An Easily-Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes

Ivan Buslov, Fang Song, and Xile Hu *

Abstract: The first efficient and non-precious catalyst based on nickel nanoparticles for alkene hydrosilylation with commercially relevant tertiary silanes has been developed. The nickel nanoparticle catalyst was prepared in situ from a simple nickel alkoxide precatalyst Ni(O¹Bu)₂*xKCl. The catalyst exhibits high activity for anti-Markovnikov hydrosilylation of unactivated terminal alkenes and isomerizing hydrosilylation of internal alkenes. The catalyst can be applied to synthesize a single terminal alkyl silane from a mixture of internal and terminal alkene isomers, to remotely functionalize an internal alkene derived from a fatty acid.

Hydrosilylation of alkenes is a main method to synthesize organosilicon compounds, which have broad applications in synthetic and material chemistry. [1] Platinum based catalysts such as Karstedt's^[2] and Speier's^[3] catalysts are the most widely used in the industry due to their stability, high activity, and broad scope. The high cost and low abundance of Pt have motivated the development of alternative catalysts based on Earthabundant transition metals. While a number of systems based on Fe^[4]. Co^[5] and Ni^[6] complexes were shown to be efficient catalysts for hydrosilylation of alkenes, many of them are active only when using PhSiH₃ and Ph₂SiH₂ as hydrosilanes. The products of these reactions contain residual Si-H bonds, which leads to lower stability and utility of final products. Tertiary silanes are much more commercially relevant and are widely used to make silicones and silane coupling reagents. However, they are sterically demanding and less reactive. Chirik and coworkers showed that reducing the steric bulk of pyridine diimine (PDI) ligands enabled the first efficient iron-catalyzed alkene hydrosilylation using tertiary silanes.[7] This strategy proved successful in the development of several other Fe- and Cobased catalysts that hydrosilylated alkenes using tertiary silanes. [4c, 8] Nevertheless, these catalysts employ designer ligands which can be expensive or difficult to make. Although Nibased catalysts for alkene hydrosilylation are known, [6, 9] only one system was shown to catalyze hydrosilylation of an unactivated alkene using a tertiary silane, and its scope was not reported.[10]

Compared to the significant progress of base metalcatalyzed homogeneous alkene hydrosilylation, the development

[*] I. Buslov, Dr. Fang Song, and Prof. Dr. X.L. Hu Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISCI-LSCI, BCH 3305, 1015 Lausanne (Switzerland) E-mail:xile.hu@epfl.ch Homepage: http://lsci.epfl.ch

Supporting information for this article is given via a link at the end of the document.

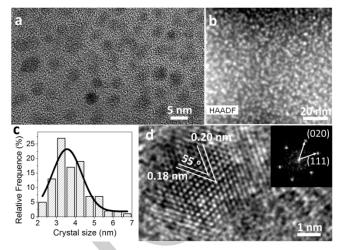
of their heterogeneous counterparts falls much behind. Heterogeneous catalysts are potentially less costly and more immobilization and amenable to separation. Several heterogeneous Pt catalysts have been successfully used for alkene hydrosilylations. [11] Moreover, a recent study [11d] reopened the debates^[12] on the nature of the active species, homogeneous or heterogeneous, formed upon activation of Karstedt's catalysts. However, to our knowledge, there is no prior report of non-precious metal nanoparticle catalysts capable of alkene hydrosilylation using tertiary silanes.^[13] Here we show that nickel nanoparticles catalyze hydrosilylation of unactivated alkenes with tertiary silanes. The nanoparticles can be easily accessed from in situ activation of a Ni(OtBu)2•xKCl precatalyst by the silane substrate. The precatalyst can be made in onestep from stable and readily available reagents. Not only terminal alkenes are hydrosilylated with high anti-Markovnikov selectivity, but also internal alkenes are hydrosilylated through a tandem isomerization-hydrosilylation process to give terminal alkyl silanes. The catalytic system can be applied to synthesize a single terminal alkyl silane from a mixture of internal and terminal alkene isomers, and to remotely functionalize an internal alkene derived from a fatty acid.

