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PREFACE 

The protection of riverbanks with blocks, called riprap, is the most used method in alpine 

rivers to avoid uncontrolled lateral erosion. For rivers with significant bed slopes large 

boulders have to be used in order to withstand high flow forces. Such large boulders cannot 

be dumped anymore, like in the case of lowland rivers, but they have to be placed individually 

by machines because of their weight. Consequently the blocks are better interlocked even if a 

rough surface of the riprap is required. Thus a higher resistance of such individually placed or 

“compressed” riprap may be expected. The existing design methods have been developed for 

dumped riprap with relatively small block sizes.  

Dr. Mona Jafarnejad studied for the first time systematically the effect of compressed riprap, 

that means with individually placed blocks having a good interlocking, on the failure 

resistance. Based on a relative roughness and modified Froude number, Dr. Jafarnejad 

proposed an empirical relationship which can assess the limit between stable and failure 

conditions of the blocks and thus gives a criterion for the required minimum block size. 

Furthermore, and also for the first time, the time-dependant failure was analysed which is also 

not considered in existing design methods. Dimensionless empirical relationships between the 

time to failure and the bed shear stress as well as flow depth were developed. The results 

revealed that for a total failure of the compressed riprap a relatively high number of blocks 

have to be eroded. In loose dumped riprap, normally the erosion of a few blocks results in a 

fast failure knowing that the time to failure is very important in practice since the flood peaks 

have only a limited duration.  

Additionally Dr. Jafarnejad studied the effect of a second layer of individually placed riprap 

on the time-dependant failure process, which is novel. She developed also an empirical 

relationship, which takes into account the influence of such a second layer. For the same 

longitudinal channel slope and side bank slopes, the second layer stabilizes the section and 

postpones failure. The effect of a second layer is more significant for higher bed slopes and 

bank side slopes. 

Finally, compared to the traditional design methods, using a safety factor approach, Dr. 

Jafarnejad developed a probabilistic failure analysis method for riprap, which considers 

uncertainties of the design parameters and the future evolution of bed load transport under 

climate change. 

We thank the members of the jury Prof. Antonio Cardoso from IST Lisbon, Portugal; Prof. 

Juan Pedro Martin-Vide from Technical University of Catalonia, Spain as well as Dr. Dieter 

Rickenmann from Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 

Switzerland, for their valuable comments and helpful suggestions. Finally we also thank 

gratefully the Swiss Federal Office of Environment for their financial support under project 

“SEDRIVER”. 

 

Prof. Dr. Anton Schleiss     Prof. Dr. Eugen Brühwiler 
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Abstract 

Time-dependent failure analysis of large block size riprap as bank 

protection in mountain rivers 

Erodible river banks need to be safe against the possible scouring during flood events in 

mountain rivers. The consequences of the bank failure are probably lateral uncontrolled 

erosion and flooding with disastrous losses in residential areas or damage of 

infrastructures.  

Among all flood protection measures that keep the riverbank safe against erosion 

and damage, riprap revetment is one of the most commonly used structures. Some of the 

advantages of utilizing riprap are flexibility, a tendency to be self-restorative, relative 

ease of installation, long lasting and easy to repair. In order to ensure the safest design, 

determining the required riprap size is one of the most important factors. Several methods 

of riprap sizing exist which are mostly evolved for dumped median size blocks. However, 

in mountain rivers and steep channels, the extra stability has to be ensured by using the 

large, heavy blocks as bank riprap protection, which have to be individually placed 

because of their weight. Such arrangement generates additional resistance against flow 

erosion since the space between the blocks is minimized, and the interlocking forces 

among the blocks are increased. The behavior of the latter protection was rarely studied 

for alpine river conditions, and no adapted design criteria exist. 

Therefore, an experimental study was carried out focusing on the stability of such 

compressed riprap as river bank protection. This research investigates the effect of packed 

placement of riprap on sizing, the resistance to failure and the time to failure of riprap. 

Comparison with the existing design methods is also performed considering the effect of 

riprap thickness and bank slope.  This is studied by means of 121 series of systematic 

tests of compressed riprap and 34 tests of dumped ones. The experiments were carried 

out using a 10 m long and 1.5 m wide flume with a rough fixed bed at the Laboratory of 
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Hydraulic Constructions (LCH) at École Polytechnique Fédérale de Lausanne (EPFL). 

Riprap was reproduced with uniform crushed blocks with three block sizes namely 

D50 = 0.037, 0.042 and 0.047 m. Tests were conducted on streamwise bed slopes of 

S = 0.015, 0.03 and 0.055, and riprap bank slopes of 35°, 31° and 27° under supercritical 

flow conditions and for a maximum of three hours of test duration. The porosity which is 

an effective factor on the stability is assessed and the results show a reduction of 2% for 

smallest size to 10% for the largest size of packed blocks. Compared to dumped small 

size riprap, the failure mechanism of packed blocks is different, since the erosion of one 

single block is hardly the reason for a total failure of this kind of riprap. Failure happens 

if a group of blocks slides and provokes an instability of the river banks. In the present 

study, the total collapse of all blocks in a section over the whole bank height is considered 

as failure. This failure is the result of slumping or sliding down of riprap from top to the 

toe of the embankment producing a full exposure of the filter to the flowing water.  

Firstly, the detailed analysis and comparison of the results of the systematic 

experimental tests of dumped and compressed riprap is presented. It was observed that 

the compressed riprap increased the stability of the bank protections considerably. The 

existing design formulae suggest block sizes of up to three times larger than what is 

observed for the compressed riprap. An empirical relationship between relative roughness 

and modified Froude number is discussed. Then a sizing riprap empirical formula for 

large blocks individually placed on supercritical flow is herein developed; considering 

the riprap thickness and bank slope. This empirical relationship is compared with existing 

formulae. 

As a further step based on a time-based analysis of the failure process, a relationship 

between time to failure, shear velocity, and dimensionless bed shear stress is established. 

An empirical relationship was established which allows to estimate the time to failure of 

the riprap bank protections. Consequently, it can be used as a failure forecasting model 

for compressed riprap in the range of application of the model tests. 

The influence of a second layer on the time to the failure and on the bank stability 

is also analyzed. The results reveal that, for the same longitudinal channel slope and bank 

slope, the second layer significantly stabilizes the bank protection and postpones its 

failure time. Nevertheless, during the test, the block erosion rate is increased significantly 
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(almost twice) for two layers comparing to one layer riprap. The thickness of the riprap 

has a considerable influence on riprap protection for higher bank slope than the flatter 

ones. It means that the second layer has more stabilizing role when the riprap bank slope 

gets closer to the angle of repose of the blocks. Furthermore, the effect of the riprap 

thickness is smaller for higher channel slopes comparing to lower channel slopes. 

Finally, a probabilistic failure analysis method of riprap is developed considering 

that existing riverbank riprap revetments could be exposed to higher risk of failure if flood 

and sediment regime changes in future. The potential failure probabilities of riprap are 

evaluated by using Monte Carlo Simulation and Moment Analysis Methods as well as 

Rosenblueth Point Estimation Method. The advantages of this probabilistic model are that 

it can cover different failure mechanisms and make use of the multivariate probabilistic 

method. The probability of failure in various modes, namely direct block erosion, toe 

scouring and overtopping, has been defined.  Therefore, bed level variation is used in the 

model based on bedload transport described with a probabilistic function of the peak 

discharge. This probabilistic simulation method can be directly implemented in water 

surface and bed load calculation models. The method was applied to two rivers in 

Switzerland; namely Kleine Emme and Brenno. The probability of failure for different 

mechanisms based on the expected sediment transport regime under climate change is 

defined for these two rivers as a case study.  

Keywords: bank erosion; direct block erosion; failure mechanisms; flood 

protection measure; Monte Carlo simulation; overtopping; probabilistic simulation; 

riprap design; sediment transport; stability; time-dependent analysis; toe scouring.  
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Résumé 

Analyse en fonction du temps de la ruine d’enrochements à large blocs 

protégeant les rives des rivières de montagne 

Pendant les crues dans les rivières de montagnes, les berges des rivières doivent être 

protégées contre les possibilités d’érosion. Les conséquences d’effondrement de berges 

englobent surtout l’érosion latérale non contrôlée et les inondations causant des dégâts 

désastreux dans les zones résidentielles ou endommageant les infrastructures. 

Parmi les différentes mesures de protection contre les crues afin d’éviter l’érosion 

et l’endommagement des berges de rivières, le revêtement par enrochement est la plus 

utilisée. Les principaux avantages de l’utilisation des structures en enrochement sont la 

flexibilité, la tendance à l’auto-restauration, la facilité relative de la mise en place et de la 

réparation ainsi que la durabilité. Afin d’assurer un dimensionnement le plus sûr, la taille 

de l’enrochement est le facteur le plus important. Plusieurs méthodes de 

dimensionnement existent, les plus avancées étant celles des blocs déposés à taille 

moyenne. Toutefois, dans les rivières de montagnes à fortes pentes, une stabilité 

supplémentaire doit être assurée en utilisant de larges et lourds blocs pour la protection 

en enrochement. Ces derniers doivent être mis en place un à un en raison de leurs poids. 

Une telle disposition assure une plus grande résistance contre l’érosion produite par 

l’écoulement vu que l’espace entre les blocs est minimisé et les forces d’emboîtement 

entre les blocs sont augmentées. Le comportement d’une telle protection a été rarement 

étudié pour le cas de rivières alpines et aucun critère de dimensionnement adapté n’existe. 

Par conséquent, une étude expérimentale a été menée se concentrant sur la stabilité 

de tels enrochements compactés en tant que moyens de protection des berges riveraines. 

La présente recherche étudie l’effet des enrochements compactés sur le 

dimensionnement, la résistance à la rupture et le temps jusqu’à la rupture. La comparaison 

avec d’autres méthodes de dimensionnement a été faite basée sur l’effet de la largeur de 
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l’enrochement ainsi que la pente de la berge. Cela est accompli en effectuant 121 séries 

de tests systématiques avec enrochements compactés ainsi que 34 tests avec 

enrochements déposés. Les tests ont eu lieu dans un canal de 10 m de long et de 1.5 m de 

large avec un fond rugueux fixe au sein du Laboratoire de Constructions Hydrauliques 

(LCH) de l’Ecole Polytechnique Fédérale de Lausanne (EPFL). Les enrochements ont été 

reproduits à l’aide de pierres uniformes concassées de trois diamètres différents 

D50 = 0.037, 0.042 et 0.047 m. Les pentes du lit testées sont dirigées dans le sens de 

l’écoulement et trois pentes différentes ont été testées S = 0.015, 0.03 et 0.055. Les pentes 

des enrochements sont de 35°, 31° et 27° sous des conditions d’écoulement torrentiel et 

pendant un maximum de trois heures de test. La porosité, qui est un facteur à forte 

influence sur la stabilité, est évaluée et les résultats montrent une réduction de 2% pour 

les blocs compactés les plus petits et de 10% pour les plus larges. En comparaison avec 

les petits enrochements déposés le mécanisme de rupture des blocs compactés est 

différent, dans la mesure où l’érosion d’un seul bloc peut difficilement causer une rupture 

totale de ce genre d’enrochement. La rupture a lieu si un groupe de blocs glisse et 

provoque une instabilité des berges de la rivière. Dans la présente étude, l’effondrement 

total de tous les blocs d’une section sur toute la hauteur de la berge est considéré comme 

le rupture. Cette dernière est le résultat de l’affaissement ou du glissement de 

l’enrochement depuis le sommet jusqu’aux pieds de la digue exposant ainsi complètement 

le filtre à l’écoulement de l’eau. 

En premier lieu, une analyse détaillée et une comparaison des résultats des tests 

expérimentaux systématiques effectués avec des enrochements déposés et ceux 

compactés sont présentées. Il a été observé que les enrochements compactés augmentent 

considérablement la stabilité des protections de berges. La formule de dimensionnement 

existante suggère des blocs de taille trois fois plus large que ce qui est observé pour le cas 

d’enrochement compacté. Une relation empirique entre la rugosité relative et le nombre 

de Froude modifié est discutée. Ensuite, une formule empirique pour les blocs larges 

placés individuellement dans un écoulement torrentiel est développée en tenant en compte 

de l’épaisseur des enrochements ainsi que de la pente des berges. Cette relation empirique 

est comparée avec la formule existante. 

En outre, et suivant une analyse basée sur le temps du processus de rupture, une 

relation entre le temps jusqu’à la rupture, la vitesse de cisaillement, et la contrainte de 
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cisaillement adimensionnelle du lit est établie. Une relation empirique a été établie 

permettant l’estimation du temps jusqu’à la rupture de l’enrochement. Par conséquent, ce 

résultat peut être utilisé comme modèle de prévision de rupture pour les enrochements 

compactés, dans le champ d’application des tests sur modèle. 

