireless   Body   Sensor   Nodes ” ,   in   Sensors,   vol.   14,   num.   12,   p.   22532-22551,   2014. 

● R. Braojos ,  H. Mamaghanian ,  A. Dias Junior ,  G. Ansaloni ,  D. A enza ,  F. J. Rincon and  S. Murali .  “ Ultra-Low                  
Power   Design   of   Wearable   Cardiac   Monitoring   Systems .”    Design   Automa on   Conference   (DAC),   2014 

● R. Braojos ,  I. Bere a ,  J. H.-F. Constan n ,  A. P. Burg and  D. A enza .  “ A Wireless Body Sensor Network For                   
Ac vity Monitoring With Low Transmission Overhead .” IEEE Interna onal Conference on Embedded and            
Ubiquitous   Compu ng   (EUC),   2014. 

● J. Milosevic ,  A. Di rich ,  A. Ferrante ,  M. Malek ,  D. C. Rojas ,  R. Braojos ,  G. Ansaloni and  D. A enza .  “ Risk                   
Assessment of Atrial Fibrilla on: a Failure Predic on Approach .” , Computers in Cardiology Conference,            
2014. 

● R. Braojos ,  I. Bere a ,  G. Ansaloni and  D. A enza .  “ Hardware/So ware Approach for Code             
Synchroniza on in Low-Power Mul -Core Sensor Nodes ” . Design Automa on and Test in Europe (DATE)             
Conference,   2014. 

● R. Braojos ,  G. Ansaloni and  D. A enza .  “ A Methodology for Embedded Classifica on of Heartbeats Using               
Random   Projec ons ” .      Design   Automa on   and   Test   in   Europe   (DATE)   Conference,   2013 

● A. Y. Dogan ,  R. Braojos ,  J. H.-F. Constan n ,  G. Ansaloni ,  A. P. Burg and  D. A enza .  “ Synchronizing Code                  
Execu on on Ultra-Low-Power Embedded Mul -Channel Signal Analysis Pla orms ” . Design Automa on          
and   Test   in   Europe   (DATE)   Conference,   2013 

● R. Braojos ,  G. Ansaloni ,  D. A enza ,  R. Vallejos and  F. Javier .  “ Embedded Real-Time ECG Delinea on               
Methods: a Compara ve Evalua on ” . IEEE 12th Interna onal Conference on BioInforma cs and           
BioEngineering   (BIBE),   2012. 

PATENTS

● Braojos   Lopez    et   al.,    "Method   for   Detec ng   Abnormali es   in   an   Electrocardiogram" .  
U.S.   Patent   no.   US9468386   B2,   (October   18th   ,   2016)  

OTHER   ACHIEVEMENTS

● SIGDA/ACM   Travel   Grant,   PhD   Forum   at   DAC   Conference,   U.S.A.   2015 
● Best   Poster   Award   Winner,   Nano-Tera.ch   Annual   Mee ng,   Switzerland   2014 
● Hi-PEAC   Paper   Award   Winner,   DAC   Conference,   U.S.A.   2014 
● Best   Paper   Candidate.   DATE   Conference,   France,   2013 
● Fellowship holder during the academic year 2008/2009 in the DSIC (Department of Computer Systems              

and   Compu ng)   from   the   Faculty   of   Computer   Science   of   the   Complutense   University   of   Madrid. 
● Fellowship “Aprovechamiento Academico Excelente” ( “Excellent academic performance” ) from the         

regional   government   of   Madrid   during   the   academic   years   2005/2006,   2006/2007   and   2007/2008.  

 
148




