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Abstract
Guided growth of semiconductor nanowires in nanotube templates has been considered as a
potential platform for reproducible integration of III–Vs on silicon or other mismatched
substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs
nanowires in SiO2/Si nanotube templates. We show how and under which conditions the
nanowire growth is initiated by In-assisted vapor–liquid–solid growth enabled by the local
conditions inside the nanotube template. The conditions for high yield of vertical nanowires are
investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model
that further substantiates our findings. This work opens new perspectives for monolithic
integration of III–Vs on the silicon platform enabling new applications in the electronics,
optoelectronics and energy harvesting arena.

S Online supplementary data available from stacks.iop.org/NANO/27/455601/mmedia

Keywords: nanowire, organized growth, templated growth, molecular beam epitaxy, integration
of III–Vs on silicon, InAs

(Some figures may appear in colour only in the online journal)

1. Introduction

One-dimensional geometry of semiconductor nanowires
(NWs) gives rise to many interesting physical properties
which are not seen in bulk materials, such as electron
quantum confinement [1–5] and optical resonances [6, 7].
Furthermore, small diameters of NWs allow for their dis-
location-free growth on lattice-mismatched substrates. This
feature may enable monolithic integration of high-quality III–
V semiconductors with silicon electronic platform, over-
coming the fundamental issues such as lattice, polarity and
thermal expansion mismatch [8, 9]. To fully exploit the huge

potential provided by the combination of NW geometry and
excellent III–V semiconductors properties (direct band gap,
superior carrier mobility and high absorption coefficient), the
growth of these structures needs to be achieved in a Au-free
and position-controlled way to avoid possible Au con-
tamination [10–12]and ensure the required spatial position-
ing of NWs. In gold-free growth, the NW position is usually
controlled by defining the arrays of holes in a dielectric mask
using electron beam lithography for surface patterning [13–
15]. This provides the nanoscale precision, but on the other
hand the process is extremely time-consuming on a large
(wafer) scale and unable to satisfy the condition of cost
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effectiveness. Other techniques such as nanoimprint litho-
graphy [12, 16, 17] and phase shift lithography (PSL) [18]
have previously been used to create large scale patterns for
ordered NW growth.

In this work, we employ PSL as a patterning technique
[18–20] to fabricate large areas of SiO2 nanotubes on Si
substrates to guide the subsequent growth of InAs nanowires
by molecular beam epitaxy (MBE). A similar concept has
recently been demonstrated by Borg et al with metal-organic
vapor phase epitaxy (MOVPE). This MOVPE technique is
usually referred to as template-assisted selective epitaxy
(TASE) [21, 22]. MBE is characterized by highly directional
material influxes, which makes it fundamentally different
from MOVPE. The MBE template growth should be much
more challenging since the material supply to the bottom of
the nanotubes strongly depends on their depth. Consequently,
we conduct a detailed experimental study of the template
geometry influencing the yield of InAs nanowires, followed
by a supporting theoretical model. Our results indicate that
growth inside the nanotubes proceeds in the In-assisted vapor-
liquid-solid mode rather than by selective area epitaxy. Fur-
thermore, we demonstrate the nanowire growth in the tubes
with a high aspect ratio, where the direct impingement onto
the bottom of the tubes is no longer possible and the group III
growth species are supplied only through surface diffusion
and re-emission.

2. Experimental details

Large scale arrays of SiO2 nanotubes were fabricated on (111)
Si substrates. The fabrication process is shown in figure 1(a).
First, Si nanopillars were defined by PSL followed by reactive
ion etching, as in [18, 23]. The pillars were ∼500 nm high and
with diameters ranging from 150 to 450 nm. A 50 nm thick
layer of SiO2 was grown around them by thermal oxidation.
Further processing steps are shown in figure 1(a) comprised
coating with protective photoresist layer, controlled etching of
photoresist up to the desired pillar height, oxide etching using
HF and finally using reactive ion etching (RIE) to empty the
silicon inside the nanopillars and form a SiO2 nanotube. The

entire process was optimized for 4 inch wafers, which were
diced in four substrates for growth in our MBE machine. Each
growth substrate contained five arrays with different geome-
tries, with pitches of 1, 1.5 and 2 μm pillars and diameters
varying from 150 nm up to 450 nm. The depth of the tubes
varied between 50 and 400 nm. A scanning electron micro-
scopy (SEM) image of a typical oxide nanotube template
(ONT) array is shown in figure 1(b). The arrays and the
nanotube morphology appear very homogenous across the
wafer.

