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Emotion recognition in text has become an important research objective. It involves building classifiers
capable of detecting human emotions for a specific application, for example, analyzing reactions to product
launches, monitoring emotions at sports events, or discerning opinions in political debates. Most successful
approaches rely heavily on costly manual annotation. To alleviate this burden, we propose a distant supervi-
sion method—Dystemo—for automatically producing emotion classifiers from tweets labeled using existing
or easy-to-produce emotion lexicons. The goal is to obtain emotion classifiers that work more accurately for
specific applications than available emotion lexicons. The success of this method depends mainly on a novel
classifier—Balanced Weighted Voting (BWV)—designed to overcome the imbalance in emotion distribution
in the initial dataset, and on novel heuristics for detecting neutral tweets. We demonstrate how Dystemo
works using Twitter data about sports events, a fine-grained 20-category emotion model, and three different
initial emotion lexicons. Through a series of carefully designed experiments, we confirm that Dystemo is
effective both in extending initial emotion lexicons of small coverage to find correctly more emotional tweets
and in correcting emotion lexicons of low accuracy to perform more accurately.
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1. INTRODUCTION

The abundance of emotions that human beings can feel is often reflected in our lan-
guage. We use emotionally charged expressions (e.g., “Yay! We did it!”) or explicit
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statements (e.g., “So happy now”) to verbally describe our emotional experiences. The
objective of emotion recognition is to detect which emotions are expressed in a given text
sample. For example, when someone writes “Today was awesome,” the system should
conclude that the author is happy. Such automatic recognition of emotional statements
can help us build more intelligent social and personal applications, including those
that study online conversations [Quercia et al. 2012], enhance human—computer inter-
action [Picard and Klein 2002], and summarize public reactions to events or products
[Mishne and de Rijke 2006; Kempter et al. 2014].

One successful approach is to treat emotion recognition as a text classification prob-
lem and to apply supervised machine-learning techniques [Aman and Szpakowicz 2007;
Strapparava and Mihalcea 2008; Wang et al. 2012; Roberts et al. 2012]. However, super-
vised methods require considerable quantities of annotated data (i.e., text documents
with known emotion labels). Such manual annotation is time-consuming due to diffi-
culties involved in judging potentially ambiguous and subjective emotions. Annotation
becomes even more challenging when the goal is to differentiate more fine-grained
categories of emotion [Desmet 2012; Kempter et al. 2014].

Our research objective was to develop a method to automatically build fine-grained
emotion classifiers in the absence of manually annotated data. In this endeavor, we
have resorted to distant learning (also known as distant or weak supervision)—a type of
semi-supervised learning used by many researchers in text classification [Go et al. 2009;
Purver and Battersby 2012; Mintz et al. 2009]. The main idea is to train the classifiers
on the data with automatically assigned emotion labels. In contrast to traditional semi-
supervised learning, where classifiers are learned over partially annotated data (.e.,
a mixture of annotated and unlabeled data) [Zhu 2005], the distant learning approach
requires no manual annotation. Instead, annotated data are obtained automatically
using some emotion labelers that are able to detect emotions of interest in the subset
of available text documents.

In the domain of social media, researchers have successfully applied distant learning
for topic-independent emotion recognition while using emoticons (e.g., :) or >:() and
emotional hashtags (e.g., #happy or #angry) as initial labels [Yang et al. 2007; Wang
et al. 2012; De Choudhury et al. 2012b; Mohammad 2012; Purver and Battersby 2012;
Suttles and Ide 2013]. They are considered to summarize emotions in the corresponding
texts. However, such content cues are not always present in adequate amounts within
specialized topics of discussion (sports, politics, finance, or education) and are likely
to be absent in text documents other than social media (reviews, news articles, or
technical comments). Instead of relying on hashtags or emoticons for labeling, we aim
to design and investigate a distant learning method that is more generally applicable.

To address this challenge, we suggest using terms from existing or easy-to-produce
emotion lexicons as initial labelers. For instance, for any set of emotion categories,
we can use a list of descriptive emotional terms (such as “proud” for Pride) and label
texts according to the presence of these terms. Using such lexicon-based initial labelers
ensures the generality of our methods: as they are not restricted to specific types of
content cues, we can potentially detect emotional content within documents of any
type or topic. A distant learning algorithm will then discover emotion associations of
new terms based on their co-occurrences with given emotional terms. For example, it
can recognize the phrase “well done” as an indicator of Pride emotion, if this phrase
appears often enough together with known pride-related words, such as with the word
“proud” in the text “So proud 2 be British! huge well done 2 all of Team GB! :D”.

With this idea, we have developed Dystemo, a distant supervision method that gen-
erates fine-grained emotion classifiers from documents pseudo-labeled by some initial
lexicon of limited coverage, accuracy, or both. We focus on recognizing emotions in
tweets—short status updates from a popular social media website, Twitter. Twitter
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contains discussions on a variety of topics and events, and provides an easy opportu-
nity to collect large datasets. Two main novelties lead to the success of the proposed
method. First, we suggest a new Balanced Weighted Voting (BWV) algorithm that
incorporates per-category rebalancing coefficients while learning. This overcomes the
intrinsic imbalance of emotion distribution in initial pseudo-labeled dataset, which
if left untreated can cause classifier’s bias toward dominant emotions. Second, using
social media as a source of textual data allowed us to include simple heuristics for de-
tecting non-emotional (or neutral) tweets. These tweets turned out to be indispensable
for training classifiers to discern neutral tweets from emotional ones. Both of these
novelties significantly increase the accuracy of final emotion classifiers.

We validate the suggested method on tweets in the field of sports events using
the fine-grained model containing 20 emotion categories. We show that with Dystemo
we obtain the final classifiers of substantially better quality than the three tested
initial emotion lexicons (the relative increase of micro-F1 score is between 41% and
236% on the large hashtag-based ground-truth data). In comparison with other distant
learning algorithms, Dystemo achieves the best micro-F1 scores with two out of the
three initial lexicons on the hashtag-based data, and shows competitive performance
on small manually annotated data.

In summary, to the best of our knowledge, Dystemo is the first distant learning
method for producing fine-grained emotion classifiers without the help of manually
labeled text, nor of structured content features such as emoticons or hashtags. It relies
on terms from emotion lexicons instead. Our carefully designed experiments confirm
the viability of this approach, at least within the domain of tweets.

This article is organized as follows. Section 2 reviews related work. Section 3 gives
an overview of the proposed distant supervision method. Section 4 describes the setup
for applying the method: which emotion model and data were used and which initial
lexicons were considered. Section 5 introduces our method’s evaluation framework,
presenting ground-truth data, performance metrics, and other classifiers for compari-
son. Section 6 presents experimental results on the methodological validation. The last
two sections discuss the findings and future work, followed by the conclusion.

2. RELATED WORK

Emotion recognition in text is an increasingly popular sub-topic in sentiment analysis.
It aims to extract personal opinions, sentiments, and feelings expressed in text [Pang
and Lee 2008; Liu 2012]. While borrowing many methods from polarity and multi-
category text classification problems, emotion recognition has evolved into a distinct
field of research due to the multiplicity of ways to express and discern emotions in
language.