L’effet d’une seconde couche sur le temps à la rupture et sur la stabilité des berges 

est également analysé. Les résultats montrent que pour la même pente longitudinale du 

canal et de la berge, la seconde couche stabilise considérablement la digue et retarde le 

moment de rupture. Néanmoins, pendant le test, le taux d’érosion de blocs a augmenté 

(environ deux fois) pour le cas avec deux couches par rapport à celui avec une seule 

couche d’enrochement. L’épaisseur de l’enrochement a une influence plus importante sur 

la protection en enrochement pour les grandes pentes de berge que pour les petites. Cela 

implique que la seconde couche a un rôle stabilisant plus important lorsque la pente 

d’enrochement est plus proche de l’angle de frottement interne des blocs. De plus, l’effet 

de l’épaisseur d’enrochement est plus important pour les grandes pentes de canal que pour 

les petites. 

Finalement, une méthode d’analyse de rupture probabiliste des enrochements est 

développée en prenant en considération que les digues de rivières existantes peuvent être 

exposées à plus de risque si le régime de crue et de sédiments change dans le futur. Les 

probabilités du potentiel de rupture des enrochements sont évaluées en utilisant la 

méthode de simulation de Monte Carlo, les méthodes d’Analyse de Moment, ainsi que la 

méthode d’Estimation Ponctuelle de Rosenblueth. Les avantages de ce modèle 

probabiliste sont dans le fait qu’il couvre les différents mécanismes de rupture et utilise 

la méthode probabiliste multivariée. La probabilité de rupture par différents modes, 

notamment l’érosion directe de blocs, l’érosion des pieds et la submersion a été définie. 

Ainsi, la variation du niveau du lit est utilisée dans ce modèle basée sur le charriage du 

lit décrit à l’aide d’une fonction probabiliste de débit de pointe. Cette méthode de 

simulation probabiliste peut être directement mise en place dans les modèles de calculs 

de surface d’eau et de charriage. La méthode a été appliquée à deux rivières en Suisse: 

Kleine Emme et Brenno. La probabilité de rupture pour différents mécanismes basée sur 

le régime attendu du transport de sédiment dans le cas de changement climatique est 

définie pour ces deux rivières en tant qu’étude de cas. 
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Introduction 

 

 

This chapter introduces the topic of this research study, gives its objectives and methods, 

and presents the structure of the thesis. 

  



Chapter 1 

2 

1.1 Motivation 

Stream power in mountain rivers potentially carries the possibility of scouring the channel 

bed and bank. Constructions along rivers also increase significantly this risk of failure by 

increasing the cost of destabilization. Destruction or collapsing of river banks will result 

in uncontrolled flooding and lateral erosion with a displacement of meanders and the 

formation of braided river patterns. These processes can have catastrophic consequences 

on urban areas and infrastructures especially along mountain rivers. Therefore, the 

erodible river banks need to be protected against the possible erosion practically during 

the flood events. As such an optimum design which provide a safe condition is crucial. 

Among all kind of river bank protection measures, riprap is one of the most frequently 

used protections to avoid bank erosion (Maynord et al. 1989). Riprap design has been 

developed for a long time. Several methods of riprap sizing exist which are mostly derived 

for dumped median size blocks. However, in mountain rivers and steep channels, extra 

stability should be provided by packing the large blocks and individually positioned 

riprap. Therefore, most of the existent design methods over-estimate the size of large 

blocks which is not economical in this case of application.  

The packed and individually placed model of riprap installation has been rarely studied. 

The motivation of current study is to analyze the stability and design of such packed 

riprap. 

It is expected that climate change will have impact on flooding and sediment 

transport in mountain rivers and catchments of Switzerland in future. Changing the 

atmospheric circulation will influence the amount of precipitation and its regional 

distribution, thus possibly the magnitude and frequency of extreme events and the 

duration of their occurrence will change respectively. The result changes sediment 

transport dynamics as well. Sediment yield in a catchment is dependent both on transport 

capacity of the stream and availability of loose material. Therefore, sediment transport 

flow will be influenced by change of extreme events. These changes will affect the 

behavior and performance of flood protection measures and may increase their risk of 

failure.  
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Figure 1.1 The view of large block size riprap and residential area in Switzerland  

(Kleine Emme 2011) 

Current consists of two main parts. First part focuses on the design of large blocks 

individually placed riprap in mountain rivers.  Other part of this study is related to the 

risk of failure in riprap according to the flood uncertainties. 

1.2 Objectives and methods 

Many research projects concerning riprap design were carried out in the past decades. 

However, failure risk of large blocks in mountain streams is poorly understood compared 

to the knowledge existing on lowland rivers. The present study aims at understanding the 

behavior of large blocks individually placed in terms of stability. The research was carried 

out by means of laboratory experiments in a flume at the Laboratory of Hydraulic 

Constructions (LCH) of the Ecole Polytechnique Fédérale de Lausanne (EPFL). The 

failure time of packed blocks is studied as a function of several relevant parameters: 

1. Water discharges (several scenarios) 2. Flume slope (three slopes) 3. The size of blocks 

(three sizes) 4. Bank slope (three slopes) 5. The thickness of the riprap revetment. 

The objectives of this study are to address the lack of investigation and answer to 

the following questions: 
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 What is the minimum block size required to remain stable on the bank slope 

when the riprap is packed? (Chapters 4 and 6) 

 What is the effect of side slope angle ranging from 2.5V-5H to 3.5V-5H on 

the stability of the packed riprap? (Chapters 4 and 6) 

 What is the influence of flow duration on the riprap stability? (Chapters 5 and 

6) 

 How does the thickness of the riprap revetments influence the time of failure 

or stabilizing riprap? (Chapter 6) 

In terms of failure risk of riprap protection the question would be: 

 What is the probability of failure for a river bank riprap in different 

mechanisms? (Chapters 7 and 8) 

Then the objective of this research is to assess the risk evolution as a function of 

changed hydraulics and sediment transport condition due to flood uncertainties (e.g. 

climate change). For this purpose, various probabilistic simulation and assessment models 

to define the failure risk of riverbank protection structures. These probabilistic 

simulations estimate the resistance regarding the varied flood and sediment transport in 

future. 

1.3 Structure of the report 

This thesis report is organized into three parts with a total of nine chapters, as outlined in 

Figure 1.2. The main points of this study development and analysis of riprap failure is 

presented in Figure 1.3. 

In the first part, the context, motivation, objectives, background and methods of the 

thesis are presented in three chapters: 

 Chapter 1 highlights the importance of study the behavior of packed river bank 

riprap in mountain rivers. In this chapter, the main objectives of this study, the 

methodology and the structure of the report are presented. 
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Chapter 2 compiles the existent knowledge on riprap design and points out the gaps 

to be filled by this study. The literature review is made by focusing on designing 

procedures. 

Chapter 3 outlines the experimental facilities, measurement equipment and 

experimental setup. 

Second part presents the results of the current research study. It is composed of five 

complementary studies that correspond to the chapters 4 to 8 of this report. 

Chapters 4 to 7 were written as scientific articles. Chapter 5 and 7 are submitted to 

peer-reviewed journals. A brief description of Chapters 4 to 7 is given below: 

 Chapter 4 addresses the sizing of large block riprap built in mountain rivers with 

the minimum possible spaces among the blocks. It specifically deals with the diameter of 

the riprap blocks D, longitudinal channel slope S, side slope of the riprap and hydraulic 

conditions. A new empirical relationship is developed to define the block size and also 

re-evaluate the stability of existing packed riprap facings. The equation for designing the 

optimum block size for individually placed riprap, based on Froude number, relative 

roughness and bank slope is modified by repose angle of blocks.  

Chapter 5 contains the effect of block sizes and channel slope on the time of failure. 

As a further step based on a time-based analysis of the failure process, a relationship 

between time to failure, shear velocity, and dimensionless bed shear stress is established. 

An empirical relationship was established which allows to estimate the time to failure of 

the riprap bank protections. Consequently, it can be used as a failure forecasting model 

for packed riprap in the range of application of the model tests.  

In Chapter 6, the influence of a second layer at the time of the failure and on the 

bank stability is analyzed in this chapter. The thickness of the riprap influence on the 

stability of riprap protection in different bank slope has been studied. Furthermore, the 

effect of the riprap thickness on the slopes of the channel is investigated in this chapter. 

In Chapter 7, a probabilistic failure analysis method of riprap is developed 

considering that existing riverbank riprap revetments could be exposed to higher risk of 

failure if flood and sediment regime changes in the future. The potential failure 
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probabilities of riprap are evaluated and compared by using Monte Carlo Simulation, 

Moment Analysis Methods and Rosenblueth Point Estimation Method.  

In Chapter 8, the method is applied here to two rivers in Switzerland; namely 

Kleine Emme and Brenno. The probability of failure for different mechanisms based on 

the expected sediment transport regime under flood uncertainties is defined for these two 

rivers as a case study.  

In the last part, the main conclusions with some recommendations for future 

research are given in Chapter 9. 

The annexes at the end of the document contain the graphical representation of the 

Experiments, Sensitivity analysis of Monte Carlo simulations and the results of the 

probabilistic model application on two rivers in Switzerland: Kleine Emme and Brenno. 

 

 

 

Figure 1.2 Outline of thesis research 
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Figure 1.3 Main points of this study development and analysis of riprap failure 
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State of the Art 

 

 

This chapter gives an overview about the characteristics of the riprap as a river bank 

protection and the failure mechanisms. It also describes the main previous developments 

on design of riprap revetments.  
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2.1 Introduction 

River protection measures are designed to protect the riverbanks and prevent lateral 

migration of channels through bank erosion. River-stabilization methods can be classified 

according to two different approaches:  

1. Strengthening the bank and bed like riprap, windrows and trenches, vegetation, 

sacks and blocks, gabions mattresses, soil-cement, retaining walls and bed protection 

measures (e.g. sills, block ramps and traverse). 

2. Reducing hydrodynamic forces such as hard points, spurs or groynes, guide 

banks, dikes, fences, vane, and brushwood fences.  

Factors affecting stream bank failure include hydraulic parameters that control the 

active forces such as discharge magnitude and duration, velocity, and applied shear stress 

magnitude and orientation. Additional active forces that are due to seepage, piping, 

surface waves, and ice can also contribute to bank erosion. Artificially-induced activities 

such as urbanization, drainage, floodplain farming and development, boating and 

commercial navigation, and water-level fluctuations from hydropower generation can 

have detrimental effects on bank stability (Julien, 2002). 

2.2 Riprap 

Riprap is the most commonly used structure for bank protection when it is available in 

adequate size and quantity. The construction is supposed not to be complicated and 

extraordinary equipment and training are not required. A local damage or loss is easily 

repaired by the placement of more blocks. Riprap is usually durable and recoverable. 

Locally available riprap usually provides a cost-effective alternative to many other types 

of bank protection.  

2.2.1 Failure mechanisms in riprap 

According to Julien (2002) and Lagasse et al (2006) riprap failure mechanisms are 

identified as direct block erosion, translational slide, modified slump, and side-slope 

failure. Direct block erosion by flowing water is the mostly considering erosion 

mechanism in the literature. Direct block erosion can be the result of abrasion, reverse 

flow, local flow acceleration, or toe scouring. The size of blocks might be a reason for 
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direct erosion. Steep slope of a riverbank and too uniform gradation of riprap also are the 

other causes of direct block erosion. Figure 2.1 shows the direct erosion of individual 

blocks by flowing water.  

 

Figure 2.1 Direct block erosion (according to Julien 2002) 

A translational slide is a failure caused by the downslope riprap material movement. 

The initial phase of a translational slide is shown by cracks in the upper part of the riprap 

blanket that extend parallel to the channel. Translational slides are caused by the steep 

slope of the riverbank and excessive hydrostatic pore pressure. However, this failure 

process mostly occurs due to toe scouring and instability of the riprap caused by the 

weakness in the toe foundation (Figure 2.2). 

 

Figure 2.2 Translational slide in a riprap (according to Julien 2002) 

The modified slump failure of riprap is the mass movement of material within only 

the riprap blanket where the blocks seem to slide on each other. The probable causes of 

the modified slump are the steep slope of the embankment and lack of toe support (Figure 

2.3). 

 

Figure 2.3 Modified slump in a riprap (according to Julien 2002) 
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The slope instability of the riprap is causing mostly due to overtopping. It is a 

rotation-gravitational movement of material along a surface of rupture. It relates to the 

shear failure of the underlying base material that supports the riprap. While overtopping 

occurs, the water saturates the riprap and the material behind it. Once the level of the 

water decreases, the water in the saturated part tend to move faster and the slide-slope in 

riverbank riprap takes place (Figure 2.4). 

 

Figure 2.4 Slide-slope in riprap (according to Julien 2002) 

2.2.2 Design methods of riprap 

In the design of riprap revetment there are two approaches, Acceptable velocity and 

tractive force approaches. Acceptable velocity approach is the mostly used one as it is 

easier to record and calculate velocity. In the tractive force approach, it is hard to obtain 

force data at specific points on the bed and bank. Some of the previous studies about 

tractive force approach are done by Lane (1952, 1955), Carter et al. (1953), Terrell and 

Borland (1958), Ippen and Drinker (1962) and Monten (1988) (Maynord and Neil, 2008). 