InAs nanowires were then grown in the ONTs in a DCA
P600 MBE system. Before introduction into the MBE growth
chamber, samples were dipped for 2 s in poly-silicon etch
solution [HNO3(70%):HF(49%):H2O] in order to remove the
native oxide and smoothen the silicon surface [24]. Growth
parameters (the substrate temperature TS, the growth time t,
the In and As4 beam equivalent pressures PIn and PAs) were
systematically varied one parameter at the time. The optimal
growth temperature was found to be 500 °C, regardless of the
nanotube geometry. At this temperature, we obtain growth
inside the ONTs and at the same time avoid parasitic growth
outside the nanotubes. The In and As4 beam equivalent
pressures were varied between 1.1 and 1.8×10−7 Torr and
0.7 and 1.3×10−5 Torr, respectively, similar to the condi-
tions used in prior works for InAs nanowire growth [7].
Growth time was varied between 30 min and 5 h. No
dependence on the array pitch was observed.

3. Results and discussion

3.1. Optimizing material supply for InAs nanowire growth:
200 nm deep tubes

We start by recounting how the nanotube aspect ratio affects
the material supply onto the bottom of the tube. A sketch of
the nanotube geometry is shown in figure 2(a). As mentioned
above, the As and In beams are directional, In adatoms are
able to diffuse on the surface while As is highly volatile and
almost non-diffusive [25–27]. The depth H and diameter D of
the nanotube determine the amount of material reaching its
bottom to start the nanowire growth. In our MBE system,

Figure 1. (a) Illustration of fabrication steps for silicon oxide nanotube template (ONT) and b) SEM images of an ONT array and close-view
of a single nanotube.
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both cells are positioned at 45 °. Hence, at H>D there is no
direct impingement of both species at the bottom of the
nanotube. In this case, initiation of the nanowire growth
should be an extremely slow process as only diffusing species
can reach the silicon bottom of the nanotube. Diffusion
lengths of In on SiO2 are typically between 0.5 and 0.8 μm,
depending on the growth conditions [7, 15, 25]. The arsenic
species (As2 and As4) should have the diffusion lengths of a
few nm at most, however, arsenic can be re-emitted from the
ONT surfaces and thereby contribute to the InAs growth even
in the shadowed areas [26, 27]. In fact, the ONT creates local
growth conditions inside the nanotubes which can be sig-
nificantly different from the nominal conditions for two-
dimensional (2D) growth. Therefore, in figure 2(a) the
effective In (labeled ‘3’) and As (labeled ‘5’) atomic fluxes
that reach the bottom of the nanotube are denoted c v3 3 and
c v ,5 5 with ck containing information on the geometry and re-
emission of the growth species within the nanotube.

We first investigated growth in the nanotubes whose
diameters are similar to the depth ( D H, aspect ratio

H D 1) using the growth conditions that yield InAs
NW arrays on patterned Si substrates (TS=500 °C,
PIn=1.2×10−7 Torr, PAs=6×10−6 Torr) and the
growth time of 60 min [5]. These conditions did not produce
any nanowires inside the nanotubes, supporting the assump-
tion that the effective V/III flux ratio inside the nanotube is
different from the nominal value. As the diffusion length of In
is much larger than that of As, much more In is collected
inside the nanotube and the actual V/III ratio might be
too low for nanowire growth. We gradually increased the
growth time, the V/III ratio as well as the absolute fluxes of
both As and In fluxes. Figures 2(b) to (d) show the effect
of increasing the PAs value at the fixed TS=500 °C,
PIn=1.4×10−7 Torr and 90 min growth time. Below the
SEM images, we show the corresponding yields measured for
all types of structures: vertical nanowires, non-vertical

nanowires, nanoscale V-shaped membranes [28], quasi-2D
parasitic growth and empty nanotubes (i.e., absence of any
growth). It is important to note that in many cases non-ver-
tical nanowires and nanoscale V-shaped membranes nucleate
on the oxide layer rather than on Si surface inside the nano-
tubes (see online supporting information 1).

