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Abstract

Structural T1-weighted magnetic resonance imaging (MRI) provides sufficient anatomical

details to measure and track changes in volumes of brain structures. The volumes of brain

structures and changes in them can be used to study the effects of disease, treatment monitor-

ing, aging, learning and brain development. The present thesis investigates the requirements

for performing reproducible quantitative brain volume measurements with automated brain

tissue segmentation tools and gives an error bound on the measurements under various

experimental conditions. A short introduction into the challenges of performing reproducible

brain volume measurements and the main issues that impede the adoption of quantitative vol-

umetric measurements in clinical practice is given, followed by an overview of the acquisition,

reconstruction and automated image segmentation methods used to perform quantitative

brain volume measurements. The first part of this study was carried out to investigate the

reproducibility of volumetric measurements preformed on different systems with a standard-

ized ADNI protocol. Systematic biases in volume measurements were observed when there

were changes in systems between the first scan and rescan. An important finding in the

context of patient management was that neither repositioning nor a two-week gap between

the measurements did significantly contribute to the uncertainty in volumetric measurements

when compared to the uncertainty in a back-to-back scan-rescan scenario. In the second

part of this study, the impact of new highly-accelerated acquisition protocols on automated

brain tissue volume measurements was investigated. A single system was used to collect the

data and acquisition time was varied at the expense of the SNR. An important outcome of

this study was that for qualitative assessment accelerated protocols provided similar informa-

tion. However, the automated volume measurements with the highly-accelerated protocols

were found biased compared to the measurements with standardized ADNI protocol. In

the final part of this study, scaling procedures were investigated as means for compensating

for the observed differences in sequential automated brain volume measurements. A new

image-property-based compensation strategy was proposed and compared to the current

state-of-the-art protocol-based approaches. The main outcomes of this study were that there

are limitations to the current state-of-the-art protocol-based approaches, namely that volume

correction coefficients used in the protocol-based approaches can vary as a function of age,

and there is an indication that the proposed image-property-based approach can be more

robust to the age and contrast-dependent effects compared to protocol-based approaches.
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Résumé
L’imagerie par résonance magnétique (IRM) structurelle pondérée T1 fournit des détails ana-

tomiques suffisants pour mesurer et suivre les changements volumétriques des structures

cérébrales. Les volumes des structures cérébrales et leurs changements peuvent être utilisés

pour étudier les effets d’une maladie, de l’âge, de l’apprentissage et du développement cé-

rébral, ou pour contrôler un traitement. La présente thèse étudie les conditions nécessaires

pour réaliser des mesures quantitatives reproductibles des volumes cérébraux avec des outils

de segmentation automatique du tissu cérébral. Elle donne également une erreur liée aux

mesures faites avec différentes conditions expérimentales. Une courte introduction présente

les défis que pose la réalisation de mesures de volume cérébraux reproductibles ainsi que

les principales difficultés qui entravent l’adoption de mesures volumétriques quantitatives

dans la pratique clinique. Elle est suivie d’une présentation générale des méthodes d’acqui-

sition, de reconstruction et de segmentation automatique de l’image qui sont utilisées pour

réaliser des mesures de volumes cérébraux. La première étude a été conduite pour étudier

la reproductibilité des mesures volumétriques réalisées avec différents systèmes en utilisant

le protocole ADNI standard. Des biais systématiques ont été observés lorsqu’il y avait des

changements de système entre la première acquisition d’une image IRM et la répétition de

cette acquisition. Une importante découverte dans le contexte de la prise en charge des pa-

tients est que ni le repositionnement ni une pause de deux semaines entre deux mesures ne

contribue de manière significative à l’incertitude des mesures volumétriques lorsque celles-ci

sont comparées à l’incertitude d’un scénario d’acquisition avec réacquisition immédiate.

Dans la seconde étude, l’impact des nouveaux protocoles d’acquisition hautement accélérés

sur les mesures volumétriques automatiques du tissu cérébral a été examiné. Un système

unique a été utilisé pour collecter les données et le temps d’acquisition a été modifié aux

dépends du rapport du signal au bruit. Le principal résultat de cette étude est que, pour une

évaluation qualitative, les protocoles accélérés fournissent une information similaire aux

protocoles non-accélérés. Cependant, des biais dans les mesures automatiques des volumes

sont présents dans les protocoles hautement accélérés en comparaison au protocole ADNI

standard. Finalement, des procédures de graduation ont été étudiées pour compenser les

différences observées dans les mesures automatiques des volumes cérébraux. Une nouvelle

stratégie de compensation basée sur les propriétés de l’image a été proposée et comparée aux

approches actuelles basées sur les protocoles. Le principal résultat de cette étude est qu’il y a

des limitations aux approches actuelles basées sur les protocoles, à savoir que les coefficients

de correction de volume utilisés dans ces approches peuvent changer en fonction de l’âge. Il
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y a un indice qu’une approche basée sur les propriétés de l’image peut être plus fiable par

rapport à l’âge et aux effets dépendants du contraste en comparaison aux approches basées

sur les protocoles.

Mots clefs : IRM structurel, analyse morphométrique cérébrale, les protocoles MPRAGE accé-

lérés, reproductibilité des résultats d’analyse morphométrique cérébrale
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1 Introduction

1.1 Objectives and overview of this thesis

This thesis investigates the requirements for performing reproducible quantitative volume

measurements of brain structures with automated brain tissue segmentation tools and in-

vestigates the applicability of compensation strategies to mitigate discrepancies between

the measurements. The following is a short history overview with an introduction into the

challenges of reproducible brain volume measurements and the main issues slowing down

the adoption of quantitative volumetric measurements in clinical practice.

Magnetic resonance imaging (MRI) is an imaging modality that is often used in both clinical

and research settings to image anatomy and physiological processes within a human body.

MRI is particularly useful for imaging soft tissues since it provides a better soft-tissue contrast

compared to computed tomography (CT), and is a non-invasive imaging technique that does

not use ionizing radiation in contrast to CT.

The early development of MRI started in 1950 with the detection of the spin echoes by Erwin

Hahn, and generation of a one-dimensional nuclear magnetic resonance (NMR) spectrum by

Herman Carr in 1952. An important milestone was achieved in 1971 by Raymond Damadian

who demonstrated that tumors and normal tissue can be distinguished in-vivo using nuclear

magnetic resonance. In 1973, Paul Lauterbur produced the first nuclear magnetic resonance

image. During the following years, MRI has been evolving rapidly to allow imaging of most

parts of the human body. In the present thesis, we focus on brain-imaging.

The first commercially available MRI scanners appeared 30 years ago and the adoption of MRI

modality has grown since then. In clinical practice, three dimensional brain-images produced

by MRI are often used to exclude pathology, for disease detection and treatment monitoring.

For instance, the anatomical details provided by structural T1-weighted MRI make it possible

to assess gray matter concentrations within the brain, leading to an active field of research

known as brain morphometry. Brain morphometry served as a valuable tool to diagnose

and track changes associated with neurodegeneration, multiple sclerosis, inflammatory and
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Chapter 1. Introduction

neurological diseases as well as normal aging, learning and evolution[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15]. In order to quantitatively asses these changes, manual, semi-automated,

and automated brain volume segmentation tools are developed by the research community.

However, there is a considerable gap between state-of-the-art research techniques and ev-

eryday clinical practice. Despite promising findings, quantitative assessment of brain-tissue

volumes is not yet widely used in clinical practice neither it is reflected in clinical guidelines

or diagnostic criteria. The reasons of such situation and proposed solutions are summarized

below.

There are several hindrances that slow down the adoption of quantitative volumetric measure-

ments in clinical practice:

1. Manual tissue segmentation approaches are not practical in clinical settings since they

are labor-intensive, require a high degree of expertise, and may introduce operator-

dependent bias. However, these issues can be largely addressed with the use of auto-

mated brain segmentation tools. Automated brain segmentation tools have the potential

to remove the operator-related bias and reduce the labour requirements.

2. Both automated and manual segmentation approaches can be sensitive to variations in

imaging protocols of MRI data and, as a result, may potentially reduce precision of the

volume measurements. In the context of Alzheimer’s disease and dementia, there has

been a substantial effort to standardize MRI acquisition protocols across vendors and

field strength[16, 17]. The reproducibility of the standardized ADNI protocol has been

extensively studied [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. However, the current thesis

extends previous reproducibility studies by decoupling systematic biases on volume

measurements due to hardware (scanner/protocol) and physiology from random offsets

due to repositioning and inter-subject variability.

Rigorous application of the standardized protocols can be challenging. For instance, the

typical acquisition time for a T1-weighted structural brain image is about 10 mins using

the standardized ADNI-1 protocol [16] and 5 mins using ADNI-2 [17].However, with un-

cooperative patients, the use of standardized protocols like ADNI can be difficult due to

patient motion, and reduced acquisition time is desirable. More generally, in a radiology

department, reduction of acquisition time can increase the patient throughput, which

is beneficial both in terms of costs, and overall efficiency of utilization of resources avail-

able to the department. Recent advances in MRI hardware and acquisition methodology

can potentially enable further reduction of acquisition time compared to conventional

protocols in both clinical and research settings. This thesis aims to gain further insight

into the exact impact of the use of the highly accelerated protocols on the outcomes of

automated morphometry tools.

3. Normative ranges for volumes need to be available for assessing how brain structure

volumes of a particular subject compare with a healthy population. In order to construct
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normative ranges, a large number of subjects with various demographics needs to be

imaged to capture the inter-subject variation across the population as well as systematic

effects such as normal aging or gender effects. This can be a rather challenging task

from the perspective of protocol standardization across hardware setups and vendors.

For instance, despite the standardization efforts of ADNI, it has been shown that biases

between scanners of different field strength are statistically significant [20]. Moreover,

in a long-term perspective, accommodating new technological developments would

either require incorporation of compensation strategies or construction of normative

ranges specific to hardware and protocol setups. This second option would be very inef-

ficient, time consuming, and costly. This work proposes and investigates applicability

of compensation strategies as means to account for differences between protocols and

hardware setups in the construction of normative ranges for brain volumes.

Overall, the present thesis aims to address all of the 3 main issues impeding the adoption

of quantitative volumetric measurements in clinical practice. To achieve these goals, this

work first examined the reproducibility of automated volume measurements performed on

data acquired with standardized ADNI protocol[16, 17] on several systems under different

experimental conditions(repositioning, 2-week gap between a rescan). The impact of highly-

accelerated MPRAGE protocols on automated volume measurements and clinical readings was

studied. Finally, the applicability of scaling procedures that can be used to put the sequential

volume measurements acquired with different systems and protocols into the same frame of

reference was investigated. The thesis structure is as follows.

• Chapter 1 is an overview of the thesis and a summary of its main contributions.

• Chapter 2 provides the necessary background on image acquisition and reconstruction.

Describes the basis of automated segmentation algorithm used for the purpose of

volumetric assessment.

• Chapter 3 summarizes the effects of using different hardware setups on the outcomes of

automated morphometric assessment when standardized protocols are used.

• Chapter 4 describes the effects of using highly accelerated protocols on the outcomes of

automated morphometric assessment with data acquired on a single system.

• Chapter 5 investigates the applicability of scaling procedures to compensate for discrep-

ancies between hardware setups and protocols.

• Chapter 6 summarizes the main outcomes of the thesis and provides an outlook on the

future work.
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1.2 Main contributions

The main contributions of this thesis are:

• Investigated intra- and inter-scanner reproducibility of volumetric assessment of brain

structures based on T1-weighted whole-brain imaging with standardized protocols

• Compared state-of-the-art whole-brain T1-weighted brain imaging protocols and devel-

oped a new pulse sequence (Segmented MPRAGE)

– P. Falkovskiy, D. Brenner, T. Feiweier, S. Kannengiesser, B. Maréchal, T. Kober, A.

Roche, K. Thostenson, R. Meuli, D. Reyes, T. Stoecker, M. A. Bernstein, J.-P. Thiran,

and G. Krueger, “Comparison of accelerated T1-weighted whole-brain structural-

imaging protocols,” Neuroimage, vol. 124, pp. 157–167, 2016.

– P. Falkovskiy, D. Brenner, T. Feiweier, S. Kannengiesser, B. Maréchal, T. Kober, A.

Roche, K. Thostenson, M. Seeger, T. Stoecker, M. Bernstein, and G. Krueger, “Com-

parison of accelerated T1-weighted whole-brain structural imaging protocols,” in

Proc. Intl. Soc. Mag. Reson. Med. 22, 2014.

– P. Falkovskiy, T. Kober, D. Reyes, K. Steinert, M. Seeger, M. Bernstein, and G. Krueger,

“Segmented Multi-Echo MPRAGE Acquisition for Accelerated T1-weighted Brain

Imaging,” in Proc. Intl. Soc. Mag. Reson. Med. 21, 2013.

• Adapted Segmented MPRAGE pulse sequence to serve as a navigator for motion correc-

tion framework

– M. Waszak*, P. Falkovskiy*, T. Hilbert, G. Bonnier, B. Maréchal, R. Meuli, R. Gruetter,

T. Kober, and G. Krueger, “Prospective head motion correction using FID-guided

on-demand image navigators,” Magn. Reson. Med., 2016.

– M. Babayeva*, P. Falkovskiy*, T. Hilbert, G. Bonnier, B. Maréchal, R. Meuli, J. Thiran,

R. Gruetter, G. Krueger, and T. Kober, “Prospective motion correction with FID-

triggered image navigators,” in Proc. Intl. Soc. Mag. Reson. Med. 23, 2015.

• Investigated the means of correcting for discrepancies between protocols and scanners

• Investigated the applicability of the skull stripping structures for data acquired with

MP2RAGE pulse sequence

– P. Falkovskiy, B. Maréchal , S. Yan , Z. Jin , T. Qian , K. O’Brien , R. Meuli, J. Thiran

, G. Krueger , T. Kober , and A. Roche, Quantitative comparison of MP2RAGE

skull-stripping strategies, Proc. Intl. Soc. Mag. Reson. Med. 24, 2016.

4



2 Background

This chapter presents a summary of the concepts that are used in the subsequent chap-

ters. First, it gives a short overview of the physical basis of the magnetic resonance imaging,

describes acquisition and reconstruction of T1-weighted contrasts with MPRAGE pulse se-

quences. Finally, it gives a summary of the automated segmentation algorithm that was used

for the purpose of volumetric assessment throughout the present thesis.

This chapter is based on Haacke, Brown, Thompson, & Venkatesan, 1999; McRobbie, 2003.
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2.1 Magnetic Resonance Imaging

Magnetic resonance imaging is a medical imaging modality that can image both anatomy and

function of the human body through the observation of the interaction of a nuclear spins with

an external magnetic field. Spin is an intrinsic property of matter. Due to their prevalence,

spins of protons are often used for human imaging. The spins of protons have two discrete

energy states and when protons are placed in an external magnetic field, their spins will

precess around the direction of the external magnetic field. The precessional frequency of the

spins of protons is proportional to the magnetic field and is given by the Larmor equation:

ω0 = γB0, (2.1)

where γ is a gyromagnetic ratio and B0 is the magnetic field. At room temperature, the number

of spins in a lower energy state(same direction as magnetic field) will be greater than in the

higher energy state giving rise to the net magnetization(M0) parallel to the magnetic field.

It is possible to interact with the spins through the application of a radio frequency (RF) pulse.

When placed in a magnetic field, a particle with a non-zero net spin can absorb a photon and

make a transition to a higher energy state. However, since the spin is quantized, the RF pulse

needs to deposit the exact energy that corresponds to the difference between lower and higher

energy states. In the case of a proton placed in an external magnetic field, the precessional

frequency of its spin is the same as the frequency of radiation needed to transition between

two states.

Because net magnetization is very small compared to the main magnetic field, it is virtually

impossible to measure magnetization in the body at room temperature when it is at equilib-

rium and parallel with the main magnetic field B0. However, if the magnetization is tipped in

the transverse plane through the application of a RF pulse, the precession of the net magneti-

zation in the transverse plane would result in a detectable signal. An important effect of the

application of a RF pulse is that it would bring the spins into phase coherence.

A simplistic MR experiment is illustrated in Figure 2.1. Initially, all of the spins are at equilib-

rium precessing around the main magnetic field. The main magnetic field(B0) is parallel to the

z-axis. If the system of spins is at room temperature, there would be a small excess of spins that

are in the lower energy state. This would result in a non-zero net magnetization that is parallel

to the main magnetic field. Following the application of RF pulse, the net magnetization

would be tipped due to non-zero components of the net magnetization in transverse(phase

coherence) and parallel(spins transitioning to higher energy state) to the main magnetic field

planes. The spins would start to precess and the system would emit a signal referred to as a

free-induction decay (FID) as the system returns to the equilibrium state. This signal can be

measured by an antenna placed around the subject that is imaged.

The process of the system returning to the equilibrium is known as relaxation. This process
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Figure 2.1: Illustration of the effect of the application of an external radio frequency (RF) pulse
on spins placed in a constant magnetic field(B0)

can be described phenomenologically by the Bloch equations.
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where �M(t ) is net magnetization and �B(t ) is external magnetic field.

After the application of the RF pulse, the system will experience only the constant magnetic

field B0 that is parallel to the z-axis. By imposing this limiting condition, we can solve the

Bloch equations to describe the relaxation to the equilibrium.

In the plane parallel to the main magnetic field, the system would return to the equilibrium

magnetization M0 as follows:

Mz (t ) = Mz (0)e
−t
T1 +M0(1−e

−t
T1 ) (2.3)

where Mz (t ) is a component of magnetization parallel to the main magnetic field.

