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This paper concerns approximate cloaking by mapping for a full, but scalar wave 
equation, when one allows for physically relevant frequency dependence of the 
material properties of the cloak. The paper is a natural continuation of [20], but 
here we employ the Drude–Lorentz model in the cloaking layer, that is otherwise 
constructed by an approximate blow up transformation of the type introduced 
in [10]. The central mathematical problem is to analyze the effect of a small 
inhomogeneity in the context of this non-local full wave equation.

© 2016 Elsevier Masson SAS. All rights reserved.

r é s u m é

L’article traite du «cloaking» approché par changement de variables pour l’équation 
des ondes scalaire avec amortissement. Il poursuit l’étude présentée dans [20] par 
l’étude d’un modèle réaliste et pertinent dans lesquels les coefficients constitutifs du 
milieu constituant la cape d’invisibilité dépendent de la fréquence. En l’occurence 
le dispositif est construit par une transformation asymptotiquement singulière 
analogue à celles introduites dans [10], cependant la région occupée par la 
cape d’invisibilité est décrite par un modèle de Drude–Lorentz. La question 
mathématique centrale de l’article est l’analyse de l’effet d’une inhomogénéité de 
petite taille dans le contexte de l’équation des ondes résultante, non locale avec 
amortissement.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Cloaking by mapping (frequently referred to as transformation optics) was introduced by Pendry, Schurig, 
and Smith [23] for the Maxwell system, and Leonhardt [12] in the geometric optics setting. These authors 
used a singular change of variables which blows up a point to a cloaked region. The exact same transformation 
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had been used before by Greenleaf, Lassas, and Uhlmann [6] to establish non-uniqueness in the context of 
the Calderon problem. The singular nature of the cloaks presents various difficulties in practice as well as 
in theory: (1) they are hard to fabricate and (2) in certain cases the correct definition of the corresponding 
electromagnetic fields is not obvious. To avoid the use of singular structures, regularized schemes have been 
proposed in [3,4,10,26,27].

In this paper we analyze approximate cloaking for a full wave equation using transformation optics, 
where we incorporate the Drude–Lorentz model, see e.g., [8], in the layer constructed by transformation 
optics. The Drude–Lorentz model takes into account the effect of the oscillations of free electrons on the 
electric permittivity (by means of a simple harmonic oscillator model). We could have incorporated the same 
model in other parts of space, to better model conducting metallic elements of these parts as well. For the 
transformation optics construction we use the approximate scheme introduced in [10], which is based on a 
transformation blowing up a small ball of radius ε to the cloaked region. When viewed in (complex) frequency 
domain, the refractive index associated with the Drude–Lorentz model may be extended analytically to the 
whole upper half plane. As is well known, an immediate consequence of this is causality for the associated 
non-local wave equation, see [8] and [28], – a property which is most essential for the well-posedness (and 
the physical relevance) of this equation. Another well known consequence of this analyticity property are the 
so-called Kramers–Krönig relations between the real and the imaginary part of the refractive index (they 
are essentially related by Hilbert transforms). However, this fact is not explicitly used in our analysis.

Approximate cloaking schemes for the Helmholtz equation based on the regularized transformations 
introduced in [10] have been studied extensively in various regimes, see [9,16,17,21]. A related scheme, 
which (in 3d) blows up a small diameter cylinder to the cloaked region was studied in [18] (see also [5,13,
14]). Frequently a (damping) lossy layer is employed inside the transformation cloak. Without this lossy 
layer, the field inside the cloaked region might depend on the field outside (even for a perfect cloak), and 
resonance can appear and destroy the cloaking (or approximate cloaking) ability of the pure transformation 
cloak, see [17].

We next describe the setting in detail. Given r > 0, let Br denote the open ball centered at 0 and of 
radius r. Let Fε be the standard transformation Rd → Rd, d = 2, 3, which blows up the ball Bε to B1, 
equals the identity outside B2, and is given by

Fε(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x if x ∈ Rd \B2,(2 − 2ε
2 − ε

+ |x|
2 − ε

) x

|x| if x ∈ B2 \Bε,

x

ε
if x ∈ Bε.

(1.1)

Assume that the cloaked region is the ball B1/2, the contents of which is characterized by a real, matrix 
valued function a and a complex function σ. The surrounding cloak contains two parts. In the time harmonic 
regime, these can be described as follows. The outer part is the Drude–Lorentz version of the standard layer, 
generated by the blow up map Fε. In this layer, occupying B2 \ B1, the material characteristics are given 
by (

Fε

)
∗I,

(
Fε

)
∗1 + σ1,c , (1.2)

where

σ1,c(k, x) = σN

k2
ε − k2 − iσDk

. (1.3)

While the first part 
(
Fε

)
∗1 of the refractive index in (1.2) is standard from the transformation optics 

approach, the second part σ1,c is exactly the correction introduced by the Drude–Lorentz model, see e.g., 
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[8, page 331]. Here σN and σD are material constants which can in principle depend on the space variable 
x, and kε > 0 is the so-called resonant frequency of the Drude–Lorentz model; in a more general model 
there could be several resonant frequencies {ki,ε}, and the corresponding part of the refractive index would 
be a sum of terms (1.3) ranging over all these frequencies, see e.g., [8, page 310]. In this paper, we use the 
standard notation

F∗A(y) = DF (x)A(x)DFT (x)
| detDF(x)| , F∗Σ(y) = Σ(x)

| detDF(x)| , x = F−1(y) ,

for the “pushforward” of a symmetric, matrix valued function, A, and a scalar function, Σ, by the diffeo-
morphism F . In what follows, we assume for ease of notation that

σN = σD = 1 in B2 \B1 .

The inner part of our cloak is a fixed damping layer as considered in [16]. This damping (lossy) layer 
occupies B1 \B1/2, and its material characteristics are given by

I, 1 + i

k
.

Therefore, in the time harmonic regime, i.e., in frequency domain, the entire medium is characterized by1

Ac,Σc :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I, 1 in Rd \B2 ,(
Fε

)
∗I,

(
Fε

)
∗1 + σ1,c in B2 \B1 ,

I, 1 + i/k in B1 \B1/2 ,

a, σ in B1/2 .

(1.4)

We assume that a, σ ∈ L∞(B1/2), with

1
Λ |ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2 ,

1
Λ ≤ �(σ) ≤ Λ , and 0 ≤ �(σ) ≤ Λ , (1.5)

for some positive constant Λ. With this notation, the temporal Fourier transform ûc of the field,2 will be a 
solution to

div(Ac∇ûc) + k2Σcûc = −f̂ .

The temporal Fourier transform of a function v(t, x) is given by

v̂(k, x) = 1√
2π

∞∫
−∞

v(t, x)eikt dt .

The corresponding field in time domain (for positive time) is the unique weak solution uc ∈ L∞((0, +∞);
H1(Rd)

)
, with ∂tuc ∈ L∞([0, +∞); L2(Rd)

)
, to the non-local wave equation

1 Notice that the “damping layer”, B1 \B1/2, is a bit different from that in [20] where, for any fixed γ > 0, we used Ac = I, Σc =
ε2 + i

kεγ , for n = 2, and Ac = εI, Σc = ε3 + iε1−γ

k , for n = 3. This change is, however, not essential – the essential change is in the 
layer B2 \ B1, with the inclusion of σ1,c. It would be interesting to investigate whether, in view of the damping present in σ1,c, 
the layer B1 \ B1/2 is necessary at all.
2 Where we extend the time domain field by 0 for negative time.
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{
Σ1,c∂

2
ttuc − div(Ac∇uc) + Σ2,c∂tuc + G ∗ ∂tuc = f in [0,+∞) × Rd,

∂tuc(t = 0) = uc(t = 0) = 0 in Rd,
(1.6)

where f ∈ L2((0, +∞) ×Rd
)

with compact support. The definition of weak solutions to (1.6), and the proof 
of well-posedness of (1.6) is presented in Section 4. The coefficients Σ1,c and Σ2,c are given by

Σ1,c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 in Rd \B2 ,

(Fε)∗1 in B2 \B1 ,

1 in B1 \B1/2 ,

σ in B1/2 ,

Σ2,c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 in Rd \B2 ,

0 in B2 \B1 ,

1 in B1 \B1/2 ,

0 in B1/2 ,

and G(t, x) is such that

Ĝ(k, x) = −ikσ1,c(k, x) x ∈ B2 \B1 .

A computation (see, e.g., [8, (7.110)]) shows that

G(t, x) = φ(t)H(t) , (1.7)

where H(t) denotes the Heaviside function, i.e.,

H(t) =
{

0 if t < 0 ,

1 otherwise ,
(1.8)

and

φ(t) =
√

2π
γ0

∂t

(
e−t/2 sin(γ0t)

)
, (1.9)

with

γ0 =
√

k2
ε − 1/4 . (1.10)

We assume that kε > 1/2, so that γ0 is real and positive.
The presence of the Heaviside function in the formula (1.7) implies causality and plays an important 

role in our analysis; in particular for the proof of well-posedness of uc, and to establish that the Fourier 
transform, ûc, satisfies the outgoing radiation condition.

We only consider zero initial conditions. This is just for ease and simplicity of presentation; indeed, our 
method would work for the general case, using an approach similar to that in [20].

Given f , the corresponding field in the homogeneous medium without the cloak and the cloaked region 
is the unique weak solution u ∈ L∞((0, +∞); H1(Rd)

)
, with ∂tu ∈ L∞((0, +∞); L2(Rd)

)
, to the system{

∂2
ttu− Δu = f in (0,+∞) × Rd ,

∂tu(t = 0) = u(t = 0) = 0 in Rd .

The extent to which we have succeeded in hiding the contents of B1/2 and the cloak itself, should be 
measured in terms of the difference between uc and u, outside B2. The main Theorem of this paper gives 
an estimate of this difference for the scheme in (1.4).
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Theorem 1. Let d = 2 or 3, and let f ∈ C∞([0, +∞) × Rd) be such that supp f ⊂ (0, R) × (BR \ B2) for 
some R > 0. Suppose c∗ε−d/2 < kε < C∗ε−K for some positive constant c∗, C∗ and K > d/2. Given any 
integer M ≥ 2d + 4K − 2, there exists a constant C such that

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CεT‖f‖CM ([0,R];L2(BR)) ∀T > 0, for d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ C
1

| ln ε|T‖f‖CM ([0,R];L2(BR)) ∀T > 0, for d = 2 .

C depends on R, c∗, C∗, K and M , but is independent of f , ε, kε, Λ and T .

We in fact prove the following slightly stronger result:

Theorem 2. Let d = 2 or 3, and let f ∈ C∞([0, +∞) × Rd) be such that supp f ⊂ (0, R) × (BR \ B2) for 
some R > 0. Suppose kε > c∗ε

−d/2 for some positive constant c∗, then

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CεT‖f‖ ∀T > 0, for d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ C
1

| ln ε|T‖f‖ ∀T > 0, for d = 2 .

Here C is a positive constant depending on R and c∗, but independent of f , ε, kε, Λ and T . The norm of 
f is defined by

‖f‖ = ‖f‖kε,ε :=
∞∫
0

(1 + k2d+1)‖f̂(k, ·)‖L2 dk +
∞∫

λ0/ε

k2d−3k4
ε‖f̂(k, ·)‖L2 dk ,

for some fixed positive constant λ0, depending only on c∗. Here f̂ is the Fourier transform of f with respect 
to time, f being extended by zero for t < 0.

The assumption that supp f ⊂ (0, R) × (BR \B2) could be replaced by supp f ⊂ [0, R) × (BR \B2) (i.e., 
f does not have to vanish in a neighborhood of t = 0) provided one assumes that f̃ ∈ C∞((−∞, +∞) ×Rd), 
where f̃ denotes the extension of f by zero for t < 0. The condition that f or f̃ be in C∞ could also be 
replaced by an assumption about the continuity of only finitely many derivatives. We leave the details to 
the reader.

