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Abstract

In causal inference confounding may be controlled either through regression adjustment in an out-
come model, or through propensity score adjustment or inverse probability of treatment weighting, or5

both. The latter approaches, which are based on modelling of the treatment assignment mechanism
and their doubly robust extensions have been difficult to motivate using formal Bayesian arguments;
in principle, for likelihood-based inferences, the treatment assignment model can play no part in infer-
ences concerning the expected outcomes if the models are assumed to be correctly specified. On the
other hand, forcing dependency between the outcome and treatment assignment models by allowing10

the former to be misspecified results in loss of the balancing property of the propensity scores and the
loss of any double robustness. In this paper, we explain in the framework of misspecified models why
doubly robust inferences cannot arise from purely likelihood-based arguments, and demonstrate this
through simulations. As an alternative to Bayesian propensity score analysis, we propose a Bayesian
posterior predictive approach for constructing doubly robust estimation procedures. Our approach15

appropriately decouples the outcome and treatment assignment models by incorporating the inverse
treatment assignment probabilities in Bayesian causal inferences as importance sampling weights in
Monte Carlo integration.
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1. INTRODUCTION

In causal inference contexts, confounding is most often controlled by one of two approaches: first, by
conditioning on the confounders in a regression model for the outcome in an outcome regression model;25

secondly, by modelling the treatment assignment mechanism to obtain so-called propensity score values,
and then using these scores to construct strata within the observed sample, or a pseudo-sample from
a hypothetical population, within which treatment assignment is not confounded. This pseudo-sample
can be obtained via inverse probability of treatment weighting of the original sample, analogously to
survey sampling procedures. The outcome regression adjustment method requires correct specification30

of the regression function in order to obtain consistent inference; this may be achieved in practice us-
ing flexible regression strategies and complex functions of typically a large number of covariates. The
propensity score adjustment methods focus principally on the specification of the treatment assignment
model, which may be similarly flexible or complex. Under either approach, sufficient control of con-
founding is therefore dependent on possibly unverifiable modelling assumptions. This has motivated the35

development of doubly robust methods in which both model components are specified, but only one of
them needs to be correctly specified to sufficiently control for confounding.

Adjustments that depend on the propensity score using regression or reweighting are not easy to
interpret from the Bayesian perspective, since Bayesian inferences are naturally based on modelling of
the outcome, with modelling of the treatment assignment playing no role in inference relating to the40

outcome/treatment relationship (Robins and Ritov, 1997). Gustafson (2012) attempted a Bayesian in-
terpretation as a compromise between a saturated outcome model and a parametric one; however, the
treatment assignment model did not feature in this interpretation. Scharfstein et al. (1999) and Bang and
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Robins (2005) pointed out a connection between a doubly robust estimator and a model-based estima-
tor; the two are equivalent if the outcome model in the latter features the so called clever covariate, a45

particular function of the propensity score.
Separately from the above developments, there has been a body of work studying Bayesian versions

of propensity score adjustment to control for confounding (Hoshino, 2008; McCandless et al., 2009a,b,
2010, 2012; An, 2010; Kaplan and Chen, 2012; Zigler et al., 2013; Chen and Kaplan, 2015; Graham et al.,
2015). These approaches require one of two kinds of compromises; they either force a parametrization50

which makes the outcome and treatment assignment models dependent, thus losing the balancing prop-
erty of the propensity score, or cut such a feedback in which case the inference procedures are no longer
Bayesian. Because of these difficulties, some authors (e.g. Achy-Brou et al., 2010, p. 828) have been
content to fix the propensity scores to their best estimates in model-based inferences, without attempting
to jointly estimate the two model components. In an alternative approach, Wang et al. (2012) and Zigler55

and Dominici (2014) have suggested connecting the outcome and treatment assignment models through
the prior distribution in order to incorporate the uncertainty in confounder selection. Herein we do not
consider model uncertainty, but rather, concentrate on inferences with a priori specified outcome and
treatment assignment models.

The purpose of this paper is to clarify the theoretical and practical motivations for Bayesian propen-60

sity score adjustment, and the relationships between the different methods proposed for this, which have
not been fully explored previously. We address these in the context of double adjustment for both the po-
tential confounders and the propensity score, and argue that the problem cannot be properly understood
without considering it in the framework of misspecified models. To provide an alternative to Bayesian
propensity score adjustment, we propose deriving Bayesian versions of various inverse probability of65

treatment weighted estimators, including inverse probability of treatment weighted outcome regression
and the semi-parametric double robust estimator, through posterior predictive expectations, with the
weights introduced as importance sampling weights in Monte Carlo integration.

2. PRELIMINARIES

2. Notation and assumptions70

For simplicity, we consider the case of a single binary treatment, and defer discussion of the longitudinal,
multiple exposure and continuous cases to the Discussion. Let the random vectors Xi represent a set of
pre-treatment covariate measurements, Zi a binary treatment allocation indicator, and Yi an outcome
for individual i, measured after sufficient time has passed since administering the treatment. We adopt,
for convenience, the standard potential outcome (or counterfactual) framework: for individual i, the75

observed outcome is related to the two possible potential outcomes (Y0i,Y1i) by Yi = (1− Zi)Y0i +
ZiY1i. We assume that Xi includes a sufficient set of covariates to control for confounding in the
sense that Zi ⊥⊥ (Y0i,Y1i) |Xi (cf. ignorable treatment assignment, Rosenbaum and Rubin, 1983,
p. 43). The propensity score e(Xi) ≡ pr(Zi = 1 |Xi) has the balancing property Zi ⊥⊥ Xi | e(Xi),
which also implies that (Y0i,Y1i) ⊥⊥ Zi | e(Xi) – this scalar score is therefore useful in controlling for80

confounding.
If the covariate spaceXi is high-dimensional, in practice the task of controlling for confounding often

involves some covariate selection; here one can either select for the features that predict the outcome,
or the treatment assignment. To represent this, let Si and Bi represent some a priori selected subsets of
the all observed features Xi, so that the latter can be partitioned as Xi = (Si, Ri) or Xi = (Bi, Ci),85

where possibly Ri = ∅ and Ci = ∅. If the selected set of features Si captures all relevant prognostic
information, then Y0i ⊥⊥ Xi |Si (Hansen, 2008). For the remainder of the paper, we consider the
stronger condition (i) (Y0i,Y1i) ⊥⊥ Xi |Si, which requires that Si also captures all relevant information
about possible effect modification.

In this case Si is sufficient to control for confounding, since from the properties of conditional inde-90

pendence (Dawid, 1979) it follows that (Y0i,Y1i) ⊥⊥ Zi |Si. If, on the other hand, the selected set of
features Bi has the balancing property (ii) Zi ⊥⊥ Xi |Bi, it is sufficient to control for confounding. We
are interested in estimation procedures which are valid when either (Y0i,Y1i) ⊥⊥ Xi |Si (but possibly
Zi 6⊥⊥Xi |Bi) or Zi ⊥⊥ Xi |Bi (but possibly (Y0i,Y1i)6⊥⊥Xi |Si).

Our parameter of interest is an average causal contrast such as

E(Y1i)− E(Y0i) = EXi{E(Y1i |Xi)} − EXi{E(Y0i |Xi)}.

Interest then lies in the identifiability of the average potential outcomes based on the observed data.
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When the ‘no unmeasured confounder’ assumption holds, it follows that (e.g. Hernán and Robins, 2006,
p. 43)

E(Y1i)− E(Y0i) =

∫
xi

{E(Yi |Zi = 1, xi)− E(Yi |Zi = 0, xi)} p(xi) dxi.