We previously reported nickel pincer complexes as active alkene hydrosilylation catalysts. [6e] However, they were not efficient when using tertiary silanes. To develop catalysts for alkene hydrosilylation using tertiary silanes, we screened a large number of nickel alkoxide complexes with reduced steric bulk for the reaction of 1-decene with trimethoxysilane (MeO)₃SiH. Certain nickel complexes appeared to lose the ligands and decompose into black residues during the reaction, nevertheless, the desired hydrosilylation product was formed using these complexes. We hypothesized that these complexes were converted into nickel nanoparticles upon reaction with silane, which was responsible for the hydrosilylation activity. We then searched for simpler precursors of the presumed nickel nanoparticles which contained no designer ligands. A number of nickel salts including Ni(OAc)2 (Ac = acetate), Ni(OTf)2 (OTf = trifluoromethanesulfonate), Ni(acac)₂ (acac = acetylacetonate), and Ni(OH)2 were tested, but the best yield, obtained using Ni(acac)2, was only 23% (Table S1, SI). A Ni(0) source, Ni(COD)2, was also ineffective, giving a yield of 5%. The use of Ni alkoxides, however, led to much higher yields. While a method employing anhydrous NiCl2 was reported for the synthesis of Ni(OtBu)2, [14] we chose to prepare it by reaction of a Ni(TMEDA)Cl₂ source, (TMEDA tetramethylethylenediamine) with MOtBu (M = Li, Na, K) in ^tBuOH or THF (eq. 1, 2). The as-synthesized samples of Ni(O^tBu)₂ are blue insoluble solids. The sample prepared using KO^tBu was most active, giving a yield of 88% at a loading of 1 mol% for the anti-Markovnikov hydrosilylation of 1-decene with (MeO)₃SiH (eq. 3). Further experiments showed that the TON of this catalyst is higher than 850 and the TOF is about 1700 per

hour for this reaction (see SI). The samples prepared using NaO¹Bu and LiO¹Bu gave yields of 79% and 28%, respectively, under the same conditions. Infra-red spectroscopy, power X-ray diffraction, elemental analysis, and transition electron microscopy (TEM) measurements indicated that Ni(O¹Bu)₂ in all samples were amorphous, and the samples prepared using NaO¹Bu and KO¹Bu contained additionally NaCl and KCl, respectively (Fig. S1-S8, SI). For convenience, these two samples are labelled Ni(O¹Bu)₂•xNaCl (x ≈ 1.6) and Ni(O¹Bu)₂•xKCl (x ≈ 1.4).

$$Ni(TMEDA)Cl_{2} + 2 LiO^{t}Bu \xrightarrow{t}BuOH \text{ or } THF, 60^{\circ}C \xrightarrow{t}Ni(O^{t}Bu)_{2} + 2 LiCI \quad (1)$$

$$Ni(TMEDA)Cl_{2} + 2 MO^{t}Bu \xrightarrow{t}M = Na, K$$


$$Ni(TMEDA)Cl_{2} + 2 MO^{t}Bu \xrightarrow{t}M = Na, K \xrightarrow{t}Ni(O^{t}Bu)_{2} \times MCI + (2-x) MCI \quad (2)$$

