000223266 001__ 223266
000223266 005__ 20181203024443.0
000223266 0247_ $$2doi$$a10.1007/s10470-016-0742-0
000223266 022__ $$a0925-1030
000223266 02470 $$2ISI$$a000384207000007
000223266 037__ $$aARTICLE
000223266 245__ $$aOTA-C based high-speed analog processing for real-time fault location in electrical power networks
000223266 260__ $$bSpringer Verlag$$c2016$$aDordrecht
000223266 269__ $$a2016
000223266 300__ $$a7
000223266 336__ $$aJournal Articles
000223266 520__ $$aThis paper explores the potential and limitations of analog integrated circuit techniques for the simulation of low-loss or lossless 1D or 2D transmission mediums. In this approach, a transmission line is mapped into a ladder consisting of N identical LC elements, each modeling a finite length increment of the line. Inductors are then emulated by a gyrator-capacitor combination, yielding a classical transconductor-capacitor (gm-C) circuit, suitable for integration. The validity of this approximation is discussed in the context of fault location in power networks, an application based on the electromagnetic time-reversal method. Design constraints on gm-C circuits are derived and non-ideal effects such as finite open-loop gain and component mismatches are evaluated. It is shown that a simple analog implementation can locate the fault within 1 % accuracy with a significant speed advantage over classical computational methods, reducing the processing time to < 100 ms.
000223266 6531_ $$aAnalog emulation
000223266 6531_ $$aTransmission lines
000223266 6531_ $$aPower network fault location
000223266 6531_ $$aElectromagnetic time-reversal
000223266 700__ $$0246229$$g184474$$aGaugaz, Francois
000223266 700__ $$0241225$$g105583$$aKrummenacher, Francois
000223266 700__ $$aKayal, Maher$$g105540$$0240539
000223266 773__ $$j89$$tAnalog Integrated Circuits And Signal Processing$$k1$$q61-67
000223266 909C0 $$xU11978$$0252315$$pELAB
000223266 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:223266
000223266 917Z8 $$x105540
000223266 937__ $$aEPFL-ARTICLE-223266
000223266 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000223266 980__ $$aARTICLE