Extended Intermolecular Interactions Governing Photocurrent-Voltage Relations in Ternary Organic Solar Cells

Efficient organic solar cells are based on (electron) donor-acceptor heterojunctions. An optically generated excited molecular state (exciton) is dissociated at this junction, forming a charge-transfer (CT) state in an intermediate step before the electron and hole are completely separated. The observed highly efficient dissociation of this Coulombically bound state raises the question on the dissociation mechanism. Here, we show that the observed high quantum yields of charge carrier generation and CT state dissociation are due to extended (and consequently weakly bound) CT states visible in absorption and emission spectra and first-principles calculations. Identifying a new geminate-pair loss mechanism via donor excimers, we find that the hole on the small-molecule donor is not localized on a single molecule and charge separation is correlated with the energetic offset between excimer and CT states. Thus, the charges upon interface charge transfer and even in the case of back-transfer and recombination are less localized than commonly assumed.


Published in:
Journal Of Physical Chemistry Letters, 7, 19, 3936-3944
Year:
2016
Publisher:
Washington, Amer Chemical Soc
ISSN:
1948-7185
Laboratories:




 Record created 2016-11-21, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)