 The tractive force concept was applied by Dubuat (1786) but did not become 

popular until Schoklitsch (1914) (Lagasse et al.,2006). Lane (1953) used the tractive force 

method for stable channel design in the noncohesive material. Anderson et al. (1968) 

developed the tractive force approach into a riprap design method which includes the 

effects of bank slopes and channel bend. The work of Anderson et al. is used as the basis 

for riprap design by the US Department of Transportation (1975). Stevens and Simons 

(1971) and Li et al. (1976) developed tractive force methods which combined probability 

and safety factors into the design method. Neil and Van Der Giessen (1966) state that 

turbulence intensity could be dependent on relative roughness. Thus many existing design 

methods may apply over only a limited range of relative roughness.  

Some of the existing riprap design procedures (Li et al. 1976) used the logarithmic 

velocity law to change shear stress into velocity in sizing riprap. However, significant 
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problems appear in use of the logarithmic velocity functions to rough surfaces like riprap 

where relative roughness is high (Maynord et al, 1989).  

In following, the detail review of some of the existing formulae is presented: 

Riprap protection is endangered by the erosive effects of drag and lift forces 

resulting from the velocity distribution near particles. Considering riprap stability, 

different sizing methods were developed. The basic form of many sizing equations is 

given by Maynord and Neill (2008) as: 

𝑉𝐶

[𝑔(𝑆𝐵 − 1)𝐷𝑐]
1
2

=  𝐶𝑟𝑒𝑓 (
ℎ

𝐷𝑐
)

𝑃𝑟𝑒𝑓

 

where 

Vc = Characteristic velocity (which may be near-bed velocity, depth-

averaged velocity, or cross, sectional average velocity) [ms-1] 

g = Acceleration of gravity [ms-2] 

SB = Specific gravity of blocks = ρs/ρ [-] 

ρs = Blocks density [kgm-3] 

ρ = Water density [kgm-3] 

Dc = Characteristic particle size (D30 or D90) [m] 

Cref = A coefficient, typically based on experimental data  

h = flow depth [m] 

Pref = An exponent dependent on the hydraulic condition and the technique 

that the characteristic velocity Vc is defined.  

Specific forms of riprap sizing equations for different authors are presented below. 

Corresponding Pref and Cref values are expressed in each title. 

2.2.2.1 Isbash Equation 

Isbash (1935) studied the river closures by dumping rocks and represented a relationship 

between required blocks diameter and mean velocity (equation 2.2).   

𝑉 = 𝐶(2𝑔(𝑆𝐵 − 1)𝐷50)0.5 
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where 

V = Mean velocity against blocks, ms-1 

Ci = Isbash constant: 0.86 for flow velocity at which loose surface blocks 

first begin to roll, 1.20 for flow velocity at which blocks projected by 

neighbor particles begin to roll until they find another place to settle  

g = Acceleration of gravity, [ms-2] 

SB = Specific gravity of blocks [-] 

D50 = Median diameter of spherical blocks, [m] 

Comparing to the basic equation (equation 2.1), Isbash (1935) equation has Pref = 0 

(no dependence on depth) and varying Cref depending on the application. 

2.2.2.2 Pilarczyk Equation 

Pilarczyk (1990) developed an equation for stability under current attack and it is 

represented in CUR Manual (CUR, 1995) as:  

∆𝐷𝑚 =  𝜑𝑐

0.035

𝜓𝑐𝑟
𝐾𝑡𝐾ℎ𝐾𝑠𝑙

−1
𝑉2

2𝑔
 

where 

Dm = Median diameter of blocks = 0.85D50, [m] 

Δ = Relative submerged density of blocks = (SB – 1) 

φc = Geometry correction factor to account for edges or transitions: 0.75 for 

continuous protection, 1.0  to 1.5 for edges and transitions, 1.5 for 

exposed rock on a sill  

ψcr = Shields parameter = 0.035 for loose rock 

Kt = Turbulence factor: 1.0 for normal river turbulence, 1.5 for increased 

turbulence as in bends, 2.0 for high-turbulence hydraulic jumps, sharp 

bends, local disturbances and 3.0 for propeller jets   

Kh = Depth factor dependent on velocity profile: 2(logh/ks)–2 for fully 

developed boundary layer and (Dm/h)0.2 for a velocity profile not fully 

developed where h is depth of flow above toe of bank 
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Ksl = Slope factor: product of a side slope term and a longitudinal slope term 

V = Depth average velocity, [ms-1] 

g = Acceleration of gravity, [ms-2] 

In the equation 2.3, the right hand side corresponds to the disturbing forces and left 

hand side to resisting strength of the revetment.  

In relation with basic equation form (equation. 2.1), Pilarczyk (1990) equation has 

varying Pref and Cref depending on the application. An explicit form of the Pilarczyk 

(1990) equation is used before in PIANC (1987b) and Hemphill and Bramley (1989). 

2.2.2.3 California Bank and Shore Protection (CBSP) Manual  

California Division of Highways (1970) examined primarily the special treatment of both 

riverbanks and highway embankments to prevent erosion by surface waters and stated the 

equation of stable block size for slopes no steeper than 1.5H:1V as: 

𝑊𝑖  =
0.00002 𝑉𝑐𝑏𝑠𝑝

6  𝑆𝐵

(𝑆𝐵 − 1)3𝑠𝑖𝑛3(𝛽 − 𝛼)
 

where 

Wi = Minimum weight of blocks which resists force of flowing water and 

remains stable on slope of stream or river banks, [kg] 

Vcbsp = Stream velocity to which the bank is exposed, [fts-1], defined as ²⁄₃ of 

average channel velocity for parallel flow (in straight reaches) and ⁴⁄₃ 

of average velocity for impinging flow (on the outside bends) 

 SB = Specific gravity of blocks [-] 

  β = Angle for determining side slope effect, 70° for arbitrarily placed 

rubble, degrees   

  α = Side slope, degrees 

Also it is proposed by Froehlich and Benson (1996) that “practical angle of initial 

yield” is about 70–75° for typical gradations and Ulrich (1987) used “bearing angle” as 

75°.  
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Racin (1996) evaluates the method relative to field data and depicted that this 

method emphasizes relatively uniform rock placed in two or more layers instead of graded 

rock. 

2.2.2.4 Escarameia and May Equation  

The Escarameia and May (1992) equation for sizing revetment, loose or interlocking 

concrete blocks and gabion mattresses is, 

𝐷𝑚 =  𝐶 
𝑈𝑏

2

2𝑔(𝑆𝐵 − 1)
 

where 

Dm = Characteristic size of blocks, size of equivalent cube, [m] 

C = Coefficient depends on turbulence intensity = 12.3TI – 0.2 for riprap 

bank or bed protection on side slopes of 1:2 or flatter 

TI = Ratio of root mean square velocity fluctuation over mean velocity 

measured at a point 10% of the flow depth above bed and varies from 

0.12 to 0.60 for different structures 

Ub = Mean velocity measured at a point 10% of flow depth above bed 

= (1.04 – 1.48TI)V, [ms-1] 

SB = Specific gravity of blocks [-] 

g = Acceleration of gravity, [ms-2] 

Escarameia and May (1992) also present an equation for specific application to the 

bank and bed protection which is applicable to bank slopes of 1V:2H or flatter and normal 

river flow: 

𝐷𝑚 =  𝐶 
𝑉2

(𝑆𝐵 − 1)
 

where 

C = 0.05 for continuous revetments and 0.064 for the edges of revetments 

V = Depth averaged velocity and should be measured at the toe of the slope, 

[ms-1] 
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In relation with basic equation form (equation 2.1), both of Escarameia and May 

(1992) equations has Pref = 0 (independence of depth) and varying Cref depending on the 

application. 

2.2.2.5 Brown and Clyde Equation  

Brown and Clyde (1989), also called as the reviewed HEC-11 manual, combines 

Manning-Strickler equation with Shields relation. Shields relation is used for incipient 

motion, average shear stress, Manning equation to compute friction slope and the 

Strickler equation to compute Manning n as a function of particle size. The effect of bank 

angle, riprap specific gravity and desired stability factor are included in the equation. 

Equation for English units is, 

𝐷50 =  𝐶𝑠𝑔𝐶
𝑠𝑓

0.001 𝑉3

 ℎ𝑎𝑣𝑔
0.5  𝐾𝑠𝑙

1.5
 

where 

D50 = Median diameter of blocks, [ft] 

Csg = 2.12/(SB–1)1.5 

Csf = (SF/1.2)1.5 

SF = Stability factor dependent on the ratio R/W of radius of curvature to 

channel width. For R/W > 30, SF = 1.2; for R/W = 10, SF = 1.3 to 1.6; 

and for R/W < 10, SF = 1.7. 

V = Average channel velocity, [fts-1] 

havg = Average depth in the main channel, [ft] 

Ksl = (1–sin2θ sin–2φ)0.5 

θ = Bank angle, degrees 

φ = Riprap angle of response, degrees 

revised HEC-11 (equation 2.7) is only valid for English units, for metric units the 

constant has to be taken as 0.00594 (0.001/0.30481.5) (Lagasse et al., 2006). 
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Comparing to equation 2.1, Brown and Clyde (1989) equation has Pref = ⅙ 

(generally applicable to complete boundary layer development) and varying Cref 

depending on the application. 

Most of the methods above examine the riprap stability without considering the 

stability of individual particles in detail. The following methods include a more detailed 

examination of forces and moments acting on the individual particle. Also these equations 

consider lift force which is not included in Lane (1955) equation. 

2.2.2.6 Stevens et al 

Stevens et al. (1976) developed a safety factor method suggesting that particle stability is 

depending on the moment of its submerged weight being greater than the sum of the 

moments acting to displace it. He considered the forces acting on a particle in the plane 

of the side slope. Thus equation given below (equation 2.8) is for horizontal or parallel 

flow on an embankment. 

𝐷𝑚 =  
21𝜏0

(𝑆𝐵 − 1)𝛾𝜂
 

where 

Dm = Characteristic riprap size, m 

τ0 = Shear stress on the side slope, [Nm-2] 

SB = Specific gravity of blocks 

γ = Specific weight of water, [Kgm-3] 

η = Stability number = (Sm2–SF2)cosθ/SF Sm2 

SF = Safety factor = 0.5𝑆𝑚(√𝜁2 + 4 − 𝜁) 

ζ = Smηsecθ  

Sm = tanφ/tanθ   

This method requires an iterative procedure as the shear stress on the side slope is 

a function of relative roughness, which is riprap size divided by flow depth (HDS 6- 

Richardson et al., 2001 and Simons and Senturk, 1992). 
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2.2.2.7 Wittler and Abt study 

Wittler and Abt (1988) modified Steven`s analysis to additionally consider the effect of 

contact and frictional forces from adjacent particles. For bed slopes of 2-20%, they tested 

their equation and results are found to be good; however, they did not test it for flow along 

a side slope.  

2.2.2.8 Ahmed study 

Ahmed (1988) made a comparison among seven safety factor methods for flow with 

1V:1.5H bank slope and found out that all these methods underestimate the stability 

meaningfully. He concluded that methods by Anderson et al. (1970) and by the California 

Division of Highways (CDH 1970) gave better results.   

2.2.2.9 US Army Corps of Engineers (USACE) Manual 

USACE initiated a near prototype test program conducted by S. T. Maynord (1992) to 

improve riprap design procedure based on shear stress. Maynord found out from the 

velocity profile at the exit of the bend that the depth-averaged velocity for about 30% of 

the distance up the slope was equal to the velocity at the toe. 

The USACE (1994) method`s source data is only limited to slopes of 2% or less 

and to values of D30/h exceeding 0.02. The USACE equation (named as EM-1601) below 

(equation 2.9) is valid for desiging riprap in rivers and channels and not for immediately 

downstream of hydraulic structures that create highly turbulent flow. 

𝐷30 =  𝑆𝐹𝐶𝑆𝐶𝑉𝐶𝑇ℎ [(
𝛾𝑤

𝛾𝑠 − 𝛾𝑤
)

0.5 𝑉𝑠𝑠

√𝐾𝑠𝑙𝑐𝑔ℎ
]

2.5

 

where 

D30 = Particle size for 30% finer, [m] 

SF = Safety factor, minimum = 1.1 

CS = Stability coefficient for incipient failure = 0.30 for angular rock or 0.375 

for rounded rock. A revetment thickness of D100 or 1.5D50, whichever 

is greater, is assumed, and a gradation factor D85/D15 in the range of 1.7 

to 5.2 
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CV = Vertical velocity distribution coefficient = 1.0 for straight channels or 

inside of bends, 1.25 downstream of concrete channels or at the ends of 

dikes and (1.283–0.2log(R/W)) for outside of the curves (1 for 

R/W>26) 

R = Centerline radius of bend, [m] 

W = Water surface width at upstream end of bend, [m]  

CT = Blanket thickness coefficient = 1.0 for a thickness of D100, with smaller 

values for greater thickness depending on D85/D15 

 h = Local depth, defined for side slope riprap at a point 20% upslope from 

toe for slope 

 γw = Specific weight of water, [kgm-3] 

 γs = Specific weight of the particle, [kgm-3] 

Vss = Characteristic velocity, depth averaged velocity at point 20% upslope 

from toe = Vavg[1.74–0.52log(R/W)] for natural channels 

Kslc = Side slope correction factor = –0.672 + 1.492cotα – 0.449cot2α + 

0.045cot3α, where α is angle to the horizontal  

g = Acceleration of gravity, [ms-2] 

In USACE equation (equation 2.9), an incipient failure criterion is used to 

determine the stability coefficient. It is defined as the condition when the bank material 

beneath the riprap is first exposed. Incipient failure was used instead of incipient motion 

or displacement, to cover a wide range of gradations and to allow for the effects of blanket 

thickness (Lagasse et al., 2006). 