For the lowest values of PAs around 0.7×10−5 Torr we
observe a very low yield of vertical nanowires (less than
20%). Many non-vertical nanowires, some membranes and
parasitic structures nucleate on the surface and many tubes
remain empty. One can conclude that this PAs is insufficient to
nucleate vertical nanowires in the desired nucleation position,
i.e. on bare Si surface in the bottom of the nanotubes.
Increasing PAs to 1×10−5 Torr leads to a significant increase
in the yield of vertical NWs up to 77%. The number of
unwanted non-vertical nanowires and membranes is strongly
decreased (down to 8% in total); the parasitic growth was
found in 10% of the tubes, and 5% of the nanotubes remain
empty. By further increasing PAs to 1.3×10−5 Torr, we
again observe a dramatic change. In this case, less than 5% of
empty tubes are observed, while vertical nanowires (∼10%)
are replaced by parasitic structures (almost 75%), non-vertical
nanowires and membranes (about 10% in total). These
noticeable differences in the yields of vertical NWs versus
other structures are clearly visible on the SEM images shown
in figures 2(b) to (d). Qualitatively, parasitic growth could be
due to the reduction of the In diffusivity for higher As
fluxes [29, 30].

Figure 3 shows the representative SEM images of the
sample with the highest yield of vertical nanowires after
90 min of growth. The high yield is homogeneous over the
area of the array. In table 1, we compare the optimized growth
conditions for the high yield of vertical InAs nanowires on
standard patterned Si substrates [5] and in the 200 nm nano-
tubes with D H. Clearly, higher fluxes and V/III ratios are
required to grow nanowires in the ONTs.

Figure 2. (a) Sketch of the SiO2/Si nanotube with the effective In and As fluxes c v3 3 and c v ,5 5 respectively. (b) to (d) Arsenic series of the
InAs nanowire growth in the ONT with the resulting morphology presented top right. All samples were grown at TS=500 °C and
PIn=1.4×10−7 Torr for 90 min. The histograms show the yields of different structures obtained from the statistics analysis of the SEM
images. The scale bar for the SEM images is 2 μm and the tilt angle is 20°. The PAs values are given in the units of 10−5 Torr.
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In order to understand the growth mechanism, we now
take a closer look at the nanowires growing in the tubes. A
typical SEM image of an InAs nanowire growing vertically
from a nanotube is shown in figure 3(c). It is clearly seen that
the nanowire does not fully fill the nanotube volume.
Therefore, InAs nanowires do not start growing on the entire
available area of bare Si in the bottom of the nanotube. This
strongly suggests that the growth inside the nanotube does not
proceed via the selective area epitaxy mode. Rather, at a low
effective V/III ratio inside the nanotube (compared to its
nominal value for 2D growth), locally In-rich conditions are
very favorable for nucleation of In droplets that can subse-
quently promote the In-catalyzed vapor-liquid-growth of InAs
nanowires [31, 32]. A similar reasoning was recently reported
by Robson et al for the growth of InAs nanowires on pat-
terned Si substrates where the initial nucleation step was In-
assisted [33]. The nanowires should then be positioned at the
edges of the nanotubes because In droplets have better
chances to nucleate at the tube corners for surface energetic
reasons (i.e., replacing the energetically costly liquid-vapor
surface to less energetic liquid–solid interface [34, 35]).

We now analyze the influence of the nanotube diameter
on the vertical nanowire yield, keeping the nanotube depth at
200 nm. The representative SEM images are shown in
figure 4. For 160 nm diameter, we observe a large variety of
structures: non-vertical wires, membranes and empty tubes
(figure 4(a)). For diameters between 200 and 350 nm, uniform
vertical nanowires are obtained (figures 4(b) and (c)). Inter-
estingly, InAs nanowires stop growing for diameters larger
than 500 nm (figure 4(d)). These results further support the
idea of local growth conditions created inside the nanotubes.
They also show that the different template openings will
require different growth conditions to produce vertical
nanowires.

3.2. Effect of nanotube depth

The next parameter explored was the nanotube depth H.
Clearly, the H (or H/D) value strongly influences the local V/
III ratio inside the ONTs, with the case of H>D resulting in
a very poor supply of the growth species onto the bottom of

the nanotubes. This should lead to a longer delay before the
nanowire growth can start. Figure 5 shows the nanowire
arrays obtained after 90 min of growth with the parameters
optimized for 200 nm deep tubes (TS=500 °C,
PIn=2×10−7 Torr, PAs=1×10−5 90 min growth time)
and variable H=50, 200 and 400 nm. The exact tube depths
were determined from the cross-sections prepared by ion
beam thinning, as shown in the insets of figure 5. The yield of
vertical nanowires in shallow nanotubes (50 nm) is about
70%; however, we observe more V-shaped membranes than
in 200 nm-deep tubes. In this particular case, most mem-
branes nucleate on Si surface inside the nanotubes rather than
on the oxide surface (see section 2 in the supporting infor-
mation). Since smaller depths should relate to higher arsenic
inputs, these results are in agreement with [28], where higher
V/III ratios gave higher yield of membranes.