Theorem 1 follows directly from Theorem 2 by noting that if c∗ε−d/2 < kε < C∗ε−K , for some K > d/2, 
then

‖f‖ =
∞∫
0

(1 + k2d+1)‖f̂(k, ·)‖L2 +
∞∫

λ0/ε

k2d−3k4
ε‖f̂(k, ·)‖L2

≤ C

∞∫
(1 + k2d+4K−3)‖f̂(k, ·)‖L2
0
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≤ C

⎛⎝ ∞∫
0

(1 + k)−2

⎞⎠1/2⎛⎝ ∞∫
0

(1 + k2d+4K−2)2‖f̂(k, ·)‖2
L2

⎞⎠1/2

≤ C‖f‖CM ([0,R];L2(BR))

for any integer M ≥ 2d + 4K − 2. Here we used that supp f ⊂ (0, R) × (BR \B2) so that the CM -norm of 
the extension of f by zero for t < 0 is bounded by ‖f‖CM ([0,R];L2(BR)).

The results obtained in this paper are in a slightly different spirit than the ones in [20] (and, of course, 
for a different problem). The constants in Theorem 2 and Theorem 1 here are independent of Λ, while the 
ones in [20, Theorems 1 and 2] are not. However, the estimates in [20, Theorems 1 and 2] are uniform in 
time, while the ones in Theorem 2 and Theorem 1 here are not. The independence of the constants of Λ
yields a stronger result about the cloaking effects, since it asserts that the cloak works well for arbitrary 
objects. Similar results as in [20] (i.e., results that are uniform in time, but not in Λ) would hold in this 
setting, and results of the type in Theorem 2 and Theorem 1 would hold in the setting of [20].

The approach in this paper borrows several ideas from the approach in [20], and adapts these to the 
setting considered here. We transform the wave equation into a family of Helmholtz equations by taking 
the Fourier transform with respect to time. Having established the appropriate near-invisibility estimates 
for the Helmholtz equations, with explicit frequency dependence, we then essentially invert the Fourier 
transform. As concerns the Helmholtz equations, we study and compare the model with σ1,c in (1.4) and 
the model without σ1,c, and establish perturbation estimates in the time harmonic regime. Note that, for 
the model with σ1,c, the standard rescaling techniques, as used in [16,17,20,21], do not work. We hence work 
directly with this model without rescaling (Section 3). The proof is quite delicate, makes use of many ideas 
from [16,17,20,21], and at a crucial point requires an argument of “removable singularity” (in the proof of 
Lemma 5). To obtain the estimates in time domain from the estimates in frequency domain, we proceed 
in a similar, but slightly different way than [20]. We use a simple and helpful idea, also used in [19], by 
establishing estimates for the difference of the time derivatives of uc and u not for their difference. As a 
consequence, we avoid the non-standard estimates for very low frequency in [20, Section 2.2]; their proof 
involved the theory of H-convergence. Moreover, using this idea, we are also able to obtain the independence 
of Λ for the constants in Theorem 2. As mentioned earlier, another element of our analysis is the (definition 
of and) verification of well-posedness of uc (Proposition 1). For this purpose we rely on a non-trivial energy 
estimate, in the spirit of [19].

The paper is organized as follows. In Section 2, we present results for the model without σ1,c and some 
estimates for 

(
F−1
ε

)
∗σ1,c. These will be used in the proof of Theorem 2 to obtain estimates in the time 

harmonic regime, when the frequency is of order at most 1/ε. Section 3 provides estimates for uc in the 
time harmonic regime for arbitrarily large frequencies. In section 4, we establish the well-posedness of uc

and discuss the outgoing radiation condition for its Fourier transform with respect to time. The required 
non-trivial energy estimate for uc is also derived there. Finally, the proof of Theorem 2 is given in Section 5.

2. Preliminaries

In this section we recall some known results, which will be used frequently in this paper, and we derive an 
estimate related to the model without σ1,c in the time harmonic regime, when the frequency is of order at 
most 1/ε. This estimate is an extension of [16, Lemma 2.4]. We also estimate 

(
F−1
ε

)
∗σ1,c in various regions. 

These results will be used in Section 5 in the proof of Theorem 2.
Let U denote a connected smooth open region of Rd (d = 2 or 3) with a bounded complement (this 

includes U = Rd). Here and in what follows, a solution v ∈ H1
loc(U) (d = 2 or 3) to the Helmholtz equation

Δv + k2v = 0 in U ,
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for some k > 0, is said to be an outgoing solution (or satisfy the outgoing radiation condition) if

∂v

∂r
− ikv = o

(
r−

d−1
2

)
as r → ∞ .

We shall also need the space W 1(U); it is defined as follows,

W 1(U) =
{
ψ ∈ L1

loc(U) : ψ(x)√
1 + |x|2

∈ L2(U) and ∇ψ ∈ L2(U)
}

for d = 3 ,

and,

W 1(U) =
{
ψ ∈ L1

loc(U) : ψ(x)
ln(2 + |x|)

√
1 + |x|2

∈ L2(U) and ∇ψ ∈ L2(U)
}

for d = 2 .

Lemma 1. Let d = 2 or 3 and k > 0. Suppose f ∈ L2(Rd) with supp f ⊂ B5, and let vk ∈ H1
loc(Rd) be the 

unique outgoing solution to

Δvk + k2vk = f in Rd .

Then, for d = 2 and 0 ≤ k ≤ 1/2,

‖∇vk‖L2(B6) + ‖vk‖L2(B6) ≤ C| ln k|‖f‖L2 ,

and for d = 3 or for d = 2 and k > 1/2,

‖∇vk‖L2(B6) + (k + 1)‖vk‖L2(B6) ≤ C‖f‖L2 .

Here C is a positive constant independent of k and f .

Proof. The conclusion in the case k < k0, for arbitrary fixed k0 > 0, follows directly from the properties 
of the fundamental solution to the Helmholtz equation. The conclusion in the case k ≥ k0 can also be 
obtained from the fundamental solution to the Helmholtz equation. In this case, one can alternately obtain 
the conclusion using the Morawetz multipliers (see, e.g., [21, Lemma 2 and Proposition 1]). We note that 
the estimate in [21, Proposition 1] requires a damping layer due to the desire to obtain estimates that are 
independent of the arbitrary coefficients inside B1/2. Since the operator here is Δ + k2 throughout, there is 
no need for such a layer. The details are left to the reader. �

We next recall the following result which will be used frequently in this paper. The result is from [16, 
Lemma 2.2] (see also [21, Lemma 3]).

Lemma 2. Let d = 2 or 3, and let D be a smooth, open bounded subset of Rd such that Rd \D is connected. 
Suppose 0 < k < τ , for some fixed τ > 0, and suppose gk ∈ H1/2(∂D). Let vk ∈ H1

loc(Rd \D) be the unique 
outgoing solution to {

Δvk + k2vk = 0 in Rd \D ,

vk = gk on ∂D .

Then

‖vk‖H1(BR\D) ≤ CR‖gk‖H1/2(∂D) for any R > 0 .
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The constant CR is independent of k and gk. Furthermore for any ε > 0 sufficiently small that D ⊂ B2/ε⎧⎪⎪⎨⎪⎪⎩
‖vk‖L2(B5/ε\B2/ε) ≤ Cε−1/2‖gk‖H1/2(∂D) if d = 3

‖vk‖L2(B5/ε\B2/ε) ≤ Cε−1 |H
(1)
0 (k/ε)|

|H(1)
0 (k)|

‖gk‖H1/2(∂D) if d = 2 .

Here the constant C is independent of k, gk and ε. Finally, if we assume that gk → g weakly in H1/2(∂D)
as k → 0, then vk → v weakly in H1

loc(Rd \D) where v ∈ W 1(Rd \D) is the unique solution of

{
Δv = 0 in Rd \D ,

v = g on ∂D .

We next establish an estimate for the model without σ1,c, for frequency at most 1/ε.

Lemma 3. Let d = 2 or 3, and let a and σ be in L∞(B1/2), with

a real symmetric, uniformly positive definite, and �(σ) ≥ 0 . (2.1)

Suppose 0 < ε < τ , and 0 < k < τ/ε for some fixed, positive constant τ . For g ∈ H− 1
2 (∂B1) let vε ∈ H1

loc(Rd)
be the unique outgoing solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δvε + ε2k2vε = 0 in Rd \ B̄1 ,

div(A∇vε) + k2Σvε = 0 in B1 ,

∂vε
∂r

∣∣∣
ext

− 1
εd−2

∂vε
∂r

∣∣∣
int

= g on ∂B1 .

(2.2)

Here

A =
{

I if x ∈ Rd \B1/2 ,

a if x ∈ B1/2 ,
Σ =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ Rd \B1 ,

1 + i/k if x ∈ B1 \B1/2 ,

σ if x ∈ B1/2 .

There exists a positive constant C, depending only on d and τ , such that

‖vε‖H1(B5\B1) ≤ C max{k3−d, εd−2/k}‖g‖
H− 1

2 (∂B1)
.

Proof of Lemma 3. We follow the strategy in the proof of [16, Lemma 2.4], and consider the case d = 2 and 
d = 3 separately.

Case 1: d = 2. We first prove

‖vε‖L2(B5\B1) ≤ C max{k, 1/k}‖g‖
H− 1

2 (∂B1)
, (2.3)

by contradiction. Suppose this estimate is not true. Then there exist (gn) ⊂ H− 1
2 (∂B1), (εn), (kn), (an), 

and (σn) such that 0 < εn < τ , 0 < kn < τ/εn, an and σn satisfy (2.1), and

‖vn‖L2(B5\B1) = 1 , lim max{kn, 1/kn}‖gn‖ − 1 = 0 . (2.4)

n→∞ H 2 (∂B1)
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Here vn ∈ H1
loc(R2) is the unique outgoing solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δvn + ε2
nk

2
nvn = 0 in R2 \B1,

div(An∇vn) + k2
nΣnvn = 0 in B1,

∂vn
∂r

∣∣∣
ext

− ∂vn
∂r

∣∣∣
int

= gn on ∂B1 ,

(2.5)

where An and Σn are defined the same way as A and Σ, with a and σ replaced by an and σn. Multiplying 
the equation for vn by v̄n (the conjugate of vn) and integrating on BR, we obtain∫

∂BR

∂rvnv̄n −
∫

BR\B1

|∇vn|2 + ε2
nk

2
n

∫
BR\B1

|vn|2

−
∫
B1

〈An∇vn,∇v̄n〉 + k2
n

∫
B1

Σn|vn|2 =
∫

∂B1

gnv̄n . (2.6)

Letting R → ∞ in (2.6), using the outgoing condition, and considering the imaginary part, we derive that

kn

∫
B1\B1/2

|vn|2 ≤ ‖gn‖H−1/2(∂B1)‖vn‖H1/2(∂B1) . (2.7)

By Caccioppoli’s inequality, it follows that∫
B4/5\B3/5

|∇vn|2 ≤ C(k2
n + 1)

∫
B1\B1/2

|vn|2

≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)‖vn‖H1/2(∂B1) .

Here and in the remainder of this proof, C denotes a positive constant depending only on d and τ (which 
might change from one place to another). The above estimate implies that for some r ∈ (3/5, 4/5) (r depends 
on n), ∫

∂Br

|∇vn|2 + (1 + k2
n)

∫
∂Br

|vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)‖vn‖H1/2(∂B1) . (2.8)

Multiplying the equation for vn by v̄n and integrating on B5 \Br, we have∫
∂B5

∂rvnv̄n −
∫

∂Br

∂rvnv̄n −
∫

B5\Br

|∇vn|2 + ε2
nk

2
n

∫
B5\B1

|vn|2

+ k2
n

∫
B1\Br

Σn|vn|2 =
∫

∂B1

gnv̄n . (2.9)

Since vn ∈ H1
loc(R2 \B3) is the unique outgoing solution to Δvn + ε2

nk
2
nvn = 0 in R2 \B3 and εnkn ≤ τ , it 

follows that (see, e.g., Lemma 2)

‖vn‖H1(B6\B3) ≤ C‖vn‖H1/2(∂B3) . (2.10)

Since Δvn + ε2
nk

2
nvn = 0 in B5 \B1, using the standard theory of elliptic equations, we have that



806 H.-M. Nguyen, M.S. Vogelius / J. Math. Pures Appl. 106 (2016) 797–836
‖vn‖H1/2(∂B3) ≤ C‖vn‖H1(B4\B2) ≤ C‖vn‖L2(B5\B1) . (2.11)

A combination of (4.25) and (4.26) yields

‖vn‖H1(B6\B3) ≤ C‖vn‖L2(B5\B1) . (2.12)

Using (2.7), (2.8), and (2.12), we derive from (2.9) that∫
B5\Br

|∇vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)‖vn‖H1/2(∂B1) + C‖vn‖2
L2(B5\B1) . (2.13)

We immediately obtain from (2.13) that∫
B5\B1

|∇vn|2 +
∫

B5\B1

|vn|2

≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)‖vn‖H1/2(∂B1) + C‖vn‖2
L2(B5\B1)

≤ C
(
max{kn, 1/kn}‖gn‖H−1/2(∂B1) + ‖vn‖L2(B5\B1)

)
‖vn‖H1(B5\B1) , (2.14)

and so, by (2.4)

‖vn‖H1(B5\B1) ≤ C , and ‖vn‖H1/2(∂B1) ≤ C . (2.15)

From (2.7) and (2.15), we conclude

(1 + k2
n)

∫
B1\B1/2

|vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1) ,

so by (2.4)

lim
n→∞

(1 + k2
n)

∫
B1\B1/2

|vn|2 = 0 . (2.16)

Since, for any v ∈ H1(B1 \Br),

‖v‖2
L2(∂B1) ≤ C‖v‖L2(B1\Br)‖v‖H1(B1\Br) ,

(see [7, Lemma 5.5]), it follows from (2.13), (2.15), and (2.16) that

lim
n→∞

‖vn‖L2(∂B1) = 0 .