Affective Linguistic Resources. Emotions can be detected by spotting the words used
for expressing them, such as happy, angry, or inspired. Associations between linguistic
terms and emotions are given in emotion (or affective) lexicons. These are similar to
sentiment lexicons, which store terms’ polarities for polarity classification and opin-
ion mining, such as positive good, great, and awesome [Taboada et al. 2011; Thelwall
et al. 2012]. Some emotion lexicons include only terms directly expressing an emo-
tion, such as “happy” for Happiness (the GALC lexicon is an example [Scherer 2005]).
Others contain terms indicative of an emotional experience, thus more indirectly ex-
pressing an emotion. Example terms linked to Happiness are “approval” in WordNet-
Affect [Strapparava and Valitutti 2004], “entertain” in NRC [Mohammad and Turney
2013], and “visit friend” in EmoSenticNet [Poria et al. 2013]. Extracting features using
emotion lexicons has shown promise for various text classification applications, in-
cluding prediction of reviews’ helpfulness [Martin and Pu 2014], personality detection
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[Poria et al. 2014; Mohammad and Kiritchenko 2015], polarity classification [Bravo-
Marquez et al. 2013; Carrillo-de Albornoz and Plaza 2013], and emotion classification
itself [Mohammad 2012; Wang et al. 2012]. Rule-based algorithms go beyond simple
term-spotting by taking into account syntactic structures, such as the presence of nega-
tions, intensity modifiers, and conjunctions [Neviarouskaya et al. 2011; Krcadinac et al.
2013]. While the above-mentioned lexicon-based methods can be applied to any textual
data, they are unlikely to cover the full variety of emotional expressions used in lan-
guage. This leaves room for more advanced methods to increase the quality of emotion
recognition.

Semi-Supervised Extension of Emotion Lexicons. Researchers have developed semi-
supervised techniques to extend initial general (but limited) emotion lexicons, consid-
ered as seeds. These methods define several metrics of term similarity and then use
them to cluster new terms into emotion categories based on their similarity to the
seeds. The original WordNetAffect lexicon [Strapparava and Valitutti 2004] and one
part of the Synesketch lexicon [Krcadinac et al. 2013] were built in this way, start-
ing from a small number of explicit emotional terms. Similarity metrics were defined
using semantic relationships (such as synonymy). In the construction of the EmoSen-
ticNet lexicon [Poria et al. 2012, 2013, 2014], additional term similarities were derived
from term co-occurrences in the database of emotional experiences by using Pointwise-
Mutual Information (PMI) [Turney and Littman 2003]. Other corpora used to con-
struct emotion lexicons, using PMI-based scores and starting from a small number
of seed emotional keywords or symbols, were web n-grams [Perrie et al. 2013], sen-
tences from web-logs [Yang et al. 2007], and tweets [Mohammad 2012]. Such lexicon-
growing methods can, therefore, increase the coverage of used emotional expressions.
Instead of focusing on term-level emotion associations, our method aims at build-
ing document-level emotion classifiers. Nevertheless, for comparison, we adapt PMI-
based computation of term emotion scores [Mohammad 2012] to be applied within our
framework.

Supervised Emotion Recognition. Constructing emotion classifiers automatically is
possible by applying supervised machine-learning algorithms over labeled data. Re-
searchers have experimented with different classifiers (such as Naive Bayes and SVM)
and with various linguistic, stylistic, and syntactic features (such as n-grams, punc-
tuation marks, parts of speech, and topics). These experiments were performed in
different domains, including web-logs [Aman and Szpakowicz 2007], fairy tales [Alm
et al. 2005], news headlines [Strapparava and Mihalcea 2008], and tweets [Mohammad
2012; Roberts et al. 2012]. However, such supervised techniques require substantial
annotated data for training, which are expensive to obtain.

Distant Supervision in Emotion Recognition. With Twitter, many researchers over-
come the lack of annotated data by crawling tweets with emotional hashtags, such as
#happy or #angry [Mohammad 2012; Wang et al. 2012; De Choudhury et al. 2012b;
Suttles and Ide 2013]. In accordance with the idea of distant supervision, such tweets
serve as pseudo-labeled data and are used to train machine-learning classifiers in a su-
pervised manner. Yet, only a small fraction of tweets is likely to contain such hashtags,
making questionable the application of these restrictive heuristics throughout differ-
ent datasets. In the present work, instead of using hashtags for the pseudo-labeling
of tweets, we propose using more applicable initial labelers based on terms from a
given emotion lexicon. The data labeled based on emotional hashtags are used only for
automatically validating the constructed emotion classifiers.

Building emotion classifiers using a limited set of emotional terms and unlabeled
data has been attempted before. One method is to represent the given text corpus in a
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reduced-dimensionality vector-space model and assign emotions based on similarities
to computed emotion vectors [Kim et al. 2010; Danisman and Alpkocak 2008].

These methods were validated for a small set of emotion categories, whereas we
design a methodology capable of dealing with a much more complete set of emotion
categories. Moreover, those methods disregarded the treatment of neutral tweets (i.e.,
tweets without emotions), while we design and successfully apply heuristics to help
classifiers recognize neutral tweets.

Semi-Supervised Learning for Other Tasks. Many other algorithms have been de-
signed for semi-supervised learning (Zhu [2005] gives an overview). For multi-category
text classification, a commonly applied method is Naive Bayes with the Expectation-
Maximization procedure [Nigam et al. 2000]. It iteratively repeats two actions: first, it
learns the parameters over the annotated data; second, it re-annotates the data using
the learned parameters. In our experiments, we also applied a Naive Bayes as one of
the compared classifiers, but starting from the data that were pseudo-annotated by a
given initial labeler.

We also review the advances in semi-supervised methods for polarity classification—
a problem closely related to emotion recognition. Experiments show semi-supervised
classifiers outperform supervised ones when few labeled data are available [Wiegand
and Klakow 2009]. The idea of distant learning for building polarity classifiers has
been successfully applied to Twitter data as well, where researchers use emoticons and
hashtags as the sentiment pseudo-labels (positive or negative) and identify neutral
tweets using objective hashtags or as tweets from the news websites [Go et al. 2009;
Pak and Paroubek 2010; Kouloumpis et al. 2011]. Among other methods, an iterative
self-training approach has been shown to be effective [Qiu et al. 2009]. To apply binary
polarity classification methods to our multi-category emotion classification problem,
we first split it into multiple independent binary classification problems, each dis-
tinguishing one emotion category from all the others. This setup allowed us testing
machine-learning classifiers suitable for binary applications.

Overall, no related work has studied how to apply the distant supervision framework
for multi-category emotion classification when neither manual labels nor labels from
a content structure (e.g., hashtags) are accessible. This is the main problem tackled in
this article.

3. DISTANT SUPERVISION METHOD—DYSTEMO

We first introduce the definitions used to describe the problem and our suggested
method. We formulate the problem of emotion recognition as a multi-label classification
task. Given the set of emotion categories E = {ey, ez, ...,eg}, the classifier detects
which emotion categories are expressed in a given document d—in our case, a tweet—
and produces their label set Y; = {e;,} € E. In order to separate neutral from emotional
documents, this method uses the extended set of categories E® = {eq} U E, where ¢
represents the Neutral label. If ¢y is within the multi-label output Yy (i.e., ¢g € Yy) or if
no emotion is present (i.e., Yy = &), we assign a Neutral category ey alone (Y = {eo}).
We also define the emotionality of the text p = (po, p1, p2. - ... pig) as the distribution

of the emotion categories expressed in the text, with Zlilo pi = 1 and Vi p; > 0, where
p; is the weight of the ith emotion. Emotionality can be transformed into a multi-
label by applying a technique adapted from the alpha-cut for fuzzy sets [Bojadziev
and Bojadziev 1995]. We denote this operator as A : (p,a) — 2E° where o defines
a threshold on the emotion weight for the emotion to be included in the multi-label.
A(p, a) returns all the labels e; that have the weight p; > « - p*, where p* = max; p;
is the maximum emotion weight within the distribution p. Thus, all the labels with a
weight close enough to the maximum weight are output. If « = 1, only the labels with

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 13, Publication date: August 2016.