As expected, increase of the depth to 400 nm leads to the
growth of very few structures and instead most nanotubes
remain empty. The absence of growth in this case could be
due to insufficient time to nucleate the structures under a low
material supply and probably inappropriate effective V/III
ratio in the bottom of the nanotubes under these conditions.
Therefore, below we present a more detailed growth study in
400 nm deep nanotubes.

3.3. Growth in deep nanotubes

Considering that the growth in nanotubes with H>D is
controlled by surface diffusion and re-emission and hence
should be much slower than in shallow tubes, we have first
explored the effect of growth time under the same growth
conditions as in sections 3.2 and 3.3. The representative SEM
images for this time series are shown in figure 6. Clearly,
increasing the growth time has a positive effect on the yield.
After 1.5 h of growth, very few wires were obtained and tubes
mainly remained empty, as presented in the (figure 6(a)). The
insert in the same figure show closer view to a spontaneous
NW growing from the nanotube (left) and the mostly empty
tubes (right). For the 5 h growth the yield is pointedly
improved (figure 6(c)). The measured overall yield of all
structures (mainly vertical and tilted wires) is about 2%, 4%
and 67% for the 1.5, 3 and 5 h growths, respectively. A closer
look at the 5 h growth results reveals a remarkable difference
in the nanowire morphologies that co-exist in one sample.
One can observe thin and single crystalline nanowires, similar
to those grown for shorter times, and nanowires with multi-
grain structure whose crustal quality has significantly degra-
ded with respect to the shorter growth times. These
differences are shown in the inset of figure 6(c).

The images shown in the insert to figure 6(a) reveal that
some nanowires exhibit different morphologies inside and
outside the nanotube, e.g. the diameter shrinks outside of the
nanotube and the morphology becomes visibly more defec-
tive. This is consistent with the local environments for growth
being different in the initial nucleation stage and after the
nanowire leaves the template. As in section 3.1, the nanowires
are positioned at the nanotube edges. We also tried to improve
the vertical yield in the 400 nm-deep nanotubes by increasing

Figure 3. (a) InAs nanowires grown under optimized conditions in
the ONTs with the tube depth of 200 nm and the aspect ratio of one.
The scale bar is 10 μm and the tilt angle is 20°. (b) Cross section of
the same sample. The scale bar is 1 μm. (c) Single NW growing
from the nanotube, the scale bar is 200 nm and the tilt angle is 20°.
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the material fluxes and keeping the growth time at 90 min.
However, this just led to an increase in parasitic growth. The
details of this study are given in the online supporting
information (section 3).

3.4. Theoretical model

We now turn to physical modeling of MBE growth of InAs
nanowires in ONTs. We will try to explain the experimentally
observed trends such as

(i) The optimum arsenic flux to obtain high vertical yield
should be neither too low nor too high;

(ii) It is more difficult to grow regular nanowires in deep
tubes (with >H D);

(iii) There is an optimum tube diameter range for a given
tube height giving the highest vertical yield (for
example, D=200–350 nm for H=200 nm).

As in [33], we assume that high vertical yields are
achieved by the mononuclear vapor–liquid–solid growth in
the initial stage, assisted by In droplets as illustrated by sce-
nario (I) in figure 7(a). This view is supported by the fact that
most vertical nanowires do not fully cover the template bot-
tom. Scenario (II) in figure 7(a) corresponds to strongly As-
rich conditions, leading to the true selective area epitaxy. The
signature of this growth mode would be the completely filled
template, which was not observed (one should not mix this
case with the template filled by the radial nanowire growth in
a later stage, as seen in figures 6(b) and (c)). On the other
hand, in scenario (III) with the excessive In influx, the droplet
will inflate too quickly and the nanotube will soon be filled
with In liquid. This liquid will subsequently spread out of the
tube, producing multiple and irregular structures. Scenario
(IV) in figure 7(a) illustrates the polynuclear growth regime
[36] in which two or more droplets emerge in one tube,

enabling the growth of more than one nanowires per tube.
This is not desirable for growing regular and single-crystalline
nanowires, because radial merging of the neighboring nano-
wires often lead to the formation of poly-crystallites [37].