We have (see, e.g., Lemma 2) for any R > 1,

‖vn‖H1(BR\B1) ≤ CR‖vn‖H1/2(∂B1) ≤ CR ,

where we used the second estimate of (2.15) to obtain the last bound. By extraction of a subsequence (and 
a diagonalization argument) one might assume that εnkn → ω ∈ [0, τ ] (since εnkn ∈ [0, τ ]) and vn → v

weakly in H1
loc(R2 \B1), vn|∂B1 → 0 weakly in H1/2(∂B1). By (2.4),



H.-M. Nguyen, M.S. Vogelius / J. Math. Pures Appl. 106 (2016) 797–836 807
‖v‖L2(B5\B1) = 1 , (2.17)

and for ω > 0, v is the unique outgoing solution to3

{
Δv + ω2v = 0 in R2 \B1

v = 0 on ∂B1.

Hence v = 0, and so we have a contradiction to (2.17). If ω = 0, then by Lemma 2, v ∈ W 1(R2) is the 
unique such solution to {

Δv = 0 in R2 \B1

v = 0 on ∂B1 .

Hence v = 0, and so again we have a contradiction to (2.17). This verifies the L2 estimate (2.3). We have, 
as in (2.13), ∫

B5\B1

|∇vε|2 ≤ C max{k, 1/k}‖g‖H−1/2(∂B1)‖vε‖H1/2(∂B1) + C

∫
B5\B1

|vε|2 ,

and so by (2.3)

‖vε‖H1(B5\B1) ≤ C max{k, 1/k}‖g‖H−1/2(∂B1)

as desired. This completes the proof of the lemma for d = 2.

Case 2: d = 3. We have (see, e.g., Lemma 2)

‖vε‖H1(B5\B1) ≤ C‖vε‖H1/2(∂B1) . (2.18)

Hence it suffices to prove that

‖vε‖
H

1
2 (∂B1)

≤ C max{1, ε/k}‖g‖
H− 1

2 (∂B1)
. (2.19)

We first prove (2.19) by contradiction for ε ≤ ε0, with ε0 sufficiently small. Suppose this is not true. Then 
there exist (gn) ⊂ H− 1

2 (∂B1), (εn), (kn), (an), and (σn) such that 0 < εn < τ , 0 < kn < τ/εn, an and σn

satisfy (2.1), εn → 0, and

‖vn‖
H

1
2 (∂B1)

= 1 , lim
n→∞

max{1, εn/kn}‖gn‖
H− 1

2 (∂B1)
= 0 . (2.20)

Here vn ∈ H1
loc(R3) is the unique outgoing solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δvn + ε2
nk

2
nvn = 0 in R3 \B1 ,

div(An∇vn) + k2
nΣnvn = 0 in B1 ,

∂vn
∂r

∣∣∣
ext

− 1
εn

∂vn
∂r

∣∣∣
int

= gn on ∂B1 ,

(2.21)

3 The outgoing property of v is just a consequence of the fact that the fundamental solution of the Helmholz equation with 
frequency εnkn converges to the fundamental solution of the Helmholtz equation with frequency ω, since ω > 0.
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where An and Σn are defined in the same way as A and Σ, but with a and σ replaced by an and σn. Since 
‖vn‖

H
1
2 (∂B1)

= 1, it follows from (2.18) that

‖vn‖H1(B5\B1) ≤ C .

In combination with (2.20), (2.21), and the fact that εn → 0 this implies

lim
n→∞

∥∥∥∂vn
∂r

∣∣∣
int

∥∥∥
H− 1

2 (∂B1)
= 0 . (2.22)

Multiplying the equation of vn by v̄n and integrating on BR, we obtain∫
∂BR

∂rvnv̄n −
∫

BR\B1

|∇vn|2 + ε2
nk

2
n

∫
BR\B1

|vn|2

− 1
εn

∫
B1

〈An∇vn,∇v̄n〉 + k2
n

εn

∫
B1

Σn|vn|2 =
∫

∂B1

gnv̄n . (2.23)

Letting R → ∞ in (2.23), using the outgoing condition, and considering the imaginary part, we derive from 
(2.20) and the fact knεn ≤ τ that

lim
n→+∞

(1 + k2
n)

∫
B1\B1/2

|vn|2 = 0 . (2.24)

Since Δvn + k2
n(1 + i/kn)vn = 0 in B1 \B1/2, by Caccioppoli’s inequality, we obtain∫

B4/5\B3/5

|∇vn|2 ≤ C(k2
n + 1)

∫
B1\B1/2

|vn|2. (2.25)

It follows from (2.24) and (2.25) that there exits r ∈ (3/5, 4/5) (r depends on n) such that∫
∂Br

|∇vn|2 + (1 + k2
n)

∫
∂Br

|vn|2 → 0 as n → ∞. (2.26)

Since Δvn + k2
n(1 + i/kn)vn = 0 in B1 \Br, we have

−
∫

B1\Br

|∇vn|2 + (k2
n + ikn)

∫
B1\Br

|vn|2 =
∫

∂Br

∂rvnv̄n −
∫

∂B1

∂rvnv̄n . (2.27)

A combination of (2.20), (2.22), (2.24), (2.26), and (2.27) yields

lim
n→∞

∫
B1\B4/5

|∇vn|2 = 0 . (2.28)

From (2.24) and (2.28), we conclude that

lim ‖vn‖ 1 ≤ C lim ‖vn‖H1(B1\B4/5) = 0 .

n→∞ H 2 (∂B1) n→∞
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This is a contradiction to (2.20), and thus (2.19) holds under the additional assumption that ε ≤ ε0 for 
some fixed 0 < ε0, sufficiently small.

It remains to prove (2.19) for ε0 < ε < τ . In this case, we first prove that

‖vε‖L2(B5\B1) ≤ C max{k, 1/k}‖g‖
H− 1

2 (∂B1)
, (2.29)

by contradiction, and then we show that

‖vε‖H1(B5\B1) ≤ C max{k, 1/k}‖g‖
H− 1

2 (∂B1)
. (2.30)

We note that since k is bounded (k < τ/ε0) and ε is bounded away from zero (2.30) implies (2.19). In the 
argument by contradiction one may without loss of generality assume the εn converge to ε1 > 0. Thus the 
system (2.21) is asymptotically similar to the 2d system (2.5), and so the argument of proof proceeds in the 
same fashion as in the two dimensional case presented above. The details are left to the reader. �

We next provide some useful estimates for σ1,ε which is defined as follows:

σ1,ε :=
(
F−1
ε

)
∗σ1,c , in B2 \Bε . (2.31)

Lemma 4. Assume kε ≥ c∗ε
−1, for some fixed constant c∗ > 0. We have

|σ1,ε| ≤
C1

εd−1k2
ε

if k <
c∗
2 ε−1 ,

and,

|σ1,ε| ≤
C2

εd−1k
and �(σ1,ε) ≥

c3k

max{k4
ε , k

4} if k ≥ c∗
2 ε−1 ,

for some positive constants C1, C2, c3 independent of ε, k and kε (but dependent on c∗).

Proof. We recall, by (1.3) and the fact that σN = σD = 1,

σ1,c = 1
k2
ε − k2 − ik

, (2.32)

and therefore

�(σ1,c) = k

(k2
ε − k2)2 + k2 . (2.33)

If k < c∗
2 ε−1 then it follows from (2.32) that

|σ1,c| ≤
C

k2
ε

,

since k2
ε − k2 > 3k2

ε/4. In this proof, C denotes a positive constant independent of ε, k, and kε.
If k ≥ c∗

2 ε−1, then it follows from (2.32) that

|σ1,c| ≤
C

k
,
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and from (2.33) that

�(σ1,c) ≥
Ck

max{k4
ε , k

4} .

Since σ1,ε = (F−1
ε )∗σ1,c, the estimates in this lemma are now a consequence of the fact that

1/C ≤ detDF−1
ε ≤ Cε−d+1 . �

3. Stability estimates in the time harmonic regime

Let ûc(k, ·) be the Fourier transform of uc(·, x) with respect to t,4 i.e.,

ûc(k, x) := 1√
2π

∞∫
−∞

uc(t, x)eikt dt .

Then ûc ∈ H1
loc(Rd) (for a.e. k > 0) is the unique outgoing solution to

div(Ac∇ûc) + k2Σcûc = −f̂ ,

where (Ac, Σc) is given in (1.4) (see Proposition 2 in Section 4).
Define ũε(k, x) = ûc(k, Fε(x)). Then ũε ∈ H1

loc(Rd) is the unique outgoing solution to

div(Aε∇ũε) + k2Σεũε = −f̂ , (3.1)

where

Aε,Σε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I, 1 in Rd \B2 ,

I, σε(x) := 1 + σ1,ε(x) in B2 \Bε ,

1
εd−2 I,

1
εd

(1 + i/k) in Bε \Bε/2 ,

1
εd−2 a(x/ε),

1
εd

σ(x/ε) in Bε/2 ,

(3.2)

and

σ1,ε =
(
F−1
ε

)
∗σ1,c . (3.3)

In this section, we establish the stability for solutions to (3.1), (3.2) for quite general σ1,ε; hence in the 
remainder of this section, we do not assume that σ1,ε is of the form (3.3), but only that it satisfies certain 
bounds. We recall that

a is bounded, uniformly elliptic, and σ ∈ L∞(B1/2) with �(σ) ≥ 0 . (3.4)

The first result of this section concerns the small to moderate frequency regime.

4 After extending uc by 0 for t < 0.
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Lemma 5. Let d = 2 or 3, τ > 0, 0 < ε, k < τ , and g ∈ L2(Rd) with supp g ⊂ B4 \Bε. Assume that

‖σ1,ε‖L∞(B2\Bε) ≤ C0, and �(σ1,ε) ≥ 0 . (3.5)

Let vε ∈ H1
loc(Rd) be the unique outgoing solution to

div(Aε∇vε) + k2Σεvε = g in Rd. (3.6)

There exists a positive constant C, depending only on d, τ and C0, such that

‖vε‖L2(B5\Bε) ≤ C max{1, 1/k}‖g‖L2 . (3.7)

Remark 1. In Lemma 5, the support of g is assumed to be inside B4 \Bε not B4 \B2, since g will be of the 
form −k2σ1,εû1,ε, when we apply this lemma in the proof of Theorem 2. The blow up technique does not 
work for Lemma 5 due to the presence of σ1,ε �= 0 inside B2 \ Bε. It is not essential that the support of g
be inside B4 \Bε, this could be replaced by BM \Bε for any M > 4. The constant C in the estimate would 
depend on M .