The differences between this method and others are the use of D30 as characteristic 

size, an empirical relation to account for side slope, a coefficient for thickness, and the 

provision of guidance for determining near bank velocity Vss.  

Comparing to equation 2.1, the USACE (1994) equation has Pref = 0.1 (intermediate 

between zero and complete boundary layer development) and varying Cref depending on 
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the application. A similar form of USACE equation (but without most of the modifying 

factors) is used by Neil (1967), Bogardi (1978) and Pilarczyk (1990). 

2.2.2.10 Probabilistic Methods  

A probabilistic approach to the designing riprap against currents is studied by Li et al. 

(1996), PIANC (1987b) and Froehlich and Benson (1996). The probabilistic method has 

the advantage of ability to merge the effects from different mechanisms. Uncertainties in 

risk-based design procedures are resulting mostly from hydraulic forces, estimation of 

block size, block density, channel depth and so. 

2.2.2.11 Blodgett and McConaughy Equation (Field Data) 

Blodgett and McConaughy (1986) developed an equation based on field analysis of riprap 

stability which is valid for straight and curved channels having side slope of 1V:1.5H or 

flatter. The Blodgett and McConaughy equation (equation (2.10)) does not fit the standard 

form of the riprap design equation. 

𝐷50 =  0.01 𝑉2.44
 

2.3 Conclusion  

All the above mentioned studies considered dumped riprap. The gap in these 

investigations is the factor of compaction in large blocks individually placed. Some study 

like Witler and Abt (1988) and Maynord et al. (1989) did a few numbers of experiments 

with packed blocks. The results showed rough 10% percent of increasing the stability. 

However, the systematic study to illustrate the effect of packing the large blocks installing 

in mountain rivers has not been studied yet. Furthermore, the time of failure is rarely 

taken into account as a significant parameter of failure. The time of failure is getting 

important when the installation of blocks is compact.  Thus, the current study is organized 

to answer practically the questions regarding the gap. 
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Experimental Methods 

 

 

In this chapter the experimental methods including procedures and measurements are 

explained. To assess the stability of large blocks which are individually placed as bank 

protection in a mountain river, systematic laboratory experiments were carried out in a 

laboratory tilting flume. Experiments were performed with different flume slopes S, block 

sizes D and bank slope α, for multiple discharges constantly fed from upstream of the 

channel. 

In chapter 3.1 the experimental setup and the instrumentation for the measurements 

are described. Chapter 3.2 presents the test parameters and chapter 3.3 explains the 

experimental procedure. Chapter 3.4 specifies the dimensional analysis to define the 

approach of the analysis in next steps.  
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3.1 Experimental setup 

3.1.1 Global description 

The present research is based on packed riprap laboratory experiments (Figure 3.1). The 

influence of the packed installation on blocks as riprap is studied for three different 

channel slopes, three different bank slopes, three different gradations and block sizes in 

one and two layers of the revetment. Experiments were carried out in a 10 m long and 

1.5 m wide tilting flume. Water is fed constantly at the flume inlet. A trapezoidal section 

containing movable riprap is set by making the bank slope by the filter of wide grain size 

distribution and installing the blocks on one side of the channel. The other side of the 

channel is the vertical wooden wall. The bed width of the trapezoidal section was first set 

as one meter. However, because the flow depth was not enough to provide failure in some 

of the configurations, the bed width of trapezoidal section was reduced to 0.7 m. Riprap 

was fixed to the bank by mortar for the first 5.5 meters of flume upstream. Then four 

meters of the movable blanket of the blocks were installed. Then the last half a meter was 

fixed on the filter to avoid the deconstruction of set-up. Figure 3.1 and Figure 3.2 are the 

sketch of a longitudinal side view of the channel and cross section view of the channel 

with riprap installed at the bank. 

 

Figure 3.1 Sketch of longitudinal side view of the channel (in mm) 
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Figure 3.2 Sketch of cross section view of channel with riprap installed at the bank 

(in mm) 

3.1.2 Experimental facility and measuring instrumentations 

3.1.2.1 Set up of dumped blocks 

In order to calibrate the model with the literature and existing design methods which are 

mostly based on dumped blocks, these series of tests are performed. First of all, the filter 

(Section 3.2.3) which contains a wide grain size distribution are placed as the first 

material on one side of the channel to produce the given bank slope. Then the blocks in 

given size are dumped and just released on the filter. It has been concerned that the blocks 

are providing the designed bank slope. The flow depth measurement equipment is 

installed in four positions with a distance of 2 meters.  



Chapter 3 

26 

   

Figure 3.3 View from downstream of the channel presenting the set-up of fixed 

and movable blocks parts of channel bank and the positions of 

ultrasonic limnimeter 

3.1.2.2 Set up of packed blocks 

The same procedure should be applied except that the blocks have to be placed 

individually with minimum space between them. Then the whole area of movable blocks 

should be packed with forces over it to reduce the void spaces and increase the 

interlocking forces among the blocks.  

The parameter which indicates quantitatively the way of packing is the porosity and 

explained in detail in section 3.2.2.  

From now on, we call packed riprap in the experiment for the individually placed 

blocks. 

Movable 

bank 

Fixed 

bank Q 

Ultrasonic limnimeters 



 Experimental Methods 

 27 

 

Figure 3.4 Sketch of one layer and two layers of riprap installed in three different 

bank slopes  

 

Figure 3.5 Installation double layer, showing upper layer with red block 

 

To study the effect of thickness in the application of packed riprap a series of 

experiments also performed for two layers of the blocks. The set-up is the same except 

that the amount of filter is less and the first layer is established and packed on the filter 

and then the second layer is installed. In this case, the interlocking between blocks and 

filter are more comparing upper and lower layers. The layers are installed in two different 

colours (red and white) but with the same size (D = 0.037 m). Figure 3.4 and Figure 3.5 

present the schematic cross view of one and two layers of blocks in three different bank 

inclination. 

5H:3.5V (35°) 

5H:3V (31°) 

5H:2.5V (27°) 

m=V/H 

1 
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3.1.2.3 Flow depth measurements 

Ultrasonic limnimeters are placed above the water surface pointing down at distance of 

2, 4, 6, and 8 m from upstream the channel to measure the low depth. They emit a sonic 

wave pulse which is reflected by an object of different density (e.g., flow surface and 

bed), back to the transducer. The time elapsed between emitting and receiving is 

proportional to the distance of the object from the sensor. For each experiment, the 

distance between the surface of the limnimeter transducer and the bed is first measured. 

When the flow passes through the channel during experiments, the distance between the 

transducer and the water surface is obtained. The ultrasonic limnimeters should be 

calibrated based on a reference distance like a dry bed for each test series (Figure 3.6).  

   

  

Figure 3.6 Ultrasonic limnimeter. Left side: limnimeter in the channel, right side: 

limnimeter with its dimensions 

3.1.2.4 Camera recorder 

A camcorder is placed on the top of the carriage, at a distance of 2.3 m above the channel’s 

bed. It visualizes a longitudinal reach of the channel between 5.5 and 9.5 m long, 

depending on the used zoom. This recording is part of the measurements during the 

experiments. Counting the number of eroded blocks from upstream to downstream of 

movable riprap area is possible when the erosion is recorded during the tests. Defining 

the time of failure and understanding the location and the type of erosion is also 

achievable by this recording.  
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3.1.2.5 Velocity measurement 

1D-velocity profile using the Ultrasonic Velocity Profiler (UVP) has been recorded for 

some of the tests in the channel axis at locations of 6, 7 and 8 m from upstream of the 

channel. Data acquisition has been performed by means of the Ultrasonic Velocity 

Profiler (UVP) instrument from Met-Flow. This instrument allows obtaining quasi-

instantaneous 1D- velocity profile over the channel depth. The ultrasonic transducers had 

an emitting frequency of 2 MHz and an active diameter of 0.01 m. Four transducers have 

been installed on a support plate moving over a flow surface above the channel. They 

measured the velocity profile from top to bottom and pointed upstream with an angle of 

18° from the vertical.  

3.2 Experimental parameters 

3.2.1 Block sizes and gradations 

To choose the best and relative blocks for the experiments, 2 tons of a mixed lime stone 

crushed blocks are provided and classified in three different ranges of the weight. Each 

block is weighed individually then the distribution of each range of weights is defined. 

The specific gravity of these limestone blocks is tested as ρs = 2661 kgm-3. 
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Figure 3.7 Three different size of blocks as crushed blocks categorized based on 

Table 3.1 

Then spherical size of the blocks based on their weights are presented in Table 3.1. 

Table 3.1 Grain size distribution of the blocks 

Class  𝐷15  𝐷30  𝐷50  𝐷65  𝐷85  𝐷𝑚𝑎𝑥  

σ (D85/D15) 

(–) 

Da 

Weight  (kg) 0.057 0.065 

 

0.073 0.077 0.083 0.090 

1.18 
Size (m) 0.033 0.035 0.037 0.038 0.039 0.040 

Db 

Weight (kg) 

 

0.093 0.100 0.107 0.115 0.0123 0.130 

1.07 
Size (mm) 0.041 0.0415 0.042 0.043 0.044 0.045 

Dc 

Weight (kg) 

 

0.135 0.143 0.147 0.158 0.163 0.170 

1.06 
Size (mm) 0.046 0.0465 0.047 0.048 0.049 0.05 

3.2.2 Porosity of different block sizes  

The distinction between dumped and packed set-up was based on porosity 

measurements. Preliminary tests were performed to obtain the air volume in a defined 

dumped or packed riprap volume. Table 3.2 shows the porosity (np) of these tests, as well 

as the averaged values per block size and construction type. Packed porosity reduced by 

2% for D50 = 0.037 m, by 5% for D50 = 0.042 m, and by 10% for D50 = 0.047 m when 
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compared with dumped riprap. The interlocking forces increase as the air volume between 

blocks reduces since the blocks have a closer arrangement.  

Table 3.2 Porosity (np) of dumped and packed riprap with three different sizes of blocks 

D50 (m) 

Dumped 

np (%) Average (%) 

Packed 

np (%) Average (%) 

0.037 42.96 43.71 41.86 41.52 

43.05 42.02 

44.62 41.00 

44.20 41.22 

0.042 45.10 44.73 40.00 40.78 

44.20 41.13 

44.91 40.10 

45.00 41.86 

0.047 46.90 46.56 37.00 36.8 

47.20 36.82 

45.95 36.50 

46.20 36.86 

 

The porosity of the riprap in the experiments by Maynord and Abt (Maynord et al., 

1989 and Abt, Johnson, Thornton and Trabant, 1998) was 44% to 46%, with limestones 

blocks of D50 = 0.035 m and D50 = 0.051 m, similar to the present blocks if dumped. 

3.2.3 Filter characterization 

Experiments were carried out on a rough fixed bed. The roughness of the bed is 

reproduced based on sediments with the grain size distribution presented in Table 3.3. 

The same grain size distribution has been installed to produce the bank slope. In order to 

represent the characteristics of mountain rivers, a wide grain size distribution was used. 

Hersberger (2002) analysed the grain size distribution of several alpine rivers. Herein, 

this grain size distribution is chosen to be used as the filter beneath the riprap and glued 

to the bed for these experiments. The comparison between the grain diameter distribution 

curve of the used sediments and typical alpine river curves is also given in Figure 3.8. 
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Figure 3.8 Grain size distributions used for filter beneath riprap some mountain 

rivers (from Hersberger, 2002) 

The characterization of the grain size distribution of the supplied sediments, which 

are shown in Figure 3.8, is given in Table 3.3, where Dm = 8.5 mm is the mean diameter, 

corresponding to D65 and Dx is the grain size diameter for which x% by weight of the 

amount of sediments which have smaller diameters. The density of the sediment 

measured as ρs = 2650 kgm-3. 

Table 3.3 Characteristics of the granular material underneath the riprap (filter) and glued 

to the channel bed (in mm) 

𝐷𝑚 𝐷10  𝐷35  𝐷50  𝐷75  𝐷90  𝐷𝑚𝑎𝑥  

8.5 3.2 4.4 5.3 9.1 14.8 32 

3.2.4 Channel slope  

Three different slopes as S = 0.015, 0.030 and 0.055 are tested in the tilting flume. The 

main longitudinal channel slope is taken as S = 0.030 and most of the configurations are 

done on this slope.  