Continuous In liquid starts forming in the tube in the
limiting geometry shown in figure 7(b). The nanowire length
including the droplet height reaches the tube height when
+ =L H H,drop where L is the nanowire length. Assuming

that the nanowire is half a cylinder, the arsenic-limited regime
of axial nanowire growth [38–41] yields the linear time
dependence c=L v t2 .5 5 If we assume that all In atoms
arriving into the tube at the rate c v3 3 are subsequently col-
lected by the droplet whose contact angle b remains time-
independent, the radius of the droplet base R will grow with
time as in [38]: b c c= W W -R f v v t2 .3 35 3 3 5 5[ ( )]( ) Here,
W3 is the elementary volume in the In liquid, W35 is the
volume of InAs pair in the solid state and bf ( ) is the
geometrical function relating the volume of half a spherical
cap to the radius of its base. Now, the droplet width

/* * b=R t R t sindrop ( ) ( ) in scenario (I) must remain smaller
than the tube diameter D by the moment of time *t at which

/* * b b+ - =L t R t H1 cos sin .( ) ( )( ) Using the above
equations for L t( ) and R t ,( ) this condition is quantified as

c
c

b
b

>
- -

+ - -
v

v

c H D

D c H D

1 cos

1 cos
, 15 5

3 3

3

3

[ ( )
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where b b= W Wc f sin3 3 35[ ( ) ] is the shape constant.
On the other hand, the mononuclear growth within

the tubes requires that the waiting time between two succes-
sive nucleation events for In droplets, p=t Dr J1 ,nucl c corner( )
is longer than the time t tgrow h required to fill the
template bottom by one nanowire base [36]. Here, rc is
the radius of the critical nucleus and Jcorner is the nucleation
rate at the corner of the tube. The t tgrow h can be
approximated as c c@ -t D c v v2 .tgrow h 3 3 3 5 5[ ( )] This
yields a lower limit for the tube diameter of the form

c c p< -D c v v r J2 .2
3 3 3 5 5 c corner[ ( )] [ ] Combining this with

equation (1), we obtain the two conditions for high vertical
yield

c
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D c H D
1

1 cos

1 cos
2
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2

2
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3 3

3

3
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( )

Here, the characteristic ‘nucleation’ diameter is given by
c p=D c v r J2nucl

2
3 3 3 c corner( ) ( ) and increases with the In flux

v .3 Therefore, for a given geometry, there is an optimal range
of the effective V/III flux ratios to avoid both polynucleation
(lower limit) and overloading the template with liquid In
(upper limit). The SEM images shown in figure 7(c) perfectly
support the existence of scenarios (I), (III) and (IV).

Figure 8(a) shows the corresponding diagrams for the
typical β=120° [38–40], =c 0.273 and =D 350 nm,nucl at

Table 1. Comparison between the optimal growth conditions for InAs nanowires on standard patterned Si substrates and ONTs with a tube
depth of 200 nm and aspect ratio of one.

Substrate type TS [°C] PIn×10−7 [Torr] PAs×10−5 [Torr] t [min]

Standard patterned Si substrate [5] 500 1.2 0.6 60
Nanotube templates; depth 200 nm 500 1.4 1 90

Figure 4. SEM images of InAs NWs grown in ONTs. The tube depth
H=200 nm and the growth conditions were the same for all
samples. The only parameter varied was the tube diameter D: (a)
160 nm, (b) 200 nm, (c) 350 nm and (d) 550 nm. The scale bar is
1 μm and the tilt angle is 20° for all images.
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three different tube depths H. These graphs explain qualita-
tively the major effects. First, the vapor–liquid–solid
nucleation of InAs NWs is more difficult in deeper tubes. In
fact, increasing H can reduce the optimum region in
figure 8(a) to nothing. Second, for a given H, there are the
optimum regions in both the nanotube diameters D and
effective V/III flux ratios /c cv v5 5 3 3 to grow nanowires with
high yields, as observed experimentally (sections 3.1
and 3.2).