Proof. The proof is based on a contradiction argument, in which we use an argument of removable sin-
gularity. Suppose (3.7) does not hold. Then there exist {kn}, {εn} ⊂ (0, τ), σ1,n, an, σn, and {gn}, 
supp gn ⊂ B4 \Bεn , such that (3.5) holds for σ1,n, an and σn satisfy (3.4), and

max{1, 1/kn}‖gn‖L2 → 0 as n → ∞, ‖vn‖L2(B5\Bεn ) = 1 . (3.8)

Here vn ∈ H1
loc(Rd) is the unique outgoing solution to

div(An∇vn) + k2
nΣnvn = gn in Rd,

where An, Σn are defined in the same way as Aε, Σε with k, ε, σ1,ε, a, and σ replaced by kn, εn, σ1,n, an, 
and σn. Using the outgoing radiation condition, as in (2.24), we obtain,

kn
εdn

∫
Bεn\Bεn/2

|vn|2 ≤
∫
Rd

|gn||vn| .

Here we also used that �(σ1,n) and �(σn) are non-negative. Since supp gn ⊂ B4\Bεn and ‖vn‖L2(B5\Bεn ) = 1, 
the above inequality implies that

kn + 1
εd−1
n

∫
Bεn\Bεn/2

|vn|2 ≤ 2εn max{1, 1/kn}‖gn‖L2 . (3.9)

We have

Δvn + k2
n

ε2
n

(1 + i/kn)vn = 0 in Bεn \Bεn/2 .

It follows from Caccioppoli’s inequality that∫
|∇vn|2 ≤ C(k2

n + 1)
ε2
n

∫
|vn|2 ,
B4εn/5\B3εn/5 Bεn\Bεn/2
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and so

εn

εd−2
n (kn + 1)

∫
B4εn/5\B3εn/5

|∇vn|2 ≤ C(kn + 1)
εd−1
n

∫
Bεn\Bεn/2

|vn|2 . (3.10)

In this proof, C denotes a positive constant depending only on d and τ . From (3.9) and (3.10), we obtain

εn

εd−2
n (kn + 1)

∫
B4εn/5\B3εn/5

|∇vn|2 ≤ Cεn max{1, 1/kn}‖gn‖L2 . (3.11)

A combination of (3.9) and (3.11) now yields

1
εd−2
n

∫
B4εn/5\B3εn/5

(kn + 1
εn

|vn|2 + εn
kn + 1 |∇vn|2

)
≤ Cεn max{1, 1/kn}‖gn‖L2 .

It follows that for some α ∈ (3εn/5, 4εn/5) (α depends on n),

1
εd−2
n

∫
∂Bα

(kn + 1
εn

|vn|2 + εn
kn + 1 |∇vn|2

)
≤ C max{1, 1/kn}‖gn‖L2 → 0 as n → ∞ . (3.12)

Here we used (3.8) for the last convergence assertion. Multiplying the equation for vn by v̄n, and integrating 
on B5 \Bα, we have

−
∫

B5\Bεn

|∇vn|2 + k2
n

∫
B5\Bεn

(1 + σ1,n)|vn|2 −
1

εd−2
n

∫
Bεn\Bα

|∇vn|2

+ k2
n

εdn

(
1 + i

kn

) ∫
Bεn\Bα

|vn|2 =
∫
B5

gnv̄n −
∫

∂B5

∂rvn v̄n + 1
εd−2
n

∫
∂Bα

∂rvn v̄n . (3.13)

Here and in what follows, we extend σ1,n by 0 in Rd \B2. Since vn ∈ H1
loc(Rd \B9/2) is an outgoing solution 

to Δvn + k2
nvn = 0 in Rd \B9/2, we have (see, e.g., Lemma 2)

‖vn‖H1(B6\B9/2) ≤ C‖vn‖H1/2(∂B9/2) ,

and so, by the standard theory of elliptic equations,

‖vn‖H1(B6\B9/2) ≤ C‖vn‖L2(B5\Bεn ) . (3.14)

Using (3.5), (3.8), (3.9), (3.12), and (3.14), in combination with (3.13), we now obtain∫
B5\Bα

|∇vn|2 ≤ C . (3.15)

Define un ∈ H1(Bα) as follows

Δun = 0 in Bα and un = vn on ∂Bα .

We derive from (3.8) and (3.12) that
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∫
Bα

|∇un|2 + |un|2 → 0 as n → ∞ . (3.16)

Indeed, set wn(x) = un(αx) for x ∈ B1. Then

Δwn = 0 in B1 ,

and

‖wn‖2
H1(∂B1) ≤ C

(
α1−d

∫
∂Bα

|un|2 + α3−d

∫
∂Bα

|∇un|2
)
≤ C max{1, 1/kn}‖gn‖L2 ,

where we used (3.12), and the fact that 3εn/5 < α < 4εn/5 for the last estimate. It follows that∫
B1

|∇wn|2 + |wn|2 ≤ C max{1, 1/kn}‖gn‖L2 ,

which in terms of un yields

α−d

∫
Bα

|un|2 + α2−d

∫
Bα

|∇un|2 ≤ C max{1, 1/kn}‖gn‖L2 .

The assertion (3.16) now follows from (3.8). Define

Vn =
{

vn in Rd \Bα ,

un in Bα .

We derive from (3.8), (3.9), (3.15), and (3.16) that∫
B5

|∇Vn|2 + |Vn|2 ≤ C .

It follows that (see, e.g., Lemma 2)

‖Vn‖H1(BR\B4) ≤ CR‖Vn‖H1/2(∂B4) ≤ CR‖Vn‖H1(B5) ≤ CR ,

for any R ≥ 5, and as a consequence

‖Vn‖H1(BR) ≤ CR

for all R > 0. After extraction of a subsequence we may thus assume that kn → k0 ≥ 0, εn → ε0 ≥ 0, 
α → α0 (recall that α depends on n), σ1,εn → σ1 weakly in L2 (σ1 satisfies (3.5)), and Vn → V weakly in 
H1

loc(Rd).
Suppose k0 > 0. If ε0 = 0 then V is an outgoing solution to the equation

ΔV + k2
0(1 + σ1)V = 0 in Rd \ {0} .

Since V ∈ H1
loc(Rd), it follows that

ΔV + k2
0(1 + σ1)V = 0 in Rd .
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Therefore, V = 0, and we have a contradiction to the fact that 
∫
B5

|V |2 = lim
∫
B5\Bεn

|Vn|2 = 1. Similarly, 
if k0 > 0 and ε0 > 0 (and thus α0 > 0), then V is an outgoing solution to

ΔV + k2
0(1 + σ1)V = 0 in Rd \Bα0 . (3.17)

It follows from (3.16) that V = 0 in Bα0 . Hence V |Rd\Bα0
is the unique outgoing solution to (3.17) with 

V = 0 on ∂Bα0 , and as a consequence V = 0 in all of Rd; we have also arrived at a contradiction.
This leaves the case k0 = 0. We start by considering the case ε0 > 0 (and thus α0 > 0). By Lemma 2, 

V ∈ W 1(Rd \Bα0) is a solution to the equation

ΔV = 0 in Rd \ B̄α0 . (3.18)

It follows from (3.16) that V = 0 in Bα0 , and thus V is the unique solution to (3.18), with V = 0 on ∂Bα0 . 
Hence V = 0 in Rd \Bα0 , and as a consequence V = 0 in Rd, so we have arrived at a contradiction.

Finally we consider the case k0 = ε0 = 0. By Lemma 2, V ∈ W 1(Rd) is a solution to the equation

ΔV = 0 in Rd \ {0} . (3.19)

Since V ∈ W 1(Rd), it follows that

ΔV = 0 in Rd . (3.20)

Thus V = 0 in the case d = 3, and we have arrived at a contradiction in three dimensions. In two dimensions, 
we can only at present conclude that V is a constant, due to (3.20). We proceed to prove that V = 0 in the 
case d = 2 as well. Set

ṽn(x) = vn(εnx) for x ∈ B1 \B4/5 .

From (3.8), (3.9), and (3.15), we have

‖ṽn‖2
H1/2(∂B1) ≤ C

⎛⎜⎝ ∫
B1\B4/5

|∇ṽn|2 + |ṽn|2

⎞⎟⎠ = C

⎛⎜⎝ ∫
Bε\B4ε/5

|∇vn|2 + ε−2
n |vn|2

⎞⎟⎠ ≤ C . (3.21)

Since limn→∞ ‖ṽn‖L2(B1\B4/5) = 0 by (3.8) and (3.9), it follows from (3.21) that ṽn → 0 weakly in
H1(B1 \B4/5), and thus

ṽn → 0 weakly in H1/2(∂B1) . (3.22)

Let v1,n ∈ H1
loc(R2) be the unique outgoing solution to

Δv1,n + k2
nv1,n = −k2

nσ1,nvn in R2 .

Applying Lemma 1, the regularity theory of elliptic equations, and using (3.5) and (3.8), we have

1
kn + 1‖∇

2v1,n‖L2(B5) + ‖∇v1,n‖L2(B5) + (kn + 1)‖v1,n‖L2(B5) ≤ Ck2
n(| ln kn| + 1) .

As a consequence of this and the fact that kn → 0,

‖∇v1,n‖L2(B5) + ‖v1,n‖L∞(B5) ≤ Ck2
n(| ln kn| + 1) . (3.23)
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By a rescaling (remember d = 2) we get

‖∇ṽ1,n‖L2(B5) + ‖ṽ1,n‖L∞(B5) ≤ Ck2
n(| ln kn| + 1) ,

with ṽ1,n(x) = v1,n(εnx), and thus

‖ṽ1,n‖H1/2(∂B1) ≤ Ck2
n(| ln kn| + 1) → 0 . (3.24)

We define

wn = vn − v1,n in R2 \Bεn ,

where wn ∈ H1
loc(R2 \Bεn) is the unique outgoing solution to

Δwn + k2
nwn = 0 in R2 \Bεn and wn = vn − v1,n on ∂Bεn .

Set

Wn(x) = wn(εnx) for x ∈ R2 \B1 .

Then Wn ∈ H1
loc(R2 \B1) is the unique outgoing solution to

ΔWn + k2
nε

2
nWn = 0 in R2 \B1 , and Wn(x) = ṽn(x) − ṽ1,n(x) on ∂B1 .

Applying Lemma 2 for Wn and using (3.22) and (3.24), we have Wn → 0 weakly in H1
loc(R2 \ B1), and by 

interior elliptic regularity estimates

‖Wn‖H1/2(∂B2) → 0 as n → 0 .

Applying Lemma 2 to Wn again and rescaling, we obtain

‖wn‖L2(B5\B4) ≤
C| ln kn|
| ln(εnkn)| ‖Wn‖H1/2(∂B2) → 0 as n → ∞ . (3.25)

A combination of (3.23) and (3.25) yields that vn → 0 in L2(B5 \B4); it follows that V = 0 in B5 \B4, and 
thus V = 0 in all of R2 (since we already know it must be a constant). We have a contradiction, and the 
proof is complete. �

The second result in this section deals with the moderate to high frequency regime.

Lemma 6. Let d = 2 or 3, 0 < ε < 1/2, and k > k0 > 0 for some constant k0. Suppose g ∈ L2(Rd) with 
supp g ⊂ B4 \Bε and let vε ∈ H1

loc(Rd) be the unique outgoing solution to

div(Aε∇vε) + k2Σεvε = g in Rd. (3.26)

Assume that

‖σ1,ε‖L∞ = χ1 and �(σ1,ε) ≥ χ2 a.e. in B2 \Bε , (3.27)

for some χ1 ≥ χ2 > 0. There exist two positive constants λ and C, independent of k, ε, χ1, χ2, and g such 
that
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i) If kχ1 ≤ λ, then ∫
B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C(k4 + 1)

∫
Rd

|g|2 . (3.28)

ii) If kχ1 > λ, then ∫
B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C

(
k4 + k2χ4

1
χ2

2

)∫
Rd

|g|2 . (3.29)

Remark 2. As in the previous lemma, it is not essential that the support of g be inside B4 \Bε, this could 
be replaced by BM \Bε for any M > 4. The constants in the estimates would depend on M . We also note 
that the estimate (3.28) is stronger than the estimate (3.29), since k > k0 > 0. It thus follows immediately 
that ∫

B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C

(
k4 + k2χ4

1
χ2

2

)∫
Rd

|g|2 ,

for all k > k0 > 0. These facts shall both be used in the proof of Theorem 2.