In the transverse plane, the system will return to the equilibrium as:

Mx (t ) = (Mx (0)cos(ω0t )+My (0)si n(ω0t ))e
−t
T2 (2.4)

My (t ) = (My (0)cos(ω0t )−Mx (0)si n(ω0t ))e
−t
T2 (2.5)

where Mx (t ), and My (t ) are the components of magnetization in the transverse plane.

There are two constants that describe this process of decaying to the equilibrium:

• Longitudinal relaxation time(T1) that is due to "spin-lattice" interactions

• Transverse relaxation time(T2) that is due to the "spin-spin" interactions
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White matter (WM), gray matter (GM), and ceribro-spinal fluid (CSF) would exhibit different

T1, and T2 relaxation times. MRI exploits these properties of the tissues to generate the

contrast in images.

2.1.1 Acquisition and Reconstruction

In order to produce 3D image-volumes, the spatial dependence would need to be encoded

into FID signal. This can be accomplished by applying additional spatially varying magnetic

fields. These spatially varying magnetic fields are referred as gradients.

Following the application of the RF excitation pulse, it is possible to encode the spatial in-

formation in the first 2 dimensions (ŷ ,ẑ) using the phase of the precession of the spins. This

can be accomplished by applying a spatially linearly varying magnetic field gradient in both

dimensions (Gy ,Gz ) for a short period of time. Initially, right after the application of the gradi-

ent, the spins would precess with different frequencies depending on their spatial position,

and then when the gradient is turned off, the spins would return to the original precessional

frequency. Overall, this would give a spatial-dependent phase offset to the precession of the

spins. For the one remaining dimension (x̂), after the application of phase encoding gradients,

a linearly spatially varying readout gradient (Gx ) is applied in the direction of the remaining

dimension and the signal is sampled while this gradient is applied.

To summarize, this process would result in a signal received by the antenna that would contain

the precessional frequencies of the spins encoding the spatial locations in x̂ dimension and

the phases of the spins encoding the spatial locations in the remaining dimensions ŷ , ẑ. The

signal received from a sample can be summarized as:

S(kx ,ky ,kz ) =
�

d xd yd zρ(x, y, z)e−i 2π(xkx+yky+zkz ) (2.6)

where ρ is a density of spins emitting the signal and kx = γ
2π

∫t d tGx (t), ky = γ
2π

∫t d tGy (t),

kz = γ
2π

∫t d tGz (t ) define the k-space trajectory through the application of gradients(Gx ,Gy ,Gz ).

It is possible to reconstruct the original image ρ(x, y, z) by applying an inverse Fourier trans-

form. However, a big challenge is to manipulate the gradients in a way that would efficiently

sample the k-space.

2.1.2 MPRAGE Acquisition

Magnetization Prepared Rapid Acquisition by Gradient Echo(MPRAGE) [28] pulse sequence

is often used in 3D T1-weighted(T1w) brain-imaging due to a an excellent GM-WM contrast.

A typical use case in brain-imaging for this pulse sequence would be to provide anatomical

information. This anatomical information can be later used to track the changes in tissues as-

sociated with disease, ageing, treatment, or to provide the supporting anatomical information

to other imaging sequences or modalities.Typical images acquired using an MPRAGE pulse
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Figure 2.2: Sample MPRAGE images from a single subject showing saggital, axial, and coronal
slices.

sequence with ADNI-2 protocol parameters[17] are illustrated in Figure 2.2.

The sequence can be split into 3 parts: preparation, acquisition and recovery (Figure 2.3).

Typical preparation module consists of a 180° inversion pulse followed by a delay. First, the

inversion pulse would invert the longitudinal magnetization of all excited tissues. During

the delay period, the longitudinal magnetization of GM, WM, CSF would recover at different

rates due to differences in the tissue-specific T1 values. The differences in the recovery of

longitudinal magnetization between the tissues would give rise to a contrast between the

tissues (Figure 2.3).

The acquisition part consists of a gradient echo readout that would use low-flip-angle ex-

citation pulses. Typically per preparation part, the acquisition module would apply phase

encoding and frequency encoding gradients to sample data along the readout direction(x̂)

and partition direction(ẑ) while keeping the line direction (ŷ) fixed. Finally, following the

acquisition module, the delay portion of the sequence allows the magnetization to recover.

The subsequent repetitions of these steps would fill the k-space through sampling the data

along the line direction (ŷ) dimension.

2.1.3 Conventional parallel imaging(GRAPPA)

In the current clinical and research practice GRAPPA- [29] or SENSE-type accelerations [30]

are often used reduce the acquisition time. The conventional parallel imaging techniques

reduce the acquisition time through undersampling of the k-space data in one phase-encoding

direction (1D).

Let us consider 1D GRAPPA reconstruction that is used in the ADNI-2 protocol. The data is

undersampled in ky direction. First, we define S(ky ) as acquired signal, and S(ky +mδky ) as

9
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Figure 2.3: Top: sequence diagram of the MPRAGE pulse sequence. Phase encoding gradient
(GPE ), readout gradient (GRO),radio frequency pulse(RF). Bottom: evolution of longitudinal
magnetization for WM, GM, and CSF structures as a function of time.
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reconstructed signal. We can write 1D GRAPPA reconstruction as:

S(ky +mδky ) = Ĝ( y,m)S(ky ),m = 1..R −1 (2.7)

where Ĝ( y,m) is a weight matrix that can be calculated from the reference lines.

When reference lines are acquired, we have the knowledge of both S(ky ) and S(ky +mδky ), but

we do not know the weight matrix. The weight matrix Ĝ( y,m) can be calculated by computing

a pseudo-inverse as follows:

Ĝ( y,m) = S(ky +mδky )(S(ky )H S(ky ))−1(S(ky )H (2.8)

2.1.4 Automated Brain Morphometry

Figure 2.4: Sample segmentation results from a single subject showing saggital, axial, and
coronal slices. Blue: white matter; Green: grey matter; Red: CSF.

The automated brain tissue segmentation algorithm used in the present thesis is described

in [12]. A short overview of the algorithm is presented in this section. The segmentation

algorithm uses a template. The template consists of a T1-weighted MPRAGE scan acquired

with ADNI-2 [17] protocol parameters and a mask that defines voxels that belong to various

anatomical structures. The mask image was drawn and reviewed by several neurologists. The

following anatomical structures are present in the mask image: the total intracranial volume

(TIV) defined by the hemispheric and cerebellar gray matter (GM), white matter (WM) and

the intracranial cerebrospinal fluid (CSF), lateral, third and fourth ventricles, cerebellum,

thalamus, putamen, pallidum, caudate nucleus, and hippocampus. The flow of the algorithm

can be summarized as follows.

First, an image template that outlines the tissue structures of interest is registered into the

input image space. The registration of the template consists of estimating the 9 parame-

ter(translation, rotation, and anisotropic scaling) affine transform [31] followed by the estima-

tion of free-form diffeomorphic displacement field [32]. Following the template registration,
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an additional bias field correction similar to [33] is applied to the input image volume.

Based on the estimated parameters of the transformation of the template image, masks

defining the voxels that belong to each structure of interest are resampled into the image

space. The voxels that belong to the TIV in the input image are defined based on the resampled

masks of the template.

The following steps of the tissue segmentation algorithm are restricted to the TIV. The signal

intensities are modeled as a five-class Gaussian mixture model that additionally incorporates

a stationary Markov–Potts prior model[34, 35]. The classes used in this model roughly corre-

spond to ventricular CSF, sulcal CSF, cortical GM, deep GM and WM. The model is fit using

the variational expectation-maximization (VEM) algorithm and will output five posterior

probability maps. The masks and volume estimates corresponding to CSF/GM/WM structures

are then computed from the posterior probability maps. For the remaining structures, the

tissue probability maps are combined with the masks of the resampled template to produce

tissue volume estimates and corresponding masks.

A sample output of the label masks is illustrated in Figure 2.4.
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3 Reproducibility of volumetric data
acquired with a standardized T1-
weighted brain-imaging protocol
With advances in medical imaging technology, clinical radiology is increasingly requested to

provide sensitive markers to measure disease progression, to differentiate pathology from

healthy aging, and to monitor therapy response. This chapter quantitatively characterizes

MPRAGE scans acquired with standardized ADNI protocol parameters across different sys-

tems, field strength, shimming, and brain physiology based on basic image quality met-

rics(SNR,CNR) and examines the impact of scanner’s model, field strength, protocol param-

eters, shimming, and brain physiology on the reliability and reproducibility of automated

volumetric brain measurements in clinical settings.
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Chapter 3. Reproducibility of volumetric data acquired with a standardized T1-weighted
brain-imaging protocol

3.1 Introduction

Automated brain morphometry of magnetic resonance imaging (MRI) data is becoming an

important tool in studies aiming to quantify disease progression, drug efficiency or normal ag-

ing. For instance, hippocampal atrophy is recognized as a biomarker for Alzheimer Dementia

(AD) and mild cognitive impairment (MCI)[36, 37]. In the context of multiple sclerosis(MS), in

addition to lesion count and volume, the atrophy rate of white matter(WM), grey matter(GM),

thalamus, and caudate structures can be used as predictor for clinical status [7, 11, 13].

For the purpose of morphometric assessment, the magnetisation-prepared rapid acquisition

gradient-echo (MPRAGE) pulse sequence [28] is often used to produce T1-weighted images

because it exhibits excellent grey-white matter contrast. In practice, it is difficult to conduct

a large cross-sectional or longitudinal study on the same system and as a result there has

been a substantial effort to optimize reliability and reproducibility of the morphomteric

measurements across different systems and field strength through the use of standardized

protocols and regular phantom calibration scans[8, 16, 17].

However, even when standardised protocols are used, automated volume measurements may

be affected by physiological factors (e.g., dehydration), and system-specific factors such as

shim settings, field strength, scanner model, and software version[20, 22]. Depending on

the exact experimental setup, these factors may affect both cross-sectional and longitudinal

exams. In cross-sectional studies, they may affect the ability to detect differences between

groups if subjects are scanned on different types of systems. In longitudinal studies, important

anatomical changes over time may remain undetected due to the large variance in image

content of incompatible sequential measurements.

Some of these pitfalls can be addressed by careful adoptions of the patient scheduling, often

at the cost of increased complexity, and reduced efficacy and productivity of the radiology

department.

This work quantitatively characterizes MPRAGE scans acquired using different scanners, pro-

tocols, shim settings, and physiological conditions to investigate reliability and reproducibility

of brain volumetry under clinical conditions. The reproducibility of the standardized 5-minute

ADNI-2 protocol has been extensively studied [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. However,

the current study aims to extend previous reproducibility studies by decoupling systematic

offsets to volume measurements due to hardware (scanner/protocol) effects from random

offsets due to repositioning, and physiology with linear mixed-effect model analysis. This

decoupling of fixed effects from random effects makes it possible to examine the importance

of each effect individually and to get a deeper insight into the merit of applying compensation

strategies.
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3.2 Materials and Methods

3.2.1 Acquisition

Experiments were performed on four clinical MRI scanners (Siemens Healthcare, Erlangen,

Germany):

1. 3 T MAGNETOM Skyra (20-channel head/neck coil)

2. 3 T MAGNETOM Prisma (64-channel head/neck coil)

3. 1.5 T MAGNETOM Avanto (12-channel head coil)

4. 1.5 T MAGNETOM Espree (12-channel head coil)

22 healthy young subjects(20-39 years old) were imaged on each scanner after obtaining a

written and informed consent. The physiological parameters hydration status and arterial

blood pressure of each subject were controlled prior to each acquisition. The following

MPRAGE protocols were used:

(a) 3 T - scanners: 5:12-minute protocol as used in ADNI-2 (TR/TI/BW/α = 2300 ms/900

ms/240 Hz/px/9 deg.) [17] but with isotropic 1mm resolution

(b) 1.5 T - scanners: 4:42-minute protocol as used in ADNI ( TR/TI/BW/α = 2400 ms/1000

ms/180 Hz/px/8 deg., 1.25x1.25x1.20mm3) [16] but two-fold accelerated using GRAPPA

(R=2)

For Avanto and Prisma scanners, the measurement program consisted of four MPRAGE volume

acquisitions:

(R0) Reference MPRAGE scan

(R1) Repeat scan acquired in the same session and back-to-back with R0 (“best case” scan-

rescan variability)

(R2) Scan with repositioning of the subject during the same session as R0 (adds the effect of

repositioning and shim changes to R1)

(R3) Scan conducted within 2 weeks after R0 (adds physiological variances to R2)

At Skyra and Espree scanners, the measurement program consisted of only (R0) and (R3)

acquisitions.

For all acquisitions, FOV placement was guided by a scanner-integrated AutoAlign feature. In-

tensity normalization was performed using a scanner software-integrated pre-scan procedure,
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and an adaptive coil combination mode [38] was used to reconstruct the image volumes for all

acquisitions leading to 264 MPRAGE image volumes. In addition to the reconstructed imaging

data, all raw data from 3T systems were saved for retrospective modified reconstructions.

3.2.2 Data Analysis

Quantitative volumetric measurements and label maps defining voxels that belong to each

structure were computed using the prototype morphometry package MorphoBox [39, 12] for

grey-matter (GM), white-matter (WM), normalized whole brain volume (NBV), cerebrospinal

fluid (CSF), hippocampus, thalamus, putamen, caudate, and pallidum. Segmentation software

was run in a fully automated manner and no manual editing was done at any stage of the

processing. Segmentation results were visually inspected for gross errors.

Contrast-to-Noise Ratio (CNR)

Prior to CNR assessment, a separate B1 bias field correction [35] was applied to all acquired

data in addition to intensity normalization performed using a scanner-integrated pre-scan

procedure.

CNR was assessed using label maps provided by MorphoBox as:

C N Rcs f −g m = (μg m−μcs f )2

(σ2
cs f +σ2

g m )
(3.1)

C N Rg m−wm = (μwm−μg m )2

(σ2
g m+σ2

wm )
(3.2)

where μcs f , μg m , μwm were median intensities and σ2
cs f , σ2

g m , σ2
wm were image intensity

variances within CSF, GM and WM volumes. The intensity variances were estimated through

computing median absolute deviation as opposed to computing the variances directly since

this would render them less sensitive to outliers. The differences in CNR of different scan-

ner/protocol variants were tested with the Wilcoxon rank-sum test [40].

Signal-to-Noise Ratio (SNR)

Using a retrospective reconstruction based on the raw data, voxel-wise SNR (μsi g nal /σnoi se )

quantification was performed using a prototype implementation of the pseudo-multiple

replica approach [41] with 8 pseudo-replicas. The variance of additional synthetic noise used

to compute σnoi se was estimated based on a short prescan consisting of 128 readouts having

512 sampling points each, including oversampling, without an excitation pulse. To improve

the estimation of σnoi se , a 2D 5x5 region of neighboring pixels was used to estimate σnoi se

using a moving-averages fashion according to [42]. Average SNR in the brain stem, WM, and

GM was computed for 5 subjects from the anatomical label maps produced by MorphoBox.
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Brain stem, WM and GM were chosen as those tissue types that represent regions-of-interest

(ROI) of known differences in the coil performance in the centre of the coil and the proximity

of the coil elements [43].

Linear Mixed-Effect Model Analysis

Linear mixed-effect models are prime tools to analyze cross-sectional data with repeated

measurements per subject [44, 45]. They are able to deal with missing data in contrast to

the repeated measurement ANOVA [44, 45]. In the present study, we did not have R1 and R2

sessions acquired on the Espree and Skyra scanners. Therefore, due to the presence of the

missing data, a linear mixed-effect model was used for the subsequent analysis.

Prior to further analysis, volumes of all structures were normalized by the total intracranial

volume (TIV). A linear mixed-effect model [44] of the form:

yi = Xiβ+Ziγi +εi (3.3)

was fit on the volumetric data from all subjects with the R software (version 3.1.1) using lme4

package [44]. In this model, yi was a vector of serial volume measurements for subject i, Xi

was a matrix that models the scanner/protocol type, gender and age of the subject (fixed

effects). Random effects consisted of both subject-dependent and session-dependent offsets

modelled by the matrix Zi ; β and γi were vectors of unknown regression coefficients and

the residual error εi represented the scan-rescan variability. Regression coefficients β were

assumed to be the same across all of the subjects while γi and εi were treated as a random

variables. Note that effects of scanner/protocol, subjects’ gender and age, subject-dependent

and session-dependent offsets were modelled as additive terms and are in percentage of TIV

units.

Both variability due to scan-rescan and additional variability (repositioning, physiology etc.)

as detected with (R2) and (R3) were assumed to be same across scanner models based on the

findings previously demonstrated in [20].

The Satterthwate’s approximation was used to estimate the number of degrees of freedom

with lmerTest package [46], and generalized t-tests with Bonferroni correction[47] were used

for post-hoc multiple comparisons of the normalized volume estimates between all combi-

nations of scanner-dependent regression coefficients. The differences between the scanner-

dependent regression coefficients were compared to the intra-subject standard deviation in

order to assess the importance of the differences.

The linear mixed-effect model not only estimated the mean normalized volume for each

condition defined through the fixed effects but also gave structure to the random effects and

estimated of the variability due to scan-rescan, additional variability due to repositioning (R2),

and additional variance due to a 2-week gap between a rescan (R3). An important consequence

of formulating our problem in this form(Equation 3.3) was that we were able to distinguish
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subject-specific variance var (yi |γi ,0) and means E(yi |γi ,0) from marginal variance var (y)

and means E(y).

The estimates of variance due to scan-rescan, additional variability due repositioning(R2),

and additional variability due to a 2-week gap between a rescan (R3) were compared to the

inter-subject variance to assess the importance of the random effects. It is important to note

that the conditional subject-specific variance of uncertainties in measurements is given by

the sum of the back-to-back scan-rescan variance and depending on the acquisition scenario

either the variance due to repositioning or the variance due to the 2-week gap between a

rescan.
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3.3 Results

Figure 3.1 shows sample images from one subject scanned during R0 session from all scanner-

s/protocols (4 in total) acquired in this study. For all of the shown images, the windowing was

set to the same level. Upon visual inspection, it is difficult to see large differences between

these four acquisitions. However, acquisitions from Prisma scanner have visibly higher SNR

and CNR in the cortical region compared to the rest.