3.2.5 Bank slope 

Three different bank slopes are also chosen to define the effect of bank slope on the 

stability of riprap protection. β is the angle of bank slope to the bed and is chosen as 27°, 

31°, 35° which are the ratio of 2.5V-5H, 3V-5H and 3.5V- 5H. The angle of repose for 

the blocks is used based on the study of Froehlich (2011).  

Di/Dm 

       Used mixture 

Hersberger mixture 
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3.2.6 Thickness 

The thickness shows effect on the stability of riprap in literature review. To define this 

effect on the stability of packed blocks, a series of two layer tests also is performed in 

various configurations with the block size of D = 0.037 m.  

3.2.7 Time to failure 

Failure criterion on these series of tests is defined when the blocks are eroded in a way 

that whole blanket of riprap in one section slides down and the section becomes stable. 

Dumped blocks faced with this failure as soon as the direct block erosion occurs. 

However, in packed riprap, an extra support and interlocking forces doesn’t let the section 

become unstable as soon as the blocks start to move. Then the time that the bank begins 

to become unstable by sliding the blocks is defined as the time to failure in packed riprap. 

Test duration is recorded by camera and exact time of failure can be obtained by video 

recorded. 

3.2.8 Transitional discharge (critical discharge) 

The tests run with a given discharge which remained constant during the experiment and 

increased for the next experiment. The first experiment which the failure occurs in it 

defined as the transitional test and the corresponding discharge named transitional 

discharge. This discharge has a role to define the boundary between failed and stable tests. 

3.2.9 Erosion rate 

The number of blocks which are eroded during the test and move from their place to the 

downstream are counted in frequency of one minute. In this way the erosion rate of blocks 

in a packed riprap can be obtained.  

3.2.10 Velocity profile in a section  

For some tests the velocity profile has been measured by using UVP. The variation of 

velocity profiles over the riprap and bed are obtained and roughness of the fixed bed and 

bank for three different sizes are analysed.  

 



Chapter 3 

34 

 

 

Figure 3.9 The positions of velocity measurements in a section  

3.3 Experimental procedures 

3.3.1 Dumped test 

After installation the set-up explained in section 3.1.2.1 the tests start with a constant 

discharge (Table 3.4, Table 3.5). The maximum time to stop the test is 30 minutes in 

which no failure will be observed. This experiments are designed to calibrate the model 

and the results are compared with existing formulae. This also provide a chance to 

compare the result with the packed block tests. The number of eroded blocks are counted. 

Then all blocks which are eroded and accumulated in a basket at downstream of the 

channel are weighted and controlled with the weight of counted blocks.  

3.3.2 Packed test 

Packed riprap is supposed to be more stable. After installation explained in section 3.1.2.2 

the given discharge will flow in the channel and time-based measurement of the erosion 

is performed. The tests are performed in one and two layers in order to define the effect 

of thickness on stability of packed riprap.   

3.3.3 List of experiments 

Table 3.4 and 3.5 presents the dumped tests with two different block sizes. Table 3.6  and 

Table 3.7 show the experiments of packed riprap on one layer and two layers respectively. 

0.1 m 

V
m

 

0.7 m 
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Table 3.4  Dumped test of blocks 𝐷 = 0.037m, 𝑆 = 0.03, 𝛼 = 35° 

Test 

Series 

𝑞  

(m2s-1) 

ℎ  

(m) 

           𝐴 

         (m2) 

𝑅  

(m) 

𝑆  

(-) 

𝑉  

(ms-1) 

𝐹𝑟  

(-) 

D1.1 0.0114 0.018 0.02 0.017 0.03 0.63 1.49 

D1.2 0.0211 0.028 0.03 0.027 0.03 0.74 1.41 

D1.3 0.0560 0.050 0.05 0.046 0.03 1.08 1.55 

D1.4 0.0728 0.057 0.06 0.051 0.03 1.23 1.64 

D1.5 0.0868 0.064 0.07 0.057 0.03 1.30 1.64 

D1.6 0.0999 0.072 0.08 0.063 0.03 1.32 1.57 

D1.7 0.1310 0.095 0.10 0.080 0.03 1.29 1.34 

D1.8 0.1460 0.100 0.11 0.084 0.03 1.36 1.38 

D1.9 0.1620 0.105 0.11 0.088 0.03 1.44 1.41 

D1.10 0.1763 0.109 0.12 0.090 0.03 1.50 1.45 

D1.11 0.1913 0.113 0.12 0.093 0.03 1.57 1.49 

D1.12 0.2027 0.116 0.13 0.095 0.03 1.61 1.51 

D1.13 0.2147 0.118 0.13 0.097 0.03 1.68 1.56 

D1.14 0.2281 0.126 0.14 0.102 0.03 1.66 1.49 

D1.15 0.2442 0.126 0.14 0.102 0.03 1.78 1.60 

D1.16 0.2908 0.152 0.17 0.119 0.03 1.73 1.41 

D1.17 0.3305 0.170 0.19 0.130 0.03 1.73 1.34 

 

Table 3.5 Dumped test of blocks 𝐷 = 0.042 m, 𝑆 = 0.03, 𝛼 = 35° 

Test 

Series 

𝑞  

(m2s-1) 

ℎ  

(m) 

           𝐴 

          (m2) 

𝑅  

(m) 

𝑆  

(-) 

𝑉  

(ms-1) 

𝐹𝑟  

(-) 

D2.1 0.006 0.012 0.012 0.012 0.03 0.48 1.41 

D2.2 0.021 0.026 0.026 0.025 0.03 0.79 1.56 

D2.3 0.050 0.045 0.046 0.041 0.03 1.08 1.62 

D2.4 0.065 0.053 0.055 0.048 0.03 1.17 1.63 

D2.5 0.082 0.062 0.065 0.055 0.03 1.27 1.63 

D2.6 0.103 0.072 0.076 0.063 0.03 1.37 1.62 

D2.7 0.134 0.086 0.091 0.074 0.03 1.47 1.60 

D2.8 0.145 0.091 0.097 0.078 0.03 1.50 1.58 

D2.9 0.161 0.098 0.105 0.083 0.03 1.54 1.57 

D2.10 0.175 0.104 0.112 0.087 0.03 1.57 1.55 

D2.11 0.192 0.111 0.120 0.092 0.03 1.60 1.53 

D2.12 0.206 0.117 0.127 0.096 0.03 1.62 1.51 

D2.13 0.215 0.121 0.131 0.099 0.03 1.63 1.50 

D2.14 0.229 0.127 0.139 0.103 0.03 1.65 1.48 

D2.15 0.229 0.127 0.139 0.103 0.03 1.65 1.48 

D2.16 0.293 0.154 0.171 0.120 0.03 1.71 1.39 

D2.17 0.334 0.172 0.193 0.131 0.03 1.73 1.33 
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Table 3.6 Test program for packed riprap 

Test 

Series 

𝑆  

 (-) 

Side slope 

(°) 
𝐷  

(m) 

ℎ  

(m) 

𝑄  

(l/s) 

𝑉  

(ms–1) 

𝐹𝑟  

(-) 

𝜏  

(Nm-2) 

Failed  

or Stable 

1 0.015 35 0.047 0.240 350 1.673 1.09 24.96 S 

2 0.015 35 0.047 0.252 380 1.714 1.09 25.91 S 

3 0.015 35 0.047 0.290 400 1.520 0.90 28.80 F 

4 0.015 35 0.047 0.295 420 1.563 0.92 29.17 F 

5 0.015 35 0.047 0.310 498 1.743 1.00 30.27 F 

6 0.015 35 0.037 0.180 230 1.542 1.16 19.96 S 

7 0.015 35 0.037 0.187 240 1.540 1.14 20.57 S 

8 0.015 35 0.037 0.197 255 1.540 1.11 21.43 F 

9 0.015 35 0.037 0.202 265 1.554 1.10 21.85 F 

10 0.015 35 0.037 0.209 280 1.582 1.11 22.40 F 

11 0.015 35 0.037 0.215 295 1.607 1.11 22.94 F 

12 0.015 35 0.042 0.222 330 1.731 1.17 23.51 S 

13 0.015 35 0.042 0.230 340 1.710 1.14 24.16 S 

14 0.015 35 0.042 0.239 350 1.682 1.10 24.88 F 

15 0.015 35 0.042 0.246 370 1.718 1.11 25.44 F 

16 0.015 35 0.042 0.250 380 1.730 1.11 25.75 F 

17 0.015 35 0.042 0.259 405 1.767 1.11 26.45 F 

18 0.030 35 0.047 0.185 316 2.053 1.52 40.79 S 

19 0.030 35 0.047 0.187 325 2.085 1.54 41.13 S 

20 0.030 35 0.047 0.202 340 1.994 1.42 43.70 F 

21 0.030 35 0.047 0.210 355 1.989 1.39 45.04 F 

22 0.030 35 0.047 0.220 378 2.005 1.37 46.69 F 

23 0.030 35 0.047 0.240 410 1.960 1.28 49.92 F 

24 0.030 35 0.037 0.122 228 1.719 1.57 30.71 S 

25 0.030 35 0.037 0.134 267 1.818 1.59 33.30 S 

26 0.030 35 0.037 0.136 275 1.843 1.60 33.73 S 

27 0.030 35 0.037 0.141 290 1.869 1.59 34.78 F 

28 0.030 35 0.037 0.145 310 1.937 1.63 35.62 F 

29 0.030 35 0.037 0.155 336 1.952 1.58 37.69 F 

30 0.030 35 0.037 0.167 350 1.872 1.46 40.13 F 

31 0.030 35 0.042 0.160 250 1.919 1.53 36.33 S 

32 0.030 35 0.042 0.169 275 1.983 1.54 37.96 S 

33 0.030 35 0.042 0.177 297 2.030 1.54 39.38 F 

34 0.030 35 0.042 0.181 308 2.052 1.54 40.09 F 

35 0.030 35 0.042 0.183 315 2.072 1.55 40.44 F 

36 0.030 35 0.042 0.187 325 2.085 1.54 41.13 F 

37 0.030 35 0.042 0.152 325 1.929 1.58 37.08 F 

38 0.030 35 0.042 0.156 345 1.990 1.61 37.90 F 

39 0.030 35 0.042 0.205 350 2.017 1.42 44.20 F 

40 0.030 31 0.047 0.172 280 1.930 1.49 39.80 S 

41 0.030 31 0.047 0.179 300 1.974 1.49 41.13 S 

42 0.030 31 0.047 0.196 352 2.080 1.50 44.28 F 

43 0.030 31 0.047 0.205 381 2.134 1.51 45.92 F 

44 0.030 31 0.047 0.211 400 2.164 1.51 47.00 F 

45 0.030 31 0.037 0.120 150 1.563 1.44 29.43 S 

46 0.030 31 0.037 0.126 168 1.656 1.49 30.68 S 

47 0.030 31 0.037 0.134 187 1.719 1.50 32.32 F 

48 0.030 31 0.037 0.147 228 1.886 1.57 34.94 F 

49 0.030 31 0.037 0.160 266 1.995 1.59 37.49 F 

50 0.030 31 0.042 0.145 235 1.974 1.66 34.54 S 

51 0.030 31 0.042 0.158 250 1.903 1.53 37.10 S 

52 0.030 31 0.042 0.165 265 1.918 1.51 38.46 S 

53 0.030 31 0.042 0.176 295 1.980 1.51 40.56 F 

54 0.030 31 0.042 0.180 305 1.996 1.50 41.28 F 
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Test 

Series 

𝑆  

 (-) 

Side slope 

(°) 
𝐷  

(m) 

ℎ  

(m) 

𝑄  

(l/s) 

𝑉  

(ms–1) 

𝐹𝑟  

(-) 

𝜏  

(Nm-2) 