Proof. The proof is inspired by [21]. To simplify notation we drop the subscript ε from vε. Multiplying 
(3.26) by v̄ and integrating on BR, R > 1, we obtain∫

∂BR

∂rv v̄ −
∫
BR

〈Aε∇v,∇v̄〉 + k2
∫
BR

Σε|v|2 =
∫
BR

gv̄ .

Letting R go to infinity, using the outgoing condition, and considering the imaginary part, we have

k lim sup
R→∞

∫
∂BR

|v|2 + k

εd

∫
Bε\Bε/2

|v|2 + k2χ2

∫
B2\Bε

|v|2 ≤
∫
Rd

|g||v| . (3.30)

Since Δv + k2

ε2 v + i k
ε2 v = 0 in Bε \Bε/2 and k > k0, it follows from Caccioppoli’s inequality that

∫
B4ε/5\B3ε/5

|∇v|2 ≤ Ck2

ε2

∫
Bε\Bε/2

|v|2 . (3.31)

In this proof, C denotes a positive constant independent of ε, k, χ1, χ2, and g. It follows from (3.30) and 
(3.31) that ∫

B4ε/5\B3ε/5

|∇v|2 + k2

ε2

∫
Bε\Bε/2

|v|2 ≤ Cεd−2k

∫
Rd

|g||v| .

Thus there exists t ∈ (3ε/5, 4ε/5) such that

∫
|∇v|2 ≤ Cεd−3k

∫
|g||v| and

∫
|v|2 ≤ Cεd−1

k

∫
|g||v| . (3.32)
∂Bt Rd ∂Bt Rd
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Applying [21, Lemma 2] with α = ε and R > β ≥ 5 (β is a fixed constant which will be chosen later), we 
have5

1
d− 1

∫
Bβ\Bε

|∇v|2 + k2|v|2 ≤ Fβ(ε, v+) − Fβ(R, v) + β(3 − d)
2

∫
BR\Bβ

|v|2
r3

+ C

∫
Rd

|g|(|v′| + |v|) + C

∫
B2\Bε

k2χ1(|v||v′| + |v|2) . (3.33)

Here

Fβ(r, v) = −k2

2

∫
∂Br

P∗(r)|v|2 −
1
2

∫
∂Br

P∗(r)|v′|2 + 1
2

∫
∂Br

Q′
∗(r)|v|2

− 1
2

∫
∂Br

Q∗(r)(|v|2)′ +
1
2

∫
∂Br

P∗(r)|∇∂Br
v|2 ,

with

P∗(r) =

⎧⎪⎪⎨⎪⎪⎩
2β

d− 1 if r > β ,

2r
d− 1 if 0 < r < β ,

and Q∗(r) =

⎧⎪⎨⎪⎩
β

r
if r > β ,

1 if 0 < r < β .

Note that

Fβ(r, v) = F (r, v) := − k2r

d− 1

∫
∂Br

|v|2 − r

d− 1

∫
∂Br

|v′|2

− 1
2

∫
∂Br

(|v|2)′ + r

d− 1

∫
∂Br

|∇∂Br
v|2 , (3.34)

for 0 < r < β (where F is independent of β). Since P∗(r) = 2r
d−1 and Q∗(r) = 1 for 0 < r < β,

�
∫

Bε\Bt

(
Δv + k2v

)[ 2r
d− 1vr + v

]
=

∫
Bε\Bt

�
[(

Δv + k2v
)( 2

d− 1 x · ∇v + v
)]

.

We have6

�
[ (

Δv + k2v
) ( 2

d− 1x · ∇v + v
)]

= − 1
d− 1

(
|∇v|2 + k2|v|2

)
+ � ∇ ·

[ 2
d− 1∇v (x · ∇v) − 1

d− 1x |∇v|2 + ∇v v + k2

d− 1x |v|2
]
. (3.35)

Integrating over the domain Bε \Bt, we obtain:

5 This inequality is a variant of an inequality due to Morawetz and Ludwig [15] (see also [24]).
6 This is the “Rellich” identity which originates from [15,22,25].
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�
∫

Bε\Bt

(
Δv + k2v

)[ 2r
d− 1vr + v

]
+ 1

d− 1

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)

= �
∫

∂Bε

(
2ε

d− 1 |vr|2 −
ε

d− 1
∣∣∇v

∣∣2 + vr v + k2 ε

d− 1 |v|2
)

−�
∫

∂Bt

(
2t

d− 1 |vr|2 −
t

d− 1
∣∣∇v

∣∣2 + vr v + k2 t

d− 1 |v|2
)

.

It follows that

1
εd−2(d− 1)

∫
Bε\Bt

|∇v|2 + k2|v|2 ≤ − 1
εd−2F (ε, v−) + 1

εd−2F (t, v)

+ Ck2

εd

∫
Bε\Bt

(ε|v||v′| + |v|2) . (3.36)

Adding (3.33) and (3.36), we obtain∫
Bβ\Bε

(
|∇v|2 + k2|v|2

)
+ 1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)

≤ (d− 1)
(
F (ε, v+) − Fβ(R, v) − 1

εd−2F (ε, v−) + 1
εd−2F (t, v)

)
+ Ck2

εd

∫
Bε\Bt

(ε|v||v′| + |v|2) + β(3 − d)(d− 1)
2

∫
BR\Bβ

|v|2
r3

+ C

∫
Rd

|g|(|v′| + |v|) + C

∫
B2\Bε

k2χ1(|v||v′| + |v|2). (3.37)

We next estimate the first and second lines of the RHS of (3.37). We start with the first line. Using the 
outgoing condition, we have

lim sup
R→∞

−Fβ(R, v) ≤ Cβk2 lim sup
R→∞

∫
∂BR

|v|2 ,

which implies, by (3.30),

lim sup
R→∞

−Fβ(R, v) ≤ Cβk

∫
Rd

|g||v| . (3.38)

We claim that

F (ε, v+) − 1
εd−2F (ε, v−) ≤ Ck2

∫
∂Bε

|v|2 . (3.39)

In fact, if d = 2 then there is nothing to prove since v+ = v− and ∂rv+ = ∂rv− on ∂Bε. Assume d = 3. 
Since v+ = v− on ∂Bε, and ε < 1 we get, by (3.34),
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F (ε, v+) − 1
ε
F (ε, v−) ≤ k2(1 − ε)

2

∫
∂Bε

|v|2 − ε

2

∫
∂Bε

|v′+|2 + 1
2

∫
∂Bε

|v′−|2

− 1
2

∫
∂Bε

(|v+|2)′ +
1
2ε

∫
∂Bε

(|v−|2)′ . (3.40)

Using the fact that v′+ = (1/ε)v′− (and ε < 1), claim (3.39) follows from (3.40). We next estimate the RHS 
of (3.39). We have ∫

∂Bε

|v|2 − (ε/t)d−1
∫

∂Bt

|v|2 ≤ C
( ∫
Bε\Bt

|∇v|2
)1/2( ∫

Bε\Bt

|v|2
)1/2

.

This implies ∫
∂Bε

|v|2 − (ε/t)d−1
∫

∂Bt

|v|2 ≤ Cc

k2εd−2

∫
Bε\Bt

|∇v|2 + Ck2εd−2

c

∫
Bε\Bt

|v|2 , (3.41)

for some small positive constant c, which will be chosen later. A combination of (3.39) and (3.41) yields

F (ε, v+) − 1
εd−2F (ε, v−)

≤ Ck2

⎡⎢⎣ c

k2εd−2

∫
Bε\Bt

|∇v|2 + k2εd−2

c

∫
Bε\Bt

|v|2 +
∫

∂Bt

|v|2

⎤⎥⎦ . (3.42)

From (3.30) and (3.32), we have

k4εd−2

c

∫
Bε\Bt

|v|2 + k2
∫

∂Bt

|v|2 ≤ C
(
k3ε2d−2 + kεd−1

)∫
Rd

|g|v| . (3.43)

It follows from (3.42) and (3.43), by choosing c sufficiently small, that

F (ε, v+) − 1
εd−2F (ε, v−) ≤ C

(
k3ε2d−2 + kεd−1

)∫
Rd

|g||v| + 1
3εd−2

∫
Bε\Bt

|∇v|2 . (3.44)

We also have, by (3.34),

F (t, v) ≤ C

∫
∂Bt

|v||∇v| + ε|∇v|2 ≤ C
(
ε

∫
∂Bt

|∇v|2 + 1
ε

∫
∂Bt

|v|2
)
,

which, by (3.32), implies

1
εd−2F (t, v) ≤ Ck

∫
Rd

|g||v| . (3.45)

Here we used that k ≥ k0 > 0. Combining (3.38) with (3.44) and (3.45), we reach the following estimate for 
the first line of the RHS of (3.37)
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F (ε, v+) + lim sup
R→∞

−Fβ(R, v) − 1
εd−2F (ε, v−) + 1

εd−2F (t, v)

≤ C(k3ε2d−2 + kεd−1 + βk)
∫
Rd

|g||v| + 1
3εd−2

∫
Bε\Bt

|∇v|2 . (3.46)

Here we also used that β ≥ 5. We next estimate the second line of the RHS of (3.37). For that purpose

k2

εd

∫
Bε\Bt

(
ε|v||v′| + |v|2

)
≤

∫
Bε\Bt

([
k4

cεd
+ k2

εd

]
|v|2 + c

εd−2 |v
′|2
)

for c > 0. Using (3.30) and choosing c sufficiently small, we have

C
k2

εd

∫
Bε\Bt

(
ε|v||v′| + |v|2

)
≤ C(k3 + k)

∫
Bε\Bt

|g||v| + 1
3εd−2

∫
Bε\Bt

|v′|2 . (3.47)

On the other hand, using [21, (2.25)–(2.26)], we have for d = 2,

∫
BR\Bβ

|v|2
r3 ≤ C

∞∫
β

1
r3 dr

∫
∂Bβ

|v|2 ≤ C

β2

∫
∂Bβ

|v|2 ≤ C

β2

∫
B5\B4

|v|2 . (3.48)

From (3.47) and (3.48), we reach the following estimate for the second line of the RHS of (3.37)

Ck2

εd

∫
Bε\Bt

(
ε|v||v′| + |v|2

)
+ β(3 − d)(d− 1)

2

∫
BR\B5

|v|2
r3

≤ C(k3 + k)
∫

Bε\Bt

|g||v| + 1
3εd−2

∫
Bε\Bt

|v′|2 + C

β

∫
B5\B4

|v|2 . (3.49)

A combination of (3.37), (3.46) and (3.49) yields (by taking a “limit” of large R)∫
Bβ\Bε

(
|∇v|2 + k2|v|2

)
+ 1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
≤ C(k3 + βk)

∫
Rd

|g||v| + C

∫
Rd

|g||v′| + C

∫
B2\Bε

k2χ1(|v||v′| + |v|2) , (3.50)

for β sufficiently large. Here we used the fact that 0 < ε < 1/2 and k ≥ k0 > 0.

Case 1: kχ1 ≤ λ. It follows from (3.50) that∫
B5\Bε

(
|∇v|2 + k2|v|2

)
+ 1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
≤ C(k4 + 1)

∫
Rd

|g|2 , (3.51)

since

(k3 + k)|g||v| ≤ (k2 + 1)(k + 1)|g||v| ≤ 1
c
(k2 + 1)2|g|2 + c(k + 1)2|v|2 , (3.52)

and
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|g||v′| ≤ 1
c
|g|2 + c|v′|2 . (3.53)

In (3.51) we have absorbed the remaining terms of the RHS of (3.50) by the LHS (by taking c sufficiently 
small) since λ can also be chosen sufficiently small.

Case 2: kχ1 ≥ λ. It follows from (3.50) that

∫
B5\Bε

|∇v|2 + k2|v|2 + 1
εd−2

∫
Bε\Bt

|∇v|2 + k2|v|2 ≤ C

(
k4 + k2χ4

1
χ2

2

)∫
Rd

|g|2, (3.54)

since

k2χ1(|v||v′| + |v|2) ≤ c|v′|2 + Ck4χ2
1|v|2,

and, by (3.30),

k4χ2
1

∫
B2\Bε

|v|2 ≤ k2χ2
1

χ2

∫
Rd

|g||v| ≤ Ck2χ4
1

χ2
2

∫
Rd

|g|2 + c

∫
B4\Bε

k2|v|2.