Figure 3.1: Images within one session with the same subject during R0 session.

Quantitative SNR assessment confirmed the visual inspection. SNR appeared to be well-

matched on Avanto, Espree and Skyra scanners, but higher on the Prisma scanner for both GM
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and WM (p<0.05, Figure 3.2). Mean SNR in WM: 38.64, 37.48, 49.84, 39.31; GM: 29.01, 28.95,

38.86, 28.19; Brain Stem: 23.30, 23.24, 21.71, 21.31 were observed on Avanto, Espree, Prisma,

and Skyra scanners.

Figure 3.2: SNR for different scanner combinations using the segmentation masks from
MorphoBox. Error bars show standard deviations across the subjects.

The results of the CNR assessment of all protocols/scanners used in this study are shown in

Figure 3.3. Median GM-WM CNR 5.52, 5.23, 6.89, 6.63 and GM-CSF CNR 3.34, 3.25, 3.02,

3.01 were observed on Avanto, Espree, Prisma, and Skyra scanners. There were systematic

differences in CNR (GM-WM and GM-CSF) between scanners of different field strength (Figure

3.3).

Figure 3.3: CNR for different scanner combinations (R0 session) using the segmentation masks
from MorphoBox. Error bars show standard deviations across the subjects. The outliers are
indicated as points.

The regression coefficients of fixed effects and estimates of the standard deviations of random

effects fit by the linear mixed-effect model are shown in Figure 3.4 and Table A.1. Note that

there is a significant effect of gender on the normalized volumes of grey matter, white mater

and caudate. Males tend to have a significantly smaller percentage of grey-matter and caudate

volumes whereas females tend to have a significantly smaller percentage of white-matter

volume. The effect of age was found to be significant only for global grey matter volumes.
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Figure 3.4: Regression coefficients as fit by the linear mixed-effect model. Fixed effects are
shown in red. Random effects are shown in blue. * p<0.05; ** p<10-2; *** p<10-3

Figure 3.5: Volume differences for all possible scanner combinations. Each coloured bar
represents a difference between scanner regression coefficients. The solid grey rectangle
represents inter-subject variability (+/- 1 standard deviation). The dashed rectangle represents
intra-subject back-to-back scan-rescan variability (+/- 1 standard deviations). * p<0.05; **
p<10-2; *** p<10-3
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The post-hoc multiple comparison of the regression coefficients of each scanner is illustrated

in Figure 3.5 and Table A.2. The differences in fixed effect regression coefficients represent a

difference in mean estimates between two scanners and are in a percentage of the TIV units.

Figure 3.5 also shows the inter-subject and scan-rescan standard deviations as estimated by

the linear mixed-effect model and adjusted for the effects of scanner, age, sex, repositioning

and 2-week gap between a rescan. The 1.5T - 3T differences constituted a considerable portion

of inter-subject variability, i.e. 39% (caudate), 45% (hippocampus), 113%(pallidum), 45%(puta-

men), and 76%(thalamus) of the inter-subject standard deviation (solid grey area in Figure

3.5). Note that when compared to back-to-back scan-rescan variability, these differences were

largest in the case of volume estimates of thalamus, and were of the order of scan-rescan

variability for the rest of the small structures. However, they were mostly insignificant within

the field-strength and constituted a small proportion of the inter-subject standard deviation.

Results from GM, WM, NBV, and CSF tissues were heterogeneous in this respect.

Figure 3.6 illustrates the contribution of individual components to random effects (back-

to-back scan-rescan, repositioning, and physiology) as fit by the model. The scan-rescan

differences in back-to-back scanning scenario significantly contributed to the total variance

and represented a significant proportion of between-subject variance for all of the investi-

gated structures. Note that the scan-rescan variance of volume estimates constituted a large

proportion of the inter-subject variance for pallidum, white matter and grey matter while

scan-rescan variances of thalamus and caudate volumes were small compared to inter-subject

variance.

In the case of repositioning between the measurements or a 2-week-gap between a rescan, the

total variance of an uncertainty in the measurements for a given subject is the sum of the back-

to-back scan-rescan variance(R0) and the additional variance either due to repositioning(R2)

or 2-week-gap between a rescan (R3). Both repositioning (R2) and 2-week-gap between a

rescan (R3) did not significantly contribute to the total variability compared to back-to-back

scans and between-subject variability. Note that compared to the other investigated structures,

volumes of grey matter had a relatively large back-to-back scan-rescan variability as well as

strong contribution from both repositioning and a 2-week gap between scanning sessions.

22



3.4. Discussion

Figure 3.6: Random components of variability expressed as percentage of between-subject
variance, scan-rescan (R1)- red, additional variance due to repositioning (R2) - green, addi-
tional variance due to 2-week-gap between rescan (R3) - blue.

3.4 Discussion

This work quantitatively characterised MPRAGE scans acquired with protocol parameters

similar to ADNI and tested the impact of scanner’s model, field strength, protocol parameters,

shimming, and brain physiology on the reliability and reproducibility of volumetric brain

assessment in clinical settings.

Consistent with theoretical considerations taken in ADNI protocol design, SNR appeared to be

well-matched on Avanto, Espree and Skyra scanners. However, it appeared to be higher on the

Prisma scanner for both GM and WM (p<0.05, Figure 3.2), which can be presumably explained

by the use of the 64-channel head coil (Prisma) vs. 12- and 20-channel coils otherwise. Note

that GM-WM CNR appeared to be higher on 3 T systems compared to 1.5 T. This increase

of GM-WM CNR on 3 T systems can be attributed to the small differences in the respective

protocol parameters including the inversion times.

In this study, we decoupled systematic offsets to volume measurements due to hardware,

and protocol effects from random offsets due to repositioning, and physiology using a linear

mixed-effect model analysis.

There was a significant effect of gender on the normalized volumes of grey matter, white mater

and caudate that was consistent with previously reported studies [48, 49]. However, the effect
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of age was only significant for grey matter. The absence of significant age effect for other

structures can be attributed to the narrow age range of the subjects used in this study.

Systematic biases were observed in variability of volume measurements of the caudate nucleus,

hippocampus, pallidum, putamen, and thalamus structures between 1.5T and 3T systems.

However, they were mostly insignificant within field-strength. These systematic differences

between 1.5T and 3T systems can be explained by the changes in contrast and differences

in protocol parameters that, for example, differences in voxel size can give rise to different

partial volume fractions. Total volumes of GM, WM and CSF were also found different across

scanners of the same field strength. One of the factors responsible for this heterogeneity can

be the system-specific residual bias-field left after application of B1 bias field correction [35].

Within small structures we do not expect to observe large variations of residual bias field and

expect to have pure CNR/protocol effects.

In the context of patient management, an important finding is that overall the effects from

repositioning (R2), and 2-week rescan (R3) scenarios did not significantly contribute to the

total variability when compared to the back-to-back scan-rescan (R1) scenario. Note that

scan-rescan standard deviation of volumes of thalamus structure was small compared to the

1.5T - 3T protocol differences and between-subject standard deviation. For the rest of small

structures examined in this study, the scanner/protocol related effects were of the same order

as scan-rescan variability. Comparatively smaller scan-rescan variability of the thalamus can

be presumably explained by its more stable shape across subjects compared to other central

nuclei that may facilitate robust automated segmentation.
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3.5 Conclusion

In summary, without the use of sophisticated correction strategies, compatibility of serial

and cross-platform scans can be best reached by minimizing differences in field, protocol,

hardware, software, and physiology. Intra-subject scan-rescan variabilities were on average a

factor of two smaller than the inter-subject variability and might be impacted by algorithmic

instabilities, e.g. during registration (i.e. for small brain structures) and noise figures (e.g. for

GM and WM )[50].

Two encouraging findings of this study were that (a) repositioning, re-shim and physiology

conditions appeared as minor contributors to total variability in volumetric assessment and

(b) protocols at equal field strength introduced an insignificant bias for the NBV, caudate

nucleus, hippocampus, pallidum, putamen, and thalamus structures.

Significant biases found in this study appeared when field strengths, voxel size, contrasts

differed and noise levels were modulated. The employed 1.5T and 3T protocols slightly differ

in contrast and resolution – factors which cannot be disentangled using the data collected

in the current study. However, since these effects are deterministic, correction strategies can

be applied to enable comprehensive pooling of imaging data in cross-sectional studies or

improved atrophy assessment in longitudinal studies.
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4 Optimization of acquisition strategies
and comparison of state-of-the-art
T1-weighted whole-brain protocols

Recent advances in MRI hardware and acquisition methodology promise improved leverage

of the MR signal and more benign artefact properties in particular when employing increased

acceleration factors in clinical routine and research. In this chapter, four variants of a four-

fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and

segmented MPRAGE) are quantitatively investigated based on clinical readings, basic image

quality metrics (SNR, CNR), and results of automated brain tissue volume segmentations.

The experiments were performed on a single system. The results are benchmarked against a

widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that was investigated in Chapter

3.

This chapter is adapted from already published work (Falkovskiy et al., 2016).
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4.1 Introduction

The 3D magnetisation-prepared rapid acquisition gradient-echo (MPRAGE) pulse sequence

[28] with Alzheimer’s Disease Neuroimaging Initiative protocol (ADNI-2) [17] parameters is a

well-established standard for multi-site and longitudinal MRI studies that involve T1-weighted

imaging of the human brain. Both in routine clinical and research settings, reduced MRI scan

times are desirable for increased patient throughput, improved patient comfort, and better

management of patient motion. The 3T imaging protocol of the ADNI employs conventional

two-fold parallel imaging [29] to reduce the acquisition time of a whole-brain MPRAGE scan

from 9 min in the original ADNI-1 protocol [16] to 5 min in ADNI-2. Recently, several strategies

have been proposed to further reduce the acquisition time in 3D structural-brain-imaging

protocols beyond conventional parallel imaging, e.g. 2D-GRAPPA [51], CAIPIRINHA [52, 53],

and segmented MPRAGE [54].

Because of the excellent tissue contrast, the 3D T1-weighted MPRAGE images are appreciated

for radiological reading. Moreover, quantitative assessment of brain tissues and the volume of

individual brain structures has become an important tool in more research-oriented applica-

tions of the MPRAGE [5, 55, 56, 57, 12]. For instance, studies aiming at quantification of disease

progression, drug efficiency or normal aging apply serial imaging to assess structural changes

over time. Since the expected effect sizes in normal aging and disease (e.g. increased atrophy

rates) are often subtle over time, it is vital to understand the reliability and reproducibility of

the imaging-based quantitative measurements and to understand any inconsistencies that

may appear when changing the pulse sequence between longitudinal repeat scans.

The reproducibility of the reference protocol (5-minute ADNI-2) has been studied extensively

[18, 19, 20, 21, 22, 23, 24, 25, 26, 27] However, to our knowledge, the influence of further accel-

erations obtained by applying 2D-GRAPPA, CAIPIRINHA or segmented MPRAGE protocols on

volumetric brain measurements and clinical readings has not been reported so far.

In this work, we aim to assess the reliability of the data obtained on the same platform across

these accelerated protocols both qualitatively and quantitatively. The qualitative analysis

is carried out by an experienced observer. The quantitative analysis is performed through

assessing the reproducibility of volume measurements with automated brain segmentation

algorithm [39, 12] contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) measurements

[41].
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(a) 2D-GRAPPA (b) CAIPIRINHA

(c) Segmented MPRAGE

Figure 4.1: K-space sampling patterns for the accelerated MPRAGE variants. Solid squares
represent acquired lines. Squares with stripes represent lines acquired with a second echo. (a)
2D-GRAPPA acceleration with 2x2 undersampling; (b) CAIPIRINHA with 2x2 undersampling
and shift 1; (c) Assignment of echoes in segmented MPRAGE

4.2 Theory

Conventional GRAPPA- [29] or SENSE-type accelerations [30] are often used in clinical set-

tings. Both methods obtain acceleration by undersampling of the k-space data in one phase-

encoding direction (1D). In most cases, only moderate accelerations are employed due to

increased aliasing and noise amplification (g-factor penalty) with higher acceleration fac-

tors. In order to overcome those limitations partly, and assuming that there is sufficient

SNR, it is possible to further generalize the conventional GRAPPA approach to 2D for higher

accelerations [51].

A modified undersampling pattern used in 2D-GRAPPA is illustrated in Figure 4.1a. 2D-

GRAPPA allows for a more effective exploitation of the coil sensitivities of contemporary

high-channel-count receive arrays which vary in both phase-encoding directions, resulting in

a reduced g-factor compared to 1D-GRAPPA with the same total acceleration. This advantage

can be further improved by using the CAIPIRINHA [52, 53] approach, which shifts the aliasing

pattern by introduction of an additional CAIPIRINHA shift parameter (Figure 4.1b).
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In addition to parallel imaging techniques, a common approach to reduce scan time is to use

elliptical scanning [58]. Elliptical scanning does not sample the corners of k-space and hence

reduces the acquisition time.

A segmented MPRAGE approach accelerates the acquisition using a different method which

does not rely on coil sensitivity variations in contrast to parallel imaging techniques [54]. The

standard acquisition scheme is modified to allow acquisition of multiple echoes with bipolar

gradient readouts. Between the readouts, phase-encoding blips are inserted so that multiple

portions of k-space are sampled per excitation. The echoes are grouped so that the first echoes

are acquired in the centre of k-space to ensure the intended contrast (Figure 4.1c). A phase

correction algorithm similar to the one used for EPI acquisitions is applied to remove phase

inconsistencies between k-space lines acquired in the different echoes with differing polarity.

This correction is computed based on the lines acquired in the centre of k-space. Notably, this

segmented approach can be introduced in addition to parallel-imaging-based acceleration.

4.3 Materials and Methods

4.3.1 MR Acquisition

All experiments were performed on a standard clinical 3T MRI (MAGNETOM Skyra, Siemens

Healthcare, Erlangen, Germany) equipped with a 32-channel head coil array. The measure-

ment protocol consisted of five 3D MPRAGE volume acquisitions with protocol parameters

similar to the ADNI-2 MPRAGE protocol settings (TR/TI= 2300/900 ms, α = 9 deg., BW=240

Hz/pixel, readout in superior-inferior direction) [17] but with 1 mm isotropic resolution at a

FoV of 256x240x176 mm3: (a) T1w ADNI-2 protocol with 2-fold GRAPPA acceleration (TA=5:12

min) [17] which is used as reference and that we will refer to as reference ADNI-2; (b) 2D-

GRAPPA with 4-fold (2x2) undersampling (TA=2:59 min) [51]; (c) CAIPIRINHA with 4-fold

undersampling (2x2 shift 1 in z direction) (TA=2:59 min) [52]; (d) CAIPIRINHA same as c but

with additional elliptical scanning option, further reducing scan time (TA=2:40 min) [52];

(e) segmented MPRAGE with 4-fold acceleration based on combining conventional parallel

imaging (2-fold) and a two-echo segmented acquisition (BW=480 Hz/pixel, TA=3:15 min)

[54]. All 1-D undersampled scans utilized 32 reference lines for reconstruction of the GRAPPA

weights, while the 2-D undersampled scans utilized a 32x32 lines reference region.

For the segmented MPRAGE acquisition, the bandwidth was increased to maintain the echo

spacing equal to the one of the reference ADNI-2 protocol. With the exception of the reference

T1w ADNI-2 measurement, all scans were acquired using in-house prototype sequences. The

order of the scans was randomized between sessions.

22 subjects (12 male and 10 female, age 20-44 years, mean 30 ± 6.0 years) were imaged. The

subjects were screened prior to enrolment in this study based on a health-assessment ques-

tionnaire. Only the subjects in good health and without a history of neurological diseases

were considered. The exclusion criteria included: any known active medical conditions;
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hypertension; excessive smoking; excessive alcohol consumption; drug addiction; diabetes

mellitus; history of significant vascular events (i.e., myocardial infarction, stroke or peripheral

vascular disease); history of malignant neoplasia of any form; history of cardiac, lung, liver, or

kidney failure; active or inadequately treated thyroid disease; active neurological or psychi-

atric conditions; history of head trauma with loss of consciousness. After obtaining written

consent, each subject was scanned with the five MPRAGE variants within one session under

an IRB-approved protocol. FOV placement was guided by the scanner-integrated AutoAlign

feature. Intensity normalization was performed using a scanner software-integrated pre-scan

procedure and an adaptive coil combination mode [38] was used to reconstruct the image

volumes for all of the protocols used in this study.

4.3.2 Image Processing Pipeline and Analysis

Qualitative

The data were graded by an experienced image analyst from the ADNI MR Core. The analyst

was blinded with respect to protocols. First, each volume was rated with respect to the

presence of motion artefacts (none, mild, severe) and overall image quality on the scale of 1-3

based on the presence of blurring/ringing/ghosting or other artefacts (1: good, 2: fair, 3: very

low quality). No separation on the nature of artefacts that contributed to overall image quality

score was made.

Second, following this ranking, if two or more image volumes were assigned the same image

quality grade, image volumes were presented side by side and the observer made a subjective

decision which image had higher image quality relative to each-other. In this fashion, relative

rankings within a session were constructed with a relative scale (1: best, 5: worst). The grade

of 1 is assigned to the volume with the best image quality in the session and 5 to the volume

with the worst image quality relative to the other scans in the session. Note that it should

be considered as a limitation of these qualitative rankings the fact that the observer did not

have to justify his choice, and only a single observer was used. These scores were averaged

across the sessions, and statistical difference between the protocol variants was tested with

the Wilcoxon rank-sum test [40] since we did not expect scores to be normally distributed.

