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ABSTRACT
Popular anonymity mechanisms such as Tor [4] provide low
communication latency but are vulnerable to traffic analy-
sis attacks that can de-anonymize users. Moreover, known
traffic-analysis -resistant techniques such as Dissent [9] are
impractical for use in latency-sensitive settings such as wire-
less networks. In this paper, we propose PriFi, a low-
latency protocol for anonymous communication in local area
networks that is provably secure against traffic analysis
attacks. This allows members of an organization to ac-
cess the Internet anonymously while they are on-site, via
privacy-preserving WiFi networking, or off-site, via privacy-
preserving virtual private networking (VPN).

PriFi reduces communication latency using a
client/relay/server architecture in which a set of servers
computes cryptographic material in parallel with the clients
to minimize unnecessary communication latency. We also
propose a technique for protecting against equivocation
attacks, with which a malicious relay might de-anonymize
clients. This is achieved without adding extra latency
by encrypting client messages based on the history of all
messages they have received so far. As a result, any equiv-
ocation attempt makes the communication unintelligible,
preserving clients’ anonymity while holding the servers
accountable.

1. INTRODUCTION
Anonymous communication allows people to share in-

formation while being indistinguishable from other par-
ticipants, and hence untraceable by an eavesdropping en-
tity. Unfortunately, popular anonymous communication
mechanisms, such as Tor [4], are not designed to protect
against global surveillance, by which an eavesdropper can
de-anonymize the users through traffic analysis attacks.

Conducting such attacks is especially easy in wireless lo-
cal area networks (WLANs) common in organizations and

∗Corresponding author. Email: mahdi.zamani@yale.edu.
Address: 51 Prospect Street, New Haven, CT 06515, USA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES’16, October 24 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4569-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994620.2994623

homes. These networks are usually small and geographi-
cally local, allowing the eavesdropper to monitor the entire
or a large portion of the network with a small resource cost.
For example, in the so-called “parking lot attack,” an adver-
sary deploys low-cost equipment near a company’s building
to monitor encrypted WLAN communications, and to track
or behaviorally analyze specific users and devices despite
the WLAN’s encryption. Such traffic analysis attacks are
concrete threats to sensitive workplaces such as banks and
defense organizations, which as a result sometimes choose a
“no-wireless” policy, prohibiting wireless deployments of any
kind inside their buildings.

Anonymous communication techniques could in princi-
ple help harden WLANs against traffic analysis attacks by
making many users’ and devices’ network traffic indistin-
guishable. Current anonymity mechanisms, however, suffer
from a tension between communication latency and traffic-
analysis resistance: known techniques either focus on low
latency and bandwidth costs while remaining vulnerable to
traffic analysis [4, 5], or provide traffic-analysis resistance at
the expense of high latency [6, 9].

This paper introduces PriFi, a low-latency anonymous
communication protocol for local area networks with prov-
able anonymity and resistance against traffic analysis at-
tacks. PriFi is suitable for all-purpose communications sim-
ilar to a VPN service but with strong privacy and track-
ing resistance. Users can communicate as usual via voice
and video calls, text messages, or web browsing while ensur-
ing their communication is anonymous and indistinguishable
from the traffic of other users and devices on the WLAN.
PriFi thus offers local area anonymity, where each user’s
identity is hidden among other users of the WLAN.

To achieve low communication latency, PriFi relies on a
group of servers that are outside the latency-critical path
taken by messages between the users and their Internet com-
munication partners. To avoid adding latency, the off-path
servers continuously compute cryptographic material that
protects client anonymity but does not depend on the ac-
tual messages being sent, and thus can be computed and
sent to the relay ahead of time. The clients’ traffic is then
aggregated, anonymized, and forwarded to the Internet by
an untrusted relay node using the information sent earlier by
the servers. This design allows PriFi to anonymize the traffic
without adding extra hops to the latency-critical path.

Background. PriFi builds on Dissent [9], which is based on
Dining Cryptographer’s networks (DC-nets) [1] – anony-
mous communication protocols with provable traffic-analysis
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resistance. DC-nets anonymize traffic by asking each par-
ticipant to transmit equal-length ciphertexts synchronously.

To exchange a message, every pair of members shares
a secret. Each member then produces its ciphertext by
individually XORing its secret values together, with the
anonymous sender additionally XORing in its message. Fi-
nally, all members broadcast their ciphertexts to other mem-
bers. Since each secret is XORed into exactly two mem-
bers’ ciphertexts, all secrets cancel, revealing the anonymous
sender’s message without revealing the sender.