Failed  

or Stable 

55 0.030 31 0.042 0.181 310 2.013 1.51 41.50 F 

56 0.030 27 0.037 0.118 152 1.575 1.46 29.90 S 

57 0.030 27 0.037 0.129 176 1.646 1.46 32.34 S 

58 0.030 27 0.037 0.137 195 1.701 1.47 34.08 S 

59 0.030 27 0.037 0.142 208 1.740 1.47 35.16 S 

60 0.030 27 0.037 0.146 218 1.765 1.48 36.02 F 

61 0.030 27 0.037 0.150 228 1.788 1.47 36.87 F 

62 0.030 27 0.037 0.157 228 1.695 1.37 38.35 F 

63 0.030 27 0.037 0.170 265 1.792 1.39 41.06 F 

64 0.030 27 0.042 0.140 200 1.701 1.45 34.73 S 

65 0.030 27 0.042 0.150 226 1.773 1.46 36.87 S 

66 0.030 27 0.042 0.150 227 1.780 1.47 36.87 S 

67 0.030 27 0.042 0.155 240 1.811 1.47 37.93 F 

68 0.030 27 0.042 0.165 267 1.871 1.47 40.02 F 

69 0.030 27 0.042 0.165 268 1.878 1.48 40.02 F 

70 0.030 27 0.042 0.185 325 1.985 1.47 44.13 F 

71 0.030 27 0.042 0.185 325 1.985 1.47 44.13 F 

72 0.030 27 0.042 0.202 378 2.075 1.47 47.54 F 

73 0.030 27 0.042 0.206 390 2.090 1.47 48.34 F 

74 0.030 27 0.042 0.208 398 2.107 1.48 48.73 F 

75 0.030 27 0.042 0.209 400 2.105 1.47 48.93 F 

76 0.030 27 0.042 0.211 405 2.107 1.47 49.32 F 

77 0.030 27 0.042 0.211 410 2.133 1.48 49.32 F 

78 0.030 27 0.042 0.180 423 2.670 2.01 43.11 F 

79 0.030 27 0.042 0.217 430 2.161 1.48 50.50 F 

80 0.030 27 0.042 0.223 445 2.162 1.46 51.67 F 

81 0.055 35 0.047 0.122 230 2.395 2.19 53.37 S 

82 0.055 35 0.047 0.132 255 2.432 2.14 56.96 S 

83 0.055 35 0.047 0.145 270 2.317 1.94 61.51 F 

84 0.055 35 0.047 0.148 278 2.331 1.94 62.55 F 

85 0.055 35 0.047 0.164 296 2.209 1.74 67.94 F 

86 0.055 35 0.047 0.175 308 2.133 1.63 71.56 F 

87 0.055 35 0.037 0.095 135 1.851 1.92 43.21 S 

88 0.055 35 0.037 0.099 145 1.900 1.93 44.76 S 

89 0.055 35 0.037 0.100 156 2.022 2.04 45.14 S 

90 0.055 35 0.037 0.109 180 2.123 2.05 48.56 F 

91 0.055 35 0.037 0.113 200 2.267 2.15 50.06 F 

92 0.055 35 0.037 0.118 215 2.323 2.16 51.90 F 

93 0.055 35 0.042 0.115 230 2.557 2.41 50.80 S 

94 0.055 35 0.042 0.119 240 2.569 2.38 52.27 S 

95 0.055 35 0.042 0.123 250 2.580 2.35 53.73 F 

96 0.055 35 0.042 0.139 265 2.385 2.04 59.43 F 

97 0.055 35 0.042 0.145 285 2.446 2.05 61.51 F 

98 0.055 35 0.042 0.153 304 2.455 2.01 64.25 F 
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Table 3.7 Test with two layers for 𝐷 =  0.037 m  

Test Series 

Channel 

Slope 

(%) 

Bank 

slope 

(°) 

𝑄  

(l/s) 

ℎ  

(m) 

𝑉  

(ms–1) 

𝐹𝑟  

(-) 

𝜏  

(Nm-2) 

Failed or 

Stable 

Double 1 0.015 35 340 0.233 1.684 1.11 24.40 S 

Double 2 0.015 35 347 0.235 1.701 1.12 24.56 F 

Double 3 0.015 35 355 0.239 1.706 1.11 24.88 F 

Double 4 0.015 35 380 0.248 1.747 1.12 25.59 F 

Double 5 0.030 35 310 0.150 1.867 1.54 36.66 S 

Double 6 0.030 35 333 0.163 1.830 1.45 39.32 F 

Double 7 0.030 35 350 0.168 1.860 1.45 40.33 F 

Double 8 0.030 35 375 0.182 1.823 1.37 43.10 F 

Double 9 0.030 31 188 0.132 1.758 1.55 31.92 S 

Double 10 0.030 31 200 0.140 1.749 1.49 33.54 F 

Double 11 0.030 31 228 0.151 1.842 1.52 35.53 F 

Double 12 0.030 31 255 0.167 1.820 1.42 38.84 F 

Double 13 0.030 27 218 0.145 1.779 1.49 35.80 S 

Double 14 0.030 27 228 0.157 1.695 1.37 38.35 F 

Double 15 0.030 27 240 0.162 1.719 1.36 39.40 F 

Double 16 0.030 27 265 0.170 1.792 1.39 41.06 F 

Double 17 0.055 35 180 0.109 2.123 2.05 48.56 S 

Double 18 0.055 35 200 0.117 2.182 2.04 51.54 F 

Double 19 0.055 35 215 0.122 2.239 2.05 53.37 F 

Double 20 0.055 35 230 0.127 2.290 2.05 55.17 F 

Double 21 0.055 35 245 0.138 2.223 1.91 59.08 F 

 

3.4 Dimensional analysis 

Dimensional analysis is used to define the dimensionless variables based on the selection 

of all relevant parameters. The dimensional analysis performed here is similar to that 

proposed by Neill (1967) and Maynord (1988) in which mean velocity is used instead of 

the critical tractive force approach. The relevant parameters governing the stability of 

riprap in open channels are: 

Hydraulic parameters: 

ℎ = Flow depth, L 

𝑉 = Mean velocity, L/T 

𝜇 = Viscosity, M/LT 

𝜌 = Fluid density M/L3 

Riprap parameters: 

𝛾S
´  = Submerged specific weight of the riprap f (g, 𝜌s) 
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𝐷 = Block size, L 

𝑁 = 
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐷100
 

Channel geometry: 

𝑆 = Channel slope 

Α = Bank slope 

By applying Buckingham P Theorem three non-dimensional parameter are defined 

as: 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐹𝑟𝑜𝑢𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑉

√(𝑆𝐵 − 1)𝑔ℎ
 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑉ℎ

𝜈
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
𝐷

ℎ
 

The Reynold’s number term is indicating the viscous effects which are not 

important in prototypes and in the model sizes used in this investigation. Thus the non-

dimensional parameters of modified Froude number and relative roughness are the main 

results of dimensional analysis. 
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Design of Riverbank Riprap Using Large 

Individually Placed and Packed Blocks 

This chapter analyses the influence of packing blocks on the stability of river bank riprap. 

A riprap design formula for large individually placed blocks is proposed based on the 

data collected during the present research. Results of the experiments are also compared 

to existing formulae. 
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Abstract 

The study which is framing this chapter is addressing the design of large block riprap 

built in mountain rivers with individually placed blocks, having relatively small spacing 

between them. The failure criterion opted in this case corresponds to when the blocks on 

the bank totally slide and make the section unstable. Since the interlocking forces are 

higher and blocks are in more support in packed riprap, the block size of the riprap can 

be decreased when compared with simply dumped protections. A specific relation for 

packed riprap design was developed based on 98 experiments performed in a trapezoidal 

section shape, using three different blocks gradations with the characteristic sizes of 

D50 = 0.037 m, 0.042 m, 0.047 m. The longitudinal channel slopes of 1.5%, 3% and 5.5% 

and the riprap bank slopes of 35°, 31° and 27° are tested. 34 dumped riprap laboratory 

tests are added and compared with existing methods of riprap design. The status of 

occurrence of failure or remaining stable for dumped and packed riprap tests are 

compared, and the extra strength is observed while the riprap is packed. The minimum 

size of the packed blocks to design stable riprap is defined by a functional relation taking 

into account the relative roughness and a modified Froude number. This proposed 

relationship can be applied to re-evaluate the stability of existing packed riprap bank 

protections.  

4.1 Introduction  

The erodible banks of mountain rivers need to be protected against the possible erosion 

and scouring. Among other flood protection measures that can ensure river bank safety 

against lateral erosion, riprap revetment is one of the most commonly used. Riprap is a 

flexible protection with self-healing capacity. It has affordable installation cost, and also 

is long lasting and easy to repair. Several methods of riprap design exist which have been 

mostly developed for dumped median size blocks. However, in mountain rivers and steep 

channels, the extra stability has to be provided by using the large blocks, which have to 

be placed individually due to their weight. Thus, the blocks are better packed and 

interlocked compared to dumped riprap. Nevertheless, the additional stability of such a 

packed/compressed riprap is not known. Several equations were developed to predict the 

riprap stability if exposed to the flow, considering the block size, the gradation and the 
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thickness as geometrical parameters, as well as the characteristics of an underneath filter 

(Stevens et al., 1976; Maynord et al., 1989; Escarameia and May, 1995).  

The base for most of riprap design methods applied to define the block sizes go 

back to the classic work of Shields (1936) and Isbash (1936), who performed tests on the 

entrainment of particles subject to changing shear stress and velocity. Shields (1936) 

performed a series of tests in which he bordered the threshold for the movement of quite 

uniform grains as a function of the critical dimensionless shear stress. Lane (1953) later 

used the shear stress method for stable canal design in the noncohesive material. 

Anderson et al. (1968) developed this method which includes the effects of bank slopes 

and channel bends. Their work is used as the basis for riprap design by the US Department 

of Transportation (1975). Li et al. (1976) and Stevens and Simons (1971) developed 

tractive force methods which incorporate probability and safety factors into the design 

method.  

Velocity based technics developed based on Isbash (1936) study. He analysed the 

stability of blocks and rocks eroded into the flow, framed as a critical flow velocity V that 

will move a rock of diameter D. The first purpose of the tests was to develop criteria for 

the stability of dams; however, the equation was later used in the riprap design (U.S. 

Army Corps of Engineers (USACE), 1991).  

A probabilistic approach for the design of riprap against currents was studied by Li 

et al. (1996), PIANC (1987) and Froehlich and Benson (1996). Uncertainties in risk-based 

design procedures are resulting mostly from hydraulic forces, estimation of stone size, 

stone density, and channel depth and so on. 

Stability of loosed (dumped) rock riprap was also studied by Froehlich (2011) 

regarding the protection of stream banks from erosive forces due to flowing water. This 

evaluation is based on the ratio of static moments resisting overturning. The ratio of 

moments in his research defined a safety factor which indicates the potential for riprap 

failure. Abt et al. (2008) studied the round-shaped riprap stabilization in overtopping flow 

as well. 

Safety factor also is a considerable parameter to design riprap. Stevens et al. (1976) 

presented his safety factor based method by taking into account the stability of individual 

block in riprap. It was based on that each block is stable if the amount of the moments 



Chapter 4 

44 

causing the possible displacement of a block is less than the moment of submerged 

weight. Froehlich (2011), Ulrich (1987) and Stevens et al. (1984) also considered the 

weight of the submerged rock as the only resisting force. Wittler and Abt (1988) modified 

Stevens’ analysis adding a contact and frictional forces from nearby blocks. 

Froehlich and Benson (1996) also worked on wide angle of repose to refer the slope 

of embankment impact on the stability of riprap. They proposed a “particle angle of initial 

yield.” Escarameia and May (1992) presented the general equation for design riverbank 

ripraps and gabion mattresses. At the same time, Brown and Clyde (1989) used both the 

Manning-Strickler equation with the Shields relation to make a combined formula for the 

size of stable blocks. Straub (1953), Grace et al. (1973) and Reese (1984) applied similar 

approach earlier. 

The aim of this research is to investigate the behavior of large blocks individually 

placed as riprap bank protection and to develop a specific relation for packed riprap 

design. This chapter is based experiments performed in an open-channel with three 

different longitudinal channel slopes of 1.5%, 3% and 5.5% and three riprap bank slopes 

of 35°, 31° and 27°. 98 experiments were performed with packe riprap whereas 34 

dumped riprap laboratory tests were made to compare with existing methods of riprap 

design. Next the experimental setup and the experimental procedure are shown, followed 

by the presentation and discussion of results and finally by the conclusions. 

4.2 Experimental set-up and procedure 

Ninety-eight experiments were conducted varying the block size and streamwise channel 

slope to analyze the effect of the packed block arrangement of the riprap on the stability 

of riprap bank protections. Thirty four tests also were performed with dumped blocks to 

compare the results with packed riprap.  

The laboratory tests were carried out on a straight 10 m long, 1.5 m wide tilting 

flume. The longitudinal slope of the flume was set to S =1.5%, 3% and 5.5%. The 

transversal riprap bank slope was fixed at 3.5V-5H (35°), 3V-5H (31°) and 2.5V-5H 

(27°). Blocks were categorized in three groups based on their weight (50gr to 90 gr, 90gr 

to 130gr, and 130gr to 170gr). Then the apparent diameter spherically calculated based 

on the limestone block specific gravity equal to 2.66. Each group included a specific  
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block size (D50 = 0.037, 0.042 and 0.047 m, respectively). The riprap consisted of one 

single layer, and its thickness is accordingly D50. The details of block gradations are 

explained in chapter 3. 

Three different equivalent average block sizes D50 of 0.037, 0.042 and 0.047 m were 

tested individually. Ahmed (1987) and Wittler and Abt (1990) reported that a riprap with 

a uniform gradation (when expecting similar D50) tends to be globally more stable, as 

compared to wide distribution of block sizes. The blocks were then uniformly selected 

and applied in the experiments. Froehlich (2011) conducted tests with various block sizes 

(including those used herein), considering crushed material. Thus, the angle of repose of 

blocks of 40 to 41 degrees can be assumed as based on Froehlich experiments (Froehlich, 

2011). Tests were run until total failure occurred but with a maximum duration of 180 

minutes. 