Quantitative

The data was passed through the in-house-developed automatic segmentation framework

MorphoBox [39, 12] to compute the volumes of a number of brain tissues and structures: total

intracranial volume (TIV), grey matter (GM), cortical grey matter (cGM), white matter (WM),

hippocampus, thalamus, caudate, putamen, pallidum and brain stem. Label masks that define

voxels belonging to a particular tissue type or structure were also computed. In order to assess

the consistency of the volumetric observations, intra-class correlation coefficients (ICC) [59]

between all possible combinations of protocol variants were computed. The model used in
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this study for ICC computation treated subjects as randomly sampled from a larger population

and the acquisition protocols employed in this study as fixed parameters.

In order to evaluate a potential systematic bias in the volumetric results, normalized volumet-

ric differences (D) between the reference protocol (Vr ) and each variant (Vv ) were computed

for each structure as:

D(Vr ,Vv ) = (Vv −Vr )

(Vr +Vv )
, (4.1)

where D(Vr ,Vv ) is in the range [-1,1]. Normalized volumetric differences were averaged across

the subjects. All possible choices of the reference protocol (Vr ) were examined. The statistical

significance of the difference from a zero median in normalized volumetric differences was

tested using Wilcoxon signed-rank test [40] because the differences were not expected to be

normally distributed.

Based on the ICCs and normalized volume differences, the most consistent accelerated pro-

tocol was selected when compared to the reference ADNI-2 protocol. For this protocol, the

normalized volume differences were recomputed using the methodology described in [21]

and then compared to the scan-rescan reproducibility study of reference ADNI-2 protocol

[21].

The gold-standard method for SNR computation is the multiple-replica approach that consists

of imaging the same object several times. Voxel-wise standard deviations of noise (μnoi se ) and

mean intensities (μsi g nal ) are estimated from those measurements and voxel-wise SNR maps

(μsi g nal /σnoi se ) are constructed. However, the multiple-replica approach is not practical for

calculating SNR maps for in-vivo imaging due to patient motion and excessive measurement

time. For this reason, pseudo multiple-replica approach [41] was used instead, as it just re-

quires knowledge of the noise correlation between coils. It allows the calculation of SNR maps

from a single acquisition by mimicking the multiple replica method. First, synthetically gener-

ated random noise is scaled and correlated across coils based on the receive coil covariance

matrix. The noise covariance matrix was measured with the subject and coil setup unchanged,

by acquiring 128 readouts having 512 sampling points each, including oversampling, without

an excitation pulse. This correlated and scaled noise is injected into the data at the beginning

of the image reconstruction pipeline to produce a stack of images with different noise. The

“true” acquisition noise from the subject is still present in this synthetic data and is assumed to

be a part of the signal. From this stack of images, the voxel-wise means (μsi g nal ) and standard

deviations (σnoi se ) are computed, and SNR maps (μsi g nal /σnoi se ) are produced.

The SNR computations were performed for all acquired 3D MPRAGE volumes with 8 pseudo-

replicas. To improve the estimation of σnoi se , a 2D 5x5 region of neighboring pixels was used

to estimate σnoi se in a moving-average fashion according to [42].

Individual SNR maps were spatially normalized [60] to the reference ADNI-2 image volume

within the same session. Using the label maps from the reference ADNI-2 datasets, mean SNR
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values were computed for the following brain tissue types and structures: brain stem (chosen

due to its proximity to the centre of the head coil; representing the smallest expected SNR),

hippocampus, white matter (representing an average of expected SNR), and cortical grey

matter (chosen due to its proximity to the coil elements; representing the biggest expected

SNR). The differences in SNR of different protocol variants were tested with the Wilcoxon

rank-sum test [40] with Bonferroni correction for multiple comparisons [47].

SNR efficiency can be defined as: SN R/
�

T A, where T A is total acquisition time. SNR effi-

ciency was computed for all protocol variants and differences were tested with the Wilcoxon

rank-sum test [40] with Bonferroni correction for multiple comparisons [47].

In order to assess the contrast-to-noise ratio (CNR), data were spatially normalized [60] to

the reference ADNI-2 image volume within session. In addition to intensity normalization

performed using a scanner software-integrated pre-scan procedure, a separate B1 bias field

correction was applied to all of the datasets [35]. This additional bias field correction was

shown to be very robust in 3T settings. CSF, WM and GM were masked using the label masks

from the reference ADNI-2 image volumes. Two CNR values were computed as follows:

C N Rcs f −g m = (μg m−μcs f )2

(σ2
cs f +σ2

g m )
(4.2)

C N Rg m−wm = (μwm−μg m )2

(σ2
g m+σ2

wm )
(4.3)

where μcs f , μg m , μwm are mean intensities and σ2
cs f , σ2

g m , σ2
wm are image intensity variances

within CSF, GM and WM volumes. The differences in CNR of different protocol variants

were tested with the Wilcoxon rank-sum test [40] with Bonferroni correction for multiple

comparisons [47].

CNR efficiency can be defined as: C N R/
�

T A, where TA is total acquisition time. CNR effi-

ciency was computed for all of the protocols used in this study and differences were tested

with the Wilcoxon rank-sum test [40] with Bonferroni correction for multiple comparisons

[47].

It is expected that the SNR will be decreased in accelerated acquisitions when compared to

the reference ADNI-2 protocols, to a first approximation, proportionally to the square-root of

the acceleration factor. The decrease in SNR can be attributed to the lower total acquisition

time. A further factor is the reconstruction-induced noise amplification described by the

g-factor. Furthermore, the different protocol variants can induce a different signal modulation

in k-space.

In terms of GM-WM and CSF-GM contrast, the inversion recovery curve with the segmented

MPRAGE acquisition is mapped along the partition-encoding axis, and undersampling is

performed along the phase-encoding axis. Therefore, the resulting contrast is not expected to

change compared to the standard MPRAGE. In 2D-GRAPPA and CAIPIRINHA acquisitions,

33



Chapter 4. Optimization of acquisition strategies and comparison of state-of-the-art
T1-weighted whole-brain protocols

the inversion recovery curve is mapped mostly along the partition-encoding, and the changes

in contrast are consequently expected to be minimal [52, 61]. We expect that the changes in

CNR using accelerated acquisitions are driven by changes in noise (due to different sampling

durations between the reference and the four-fold accelerated scans) rather than by changes

in contrast. Therefore, the last part of our image processing pipeline only addresses the

noise-related effects on the results obtained with MorphoBox.

To study the noise dependency of the segmentation results, the following numerical experi-

ment was designed: scaled noise was added to the raw data of the reference ADNI-2 protocols

to mimic the SNR performance of the accelerated protocols. Based on the SNR measurements

within-session, the average SNR value was calculated between 4-fold accelerated protocols.

The level of noise added to ADNI-2 data was set to match the average SNR performance of

4-fold accelerated protocols on a per session basis. These synthetic data were reconstructed

and then passed on to the automated segmentation framework. This procedure was repeated

32 times for each subject to produce 32 synthetic image volumes and segmentation results

per subject.

The subsequently obtained volumetric results from synthetic data of the different brain struc-

tures, and tissue types were pooled from all the subjects. ICCs between synthetic volumetric

results were used as a measure of consistency of data. The model used to assess the consis-

tency of the synthetic noise experiment considered subjects to be randomly sampled from a

larger population of subjects and 32 repetitions with additional noise to be judges that are

sampled from a bigger population of judges [59]. Normalized volumetric differences between

synthetic data and the reference ADNI-2 protocol were calculated to assess whether there

is a systematic bias in the measurements. The statistical significance of the difference in

normalized volumetric differences was tested using the Wilcoxon signed-rank test [40].
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Figure 4.2: Sample images showing representative sagittal views of all protocol variants for
3 subjects (A, B, C). Please note the increased noise level of the accelerated protocols that is
most visible in the brain stem region of the subjects.

4.4 Results

Each row in Figure 4.2 demonstrates images from the same subject (three shown in total)

obtained within one session using the reference ADNI-2 protocol and the 3-minute accelerated

protocol variants. The windowing was set to the same level for all shown images. In the brain

stem region, there is a visible increase of noise in accelerated protocols when compared to the

reference ADNI-2 protocol.

4.4.1 Observer Ratings

Figure 4.3: Observer Rankings. Relative scale
(1, best to 5, worst). * indicates significant dif-
ference from the ADNI-2 protocol.

All raw images before noise injection were

rated by the observer as diagnostically use-

ful with high image quality (76 image vol-

umes) or mild image quality issues (34 image

volumes). Segmented MPRAGE acquisitions

exhibited, in some cases, mild ringing arte-

facts largely arising from hyper-intense sig-

nals due to abundant fat in the neck. No sys-

tematic pattern of image quality issues was

reported by the observer. Overall, qualitative

observations yield that all protocols provide

clinically useful image quality.
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Figure 4.4: Segmentation results from a single subject within one session. Blue: white matter;
Green: grey matter; Red: CSF.

The mean observer rankings (1, best to 5, worst) are shown in Figure 4.3. Note that the

3-minute CAIPIRINHA MPRAGE scans are perceived on average of identical value for radi-

ological reading as the reference 5-minute ADNI-2 scans despite a subtle, but visible noise

degradation. However, the other protocols appear statistically different (p < 0.05), as assessed

by the Wilcoxon rank-sum test.

4.4.2 Volumetric Measurements

Visually, the segmentation results from all protocols used in this study display a high degree of

similarity (Figure 4.4). The segmentation errors are at the single voxel level, and therefore hard

to visually notice. Visual inspection suggests that most of these differences occur in regions

affected by partial-volume effects. All segmentation results were visually inspected for large

segmentation errors and no gross segmentation errors have been observed in this study. It

is important to note that MorphoBox was run in a fully automated fashion and no manual

editing was applied at any stage of the segmentation process.

Intra-class correlation analysis shows highly consistent volumetric measurements of acceler-

ated protocols when compared to the reference ADNI-2 protocol (Table 4.1).

Figure 4.5 illustrates the intra-class correlation coefficients between all protocols used in this

study. Each column represents an ICC between two protocol variants and each row represents

a structure. The CSF volumes in segmented MPRAGE acquisitions exhibit smaller correlation

coefficients relative to the other protocol combinations. Pallidum intra-class correlation

coefficients are systematically smaller than the correlation coefficients of other structures.
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ADNI-2 vs.
2D-GRAPPA

ADNI-2 vs.
CAIPI

ADNI-2 vs.
Seg. MPRAGE

ADNI-2 vs.
CAIPI. Elliptical

TIV 1.00 1.00 0.99 [0.98-1.00] 1.00
Cortical Grey Matter 0.96 [0.90-0.98] 0.97 [0.93-0.99] 0.93 [0.84-0.97] 0.97 [0.92-0.99]
White Matter 0.99 [0.98-1.00] 0.99 [0.97-1.00] 0.99 [0.97-1.00] 1.00 [0.99-1.00]
Hippocampus 0.94 [0.85-0.97] 0.95 [0.88-0.98] 0.94 [0.87-0.98] 0.94 [0.86-0.97]
Thalamus 0.98 [0.94-0.99] 0.98 [0.96-0.99] 0.97 [0.93-0.99] 0.97 [0.94-0.99]
Putamen 0.96 [0.90-0.98] 0.97 [0.94-0.99] 0.95 [0.89-0.98] 0.95 [0.88-0.98]
Caudate 0.98 [0.95-0.99] 0.99 [0.97-0.99] 0.98 [0.94-0.99] 0.98 [0.94-0.99]
Pallidum 0.89 [0.76-0.95] 0.94 [0.86-0.97] 0.88 [0.74-0.95] 0.85 [0.68-0.94]

Table 4.1: Intra-class correlation coefficients (95% confidence interval shown in brackets).

Figure 4.5: Intra-class correlation coefficients for different brain structures between all possible
protocol combinations.
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Figure 4.6 summarizes the outcome of the analysis of normalized volumetric differences when

taking computed volumes from the reference ADNI-2 protocol as a reference volume (Vr ). The

label “ADNI-2+NOISE” corresponds to a synthetic dataset generated through addition of noise

to match the SNR of accelerated protocols. There is a strong indication that the increase in

noise levels introduces a systematic bias to the computed volumes of some structures when

compared to the reference volume of the ADNI-2 protocol. Most apparent, a statistically

significant increase in the white matter volumes in the accelerated acquisitions and a trend

towards decreased cortical grey matter volumes were observed in this investigation.

Figure 4.6: Volumetric percent difference with ADNI-2 protocol used as reference scan (Vr ).
* indicates difference from 0% median at the% significance level. *p<10-2; **p<10-4;

Figure 4.7: Volumetric percent difference with all possible choices of reference protocol (Vr ).
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Figure 4.7 summarizes the outcome of the normalized volumetric differences analysis for all

possible choices of the reference volume (Vr ). Each column represents the outcome of com-

puting the normalized volume difference between two protocol variants used in this study and

averaging it across the subjects. The results indicate that the segmented MPRAGE acquisitions

introduce a change to estimated CSF volumes when compared to other accelerated protocol

variants.

4.4.3 Signal-to-Noise Ratio (SNR)

Figure 4.8: Voxel-wise SNR maps obtained using the pseudo multiple-replica method for a
single subject within one session.

Figure 4.8 demonstrates sagittal SNR maps computed with the pseudo multiple-replica

method [24] for a single subject within one session. Theoretically, a decrease in SNR pro-

portional to 1/
�

2 (reducing the acquisition time from 5 min from 3 min) is expected in the

accelerated acquisitions when compared to the reference ADNI-2 protocol. Obtained SNR

maps demonstrate the expected decrease of SNR in the accelerated protocols.

The results of the SNR analysis performed within different brain sub-structures are summa-

rized in Figure 4.9. Mean SNR values of 50 (white matter), 29 (cortical grey matter), 22 (brain

stem) and 20 (hippocampus structures) were observed, using the conventional ADNI-2 proto-

col. There is a statistically significant drop in SNR between ADNI-2 and four-fold-accelerated

protocols. SNR dropped consistently by around 34%, 36%, 31%, and 34% for the accelerated

variants: 2D GRAPPA, CAIPIRINHA, segmented MPRAGE and CAIPIRINHA with elliptical
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Figure 4.9: SNR measurement for different brain structures and protocols. Error bars show
the standard deviations across the subjects. * indicates significant difference between two
protocols.

scanning. White matter SNR is significantly different between 2D-GRAPPA and segmented

MPRAGE acquisitions. The rest of the four-fold-accelerated protocols are not significantly

different from each other.

In terms of SNR efficiency, Figure 4.9 illustrates performance of the protocols used in this study

and significant differences. With the conventional ADNI-2 protocol, average SNR efficiency

values of 28 (white matter), 17 (cortical grey matter), 12 (brain stem) and 11 (hippocam-

pus structures) were observed. Noteworthy is a decrease in SNR efficiency of 2D-GRAPPA,

CAIPIRINHA, and segmented MPRAGE acquisitions in white matter, cortical grey matter and

hippocampus regions when compared to the ADNI-2 protocol. CAIPIRINHA with elliptical

scanning was not statistically different from the ADNI-2 protocol in terms of SNR efficiency. In

the brain stem region, only 2D-GRAPPA and CAIPIRINHA appeared to be statistically different.

On average, SNR efficiency decreased by 12%, 15%, 13% percent for 2D-GRAPPA, CAIPIRINHA,

and segmented MPRAGE acquisitions when compared to ADNI-2 protocol.

4.4.4 Contrast-to-Noise Ratio (CNR)

The results of the CNR assessment of all protocols used in this study are shown in Figure 4.10.

The greater the value of CNR, the better is the separation between the intensity distributions

of the tissues, which simplifies the segmentation problem. Analogously to the SNR mea-

surements, contrast to noise is decreased in accelerated acquisitions. There is a statistically

significant decrease in CNR between ADNI-2 and four-fold-accelerated protocols. On average,

CNR in the conventional ADNI-2 protocol was found to be 4.47 and 7.16 for CSF-GM and GM-

WM, respectively, which significantly decreased on average by 29%, 26%, 38% and 28% in the

2D-GRAPPA, CAIPIRINHA, segmented MPRAGE, and elliptical CAIPIRINHA approaches. Both

CSF-GM and GM-WM CNR appears to be significantly different between segmented MPRAGE

and other four-fold-accelerated variants. The rest of the four-fold-accelerated protocols are

not significantly different from each other.
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Figure 4.10 illustrates CNR efficiency of the protocols used in this study. CNR efficiency in

the conventional ADNI-2 protocol was found to be 0.25 and 0.41 for CSF-GM and GM-WM.

Segmented MPRAGE appeared to be statistically different from the rest of the protocols in

terms of CSF-GM and GM-WM CNR efficiency. 2D-GRAPPA is statistically different from the

ADNI-2 protocol in terms of GM-WM CNR efficiency.

Figure 4.10: CNR averaged across subjects. Error bars indicate the standard deviations across
the subjects. * indicates significant difference between protocols.

4.4.5 Noise Effects

Figure 4.11: Mean distance between the peaks of the intensity distributions and their variance
for the different protocol variants. * indicates significant difference between protocols.