DC-nets require a scheduling mechanism to protect
against collisions and a jamming-detection mechanism to
prevent denial-of-service attacks. Such mechanisms often
reduce the performance of the protocol significantly as, by
default, every client has to share secrets with every other
client. Each client must therefore compute and combine n
secrets for every bit of shared-channel bandwidth, where n is
the number of clients. Dissent alleviates this scalability issue
by adapting DC-nets to a client/server model, in which the
clients only share secrets with a small set of servers rather
than with all other clients. As long as at least one of the
servers behaves honestly, the anonymous message can be re-
constructed correctly.

Dissent’s more scalable DC-nets toplogy has a major im-
pact on latency, however: it requires several server-to-server
rounds of communication to handle client churn, maintain
integrity of messages, and ensure accountability of partici-
pants. The main technical contribution of PriFi is a new
DC-nets protocol redesigned so that these remote servers,
while adding to the security of all PriFi clients, do not add
to their communication latency. End-to-end latency of con-
nections between users and local or remote sites they are ac-
cessing is dominated purely by “single-hop” communication
via the PriFi relay. Even if the servers are geographically
dispersed around the world, their existence adds security but
not latency, because they only “stream” ciphertexts to the
relay from outside the latency-critical path.

Threat Model. Consider a set of n clients (or users), who
want to access the Internet anonymously. The clients are
connected to this network through a relay, or router, that
can process normal TCP/IP traffic in addition to running
our protocol (see Figure 1). We also introduce a set of
m servers whose role is to assist the relay in the anonymiza-
tion process. These servers may be distributed around the
world to maximize diversity and collective trustworthiness.

We consider an adversary who controls the relay, up to
n− 1 of the clients, and up to m− 1 of the servers. We as-
sume these servers satisfy the requirements of the anytrust
model [9]: At least one server is honest, and they are all (in-
cluding the relay) highly available, but clients need not know
or choose which server to trust. We assume that all nodes
communicate using non-private but authenticated channels;
the adversary can observe all such messages when they are
sent. While end-to-end content privacy is important in prac-
tice, it is readily achieved via orthogonal, well-understood
content-encryption mechanisms such as TLS.

The goal of PriFi is to provide anonymity in such a man-
ner that no one inside or outside of an organization can track
the communication or attribute individual messages to their
senders and receivers who are the members of the organi-
zation. From the point of view of an off-site member who
is using the organization’s PriFi network to communicate
remotely with other members or the Internet, PriFi is simi-
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Figure 1: System setup

lar to a low-latency VPN service: it receives data from and
sends data to the applications running on the user’s com-
puter. The relay acts as the other end of the VPN, relaying
data between the Internet and the clients. However, unlike
traditional VPN services, the relay is not trusted; it may
maliciously (possibly by colluding with other untrusted en-
tities) attempt to de-anonymize the clients. The anytrust
group of servers will collectively allow PriFi to protect the
clients from de-anonymization by the VPN service, without
adding latency into the critical communication path.

We define downstream communication as the data from
the Internet to one of the clients, and upstream communica-
tion as the data from one of the clients towards the Internet.

2. SYSTEM OVERVIEW
Algorithm 1 summarizes the steps of a run of PriFi. These

steps are executed jointly by the clients, servers, and the re-
lay to anonymize messages sent by the clients to the Inter-
net. The protocol proceeds in time slots such that only one
client – the slot owner – is allowed to send an `-bit anony-
mous message to the Internet in each time slot. A round is
comprised of n time slots in each of which one of the clients
becomes the slot owner and sends its next ` bits of data
anonymously. PriFi only anonymizes the upstream traffic;
the downstream messages are simply broadcast by the relay
to every client, trivially providing receiver anonymity assum-
ing the relay does not equivocate. Section 2.2 will discuss a
mechanism to protect clients from an equivocating relay.

Before the protocol starts, we assume each client and each
server holds a public/private key pair, and the relay holds a
roster of all the public keys. This allows the relay to verify
the membership of the clients and verify the authenticity of
all communication. We now describe the three main phases
of Algorithm 1: setup, scheduling, and anonymization.

Setup Phase. In the setup phase, the clients are authenti-
cated using their public keys. Then, each client agrees with
each server on a shared secret, which is known to both of
them but is secret from others. This secret is later used to
seed a pseudorandom generator (PRG) to obtain a stream
of pseudorandom bits from which the clients and the servers
will compute their ciphertexts. This allows the clients and
the servers to avoid generating a shared secret for every slot.

Scheduling Phase. The scheduling phase determines which
client gets to transmit its message in which slot. To achieve
forward secrecy, each client generates an ephemeral pub-
lic/private key pair that it uses for anonymization instead
of its long-term keys. The ephemeral keys are refreshed in
the scheduling phase at the start of each round.



Algorithm 1 PriFi

Notation. Let C1, ..., Cn denote the clients, R denote the re-
lay, S1, ...,Sm denote the servers, and ` denote the bit-length of
ciphertexts sent by clients and servers to the relay in each slot.