Blocks were packed and placed on a wide grain size distribution representing the 

filter and river bank material. In order to simulate natural hydraulic roughness conditions, 

the roughness of the channel bed was imposed using the same material glued to the 

channel bed as for the filter (Table 3.3). 

The distinction between dumped and packed set-up was based on porosity 

measurements. Preliminary tests were performed to obtain the air volume in a defined 

dumped or riprap volume. Table 3.2 shows the porosity (np) of these tests, as well as the 

averaged values per block size and construction type. Packed porosity reduced by 2% for 

D50 = 0.037 m, by 5% for D50 = 0.042 m, and by 10% for D50 = 0.047 m when compared 

with dumped riprap. 

Based on preliminary tests and typical flood peak durations in mountain rivers the 

maximum duration of the experiments was set to 180 minutes. The corresponding 

prototype time is important for the analysis of the results since it represents the expected 

maximum duration of the flood peak assuming a constant mean discharge, which may 

cause the riprap failure. The time scale of a physical model based on the Froude similarity 

is given as: 

𝜆𝑇 =
𝑇𝑝

𝑇𝑚
= √

𝐿𝑝

𝐿𝑚
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where T represents a duration, L a length, and subscripts p and m stand for prototype 

and model, respectively. Considering a geometrical scale of the experimental set-up for 

typical alpine mountain rivers of LP/Lm = 25, then a time scale 𝜆𝑇 of five results. 

Experimental tests lasting 180 minutes are thus roughly equivalent to prototype flood 

peak durations of 15 hours, which largely covers the flood observed durations in typical 

alpine mountain rivers. 

The experimental program was defined in order to identify the stability condition 

of packed riprap during the test and the transitional unit discharge causing failure. Lower 

discharges could cause direct block erosion during the tests but not lead to full failure of 

the riprap. For the fixed channel slopes, supercritical flow conditions (1.09 < Fr < 1.89) 

occurred for all discharges (except four tests of flatter channel slope). The discharge was 

increased subsequently (for subsequent test) until failure occurred, providing the failure 

discharge. Flow depths were measured by ultrasonic probes with a precision of ±0.5 mm 

at four different positions located at each 2 m along the channel axis. They were all 

transversally located at the center. For the first 6 m upstream, the riprap protection was 

fixed on mortar, keeping, however, the same roughness, to avoid an influence of the 

model inlet. 

The analysis of the block erosion were thus limited to the part of the flume between 

6.5 m and 9.5 m where constant flow depth (roughly uniform flow) occurred. Erosion 

occurring outside that zone were excluded.  

The detailed parameters of the experiments are shown in Tables 3.4 and 3.5 for 

dumped tests and 3.6 for all packed riprap. In Table 3.6 the occurrence of failure is 

indicated in the last column.  

4.3 Results and discussion  

4.3.1 Comparative analysis of the basic form of riprap design equations 

This section is developed based on dimensional analysis performed in section 3.4. Riprap 

protection is endangered by the erosive effects of drag and lift forces resulting from the 

velocity distribution near particles. Considering riprap stability, different sizing methods 

were developed. The basic form of many sizing equation is given by Maynord and Neill 

(2008): 
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𝑉𝐶

[𝑔(𝑆𝐵 − 1)𝐷]
1
2

=  𝐶𝑟𝑒𝑓 (
ℎ

𝐷𝑐
)

𝑃𝑟𝑒𝑓

 

Where Vc is characteristic velocity, g is acceleration of gravity SB is specific gravity 

of stone, SB = ρs/ρ, ρs is stone density, ρ is water density, D define as characteristic particle 

size, Cref is a numerical coefficient, usually based on empirical data, h is the local water 

depth, Pref is an exponent dependent on the hydraulic environment and the way the 

characteristic velocity Vc is defined.  

Among the equations explained in Chapter 2, seven of them are found to be the 

most frequently used ones in literature: HEC-11 (Brown and Clyde, 1989), Escarameia 

and May (1992), Pilarczyk (1990), EM 1601 (USACE, 1994) supplemented by Maynord 

et al. (1989) and Maynord (1990), Isbash (1935, 1936), CABS (Racin et al., 2000), and 

HDS 6 (Richardson et al., 2001).  

Two of the equations (Pilarczyk and HDS 6) require iterative solutions because a 

specific flow velocity can produce a range of shear stresses (tractive force) depending on 

the size of the riprap (roughness of the surface) (Lagasse et al., 2006). 

There is a detailed comparison of these seven equations with data for three sites 

studied by Blodgett and McConaughy (1986) in the report of Lagasse et al. (2006). After 

all of the comparisons, four equations for further analyses were selected: CABS (equation 

(4.3)) for being representative to Isbash equation and supported by detailed design, EM-

1601 (equation (4.4)) for being the most comprehensive one, HEC-11 (equation (4.5)) for 

being most frequently used and HDS 6 (equation (4.5)) for being representative for factor 

of safety approach. 

Each of the equations (CABS, EM 1601 [Maynord], HEC-11, and HDS 6) was 

reduced to its basic form by removing correction factors related to bank bank slope, bend 

radius, and safety/stability and by converting each equation into a consistent 

dimensionless form. Each of the equations includes the dimensionless parameter of block 

size divided by flow depth as the dependent variable and the independent variable is the 

dimensionless parameter V/[(SB-1)gh]0.5, which is the Froude number divided by the 

square root of the submerged particle specific gravity. The resulting equations are valid 

for computing riprap size on a flat channel bed in a straight channel for incipient motion 

conditions. For two of the equations the consideration of the bank slope of 35° is included. 
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The riprap equations differ only in the coefficient and exponent applied to the independent 

variable, except that the HDS 6 equation includes a log term representing the effect of the 

relative roughness of the riprap surface. Because this term is related to the ratio of riprap 

size to flow depth, it is part of the dependent variable. The details of each equation are 

explained as follow: 

  CABS Equation 

Safety factor is assumed to be 1, the shape midway between a sphere and a cube is 

used to convert weight to nominal diameter, it is solved for a bank angle of zero degrees 

(Lagasse et al., 2006). Then equation becomes, 

Dn

h
= 0.263 [

V

√(S𝐵-1)gh
]

2

 

 EM-1601 Equation 

All the correction factors, bank angle factor and a channel bend correction factor 

are taken as 1 (cf. Chapter 2) (Maynord et al., 1989). Then the equation becomes,  

D30

h
= 0.30 [

V

√(SB-1)gh
]

2.5

 

 

 HEC-11 Equation 

All correction factors including safety factor (CSF) and bank angle factor is taken 

as 1 (Lagasse et al., 2006). Then the equation becomes, 

D50

h
= 0.295 [

V

√(SB-1)𝑔ℎ
]

3

 

 HDS 6 Equation 

It is converted to its basic form by setting the bank angle at zero and the stability 

factor as 1. 

D50

h
[𝑙𝑛 (

12.3ℎ

𝐷50
)]

2

= 3.48 [
V

√(SB-1)𝑔ℎ
]

2
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Comparison between the several design formulae can be seen in Figure 4.1 for the 

range of flows and riprap protections of the present research. 

 

Figure 4.1 Comparison of four basic riprap size equations (adopted from Lagasse 

et al., 2006). The lines mean the boundary between stable and unstable 

flow conditions. 

The four equations include the same dependent and independent variables. The 

differences are the coefficient and exponent applied to the independent variable. Figure 

4.1 shows these four equations plotted for comparison. The HEC-11 and HDS 6 equations 

yield the smallest size, especially considering that they compute a D50 size as compared 

with EM 1601 (Maynord, 1989), which computes a D30 size. For typical design 

conditions, where a natural channel Froude number ranges from 0.5 to 0.9, the CABS, 

and EM 1601 (Maynord) equations are the most conservative (Lagasse et al., 2006). 

4.3.2 Comparison of the laboratory dumped and packed riprap experiments with 

existing riprap sizing equations 

Series of 17 tests of the dumped blocks with the size of D = 0.042 m are performed to 

compare to the equations developed by CABS (equation (4.3)), EM-1601 (equation 

(4.4)), HEC-11 (equation (4.5)), and HDS 6 (equation (4.6)). In Figure 4.2 relative 

roughness as a function of modified Froude number is presented for the test explained in 

3.5Table . The block erosion occurs both for the blocks placed on the bed as well as on 

the bank slope. Therefore, the comparison shown in Figure 4.2 was done specifically for 

the bank slope of 0° and 35°. 
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In Figure 4.2, the equations of HEC-11 and EM-1601 are calculated for both plain 

bed (continuous lines) and with bank slope of 35° (dashed lines) in order to have a better 

comparison. The empirical results obtained in the present research for D = 0.042 m, and 

divided between occurrence of failure or stable conditions, are shown as well. The results 

show that the blocks of three tests remained stable even if they are in the area of failure 

for HEC-11 (with a bank slope of 35°).  

 

Figure 4.2 Relative roughness as a function of modified Froude number and 

comparison the dumped blocks size D = 0.042 tests in the bank slope 

of 0° and 35° with existing riprap design formulae. 

The EM-1601 equation predicted better for both bed and bank, although, two of tests 

which had no block movement resulted in the area proposed for failure. The rest of 

experiments show good agreements with the existing equations for riprap design in the 

area of supercritical flow. 

In order to see the differences in behaviour of dumped and packed blocks, 32 series 

of experiments, including failed and stable tests, with the same blocks size of D = 0.425 m 

and higher velocity (cf. Table 3.6) in packed placement is added to the same graph (The 

tests run only for channel slope of 3% are presented here). A significant shift of stable 

tests from dumped ones can be seen in Figure 4.3. All the equations (equations (4.3) to  
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(4.6)) display an overestimating the size of blocks against failure occurrence in this graph 

for packed blocks.  

.  

Figure 4.3 Relative roughness as a function of modified Froude number and 

comparison of the dumped and packed blocks size D= 0.042 tests in the 

bank slope of 0° and 35° with existing riprap design formulae 

The reason of this difference is that the failure mechanisms of these two types of 

the tests are different. Thus, some limited erosion of the packed blocks is observed at the 

time that section remains stable. By this point of view, the equations could be valid for 

only the dumped median size of the blocks on the plain bed. 

The same comparison is done for the block sizes of D = 0.037 m in Figure 4.4. 

Relative roughness plotted versus the modified Froude number shows the stability border 

of riprap in different design equations. The stability of blocks is evaluated by the result 

of dumped tests (cf. Table 3.4). Figure 4.4 shows that two tests resulted in failure within 

the safe area of plotted equations for bank slope of 0°. However, the equations plotted for 

the bank slope equals to 35°, overestimated the block sizes at least in four of the tests that 

remained stable but are nevertheless in the failed area of the graphic.  
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Figure 4.4 Relative roughness as a function of modified Froude number and 

comparison the dumped blocks size D = 0.037 tests in the bank slope 

of 35° with existing riprap design formulae  

In Figure 4.5, the relative roughness of twenty-three tests performed with packed 

riprap versus the modified Froude number is plotted. Comparison with the existing 

equations shoes the extra stability of riprap with smaller block size. 

 

 

Figure 4.5 Relative roughness as a function of modified Froude number and 

comparison the dumped and packed blocks size D = 0.037 tests in the 

bank slope of 35° with existing riprap design formulae  
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4.3.3 Block erosion differences in packed and dumped tests 

The block erosion rate qs as a function of unit discharge q for dumped and packed riprap 

tests is plotted in Figure 4.6. In all experiments, the rate of erosion was measured by 

counting the number of eroded blocks in the frequency of one minute by video analysis.  

In dumped experiments, the start of block erosion was taken as the failure, and the 

total bank failure always occurs quite fast as the blocks are less supported by each other. 

However, the packed tests remained stable for a longer time. The discharge for beginning 

of motion slightly increases from dumped tests to packed block tests. The rate of erosion 

also increased when the unit discharge increased. The more interlocking forces among 

blocks due to the compression, the less block erosion is observed. During the tests it is 

shown that the larger block size starts to move later than the smaller ones, but higher mass 

movement occurs with the same unit discharge. 

 

Figure 4.6 Block erosion rate qs (kgs-1m-1) as a function of water unit discharge 

q (m3s -1m-1) for the block sizes of D = 0.037 (dumped and compressed) 

and D = 0.042 (compressed) 

4.3.4 Effect of channel longitudinal slope on block erosion rate 

The block erosion transport rate was measured for 32 packed block tests which remained 

stable for the first one hour of testing. These tests include the three block sizes in three 

different channel slope and bank slope of 35° (cf. Table 4.5). Figure 4.7 shows the 
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influence of the longitudinal channel slope on block erosion transport rate qs (kgh-1) as a 

function of water unit discharge q (m3s -1m-1). For a given unit discharge, higher block 

erosion transport occurs at steeper slopes (Figure 4.7). Data are grouped by channel slope, 

and power low trend lines are given for each slope (Figure 4.7). The three group of results 

based on channel slope (S) show that the correlation between unit discharge and block 

transport rate is probably not linear and increases exponentially. The same amount of 

blocks required higher discharge to move in lower longitudinal channel slope (S). 

Therefore, the slope has a dominant role on the erosion rate of large packed blocks.  