$$Dlue insoluble insoluble insoluble solid$$

$$THF, RT, 1 h \xrightarrow{t}Decyl-Si(OMe)_{3}$$

$$3a, 88\%$$

During the hydrosilylation reaction, when (MeO)₃SiH was added to the reaction mixture containing the insoluble Ni(OtBu)2•xKCl precatalyst, the latter solid immediately reacted and a dark brown solution was formed. We suspected that the Ni(II) precatalyst was converted into colloidal nickel nanoparticles in this process, which is the active catalyst. When the reaction of 1-decene with (MeO)₃SiH was conducted in the presence of an excess of Hg (200 equiv. relative to Ni), the yield of 3a was only 20%. This significant drop of yield is consistent with nickel nanoparticles being the catalyst. To confirm the formation of nickel nanoparticles, the colloidal solution was subjected to TEM measurements. Indeed, ultra-small nanocrystals were observed (Fig. 1a). The bright field image (Fig. S9) and corresponding high angle annular dark field (HAADF) image (Fig. 1b) indicate that the nickel nanocrystals are regular over a large area. The size distribution of the nanocrystals is fairly narrow (Fig. 1c). The average size is about 3.5 nm. Lattice fringes were observed in high resolution TEM images (Fig. 1d). The inter-planar distances of ~0.20 nm and ~0.18 nm correspond to the (111) and (020) planes of nickel metal (space group: Fm-3m, JCPDS No. 01-1258). This assignment was confirmed by the corresponding fast Fourier transformation (FFT) image (inset in Fig. 1d). The elemental mapping analysis showed that the nanocrystals were mainly made of Ni (Fig. S10).

Figure 1. (a) TEM image of nickel nanocrystals. (b) HAADF image of nickel nanocrystals in large area. White dots in HAADF image are nickel nanocrystals. (c) The crystal size distribution. (d) High resolution TEM image of a nanocrystal. The inset shows the corresponding FFT image.

the While conversion of Ni(OtBu)2•xKCl and Ni(O^tBu)₂•xNaCl to nickel nanoparticles was observed instantaneously, the conversion of Ni(O^tBu)₂ was slow and after 15 minutes, a large portion of Ni(O^tBu)₂ was still observed by TEM (Fig. S11, SI). To compare the stability of the nickel nanoparticles prepared from Ni(O^tBu)₂•xKCl and Ni(O^tBu)₂, aliquots of reaction mixture after 6 hours were analyzed by TEM (Fig. S12, SI). The nanoparticles made from Ni(O^tBu)₂•xKCI remained well dispersed, while those from Ni(OtBu)2 already aggregated. Thus the lower efficiency of Ni(O^tBu)₂ is attributed to its inefficiency to generate nickel nanoparticles, and maybe additionally the lower stability of the resulting nanoparticles. The presence of well-dispersed K⁺ and Na⁺ ions (Fig. S7, SI) might influence the growth of nanoparticles via electrostatic interactions, as suggested for cation-dependent formation of nickel phosphate nanotubes in a recent report.[15] The Cl anion might stabilize the nanoparticles against aggregation.

The UV-Vis spectrum of a colloidal solution containing the nickel nanoparticles is similar to the spectra of other reported colloidal nickel particles (Fig. S13, SI). [16] This colloidal solution can be generated in the absence of an alkene, and can be then used as a catalyst for alkene hydrosilylation. For example, a catalyst solution was generated by reaction of Ni(O¹Bu)₂•xKCl with (MeO)₃SiH. When this solution was used as the catalyst (1 mol% loading) for the hydrosilylation of 1-decene with (EtO)₃SiH, a yield of 74% was obtained. If nickel nanoparticles were removed from the solution after partial conversion by filtering through silica or celite, then the resulting solution was no longer catalytically active (See SI). As mentioned above, other soluble nickel salts such as Ni(acac)₂ and Ni(COD)₂ were not suitable precatalysts for the hydrosilylation. When these complexes were used, no formation of nickel nanoparticles was observed.

The Ni(O¹Bu)₂•xKCI precatalyst was tested for hydrosilylation of 1-decene with other tertirary silanes at room temperature (Table 1). (EtO)₃SiH, Me₂(MeO)SiH, and Me(EtO)₂SiH could be used, with yields of above 80% (**3b-3d**). For 1,1,3,3,3-pentamethyldisiloxane (PMDS) and 1,1,1,3,5,5,5-

heptamethyltrisiloxane (MD'M), the yields were lower, possibly due to the slow activation of the precatalyst (entries 5-6, Table 1). However, better conversion and yields were obtained with these silanes if a small amount of (MeO)₃SiH was added to activate the precatalyst and if the temperature was increased to 60°C (entries 10-11, Table 1). Trialkylsilane Et₃SiH was not applicable in this reaction (entry 7, Table 1). Interestingly, triphenylsilane which was not capable to activate bis(amino)amide nickel complex in our previous work, [6e] gave moderate yield of decyltriphenylsilane using new catalyst (entry 8, Table 1). According to GC-MS analysis, diphenylsilane formed Ph₂(^Dec)SiH in 82% yield contaminated with Ph₂(^Dec)₂Si (entry 9, Table 1).