2. Bayesian model formulation for outcome regression95

Any Bayesian model specification is constructed via de Finetti’s representation for exchangeable random
sequences vi ≡ (xi, yi, zi) (see for example Bernardo and Smith, 1994, Chap. 4). The (subjective) joint
distribution for observations v ≡ (v1, . . . , vn) may then be represented by

p(v) =

∫
φ,γ,ψ

{
n∏
i=1

p(yi | zi, xi;φ)p(zi |xi; γ)p(xi;ψ)

}
π0(φ, γ, ψ) dφ dγ dψ, (1)

implying the existence of the parametric models and the prior density π0(φ, γ, ψ). Since the repre-
sentation theorem is not constructive, that is, does not specify the models implicit in (1), in practice
inferences about a given finite-dimensional parametrization involves the often implicit assumption that
p(yi | zi, xi;φ0) = f(yi | zi, xi), p(zi |xi; γ0) = f(zi |xi) and p(xi;ψ0) = f(xi), where (φ0, γ0, ψ0) is
the limiting value of the posterior πn(φ, γ, ψ) ≡ p(φ, γ, ψ | v) in the sense of e.g. van der Vaart (1998, p.100

139), and where the fs represent the ‘true’ limiting (sampling) distributions. We might further assume
that the parameters are a priori independent, so that π0(φ, γ, ψ) = π0(φ)π0(γ)π0(ψ), in which case it
it also follows also that the posterior factorizes as πn(φ, γ, ψ) = πn(φ)πn(γ)πn(ψ) (e.g. Gelman et al.,
2004, p. 354–355).

The marginal distribution p(xi;ψ) can in practice be specified nonparametrically and estimated using
the empirical covariate distribution, leading to a Bayesian estimator of the average causal contrast,∫

φ

1

n

n∑
i=1

{m(1, xi;φ)−m(0, xi;φ)}πn(φ) dφ, (2)

where πn(φ) ∝
∏n
i=1 p(yi | zi, xi;φ)π0(φ) dφ, and m(z, x;φ) ≡

∫
yp(y | z, x;φ) dy. In Supplementary105

Appendix 1, we show that (2) can be motivated without the use of potential outcomes notation through
posterior predictive expectations for a new observation under a hypothetical completely randomized
setting.

The estimator (2) is the Bayesian version of the well-known direct standardization or g-formula. We
return to it in Section 6, but note here that it does not feature the treatment assignment model; rather,110

the posterior predictive approach for estimating the marginal causal contrast depends entirely on correct
specification of the distribution p(yi | zi, xi;φ), or in a moment-based representation, m(z, x;φ). Before
discussing Bayesian alternatives to (2), we briefly review some commonly used frequentist approaches
for combining outcome regression and propensity score adjustment.

3. FREQUENTIST APPROACHES FOR COMBINING OUTCOME REGRESSION AND115

PROPENSITY SCORE ADJUSTMENT

3. Including propensity scores into outcome regression
Because of the balancing property of the propensity score, it is tempting to specify a propensity score
e(bi; γ) ≡ pr(Zi = 1 | bi; γ) and use a statistical model such as p{yi | zi, e(bi), si;φ}, in the hope that, if
the prognostic model is is misspecified, adjusting for the propensity score would still sufficiently control
for any residual confounding. For simplicity, we take the parameters φ to specify also the functional
dependence between the propensity score and the outcome; to model this dependency, it is advisable to
use flexible formulations such as splines (e.g. Zhang and Little, 2009). Using such an outcome model,
the marginal causal contrast would then be estimated by

1

n

n∑
i=1

[
m
{

1, e(bi; γ̂), si; φ̂
}
−m

{
0, e(bi; γ̂), si; φ̂

}]
, (3)

where m{z, e(b; γ), s;φ} ≡
∫
yp{y | z, e(b; γ), s;φ} dy, and where φ̂ and γ̂ are maximum likelihood

estimators for the parameters in the outcome regression and treatment assignment model, respectively.
The motivation for such a double adjustment is that it is sufficient to control for confounding if either120
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condition (i) or (ii) of Section 2.1 applies. We summarize this property in the following theorem (a
proof in Supplementary Appendix 2; in the notation all convergencies are in probability unless otherwise
stated).

THEOREM 31. Estimator (3) is consistent if the outcome model is correctly specified in the sense
that m{z, e(b; γ0), s;φ0} =

∫
yf(y | z, e(b), s) dy, the parameters in this can be consistently estimated125

so that φ̂ → φ0, the treatment assignment model is correctly specified in the sense that p(zi | bi; γ0) =
f(zi | bi) and γ̂ → γ0, and either (i) holds true, or (ii) holds true.

The estimator (3) may be considered ‘doubly robust’ in terms of the covariate selection in the sense
that only one of the sets Si and Bi needs to be correctly specified, although it still always relies on a
correct parametric specification of the model for the expected outcome, conditional on {Zi, e(Bi), Si}.130

3. The clever covariate and augmented outcome regression
The estimator discussed in the previous section did not specify which function of the propensity score
e(Bi) should be added to the regression model. Scharfstein et al. (1999, p. 1141–1142) and Bang
and Robins (2005, p. 964–965) drew a connection between propensity score regression adjustment and
doubly robust estimators of the form

1

n

n∑
i=1

yizi − {zi − e(bi; γ̂)}m(1, si; φ̂)

e(bi; γ̂)

− 1

n

n∑
i=1

yi(1− zi)− [(1− zi)− {1− e(bi; γ̂)}]m(0, si; φ̂)

1− e(bi; γ̂)
,

which can be equivalently represented as

1

n

n∑
i=1

{
zi

e(bi; γ̂)
− 1− zi

1− e(bi; γ̂)

}{
yi −m(zi, si; φ̂)

}
+

1

n

n∑
i=1

{
m(1, si; φ̂)−m(0, si; φ̂)

}
. (4)

On considering the score equation derived from a regression of Yi on Zi and Si with mean function
m(z, s;φ), this form suggests incorporating the derived covariate c(zi, bi) = zi/e(bi) − (1 − zi)/{1 −
e(bi)} (termed the ‘clever covariate’ by Rose and van der Laan, 2008, p. 8) additively into the outcome
regression, that is, for example

m(z, s;φ) = φ0 + φ1z + φ>2 s+ φ3c(z, b). (5)

The first term in (4) is then zero through the maximum likelihood score equation, leaving only the last
term which is the model based estimator of the marginal treatment effect. Thus with the clever covariate
in the outcome model, the doubly robust estimator is equivalent to the model-based estimator. In the
special case of model (5), this becomes

1

n

n∑
i=1

{
m(1, xi; φ̂)−m(0, xi; φ̂)

}
= φ̂1 + φ̂3

1

n

n∑
i=1

{
1

e(bi; γ̂)
− 1

1− e(bi; γ̂)

}
.

A potential drawback of using this covariate is that it may lead to extreme variability for the resulting
mean difference estimator, even compared to inverse probability of treatment weighted estimators of the
form

1

n

n∑
i=1

{
yizi

e(bi; γ̂)
− yi(1− zi)

1− e(bi; γ̂)

}
. (6)

To see why this is the case, the distribution of c(zi, bi) in itself can be very skewed to the right, but this
becomes even more pronounced in the model-based estimator where the clever covariate has to evaluated
at both c(1, bi) and c(0, bi) for each i = 1, . . . , n. In contrast, the inverse probability of treatment
weighted estimator (6) involves only the probabilities of treatments that were actually assigned.135

Eq. (4) is doubly robust in a stronger, semi-parametric, sense than (3); it does not require correct
specification of the outcome model, if the treatment assignment model is correctly specified. The approx-
imate Bayesian double robust approach proposed by Graham et al. (2015) involved replacing m(z, x;φ)
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A Bayesian view of doubly robust causal inference, 5

in (2) with a linear predictor augmented with the clever covariate. We take this to be a special case of
the two-step Bayesian methods to be discussed in Section 4, and thus do not separately consider it in the140

present paper. However, in Section 6.2 we will show how the form (4) may be derived through posterior
predictive expectations and importance sampling.

3. Inverse probability of treatment weighted outcome regression
Yet another estimator for the marginal causal contrast is

1

n

n∑
i=1

{
E(Y1i | si; φ̂)− E(Y0i | si; φ̂)

}
, (7)

where the parameters φ in the model for the potential outcomes (Y1i,Y0i) are estimated using an inverse
probability of treatment weighted estimating function l(φ) =

∑n
i=1 li(φ), where

li(φ) =

1∑
a=0

1{zi=a}
log p(yai | si;φ)

pr(Zi = a | bi)
.

The corresponding estimating equation is u(φ) =
∑n
i=1 ui(φ) = 0, where the pseudo-score function is

ui(φ) =

1∑
a=0

1{zi=a}

∂
∂φ log p(yai | si;φ)

pr(Zi = a | bi)
. (8)

Here the treatment assignment probabilities pr(Zi = a | bi) would in practice be replaced with estimates
pr(Zi = a | bi; γ̂). To motivate the use of (8) for the parameter estimation, we present the following145

theorem (a proof given in Supplementary Appendix 2).