13:6 V. Sintsova and P. Pu

GIVEN LEARNING PROCESS EVALUATION
Pseudo-Labeled ; L tomati
: Annotation Refinement IS BB
Emotion Model} Emotion Lexicon Data I . I ground-truth data
(emotion categories) -
~” Joy @ @ @ I Text Preprocessing I tweets with emotional hashtags +
— . . pseudo-neutral tweets
=] _=) Emotion Labeler Pride I Feature Selection I
— = initial emotion classifier e ; piruannil::r Small manually
Unlabeled Data s happy = Supervised Learner and testing | _annotated data

input tweets

— g] g] E] Balanced Weighted Voting: I testingf
=)= Neutral Labeler ., 1. Rebalancing Resultant Emotion
= = w <URL> b E] E] E] 2. Weighted Voting Classifier

Fig. 1. The framework for our distant supervision method.

the maximum weight are output. For example, for the emotionality (ps = 0.2, ps =
0.3, ps =0.5, Vi #2,3,4 p; = 0) the multi-label {e3, e4} would be found with a = 0.5.
In the opposite direction, a multi-label Y; can be transformed into the emotionality by
specifying the weight of each label in Y, as ﬁ

3.1. Method Input

Figure 1 shows an overview of our distant learning method, Dystemo.! It aims at build-
ing an emotion classifier for detecting emotions of the specified category set within a
specific dataset of tweets (e.g., those on a certain topic). Correspondingly, as an input,
it requires Twitter data collected for a desired application, denoted unlabeled data
U, and emotion model specifying which category set E to recognize. The method also
requires emotion and neutral labelers. The core of an emotion labeler is an emotion lex-
icon containing associations of linguistic expressions (terms) to the emotion categories
of interest. Then, the emotion labeler is a simple initial emotion classifier assigning
emotions to tweets based on the occurrence of terms from the given lexicon. The neutral
labeler in its turn aims at identifying neutral tweets. It is essential to have neutral
tweets in the training set. Otherwise, we risk obtaining classifiers that identify almost
every tweet as emotional (it will be shown in the experimentation section), which is
unacceptable for a successful emotion recognition system. We suggest simple heuristics
for detecting neutral tweets, namely based on the presence of URLs in the tweet and
absence of potential emotional cues (they are described in detail in Section 4.4).

3.2. Initialization of Learning Process

The learning process starts with applying both emotion and neutral labelers to unla-
beled data U to obtain the pseudo-labeled data L. We assume that the emotion labeler
returns the emotionality p(d) for a given document d € U, while the neutral labeler
assigns a tweet to a neutral class ey by setting po(d) to 1.0. Tweets detected by the
neutral labeler are referred to as pseudo-neutral and are not considered to be labeled
by the emotion labeler. Tweets from U where the emotion labeler found no emotion
are not included in L, because they could be classified as neutral due to the lack of
information about emotional expressions in the initial emotion lexicon. Overall, the
pseudo-labeled data L comprise the set of tweets with mapped emotionalities, one part
found by the emotion labeler, and another—by the neutral labeler.

The first step of actual learning process is annotation refinement. It is essential
to apply it when emotion lexicons assign weights to terms, as we need to eliminate

IThe source code along with the resultant emotion classifiers are publicly available for research purposes at
http://hci.epfl.ch/dystemo.
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annotations of emotions with relatively low weights. The refinement is applied to each
tweet individually. Given the parameter oy, it sets to zero the weights of those emo-
tions that would not be included in the multi-label: e; ¢ 2(p, arer), and then normalizes
the distribution. Whether or not to apply this refinement is a parameter of the method.

The second step is to preprocess the texts of the tweets used in learning. This includes
extraction of emoticons and punctuation marks as separate tokens, lower-case trans-
formation, and normalization of elongations. More details are given in the appendix.

The third step is to extract and select features over which the classifier will be learned.
We use 1-, 2-, ..., n-grams as features. We exclude the n-grams containing only stop-
words and mark n-grams as negated if a negation word is detected up to two words
before them. Also, we only retain the n-grams that appeared K or more times in the
pseudo-labeled dataset L. From these, we select terms that are indicative of emotions by
estimating their polarity. We compute a term’s semantic orientation using Pointwise-
Mutual Information (PMI) [Turney and Littman 2003]. First, the polarity label (/T or
[7) of each tweet d € L is identified as sign(}_; g pi(d) — >, g pi(d)), where E* C E
and E- C E are the corresponding sets of positive and negative emotions. Then, the
semantic orientation SO(¢) of a term ¢ is computed as

P IOPL) {Hfreq(t,l*) |V|+freq(l‘)} "

e .
pmit, I7) = pmilt, I7) = log po—ypam =108 | o o) VT freq 0

where V is the set of extracted terms, freq(*) is the number of positive (I*) or negative (I~)
tweets, and freq(¢, I*) is the number of tweets with the term ¢, which are either positive
or negative. The formula uses smoothing: we add 1 to each term frequency computation,
and |V| to class frequency computations in order to compensate for the additions to term
frequencies. The higher the absolute value of SO(¢), the more confident we are that the
term ¢ has strong polarity and is thus potentially emotional. We filter out the features that
have an absolute score |SO(#)| lower than a threshold r. The remaining features are used
for the feature representation of the tweets. As tweets are short, the terms’ presence is used
for features’ values, instead of their frequency.

With the tweets represented as feature vectors and their associated emotionalities,
the final resultant classifier can now be learned in a supervised manner. We apply
BWYV as the supervised learner. Its choice also defines how the resultant classifier will
work.

3.3. Supervised Learner—Balanced Weighted Voting (BWV)

The BWV algorithm is a supervised learner that produces a lexicon of terms with the
associated emotionalities based on their occurrences in pseudo-labeled data L. It takes
as an input the list of terms (in our case, n-grams from the feature selection process),
and for each term ¢ computes its emotionality w(¢) = (wo(?), w1(t), wa(?), ..., wg @),
where w;(¢) is the weight of the term ¢ for the emotion i.

For learning, we know the emotionality of each tweet d ¢ L, pld) =
(po(d), p1(d), p2(d), ..., pig(d)). In BWV, we first balance the distribution of emotions:
we compute the rebalancing coefficient ¢; for each emotion and multiply by it the cor-
responding emotion weight for each tweet. We then compute the weights of emotions
for a term ¢ as the normalized sum of rebalanced tweet emotion weights:

1eq Ci * Dild
wi(t) = e P @
2 j 2dteaCi- Pi(d)
We define the coefficient for the i-th emotion as ¢; = — log W. Using a logarithm

in the formula allows penalizing the emotion categories appearing more often without
overestimating the weights of under-represented emotion categories.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 13, Publication date: August 2016.



13:8 V. Sintsova and P. Pu

This algorithm is inspired by the simple Weighted Voting (WV) approach used by
Sintsova et al. [2013]. The original WV differs from BWV in that it lacks the rebalancing
coefficients c;. As a result, the lexicon created is biased towards dominant emotions:
the more often an emotion appears in the labeled data, the greater its weight will be
in the emotionalities of the terms. The BWV approach involves reweighting process of
the emotional assignments of tweets, which is similar to the resampling approaches
designed to cope with class imbalances for classification problems [Japkowicz 2000].