Here we also used (3.52) and (3.53) to treat the remaining terms of the RHS of (3.50) in the same fashion 
as before. The proof is complete. �
4. Weak solutions and the well-posedness of the non-local wave equations

In this section, we first introduce the notion of weak solutions for the system (1.6) and establish the 
well-posedness of these. We then outline a proof of the fact that the Fourier transform in time of these 
solutions solve a corresponding “outgoing” Helmholtz problem for almost every frequency. We start with:

Definition 1. Let d = 2 or d = 3. We say a function

u ∈ L∞([0,∞);H1(Rd)
)

with ∂tu ∈ L∞([0,∞);L2(Rd)
)

is a weak solution to (1.6) provided u(0, x) = 0 in Rd and for all t > 0

−
t∫

0

∫
Rd

Σ1,c(x) ∂

∂s
u(s, x) ∂

∂s
v(s, x) dx ds +

t∫
0

∫
Rd

〈Ac(x)∇u(s, x) , ∇v(s, x)〉 dx ds

+
t∫

0

∫
B1\B1/2

Σ2,c(x) ∂

∂s
u(s, x) v(s, x) dx ds +

t∫
0

∫
B2\B1

G ∗ ∂su(s, x) v(s, x) dx ds

=
t∫

0

∫
Rd

f(s, x) v(s, x) dx ds , (4.1)

for any v ∈ L∞([0, ∞); H1(Rd)
)

with ∂tv ∈ L∞([0, ∞); L2(Rd)
)

and v(t, x) = 0.

Note that u ∈ C0([0, ∞); L2(Rd)
)

and so the initial condition u(0, x) = 0 makes sense, also note that the 
initial condition ut(0, x) = 0 is well-defined in a weak sense. It is clear that if u ∈ C2([0, +∞) × Rd

)
is a 
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weak solution in the sense defined above, then it is a classical solution to (1.6). Our definition is motivated 
by the standard definition of weak solutions to the wave equation.

The well-posedness of weak solutions to (1.6) is given by the following:

Proposition 1. Let d = 2 or d = 3, and let f ∈ L∞([0, ∞) × L2(Rd)
)

with compact support in [0, ∞) × Rd. 
Then there exists a unique u ∈ L∞([0, ∞); H1(Rd)

)
with ∂tu ∈ L∞([0, ∞); L2(Rd)

)
which is a weak solution 

to (1.6). Moreover,

E(t, u) ≤ Ct‖f‖2
L2
(
[0,t]×Rd

) , for a.e. t > 0 . (4.2)

Here C is a positive constant depending on Λ and ε, but independent of f and t, and

E(t, u) := 1
2

∫
Rd

(
Σ1,c|∂tu(t, x)|2 + 〈Ac∇u(t, x),∇u(t, x)〉

)
dx. (4.3)

The proof is based on a standard Galerkin approach, as part of which we derive a non-trivial energy 
estimate. Similar ideas were used in [19].

Proof. We first establish the existence of a weak solution by an approximate (Galerkin) approach. Let 
(ϕj)∞j=1 ⊂ C∞

c (Rd) be an orthonormal basis in H1(Rd). For m ∈ N, consider um of the form

um =
m∑
j=1

dm,j(t) ϕj(x) , dm,j ∈ C2([0,∞)
)
, (4.4)

satisfying

d2

ds2

∫
Rd

Σ1,c(x)um(s, x) ϕj(x) dx +
∫
Rd

〈Ac∇um(s, x),∇ϕj(x)〉 dx

+ d

ds

∫
B1\B1/2

Σ2,c(x)um(s, x) ϕj(x) dx +
∫

B2\B1

G ∗ ∂sum(s, x) ϕj(x) dx

=
∫
Rd

f(s, x) ϕj(x) dx , (4.5)

for j = 1, . . . , m, and

dm,j(0) = d′m,j(0) = 0 for j = 1, . . . ,m . (4.6)

Since (ϕj)j are linearly independent, the (n × n) matrix M given by Mi,j = 〈ϕi, ϕj〉L2(Rd) is invertible. 
Therefore, the existence and uniqueness of um follow by a standard argument, for example, one can use the 
theory of Volterra equations (see, e.g., [2, Theorem 2.1.1]).

We now derive an estimate for um. Multiplying (4.5) by d′m,j(s), summing up with respect to j, integrating 
on [0, t] with respect to s, and using (4.6) we obtain

E(t, um) +
t∫

0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds +
t∫

0

∫
B1\B1/2

Σ2,c|∂sum|2 ds dx

=
t∫ ∫

f(s, x) ∂sum(s, x) dx ds . (4.7)

0 Rd
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We claim that

t∫
0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds ≥ 0 for a.e. t > 0 . (4.8)

Indeed, define

U(s, x) =
{

∂sum(s, x) if 0 < s < t ,

0 if s ≥ t ,

and extend U by zero for s ≤ 0. Then

t∫
0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds =
∞∫

−∞

∫
B2\B1

G ∗ U U dx ds

=
∞∫

−∞

∫
B2\B1

Ĝ ∗ UÛ dx dk = 2�
∞∫
0

∫
B2\B1

Ĝ ∗ U Û dx dk

= 2
∞∫
0

∫
B2\B1

�(Ĝ)|Û |2 dx dk = 2
∞∫
0

∫
B2\B1

k2

(k2
ε − k2)2 + k2 |Û |2 dx dk ≥ 0 ,

by the definition of G. This establishes (4.8). From (4.7) and (4.8), we arrive at

E(t, um) ≤
t∫

0

∫
Rd

f(s, x) ∂sum(s, x) dx ds . (4.9)

It follows from (4.9) that

E(t, um) ≤
( t∫

0

∫
Rd

|∂sum(s, x)|2 dx ds
)1/2 ( t∫

0

∫
Rd

|f(s, x)|2 dx ds
)1/2

,

which implies

E(t, um) ≤ C
( t∫

0

E(s, um) ds
)1/2 ( t∫

0

∫
Rd

|f(s, x)|2 dx ds
)1/2

. (4.10)

Here and in the remainder of this proof, C denotes a positive constant which depends on ε and Λ, but is 
independent of f , t, and m. We derive from (4.10) that

E(t, um) ≤ Ct

t∫
0

∫
Rd

|f(s, x)|2 dx ds . (4.11)

Hence, for any fixed T > 0, there exists a subsequence of (um) (which is also denoted by um for no-
tational ease) such that um → u weakly star in L∞([0, T ], H1(Rd)

)
and ∂tum → ∂tu weakly star in 

L∞([0, T ], L2(Rd)
)
. It is clear that u(0, x) = ∂tu(0, x) = 0, and that u satisfies (4.1) for any v of the 
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form v(s, x) = ϕj(x)ψ(s), ψ ∈ C1([0, ∞), ψ(t) = 0. By a standard linearity and approximation argu-
ment it follows that u satisfies (4.1) for any v ∈ L∞([0, ∞), H1(Rd)

)
with ∂tv ∈ L∞([0, ∞), L2(Rd)

)
and 

v(t, x) = 0. In other words, u is a weak solution to (1.6). To see that u is unique, it suffices to prove that if 
w ∈ L∞([0, T ], H1(Rd)

)
, with ∂tw ∈ L∞([0, T ], L2(Rd)

)
, w(0, x) = ∂tw(0, x) = 0, and w satisfies (4.1) with 

f = 0 then w is identically zero. We have

−
t∫

0

∫
Rd

Σ1,c(x)∂sw(s, x) ∂sv(s, x) dx ds +
t∫

0

∫
Rd

Ac(x)∇w(s, x)∇v(s, x) dx ds

+
t∫

0

∫
B1\B1/2

Σ2,c(x)∂sw(s, x) v(s, x) dx ds +
t∫

0

∫
B2\B1

G ∗ ∂sw(s, x) v(s, x) dx ds = 0 ,

for all v ∈ L∞([0, ∞), H1(Rd)
)

with ∂tv ∈ L∞([0, ∞), L2(Rd)
)

and v(t, x) = 0. After integration by parts, 
this implies

−
t∫

0

∫
Rd

Σ1,c(x)∂sw(s, x)∂sv(s, x) dx ds +
t∫

0

∫
Rd

Ac(x)∇w(s, x)∇v(s, x) dx ds

−
t∫

0

∫
B1\B1/2

Σ2,c(x)w(s, x) ∂sv(s, x) dx ds−
t∫

0

∫
B2\B1

G ∗ w(s, x)∂sv(s, x) dx ds = 0 , (4.12)

for all v ∈ L∞([0, ∞), H1(Rd)
)

with ∂tv ∈ L∞([0, ∞), L2(Rd)
)

and v(t, x) = 0. Setting

v(s, x) =
t∫

s

w(τ, x) dτ ,

substituting v in (4.12), and using the fact that ∂sv(s, x) = −w(s, x), we obtain

t∫
0

∫
Rd

Σ1,c(x)∂sw(s, x) w(s, x) dx ds−
t∫

0

∫
Rd

Ac(x)∂s∇v(s, x)∇v(s, x) dx ds

+
t∫

0

∫
B1\B1/2

Σ2,c(x)|w(s, x)|2 dx ds +
t∫

0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds = 0 .

It follows that

1
2

∫
Rd

(
Σ1,c|w(t, x)|2 + Ac(x)|∇v(0, x)|2

)
dx

+
t∫

0

∫
B1\B1/2

Σ2,c(x)|w(s, x)|2 dx ds +
t∫

0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds = 0 ,

which in particular yields
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∫
Rd

Σ1,c|w(t, x)|2 dx = 0 ,

or

w(t, x) = 0 for a.e. x ∈ Rd and all t ≥ 0 .

Here we used the fact that

t∫
0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds ≥ 0 ,

cf. (4.8). This establishes the uniqueness of the weak solution u. The proof is complete. �
Let ûc(k, x) be the Fourier transform of uc with respect to time, i.e.,7

ûc(k, x) := 1√
2π

∞∫
−∞

uc(t, x)eikt dt.

We have

Proposition 2. Let d = 2 or d = 3, and let f ∈ L2([0, +∞) × Rd
)

with compact support. Suppose uc ∈
L∞([0, +∞); H1(Rd)

)
with ∂tuc ∈ L∞([0, +∞); L2(Rd)

)
is the unique weak solution to (1.6). Then ûc(k, ·) ∈

H1
loc(Rd) is the unique outgoing solution to the equation

div(Ac∇ûc) + k2Σcûc = −f̂ , (4.13)

for a.e. k > 0. Moreover,

kûc(k, x) ∈ L2
loc
(
[0,+∞) × Rd

)
.

We recall that ûc denotes the Fourier transform of uc (uc is extended by 0 for t < 0).

Outline of Proof. The proof of the first fact is similar to the one of [20, Theorem A1], and is based on the 
so called limiting absorption principle. A key ingredient, as in [20, (A9)], is the technique from the proof 
of Proposition 1 where the energy estimate was established. The fact that kûc ∈ L2

loc
(
[0, +∞) × Rd

)
is 

obtained as follows. Let uδ ∈ L∞([0, +∞); H1(Rd)
)

with ∂tuδ ∈ L∞([0, +∞); L2(Rd)
)

be the unique weak 
solution8 to {

Σ1,c∂
2
ttuδ − div(Ac∇uδ) + Σ2,c∂tuδ + G ∗ ∂tuδ + δ∂tuδ = f in [0,+∞) × Rd ,

∂tuδ(t = 0) = uδ(t = 0) = 0 in Rd .
(4.14)

Then, as in the proof of Proposition 1,

δ

t∫
0

∫
Rd

|∂tuδ|2 ≤ C . (4.15)

7 We extend uc by 0 for t < 0.
8 The definition of weak solutions for the equation of uδ is similar to the one for the equation of uc.
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This implies ∂tuδ ∈ L2([0, +∞); L2(Rd)), and thus kûδ ∈ L2([0, +∞); L2(Rd)) = L2([0, ∞) × Rd). Here ûδ

denotes the Fourier transform of uδ (uδ is extended by 0 for t < 0). As in the proof of [20, Theorem A1],9
for almost every k > 0, ûδ(k, ) ∈ H1(Rd) is the unique solution to

div(Ac∇ûδ(k, ·)) + k2Σcûδ(k, ·) + iδkûδ(k, ·) = −f̂(k, ·).