Table 1. Ni-catalyzed hydrosilylation of 1-decene with various silanes [a]

C ₈ H ₁₇ +	Silane	Ni cat., 1 mol %	C ₈ H ₁₇ [Si]
1a 1.0 mmol	2a-2i 1.2 mmol	THF, RT, 4h	3a-3i

Entry	Silane	Yield, % ^[b]
1	(MeO) ₃ SiH	88 (86)
2	(EtO) ₃ SiH	91 (88)
3	Me ₂ (MeO)SiH	84 (83)
4	Me(EtO) ₂ SiH	81 (77)
5	PMDS	35
6	MD'M	14
7	Et₃SiH	6
8	Ph₃SiH	43 (44)
9	Ph ₂ SiH ₂	82 ^[c]
10	PMDS	55 (52) ^[d]
11	MD'M	24 ^[d]

[a] Conditions: 1-decene (1 mmol), silane (1.2 mmol.), Ni cat. (1 mol %), THF (2 mL), 4 hours, RT. [b] Determined by GC-MS using dodecane as an internal standard. Numbers in parentheses are isolated yields. [c] 12 % of didecyldiphenylsilane was formed. [d] Alkene 5 mmol, hydrosiloxane 6 mmol, Ni precat. 1 mol %, neat, 60 °C, 2 h. (MeO)₃SiH 2 mol % was added as an activator.

The scope of alkene was then examined for this catalytic system using (MeO)₃SiH as the silane. The reactions were performed with 1 mol % of Ni precatalyst in THF at room temperature. A large number of unactivated terminal alkenes could be hydrosilylated (Table 2). When both internal and terminal C=C double bonds are present, hydrosilylation is selective for the terminal double bond (4d). Importantly, functional groups such as epoxide (4f), tert-butyldimethylsilyl-protected alcohol (4g), acetal (4h), amine (4j), ester (4k) and alkyl chloride (4l) were tolerated. Allyl glycidyl ether is an important substrate because the alkoxysilanes derived from this alkene find broad applications in coatings and as coupling agents for epoxy composites employed for electronic "chip" encapsulation.^[17] However, hydrosilylation of allyl esters of this

type using Pt catalysts are known to lead to side reactions. [18] To our delight, the present nickel system is efficient for hydrosilylation of allyl glycidyl ether, giving **4i** in a 61% yield. More sensitive functional groups such as ketone, aldehyde, and amide are unfortunately not tolerated.

 $\begin{tabular}{lll} \textbf{Table 2.} & Ni-catalyzed & hydrosilylation & of & functionalized & alkenes & with $(MeO)_3SiH^{[a]}$ \\ \end{tabular}$

[a] Conditions: alkene (1.0 mmol), (MeO)₃SiH (1.2 mmol), Ni cat. (1 mol %), THF (2 mL), 4 hours, RT. [b] Isolated yields are reported. For **4d**, the conversion was 83%, and the amount of side-product silanes where the internal olefin was isomerized is <4%; for **4e**, the conversion was 60% and 2% cumene was obtained as a side product; for **4f**, the conversion was 75%; for **4k**, 24% isomerized internal alkenes and 6% of reduction product were also obtained. [c] (MeO)₃SiH (1.5 mmol).