The lexicon constructed via BWV learner from pseudo-labeled data is the basis for
the resultant emotion classifier. It is applied to the tweets as follows. To compute the
emotionality of a tweet p(d), we search for the lexicon terms within its text, sum the
emotionalities of the lexicon entries found, and normalize the vector. If no lexicon terms
are found, the Neutral label is returned. When lexicon terms are found, the output is
an emotion multi-label obtained from the computed emotionality with the operator
A(p(d), ap), where ay is the parameter of the algorithm.

3.4. Parameter Tuning and Automatic Evaluation

Our distant learning method involves multiple parameters, for example, the refine-
ment parameter «,.¢ or the length n of n-gram features. To find its optimal parameters,
we need to perform parameter tuning. For this, we suggest using automatically gener-
ated set of ground-truth tweets labeled based on the presence of emotional hashtags.
The used emotional hashtags are explicit descriptive words for the chosen emotions,
such as #happy for Happiness. In a study of users’ moods, De Choudhury et al. [2012a]
found that an emotional hashtag at the end of a text corresponded to the author’s mood
in 83% of tweets. We considered this evaluation to be the indicator of the good enough
quality for using such emotional hashtags as ground-truth labels for automatic eval-
uation and parameter tuning. As our emotion recognition system also should be able
to recognize tweets without emotions, we additionally include pseudo-neutral tweets
in these constructed data. Overall, having such large ground-truth data allows for an
automated way to set the parameters of our method and to validate its performance.

4. SETUP FOR METHOD APPLICATION

We present here a potential scenario of developing an emotion classifier for a new set
of emotion categories to be detected within a specific topic of discussions. This section
describes the data, emotion model, and initial labalers used, providing the details of
how to apply our distant learning method in the real application.

4.1. Data for Application

We focus on the domain of fans’ Twitter reactions to sports events. This domain was
chosen because it contains various emotions with domain-specific emotional expres-
sions, allowing us to see whether our method can adjust a general classifier to a target
domain. Furthermore, it was studied in our previous work, providing access to the
small within-domain emotion lexicon [Sintsova et al. 2013].

Our data consist of 33.2 million English Twitter posts collected over 2 weeks during
the 2012 Olympic Games by querying Olympic-related keywords, such as “Olympic” or
“London2012”. We apply prior data filtering in order to select the tweets most useful
for learning: we use only tweets containing at least three words (disregarding hashtags
and usernames) to increase the probability of learning additional terms, and exclude
retweets and tweets with duplicate text to avoid overfitting.

4.2. Emotion Model

Consistent with our previous work [Sintsova et al. 2013, 2014], we use the 20 emo-
tion categories from the Geneva Emotion Wheel (GEW, v. 2.0), a model developed in
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psychological research to systematically summarize self-reported emotional experi-
ence [Scherer 2005]. The categories are enumerated as labels on the horizontal axis
in Figure 2. Each emotion category is represented by two common emotion names to
emphasize its family nature (e.g., Happiness/Joy). We will use the first of them for a
shorter reference.

The GEW has multiple advantages. Whereas common sets of basic emotions, such as
from Ekman [1992] or Plutchik [2001], contain up to 8 categories, the GEW’s 20 cate-
gories provide a more accurate approximation of the full range of emotions that humans
are capable of experiencing. Such a fine-grained model allows us to discover more in-
sightful details about emotional reactions. Compared to the OCC model [Ortony et al.
1988] containing 22 categories differentiated based on cognitive attribution of factors
evoking emotion, we believe that the GEW emotions are more likely to be distinguished
correctly based solely on lexical terms (e.g., it can be difficult to distinguish Gratifica-
tion from Satisfaction without proper context modeling). Another alternative were the
24 primary emotions of the Hourglass of Emotions [Cambria et al. 2012], an advanced
representation of Plutchik’s emotion wheel distinguishing 4 affective dimensions and
specifying 6 levels of emotion in each. However, that model lacks cognitive-based emo-
tions such as Pride or Pity, thus precluding their analysis in sports events.

4.3. Emotion Labelers

Three initial emotion lexicons are taken as emotion labelers for our distant learning
method. Two are topic-independent: one lexicon of explicit emotional terms (GALC)
and one weighted lexicon learned from general Twitter data (PMI-Hash). We also take
one domain-specific lexicon built using human computation for analyzing reactions to
sporting events on Twitter (OlympLex).

4.3.1. GALC. GALC is a domain-independent emotion lexicon of the unigram stems
explicitly expressing an emotion, for example, “happ*” for Happiness. It was developed
along with the GEW, for automatically classifying free-format survey responses into
emotion categories [Scherer 2005]. GALC contains 279 stemmed terms for 36 emotion
categories. From these, we use 212 stems associated with 20 GEW categories. To avoid
dealing with pattern-based detection of lexicon terms, we replaced them with their
instances detected in 15,000,000 random general tweets. From these, we excluded some
frequent misallocations, such as “functional” mapped for “fun*”. This process resulted
in 1,027 terms associated with emotions. To compute a document’s emotionality using
this lexicon, we sum the number of terms found for each emotion (excluding negated
terms) and normalize the obtained vector.

4.3.2. OlympLex. This domain-specific emotion lexicon was obtained by annotating
tweets about sports events in crowdsourcing settings. It contains the emotion indi-
cators selected from those tweets by the annotators, as well as related user-entered
emotional expressions [Sintsova et al. 2013]. This emotion lexicon allocates a GEW-
based emotionality for each of its 3,193 terms (from unigrams to 5-grams). Further-
more, we removed 94 frequent terms related to a description of the Olympics rather
than emotions, such as “event”. The average of the emotionalities of terms found in the
tweet text (excluding negated terms) is the emotionality of the whole tweet.

4.3.3. PMI-Hash. We also generate a topic-independent Twitter-specific emotion lexi-
con using the PMI-based method [Mohammad 2012]. It computes emotion weights of
terms using tweets with emotional hashtags. We defined a set of 167 emotional hash-
tags for all the 20 emotion categories of GEW based on the GALC lexicon [Scherer
2005] described earlier. The English tweets with those hashtags were collected via
streaming API without any further restrictions. From them, we randomly selected
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Fig. 2. Distribution of emotions found in the hashtagged dataset and manual annotations.

500,000 tweets where the specified hashtags appear at the end, excluding retweets,
short tweets, tweets with several emotional hashtags, and duplicates. We applied the
same preprocessing and n-gram extraction steps as in our method, and used unigrams
and bigrams as terms for the lexicon. The weights of these terms are computed via
the PMI-Based learner. It computes the strength of association SoA(t, e;) of term ¢ to
the emotion ¢; as the difference in PMI of term ¢ toward the presence and absence of
emotion e;. The formula (1) is used again while considering the presence of emotion
e/ as a positive class and an absence of emotion e; as a negative class. The positive
values are saved as term emotion weights, that is, w;(¢) = max(0, SoA(¢, ¢;)). In total
85,530 terms are extracted. When applying this lexicon to the text, we sum the weights
of found lexicon terms and normalize the resultant vector to obtain an emotionality of
the text.

4.4. Neutral Labeler

The neutral labeler aims to find the tweets with a high probability of being neutral.
To define the heuristics of such labeling, we assume that the presence of a URL indi-
cates less emotional tweets, such as news or information sharing. We extracted such
tweets and observed that to enforce tweet neutrality, we should avoid the presence of
usernames and personal pronouns (which makes sharing more personal), emoticons,
and other emotional cues. We exclude tweets that contain explicit emotional terms
from the GALC lexicon, intensity shifters (exclamation marks, elongations, intensifier
and downtoner words), and strong subjective terms (from MPQA Subjectivity Lexicon
[Wilson et al. 2005]). The examples of such identified neutral tweets are “Sports De-
bates and Olympic Coverage <URL>" and “read more: history of the Olympic torch,
flame, and relay <URL>.”

