000223334 001__ 223334
000223334 005__ 20190317000600.0
000223334 022__ $$a0957-4484
000223334 02470 $$2ISI$$a000383963300013
000223334 0247_ $$a10.1088/0957-4484/27/34/345503$$2doi
000223334 037__ $$aARTICLE
000223334 245__ $$aSurface trap mediated electronic transport in biofunctionalized silicon nanowires
000223334 260__ $$c2016-06-20
000223334 269__ $$a2016-06-20
000223334 300__ $$a12
000223334 336__ $$aJournal Articles
000223334 520__ $$aSilicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.
000223334 536__ $$aH2020$$cERC Cybercare 669354
000223334 536__ $$aFNS$$cSNF 200021-146600
000223334 6531_ $$asilicon nanowire
000223334 6531_ $$asurface state
000223334 6531_ $$aanalytical model
000223334 6531_ $$avoltage gap
000223334 6531_ $$amemristive biosensor
000223334 6531_ $$atumor extract
000223334 6531_ $$abiomarker
000223334 700__ $$g206745$$aPuppo, Francesca$$0246293
000223334 700__ $$aTraversa, Fabio Lorenzo
000223334 700__ $$aDi Ventra, Massimiliano
000223334 700__ $$g167918$$aDe Micheli, Giovanni$$0240269
000223334 700__ $$g182237$$aCarrara, Sandro$$0242413
000223334 773__ $$q345503$$k34$$j27$$tNanotechnology
000223334 8560_ $$fcarole.burget@epfl.ch
000223334 8564_ $$uhttps://infoscience.epfl.ch/record/223334/files/Surfac%20trap.pdf$$zFinal$$s67633
000223334 909C0 $$xU11140$$0252283$$pLSI1
000223334 909CO $$particle$$qGLOBAL_SET$$ooai:infoscience.tind.io:223334$$pSTI$$pIC
000223334 917Z8 $$x112915
000223334 917Z8 $$x112915
000223334 937__ $$aEPFL-ARTICLE-223334
000223334 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000223334 980__ $$aARTICLE