Internal alkenes are generally unsuitable substrates for alkene hydrosilylation. Only very recently a couple of Ni- and Co-based catalytic systems were shown to convert internal alkenes to terminal silanes through a tandem isomerizationhydrosilylation process. [8b, 6e] In principle, this process can be used for the remote functionalization of alkenes, which has emerged as a desirable strategy in organic synthesis. [19] However, using the two reported catalytic systems the tandem isomerization-hydrosilylation process remains sluggish. The scope is narrow and largely limited to simple 2-alkenes. The conversion is often incomplete. To our delight, the current system is very efficient for the tandem isomerizationhydrosilylation of various internal alkenes (Table 3). 2-, 3-, and 4-octenes were all selectively transformed to terminal trimethoxy(octyl)silane 4a in high yields (entries 1-3, Table 3). Even 5-decene and 7-tetradecene were hydrosilylated in high yields and selectivities (entries 4-5, Table 3). It should be emphasized that for 7-tetradecene, the isomerization of alkene has to repeat five times before being hydrosilylated. Not only simple and linear internal alkenes, but also those containing functional groups such as ether and acetal (entries 6-7, Table 3), as well as an alkene with a secondary alkyl substituent (entry 8, Table 3) could be used. Both cis- and trans-alkenes were selectively converted in high yields.

Table 3. Ni-catalyzed tandem isomerization-hydrosilylation of internal alkenes with (MeO) $_3 {\rm SiH}^{[a]}$

R ₁	+	(MeO) ₃ SiH	Ni cat., 2-5 mol %	R
2		, , ,	THF, RT, 4-12 h	R ₃ Si(OMe) ₃
1.0 mmol	1.2 mmol	,,	3a, 4a, 5a-5d [b]	

Entry	Substrate	Product	Yield ^[b] (%)
1	\\\\	n-Octyl-Si(OMe) ₃ 4a	95 ^[c]
2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n-Octyl—Si(OMe) ₃ 4a	97 ^[c]
3	\	n-Octyl-Si(OMe)3 4a	89
4	C_4H_9 C_4H_9	n-Decyl—Si(OMe) ₃ 3a	83
5	C_6H_{13} C_6H_{13}	n-Tetradecyl—Si(OMe) ₃ 5a	71
6	Ph_O	Si(OMe) ₃ 5b	74 ^[c]
7		Si(OMe) ₃ 5c	79
8		Si(OMe) ₃ 5d	69

[a] Conditions: alkene (0.5 mmol), silane (1.2 equiv.), Ni cat. (5 mol %), THF (3 mL), 12 hours, RT. [b] Isolated yields are reported. [c] Ni cat. (2 mol %), 4 hours.

The unprecedented activity and selectivity of this nickel nanoparticle catalyst in the isomerization-hydrosilylation tandem process prompted us to further exploit its potential applications. Triethoxy(octyl)silane is widely used in coatings and is produced annually in a > 6000 ton scale. [1, 8a]. It might be economically advantageous to synthesize this silane from a mixture of octenes. To explore this possibility, an equimolar mixture of 1octene, 2-octene, 3-octene, and 4-octene was prepared and then subjected to the isomerization-hydrosilylation process using 0.5% of nickel catalyst and (EtO)₃SiH. After 2 hours at 60°C, triethoxy(octyl)silane (6a) was obtained in a 81% yield with 96:4 HS:DHS selectivity (eq. 4; HS = hydrosilylation; DHS = dehydrogenative silylation; triethoxy(oct-1-en-1-yl)silane was formed as the DHS by-product). Thus, the current catalytic system is applicable for the synthesis of a single terminal alkyl silane from a mixture of different internal and terminal olefin isomers.

Unsaturated fatty acids from plant oils are easily available and represent a unique class of chemical feedstock due to their characteristic long-chain methylene sequences. The generation of α, ω -difuntionalized compounds from plant oils while incorporating the entire length of fatty acids is attractive but challenging. We tested the current catalytic system for the isomerizing hydrosilylation of TBS-protected cis-9-octadecen-1-ol (oleyl alcohol, 85% purity; TBS = tert-butyldimethylsilyl). With 10 mol % of Ni precatalyst and using triethoxysilane at 0°c, the

linear and saturated product, O-tert-butyldimethylsilyl 18-(triethoxysilyl)octadecan-1-ol (**6b**), was obtained in a 45% yield (eq. 5; the conversion was 80%). The reaction had good HS:DHS (>94:6) and terminal selectivity (>10:1). The isomerization propagated over 8 carbon-carbon bonds from the initial position of the double bond. It should be noted that the corresponding terminal olefin is not available from a mixture of monounsaturated fatty acids. Thus, the current catalyst system is potentially useful for the utilization of renewable feedstock materials.