In order to understand whether changes in the noise or signal properties cause the observed

changes in SNR and CNR, Figure 4.11 illustrates the mean changes in the distance between

the peaks of intensity distributions of the tissues and the sum of variances of those tissues

as extracted by the MorphoBox. A statistically significant increase in sums of variances of

σ2
cs f +σ2

g m and σ2
wm +σ2

g m between ADNI-2 and CAIPIRINHA, segmented MPRAGE, and

elliptical CAIPIRINHA acquisitions is observed. There is a statistically significant increase in

σ2
wm +σ2

g m sums of variances between ADNI-2 and 2D-GRAPPA acquisitions. Both sums of

variances, σ2
cs f +σ2

g m and σ2
wm +σ2

g m appear to be significantly different between segmented
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TIV 1.00 Thalamus 0.99 [0.99-1.00]
Cortical Grey Matter 0.98 [0.97-0.99] Putamen 0.97 [0.95-0.99]
White Matter 1.00 Caudate 0.99 [0.99-1.00]
Hippocampus 0.99 [0.98-0.99] Pallidum 0.93 [0.88-0.97]

Table 4.2: Intra-class correlation coefficients (95% confidence interval shown in brackets) for
the numerical experiment with addition of noise to the reference ADNI-2 scan.

MPRAGE and other four-fold-accelerated variants. Changes in the distance between the peaks

of the intensity distributions were not significantly different.

4.4.6 Numerical experiment with addition of synthetic noise

For each subject, 32 volumes of synthetic data were computed by adding synthetic noise to

the reference ADNI-2 raw data to reduce the SNR by approximately 35%, i.e. to match the SNR

of the four-fold accelerated scans.

Table 4.2 illustrates ICCs between the segmentation results of synthetic image volumes. For

all examined structures, ICC values greater than 0.93 were observed. The estimated ICC of

pallidum volumes exhibited the smallest correlation coefficient of 0.93 when compared to

other structures. Introduction of artificial 35% noise amplification to the reference ADNI-

2 data introduced a bias in the volumetric data similar to the bias level observed with the

accelerated acquisitions (Figure 6). A statistically significant increase in the measurements of

white matter volumes and a trend towards decreased cortical grey matter volumes are evident

when compared to the reference ADNI-2 volumes.
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4.5 Discussion

In longitudinal studies that use morphometric assessments of brain tissues and structures,

the choice of the imaging protocol can potentially influence qualitative readings and degrade

reproducibility of serial automated brain segmentations. The main objective of this study was

to investigate the impact that accelerated protocols (2D-GRAPPA, CAIPIRINHA, segmented

MPRAGE, and CAIPIRINHA with elliptical scanning) have on the observer’s qualitative readings

and on an automated brain segmentation procedure.

Qualitative analysis demonstrated that all of the data obtained using the accelerated 3-minute

protocols have clinical value, even if artefacts are present and despite the changes in noise

distribution. This observation can be explained by the fact that radiologists are used to

“reading through” artefacts and indicates that, in these settings (3T with a 32-channel head

coil), the “gold-standard” reference ADNI-2 protocol provides an SNR value that is sufficiently

high. It is important to note that the radiological readings of the CAIPIRINHA scans were

perceived to provide on average the same diagnostic image quality as the reference ADNI-2

scans despite a 36% reduction in SNR. This may further indicate that the images obtained with

the conventional ADNI-2 protocol using a 32-channel coil operate in an SNR regime and/or

have the artefact-to-noise ratio that provides an image quality beyond the minimum routine

reading requirements. Also, the shorter scan time can reduce motion sensitivity and may lead

on average in the longer scans to some subtle degradation of the overall image quality.

However, when volumetric data acquired with different protocols are pooled in longitudinal

studies, one has to be cautious of potentially introducing a bias to any quantitative analysis.

In our analysis, we found such a bias of the order of 2% in white matter and of the order of 1 %

in cortical grey matter volumes when using the accelerated protocols.

If we look at the specific structures, for instance, we found that the hippocampus volume

assessment differs most when comparing the reference ADNI-2 standard with the segmented

MPRAGE and CAIPIRINHA with elliptical-scanning acquisition protocols. Pallidum volumes

were most affected by 2D-GRAPPA and caudate volumes were most affected by segmented

MPRAGE when compared to the reference ADNI-2 protocol.

Overall, the most consistent accelerated acquisition scheme for morphological analysis when

compared to the reference ADNI-2 protocol is CAIPIRINHA, since the systematic changes

in volumes that were observed are the smallest and a strong correlation between volumes

is present. However, this MPRAGE variant can only be applied in the situations when multi-

channel coils are used and if there is a sufficient variation in coil sensitivity profiles.

For small structures, the observed changes in volumes segmented by MorphoBox were con-

sistent with the results presented in several reproducibility studies [21, 23, 25, 26] comparing

repeat scans with an identical protocol. In particular, if we recomputed our normalized vol-

umetric differences between the CAIPIRINHA and the reference ADNI-2 protocol using the

methodology described in [21] we observed: hippocampus 2.65 +/- 1.45 %; caudate 1.57 +/-
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1.25 %; pallidum 1.45 +/- 1.35 %; putamen 1.63 +/- 1.03 %; thalamus 1.35 +/-1.16 %. Those

values are in agreement with values reported in a reproducibility study [21] processed with the

FreeSurfer [62, 63] software package (version 5.1.0): hippocampus 3.26 +/- 0.93 %; caudate

2.57 +/- 0.36 %; pallidum 7.44 +/- 1.95 %; putamen 4.61 +/- 0.88 %; thalamus 4.97 +/-1.29

%. Slightly smaller absolute normalized volumetric differences in the current study can be

attributed to the use of a single scanner platform, not repositioning the subject within the

session, time span between scan and rescan, hydration level changes, different degree of

acceleration, different types of accelerations, different age group, smaller subject number, and

may also be attributed to the differences in the segmentation software.

ICCs between the reference ADNI-2 protocol and the respective accelerated variants were

also similar to previously reported values in reproducibility studies [21, 25, 27], comparing

repeat scans with an identical protocol. In particular, the correlations of volumes of small

structures from CAIPIRINHA and reference ADNI-2 protocols are comparable to the values

reported in [27] processed with FreeSurfer [62, 63] (version 4.0.1): hippocampus 0.95 [0.88-

0.98] (this work) vs 0.989 [0.976-0.997] [27], caudate 0.98 [0.95-0.99] vs 0.994 [0.988-0.998],

pallidum 0.88 [0.74-0.95] vs 0.706 [0.445-0.897], putamen 0.97 [0.94-0.99] vs 0.971 [0.939-

0.991], thalamus 0.98 [0.96-0.99] vs 0.984 [0.965-0.995]; numbers in brackets represent the 95%

confidence intervals. The differences in ICCs are small and can be attributed to the bigger

subject number and slightly different protocol parameters (TR/TI/TE/flip angle) in the current

study as well as different scanner platform, not repositioning the subject within the session,

time span between scan and rescan, hydration level changes, different degree of acceleration

and different segmentation software.

Considering other possible protocol combinations, the most interchangeable protocol com-

binations are CAIPIRINHA / 2D-GRAPPA and CAIPIRINHA / CAIPIRINHA with elliptical

scanning. This conclusion is based on the observed high ICC values and small changes in

volumes relative to the other protocol combinations (Figure 4.5, Figure 4.7). There is a strong

indication that segmented MPRAGE acquisitions introduce a change to CSF volumes. These

differences can be attributed to the reduction in susceptibility-related distortions due to the

increased bandwidth. Qualitatively, it can be observed that there is a better delineation of CSF

in segmented MPRAGE acquisitions. We assume that this MPRAGE variant exhibits similar

properties as the multi-echo MPRAGE variant MEMPRAGE [64].

The CNR and SNR analysis performed in this study depends on segmentation quality of

MorphoBox and the accuracy of the registration algorithm. An alternative option would be

to perform brain tissue segmentations manually. However, manual segmentations would be

vulnerable to human error and are very time consuming. Another alternative option would be

to not fully segment brain tissues but rather select small ROIs within them. However, using

this method for SNR and CNR analysis will not necessarily capture the noise amplification

(g-factor).

In order to assess the segmentation errors made by MorphoBox, it would be ideal to have the
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ground truth segmentations. However, no brain segmentation method, be it automatic or

manual, is error-free. Experimentally, MorphoBox and FreeSurfer [62, 63] segmentation tools

have been compared on the ADNI [16] database in terms of disease detection accuracy and

showed that MorphoBox and FreeSurfer achieve similar performance levels [12]. In the current

study, no gross segmentation errors were observed in all of the acquired image volumes and

the differences were at the single voxel level. Visually, most of these differences occurred in

regions affected by partial volume effects. Potential segmentation errors can be a consequence

of partial volume effects since they make the segmentation problem intrinsically ambiguous

and CNR/SNR changes can amplify this ambiguity. An indication of this effect is given by the

order of magnitude of the observed differences in volumes between the protocol variants,

suggesting that only a small number of voxels are affected.

The SNR analysis yielded approximately a 1/
�

2 decrease in SNR when moving from the accel-

erated reference ADNI-2 protocol to further accelerated variants. This result is expected from

theoretical considerations when assuming that noise is proportional to
√

sampli ng ti me

[65]. In 2D-GRAPPA, CAIPIRINHA and CAIPIRINHA with elliptical-scanning acquisitions,

the reduced sampling time, and thus the decrease in SNR, is attributed to undersampling of

k-space. The small difference to the theoretically expected value indicates a negligible addi-

tional g-factor penalty. In segmented MPRAGE, the decrease in SNR is due to the increased

bandwidth.

The SNR efficiency of 2D-GRAPPA, CAIPIRINHA, and segmented MPRAGE acquisitions de-

creased compared to the ADNI-2 protocol. This can be attributed to prolonged fraction of scan

time as a result of the acquisition of reference lines in these protocol variants. CAIPIRINHA

with elliptical scanning was not statistically different from the ADNI-2 protocol due to reduced

scan time and increased SNR because of the use of elliptical scanning.

Systematic changes in the CNR were observed in the accelerated acquisitions. The analysis

of the means and variances of intensities of the accelerated protocols revealed that there is

a systematic change in the noise figure compared to the reference protocol. This change in

variance is largely explained by the observed changes in SNR of the accelerated acquisitions.

It is important to note that the changes in SNR and CNR can also potentially influence the

scan-rescan reproducibility of the four-fold-accelerated protocols in terms of segmentation

results. Even though, a recent study [22] demonstrated negligible impact on the test-retest

reproducibility within identical protocols, with our current experimental design, we are unable

to fully address scan-rescan reproducibility of the four-fold-accelerated protocols and further

research is needed. Therefore caution must be exercised when using the four-fold-accelerated

protocols in research or clinical settings for volumetric analysis.

In the numerical experiment that added synthetic noise to the reference ADNI-2 data, there

is a high degree of consistency between the segmentation results of synthetic data within

a subject. This conclusion is based on the high ICC values for all considered structures. In

terms of volumetric results, the synthetically noise-matched ADNI-2 scans and the accelerated
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protocols exhibited similar bias when compared to the reference ADNI-2 protocol. Although

the results suggest that noise properties affect volume bias, it should be noted that the exact

relationship between noise and volume biases and the impact of other sources of biases

cannot be disentangled by the current study design.

Overall, our analysis of the influence of noise on the segmentation results suggests that, in

contrast to other reproducibility studies, inconsistencies between scans can be at least partly

explained by the noise, CNR, and SNR – values which are measureable in dedicated settings. In

other words, we hypothesize that it may be possible to correct for those systematic changes in

the volumetric assessments of brain structures based on the knowledge of the noise level in the

image. This statement is based on our experimental observations of volumetric measurements

with high ICC values between protocol variants and the presence of a systematic bias.

However, further investigation is needed to generalize these findings, i.e. to determine if it is

possible to extrapolate the findings to different coil setup, scanner field-strength, acquisition

time, resolution, scan orientation and other parameters that may result in different levels of

partial volume contamination and different SNR/CNR levels.
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4.6 Conclusion

In summary, there are three main practical results of this study. First, accelerations of 3D

structural brain scans beyond the routinely used acceleration factor of two have a measureable

impact on some image analysis metrics (CNR, SNR, and noise). However, obtained images

provide at least very similar information for qualitative readings in this 3T setting. Second, our

analysis suggests that using or combining data from different variants of MPRAGE protocols

should be done with caution. This statement is based on the findings of a number of quantita-

tive image analysis metrics including SNR, CNR and volumetric assessments that all showed

differences between the variants. This holds especially true for small brain structures that

are subject to higher partial-volume effects than larger structures. Third, our results suggest

that volumetric biases (at least under the given study conditions and subject to limitations

mentioned in discussion) are largely affected by the noise properties of the images.

Overall, one has to carefully consider the exact use case of the accelerated protocols. In some

situations, the benefits of using such accelerated protocols may potentially outweigh the

drawbacks. For example, the management of patient motion is expected to improve through

the use of accelerated protocols. In our study, it was demonstrated that accelerated protocols

may be used in routine clinical readings. An indicator of this statement is given by the results

of the qualitative readings that find the reference ADNI-2 and the CAIPIRINHA scans to have

equal image quality based on qualitative assessment. We provide an error estimate on the

volumetric results, when accelerated protocols are used and compared to a “standardized”

ADNI-2 protocol. Therefore, if quantitative volumetric assessment is of interest, a careful

consideration must be given to the effect size of changes in volumes for the structure of

interest when using data from accelerated protocols. The future direction of this study will

be to investigate scaling procedures as a feasible way to correct for inconsistencies in the

accelerated protocols.
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5 Correction and optimization strate-
gies towards reliable and robust esti-
mation of data elements

The primary objective of this chapter is to investigate the applicability of scaling procedures as

a means to compensate for discrepancies between hardware setups, and protocols observed

in Chapters 3 and 4. Data collected as part of the studies described in Chapters 3, 4 and

an additional set of data collected as a part of ADNI initiative are considered in the present

chapter. Current state-of-the-art protocol-based approaches are investigated and compared

to the proposed image-property-based approach.
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5.1 Introduction

In the analysis of different acquisition scenarios used for volumetric assessment in Chapter 4,

we observed discrepancies between morphometric data acquired with different protocols on

the same system with the same resolution (1mm x 1mm x 1mm). We varied the acquisition

time at the expense of both contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR)

which resulted in systematic biases in volumes of most notably grey matter (GM) and white

matter (WM) structures.

In Chapter 3, we investigated the scenario under which the SNR matched protocols were

used on different MR scanner models. Several scanning scenarios were analysed: a) back-to-

back scan-rescan; b) repositioning; c) 2 week gap between scan and rescan. Both b) and c)

acquisition scenarios were shown to be largely negligible compared to scan-rescan variability.

Acquisition protocols of systems with different field strength were adjusted according to ADNI

guidelines [17, 16] in order to provide similar SNR performance across the field strengths. The

most notable difference between the 1.5T and 3T protocol parameters was the voxel volume

(1mm x 1mm x 1mm vs. 1.25mm x 1.25mm x 1.2mm). Despite the similar SNR between

1.5T and 3T protocols, differences in contrast-to-noise ratio were observed. Also, differences

in volumes of all of the investigated structures were observed between either protocols or

systems.

Without the use of any sophisticated correction strategies as discussed in the further scope of

this work, our findings indicate that the best reproducibility is achieved when the same system

and protocol are used. This has important implications in the context of both research study

designs and clinical workflows. For instance, a recent meta-analysis by Frisoni et al. includes 9

investigations addressing the rate of hippocampal atrophy in a total of 645 Alzheimer’s disease

(AD) patients and 348 controls [8]. The average rate of atrophy per year was 2.9-5.6%, mean

4.25% in AD and 0.3-2.2%, mean 1.25% in controls, which results in an average difference of 3%

atrophy per year between AD versus controls. This means that the methodological variability

should be less than 3% if baseline and follow-up investigations are done in an interval of 1 year.

This highlights that both changes associated to normal aging and AD or mildly cognitively

impaired(MCI) are small and further motivates the need to remove the effects that might

confound the analysis.

However, in practice it is not always possible to perform the measurements on the same

system both in the single centre settings and especially in the multi-center settings. Moreover,

with uncooperative patients, the acquisition time can be a limiting factor making it difficult

to keep the protocol parameters consistent. Allowing the use of different systems and the

flexibility in protocol parameters can drastically accelerate the collection of data and result in

an increase of statistical power by virtue of having a greater number of subjects. This increase

in statistical power can allow detection of morphometric changes with greater precision in

both cross-sectional and longitudinal studies.

The purpose of this chapter is to investigate correction strategies for the systematic biases
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present in brain volumetric measurements due to heterogeneous acquisition systems and

protocols. The current state-of-the-art approaches, propose to either remove the unwanted

technological variability through preprocessing of the input data[66, 67] or to scale the vol-

umes obtained with the automated segmentation software to a reference value based on the

knowledge of the protocol[45, 68].

The use of protocol-based correction strategies has several drawbacks. First, a separate cali-

bration study needs to be carried out whenever a new protocol, system, or site are introduced.

Second, caution must be exercised when applying protocol-based compensation strategies to

subjects that undergo changes in contrast due to disease, aging or other not system or protocol

related factors. For instance, it has been reported that that there is a decrease in T1-weighted

contrast that is attributed to aging [69]. These changes in contrast can potentially confound

the segmentation results due to partial volume effects and bias the estimated effect of aging,

disease, or treatment.

To address these problems a novel image-property-based approach of scaling the data to

the same reference level is developed and proposed in this thesis. It is compared to the

state-of-the-art protocol-based approaches.

5.2 Materials and Methods

5.2.1 Acquisition

We had access to three datasets acquired under an IRB-approved protocol that contained 3D

T1-weighted MPRAGE acquisitions.

Bonn dataset

This dataset consists of 22 healthy young subjects (20-44 years old). The experimental design

and acquisition parameters are described in Chapter 4. The voxel size was maintained constant

but the scan time was varied at the expense of SNR and CNR.