THEOREM 32. The estimating equation u(φ) = 0 is unbiased if the model for the potential outcomes
is correctly specified in the sense that p(yai | si;φ0) = f(yai | si), and either (i) or (ii) holds true.

If we further assume the consistency of the estimator for φ, as well as consistency of γ̂ when the
weights are correctly specified, it also follows that (7) consistently estimates the marginal causal contrast.150

In Section 6.1 we demonstrate that an estimator of the form (7) can also be motivated from Bayesian
arguments.

4. TWO-STEP ESTIMATION WHEN THE PROPENSITY SCORE IS UNKNOWN

In observational settings the function e(Bi) is unknown and has to be estimated. When using an es-
timator of the form (3), a central question from a Bayesian perspective then is how the uncertainty in
the estimation of the parameters γ is incorporated in the inference of the marginal causal contrast. A
‘Bayesian’ approach could be motivated by writing the posterior predictive expectation as∫

ψ,γ,φ

∫
xi

m(a, e(bi; γ), si;φ)p(xi;ψ)πn(φ | γ)πn(γ)πn(ψ) dxi dφ dγ dψ, (9)

where

πn(φ | γ) ∝
n∏
i=1

p{yi | zi, e(bi; γ), si;φ}π0(φ) and πn(γ) ∝
n∏
i=1

p(zi | bi; γ)π0(γ).

The integrals of the form (9) could be evaluated by Monte Carlo integration, by forward sampling
first from πn(γ) and given the current value γ, from the conditional posterior πn(φ | γ). However, a155

concern related to such an approach is that the product of the posterior distributions πn(φ | γ) and πn(γ)
in (9) does not necessarily correspond to any well defined joint posterior, except in the case when the
outcome is correctly specified in the sense (i), in which case it does not depend on the propensity score.
In contrast, for the correctly specified models in (1) we indeed have that p(φ | v)p(φ |x, z) = p(φ, γ | v).
As a result, the above outlined two-step approach is not proper Bayesian, and would have to be evaluated160

on its frequency-based properties.
To give an example of a situation where the two-step Bayesian approach does not result in correct

frequency-based inferences, we can consider the special case of the outcome modelm{z, e(b; γ), s;φ} =

Author’s Original Version preprint, version of October 29th, 2015



6 O. SAARELA, L. R. BELZILE D. A. STEPHENS

φ0 + φ1z + φ>2 s + φ>3 g{e(b; γ)}, where g is, for example, some appropriate spline basis transforma-
tion of the propensity score. With this model the estimator based on (9) for the average causal con-
trast E(Y1i) − E(Y0i) reduces to

∫
φ,γ

φ1πn(φ | γ)πn(γ) dφ dγ, that is, to an estimator of the posterior

mean EΓ |X,Z {E(Φ1 | v; γ)}. This estimator in turn can be approximated with
∑m
j=1 φ̂1(γ(j))/m, where

(γ(1), . . . , γ(m)) is a Monte Carlo sample from πn(γ) (cf. Kaplan and Chen, 2012, p. 589). We note first
that this estimator has the same asymptotic distribution as φ̂1(γ̂), where the treatment assignment model
parameters have been fixed to their maximum likelihood estimates (see Supplementary Appendix 3). In
Supplementary Appendix 3 we further show that avar{φ̂1(γ̂)} ≤ avar{φ̂1(γ0)}, where φ̂1(γ0) is the
estimator given the ‘true’ propensity scores. Thus, with the propensity score adjusted outcome model
specification, a variance adjustment due to estimating the propensity scores should reduce the asymp-
totic variance of the resulting treatment effect estimator compared to a hypothetical situation where the
true propensity scores are known (cf. Henmi and Eguchi, 2004). In contrast, Kaplan and Chen (2012, p.
592) and Graham et al. (2015, p. 11) propose variance estimators based on the variance decomposition
formula

var(Φ1 | v) = EΓ |X,Z {var(Φ1 | v; γ)}+ varΓ |X,Z {E(Φ1 | v; γ)} , (10)

which appears to add a further variance component. An explanation for the discrepancy is that with the
correctly specified models in the representation (1), we have that p(φ1 | v; γ) = p(φ1 | v), and the the
second variance component becomes zero. On the other hand, if the models are misspecified, the product
form likelihood in the representation (1) does not apply in the first place. This illustrates the difficulty165

in applying Bayesian procedures in the context of incompatible models. Even though this is routinely
done in the context of multiple imputation (e.g. Rubin, 1996), and often produces reasonable results, in
the present context there is little motivation to use an approach which introduces an additional variance
component to the posterior variance, given that estimation of the propensity scores should reduce the
variance of the treatment effect estimator. We further discuss this discrepancy in the following section.170

5. JOINT ESTIMATION OF OUTCOME AND TREATMENT ASSIGNMENT MODELS

Even though the outcome Yi can obviously be predictive of the individual treatment assignment Zi,
the outcomes are not informative of the treatment assignment mechanism (a proof in Supplementary
Appendix 2):

THEOREM 53. If the outcome model is correctly specified, the outcomes are non-informative of the175

parameters characterizing the treatment assignment process.

In such a case the treatment assignment model plays no part in the inferences, since the corresponding
posterior predictive estimator is (2). However, the Bayesian propensity score approach proposed by
McCandless et al. (2009a) specifies a parametrization making the outcome and treatment assignment
models dependent and estimates the parameters jointly. More recently, Zigler et al. (2013) suggested
that a similar approach could be used to obtain a Bayesian analogue to doubly robust inferences. Such
an approach can be understood by assuming that there exists a de Finetti parametrization (φ∗, γ∗) for
which

p(v) =

∫
φ∗,γ∗,ψ

{
n∏
i=1

p(yi, zi |xi;φ∗, γ∗)p(xi;ψ)

}
π0(φ∗)π0(γ∗)π0(ψ) dφ∗ dγ∗ dψ,

where p(yi, zi |xi;φ∗, γ∗) = p{yi | zi, e(bi; γ∗), si;φ∗}p(zi | bi; γ∗). Compared to (φ, γ) in (1), neither
φ∗ or γ∗ retains the original interpretation, but now there is a well defined joint posterior distribution

πn(φ∗, γ∗) ∝
n∏
i=1

[p{yi | zi, e(bi; γ∗), si;φ∗}p(zi | bi; γ∗)]π0(φ∗)π0(γ∗).

Inferences could now be based on the posterior predictive expectations∫
φ∗,γ∗,ψ

∫
xi

m{a, e(bi; γ∗), si;φ∗}p(xi;ψ)πn(φ∗, γ∗)πn(ψ) dxi dφ∗ dγ∗ dψ. (11)

At first sight, (11) would seem more natural than (9), since the specification (11) does not make use of
incompatible models. However, now the quantities e(bi; γ∗) do not possess the balancing properties of
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propensity scores, and thus it would be difficult to show whether (11) would have the ‘double robustness’
property of the estimator (3).180

To address the lack of balance, McCandless et al. (2010) suggested a Gibbs sampler type approach
similar to that of Lunn et al. (2009) to cut the feedback from the outcome model, by successively draw-
ing from the conditional posteriors πn(γ) and πn(φ | γ) to approximate the joint posterior of (φ∗, γ∗).
However, as discussed in the previous Section, these posteriors are incompatible and generally such a
sampling procedure is not guaranteed to converge to any well defined joint distribution. In fact, if the185

conditional posteriors can be sampled directly, or if the second sampling step is allowed to converge to
the corresponding conditional distribution, the inferences based on the formulations (9) and (11) will be
equivalent.