5. EVALUATION METHODOLOGY

This section describes ground-truth data used for the evaluation of the obtained clas-
sifiers, as well as how we tune and evaluate the resultant emotion classifiers. Also, it
introduces other classifiers used for comparison with BWV.

5.1. Ground-Truth Data

5.1.1. Large Automatically Labeled Data. Following the idea introduced in Section 3.4, we
generate the pseudo-annotated tweets for evaluating the quality of built classifiers in
an automatic way. We extracted from the full dataset of pre-filtered Olympic tweets
(no short tweets, retweets, or duplicates) those that contain emotional hashtags at the
end of a text (we used the same 167 hashtags that were used earlier while building
PMI-Hash). We additionally excluded tweets featuring several emotional hashtags.
This procedure resulted in 52,218 tweets labeled with emotional hashtags, that is, only
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0.16% of the full dataset of 33.2 million tweets. The distribution of emotion categories
is given in Figure 2. As these data are intended for testing the algorithms’ outputs,
“labeling” hashtags were removed from the texts.

The second half of the automatic ground-truth data consist of pseudo-neutral tweets,
that is, tweets detected by the introduced neutral labeler. We randomly selected the
same number of such tweets (52,218) for inclusion in the evaluation set. The URLs
were removed from their texts. We decided to use the same number of pseudo-neutral
tweets as hashtagged tweets because the real proportion of emotional to non-emotional
tweets is unknown and may vary between datasets or dataset subsets.

We split these automatic data into a validation set Sy to tune the algorithm’s meta-
parameters and test set Sy to evaluate the resultant classifiers in 1:2 proportion, that
is 34,802 tweets for Sy and 69,634 tweets for S7. This process preserved emotion distri-
bution, meaning tweets for each emotion category were split proportionally, including
pseudo-neutral tweets.

5.1.2. Manually Annotated Data. We asked human annotators to annotate 600 Olympic
tweets (again pre-filtered, without overlap with Sy ). To ensure the presence of multiple
emotions, we avoided using only random tweets. Instead, we selected three types of
tweets for annotation: 200 random tweets, 200 tweets with emotional hashtags (10
per each emotion category, with removed emotional hashtags), and 200 pseudo-neutral
tweets (with removed URLs). Every tweet was labeled by two annotators. They were
asked to provide up to three emotion labels per tweet, with one marked as dominant.
They could also choose to label Other emotion or No emotion. Additionally, we asked
them to mark if a tweet’s emotion is ambiguous or if the text is unclear. We excluded
such tweets to have a dataset of higher quality, resulting in 492 tweets available for
evaluation. The Fleiss Kappa [Fleiss 1971] of paired dominant labels is 0.31, show-
ing a fair agreement. We also computed what proportion of the tweets have partial
agreement: we counted that in 58.3% of tweets, the dominant label from one annotator
is within the full set of labels from another annotator. We found that disagreement
comes frequently while discerning whether the tweets is emotional or not (19.3% of
tweets). We asked for the third annotation of such tweets and excluded an annotation
in disagreement with other two regarding whether the tweet is emotional or not.

In order to prepare the ground-truth dataset for testing, we assign to a tweet an
emotion multi-label that includes two chosen dominant emotion categories and all
other agreed categories from two annotators. The average number of labels per tweet
is 1.71, showing the multiplicity of emotional experience and the need to treat this
problem as multi-label classification. The distribution of outputted labels is shown in
Figure 2. We name this evaluation set Sy;.

5.2. Performance Metrics

We record the performance of the corresponding algorithm instances using multiple
evaluation metrics suitable for multi-label classification [Tsoumakas and Katakis 2007;
Sokolova and Lapalme 2009]. We compute both macro- and micro-versions of precision,
recall, and F1-score, as well as accuracy.

Let T; be the set of tweets where the emotion e; is present according to the ground
truth, O; be the set of tweets that a classifier outputs as belonging to emotion e;, and
C; = T; N O; be the set of tweets correctly classified as belonging to emotion e;. Then,
for emotion e;, recall is R; = ‘I%I" precision is P, = I%l\’ and F1l-score is F; = %.

To compute macro-recall (macro-R), macro-precision (macro-P), and macro-F1 score
(macro-F1), we average those values between emotion categories. Thus, macro-R =

% Z‘AEll R;, macro-P = % ZEI P;, macro-F1 = I_é\ Zli'l F;. 1t is noteworthy that the

1=
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Neutral category eq is excluded from this averaging, as it is not the focus of the emo-
tion recognition system. We also exclude the Contempt category, which was under-
represented in the dataset. The benefit of using macro-scores is that they assign equal
importance to each emotion category, regardless of their distribution.

We compute micro-recall (micro-R), micro-precision (micro-P), and micro-F1 score
(micro-F1) using the formulas for recall, precision, and F1-score with the total number
of true labels, outputted labels, and correctly detected labels for all emotion categories.
That is, micro-P = &-lot, micro-R = ${gi, and micro-F1 = Zarel-merok The labels
for the Neutral category are again excluded. In contrast to macro-metrics, micro-metrics
take into account the distribution of emotions in the dataset. Thus, they provide an
estimation of how well an evaluated classifier can detect emotions while giving more
weight to the most frequently appearing emotions.

We also evaluate the accuracy of classifiers. In the context of multi-label classifica-
tion, the accuracy A(d) for a tweet d is defined as the Jaccard measure between the set
of its true labels T'(d) and the set of labels O(d) that a classifier outputs for it, that

is, Ald) = %. The overall accuracy A is the mean of A(d) for all tweets in the

dataset D: A = ﬁ Y aep Ald). Accuracy evaluates how applicable the classifier is, in

general, over the dataset, as it checks its performance at the per-document level, while
also evaluating its ability to separate the neutral category from other emotions.

5.3. Comparison with Other Methods

Using the same distant learning framework, we compare the BWV classifier with the
five other supervised classifiers used for emotion recognition and text classification. To
apply them instead of BWV, we transform the format of the pseudo-labeled data from
emotionalities into multi-labels: to each emotionality p we apply operator A(p, ctrer)
with the parameter «;.r specified for the annotation refinement. We consider two ways
to address such multi-label classification using standard machine-learning classifiers:
Multi-Class (mcl) and One-vs.-Rest (1vR) transformations [Tsoumakas and Katakis
2007].

5.3.1. Multi-Class Transformation (mcl). This approach transforms the given multi-label
classification problem into a multi-class problem: each document d with a multi-label
Y = {e;,} € E° yields |Y| documents in the new training set, one for each label e;, € Y.
We consider two classifiers: Multinomial Naive Bayes (mcl-MNB) and Logistic Re-
gression (mcl-LogReg), implemented using WEKA [Hall et al. 2009] and LibLINEAR
software [Fan et al. 2008], respectively. Both of them return probabilistic output, which
is treated as an emotionality of the text and is transformed back into the multi-label
using the operator 2 with the parameter «( again.

5.3.2. One-vs.-Rest Transformation (1vR). This approach transforms the given multi-label
problem into | E°| independent binary classification tasks, one for each emotion category.
A classifier for emotion e; decides if it is present (class e;") or not (¢; ). We again
evaluate Multinomial Naive Bayes (1vR-MNB) and Logistic Regression (1vR-LogReg)
classifiers in these settings (but for binary classification). As both classifiers support the
probabilistic output, we specified that multi-label output for a text d should contain
only those emotions e; for which the probability of its presence is higher than some
threshold r (a new parameter) (i.e., when P(e/|d) > r). We also applied an additional
per-category feature selection with this transformation. To select features for emotion
e¢;, we used the term’s strength of association to that emotion SoA(¢, e;) computed in the
same way as for PMI-based learner (described in Section 4.3.3). The terms that have an
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absolute score |SoA(t, e;)| lower than a threshold 6 are filtered out. For simplification,
0 is fixed to the same value for all emotion categories.