In summary, a new nickel nanoparticle catalyst has been developed for the hydrosilylation of unactivated alkenes with tertiary silanes. The catalyst can be easily prepared in situ from a simple Ni(O^tBu)_2•xKCl precatalyst. The catalyst catalyzes anti-Markovnikov hydrosilylation of terminal alkenes and isomerizing hydrosilylation of internal alkenes. The catalyst can be applied to synthesize single terminal alkyl silanes from a mixture of alkene isomers, and convert fatty acid-derived internal alkenes into α, ω -difuntionalized compounds.

Acknowledgements

This work is supported by the Swiss National Science Foundation (200020_162362).

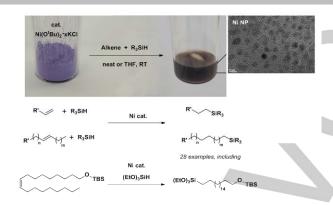
Keywords: nickel • hydrosilylation • nanoparticle • tertiary silanes • isomerization

- [1] a) I. Ojima, in *The Chemistry of Organic Silicon Compounds* (Ed.: S. Patai, Z. Rappoport,), Wiley Interscience, New York, **1989**, p. 1479; b) B. Marciniec, J. Gulinski, W. Urbaniac, Z. W. Kornetka, *Comprehensive Handbook on Hydrosilylation*, Pergamon, Oxford, UK, **1992**; c) B. Marciniec, *Hydrosilylation*: A Comprehensive Review on Recent Advances, Springer Berlin, **2009**; d) S. Putzien, O. Nuyken, F. E. Kühn, *Prog. Polym. Sci.* **2010**, *35*, 687.
- [2] P. B. Hitchcock, M. F. Lappert, N. J. W. Warhurst, *Angew. Chem. Int. Ed.* 1991, 30, 438.
- [3] a) J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79, 974; b) J. L. Speier, F. G. A. Stone, W. Robert, in Advances in Organometallic Chemistry, Vol. 17, Academic Press, 1979, pp. 407.
- [4] a) S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794; b) K. Kamata, A. Suzuki, Y. Nakai, H. Nakazawa, Organometallics 2012, 31, 3825; c) D. Peng, Y. Zhang, X. Du, L. Zhang, X. Leng, M. D. Walter, Z. Huang, J. Am. Chem. Soc. 2013, 135, 19154; d) J. Chen, B. Cheng, M. Cao, Z. Lu, Angew. Chem. Int. Ed. 2015, 54, 4661.
- [5] a) Z. Mo, Y. Liu, L. Deng, Angew. Chem. Int. Ed. 2013, 52, 10845; b) J. Sun, L. Deng, ACS Catal. 2016, 6, 290.
- [6] a) Y. Chen, C. Sui-Seng, S. Boucher, D. Zargarian, Organometallics 2005, 24, 149; b) I. Hyder, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, Dalton Trans. 2007, 3000; c) M. I. Lipschutz, T. D. Tilley, Chem. Commun. 2012, 48, 7146; d) V. Srinivas, Y. Nakajima, W. Ando, K. Sato, S. Shimada, Catal. Sci. Technol. 2015, 5, 2081; e) I. Buslov, J.

Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, *Angew. Chem. Int. Ed.* **2015**. *54*. 14523.