To sum up, trying to recover fully probabilistic inferences through sampling from a joint posterior of
the outcome and treatment assignment model parameters loses the balancing property of the propensity190

scores, and consequently, the properties of the resulting estimator would be difficult to establish. On the
other hand, cutting the feedback in an attempt to recover the balancing property would mean that the
inferences are no longer based on well-defined posterior distributions. Thus, in the following section,
following the approach outlined in Saarela et al. (2015b), we formulate alternative Bayesian estimators
that are not based on Bayesian propensity score adjustment.195

6. POSTERIOR PREDICTIVE INFERENCES WITH IMPORTANCE SAMPLING

6. Inverse probability of treatment weighted outcome regression
It has been recognized by various authors (e.g. Røysland, 2011; Chakraborty and Moodie, 2013) that
inverse probability of treatment weighting can be motivated through a change of probability measures,
or equivalently, importance sampling. However, as far as we know, before Saarela et al. (2015b) this200

approach has not been used to formulate Bayesian causal inferences. Here we argue that this approach
can be used to resolve the paradoxes discussed in Sections (4) and (5). We follow the posterior predictive
reasoning of Supplementary Appendix 1, but rather than trying to directly predict a new observation
under the experimental setting E , we consider first the task of parameter estimation under this regime. For
this purpose, a Bayes estimator for the outcome model parameters can be constructed by maximizing the205

expected utility EE{l(φ;Vi) | v}with respect to φ, where the log-likelihood l(φ; vi) ≡ log p(yi | zi, si;φ)
takes the role of a parametric utility function, and the expectation is over a predicted new observation
vi = (yi, zi, xi), i /∈ {1, . . . , n}.

Let further ξ be a set of parameters characterizing the entire data-generating mechanism under the
observational regime O. We can further write the expectation as

EE{l(φ;Vi) | v} = EΞ |V [EE{l(φ;Vi) | v; ξ}] ,

where, following Walker (2010, p. 26–27), we can consider the lower dimensional decision of maxi-
mizing the expected utility EE{l(φ;Vi) | v; ξ} with respect to φ conditional on ξ. With a known regime
E and the stability assumption discussed in Supplementary Appendix 1, arg maxφ EE{l(φ;Vi) | v; ξ} is
a deterministic function of ξ. Thus, the uncertainty represented by the posterior distribution pO(ξ | v)
then also reflects the uncertainty on φ, providing means to construct a posterior distribution for φ. This
proceeds as follows; the inner expectation can be written as

EE [l(φ;Vi) | v; ξ] =

∫
vi

l(φ; vi)pE(vi | v; ξ) dvi

=

∫
vi

l(φ; vi)
pE(vi | v; ξ)

pO(vi | v; ξ)
pO(vi | v; ξ) dvi

=

∫
vi

l(φ; vi)
pE(yi | zi, xi, v; ξ)pE(zi)pE(xi | v; ξ)

pO(yi | zi, xi, v; ξ)pO(zi |xi, v; ξ)pO(xi | v; ξ)
pO(vi | v; ξ) dvi

=

∫
vi

l(φ; vi)
pE(zi)

pO(zi |xi, v; ξ)
pO(vi | v; ξ) dvi,

where in the last equality we made use of the stability assumption of Supplementary Appendix 1. In the
last form we can replace the predictive distribution under O with the Bayesian bootstrap specification
pO(vi | v; ξ) =

∑n
k=1 ξkδvk(vi), where ξ ≡ (ξ1, . . . , ξn) and Ξ | v ∼ Dirichlet(1, . . . , 1), as in the

weighted likelihood bootstrap of Newton and Raftery, 1994. Denoting wi(ξ) ≡ pE(zi)/pO(zi |xi, v; ξ),
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the expected utility now becomes

EE [l(φ;Vi) | v; ξ] =

∫
vi

l(φ; vi)wi(ξ)

n∑
k=1

ξkδvk(vi) dvi =

n∑
k=1

wk(ξ)ξkl(φ; vk), (12)

that is, a weighted log-likelihood, motivating the estimator

φ̂(ξ) ≡ arg max
φ

n∑
k=1

wk(ξ)ξkl(φ; vk).

An approximate posterior distribution for φ under E can now be constructed by repeatedly sampling
the weight vectors from Ξ | v ∼ Dirichlet(1, . . . , 1), and recalculating φ̂(ξ) at each realization. This210

approach of creating a mapping between the non-parametric specification and a parametrization relevant
to inferences is analogous to Chamberlain and Imbens (2003), but adds the importance sampling weights
to the Dirichlet weights in order to make inferences across the observational and experimental regimes.

The weights wi(ξ) function as importance sampling weights in Monte Carlo integration; they add
variability to the estimation, but in the present context provide some protection towards misspecification215

of the outcome model, in the sense of Section 3.3. The above did not yet address how to calculate these
weights; in principle these are fully determined by the current realization of ξ under the non-parametric
specification, but in practice parametric model specifications are needed for smoothing purposes, and
we need a way to link the ξ and the treatment assignment model parameters γ. For this purpose γ itself
can be estimated through the weighted likelihood bootstrap since this readily gives the deterministic220

function linking the two parametrizations; thus in (12) we choose wi(ξ) = pE(zi)/pO{zi | bi; γ̂(ξ)},
where γ̂(ξ) ≡ arg maxγ

∑n
k=1 ξk log p(zk | bk; γ). The probabilities pE(zi) are given by the chosen

regime E that is the object of inference; in practice the estimation is most efficient when we choose the
target regime to be as close as possible to the observed regime O; this can be achieved by fixing pE(zi)
to the marginal treatment assignment probabilities under O, which would result in the usual kind of225

stabilized inverse probability of treatment weights used in marginal structural modelling (Robins et al.,
2000; Hernán et al., 2001; Cole and Hernán, 2008).

The marginal causal contrast may now be estimated through the expectations

EΞ |V {EE(Yi |Zi = a, v; ξ)} =

∫
ξ

∫
si

m{a, si; φ̂(ξ)}
n∑
k=1

ξkδsk(si)pO(ξ | v) dsi dξ

=

∫
ξ

n∑
k=1

ξkm{a, sk; φ̂(ξ)}pO(ξ | v) dξ, (13)

where we used the non-parametric specification p(si | v; ξ) =
∑n
k=1 ξkδsk(si), and where again pO(ξ | v)

is replaced with the uniform Dirichlet distribution. Since all uncertainty is contained in the parameter
vector ξ, a posterior distribution for the predictive mean or mean difference can be constructed as before230

through resampling. The point estimator given by (13) is the direct Bayesian analogue of (7), where the
outcome model was estimated using inverse probability of treatment weighted regression. In fact, if we
fix ξk = 1/n, k = 1, . . . , n, instead of considering these as unknown parameters, the two estimators
are equivalent. Thus, we conjecture that the estimator given by (13) has a similar ‘double robustness’
property as (7). We demonstrate this through simulations in Section 7, but before that, we show how the235

semi-parametric doubly robust estimator (4) can be motivated as a posterior predictive expectation.

6. Doubly robust estimation
In Supplementary Appendix 4 we show that under the non-parametric specification in terms of ξ, the
posterior predictive causal contrast may be written as

EE(Yi |Zi = 1, v; ξ)− EE(Yi |Zi = 0, v; ξ)

=

n∑
k=1

ξk{yi −m(zk, xk; ξ)}
{

zk
prO(Zk = 1 |xk, v; ξ)

− 1− zk
prO(Zk = 0 |xk, v; ξ)

}

+

n∑
k=1

ξk {m(1, xk; ξ)−m(0, xk; ξ)} , (14)
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A Bayesian view of doubly robust causal inference, 9

which corresponds to formulation (4). Since the non-parametric specification places no restrictions on
the conditional distributions, in practice, to obtain an estimator, the non-parametrically specified quan-
tities m(zk, xk; ξ) and prO(Zk = a |xk, v; ξ) would have to be replaced with the parametric versions240

m{zk, sk; φ̂(ξ)} and prO{Zk = a | bk; γ̂(ξ)}, estimated using the weighted likelihood bootstrap, as in
the previous section. It is straightforward to see that if the outcome model is correctly specified, the
expression (14) reduces to the model-based estimator (the second additive term). This again reflects the
fact that if we believe in our outcome model, the treatment assignment model does not play a part in the
inferences. However, a Bayesian might want to use an estimator of the form (14) if being restricted by245

two parametric constraints, in terms of φ and γ, but not knowing which one of these is correct. If either
one of the parametric specifications is correct, (14) will still reduce to the posterior predictive mean dif-
ference, the natural Bayesian estimator. We summarize this property in the following theorem (a proof
in Supplementary Appendix 2).

THEOREM 64. The estimator obtained by substituting the parametric specificationsm{zk, sk; φ̂(ξ)}250

and prO{Zk = a | bk; γ̂(ξ)} into expression (14) is equivalent to the posterior predictive mean difference
if either one of these models is correctly specified.