Fix k0 > 0 arbitrary. We have, for 0 ≤ k ≤ k0 and for 0 < δ < 1,

‖ûδ(k, ·)‖L2(BR) ≤ Ck−1‖f̂(k, ·)‖L2(BR) , (4.16)

for some positive constant C, independent of δ and k, see Lemma 7 below. Since f has compact support,

‖f̂(k, ·)‖L2(BR) ≤ C‖f‖L2 . (4.17)

A combination of (4.15), (4.16), and (4.17) yields(
kûδ(k)

)
0<δ<1

is bounded in L2
loc([0,+∞) × Rd). (4.18)

By the limiting absorption principle (see e.g. [11, Section 4.6]) we have, for almost every k > 0,

ûδ(k, ·) → V (k, ·) weakly in H1
loc(Rd) , (4.19)

where V (k, x) ∈ H1
loc(Rd) is the unique outgoing solution to (4.13). On the other hand (see e.g., the proof 

of [20, Theorem A1] in particular [20, (A13)]),

kûδ(k, x) converges to kV (k, x) in the distributional sense on R× Rd . (4.20)

Since V (k, ·) = ûc(k, ·), k > 0, we derive from (4.18), (4.19), and (4.20) that

kûc ∈ L2
loc([0,+∞) × Rd) .

The proof is complete. �
In the proof of Proposition 2, we used a simple consequence of the following lemma:

Lemma 7. Given g ∈ L2(Rd) with supp g ⊂ BR0 , 0 < δ < 1, and 0 < k < k0, let vk,δ ∈ H1(Rd) be the 
unique solution to

div(Ac∇vk,δ) + (k2Σc + ikδ)vk,δ = g in Rd .

For any R1 > 0, there exists a positive constant CR1 independent of k, δ, and g such that

‖vk,δ‖L2(BR1 ) ≤ CR1(| ln k|2 + 1)‖g‖L2 for d = 2 , (4.21)

and

‖vk,δ‖L2(BR1 ) ≤ CR1‖g‖L2 for d = 3 . (4.22)

9 More precisely, [20, (A10) and the following paragraph].
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Proof. Under the conditions k < k0 and δ < 1, the estimates (4.21) and (4.22) follow from a standard 
contradiction argument if k is bounded below by a positive constant. Lemma 8 below implies these same 
estimates for sufficiently small k, and the proof is complete. �
Lemma 8. Let A ∈ [L∞(Rd)]d×d and Σ ∈ L∞(Rd), d = 2, 3 be such that A is uniformly elliptic, A = I in 
Rd \ B2, Σ = 1 in Rd \ B2, �(Σ) is strictly positive, and �(Σ) ≥ 0. Given g ∈ L2(Rd) with supp g ⊂ BR0 , 
and 0 < ε , δ < 1, let vε,δ ∈ H1(Rd) be the unique solution to

div(A∇vε,δ) + (ε2Σ + iδ)vε,δ = g in Rd .

For any R1 > 0, there exist two positive constants c and C independent of ε and δ such that if 0 < ε, δ < c

then

‖vε,δ‖L2(BR1 ) ≤ C| ln ε|2‖g‖L2 for d = 2 ,

and

‖vε,δ‖L2(BR1 ) ≤ C‖g‖L2 for for d = 3 .

Proof. The proof of this lemma for d = 3 is simpler than for d = 2. Essentially the proof for d = 3 follows 
along the first third of the argument for d = 2. For this reason we only present the proof for d = 2. We 
may without loss of generality suppose R1 > R0 (if not, simply increase R1), and for simplicity of notation 
we use R0 = 4, R1 = 5. The proof proceeds by contradiction. Suppose there exist a sequence εn → 0, a 
sequence δn → 0, and a sequence (gn) ⊂ L2(R2) such that supp gn ⊂ B4, and

lim
n→∞

| ln εn|2‖gn‖L2 = 0, and ‖vn‖L2(B5) = 1 . (4.23)

Here vn ∈ H1(R2) is the unique solution to

div(A∇vn) + (ε2
nΣ + iδn)vn = gn in R2 .

Multiplying this equation by v̄n and integrating the obtained expression on B5, we have∫
B5

〈A∇vn,∇v̄n〉 −
∫
B5

(ε2
nΣ + iδn)|vn|2 = −

∫
B5

gnv̄n +
∫

∂B5

∂vn
∂r

v̄n . (4.24)

Since Δvn + (ε2
n + iδn)vn = 0 in R2 \B4 and vn ∈ H1(R2), it follows that10

‖vn‖H1(BR\B9/2) ≤ CR‖vn‖H1/2(∂B9/2) ≤ CR‖vn‖L2(B5\B4) ≤ CR for R > 9/2 . (4.25)

We derive from (4.23) and (4.24) that ∫
B5

|∇vn|2 ≤ C . (4.26)

A combination of (4.25) and (4.26) yields

10 One can use (4.27). below to derive this property.
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‖vn‖H1(BR) ≤ CR ∀R > 0 .

Thus (after extraction of a subsequence) vn → v in L2
loc(R2), where v ∈ W 1(R2) is a solution to11

div(A∇v) = 0 in R2 .

It is clear that v = α for some (complex) constant α. For d = 3 the proof would proceed similarly until this 
point, where we could automatically conclude that α is zero, and we would have reached a contradiction. 
In the two dimensional case it requires the following additional argument to show that α is zero. Since 
Δvn + ε̂2

nvn = 0 in R2 \B4 with ε̂2
n = ε2

n + iδn and �(ε̂n) > 0, vn ∈ H1(R2) can be represented as

vn(x) =
∞∑

l=−∞
al,nH

(1)
l (ε̂n|x|)eilθ |x| > 4 , (4.27)

where H(1)
l is the Hankel function of the first kind of order l. This implies

vn = v0,n + v1,n |x| > 4 , (4.28)

where

v0,n = a0,nH
(1)
0 (ε̂n|x|), and v1,n =

∑
l �=0

al,nH
(1)
l (ε̂n|x|)eilθ, |x| > 4 . (4.29)

By orthogonality, it is clear that for any R > 4,

‖v0,n‖H1(BR\B4) + ‖v1,n‖H1(BR\B4) ≤ C‖vn‖H1(BR\B4) .

After extraction of a subsequence, we may assume that v0,n → α0 in L2
loc(R2 \ B4) and v1,n → v1 in 

L2
loc(R2 \B4) for some (complex) constant α0 and some v1 ∈ L2

loc(R2 \B4). Therefore,

α = v = α0 + v1 |x| > 4 .

This implies that v1 is constant on {|x| > 4}. It follows that v1 = 0 for |x| > 4 since∫
B6\B5

v1 = lim
n→∞

∫
B6\B5

v1,n = 0 .

As a consequence

lim
n→∞

vn = lim
n→∞

v0,n = α0 in L2
loc(R2 \B4) .

We have ∫
∂BR

∂rvnv̄n =
∫
BR

〈A∇vn,∇v̄n〉 −
∫
BR

(ε2
nΣ + iδn)|vn|2 +

∫
BR

gnv̄n .

If we let R → ∞ and consider only the imaginary part, then we obtain

11 The proof is similar to the one of Lemma 2.
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�
∫
R2

(ε2
nΣ + iδn)|vn|2 = �

∫
R2

gnv̄n . (4.30)

Due to the fact that ε̂n has a positive imaginary part we have that v0,n ∈ H1(R2) (actually it decreases 
exponentially at ∞), and so∫

∂B5

∂rv0,nv̄0,n = −
∫

R2\B5

|∇v0,n|2 +
∫

R2\B5

(ε2
n + iδn)|v0,n|2 ,

which leads to

�
∫

∂B5

∂rv0,nv̄0,n = �
∫

R2\B5

(ε2
n + iδn)|v0,n|2 =

∫
R2\B5

δn|v0,n|2

≤
∫

R2\B5

δn|vn|2 ≤ �
∫
R2

(ε2
nΣ + iδn)|vn|2 .

For the last two inequalities we used the orthogonality of the decomposition (4.28), and the facts that Σ = 1
in R2 \B5 and �Σ ≥ 0. In combination with (4.23) and (4.30) this gives∣∣∣∣∣∣�

∫
∂B5

∂rv0,nv̄0,n

∣∣∣∣∣∣ ≤ ‖gn‖L2‖vn‖L2(B5) ≤ ‖gn‖L2 . (4.31)

A simple calculation, based on (4.29) and the well-known asymptotics of the Hankel function H(1)
0 for small 

argument (see e.g., [1, page 360]), gives

c|a0,n|2 ≤

∣∣∣∣∣∣�
∫

∂B5

∂rv0,nv̄0,n

∣∣∣∣∣∣ ,

and so, in combination with (4.31), and (4.23) we get

| ln εn|2|a0,n|2 ≤ C| ln εn|2‖gn‖L2 → 0 as n → ∞ .

This estimate and the formula (4.29) for v0,n now yields

lim
n→∞

v0,n = 0 on any bounded subset of R2 \B4 .

Accordingly we have α = α0 = 0, and so it follows that the vn converge to 0 in L2
loc(R2). We have thus 

reached a contradiction to the fact that ‖vn‖L2(B5) = 1, and the proof is complete. �
5. Proof of Theorem 2

The proof is related to that in [20], however, we shall estimate ∂tuc−∂tu as a way of getting to uc−u. This 
idea was also used in [19]. Let ûc(k, ·) be the Fourier transform of uc with respect to time. By Proposition 2, 
for a.e. k > 0, ûc(k, ·) ∈ H1

loc(Rd) is the unique outgoing solution to

div(Ac∇ûc) + k2Σcûc = −f̂ , (5.1)
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where (Ac, Σc) is given in (1.4). Moreover,

kûc ∈ L2
loc
(
[0,+∞) × Rd

)
. (5.2)

As before we introduce ũε(k, x) = ûc(k, Fε(x)). Then ũε ∈ H1
loc(Rd) is the unique outgoing solution to

div(Aε∇ũε) + k2Σεũε = −f̂ in Rd . (5.3)

Here

Aε,Σε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I, 1 in Rd \B2 ,

I, σε(x) = 1 + σ1,ε(x) in B2 \Bε,

1
εd−2 I,

1
εd

(1 + i/k) in Bε \Bε/2 ,

1
εd−2 a(x/ε),

1
εd

σ(x/ε) in Bε/2 ,

(5.4)

and

σ1,ε =
(
F−1
ε

)
∗σ1,c .

Recall that σ1,c is given by (1.3) with σD = σN = 1. Let ũ1,ε ∈ H1
loc(Rd) be the unique outgoing solution 

to

div(A1,ε∇ũ1,ε) + k2Σ1,εũ1,ε = −f̂ ,

with

A1,ε,Σ1,ε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I, 1 in Rd \Bε ,

1
εd−2 I,

1
εd

(1 + i/k) in Bε \Bε/2 ,

1
εd−2 a(x/ε),

1
εd

σ(x/ε) in Bε/2 .

Finally, let û(k, x) be the Fourier transform of u with respect to time; û(k, ·) ∈ H1
loc(Rd) is the unique 

outgoing solution to

Δû + k2û = −f̂ in Rd .

We first estimate

1/ε∫
0

k‖ũ1,ε − û‖L2(B5\B2) dk .

For this purpose, let Ũ1,ε(k, ·) ∈ H1
loc(Rd) be the unique outgoing solution to{

ΔŨ1,ε + k2Ũ1,ε = −f̂ in Rd \Bε ,

Ũ1,ε = 0 in Bε ,

and define, in all of Rd,
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w1,ε(k, ·) = Ũ1,ε(k, ·) − û(k, ·) and w2,ε = ũ1,ε(k, ·) − Ũ1,ε(k, ·) .