Basel dataset

This dataset consisted of 22 healthy young subjects (20-39 years old). The experimental design

and acquisition parameters are described in Chapter 3. Note that unlike the Bonn dataset,

the voxel size was adjusted to maintain the same SNR levels across the systems. In Chapter

3, we observed changes in CNR between data acquired at different field strengths. However,

those changes are correlated to the changes in voxel size making it difficult to extrapolate the

changes observed in the Bonn dataset to the current one.
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ADNI dataset

This multi-centre dataset consists of screening (1.5T)/baseline (3T) T1-weighted MPRAGE

acquisitions. Clinical status (healthy, mildly cognitively impaired(MCI) or Alzheimer(AD)),

age, gender parameters were available as a part of this database for each subject. To mitigate

hardware effects, our analysis was restricted to the 335 subjects (54-91 years old) who were

scanned on systems of one vendor (Siemens Healthcare, Germany) only. Within these subjects,

95 were healthy, 166 were MCI, and 166 were AD. Each subject had two screening scans

acquired at 1.5T without repositioning with a voxel size of 1.25×1.25×1.2 mm3. A fraction of 45

subjects also had two consecutive baseline scans at 3T with a voxel size 1×1×1.2 mm3 (roughly

SNR-matched to the 1.5T data). Note that similarly to the Basel dataset, the field strength is

strongly correlated to the voxel size.

Interpolated Basel dataset

The slice thickness used in 3T ADNI protocol [17] differs from the 3T protocol used in the

acquisition of the Basel dataset(1mm vs 1.2mm).

To investigate if we can apply the correction strategies learned from the Basel data set to the

ADNI dataset, the raw k-space data(which was stored during the study) from all 3T Basel

datasets was cropped to match the resolution of the 3T ADNI protocols(1.2mm slice thickness)

and retrospectively reconstructed on the scanner.

Combined dataset

This dataset consisted of both the interpolated Basel and the ADNI datasets.

5.2.2 Data Processing

Automated segmentation

All scans were processed using the MorphoBox prototype [12] to estimate the volumes of total

gray matter (GM), total white matter (WM), total cerebrospinal fluid (CSF), total normalized

brain volume(NBV), hippocampus, thalamus, putamen, caudate, and pallidum structures.

CNR assessment

The CNR of all image volumes was quantitatively assessed using the label maps provided by

MorphoBox. The methodology used to assess the CNR is described in Chapter 3.
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5.2.3 Statistical analysis

In Chapter 3 a linear mixed effect mixed model was used to detect the differences between the

acquisition systems. However once the model is fit, it is possible to use it to make predictions

about previously unseen data. In this section two models that were used to make predictions

to scale volumetric data to the same reference are outlined.

Protocol-based compensation strategy

First, we examined a simple model which considered that the main parameter that defines the

differences between the outcomes of two consecutive automatic brain volume segmentations

with-in a subject is the protocol type.

For each structure of interest, a linear mixed-effect model[44]:

y = Xβ+Zγ+ε (5.1)

was fit on the estimated volumes normalized by total intracranial volume and logarithmically

transformed. The purpose of the logarithmic transform is to warrant that volumes predicted

by the linear mixed-effect model are always positive. In this model, protocol type, age, sex,

and clinical status(healthy, MCI or AD) were modelled as fixed effects (X ). Random effects

consisted only of subject-dependent offsets (Z ). β and γ were regression coefficients that

represent the fixed and random effects. Mathematically, the main difference between regres-

sion coefficients is that β was modelled as a fixed parameter and γ as a random variable. The

residual error ε represented the scan-rescan variability.

Image-property-based compensation strategy

There are various factors that can potentially affect the outcomes of the morphometric assess-

ment (SNR, CNR, voxel-size, blurring, ghosting, ringing, etc). In this part of the experiment we

focused on the CNR and voxel-size parameters. Blurring, ghosting and ringing were assumed

being negligible as all data were found of high image quality based on visual inspection and

automated quality control [70]. With the protocol-based correction strategies, we implicitly

assumed that we can capture the changes with just one parameter, namely the system/proto-

col identifier. However, there are changes in contrast that are attributed to normal aging [69].

In Chapter 4, we observed that both CNR and SNR can potentially affect the outcome of an

automatic brain segmentation. Therefore, we propose a slightly more complex model of the

similar form as Equation 5.1 that aims to explain the discrepancies in volumetric observations

with-in a subject purely based on the voxel volume, and the contrast-to-noise ratio.

For each structure of interest, a linear mixed-effect model was fit to the sequence of volumes

normalized by TIV after logarithmic transformation with clinical status (healthy, MCI or AD),

subjects age, voxel volume, and CNR normalized by voxel volume treated as fixed effects (X),
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and the subject identifier treated as a random effect (Z) in order to account for the repetition

of measurements within subjects. The normalization of CNR by voxel volume was performed

in order to mitigate the correlation of CNR and voxel volume.

Evaluation of compensation strategies

All models were fit with the R software (version 3.1.1) using the lme4 package [44] on each

dataset separately. First, we looked at the regression coefficients produced by each model. The

Satterthwate’s approximation was employed to estimate the number of degrees of freedom

using the lmerTest package [46], and generalized t-tests were used to test the significance of

the regression coefficients. The regression coefficients were plotted for each dataset separately.

All datasets were first examined separately using a leave-one-out cross validation. The fitted

model parameters were used to correct volumes for fixed effects so as to match the arbitrary

reference of a healthy subject scanned at 3T with ADNI protocol parameters.

However, an important question that needs to be answered is how generalizable are our

findings. To answer this question, we would need both a training and a test dataset. We can

consider ADNI and Basel databases to be as training and testing datasets and vice-versa. Since

there are differences in resolution between the ADNI and Basel imaging protocols (1.2mm

vs. 1mm slice thickness) we used the interpolated data from the Basel dataset for this part of

the experiment. It is important to point out that the subjects in the ADNI database were old

and there were diseased subjects in contrast to Basel dataset where there were only young and

healthy subjects. Note that there is a strong correlation between voxel size and CNR. However,

if our testing dataset is sampled in the same way as the training dataset, this co-linearity

should not affect the predictive power of the model.

To study if the observed differences were due to insufficient sample size, data were combined

into a combined dataset that consisted of the interpolated Basel and the ADNI datasets, and a

leave-one-out cross validation on combined dataset was performed.

In order to assess the performance of each correction strategy within one subject, relative

volume differences (RVD) were computed between all possible combinations of acquired data

as:

RV D = |V1 −V2|
V1 +V2

(5.2)

where V1 and V2 were brain volume estimates.

Normalized histograms were constructed for both corrected and uncorrected data.

Finally, to obtain further insight into age dependent effects, we performed the following

bootstrap procedure. We randomly drew a sample of 20 subjects from the combined dataset

to train the model and 20 subjects to test the model. This procedure was repeated varying the
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percentage of subjects from ADNI datasets from 0-100% with a step of 10% for the training

dataset and 20 subjects would be selected randomly from the remaining subjects at each step.

The mean difference between adjusted and unadjusted RVDs was plotted as a function of the

training database age and testing database age.

5.3 Results

5.3.1 Protocol-based compensation strategies

Figure 5.1: Regression coefficient for protocol-based model fit separately for each structure on
ADNI, Basel, interploated Basel, and combined datasets. Error bars indicate 95% confidence
interval computed via boot strap with 500 simulations. * p<0.05; ** p<10-2; *** p<10-3;

First, the effects of protocol-based correction strategy were examined. Regression coefficients

for ADNI, Basel, combined, and interpolated BASEL datasets are plotted in Figure 5.1. Note

that the direction of the field strength effect is consistent for all structures except for CSF and

putamen. The magnitude of the effect is notably smaller with the interpolated Basel dataset

compared to the ADNI dataset except for thalamus and palladium structures.

The leave-one-out cross validation results for the model trained on the ADNI dataset are illus-

trated in Figure 5.2, Table A.3. Comparison of distributions of errors for corrected/uncorrected

1.5T and 3T protocols showed a notable decrease in mean RVDs for all of the evaluated struc-

tures except for the putamen after applying the protocol-based correction strategy. However,

note that for all of the investigated brain structures, RVDs were still larger on the average than

the scan-rescan variability (illustrated in green) after the application of the protocol-based
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Figure 5.2: Distributions of relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T
(pure scan-rescan variability) of ADNI dataset with protocol-based compensation strategy
computed in leave-one-out cross-validation settings

correction strategy.

When a leave-one-out cross validation was performed on the interpolated Basel dataset (Figure

5.3, Table A.4), there was a decrease in mean RVDs of: WM, thalamus, pallidum, caudate, and

hippocampus structures when volumetric data were scaled to the same reference. There were

only small changes to the distribution of errors in volumes of GM, CSF, NBV, and putamen

structures compared to unadjusted data. It is noteworthy that the mean unadjusted RVDs

are smaller with the interpolated Basel dataset(Table A.4) compared to ADNI dataset (Table

A.3) and are very close to the distribution of scan-rescan RVDs for CSF, NBV, and putamen

structures.

Figure 5.4, and Table A.5 illustrate the results of leave-one-out cross validation of the model

fit on Bonn dataset. There was a notable decrease in mean RVDs of WM structure when

accelerated protocols are scaled to match the ADNI-2 reference protocol (Table A.5). The

distribution of errors in volumes for other structures did not change significantly. Note that

due to the study design, the scan-rescan errors are not available.

When the model used to correct for protocol differences was trained on the ADNI dataset

and the volumes from the interpolated Basel dataset were scaled to the same reference value,

there was a noticeable increase in protocol discrepancies for GM(Mean RVD 0.01(original)

vs 0.03(adjusted)), CSF(Mean RVD 0.02 vs 0.04), and NBV(Mean RVD 0.005 vs 0.01) volumes.
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Figure 5.3: Distributions of relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T
(pure scan-rescan variability) of interpolated Basel dataset with protocol-based compensation
strategy computed in leave-one-out cross-validation settings

Figure 5.4: Distributions of relative volume differences ADNI-2/accelerated protocols (Ad-
justed, Original) of Bonn dataset with protocol-based compensation strategy computed in
leave-one-out cross-validation settings
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Figure 5.5: Distributions of relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T
(pure scan-rescan variability) of interpolated Basel dataset with protocol-based compensa-
tion strategy computed when the model is trained on ADNI dataset and applied to scale
interpolated Basel dataset

However, mean RVDs between 1.5T and 3T protocols of WM, thalamus, caudate, pallidum

improved compared to unadjusted data(Figure 5.5, Table A.6). The improvement in mean

RVDs for thalamus is the most striking. No changes were observed in mean RVDs of putamen.

Training correction model on the interpolated Basel dataset and scaling the volumes from

the ADNI dataset to the same reference value resulted in a noticeable improvement in mean

RVDs (Figure 5.6, Table A.7) of all structures except the CSF and putamen. However, these

improvements were rather modest compared to the improvements observed during leave-

one-out cross validation and the scan-rescan variability of 3T data.

When both ADNI and interpolated Basel datasets were combined into a combined dataset

and leave-one-out cross-validation procedure was performed (Figure 5.7), there was an

improvement in discrepancies in volumes for all structures. On a subset of interpolated Basel

dataset, the discrepancies in both CSF and GM were smaller than when the same model was

trained on ADNI database and interpolated Basel data was scaled to reference value. However

overall, it should be noted that the improvements were rather modest in comparison with the

scan-rescan variability of 3T-3T data for both datasets with an exception of thalamus structure.
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Figure 5.6: Distributions of relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T
(pure scan-rescan variability) of ADNI dataset with protocol-based compensation strategy
computed when the model is trained on interpolated Basel dataset and applied to scale ADNI
dataset
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Figure 5.7: Distributions of relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T
(pure scan-rescan variability) of combined dataset with protocol-based compensation strategy
computed in leave-one-out cross-validation settings. ADNI and Interpolated Basel datasets
are shown separately.
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5.3.2 Image-property-based compensation strategy

Figure 5.8: Regression coefficient for CNR, and voxel volume effects fit separately for each
structure on ADNI, Basel, interpolated Basel, and combined datasets. Error bars indicate 95%
confidence interval computed via boot strap with 500 simulations. * p<0.05; ** p<10-2; ***
p<10-3;

Figure 5.8 shows regression coefficients of the model that considered CNR and voxel volume

as factors defining the outcome of automated brain volume segmentation. The model was

trained on the ADNI, BASEL, combined, and interpolated Basel datasets. Note that due to the

presence of correlation between CNR and voxel volume, the confidence intervals were rather

large.

The results of leave-one-out cross-validation were similar to the protocol-based correction

strategy for both ADNI (Figure 5.9, Table A.10) and interpolated Basel (Figure 5.10, Table

A.11) datasets. It is important to note that the 3T scan-rescan distributions of errors did not

change significantly after the application of the image-property-based compensation strategy.

The outcome of leave-one-out cross validation performed on a Bonn dataset was similar to the

one of protocol-based compensation strategy resulting in a notable decrease in discrepancies

in volumes of WM structure (Figure 5.11, Table 1 A.12).

When the image-property-based model was trained on ADNI dataset and volumes from

interpolated Basel dataset were adjusted to match a 3T reference (Figure 5.12, Table A.13),

there was a notable decrease in mean RVDs for WM, thalamus, caudate and pallidum (Table

A.13). No changes in mean RVD of hippocampus were observed. However, discrepancies in

volumes of GM, and CSF structures were increased compared to original values. Note that this
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Figure 5.9: Distributions of relative volume differences(Adjusted, Original) 1.5T/3T and 3T/3T
of ADNI dataset with image-property-based compensation strategy computed in leave-one-
out cross-validation settings

Figure 5.10: Distributions of relative volume differences(Adjusted, Original) 1.5T/3T and 3T/3T
of interpolated Basel dataset with image-property-based compensation strategy computed in
leave-one-out cross-validation settings
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Figure 5.11: Distributions of relative volume differences ADNI-2/accerated protocols (Ad-
justed, Original) of Bonn dataset with image-property-based compensation strategy computed
in leave-one-out cross-validation settings

increase is smaller than the one of a purely protocol-based compensation strategy.

Figure 5.13, and Table A.14 illustrate the case when the image-property-based model was

trained on interpolated Basel dataset and volumes from ADNI dataset were adjusted to the

same reference. There was an improvement for all structures except putamen and pallidum.

The reduction in discrepancies of volume estimates between 1.5T - 3T protocols when image-

property-based correction strategy was applied was greater compared to purely protocol-based

approach most notably for volumes of WM, and GM structures.

When both ADNI and interpolated Basel datasets were combined into a combined dataset

and a leave-one-out cross-validation procedure was performed, there was an improvement in

correcting both the interpolated Basel and the ADNI datasets (Figure 5.14, Table A.15, Table

A.16). The discrepancies in both CSF and GM were smaller than when the image-property-

based model was trained on ADNI database.

Overall, the image-property-based correction strategy performed considerably better than

the protocol-based strategy most notable reducing the discrepancies between 1.5T and 3T

protocols in the case of WM, GM, and CSF structures as illustrated by Figure 5.7 and Figure

5.14.
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Figure 5.12: Distributions of relative volume differences (Adjusted, Original) between 1.5T/3T
and 3T/3T of interpolated Basel dataset with image-property-based compensation strategy
trained on ADNI dataset

Figure 5.13: Distributions of relative volume differences (Adjusted, Original) between 1.5T/3T
and 3T/3T of ADNI dataset with image-property-based compensation strategy trained on
interpolated Basel dataset
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Figure 5.14: Distributions of relative volume differences (Adjusted, Original) 1.5T/3T and
3T/3T of combined dataset with image-property-based compensation strategy computed
in leave-one-out cross-validation settings. ADNI and Interpolated Basel datasets are shown
separately.

65



Chapter 5. Correction and optimization strategies towards reliable and robust
estimation of data elements

Figure 5.15: Bootstrap validation of protocol-based compensation strategy. Testing database
age is plotted on the y-axis and training database age is plotted on the x-axis. Colour represents
the difference in mean RVDs of adjusted and unadjusted data.

5.3.3 Bootstrap

The results of bootstrap procedure that investigated the applicability of both image-property-

based and protocol-based models are illustrated in Figure 5.15 and Figure 5.16. The y-axis

represents the age of the testing datasets and x-axis represents the age of training datasets.

Each rectangle represents one bootstrap run. The size of the rectangle in each dimension is 2

standard deviations of the subjects age and the centre is the mean age of subjects for training

and testing datasets. The colour represents the difference in the mean RVDs between adjusted

and unadjusted data. Red colour indicates the increase in 1.5T-3T discrepancies and green

indicates decrease.

The protocol-based compensation strategy amplified the discrepancies between 1.5T and

3T protocols when the age range of training and testing datasets differed (Figure 5.15). The

results confirm our initial observations that when the model is trained on ADNI dataset and

interpolated Basel data was scaled to a reference value (Figure 5.5) there was a notable increase

in differences between 1.5T-3T protocols for GM, CSF structures. The modest improvement in

differences between 1.5 T - 3 T data for GM and CSF structures was observed when the model

was trained on young subjects and old subjects were used to test the model, as was previously

observed when the model was trained on interpolated Basel dataset and the data from ADNI

dataset was corrected (Figure 5.6).
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Figure 5.16: Bootstrap validation of image-property-based compensation strategy. Testing
database age is plotted on the y-axis and training database age is plotted on the x-axis. Colour
represents the difference in mean RVDs of adjusted and unadjusted data.

The image-property-based compensation strategy was more robust with respect to the choice

of the age range for both training and testing datasets regarding discrepancies between 1.5T

and 3T protocols(Figure 5.16) when compared to the protocol-based compensation strat-

egy(Figure 5.15). The modest increase in 1.5T-3T protocol discrepancies when old subjects

were used to train the model and young subjects were used to test confirmed our initial in-

vestigation of training the model on ADNI dataset and scaling interpolated Basel data to a

reference value (Figure 5.12) . There was a noticeable improvement in differences between the

protocols for WM and CSF structures when the model was trained on young subjects and the

volumes from old subjects were corrected similar to previously investigated scenario when the

model is trained on interpolated Basel data and ADNI data is scaled to reference value(Figure

5.13).