A posterior distribution for the mean difference can be generated as in the previous section through
resampling of the parameter vectors ξ and recalculating (14) at each realization; we will illustrate this in
the following section.255

7. SIMULATION STUDY

Above we have made a distinction between model misspecification due to omission of relevant co-
variates, and misspecification of the parametric functional relationship between the outcome and the
covariates, and noted that all the estimators discussed in Section 3 should be ‘doubly robust’ against
the former type of misspecification. However, in practice the consequences of these two types of mis-260

specification will often be similar; they result in residual confounding. Therefore, herein we investi-
gate how the different estimators perform when the covariate sets Si and Bi are not only created by
a partitioning, but also a transformation of the xi’s. For this purpose, we simulated Xij ∼ N(0, 1),
j = 1, . . . , 4, and transformed these as cij = |xij |/(1− 2/π)1/2. The true treatment assignment
and outcome mechanisms were specified as Zi |xi ∼ Bernoulli(expit{0.4ci1 + 0.4xi2 + 0.8xi3}) and265

Yi | zi, xi ∼ N(zi − ci1 − xi2 − xi4, 1), respectively. For estimation, we considered two scenarios:
(I) si ≡ (xi1, xi2, xi3) and bi ≡ (ci1, xi2, xi4) (misspecified outcome model and correctly specified
treatment assignment model), and (II) si ≡ (ci1, xi2, xi3) and bi ≡ (xi1, xi2, xi4) (correctly specified
outcome model and misspecified treatment assignment model).

We are interested in the marginal causal contrast E(Yi1)−E(Yi0) = 1. To estimate this, we applied270

the Bayesian estimators discussed in Sections 4, 5, and 6. In the two-step estimation we attempted
both forward sampling from the posterior distributions, and the variance decomposition formula (10). In
the former, instead of Markov chain Monte Carlo, we applied normal approximations for the posterior
distributions, of the form Φ | v; γ ∼ N{φ̂(γ), S}, where φ̂(γ) is the maximum likelihood estimate and S
its estimated variance-covariance matrix. The posterior distribution Γ |x, z was approximated using the275

weighted likelihood bootstrap. In the joint estimation, we again used a normal approximation, centered at
the joint maximum likelihood estimates (φ̂, γ̂), and the variance-covariance matrix given by the inverse
of the observed information at the maximum likelihood point. In both two-step and joint estimation, the
fitted models were specified as m{zi, e(bi; γ), si;φ} = φ0 + φ1zi + φ>2 si + φ>3 g{e(bi; γ)}, where g is
a cubic polynomial basis, and e(bi; γ) = expit(γ0 + γ>1 bi). In the importance sampling (IS) estimator280

proposed in Section 6.1, and in the importance sampling/doubly robust estimator (IS/DR) of Section
6.2, the fitted treatment assignment model was the same, with the outcome model specified through
m(zi, si;φ) = φ0 + φ1zi + φ>2 si.

For comparison to the Bayesian estimators, we also calculate naive unadjusted comparison (naive),
outcome regression adjusted for covariates si (adjusted), the standard inverse probability of treatment285

weighted estimator (6) (IPTW), the semi-parametric doubly robust estimator (4) (DR), the clever co-
variate version of this (CC), the inverse probability of treatment weighted outcome regression based
estimator (7) (OR/IPTW), as well as propensity score adjusted outcome regression based estimator (3)
(OR/PS). For IPTW, DR, CC, and OR/IPTW, the standard errors were estimated through the standard
frequentist nonparametric bootstrap (Efron, 1979). For OR/PS, to demonstrate the variance estimation290
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issues discussed in Section 4, we calculated both observed information based standard errors, and the
adjusted sandwich type standard errors discussed in Supplementary Appendix 3.

The results over 1000 replications are shown in Table 1. Under scenario (I), all estimators except
naive and adjusted can correct for confounding, although the joint estimation approach produces a slight
bias. In terms of efficiency, the estimators based on propensity score adjusted outcome regression are the295

best, with the inverse probability of treatment weighting based estimators losing slightly. As discussed
in Section 3.2, the clever covariate approach results in higher variability compared to the other doubly
adjusted estimators. In terms of variance estimation, the comparison between the unadjusted and adjusted
standard errors for OR/PS suggests that under this simulation setting estimation of the propensity scores
substantially reduces the variance, and not adjusting for this results in overcoverage. The resampling300

based variance estimators adjust for this automatically. However, the two-step approach to variance
estimation performs poorly; as demonstrated in Supplementary Appendix 3, the two-step point estimator
has the same asymptotic variance as the other OR/PS estimators, but the two-step variance estimators
unnecessarily add a further variance component. Thus, the simulation results support the discussion in
Sections 4 and 5; the two-step and joint estimation approaches are difficult to justify from Bayesian305

arguments, and do not seem to provide practical advantages in terms of their frequency-based properties.
On the other hand, the importance sampling based Bayesian estimators produce very similar results to
the OR/IPTW and DR estimators, respectively.

Under scenario (II), all the estimators except IPTW are unbiased, which is expected based on their
previously discussed theoretical properties. When the outcome model is correctly specified, there is also310

very little difference in the efficiency of the various estimators.

Table 1: Estimates for the marginal causal contrast (true value = 1) over 1000 simulation rounds

Scenario Estimator
Point Relative

SD SE
MC Coverage

estimate bias (%) error (%)
(I) Naive 0.347 −65.3 0.128 0.128 0.004 0.3

Adjusted 0.667 −33.3 0.091 0.092 0.003 3.6
IPTW 1.001 0.1 0.135 0.138 0.005 94.4
OR/PS (obs. information) 0.997 −0.3 0.071 0.095 0.002 99.3
OR/PS (adj. sandwich) 0.997 −0.3 0.071 0.073 0.002 95.3
DR 0.998 −0.2 0.087 0.088 0.003 94.2
Clever covariate 1.026 2.6 0.110 0.110 0.003 93.0
OR/IPTW 0.990 −1.0 0.082 0.083 0.003 93.9
Two-step (forward sampling) 0.999 −0.1 0.071 0.113 0.002 99.8
Two-step (variance decomposition) 0.995 −0.5 0.071 0.112 0.002 99.8
Joint estimation 1.046 4.6 0.071 0.071 0.002 89.5
Importance sampling 0.991 −0.9 0.083 0.080 0.003 93.6
Importance sampling/DR 0.997 −0.3 0.087 0.086 0.003 93.9

(II) Naive 0.347 −65.3 0.128 0.128 0.004 0.3
Adjusted 0.997 −0.3 0.065 0.067 0.002 95.3
IPTW 0.629 −37.1 0.133 0.131 0.005 20.3
OR/PS (obs. information) 0.997 −0.3 0.071 0.071 0.002 95.4
OR/PS (adj. sandwich) 0.997 −0.3 0.071 0.071 0.002 95.4
DR 0.999 −0.1 0.074 0.074 0.003 95.9
Clever covariate 0.999 −0.1 0.075 0.075 0.003 95.9
OR/IPTW 0.999 −0.1 0.074 0.073 0.003 95.7
Two-step (forward sampling) 1.000 0.0 0.071 0.072 0.002 96.5
Two-step (variance decomposition) 0.997 −0.3 0.071 0.071 0.002 95.5
Joint estimation 0.997 −0.3 0.071 0.071 0.002 95.4
Importance sampling 0.999 −0.1 0.074 0.072 0.003 95.2
Importance sampling/DR 0.999 −0.1 0.074 0.073 0.003 95.5

The columns correspond to estimator, mean point estimate, relative bias, Monte Carlo standard deviation (SD), mean
standard error estimate (SE), Monte Carlo (MC) error (batch means) of the mean point estimate, and 95% confidence
interval coverage probability. The two scenarios correspond to (I) misspecified outcome model and correctly speci-
fied treatment assignment model, and (II) correctly specified outcome model and misspecified treatment assignment
model.
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8. DISCUSSION

In this paper we reviewed previously proposed Bayesian approaches for propensity score adjusted in-
ferences, focusing on the assumptions concerning correct model specifications. Here it is important to
make a distinction between misspecification due to omission of relevant covariates from the outcome315

model, and misspecification of the functional form of the dependency between the covariates and the
outcome. The frequentist propensity score adjusted outcome regression is robust against the former type
of model misspecification, but this property is lost in Bayesian estimation, if the misspecified outcome
model is allowed to feed back to the estimation of the propensity scores. While feedback issue has been
well documented in the literature (e.g. McCandless et al., 2009b; Zigler et al., 2013), and the reasons320

behind this were already stated by Robins and Ritov (1997), here we attempted to make the assumptions
underlying the Bayesian propensity score approach more explicit. On the other hand, we point out that
cutting this feedback in a two-step Bayesian estimation procedure unnecessarily inflates the posterior
variance estimates.