Up to now, we have focused on the initial growth stage
which proceeds as long as the nanowire reaches its full length
within the template. After the nanowire leaves the template,
the In collection becomes less effective and the As flux onto
the droplet increases, both effects leading to increasing the
actual V/III influx ratio into the droplet. According to the
diagram shown in figure 8(a), this should reduce the droplet
size until it disappears completely, as in [33, 39]. After that,
the growth is transitioned to the vapor–solid mode and
becomes limited by the material transport of In atoms to the
nanowire top [42, 43]. Consistent with our experimental
observations, we assume that the nanowire radius continues
increasing linearly with time due to the In incorporation on

the sidewalls:

= +R R v t. 3R0 ( )

Here, R0 is the initial nanowire radius at the beginning of this
growth stage and vR is the radial growth rate. The axial
elongation can be written in the form [42]

⎛
⎝⎜

⎞
⎠⎟

j
p

l
= +

L

t
v

R

d

d
1

2
, 43

3 3 ( )

with j3 as the indium collection efficiency at the nanowire
sidewalls and l3 as the diffusion length of In adatoms.

Using equations (3) in (4) and integrating, we obtain

⎛
⎝⎜

⎞
⎠⎟= + L +L v t

v t

R
ln 1 , 5R

3 3
0

( )

with j p lL = v v2 R3 3 3 3( ) as the effective collection length
of indium on the top part of the NW sidewalls. The
unusual logarithmic dependence arises due to lateral growth,
and is converged to the more common expression

j l p= +L v t R1 23 3 3 0[ ( ) ( )] only for small times. For long
enough growth times, the nanowires elongate at a lower rate
according to @L v t,3 as observed in our experiments.
Figure 8(b)) shows the reasonable fits by equations (3) and (5)

Figure 5. InAs NWs growth in the ONTs with different tube depth. The scale bar in the SEM images is 1 μm and the tilt angle is 20°. The
scale bars in the cross-sectional images is 200 nm.

Figure 6. 20° tilted SEM images illustrating the time evolution of the morphology in 400 nm deep ONTs. The scale bar is 2 μm in the 1.5 h
image and 10 μm otherwise.
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to the measured time dependences of the mean length and
radius, obtained with =R 20 nm,0 = -v 50 nm h ,R

1

= -v 60 nm h3
1 and L = 1200 nm.3 The representative SEM

images of the corresponding time series are shown in the
inserts to figure 8(b). More details on the radial growth are
given in section 4 of the online supporting information.

4. Conclusion

We have demonstrated the MBE template growth of InAs
nanowires in large scale silicon dioxide nanotubes on silicon.
Geometrical parameters such as the nanotube depth and dia-
meter have been investigated in order to maximize the vertical
nanowire yield. The most critical parameter for such growth is
the As flux or the effective V/III flux ratio. It has been shown
that the maximum vertical yield is achieved for a balanced
V/III ratio which should be neither too high nor too small for
a given geometry of the ONT. We have presented evidences
of In-assisted vapor–liquid–solid growth in the initial stage
within the nanotubes under local conditions that are different

from the vapor environment. Our theoretical model explains
satisfactorily the relation between the growth conditions and
the nanotube geometry for obtaining the high vertical yield, as
well as the nanowire growth kinetics in a later stage. Overall,
this study constitutes the first step toward using the SiO2

nanotubes as templates for the cost-effective and Au-free
MBE growth of III–V nanowires on large area silicon
substrates.

Figure 7. (a) Cross-sectional sketches of the nanotubes. (I) High
vertical yield under a balanced V/III ratio resulting in mononuclear
In-assisted nucleation of nanowires. (II) Strongly As-rich conditions
corresponding to the selective area growth. (III) Strongly In-rich
conditions producing continuous In liquid within the tube. (IV)
Polynucleation resulting in irregular poly-crystallites. (b) Model
geometry showing the maximum droplet size within the nanotube
template. (c) 20° tilt SEM images supporting scenarios (I), (III) and
(IV). The scale bar is 200 nm for all SEM images.

Figure 8. (a) Diagram showing the optimum regions for high yield of
vertical InAs nanowires in the ONTs in terms of the effective V/III
flux ratio and the nanotube diameter. The best zone is separated by
the upper limiting curve corresponding to polynucleation in the tubes
and the lower limiting curve corresponding to the formation of
continuous In liquid in the tubes. The V/III ratio of one corresponds
to the absence of the droplet nucleation or their consumption. (b)
Mean nanowire radius and length versus time: experimental data
(symbols) fitted by the model (lines) with the corresponding 20°
tilted SEM images shown above. The nanowires were grown in the
ONTs with nominal depths 50–100 nm. The growth conditions used
were TS =500 °C, PIn=1.4×10−7 Torr, PAs=1×10−5. The scale
bar is 1 μm.
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