Setup

(1) R authenticates each client using its public key;

(2) For i ∈ [n] and j ∈ [m], each client Ci runs a key exchange
protocol with each server Sj to agree on a shared secret

rij ∈ {0, 1}`.
Scheduling

(1) Each client Ci generates an ephemeral pair of public/private
keys (Zi, zi), sends Zi to R, and sets the time slot number
t← 0;

(2) R collects all Zi’s as a sequence A and sends it to S1;

(3) The servers take turn and shuffle A using [8] each sending
its result and proof to other servers via R;

(4) Each server verifies the shuffles, signs them with its private
key, and sends the signature to all clients for verification.

Anonymization

(1) Each server Sj picks an `-bit pseudorandom pad pij for
each client Ci using a PRG seeded with rij . The server
then computes its ciphertext

sj ← p1j ⊕ ...⊕ pnj

and sends it to R;

(2) Each client Ci performs the following steps:

a. Generate an `-bit pseudorandom pad pij for each server
Sj using a PRG seeded with rij ;

b. Let π denote the permutation generated by the schedul-
ing phase, and xi denote Ci’s next ` bits of data.
Compute and send a ciphertext ci to R such that if
t mod n = π(i), then

ci ← xi ⊕ pi1 ⊕ ...⊕ pim.

Otherwise,
ci ← pi1 ⊕ ...⊕ pim.

c. t← t+ 1;

(3) R collects the ciphertexts s1, ..., sm from the servers and
c1, ..., cn from the clients and computes

y ← s1 ⊕ ...⊕ sm ⊕ c1 ⊕ ...⊕ cn.

It then sends y to the corresponding Internet address;

(4) Upon receiving a response from the Internet, R broadcasts
the message to all clients;

(5) If any client or server disconnects, R broadcasts a Resched-
ule request to all clients and servers;

(6) If any client or server receives a Reschedule request from R,
the receiver repeats the Scheduling phase.

The scheduling information needs to remain secret from
all participants, as otherwise it can break the anonymity
of all clients. In PriFi, the servers randomly and verifiably
shuffle (using [8]) the sequence of ephemeral public keys cor-
responding to the clients. The secret permutation is then
sent to all clients each of whom is only able to recognize its
own public key in the sequence; other keys reveal no infor-
mation to anyone without the associated private key.

Anonymization Phase. Each server continuously computes
random ciphertexts for each client and sends them to the
relay. Each ciphertext consists of ` random bits generated
using a PRG seeded with the secret that the server shares
with each client and is generated in the setup phase.

In every slot, each client also computes an `-bit ciphertext

and sends it to the relay; one of the clients sends a cipher-
text that represents a meaningful `-bit message that it wants
to send to the Internet, and the rest send ciphertexts that
represent cover messages consisting of ` zero bits. To pro-
duce an `-bit ciphertext from an `-bit message, the client
first computes, for each server, an `-bit pseudorandom pad
using a PRG seeded with the secret that it shares with that
server. Then, it computes its own ciphertext by XORing its
`-bit message with all of the pseudorandom pads.

The anonymization phase is repeated several times, and
the clients take turns sending their messages in a round-
robin fashion based on the shuffling information computed
in the scheduling phase: if the current slot number modulo
n points to the client’s public key in the shuffled sequence of
all public keys, then the client includes ` bits of its data in its
upstream message for this slot. Otherwise, it just XORs the
servers’ ciphertexts and sends the result to the relay. Once
the relay receives ciphertexts from all clients and servers, it
XORs them together to obtain ` data bits. The data bits
received from multiple rounds are combined together to form
a valid TCP packet that is sent to the corresponding web
destination. Upon receipt of a response from the Internet,
the relay broadcasts the response to all clients.

2.1 Pre-Computing Server Ciphertexts
The server ciphertexts are generated by XORing pseudo-

random values that are seeded with the secret each server
shares with each client. Therefore, these ciphertexts do not
depend on the actual communicated content. As a result,
the servers can compute their ciphertexts ahead of the time
before they are needed by the clients and the relay in the ac-
tual communication. This eliminates an important latency
bottleneck from the critical latency path of the protocol.
The servers continuously transmit freshly-produced cipher-
texts to the relay throughout a round. Assuming that the
servers have high-throughput links to the relay, the arrival
of their ciphertexts outpaces the exchanges being performed
by the clients and the relay, avoiding added latency.