As reaching double robustness through Bayesian propensity score adjustment looks difficult, herein325

we attempted a completely different approach through posterior predictive inferences. Our proposed
approach decouples the outcome regression and treatment assignment model through introducing the
inverse probability of treatment weights as importance sampling weights in Monte Carlo integration in
evaluating posterior predictive expectations. A similar procedure was used in a marginal structural mod-
elling context by Saarela et al. (2015b), improved to its present form in Saarela et al. (2015c). While330

they used the importance sampling approach for estimating marginal outcome models in a longitudinal
setting, herein we showed that in a point treatment setting the combination of importance sampling and
posterior predictive inferences can be used to motivate weighted outcome regression or semi-parametric
doubly robust inferences. Such a possibility was mentioned, but not formally justified, by Saarela et al.
(2015a) who applied the importance sampling procedure in the context of estimating optimal treatment335

regimes. The disadvantage of the importance sampling approach is the same as in the corresponding
frequentist inverse probability of treatment weighted inference procedures: the importance sampling
weights add variability to the point estimator. In order to control this, a standard approach would be to
truncate the weights (e.g. Xiao et al., 2013), which would also be possible in the importance sampling
context (Ionides, 2008). Recently, Vehtari & Gelman (2015, arXiv:1507.02646v2) suggested prob-340

abilistic truncation of importance sampling weights; studying this possibility in the present context is a
topic for further research.
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Supplementary material available includes Supplementary Appendices 1-4 referred to herein, containing
proofs to theorems and other technical material.

APPENDIX 1

Causal inference as a prediction problem350

The estimator (2) can be motivated without the use of potential outcomes notation as a posterior pre-
dictive expectation for a new observation under a hypothetical completely randomized setting E where
Zi⊥⊥EXi and the probabilities prE(Zi = a) are known constants (cf. the randomized trial measure
discussed by Røysland, 2011). The data are observed under a setting O, where Zi 6⊥⊥OXi, and causal
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inference then corresponds to inference across these regimes. We can now write for i /∈ {1, . . . , n}

EE(Yi |Zi = a, v)

=

∫
φ,ψ

∫
xi

∫
yi
yip(yi |Zi = a, xi;φ)prE(Zi = a)p(xi;ψ)πn(φ)πn(ψ) dyi dxi dφ dψ∫

φ,ψ

∫
xi

∫
yi
p(yi |Zi = a, xi;φ)prE(Zi = a)p(xi;ψ)πn(φ)πn(ψ) dyi dxi dφ dψ

=

∫
φ,ψ

∫
xi

m(a, xk;φ)p(xi;ψ)πn(φ)πn(ψ) dxi dφ dψ (15)

=

∫
φ

1

n

n∑
k=1

m(a, xk;φ)πn(φ) dφ, (16)

where the last form was obtained by choosing the non-parametric specification
∫
ψ
p(xi;ψ)πn(ψ) dψ =

p(xi |x1, . . . , xn) =
∑n
k=1 δxk

(xi)/n. Alternatively, in (15) one could use the Bayesian bootstrap
(Rubin, 1981) specification p(xi |x1, . . . , xn; ξ) =

∑n
k=1 ξkδxk

(xi), where ξ = (ξ1, . . . , ξn), with
πn(ξ) taken to be a uniform Dirichlet distribution (see Section 6). Obtaining (16) also required assuming
that pE(yi | zi, xi;φ) = pO(yi | zi, xi;φ) ≡ p(yi | zi, xi;φ) and and pE(xi;ψ) = pO(xi;ψ) ≡ p(xi;ψ),355

which corresponds to the stability assumption discussed by Dawid and Didelez (2010).

APPENDIX 2

Proofs to theorems
Proof (to Theorem 1). If (i) holds true, then also (Y0i,Y1i) ⊥⊥ e(Bi) |Si, and the propensity score

adjustment does not add information. If on the other hand (ii) holds true, {e(Bi), Si} has jointly the bal-
ancing property Zi ⊥⊥ Xi | {e(Bi), Si}. This follows from Theorem 2 of Rosenbaum and Rubin (1983,
p. 44) and also implies that (Y0i,Y1i) ⊥⊥ Zi | {e(Bi), Si} (Rosenbaum and Rubin, 1983, Theorem 3).
Now

E{Yi |Zi, e(Bi), Si} = E{(1− Zi)Y0i |Zi, e(Bi), Si}+ E{ZiY1i |Zi, e(Bi), Si}
= (1− Zi)E{Y0i |Zi, e(Bi), Si}+ ZiE{Y1i |Zi, e(Bi), Si}
= (1− Zi)E{Y0i | e(Bi), Si}+ ZiE{Y1i | e(Bi), Si},

and further, ∫
xi

E{Yi |Zi = 1, e(bi), si}p(xi) dxi −
∫
xi

E{Yi |Zi = 0, e(bi), si}p(xi) dxi (17)

=

∫
xi

E{Y1i | e(bi), si}p(xi) dxi −
∫
xi

E{Y0i | e(bi), si}p(xi) dxi

= E(Y1i)− E(Y0i).

The consistency of the estimator (3) then relies on being able to consistently estimate the quantities in
(17). �360

Proof (to Theorem 2). Consider first the expectation of (8) under the assumption that (i) holds true.
Now

E

{
1{zi=a}

∂
∂φ log p(yai | si, φ)

pr(Zi = a | bi)

}

=

∫
xi

∫
yai

∑
zi

1{zi=a}

∂
∂φ log p(yai | si, φ)

pr(Zi = a | bi)
f(yai | zi, xi)f(zi |xi)f(xi) dyai dxi

=

∫
xi

{∫
yai

∂
∂φp(yai | si;φ)

p(yai | si;φ)
f(yai |xi) dyai

}
pr(Zi = a |xi)
pr(Zi = a | bi)

f(xi) dxi

=

∫
xi

{
∂

∂φ

∫
yai

p(yai | si;φ) dyai

}
pr(Zi = a |xi)
pr(Zi = a | bi)

f(xi) dxi = 0,
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which followed because now p(yai | si;φ) = f(yai |xi) at the true parameter value. Thus, the misspec-
ified weights do not influence the estimation (in terms of bias) as long as the outcome model is correctly
specified.

Under the assumption that (ii) holds true, we have in turn that

E

{
1{zi=a}

∂
∂φ log p(yai | si;φ)

pr(Zi = a | bi)

}

=

∫
xi

∫
yai

∑
zi

1{zi=a}

∂
∂φ log p(yai | si;φ)

pr(Zi = a | bi)
f(yai | zi, xi)f(zi |xi)f(xi) dyai dxi

=

∫
xi

∫
yai

∂

∂φ
log p(yai | si;φ)f(yai |xi)f(xi) dyai dxi,

since now p(zi | bi) = f(zi |xi). Using the partitioning xi = (si, ri), we can write the last form in above
as ∫

xi

∫
yai

∂

∂φ
log p(yai | si;φ)f(yai |xi)f(xi) dyai dxi

=

∫
si

∫
ri

∫
yai

∂

∂φ
log p(yai | si;φ)f(yai, si, ri) dyai dsi dri

=

∫
si

∫
yai

∂
∂φp(yai | si;φ)

p(yai | si;φ)
f(yai | si)f(si) dyai dsi

=

∫
si

{
∂

∂φ

∫
yai

p(yai | si;φ) dyai

}
f(si) dsi = 0.