- [7] A. M. Tondreau, C. C. H. Atienza, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, P. J. Chirik, *Science* 2012, 335, 567.
- a) C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado,
 D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2015, 137, 13244; b) D.
 Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc. 2016, 138, 2480; c) C. H. Schuster, T. Diao, I. Pappas, P. J. Chirik, ACS Catal. 2016, 2632.
- [9] a) M. F. Lappert, T. A. Nile, S. Takahashi J. Organomet. Chem. 1974, 72, 425; b) B. Marciniec, H. Maciejewski, J. Mirecki, J. Organomet. Chem. 1991, 418, 61; c) B. Marciniec, H. Maciejewski, I. Kownacki, J. Mol. Catal. A: Chem. 1998, 135, 223.
- [10] V. Srinivas, Y. Nakajima, W. Ando, K. Sato, S. Shimada, J. Organomet. Chem. 2016, 809, 57.
- [11] a) M. A. Brook, H. A. Ketelson, F. J. LaRonde, R. Pelton, *Inorg. Chim. Acta* 1997, 264, 125; b) B. P. S. Chauhan, J. S. Rathore, *J. Am. Chem. Soc.* 2005, 127, 5790; c) Y. Bai, S. Zhang, Y. Deng, J. Peng, J. Li, Y. Hu, X. Li, G. Lai, *J. Colloid Interface Sci.* 2013, 394, 428; d) T. Galeandro-Diamant, M.-L. Zanota, R. Sayah, L. Veyre, C. Nikitine, C. de Bellefon, S. Marrot, V. Meille, C. Thieuleux, *Chem. Commun.* 2015, 51, 16194.
- [12] a) L. N. Lewis, N. Lewis, J. Am. Chem. Soc. 1986, 108, 7228; b) L. N.
 Lewis, J. Am. Chem. Soc. 1990, 112, 5998; c) J. Stein, L. N. Lewis, Y.
 Gao, R. A. Scott, J. Am. Chem. Soc. 1999, 121, 3693.

- [13] a) B. Marciniec, Coord. Chem. Rev. 2005, 249, 2374; b) A. K. Roy, in Advances in Organometallic Chemistry Vol. 55, (Eds.: R. West, A. Hill, M. J. Fink) Academic Press, 2007, pp. 1; c) Y. Nakajima, S. Shimada, RSC Adv. 2015, 5, 20603.
- [14] B. P. Baranwal, R. C. Mehrotra, Aust. J. Chem. 1980, 33, 37.
- [15] H. Liu, H. Li, X. Wang, Small 2016, 12, 2969.
- [16] a) J. A. Creighton, D. G. Eadon, J. Chem. Soc. Faraday Trans. 1991,
 87, 3881; b) S. Kim, B. K. Yoo, K. Chun, W. Kang, J. Choo, M.-S. Gong,
 S.-W. Joo, J. Mol. Catal. A: Chem. 2005, 226, 231.
- [17] E. A. Chernyshev, Z. V. Belyakova, L. K. Knyazeva, N. N. Khromykh, Russ. J. Gen. Chem. 2007, 77, 55.
- [18] Z. V. Belyakova, M. G. Pomerantseva, L. A. Efimova, E. A. Chernyshev, P. A. Storozhenko, Russ. J. Gen. Chem. 2010, 80, 728.
- [19] a) A. Vasseur, J. Bruffaerts, I. Marek, Nat Chem 2016, 8, 209; b) V. Goldbach, P. Roesle, S. Mecking, ACS Catal. 2015, 5, 5951; c) T. Huber, D. Firlbeck, H. M. Riepl, J. Organomet. Chem. 2013, 744, 144; d) C. C. H. Atienza, T. Diao, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, J. L. Boyer, A. K. Roy, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 12108; e) X. Jia, Z. Huang, Nat Chem 2015, 8, 157.
- [20] a) S. Chikkali, S. Mecking, Angew. Chem. Int. Ed. 2012, 51, 5802; b) U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J. Schäfer, Angew. Chem. Int. Ed. 2011, 50, 3854.



Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION

A nickel nanoparticle catalyst is an efficient and non-precious catalyst for alkene hydrosilylation with commercially relevant tertiary silanes

Ivan Buslov, Fang Song, and Xile Hu *

Page No. – Page No.

An Easily-Accessed Nickel
Nanoparticle Catalyst for Alkene
Hydrosilylation with Tertiary Silanes

Layout 2:

COMMUNICATION

((Insert TOC Graphic here))

Author(s), Corresponding Author(s)*

Page No. - Page No.

Title

Text for Table of Contents