2.2 Equivocation Protection
PriFi’s client/relay/server topology introduces an impor-

tant challenge: the untrusted relay can preform equivocation
attacks by sending different (inconsistent) downstream mes-
sages to the clients to de-anonymize them. For example, in
an unencrypted communication, the relay can slightly mod-
ify the downstream message for each client, thereby sending
a unique message to each of them. These unique messages
affect the requests that clients send in subsequent rounds;
so the relay may be able, in these subsequent rounds, to
determine which client sent each request.

PriFi protects clients from equivocation without adding
extra latency by encrypting clients’ upstream messages in
such a way that the ciphertexts depend on all previous down-
stream messages. The relay will only be able to decrypt up-
stream messages if all clients agree on what they received in
all previous downstream rounds; if they disagree, the XOR
of all of the upstream messages that the relay receives will be
garbage instead of the meaningful message encrypted by the
slot owner. This allows the clients to ensure they have re-
ceived the same message without imposing the latency over-
head of a consensus protocol.
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2.3 Further Improvements
1. Even if an adversary cannot directly track a client, it can

run intersection attacks by guessing based upon online
clients, especially if members of an organization must
identify themselves to access the network. PriFi miti-
gates such attacks by authenticating clients anonymously
using linkable ring signatures [7] with rotating linkage
contexts. An attacker thus cannot tell which users are
online at a given moment and cannot link anonymous
users across rounds.

2. A malicious client can render the channel useless by con-
tinuously transmitting in every slot causing an untrace-
able denial-of-service attack. To address this weakness,
PriFi redesigns Dissent’s accountability mechanism to be
compatible with PriFi’s low-latency protocol.

3. Rather than incorporating all clients into the same PriFi
communication channel, clients can subscribe to differ-
ent channels with different bit rates. This allows PriFi
to support clients with different energy/bandwidth con-
straints.

4. A single participant disconnection invalidates all cipher-
texts in the anonymization phase. In most situations,
however, the set of online clients remains stable enough
to last for several exchanges. Thus, the servers update
the set of online clients at regularly occurring reconfig-
uration events. The production of these configurations
can be pipelined to reduce latency further.

3. PRELIMINARY RESULTS
We implemented a prototype of PriFi in Go and simu-

lated its traffic and latency overhead using the CRAWDAD
dataset [3]. The traces contain about 4, 000 IP addresses
with highly bursty and intermittent behavior; in particular,
over the 4 hours captured by the traces, most devices only
appear for a few minutes, before disconnecting forever. Out
of these 4, 000 IP’s, we decided that the 10 highest-volume
devices would run PriFi (the cost of using PriFi typically
increases with the presence of high-volume traffic), and we
manually assigned them to PriFi clients.

We are interested in measuring the increase in band-
width and latency of clients’ upstream traffic when it is
anonymized by PriFi compared to when no anonymization
mechanism is in use. Depending on energy requirements of
client devices, the protocol may choose to adjust the num-
ber of rounds per second. Therefore, we vary the number of
rounds per second between 0 and 200 and compute `, the
length of ciphertexts, such that the bandwidth used does not
exceed the network capacity. To better match the down-
stream/upstream ratio usually found in web applications,
we fix the downstream bandwidth to be at most 10 times
higher than the upstream bandwidth.

Figure 2 shows the simulation results. The blue plot in
the left figure depicts the increase in the number of upstream
messages sent by every client, and the red plot depicts the in-
crease in the number of upstream bytes sent by every client.
In the right figure, the added latency is shown for the same
experiment. These plots show the trade-off between latency
and number of messages transmitted; the former decreases
when the latter increases. We see that the number of bytes
increases up to a limit, which is linked to the base traffic
and the number of users. The spike around 90 rounds/sec is
due to the size of the PriFi cell becoming smaller than the
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Figure 2: Upstream bandwidth and latency increase

maximum transmission unit in the traces: each message is
being split in two, doubling the number of messages sent,
and adding extra latency. Moreover, for 85 rounds/sec, we
add latency in the order of magnitude of 100ms, for an in-
crease of 3 times the number of messages, and 3 times the
number of bytes sent.

4. CONCLUSION AND FUTURE WORK
We introduced PriFi, an anonymous communication net-

work tailored to LANs. While exploring this new way of us-
ing DC-nets, we showed that performance was good enough
to be used in real-life applications, with a reasonably high
throughput and low latency.

In the future, it would be interesting to study the feasi-
bility of using network coding techniques to reduce latency
further: e.g., can the wireless channel perform the XOR
functionality currently performed by the router? Moreover,
PriFi should be tested on a wireless network; the current
setup is purely wired, with full duplex links, and does not
model the wireless behavior. We also plan to use UDP
broadcast from the relay to the clients instead of n-unicast
TCP, thus leveraging the“free”broadcast given by a wireless
LAN. Finally, it would be interesting to include the verifi-
able component of the DC-net presented in [2] in PriFi, and
measure the impact on the throughput and the latency.
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