Thus, even though the outcome regression does not include a sufficient set of confounders, through the
IPT weighting we can still obtain valid estimates for the conditional distributions p(yai | si;φ). �365

Proof (to theorem 3). Now the marginal posterior distribution of the parameters γ becomes

p(γ | v) =

∫
φ,ψ

p(φ, γ, ψ | v) dφ dψ

∝
∫
φ,ψ

{
n∏
i=1

p(yi | zi, xi;φ)p(zi |xi; γ)p(xi;ψ)

}
π0(φ)π0(ψ)π0(γ) dφ dψ dγ

∝
n∏
i=1

p(zi |xi; γ)π0(γ)

∝ p(γ |x, z). �

Proof (to Theorem 4). The estimator obtained through substituting in the parametric models is

n∑
k=1

ξk

[
yi −m{zk, sk; φ̂(ξ)}

] [ zk
prO{Zk = 1 | bk; γ̂(ξ)}

− 1− zk
prO{Zk = 0 | bk; γ̂(ξ)}

]

+

n∑
k=1

ξk

[
m{1, sk; φ̂(ξ)} −m{0, sk; φ̂(ξ)}

]
. (18)

First, if the outcome model is correctly specified in the sense that m{zk, sk; φ̂(ξ)} = m(zk, xk; ξ), we
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get

prE(Zk = a)

n∑
k=1

ξk
1{zk=a}m{zk, sk; φ̂(ξ)}
prO{Zk = a | bk; γ̂(ξ)}

=

n∑
k=1

ξk1{zk=a}m{zk, sk; φ̂(ξ)} pE(zk)

pO{zk | bk; γ̂(ξ)}

=

∫
zi,xi

1{zi=a}m{zi, si; φ̂(ξ)} pE(zi)

pO{zi | bi; γ̂(ξ)}

n∑
k=1

ξkδ(zk,xk)(zi, xi) dzi dxi

=

∫
yi,zi,xi

1{zi=a}yi
pE(zi)

pO{zi | bi; γ̂(ξ)}
pO(yi | zi, xi, v; ξ)pO(zi, xi | v; ξ) dyi dzi dxi

=

∫
vi

1{zi=a}yi
pE(zi)

pO{zi | bi; γ̂(ξ)}
pO(vi | v; ξ) dvi

= prE(Zk = a)

n∑
k=1

ξk
1{zk=a}yk

prO{Zk = a | bk; γ̂(ξ)}
,

because the second to last form is equivalent to (19) in Supplementary Appendix 4. Thus, the first sum-
mation term in (18) cancels out, leaving only the model based estimator, which itself is now equivalent
to the posterior predictive mean difference.

On the other hand, if the treatment assignment model is correctly specified in the sense that
prO{Zk = a | bk; γ̂(ξ)} = prO(Zk = a |xk, v; ξ), we get

prE(Zk = a)

n∑
k=1

ξk
1{zk=a}m{zk, sk; φ̂(ξ)}
prO{Zk = a | bk; γ̂(ξ)}

=

n∑
k=1

ξk1{zk=a}m{zk, sk; φ̂(ξ)} pE(zk)

pO{zk | bk; γ̂(ξ)}

=

∫
zi,xi

1{zi=a}m{zi, si; φ̂(ξ)} pE(zi)

pO{zi | bi; γ̂(ξ)}

n∑
k=1

ξkδ(zk,xk)(zi, xi) dzi dxi

=

∫
zi,xi

1{zi=a}m{zi, si; φ̂(ξ)} pE(zi)

pO{zi | bi; γ̂(ξ)}
pO(zi |xi, v; ξ)pO(xi | v; ξ) dzi dxi

=

∫
zi,xi

1{zi=a}m{zi, si; φ̂(ξ)}pE(zi)pO(xi | v; ξ) dzi dxi

= prE(Zi = a)

∫
xi

m{a, si; φ̂(ξ)}
n∑
k=1

ξkδ(xk)(xi) dxi

= prE(Zk = a)

n∑
k=1

ξkm{a, sk; φ̂(ξ)}.

Therefore, the estimator (18) now reduces to

n∑
k=1

ξkyi

[
zk

prO{Zk = 1 | bk; γ̂(ξ)}
− 1− zk

prO{Zk = 0 | bk; γ̂(ξ)}

]
,

which is again equivalent to the posterior predictive mean difference (see Supplementary Appendix 4).�

APPENDIX 3370

On the frequency-based properties of the two-step approach
Trivially, if the outcome model is correctly specified, then Φ ⊥⊥ Γ |V and (9) reduces to (16). The
interesting situations are naturally those where this is not the case. We denote the log-likelihood by
qi(φ; γ) = log p{yi | zi, e(bi; γ), si;φ)} and q(φ; γ) ≡

∑n
i=1 qi(φ; γ) and consider the quasi-maximum

likelihood estimator φ̂(γ̂) ≡ arg maxφ q(φ; γ̂). If the treatment assignment model is correctly specified,
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A Bayesian view of doubly robust causal inference, 15

γ̂ → γ0. In addition, we assume that with any fixed value of γ, φ̂(γ) → φ0(γ), where φ0(γ) is the
parameter vector which minimizes the Kullback-Leibler divergence to the true outcome model (e.g.
White, 1982, p. 4). Thus, by the law of large numbers and continuous mapping, we can write in the
usual way that

1

n

n∑
i=1

[qi(φ; γ̂)− qi{φ0(γ0); γ0}]→ E [qi(φ; γ0)− qi{φ0(γ0); γ0}] ,

where the right hand side is maximized at zero when φ = φ0(γ0), at which point

E{Yi |Zi = a, e(bi; γ0), si;φ0(γ0)} = E{Yia | e(bi; γ0), si;φ0(γ0)}.

Since we also have that the posterior p(γ |x, y) → δγ0(γ) in distribution, we can then conjecture that
posterior predictive inferences based on (9) will be asymptotically uncounfounded.

With the definitions

Uφ(φ; γ) ≡ ∂q(φ; γ)/∂φ,

Uφφ(φ; γ) ≡ ∂2q(φ; γ)/∂φ2,

Uφγ(φ; γ) ≡ ∂2q(φ; γ)/∂φ∂γ,

Uγ(γ) ≡ ∂
∑n
i=1 log p(zi | bi; γ)/∂γ,

Uγγ(γ) ≡ ∂2∑n
i=1 log p(zi | bi; γ)/∂γ2,

and noting that Uφ(φ̂; γ(j)) = 0 for each γ(j), j = 1, . . . ,m, we can consider the first order Taylor
expansion of Uφ(φ̂; γ(j)) around the true parameter values (φ0, γ0), which becomes

0 =
1

n
Uφ(φ̂; γ(j))

≈ 1

n
Uφ(φ0; γ0) +

1

n
Uφφ(φ0; γ0){φ̂(γ(j))− φ0}+

1

n
Uφγ(φ0; γ0)(γ(j) − γ0)

≈ 1

n
Uφ(φ0; γ0) + E{Uφφi (φ0; γ0)}{φ̂(γ(j))− φ0}+ E{Uφγi (φ0; γ0)}(γ(j) − γ0),

and further,

0 =
1

m

m∑
j=1

1

n
Uφ(φ̂; γ(j))

≈ 1

n
Uφ(φ0; γ0) + E{Uφφi (φ0; γ0)}

{
1

m

m∑
j=1

φ̂(γ(j))− φ0

}
+ E{Uφγi (φ0; γ0)} (γ̂ − γ0) ,

if 1
m

∑m
j=1 γ

(j) ≈ γ̂. Hence,

√
n

{
1

m

m∑
j=1

φ̂(γ(j))− φ0

}
≈ E{−Uφφi (φ0; γ0)}−1

×
[√

n

n
Uφ(φ0; γ0) + E{Uφγi (φ0; γ0)}

√
n(γ̂ − γ0)

]
.

Here we have, by another first order expansion around γ0, that

√
n(γ̂ − γ0) ≈ E{−Uγγi (γ0)}−1

√
n

n
Uγ(γ0),

so finally,

√
n

{
1

m

m∑
j=1

φ̂(γ(j))− φ0

}
≈ E{−Uφφi (φ0; γ0)}−1

×

(√
n

n

n∑
i=1

[
Uφi (φ0; γ0) + E{Uφγi (φ0; γ0)}E{−Uγγi (γ0)}−1Uγi (γ0)

])
.
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16 O. SAARELA, L. R. BELZILE D. A. STEPHENS

We may similarly expand Uφ(φ̂; γ̂) where the parameters γ have been fixed to their maximum likelihood
estimates around (φ0, γ0) as

0 =
1

n
Uφ(φ̂; γ̂)

≈ 1

n
Uφ(φ0; γ0) + E{Uφφi (φ0; γ0)}(φ̂(γ̂)− φ0) + E{Uφγi (φ0; γ0)}(γ̂ − γ0)

to find that

√
n
{
φ̂(γ̂)− φ0

}
≈ E{−Uφφi (φ0; γ0)}−1

√
n

n

n∑
i=1

Bi(φ0; γ0),

where
Bi(φ0; γ0) ≡ Uφi (φ0; γ0) + E{Uφγi (φ0; γ0)}E{−Uγγi (γ0)}−1Uγi (γ0).