Then w1,ε(k, ·) ∈ H1
loc(Rd) is the unique outgoing solution to{

Δw1,ε + k2w1,ε = 0 in Rd \Bε ,

w1,ε = −û in Bε ,
(5.5)

and w2,ε ∈ H1
loc(Rd) is the unique outgoing solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δw2,ε + k2w2,ε = 0 in Rd \Bε ,

∇ · (A1,ε∇w2,ε) + k2Σ1,εw2,ε = 0 in Bε ,

∂w2,ε

∂r

∣∣∣
ext

− 1
εd−2

∂w2,ε

∂r

∣∣∣
int

= −∂Ũ1,ε

∂r
on ∂Bε .

(5.6)

We first estimate w1,ε. By Lemma 1 and the theory of regularity of elliptic equations, we have, for d = 3
or (d = 2 and k > 1/2)

1
k + 1‖∇

2û(k, ·)‖L2(B2) + ‖∇û(k, ·)‖L2(B2) + (k + 1)‖û(k, ·)‖L2(B2) ≤ C‖f̂(k, ·)‖L2 (5.7)

and for (0 < k < 1/2 and d = 2)

‖∇2û(k, ·)‖L2(B2) + ‖∇û(k, ·)‖L2(B2) + ‖û(k, ·)‖L2(B2) ≤ C| ln k|‖f̂(k, ·)‖L2 . (5.8)

Here and in the remainder of this proof, C denotes a positive constant independent of ε, k, and f . Since 
Δû(k, ε·) + k2ε2û(k, ε·) = 0 in B2, it follows that∫

B1

|∇û(k, ε·)|2 ≤ C max{1, ε2k2}
∫
B2

|û(k, ε·)|2 ≤ C‖û(k, ·)‖2
L∞(B2) ,

for 0 < k < 1/ε. Using (5.7) and (5.8), we derive that for 0 < k < 1/ε,

‖û(k, ε·)‖H1/2(∂B1) ≤ C(k + 1)‖f̂(k, ·)‖L2 for d = 3 , (5.9)

and

‖û(k, ε·)‖H1/2(∂B1) ≤ C(k + 1)ϕ(k)‖f̂(k, ·)‖L2 for d = 2 . (5.10)

Here

ϕ(k) = 1 if k > 1/2 , and ϕ(k) = | ln k| if 0 < k < 1/2 .

Applying Lemma 2 and rescaling, we have for 0 < k < 1/ε,

‖w1,ε(k, ·)‖L2(B5\B2) ≤ Cε(k + 1)‖f̂(k, ·)‖L2 for d = 3 , (5.11)

and

‖w1,ε(k, ·)‖L2(B5\B2) ≤ C
|H(1)

0 (k)|
(1) (k + 1)ϕ(k)‖f̂(k, ·)‖L2 for d = 2 . (5.12)
|H0 (kε)|
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Since

|H(1)
0 (k)|

|H(1)
0 (kε)|

≤ C
min{k−1/2 , | ln k| + 2}

| ln(kε)| + 2 for 0 < kε < 1 ,

and thus

|H(1)
0 (k)|

|H(1)
0 (kε)|

≤ C

⎧⎪⎪⎨⎪⎪⎩
| ln k| + 2
| ln ε| + 2 , k ≤ 1 ,

1
| ln ε| + 2 , 1 ≤ k ≤ 1/ε ,

we have

k
|H(1)

0 (k)|
|H(1)

0 (kε)|
ϕ(k) ≤ C

k(| ln k|2 + 1)
| ln ε| + 2 , (5.13)

for 0 < k < 1/ε. It now follows from (5.11) and (5.12) that, in the range 0 < k < 1/ε,

k‖w1,ε(k, ·)‖L2(B5\B2) ≤ Cεk(k + 1)‖f̂(k, ·)‖L2 for d = 3 , (5.14)

and

k‖w1,ε(k, ·)‖L2(B5\B2) ≤
C

| ln ε|k(k + 1)
(
| ln k|2 + 1

)
‖f̂(k, ·)‖L2 for d = 2 . (5.15)

We next estimate w2,ε. Applying Lemma 3, we have, for 0 < k < 1/ε,

‖w2,ε(k, ε·)‖L2(B5\B1) ≤ C max{1, ε/k}
∥∥∥ ∂

∂r

(
Ũ1,ε(k, ε·)

) ∥∥∥
H−1/2(∂B1)

for d = 3 , (5.16)

and

‖w2,ε(k, ε·)‖L2(B5\B1) ≤ C max{k, 1/k}
∥∥∥ ∂

∂r

(
Ũ1,ε(k, ε·)

) ∥∥∥
H−1/2(∂B1)

for d = 2 . (5.17)

For 0 < εk < 1, the standard trace estimate, and a classical interior elliptic estimate, yield

‖w2,ε(k, ε·)‖H1/2(∂B2) ≤ C‖w2,ε(k, ε·)‖H1(B4\B3/2) ≤ C‖w2,ε(k, ε·)‖L2(B5\B1)

and so by use of Lemma 2, (5.16), (5.17) and a scaling argument, it follows that

‖w2,ε(k, ·)‖L2(B5\B2) = ε3/2‖w2,ε(k, ε·)‖L2(B5/ε\B2/ε)

≤ Cε‖w2,ε(k, ε·)‖L2(B5\B1)

≤ Cεmax{1, ε/k}
∥∥∥ ∂

∂r

(
Ũ1,ε(k, ε·)

) ∥∥∥
H−1/2(∂B1)

for d = 3, (5.18)

and
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‖w2,ε(k, ·)‖L2(B5\B2) = ε‖w2,ε(k, ε·)‖L2(B5/ε\B2/ε)

≤ C
|H(1)

0 (k)|
|H(1)

0 (εk)|
‖w2,ε(k, ε·)‖L2(B5\B1)

≤ C
|H(1)

0 (k)|
|H(1)

0 (εk)|
max{k, 1/k}

∥∥∥ ∂

∂r

(
Ũ1,ε(k, ε·)

) ∥∥∥
H−1/2(∂B1)

for d = 2 . (5.19)

We have ∥∥∥ ∂

∂r

(
Ũ1,ε(k, ε·)

) ∥∥∥
H−1/2(∂B1)

≤
∥∥∥ ∂

∂r

(
w1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

+
∥∥∥ ∂

∂r

(
û(k, ε·)

)∥∥∥
H−1/2(∂B1)

.

Applying Lemma 2 to w1,ε(k, ε·) and using (5.9) and (5.10), we obtain, for 0 < k < 1/ε,

∥∥∥ ∂

∂r

(
Ũ1,ε(ε·)

) ∥∥∥
H−1/2(∂B1)

≤ C(k + 1)‖f̂(k, ·)‖L2 for d = 3,

and ∥∥∥ ∂

∂r

(
Ũ1,ε(ε·)

) ∥∥∥
H−1/2(∂B1)

≤ C(k + 1)ϕ(k)‖f̂(k, ·)‖L2 for d = 2.

It now follows from (5.18) and (5.19) that, for 0 < k < 1/ε,

k‖w2,ε‖L2(B5\B2) ≤ Cε(k + 1) max{k, ε}‖f̂(k, ·)‖L2 for d = 3 , (5.20)

and

k‖w2,ε‖L2(B5\B2) ≤
C(k + 1)
| ln ε|

(
| ln k|2 + 1

)
max{1, k2}‖f̂(k, ·)‖L2 for d = 2 . (5.21)

For the last estimate we also used (5.13). A combination of (5.14), (5.15), (5.20), and (5.21) yields

1/ε∫
0

k‖ũ1,ε − û‖L2(B5\B2) dk ≤ Cε

1/ε∫
0

(k + 1)2‖f̂(k, ·)‖L2 ≤ Cε‖f‖ if d = 3 , (5.22)

and

1/ε∫
0

k‖ũ1,ε − û‖L2(B5\B2) dk ≤ C

| ln ε|

1/ε∫
0

(| ln k|2 + 1)(1 + k)3 ‖f̂(k, ·)‖L2

≤ C

| ln ε| ‖f‖ if d = 2 , (5.23)

where ‖f‖ is the norm introduced in the statement of Theorem 2.
We next estimate ‖ũε(k, ·) −ũ1,ε(k, ·)‖L2(B5\B2) for k of order up to 1/ε. We already know that �(σ1,ε) > 0

for k > 0, and from Lemma 4 and the fact that kε > c∗/εd/2 we have

|σ1,ε| ≤
C

d−1 2 ≤ C0ε , (5.24)

ε kε



834 H.-M. Nguyen, M.S. Vogelius / J. Math. Pures Appl. 106 (2016) 797–836
for 0 < k < c∗
2 ε−1. Applying Lemma 5 and the first part of Lemma 6 to ũε − ũ1,ε (with g = −k2σ1,εũ1,ε) 

we obtain

k‖ũε(k, ·) − ũ1,ε(k, ·)‖L2(B5\B2) ≤ C(k2 + 1)k2 sup |σ1,ε|‖ũ1,ε(k, ·)‖L2(B2\Bε) (5.25)

for 0 < k < λ
C0ε

(λ is the constant from Lemma 6). A combination of (5.24) and (5.25) yields

k‖ũε(k, ·) − ũ1,ε(k, ·)‖L2(B5\B2) ≤ Ck2ε(k2 + 1)‖ũ1,ε(k, ·)‖L2(B2\Bε) , (5.26)

for 0 < k < λ0/ε, with λ0 = min{1, c∗/2, λ/C0}. Similarly, applying Lemma 5 and the first part of Lemma 6
to the function û1,ε (with g = −f and coefficients A1,ε, Σ1,ε, i.e., Aε, Σε with σ1,ε = 0) we obtain

k‖ũ1,ε(k, ·)‖L2(B5\B2) ≤ C(k2 + 1)‖f̂(k, ·)‖L2 , (5.27)

for 0 < k < λ0/ε. A combination of (5.26) and (5.27) yields

λ0/ε∫
0

k‖ũε − ũ1,ε‖L2(B5\B2) dk ≤ Cε

λ0/ε∫
0

(k + 1)5‖f̂(k, ·)‖L2 ≤ Cε‖f‖ . (5.28)

We now consider the regime k > λ0/ε. From the second part of Lemma 6, and the remark following, we 
have

k‖ũε(k, ·)‖L2(B5\B2) ≤ C
(
k2 + kχ2

1
χ2

)
‖f̂(k, ·)‖L2 ≤ C

λ0
ε
(
k3 + k2χ2

1
χ2

)
‖f̂(k, ·)‖L2 . (5.29)

On the other hand, using Lemma 1 we have

k‖û(k, ·)‖L2(B5\B2) ≤ C‖f̂(k, ·)‖L2 ≤ C

λ0
εk‖f̂(k, ·)‖L2 , (5.30)

for k > λ0/ε. Lemma 4 yields

k2χ2
1

χ2
≤ Ck2 1

ε2(d−1)k2
max{k4

ε , k
4}

k
≤ C

max{k4
ε , k

4}
kε2(d−1) ≤ C(k2d+1 + k2d−3k4

ε) , (5.31)

for k > λ0/ε. We derive from (5.29), (5.30), and (5.31) that

∞∫
λ0/ε

k‖ũε − û‖L2(B5\B2) dk ≤ Cε

∞∫
λ0/ε

(k2d+1 + k2d−3k4
ε)‖f̂(k, ·)‖L2 ,

or

∞∫
λ0/ε

k‖ũε − û‖L2 dk ≤ Cε‖f‖ . (5.32)

A combination of (5.22), (5.23), (5.28), and (5.32) now gives

∞∫
k‖ũε − û‖L2(B5\B2) dk ≤ Cε‖f‖ if d = 3 ,
0
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and

∞∫
0

k‖ũε − û‖L2(B5\B2) dk ≤ C

| ln ε| ‖f‖ if d = 2 .

Therefore, since ũε(k, ·) = ûc(k, ·) outside B2 (and since uc and u are real, so that ûc(−k, ·) − û(−k, ·) =
ûc(k, ·) − û(k, ·) ) it follows that

sup
t>0

‖∂tuc(t, ·) − ∂tu(t, ·)‖L2(B5\B2) ≤ Cε‖f‖ if d = 3 ,

and

sup
t>0

‖∂tuc(t, ·) − ∂tu(t, ·)‖L2(B5\B2) ≤
C

| ln ε| ‖f‖ if d = 2 .

From this we conclude

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CTε‖f‖ if d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤
CT

| ln ε| ‖f‖ if d = 2 .

The proof of Theorem 2 is complete. �
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