5.3.3. PMI-Based Learner. We additionally compare our method with the PMI-based
learner used for generation of emotion lexicon from pseudo-labeled data by Mohammad
[2012] and described in detail in Section 4.3.3, where it is used for generating PMI-
Hash emotion lexicon. We only include here the threshold 6 to filter out low values
of |SoA(t, e;)|, similar to per-category feature selection in 1vR transformation. The
outputted emotionality of the tweets is transformed into multi-label output using the
operator 2 with the parameter «( again.

5.3.4. Random Baseline. We also adapt a random baseline (Random) to estimate the
problem’s difficulty: it decides independently whether or not each emotion is present,
with probability defined by the emotion distribution in the test dataset. Performance
scores are averaged over 1,000 runs.

5.4. Input Data, Parameter Tuning, and Testing

In our experiments, instead of applying emotion labelers to all the available tweets, we
use only Ny random pre-filtered tweets (no retweets, duplicates, or short tweets) due to
our limited computational resources. At the same time, as our Neutral Labeler applies
more restrictive heuristics, we could apply it to all the available pre-filtered tweets, and
use in the experiments the same amount Ny of pseudo-neutral tweets. Balancing the
amount of pseudo-neutral and potentially emotional tweets in learning process allows
us to give the same detection priority to both of these classes. All unlabeled data used
in learning are disjoint from any considered ground-truth data.

To find the optimal parameters of each algorithm, we perform parameter tuning
separately for each initial emotion labeler. The data for learning are built with Ny =
100,000, and validation set Sy is used for recording the performance. Among the
obtained results, we find a set of parameters that yields the highest micro-F1 score
on Sy. We chose to maximize the micro-F1 score because it was found to lead to a
better balance between micro-precision and recall. The parameter space explored and
optimal parameters chosen are described in the appendix. The learning process for
building final classifiers to test uses larger data built with Ny = 500,000. The obtained
classifiers are then evaluated on automatic test set S and manual test set Sy,.

6. EVALUATION RESULTS

This section presents the results of the tuned distant learning algorithms on the test
datasets. We compare the performance of the resultant classifiers with the baseline
performances of the initial emotion labelers applied without distant learning or the
neutral labeler. They are reported as Initial. Further, we report how significantly each
algorithm’s performance metrics differ from those of the corresponding initial labeler,
as estimated by randomization tests [Yeh 2000]. One asterisk * indicates a p-value
< 0.05; two asterisks ** indicate a p-value < 0.01.

6.1. Improvement over the Initial Emotion Labelers

Table I presents the results on the test dataset S;. They show that our proposed BWV
method substantially improves the quality of initial emotion labelers on all of the main
performance metrics: macro-F1, accuracy, and micro-F1 score. The only exception is
a lower macro-F1 score when starting from OlympLex, but this result is insignificant
(p-value = 0.065). The largest improvements are observed for micro-F1 scores: 41%
when started from PMI-Hash, 53% from OlympLex, and 236% from GALC. The highest
micro-F1 score is 40.6% with PMI-Hash as the input emotion labeler. The minimum
relative increase in accuracy is 10.6% (with GALC). These findings confirm that BWV
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Table I. Evaluating Distant Supervision Algorithms on Automatic Test Data Sr
Emotion macro micro é
Labeler | Algorithm P R F1 A P R F1 &
- Random 2.5 1.3 1.7 41.6 8.7 4.4 5.8
Initial 20.6 3.6 4.8 52.2 23.6 5.1 8.4
mcl-MNB 21.4 12.2** 10.3** + |62.0** 1 | 30.6** 28.1** 29.3** 4 |1
mcl-LogReg | 7.5** 23.9** 8.9 4 143.1* | |9.6™ 30.4** 14.6" 4 | 6
GALC |1vR-MNB 11.8** 17.1** 9.7 4 |57.0 1 |16.9** 34.6** 22. 7 4 |4
1vR-LogReg | 12.1** 8.8** 8.1% 4 | b4.4™ 4 |22.0% 20.9** 215" 4 | 5
PMI-based |12.7** 10.2** 9.3** 4 | 53.1™ 1 |28.0** 26.4** 27.2% 4 |3
BWV 16.8** 11.5** 9.8 4+ | 57.8%* 4 |27.2* 29.1%* 28.2%% 4 | 2
Initial 114 9.7 7.1 474 19.3 19.3 19.3
mcl-MNB 19.7** 11.2** 6.8 | |585% 4 |26.3 27.0%* 26.7** ¢ |3
mcl-LogReg | 9.1** 12.4** 7.6% 4 |42.9% | |16.1** 21.6** 184" | |6
Olggip' 1IvR-MNB | 19.4* 12.3% 73 4 |58.9% 4 |23.3% 28.3" 25.6 4 |4
1vR-LogReg | 11.1* 16.5** 9.8** 4 |51.3* 4 |17.1* 27.9** 21.2** 4 | 5
PMI-based |15.8** 9.6 7.3 4t |58.8% 4 |28.3* 26.0** 27.1% 4 | 2
BWV 17.8** 9.4 6.7 | |59.4* 1 |29.9** 29.2** 29.5** 4 |1
Initial 12.1 17.0 11.5 23.7 21.8 42.0 28.7
mcl-MNB 22.8** 15.9** 13.1** 4+ | 64.4* 4 |37.6™ 43.0** 40.1** ¢ | 3
mcl-LogReg | 14.4** 18.7** 14.8% 4 | 52,7 4 |30.9* 41.8 35.5" 4 | 6
If;l:gh IWR-MNB | 19.9%  16.7 142 4 |64.6* 1 |37.5%  43.3% 402" 1 |2
1vR-LogReg | 17.6** 18.9** 16.2** 4+ |60.6™ 1 |35.4** 42.2 38.5" 4 |5
PMI-based |22.3** 15.6** 14.4* 4 |63.8 1 | 38.5** 41.3** 39.9" 1 | 4
BWV 29.3** 15.5** 13.1* 4 | 64.1* ¢ | 37.3* 44.4** 40.6** 1 |1

All performance scores are percentages. The results of learned classifiers are compared with those of
the corresponding initial labelers. One asterisk * indicates a p-value < 0.05; two asterisks ** indicate a
p-value < 0.01.

can build emotion classifiers that are far more accurate than the existent emotion
labelers. The experiments also show that the other algorithms applied within the same
distant learning framework can improve the performance of initial classifiers too.

To our surprise, we observed greater macro- and micro-precision from the classifiers
obtained through distant learning than from the initial classifiers. The best micro-
precision of BWV is 37.3% starting from PMI-Hash. It is 71% better than that of the
initial PMI-Hash lexicon. Based on our previous experiments [Sintsova et al. 2014], we
expected that a distant learning approach would only improve the classifiers’ recall by
finding more emotional expressions. However, this increase in precision indicates that,
in many cases, the distant learning process corrects the terms’ emotion distributions.

6.2. Comparison of BWV and Other Supervised Classifiers

To further compare the distant learning algorithms, we rank their performance using
the micro-F1 score (as it produces a more stable ranking for different emotion labelers).

Mcl-LogReg performs worst, both in terms of micro-F1 and accuracy. This is due to
its lower precision, possibly because it finds more tweets to be emotional (>62% for all
input emotion labelers) than other classifiers (<54%), thus making more mistakes on
neutral tweets.