5.4 Discussion

In this work, we investigated several approaches to scale multi-protocol and multi-scanner

volumetric data to a reference value. A protocol-based compensation strategy was compared

with an image-property-based compensation strategy on four datasets: Bonn dataset (the

same system with different protocols that modulate CNR keeping voxel volume constant),

Basel dataset (different systems, different protocols between field strength), ADNI dataset

(different systems, different protocols between field strength), and combined dataset (ADNI
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and interpolated Basel dataset).

The protocol-based leave-one-out validations performed well on each individual dataset as

illustrated in Figure 5.2, Figure 5.3, and Figure 5.15. Results obtained using the MorphoBox

prototype confirmed the feasibility of scaling morphemetric data to a reference value purely

based on the protocol information as previously reported using both FSL and FreeSurfer

segmentation tools[45, 68].

With a protocol-based approach, if we focus on correcting differences between the 1.5T and

3T protocols then when scaling factors were learned using the ADNI dataset and applied to

interpolated Basel dataset, the systematic bias in volumes of GM and CSF structures was

increased (Figure 5.5).

To obtain further insight into these discrepancies, regression coefficients (Figure 5.1) of the

same model fit separately on both ADNI and Basel datasets were examined. The regression

coefficients were drastically different for GM and CSF structures. There are several possible

sources for these discrepancies:

(a) Age of the subjects is different (old vs. young)

(b) 3T interpolated Basel data was acquired using new high-channel head coils while the

ADNI data was acquired using older hardware

It is important to note that changes in image contrast associated with ageing have been

previously reported [69]. The CNR measured on both ADNI and interpolated Basel datasets

confirms previously reported changes in contrast. The decreased contrast makes the tissue

segmentation problem more difficult and therefore leads to the higher discrepancies in volume

measurements. Therefore, there is an indication that these age-dependent CNR changes can

result in age-dependent biases in brain volume estimates.

When leave-one-out cross validation was performed on a combined dataset, the systematic

biases were decreased. However, differences were still considerable when compared to the

scan-rescan variability. In case of volumes of GM and CSF structures, regression coefficients

in Figure 5.1 highlight that when the protocol-based model was fit on a combined dataset

it resulted in a compromise between models fit separately on both ADNI and Basel datasets.

While this leads to an overall decrease in the systematic biases, it does not yield optimal

performance when ADNI and Basel datasets are examined separately (Figure 5.7).

In practice, all these findings indicate that it is difficult to generalize the protocol-based

compensation strategies to different age groups and possibly systems. This means that for

new age groups, protocols, and systems a separate calibration study would need to be carried

out. This may be very costly and often not possible in a real-world scenarios.

Image-property-based compensation strategies have a potential to relax this condition since

they would require only one calibration study to be performed. This strategy assumes that the
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main factors defining the outcome of morphometric assessments are CNR and voxel volume.

For instance, if the calibration study involved a sufficient range of CNR and voxel volume

parameter settings than when a new protocol is introduced the effects on morphometry can be

extrapolated without the need of performing a separate calibration study. Prior to interpreta-

tion of the results, it should be noted that in the current analysis there was a strong correlation

between the CNR values and voxel size in the three datasets(ADNI,Basel, Combined) due to

the study designs, i.e. the voxel size adjustment between protocols at different field strengths

in order to match the SNR.

Due to the presence of this colinearity, we can only perform the following tests:

(a) Leave-one-out cross validation on each individual dataset (ADNI, Basel, Bonn)

(b) Leave-one-out cross validation the combined dataset (ADNI + interpolated Basel)

(c) Train on ADNI dataset and scale volumes of interpolated Basel dataset to a reference

value

(d) Train on Basel dataset and scale volumes of ADNI dataset to a reference value

It is however not possible with the available datasets to extrapolate our findings learned from

ADNI or Basel datasets to the Bonn dataset due to the presence of the co-linearity. This is an

important limitation of the present investigation. To perform such a task, a dataset that would

allow us to disentangle the CNR and voxel size is needed. Such a dataset should consist of a

series of measurements performed on several subjects where in each measurement the CNR

would be varied across a considerable range (in the context of present study from 2-7 a.u.) and

the voxel size would be varied independently.

The image-property-based leave-one-out validations performed well on each individual

dataset as illustrated in Figure 5.9, Figure 5.10, and Figure 5.11 and give hope regarding

the applicability of the presented approach. There were only very small differences between

protocol-based correction strategies and image-property-based correction strategies. When

CNR and voxel volume scaling factors were learned from the ADNI dataset and applied to

the Basel dataset similarly to the protocol-based correction strategy, we increased the sys-

tematic bias of GM and CSF volumes. However, this increase is smaller than with a purely

protocol-based compensation strategy. When the image-property-based model was trained

on the interpolated Basel dataset and the ADNI data was scaled to a reference value, the sys-

tematic biases were reduced. Note that for volumes of GM and CSF structures the bias is still

considerable and is higher than both scan-rescan variability and the results of leave-one-out

cross validation. This gives an indication that the image-property-based model may be overly

simplistic.

When leave-one-out cross validation of the image-property-based model is performed on

a combined dataset, systematic biases decrease dramatically. For volumes of GM and CSF

69



Chapter 5. Correction and optimization strategies towards reliable and robust
estimation of data elements

structures this decrease was greater than the one of purely protocol-based correction strategy.

These findings indicate that one of the reasons for suboptimal performance in this scenario

when the model was trained on ADNI dataset and applied to Basel dataset may be insufficient

size of the training database.

The applicability of both image-property-based and protocol-based models was studied using

a bootstrap procedure. The results from a leave-one-out cross validation on a combined

dataset can be susceptible to overfitting. Therefore, bootstrap procedure gives some further

insights into the applicability of our approach. In this context, it is illustrative to compare two

compensation strategies: a purely protocol-based and an image-property-based. Figure 5.15

and Figure 5.16 show that the image-property-based model was more generalizable. GM and

CSF structures illustrate this effect, and the best performance is achieved when the same age

range is used for both training and testing datasets. However, these plots also indicate that

the image-property-based compensation strategy is more robust when the range of ages is

different on training and testing datasets compared to protocol-based model.

Note that overall, while basic image parameters considered in the compensation strategies

investigated in the present thesis can help to mitigate some of the observed differences

between the protocols, further research into the metrics that can further parametrize the

image for automated volumetric assessment is needed. For instance, in the case of the

hippocampus volumes that can serve as a biomarker for Alzheimer’s disease, while there was

a significant reduction in differences after applying compensation strategies to the sequential

volume measurements(reported RVDs need to be multiplied by a factor of 2 to be comparable

to results reported by [8]), the differences in volumes were still above the 3% that is necessary

to detect Alzheimer’s disease from the subject’s atrophy rate assessment.
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5.5 Conclusion

The analysis of sequential automated brain volume measurements performed on data ac-

quired with different protocols and systems discussed in the previous chapters indicated

possible discrepancies between brain volume measurements. The primary objective of this

study was to investigate the feasibility of compensation strategies.

The present study confirmed previously reported findings on the feasibility of scaling morpho-

metric data to a reference value purely based on the protocols that were used. In both cases of

differences between 1.5T-3T ADNI protocols and between standard and accelerated protocols,

the resulting systematic bias can be greatly reduced with an application of appropriate scaling

coefficients. However in contrast to the previous studies, the current study demonstrated

discrepancies in scaling coefficients between young and old subjects or between different

hardware setups. Under these circumstances, caution must be exercised in application of

purely protocol-based compensation strategies as they may potentially confine the atrophy

detection or the ability to detect differences between groups of subjects. This has very im-

portant consequences to a practical application of the protocol-based scaling procedures for

both clinical routine and research settings as it means that a separate calibration study would

need to be carried out for each new age group, protocol and system.

The results of this study give an indication that the image-property-based compensation

strategies can have the potential to be more robust compared to the protocol-based ones

when there are technology based variations in image content (SNR,CNR) across the subject

groups or hardware setups. In practical terms, this means that only one calibration study

would need to be performed and the subsequent data can be corrected even if new groups of

subjects that significantly differ in contrast compared to the calibration group , acquisition

protocols or systems were to be introduced.

Overall, further research is needed to validate our findings. If we restrict ourselves to the

differences between 1.5T and 3T ADNI protocols, in the context of the current study an

independent test dataset is needed to further support the findings concerning the image-

property-based compensation strategy. This dataset must contain both young and old subjects

sampled uniformly across the age range. However, if we want to generalize to the accelerated

protocols, then both a separate training and testing datasets are needed. In such datasets,

for each subject, both the CNR and voxel volume has to be varied independently which will

allow to disentangle the CNR from voxel volume scaling coefficients as well as scan-rescan

data needs to be available for each measurement.
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6.1 Conclusion

MRI is widely used for imaging both anatomy and physiological processes within the hu-

man brain. This thesis is focused on structural brain MRI, which can provide sufficient

anatomical detail to perform quantitative volumetric measurements. Quantitative volumetric

measurements can serve as sensitive biomarkers to track atrophic brain regions, assess disease

progression, differentiate pathology from healthy aging, and monitor therapy response.

However, there is currently still a gap between state-of-the-art brain morphometry techniques

and everyday clinical practice. The main objective of this thesis was to understand the factors

that affect the adoption of automated quantitative volumetric brain measurements in clinical

practice and to examine possible compensation strategies to mitigate the effect of such factors.

The main obstacles that affect the adoption of the automated quantitative volumetric mea-

surements in clinical practice can be summarized as follows:

1. Sensitivity to variations in imaging protocol parameters:

Quantitative volumetric brain measurements from a particular subject need to be com-

parable over time. For instance, if atrophy rates are of interest, a bias in one of the time

points can potentially confound the assessment of the atrophy rate.

2. Availability of normative ranges:

One of the clinical use cases can be a comparison of the subject’s volume of a particular

brain structure to a database of age and sex-matched healthy controls with an aim to

get some insight into disease progression. However, this comparison can be challenging

if the data were acquired with a protocol that differs from the protocol used in the

construction of the normative range. It can be costly and not practical to construct a

normative database for every possible T1-weighted protocol. Moreover, if the patient

is not cooperative, it can be challenging to acquire the imaging data with the exact

parameters used in the construction of the normative range.
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Quantitative volumetric measurements can serve as a decision support tool for both clinicians

and researchers. Moving towards this goal and keeping in mind the hindrances that slow

down the adoption of quantitative volumetric measurements in clinical practice, the main

contributions of this thesis can be summarized as follows.

First, factors that can affect the automated volumetric measurements were examined.

In the context of Alzheimer’s and dementia, there has been a substantial effort to stan-

dardize the protocols across vendors and field strength that led to the development of

the ADNI protocol. In this thesis, the reproducibility of ADNI protocol was examined

across different systems and contributions of technological (acquisition system, reposi-

tioning) and physiological (2 week gap between rescan) effects were investigated. Our

main result was that the compatibility of serial and cross-platform scans acquired with

the ADNI protocol can be best reached by minimizing differences in field, protocol,

hardware, software, and physiology. We have observed significant differences(biases)

in volumetric measurements between 1.5T and 3T protocols. With-in a field strength,

an important finding is that most of the variability in the measurements was in back-

to-back differences and neither repositioning nor 2 week gap between a rescan did

significantly increase the scan-rescan variability.

More generally, in the long-term perspective with the improvements in the MRI hard-

ware it is desirable to enable acquisition of data with the new advanced accelerated

protocols. The reduced acquisition time can reduce motion artifacts, improve patient

comfort, and increase the overall patient throughput. From a radiology department’s

management point of view, the most efficient scanner usage is desirable to allow all

available scanners to contribute to serial exams rather than restricting the follow-up

exam to the previous scanner hardware. In the present thesis, four variants of a four-

fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical,

and segmented MPRAGE) were examined and compared to the ADNI protocol with

respect to clinical readings, basic image quality metrics (SNR, CNR), and automated

brain tissue segmentation.

The main outcomes of this analysis were the following:

1. Brain scans with the four-fold-accelerated protocols provided very similar infor-

mation for qualitative readings in the 3T settings.

2. There were significant differences in brain structure’s volume estimates between

conventional and highly accelerated protocols.

3. Our results suggest that volumetric biases (at least under the given study condi-

tions) were largely affected by the noise properties of the images.

Second, scaling procedures were examined as means for compensating for the observed

discrepancies in automated brain volume measurements between different systems or

protocols.
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The current state-of-the-art protocol-based and new proposed image-property-based

compensation strategies were examined and compared to each other. The results of this

work can be summarised as follows:

Current state-of-the-art protocol-based approaches can be used to correct for differ-

ences in automated brain volume measurements between systems and protocols. How-

ever, caution must be exercised when the results are extrapolated to a new group of

subjects that significantly differ in CNR compared to the training dataset. Moreover,

whenever a new protocol, system or subject subgroup with significantly different CNR

properties is introduced, a separate calibration study needs to be carried out to learn

the scaling coefficients for this particular protocol, system or subject subgroup.

The new proposed image-property-based correction strategy can be applied to cor-

rect for differences in automated brain volume estimates using heterogeneous systems

and/or protocols, without knowledge of the said systems or protocols. There can be

significant benefits from applying image-property-based correction strategies as op-

posed to protocol-based approaches since they are potentially more generalizable to

unseen systems and protocols. In practical terms, this means that only one calibration

study needs to be performed and the subsequent data can be corrected even if a new

acquisition protocol, system, or group of subjects with substantially different CNR were

to be introduced later into the study.

In summary, this thesis identified the factors that can affect the reproducibility of the sequen-

tial automated brain tissue segmentations and investigated the applicability of compensation

strategies to facilitate adoption of automated quantitative volumetric measurements in clinical

practice.
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6.2 Future Research

Further research is needed to validate the image-property-based approach of scaling volu-

metric data to a fixed reference. The validation of the image-property-based approach can be

divided into two parts:

1. Differences between 1.5T and 3T ADNI protocols: In the context of the present thesis,

an independent testing dataset is needed to further support our findings. This dataset

must contain both young and old subjects sampled uniformly across the age range.

2. Accelerated protocols: In addition to the data collected during the present thesis, sepa-

rate training and testing datasets are needed. In such datasets, for each subject, both

the CNR and voxel volume would need to be varied independently. This would allow to

better disentangle the CNR from voxel volume scaling coefficients than using protocols

in which CNR and voxel size were roughly matched.

Overall, the image-property-based model considered that CNR and voxel volume can explain

the differences between consecutive acquisitions. However, this model may be over simplistic

and additional image quality metrics could be considered.

In the present thesis, we aimed to gain some understanding of the effects that acquisition

parameters of T1-weighted structural brain imaging have on automated brain volume seg-

mentation and volumetric biomarker extraction. Further research is needed to refine the

correction strategies proposed in this thesis as well as to determine the effect of protocol

parameters on other automated post processing algorithms. An example of this is automated

lesion segmentation in the context of multiple sclerosis, where lesion volumes and total le-

sion load are biomarkers of interest, which are likely to be system and protocol-dependent.

Protocol-based or image-property based approaches could be considered if discrepancies in

the lesion volume measurements are observed between different protocols or systems.
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A.1 Reproducibility of volumetric data acquired with a standard-

ized T1-weighted brain-imaging protocol

%TIV
Between Subjects Std. 1.2585
Scan - Rescan Std. 0.8960
Std. due to R2 0.2106
Std. due to R3 0.2068
ESPREE - AVANTO -0.7854 ***
SKYRA - AVANTO -1.0864 ***
PRISMA - AVANTO -1.0268 ***
Age(years) 0.0852
SEX(MALE) 2.6138 ***

(a) WM

%TIV
Between Subjects Std. 0.9101
Scan - Rescan Std. 0.8432
Std. due to R2 0.3386
Std. due to R3 0.4414
ESPREE - AVANTO 0.7087 ***
SKYRA - AVANTO 1.1430 ***
PRISMA - AVANTO 0.7417 ***
Age(years) -0.1247 *
SEX(MALE) -2.3068 ***

(b) GM

%TIV
Between Subjects Std. 1.4844
Scan - Rescan Std. 0.6421
Std. due to R2 0.1959
Std. due to R3 0.2824
ESPREE - AVANTO 0.0767
SKYRA - AVANTO -0.0561
PRISMA - AVANTO 0.2853 **
Age(years) 0.0155
SEX(MALE) -0.0451

(c) CSF

%TIV
Between Subjects Std. 1.4840
Scan - Rescan Std. 0.6425
Std. due to R2 0.1962
Std. due to R3 0.2822
ESPREE - AVANTO -0.0770
SKYRA - AVANTO 0.0566
PRISMA - AVANTO -0.2857 **
Age(years) -0.0154
SEX(MALE) 0.0454

(d) NBV
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%TIV
Between Subjects Std. 0.0331
Scan - Rescan Std. 0.0137
Std. due to R2 0.0054
Std. due to R3 0.0033
ESPREE - AVANTO -0.0011
SKYRA - AVANTO 0.0136 ***
PRISMA - AVANTO 0.0148 ***
Age(years) -0.0005
SEX(MALE) -0.0093

(a) Hippocampus

%TIV
Between Subjects Std. 0.0745
Scan - Rescan Std. 0.0238
Std. due to R2 0.0045
Std. due to R3 0.0052
ESPREE - AVANTO 0.0101 *
SKYRA - AVANTO 0.0608 ***
PRISMA - AVANTO 0.0630 ***
Age(years) -0.0058
SEX(MALE) 0.0055

(b) Thalamus

%TIV
Between Subjects Std. 0.0407
Scan - Rescan Std. 0.0218
Std. due to R2 0.0043
Std. due to R3 0.0082
ESPREE - AVANTO 0.0018
SKYRA - AVANTO -0.0206 ***
PRISMA - AVANTO -0.0143 ***
Age(years) 0.0028
SEX(MALE) -0.0272