Since the two estimators 1
m

∑m
j=1 φ̂(γ(j)) and φ̂(γ̂) have the same linear approximation which is a sum

of independent terms, we conclude that they have the same asymptotic distribution,

√
n(φ̂− φ0)→ N

[
0,E{−Uφφi (φ0; γ0)}−1var{Bi(φ0; γ0)}E{−Uφφ(φ0; γ0)>}−1

]
.

Fitting the regression model yi = φ0 +φ1zi+φ>2 si+φ>3 g{e(bi; γ)}+ ε1i to estimate the parameter
of interest φ1 is numerically equivalent to fitting the sequence of regressions yi = ν>s∗i (γ̂) + ε2i,
zi = α>s∗i (γ̂) + ε3i and {yi − ν̂>s∗i (γ̂)} = φ1{zi − α̂>s∗i (γ̂)}+ ε4i, where s∗i (γ) ≡ [si, g{e(bi; γ)}].
Denoting the estimating function corresponding to the last regression as

Uφ1{φ1, γ̂, ν̂(γ̂), α̂(γ̂)} ≡
n∑
i=1

{zi − α̂>s∗i (γ̂)}
[
{yi − ν̂>s∗i (γ̂)} − φ1{zi − α̂>s∗i (γ̂)}

]
,

and the partial derivatives of this as e.g. Uφ1γ ≡ ∂Uφ1/∂γ, we can expand this around (φ10, γ0, ν0, α0),
where ν0 ≡ ν0(γ0) and α0 ≡ α0(γ0) are the limiting values of the nuisance parameters, as

1

n
Uφ1{φ1, γ̂, ν̂(γ̂), α̂(γ̂)} ≈ 1

n
Uφ1(φ10, γ0, ν0, α0) + E{Uφ1γ

i (φ10, γ0, ν0, α0)}(γ̂ − γ0)

+ E{Uφ1ν
i (φ10, γ0, ν0, α0)}(ν̂ − γ0)

+ E{Uφ1α
i (φ10, γ0, ν0, α0)}(α̂− γ0)

=
1

n
Uφ1(φ10, γ0, ν0, α0) + E{Uφ1γ

i (φ10, γ0, ν0, α0)}(γ̂ − γ0)

≈ 1

n
Uφ1(φ1, γ̂, ν0, α0),

since here E{Uφ1ν
i (φ10, γ0, ν0, α0)} = E{Uφ1α

i (φ10, γ0, ν0, α0)} = 0. We can now see that the The-
orem 1 of Henmi and Eguchi (2004, p. 935) applies to the last form here, implying that avar(φ̂1) ≤375

avar(φ̃1), where φ̂1 is the solution to U(φ1, γ̂, ν0, α0) = 0 and φ̃1 is the solution to U(φ1, γ0, ν0, α0) =
0.

APPENDIX 4

The doubly robust estimator as a posterior predictive expectation
We first note that because∫

vi

1{zi=a}yipE(vi | v; ξ) dvi

=

∫
yi,xi

yipE(yi |Zi = a, xi, v; ξ)prE(Zi = a)pE(xi | v; ξ) dyi dxi,

we have that

EE(Yi |Zi = 1, v; ξ) = EE

{
ZiYi

prE(Zi = 1)

∣∣∣∣ v; ξ

}
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and

EE(Yi |Zi = 0, v; ξ) = EE

{
(1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
.

The usual IPT-weighted estimator for a marginal causal contrast may be derived through a posterior
predictive argument as follows. First,

EE [ZiYi | v; ξ] =

∫
vi

ziyipE(vi | v; ξ) dvi

=

∫
vi

ziyi
pE(vi | v; ξ)

pO(vi | v; ξ)
pO(vi | v; ξ) dvi

=

∫
vi

ziyi
pE(yi | zi, xi, v; ξ)pE(zi)pE(xi | v, ξ)

pO(yi | zi, xi, v; ξ)pO(zi |xi, v; ξ)pO(xi | v; ξ)
pO(vi | v; ξ) dvi

=

∫
vi

ziyi
pE(zi)

pO(zi |xi, v; ξ)
pO(vi | v; ξ) dvi (19)

=

∫
vi

ziyi
pE(zi)

pO(zi |xi, v; ξ)

n∑
k=1

ξkδvk(vi) dvi

=

n∑
k=1

ξkzkyk
pE(zk)

pO(zk |xk, v; ξ)

= prE(Zk = 1)

n∑
k=1

ξk
zkyk

prO(Zk = 1 |xk, v; ξ)
,

and thus,

EE

{
ZiYi

prE(Zi = 1)

∣∣∣∣ v; ξ

}
=

n∑
k=1

ξk
zkyk

prO(Zk = 1 |xk, v; ξ)
.

Similarly,

EE

{
(1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
=

n∑
k=1

ξk
(1− zk)yk

prO(Zk = 0 |xk, v; ξ)
,

and

EE

{
ZiYi

prE(Zi = 1)
− (1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
=

n∑
k=1

ξkyk

{
zk

prO(Zk = 1 |xk, v; ξ)
− 1− zk

prO(Zk = 0 |xk, v; ξ)

}
.

On the other hand, the usual outcome model based estimator may be motivated similarly as in Sup-
plementary Appendix 1 through

EE(Yi |Zi = a, v; ξ) =

∫
xi

{∫
yi

yipO(yi |Zi = a, xi, v; ξ) dyi

}
pO(xi | v; ξ) dxi

=

∫
xi

m(a, xi; ξ)

n∑
k=1

ξkδxk
(xi) dxi

=

n∑
k=1

ξkm(a, xk; ξ),

and

EE(Yi |Zi = 1, v; ξ)− EE(Yi |Zi = 0, v; ξ) =

n∑
k=1

ξk {m(1, xk; ξ)−m(0, xk; ξ)} .
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18 O. SAARELA, L. R. BELZILE D. A. STEPHENS

Finally, we note that we can write (19) alternatively as

EE(ZiYi | v; ξ)

=

∫
vi

ziyi
pE(zi)

pO(zi |xi, v; ξ)
pO(vi | v; ξ) dvi

=

∫
yi,zi,xi

ziyi
pE(zi)

pO(zi |xi, v; ξ)
pO(yi | zi, xi, v; ξ)pO(zi, xi | v; ξ) dyi dzi dxi

=

∫
zi,xi

zim(zi, xi; ξ)
pE(zi)

pO(zi |xi, v; ξ)

n∑
k=1

ξkδ(zk,xk)(zi, xi) dzi dxi

=

n∑
k=1

ξkzkm(zk, xk; ξ)
pE(zk)

pO(zi |xk, v; ξ)

= prE(Zk = 1)

n∑
k=1

ξk
zkm(zk, xk; ξ)

prO(Zk = 1 |xk, v; ξ)
,

and therefore

EE

{
ZiYi

prE(Zi = 1)
− (1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
=

n∑
k=1

ξkm(zk, xk; ξ)

{
zk

prO(Zk = 1 |xk, v; ξ)
− 1− zk

prO(Zk = 0 |xk, v; ξ)

}
.

Thus, the posterior predictive mean difference can be written as

EE(Yi |Zi = 1, v; ξ)− EE(Yi |Zi = 0, v; ξ)

= EE

{
ZiYi

prE(Zi = 1)
− (1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
+ EE(Yi |Zi = 1, v; ξ)

− EE

{
ZiYi

prE(Zi = 1)
− (1− Zi)Yi

prE(Zi = 0)

∣∣∣∣ v; ξ

}
− EE(Yi |Zi = 0, v; ξ)

=

n∑
k=1

ξk{yi −m(zk, xk; ξ)}
{

zk
prO(Zk = 1 |xk, v; ξ)

− 1− zk
prO(Zk = 0 |xk, v; ξ)

}

+

n∑
k=1

ξk {m(1, xk; ξ)−m(0, xk; ξ)} . (20)
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