1vR-LogReg is the next worst, with the moderate micro-F1 scores. Although 1vR-
LogReg achieves the highest macro-F1 scores for OlympLex and PMI-Hash, these
are accompanied by relatively low macro-precision (in comparison to BWV), which is
undesirable for the real-world applications.
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Table Il. Improvements Due to the Specific Charasteristics of Dystemo

Parameters macro micro
Algorithm | Ble | Neut P R F1 A P R F1
Initial - - 12.1 17.0 11.5 23.7 21.8 42.0 28.7

BWV Log | Incl |29.3*  15.5* 13.1** ¢ | 64.1** ¢t | 37.3" 44.4™ 40.6** 1

Alternative parameters
wv No 25.9 % 11.2** 12.1% ¢ | 63.4* 1 |45.83%  31.5%*  37.1"* ¢
BWV No |[16.0* 14.1% 11.1% | | 34.0™ 1 |25.9%  40.2* 315" ¢

The results are on automatic test set Sp with PMI-Hash as initial emotion labeler. All performance

scores are percentages. Results of learned classifiers are compared with those of the corresponding
initial labeler.

The third and forth ranks in the aggregated performance are shared between 1vR-
MNB and PMI-based methods. 1vR-MNB performs best with PMI-Hash, achieving the
top accuracy and high micro-F1 score; whereas PMI-based systematically increases
accuracy, micro-precision and micro-F1 scores for all three emotion labelers.

The two classifiers with the highest ranks are mcl-MNB and BWV. When start-
ing from GALC, mlc-MNB’s performance is superior to BWV for all metrics except
micro-recall. However, BWV produces the highest micro-F1 scores starting from the
OlympLex and PMI-Hash lexicons. Moreover, its 40.6% micro-F1 score when starting
from MNB-Hash is the highest score achieved in all our experiments, indicating that
BWYV was the most appropriate for real-world applications of emotion recognition in
tweets.

6.3. Effects of Choosing Initial Emotion Labeler

The three evaluated initial emotion labelers differ not only in their basic performance
but also in their results in conjunction with the distant learning method. Due to its
explicit nature, the GALC lexicon has relatively high macro- and micro-precision, but
low recall. Distant learning can improve its performance by increasing recall—it dis-
covers new emotional terms that co-appear with the given terms in the unlabeled data.
OlympLex’s precision and recall are close to each other due to its higher coverage
of emotion terms used in the sports domain. This lexicon’s size is moderate, but our
method can still discover new terms indicative of emotion and increase both micro-
and macro-precision, probably because of a better adjustment of the distribution in
emotion categories and better separation of the most frequent categories. Finally, PMI-
Hash shows the highest macro- and micro-F1 scores of all the initial emotion labelers,
yet its accuracy is the lowest and its recall is almost twice as large as precision. The
PMI-Hash has this behavior because it was trained on data without neutral tweets, and
thus it classifies most tweets (96%) as belonging to an emotion category and has low
accuracy for neutral tweets. The distant learning approach successfully helps overcome
this problem and increases PMI-Hash’s precision up to the level of its recall.

Overall, this evaluation indicates that the described distant learning method is able
to adjust all three initial emotion lexicons to an application domain. This is validated
by a statistically significant increase in accuracy and micro-F1 score.

6.4. Variations in Dystemo Configuration

Rebalancing Process. The suggested BWV learning method originates from Weighted
Voting (WV), which does not introduce rebalancing coefficients ¢; (described in
Section 3.3). Table II shows the benefits of having the rebalancing process. It com-
pares BWV with WV on test set S; while using PMI-hash as emotion labeler (the
parameters of WV were tuned separately).
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Table Ill. Evaluating Distant Supervision Algorithms on Manual Test Data Sy

Emot. Labeler | Algorithm A micro-P micro-R micro-F1 | Coverage | #Labels

Initial 25.6 50.0 5.4 9.8 14.2 1.14

GALC mcl-MNB | 30.0** ¢ |30.5* | 12.2** ¢ 17.4** ¢ 51.2 1.17
BWV 28.9* ¢ |27.8% | 11.1** 4 15.9% ¢ 51.8 1.16

Initial 32.7 42.5 16.4 23.6 54.5 1.06

OlympLex mcl-MNB | 34.9* ¢ [39.7 | 16.6 ¢ 235 | 63.0 1.00
BWV 33.6™ ¢ |37.7 | 13.9* | 20.4* | 55.5 1.00

Initial 12.2 19.7 12.9 15.6 98.0 1.00

PMI-Hash mcl-MNB | 28.4* ¢ |27.5** ¢+ 129 - 175 ¢ 65.9 1.06
BWV 28.5** ¢ | 259 ¢+ 11.8 | 16.2 1 60.4 1.13

All scores are percentages, except for the average number of emotion labels #Labels. Results of learned
classifiers are compared with those of the corresponding initial labelers.

We observe that without rebalancing, WV is inferior to BWV for micro- and macro-F1
scores. Although WV showes the highest micro-precision, its recall is significantly lower
than the initial labelers. With OlympLex and GALC as start points, WV’s macro-F1
scores are even lower than those of the initial emotion labelers. This means that WV
without rebalancing is unsuitable for distant learning, at least not within our method.

Using Neutral Tweets during Learning. One part of pseudo-labeled data for learning
comprises pseudo-neutral tweets. We investigate if adding them is helpful by learning
additionally the BWV classifier without including the pseudo-neutral tweets in the
learning process (with the parameters retuned accordingly). Its results on the test set
St are indicated with parameter Neut=No in Table II. It is noteworthy that, as Sy
includes neutral tweets, the classifier’s ability to recognize them is evaluated too.

We find that without neutral tweets BWV performs worse than with them in all
metrics. This is because without exposure to neutral tweets during learning, resultant
classifiers tend to classify most test tweets as emotional (up to 86%), even though it
adapted higher feature selection threshold z. This results in many errors on neutral
tweets. Similar behavior is observed when using the other two initial labelers (Olymp-
Lex and GALC), but results are aggravated by a significant decrease in accuracy.

6.5. Validation of Distant Learning on Manually Annotated Data

Testing algorithms on large ground-truth data Sy allowed us to automatically find the
best parameters of the algorithms and cover more feature terms in evaluation. However,
testing on manual data is essential to understand how the quality of classifier will be
perceived in human’s eye. Thus, we confirm the positive effects of distant learning on
small manually annotated data, Sy, described in Section 5.1.2. Table III presents the
results of this test with two distant learning methods, BWV and mcl-MNB. We compare
these two methods because they ranked high on automatic test data Sp. Notice that
we do not report macro-scores because for many categories there are not enough tweets
to obtain conclusive per-category metrics. However, we additionally report coverage of
the methods which estimates how many tweets were detected as emotional, and the
average number of emotion labels found in tweets classified as emotional.

When initial emotion labelers are GALC and PMI-Hash, the effects of distant learn-
ing algorithms remain similar to those discovered with automatic test data St: apply-
ing distant learning increases the accuracy and micro-F1 scores of initial labelers, due
to recall increase for GALC (along with coverage increase) and precision increase for
PMI-Hash. However, the improvements are smaller. This can be attributed to the fact
that our manual annotation is less skewed toward dominant categories and requires
from classifiers to perform better across more categories. Also, while comparing the
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performance of mcl-MNB and BWV algorithms starting from GALC and PMI-Hash,
we can observe that mcl-MNB slightly outperforms BWV. However, we did not find a
significant difference in their micro-F1 scores.