(c) Putamen

%TIV
Between Subjects Std. 0.0455
Scan - Rescan Std. 0.0140
Std. due to R2 0.0001
Std. due to R3 0.0016
ESPREE - AVANTO 0.0018
SKYRA - AVANTO 0.0141 ***
PRISMA - AVANTO 0.0236 ***
Age(years) -0.0002
SEX(MALE) -0.0409 *

(d) Caudate

%TIV
Between Subjects Std. 0.0118
Scan - Rescan Std. 0.0107
Std. due to R2 0.0004
Std. due to R3 0.0021
ESPREE - AVANTO 0.0010
SKYRA - AVANTO 0.0125 ***
PRISMA - AVANTO 0.0154 ***
Age(years) 0.0010
SEX(MALE) 0.0009

(e) Pallidum

Table A.1: Regression coefficients as fit by the linear mixed-effect model. * p<0.05; ** p<10-2;
*** p<10-3
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%TIV
ESPREE - AVANTO -0.7854 ***
PRISMA - AVANTO -1.0268 ***
SKYRA - AVANTO -1.0864 ***
PRISMA - ESPREE -0.2414
SKYRA - ESPREE -0.3010
SKYRA - PRISMA -0.0595

(a) WM

%TIV
ESPREE - AVANTO 0.7087 ***
PRISMA - AVANTO 0.7417 ***
SKYRA - AVANTO 1.1430 ***
PRISMA - ESPREE 0.0330
SKYRA - ESPREE 0.4343
SKYRA - PRISMA 0.4013

(b) GM

%TIV
ESPREE - AVANTO 0.0767
PRISMA - AVANTO 0.2853 *
SKYRA - AVANTO -0.0561
PRISMA - ESPREE 0.2086
SKYRA - ESPREE -0.1328
SKYRA - PRISMA -0.3414 *

(c) CSF

%TIV
ESPREE - AVANTO -0.0770
PRISMA - AVANTO -0.2857 *
SKYRA - AVANTO 0.0566
PRISMA - ESPREE -0.2087
SKYRA - ESPREE 0.1336
SKYRA - PRISMA 0.3423 *

(d) NBV

%TIV
ESPREE - AVANTO -0.0011
PRISMA - AVANTO 0.0148 ***
SKYRA - AVANTO 0.0136 ***
PRISMA - ESPREE 0.0159 ***
SKYRA - ESPREE 0.0147 ***
SKYRA - PRISMA -0.0013

(e) Hippocampus

%TIV
ESPREE - AVANTO 0.0101
PRISMA - AVANTO 0.0630 ***
SKYRA - AVANTO 0.0608 ***
PRISMA - ESPREE 0.0529 ***
SKYRA - ESPREE 0.0508 ***
SKYRA - PRISMA -0.0022

(f) Thalamus

%TIV
ESPREE - AVANTO 0.0018
PRISMA - AVANTO -0.0143 ***
SKYRA - AVANTO -0.0206 ***
PRISMA - ESPREE -0.0161 ***
SKYRA - ESPREE -0.0224 ***
SKYRA - PRISMA -0.0063

(g) Putamen

%TIV
ESPREE - AVANTO 0.0018
PRISMA - AVANTO 0.0236 ***
SKYRA - AVANTO 0.0141 ***
PRISMA - ESPREE 0.0217 ***
SKYRA - ESPREE 0.0123 ***
SKYRA - PRISMA -0.0094 **

(h) Caudate

%TIV
ESPREE - AVANTO 0.0010
PRISMA - AVANTO 0.0154 ***
SKYRA - AVANTO 0.0125 ***
PRISMA - ESPREE 0.0144 ***
SKYRA - ESPREE 0.0115 ***
SKYRA - PRISMA -0.0029

(i) Pallidum

Table A.2: Volume differences for all possible scanner combinations. * p<0.05; ** p<10-2; ***
p<10-3
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A.2 Correction and optimization strategies towards reliable and ro-

bust estimation of data elements

A.2.1 Protocol-based compensation strategy

Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0136 0.0296 0.0062
GM 0.0144 0.0398 0.0058
CSF 0.0146 0.0272 0.0094
NBV 0.0066 0.0115 0.0036
Hippocampus 0.0183 0.0424 0.0113
Thalamus 0.0149 0.0293 0.0082
Putamen 0.0150 0.0156 0.0087
Caudate 0.0197 0.0347 0.0117
Pallidum 0.0241 0.0255 0.0171

Table A.3: Mean relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T (Target,
pure scan-rescan variability) of ADNI dataset with protocol-based compensation strategy
computed in leave-one-out cross-validation settings
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Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0137 0.0212 0.0120
GM 0.0094 0.0124 0.0089
CSF 0.0220 0.0224 0.0195
NBV 0.0050 0.0051 0.0045
Hippocampus 0.0193 0.0234 0.0184
Thalamus 0.0140 0.0361 0.0132
Putamen 0.0133 0.0132 0.0116
Caudate 0.0124 0.0241 0.0126
Pallidum 0.0235 0.0304 0.0235

Table A.4: Mean relative volume differences 1.5T/3T (Adjusted, Original) and 3T/3T (Target,
pure scan-rescan variability) of interpolated Basel dataset with protocol-based compensation
strategy computed in leave-one-out cross-validation settings
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Adjusted Mean RVD Original Mean RVD
WM 0.0053 0.0266
GM 0.0081 0.0122
CSF 0.0198 0.0244
NBV 0.0045 0.0055
Hippocampus 0.0127 0.0120
Thalamus 0.0070 0.0090
Putamen 0.0100 0.0096
Caudate 0.0084 0.0117
Pallidum 0.0168 0.0183

(a) ADNI2-2D-GRAPPA

Adjusted Mean RVD Original Mean RVD
WM 0.0052 0.0170
GM 0.0073 0.0076
CSF 0.0169 0.0204
NBV 0.0039 0.0047
Hippocampus 0.0149 0.0144
Thalamus 0.0075 0.0071
Putamen 0.0075 0.0075
Caudate 0.0063 0.0066
Pallidum 0.0127 0.0118

(b) ADNI2-CAIPI

Adjusted Mean RVD Original Mean RVD
WM 0.0038 0.0152
GM 0.0092 0.0087
CSF 0.0212 0.0236
NBV 0.0048 0.0053
Hippocampus 0.0099 0.0115
Thalamus 0.0080 0.0076
Putamen 0.0078 0.0076
Caudate 0.0074 0.0078
Pallidum 0.0174 0.0163

(c) ADNI2-CAIPI el

Adjusted Mean RVD Original Mean RVD
WM 0.0085 0.0266
GM 0.0113 0.0111
CSF 0.0229 0.0467
NBV 0.0053 0.0103
Hippocampus 0.0165 0.0156
Thalamus 0.0094 0.0102
Putamen 0.0108 0.0103
Caudate 0.0084 0.0083
Pallidum 0.0158 0.0155

(d) ADNI2-Seg.MPRAGE

Table A.5: Mean relative volume differences ADNI-2/accerated protocols (Original, Adjusted)
of Bonn dataset with protocol-based compensation strategy computed in leave-one-out cross-
validation settings
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Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0170 0.0212 0.0120
GM 0.0317 0.0124 0.0089
CSF 0.0379 0.0224 0.0195
NBV 0.0131 0.0051 0.0045
Hippocampus 0.0296 0.0234 0.0184
Thalamus 0.0137 0.0361 0.0132
Putamen 0.0140 0.0132 0.0116
Caudate 0.0160 0.0241 0.0126
Pallidum 0.0242 0.0304 0.0235

Table A.6: Mean relative volume differences 1.5T/3T (Original, Adjusted) and 3T/3T (Target
pure scan-rescan variability) of interpolated Basel dataset with protocol-based compensa-
tion strategy computed when the model is trained on ADNI dataset and applied to scale
interpolated Basel dataset
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Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0151 0.0296 0.0062
GM 0.0305 0.0398 0.0058
CSF 0.0342 0.0272 0.0094
NBV 0.0130 0.0115 0.0036
Hippocampus 0.0293 0.0424 0.0113
Thalamus 0.0164 0.0293 0.0082
Putamen 0.0153 0.0156 0.0087
Caudate 0.0199 0.0347 0.0117
Pallidum 0.0257 0.0255 0.0171

Table A.7: Mean relative volume differences 1.5T/3T (original/corrected) and 3T/3T (Target,
pure scan-rescan variability) of ADNI dataset with protocol-based compensation strategy
computed when the model is trained on interpolated Basel dataset and applied to scale ADNI
dataset

84



A.2. Correction and optimization strategies towards reliable and robust estimation of
data elements

Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0139 0.0296 0.0062
GM 0.0188 0.0398 0.0058
CSF 0.0218 0.0272 0.0094
NBV 0.0087 0.0115 0.0036
Hippocampus 0.0216 0.0424 0.0113
Thalamus 0.0154 0.0293 0.0082
Putamen 0.0150 0.0156 0.0087
Caudate 0.0193 0.0347 0.0117
Pallidum 0.0247 0.0255 0.0171

Table A.8: Mean relative volume differences of ADNI dataset 1.5T/3T (Adjusted, Original)
and 3T/3T (Target, pure scan-rescan variability). Combined dataset with protocol-based
compensation strategy computed in leave-one-out cross-validation settings.
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Adjusted Mean RVD Original Mean RVD Target Mean RVD
WM 0.0148 0.0212 0.0120
GM 0.0164 0.0124 0.0089
CSF 0.0256 0.0224 0.0195
NBV 0.0071 0.0051 0.0045
Hippocampus 0.0209 0.0234 0.0184
Thalamus 0.0135 0.0361 0.0132
Putamen 0.0134 0.0132 0.0116
Caudate 0.0132 0.0241 0.0126
Pallidum 0.0236 0.0304 0.0235

Table A.9: Mean relative volume differences of interpolated Basel dataset 1.5T/3T (Adjusted,
Original) and 3T/3T (Target, pure scan-rescan variability). Combined dataset with protocol-
based compensation strategy computed in leave-one-out cross-validation settings.
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A.2.2 Image-property-based compensation strategy

Adjusted Mean RVD Original Mean RVD
WM 0.0128 0.0296
GM 0.0113 0.0398
CSF 0.0139 0.0272
NBV 0.0061 0.0115
Hippocampus 0.0189 0.0424
Thalamus 0.0153 0.0293
Putamen 0.0157 0.0156
Caudate 0.0183 0.0347
Pallidum 0.0237 0.0255

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0065 0.0062
GM 0.0055 0.0058
CSF 0.0089 0.0094
NBV 0.0033 0.0036
Hippocampus 0.0112 0.0113
Thalamus 0.0080 0.0082
Putamen 0.0092 0.0087
Caudate 0.0115 0.0117
Pallidum 0.0181 0.0171

(b) 3T-3T

Table A.10: Mean relative volume differences (Adjusted, Original) 1.5T/3T and 3T/3T of ADNI
dataset with image-property-based compensation strategy computed in leave-one-out cross-
validation settings
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Adjusted Mean RVD Original Mean RVD
WM 0.0146 0.0212
GM 0.0093 0.0124
CSF 0.0189 0.0224
NBV 0.0043 0.0051
Hippocampus 0.0200 0.0234
Thalamus 0.0140 0.0361
Putamen 0.0134 0.0132
Caudate 0.0131 0.0241
Pallidum 0.0243 0.0304

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0111 0.0120
GM 0.0085 0.0089
CSF 0.0165 0.0195
NBV 0.0037 0.0045
Hippocampus 0.0189 0.0184
Thalamus 0.0131 0.0132
Putamen 0.0119 0.0116
Caudate 0.0134 0.0126
Pallidum 0.0236 0.0235

(b) 3T-3T

Table A.11: Mean relative volume differences (Adjusted, Original) 1.5T/3T and 3T/3T of in-
terpolated Basel dataset with image-property-based compensation strategy computed in
leave-one-out cross-validation settings
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Adjusted Mean RVD Original Mean RVD
WM 0.0166 0.0266
GM 0.0121 0.0122
CSF 0.0179 0.0244
NBV 0.0037 0.0055
Hippocampus 0.0126 0.0120
Thalamus 0.0091 0.0090
Putamen 0.0099 0.0096
Caudate 0.0101 0.0117
Pallidum 0.0185 0.0183

(a) ADNI2-2D-GRAPPA

Adjusted Mean RVD Original Mean RVD
WM 0.0137 0.0170
GM 0.0065 0.0076
CSF 0.0175 0.0204
NBV 0.0036 0.0047
Hippocampus 0.0140 0.0144
Thalamus 0.0073 0.0071
Putamen 0.0072 0.0075
Caudate 0.0063 0.0066
Pallidum 0.0124 0.0118

(b) ADNI2-CAIPI

Adjusted Mean RVD Original Mean RVD
WM 0.0119 0.0152
GM 0.0073 0.0087
CSF 0.0184 0.0236
NBV 0.0039 0.0053
Hippocampus 0.0113 0.0115
Thalamus 0.0078 0.0076
Putamen 0.0075 0.0076
Caudate 0.0084 0.0078
Pallidum 0.0176 0.0163

(c) ADNI2-CAIPI el

Adjusted Mean RVD Original Mean RVD
WM 0.0211 0.0266
GM 0.0094 0.0111
CSF 0.0324 0.0467
NBV 0.0068 0.0103
Hippocampus 0.0155 0.0156
Thalamus 0.0105 0.0102
Putamen 0.0102 0.0103
Caudate 0.0086 0.0083
Pallidum 0.0161 0.0155

(d) ADNI2-Seg.MPRAGE

Table A.12: Mean relative volume differences ADNI-2/accerated protocols (Original, Adjusted)
of Bonn dataset with image-property-based compensation strategy computed in leave-one-
out cross-validation settings
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Adjusted Mean RVD Original Mean RVD
WM 0.0130 0.0212
GM 0.0169 0.0124
CSF 0.0318 0.0224
NBV 0.0084 0.0051
Hippocampus 0.0251 0.0234
Thalamus 0.0135 0.0361
Putamen 0.0160 0.0132
Caudate 0.0159 0.0241
Pallidum 0.0234 0.0304

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0110 0.0120
GM 0.0082 0.0089
CSF 0.0190 0.0195
NBV 0.0042 0.0045
Hippocampus 0.0186 0.0184
Thalamus 0.0131 0.0132
Putamen 0.0117 0.0116
Caudate 0.0142 0.0126
Pallidum 0.0233 0.0235

(b) 3T-3T

Table A.13: Mean relative volume differences (Adjusted, Original) between 1.5T/3T and 3T/3T
of interpolated Basel dataset with image-property-based compensation strategy trained on
ADNI dataset
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A.2. Correction and optimization strategies towards reliable and robust estimation of
data elements

Adjusted Mean RVD Original Mean RVD
WM 0.0217 0.0296
GM 0.0147 0.0398
CSF 0.0440 0.0272
NBV 0.0083 0.0115
Hippocampus 0.0311 0.0424
Thalamus 0.0188 0.0293
Putamen 0.0175 0.0156
Caudate 0.0204 0.0347
Pallidum 0.0252 0.0255

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0111 0.0062
GM 0.0055 0.0058
CSF 0.0206 0.0094
NBV 0.0052 0.0036
Hippocampus 0.0114 0.0113
Thalamus 0.0093 0.0082
Putamen 0.0095 0.0087
Caudate 0.0117 0.0117
Pallidum 0.0188 0.0171

(b) 3T-3T

Table A.14: Mean relative volume differences (Adjusted, Original) between 1.5T/3T and 3T/3T
of ADNI dataset with image-property-based compensation strategy trained on interpolated
Basel dataset
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Adjusted Mean RVD Original Mean RVD
WM 0.0127 0.0296
GM 0.0106 0.0398
CSF 0.0149 0.0272
NBV 0.0060 0.0115
Hippocampus 0.0191 0.0424
Thalamus 0.0160 0.0293
Putamen 0.0155 0.0156
Caudate 0.0183 0.0347
Pallidum 0.0236 0.0255

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0066 0.0062
GM 0.0053 0.0058
CSF 0.0091 0.0094
NBV 0.0034 0.0036
Hippocampus 0.0111 0.0113
Thalamus 0.0082 0.0082
Putamen 0.0091 0.0087
Caudate 0.0115 0.0117
Pallidum 0.0181 0.0171

(b) 3T-3T

Table A.15: Mean relative volume differences of interpolated Basel dataset (Adjusted, Original)
between 1.5T/3T and 3T/3T. Combined dataset with image-property-based compensation
strategy computed in leave-one-out cross-validation settings.
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A.2. Correction and optimization strategies towards reliable and robust estimation of
data elements

Adjusted Mean RVD Original Mean RVD
WM 0.0134 0.0212
GM 0.0101 0.0124
CSF 0.0216 0.0224
NBV 0.0049 0.0051
Hippocampus 0.0195 0.0234
Thalamus 0.0132 0.0361
Putamen 0.0132 0.0132
Caudate 0.0129 0.0241
Pallidum 0.0236 0.0304

(a) 3T-1.5T

Adjusted Mean RVD Original Mean RVD
WM 0.0109 0.0120
GM 0.0083 0.0089
CSF 0.0183 0.0195
NBV 0.0040 0.0045
Hippocampus 0.0190 0.0184
Thalamus 0.0130 0.0132
Putamen 0.0118 0.0116
Caudate 0.0135 0.0126
Pallidum 0.0234 0.0235

(b) 3T-3T

Table A.16: Mean relative volume differences of ADNI dataset (Adjusted, Original) between
1.5T/3T and 3T/3T. Combined dataset with image property based compensation strategy
computed in leave-one-out cross-validation settings.
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