With OlympLex as a starting labeler, we obtain different effects. While both distant
learning methods still increase the accuracy over the initial OlympLex labeler, neither
mlc-MNB nor BWV improve the micro-F1 score despite previously observed significant
increase. However, already on automatic data we have observed an insignificant de-
crease in their macro-F1 scores. This can signify the need to optimize for both macro-
and micro-F1 scores in the parameter tuning process. Moreover, this evaluation shows
that OlympLex, built using manual annotations of tweets, performs best on manually
annotated data. This reveals the difficulty to improve emotion lexicons of better quality
via distant learning and the need for more advanced methods in such cases.

We also observe all resultant classifiers have lower micro-recall scores on manual
test set Sy; compared to those scores on automatic set Sy. This can be due to the higher
average number of emotion labels per tweet in the manual ground-truth (1.71 in Sy,
versus 1.0 in S7). This means that, to achieve better recall scores, resultant classifiers
have to find correctly more emotion labels per tweet. However, all the final classifiers
return only up to 1.17 emotion labels per tweet. With OlympLex as an initial labeler,
both mcl-MNB and BWV learn to return exactly one label per tweet. This leaves room
for potentially better optimization of the classifiers’ output parameter «.

Overall, our method, Dystemo applied with BWV as a learning algorithm is shown
to be effective in extending initial emotion lexicons of small coverage to find more
emotional tweets (coverage is 264% more and recall is 105% higher for GALC lexi-
con). Additionally, it can improve coarse emotion lexicons to perform more accurately
(accuracy is 133% higher for PMI-Hash lexicon).

7. DISCUSSION AND FUTURE WORK

The present work showed that applying distant learning with emotion lexicons as ini-
tial labelers is a viable approach for building application-specific emotion classifiers.
Experiments show that the resultant classifiers are able to achieve micro-F1 scores
between 15.9% and 40.6% while recognizing 20 emotions. Previous work reported sim-
ilar scores when fewer emotion categories were used, for example, Mohammad [2012]
achieved a micro-F1 score of 49.9% for six basic emotion categories in cross-validation
on hashtagged tweets and 43.7% on news headlines. Our classifiers deal with more
emotion categories, and thus the performance baseline for guessing randomly is much
lower (5.8% for 20 emotions versus 16.7% for 6). This means the F1-scores of our method
are more difficult to achieve given the challenging nature of the problem.

The suggested method was proven to be beneficial while using as an input three
different kinds of initial lexicons. The performance of the resultant classifiers seems to
vary depending on the amount of pseudo-labeled emotional data discovered by initial
emotion lexicons. It would be interesting for future studies to examine what quantity
of unlabeled data is required for the successful distant learning process. Moreover, we
observe that the initial lexicons can have different best-detected categories. This can
motivate future research in aggregating the classifiers obtained via distant learning
from different initial lexicons in order to build the classifier having a better quality.

We confirmed the contribution of the main components specific to our Dystemo
method. The rebalancing, introduced in Balanced Weighted Voting (BWV) learner,
leads to the relative increase of micro-F1 score by 9.2%. Techniques for balancing
training data have never been tested for emotion recognition before. Applying other re-
balancing techniques [Batista et al. 2004] and testing how rebalancing processes help
other learning algorithms for emotion recognition could be interesting avenues for fu-
ture research as well. Another distinguishing property of our method is inclusion of
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novel heuristics to identify neutral tweets for learning. Our experiments show that this
is essential to avoid constructing classifiers that find emotions in almost every tweet:
when starting from PMI-Hash, accuracy grows from 34% to 64.1%. While a distant
supervision over pseudo-neutral tweets was already proposed in the context of polarity
classification [Pak and Paroubek 2010; Kouloumpis et al. 2011], for the problem of
emotion classification, a Neutral category was only studied when training data were
labeled manually, for example by Neviarouskaya et al. [2011].

By comparing the suggested BWV learning method with other more advanced su-
pervised classifiers, we show that even a simple lexicon-based classifier can achieve
competitive performance. Yet, the additional advantage of BWV is that it produces
an emotion lexicon, where each term (n-gram) is associated with an emotion distribu-
tion (called emotionality). This property opens a large perspective for potential future
applications and improvements, such as extracting lexicon-based features for machine-
learning classifiers [Mohammad 2012; Wang et al. 2012].

While investigating the viability of distant learning starting from emotion lexicons,
we used relatively simple features for classification, namely n-grams appearance, and
simple feature aggregation techniques, that is averaging the distributions of appeared
n-grams. We further review what mistakes our classifiers repeatedly made due to these
simplifications. Many seem to appear in the tweets where emotional sense is captured
within spans of texts longer than n-grams. Examples are “Why is <x> always on
when I want to watch <y>?” and “<x>’s hopes for medal in <y> dashed.” Our method
would potentially benefit from incorporating more developed techniques of represent-
ing emotional meaning in text, such as parsing semantic concepts [Poria et al. 2014] or
extracting main emotional parts [Shaheen et al. 2014]. Similarly, modeling semantic
compositionality could help to better aggregate detected lexicon features into tweet-
level emotions. An example solution can involve treating emotions in composite phrases
using hand-coded rules [Neviarouskaya et al. 2011] or deep neural network represen-
tations [Socher et al. 2013; Severyn and Moschitti 2015]. Another source of mistakes
is the lack of proper modeling of contextual modifiers that can change the emotional
meaning of terms. In the future, we plan to include better treatment of such linguis-
tic modifiers as negations (e.g., “lose interest”) and downtoners (e.g., “least favorite”)
while applying both final and initial classifiers [Carrillo-de Albornoz and Plaza 2013].
Finally, we observe tweets with the mixture of positive and negative emotions (e.g.,
“unlucky <x>, we are still proud of you”). Learning from them is likely to cause erro-
neous associations of terms to positive and negative emotions simultaneously. Future
work should address how to limit the scope of corresponding emotion descriptions in
the text, for example, based on annotating parts of the texts with off-the-shelf polarity
classifiers, such as SentiStrength [Thelwall et al. 2012].

The distant learning method developed and analyzed in this article is potentially
valuable to many domains of textual emotion analysis lacking easily accessible labels.
Further studies are required to determine whether these results can be generalized
to those domains (e.g., reactions to other public events such as awards or elections,
product reviews, or posts in support forums) with their corresponding sets of emotions.

8. CONCLUSION

This manuscript presents an in-depth study of Dystemo—a distant learning method
for multi-category emotion recognition in tweets. Instead of defining heuristics for
detecting tweets with specific emotions based on hashtags or emoticons, we argue for
the use of existing or easy-to-produce emotion lexicons as a starting point. We describe
a method that can either extend an initial lexicon to cover more emotional terms and
expressions, or refine it to detect emotional tweets more correctly. Both improvements
make the novel classifiers more suitable for the chosen application.
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Using sports tweets as a dataset, we have shown a detailed validation process in-
volving three different initial emotion lexicons for the classification of twenty emotion
categories. The proposed distant learning method, applied with a novel supervised
learner—Balanced Weighted Voting—improves the micro F1-score in all three cases,
with relative increases between 41% and 236%. Subsequent experiments suggest that
rebalancing initially labeled data is an essential step in our method’s success. Among
other contributions, we introduce heuristics to automatically find neutral tweets and
show the importance of including them in the learning process.

To the best of our knowledge, Dystemo is the first framework to produce domain-
specific emotion classifiers without using costly manual labeling or special content
cues such as hashtags. Because of these properties, Dystemo is more general than other
existing methods. Researchers and practitioners can easily adapt Dystemo’s emotion
model to the requirements of their specific domain, and start building an optimal
classifier using the procedure described in this paper.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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