 

Figure 4.7 Block erosion rate qs (kgh-1m-1) as a function of water unit discharge 

q (m3s -1m-1). Data are grouped by channel slope, and power low trend 

lines are given for each slope, in three different sizes  

One of the main problems of shear stress calculations is the need of a precise 

knowledge of the channel hydraulics, which typically has a high local variability in 

mountain rivers. On the other hand, stream power per unit width can be approximated 

from channel properties, such as width and slope, combined with the discharge of the 

river, as follows: 

𝜔 =  𝜌 𝑔𝑞𝑆 = 𝜏 𝑉  

where ρ (1000 kgm-3) is the fluid density, g (9.81 ms-2) is the acceleration due to 

gravity, q (m3s-1m-1) is the specific discharge, S (-) is the channel slope, τ (Nm-2) is the 
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total bed shear stress, and V (ms-1) is the average flow velocity. The stream power 

quantifies the rate of loss of energy as water flows downstream; it can also be seen as the 

flow power available to perform geomorphic work in the river bed (Ghilardi et al., 2014). 

Therefore, the block erosion rate in the channel is tentatively evaluated by the stream 

power produced in the channel as plotted in the Figure 4.8. 

 

Figure 4.8 Block erosion transport rate qs (kgh-1m-1) as a function of stream power 

(Wm-2) Data are grouped by channel slope. Power low trend lines are 

given for each slope, in three different sizes 

In Figure 4.8, as expected, the tests are clearly grouped by the slope. This graph 

indicates that the block erosion rate is clearly a function of both, unit discharge, and 

channel slope. These two parameters are both used in the stream power calculation. The 

lower channel slope S= 0.015 provides less stream power for a given block erosion rate. 

The stream power in this slope is more sensitive than other slopes and with small changes 

result in large differences in the block erosion rate. The effect of channel slope increases 

on stream power causing the block erosion rate is considerable (trend line slope smaller 

for longitudinal inclination of S = 0.055 than for the others). Considering shear stress 

(dimensional and dimensionless), the same pattern of results grouping by longitudinal 

slope can be seen in Figure 4.9 and 4.10.  
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Figure 4.9 Block erosion transport rate qs (kgh-1m-1) as a function of shear stress 

τ (Nm-2) Data are grouped by channel slope and linear trend lines are 

given for each slope, in three different sizes 

 

Figure 4.10 Block erosion transport capacity qs (kgh-1m-1) as a function of 

dimensionless shear stress τ* (-). Data are grouped by channel slope are 

given for each slope, in three different sizes 

Figure 4.7 to Figure 4.10 illustrates the effect of channel slope on block erosion in 

packed riprap revetment. The block sizes did not have an influence on block erosion 
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transport whereas the channel slope has the dominant factor. Shear stress (τ) and 

dimensionless shear stress (τ*) are plotted with the block erosion rate and the tests are 

clearly grouped and well aligned by slopes. Both parameters are higher on steeper channel 

slope as expected. 

4.3.5 Riprap design equation considering large blocks individually placed 

The review of previous works presented in 4.3.1 and 4.3.2 and a dimensional analysis 

indicate that numerous investigations have proposed a relation between a modified 

Froude number and the relative roughness to define the boundary between stable and 

unstable riprap bank protections.   

The results of all 98 packed tests are used to evaluate relative roughness as a 

function of modified Froude number as: 

𝐹𝑟∗ =  
𝑉

√(𝑆𝐵 − 1)𝑔ℎ
  

Where V is velocity, 𝑆𝐵 is specific gravity of the blocks, h is flow depth and g is 

gravitational acceleration. Results are grouped in two categories of stable and failed tests.  

To define the best-fit line separating two categories of failed and stable tests, 

transitional tests were used from data set. Transitional tests are the ones that show the 

limit between stable and failed riprap and are empirically based. The discharge performed 

for a transitional test corresponds to the first discharge where total riprap failure occurs.  

This group of results acts as an envelope to show the boundary between failed and stable 

tests result.  

Figure 4.11 presents the relative roughness as a function of modified Froude 

number (Fr*) for failed, stable and transitional runs. The results are grouped well in three 

different channel slopes. The best-fit for these transitional tests with a linear least square 

algorithm are represented to separate failure runs from stable runs and present a very good 

agreement (R2 = 0.92). The predictor, a confidence interval of 95% upper and lower limits 

and the prediction interval for the same limits are represented in Figure 4.11 as well.  

The functional relation based on linear regression is defined as: 
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𝐷50

ℎ
= 0.18

𝑉 

√((𝑆𝐵 − 1)𝑔ℎ)
+ 0.04 

 

By applying equation (4.9), the mean size of riprap can be estimated for the range 

of application defined by the experimental setup and procedure herein presented. This 

equation is only valid for supercritical flow as all the tests were performed in a 

supercritical flow condition (only 4 tests of 98 experiments were in critical discharge with 

Froude number around 1 and for the lower channel slope).  

 

Figure 4.11 Relative roughness as a function of modified Froude number. 

Comparison of failed, stable and transitional tests in all sizes channel 

slopes and riprap bank slopes 

The lack of data in the subcritical area does not let to generalize this linear 

relationship for the lower right hand side corner of the graphic in Figure 4.11. The analysis 

can be simplified since V becomes equal to zero, the modified Froude number limit goes 
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to zero and the limit of relative roughness gets close to zero. Therefore, the constant value 

of equation (4.9) could be eliminated and trend line changes to equation (4.10) with 

R2 = 0.88. 

𝐷50

ℎ
= 0.21

𝑉 

√((𝑆𝐵 − 1)𝑔ℎ)
 

4.3.5.1 Validation of equation by Logistic Classification 

In statistics, logistic regression is a regression model while the dependent variable can be 

classified. The logistic classification model is used to predict a binary answer founded on 

one or more forecaster, making it a probabilistic categorization model in the frame of 

machine learning. 

Logistic regression calculates the relationship between the dependent variable and 

one or more independent variables by approximating probabilities by means of a logistic 

function. The predicted values are probabilities and are therefore restricted to [0,1] by the 

logistic distribution function since logistic regression foresees the probability of particular 

results.  

This logistic classification applied to the data set to validate the linear relation of 

transitional tests. The result is presented in Figure 4.12 the relative roughness as a 

function of modified Froude number by logistic classification of failed and stable tests. 

The equation given by this model is very close to regression achieved in equation (4.9). 

Figure 4.12 illustrates the probability of failure based on classifying the failed and stable 

test. Using this application has the advantage of obtaining the failure probability as a 

confident probabilistic approach. 

Other machine learning method for classification such as Supervised Vector 

Machine (SVM) are applied. However, the results were not applicable because the lack 

of data. Logistic classification algorithm had accurate result, though. 
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Figure 4.12 Relative roughness as a function of modified Froude number using a 

logistic classification of failed and stable tests 

4.3.5.2 Confusion matrix 

In the field of machine learning a confusion matrix, also known as an error matrix, is a 

explicit table design that gives a visualization of an algorithm performance, classically a 

supervised learning one. Each column of the matrix signifies the values in a predicted 

class while each row represents the instances in measured class.  

In predictive analytics, a table of confusion is a table with two rows and two 

columns that reports the number of false positives, false negatives, true positives, and true 

negatives. This gives more detailed assessment than the ordinary quantity of correct 

deductions (accuracy). 

By applying the confusion matrix for the result of logistic classification presented 

in Figure 4.12 a good agreement of 79% of accepted and correct classification is found. 
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Figure 4.13 Confusion matrixes of logistic classification in relative roughness as a 

function of modified Froude Number 

4.3.6 Comparison with existing formula  

In Figure 4.11 relative roughness defined as a function of modified Froude number and a 

linear least square solver gave a relationship to predict the best size of riprap. Herein, the 

comparison of the 98 tests with four existing formula of riprap design as HDS 6, CABS, 

HEC-11 and EM-1601 can be seen in Figure 4.14. It is shown that the grouped data related 

to lower slope of S = 0.015 are relatively close to the existing formula. However, as far 

as the channel slope increases, the results show higher discrepancies between the existing 

relationships and the empirical results of this study. Therefore, the effect of compression 

is more obvious for the steeper channel, while, in less inclined channels, the results are 

adapted mostly to HEC-11, CABS, and EM-1601.  

Two different equations for classifying failed and packed are defined from Figure 

4.14; one is the linear presented before, and the other corresponds to a power law 

regression. Both equations are plotted and compared. The power law regression used to 

predict the boundary between stable and non-stable conditions, with R2 = 0.93 is 

presented below: 

𝐷50

ℎ
= 0.22 (

𝑉 

√((𝑆𝐵 − 1)𝑔ℎ)

)0.88 
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Figure 4.14 Comparison of existing formulae and the packed tests 

This power law equation exhibits the same pattern of the existing formulae resulted 

in equations 4.3 to 4.6.  

For the transitional test, the estimation results based on equation 4.9 and 4.12 are 

compared to the measured data in Figure 4.15 based on linear and power law regression 

respectively. The scatter shows quite the same for both regressions. 

V/[(SB-1)gh]0.5 
 



 Design of Riverbank Riprap Using Large Individually Placed and Packed Blocks 

 63 

 

Figure 4.15 Block size measurement versus calculated in a linear (left) and power 

law (right) regression  

4.3.7 Bank slope effect 

As explained in detail in chapter 2, the bank slope of riprap has a significant effect on the 

stability.  

𝐷50 = 0.22𝐶𝑓 ℎ(
𝑉 

√((𝑆𝐵 − 1)𝑔ℎ)

)0.88 

𝐶 =  0.236 [ 
𝑡𝑎𝑛(𝛼)

𝑡𝑎𝑛(𝜑)
 ]

0.2

, 𝑅² =  0.94 

𝐶𝑓 =
𝐶

0.22
 

Table 4.1 Bank slope coefficient description 

Bank Slope 

(𝛼) 𝐶  𝐶𝑓  𝑅2  Exponent 

C (K1) 

 (HEC11) 

C (K2) 

(Maynord) 

40° 0.236 1.07 - 0.89 0.296 0.30 

35° 0.228 1.04 0.94 0.88 0.2601 0.28 

31° 0.217 0.99 0.91 0.88 0.2322 0.26 

27° 0.215 0.97 0.97 0.88 0.2022 0.23 

To define this effect as a coefficient, the results of experiments in different block 

sizes and angle of repose analysed and presented in equations (4.12) to (4.14); were 𝛼  is 

the riprap bank slope and 𝜑 (= 40°) is the angle of repose of the blocks. Table 4.1 presents 

the calculated bank slope coefficients on the experiments results and comparison with 

these coefficients in HEC-11 and Maynord’s equations. The results revealed that by 

increasing the bank slope the Cf increases and the size of the blocks should be greater to 

be resistant against the flood. 
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4.4 Conclusion 

This study addresses the sizing of large block riprap built in mountain rivers with the 

minimum possible spaces among the blocks. It specifically deals with the diameter of the 

riprap blocks D, longitudinal channel slope S, bank slope of the riprap and hydraulic 

conditions. The stability of packed riprap is evaluated and analyzed through a dataset of 

98 experiments carried out with varying flume slopes, bank slope and size of the blocks. 

Thirty-four dumped riprap laboratory tests are also performed and compared with existing 

methods of riprap design.  

By comparing the dumped riprap tests with existing methods the results showed 

agreements with equations of HEC-11 and EM-1601 considering the bank slope effect 

presented correctly regarding the boundary between stable or failed condition. However, 

the literature equations overestimated the size of blocks in some of the tests performed 

for dumped riprap.  

Regarding the erosion rate, under the same hydraulic conditions, the packed block 

tests showed more stability, less block transport, remaining in the stable condition or 

showing a delay in failure. The channel slope S as a design parameter showed the 

strongest impact on the block erosion rate. However, it is also clearly shown that the block 

erosion decreases by compressing riprap according to the extra support among the blocks 

when they are packed. 

A functional relation of the relative roughness and the modified Froude number is 

proposed to define the boundary between stability and failure providing the minimum 

size of the stable blocks. This relationship suggests smaller block sizes for the stable 

condition in packed block riprap, when comparing with dumped material, and can be 

applied to re-evaluate the stability of existing packed riprap facings. 

Another functional relation is also analyzed to define the block size based on 

dimensionless shear stress, channel slope and modified Froude number. These equations 

which are developed to calculate the minimum block size for a stable riverbank riprap are 

validated by logistic classification model comparing to the experimental transition 

condition. 
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Time-based Failure Analysis of Packed 

Riverbank Riprap  

 

This chapter is based on a time dependent failure analysis of the packed riprap 

experiments. A characteristic time to failure is defined for prediction of the time of riprap 

failure as a function of several variables. The prediction model applied for the stable tests 

as examples.   
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Abstract  

Riprap is frequently used as riverbank protection against lateral erosion. Several methods 

are developed for riprap design. However, they usually refer to dumped medium size 

blocks. Large blocks are used when more stability is required, being placed individually 

by a machine instead of simply dumped. Such arrangement generates additional 

resistance against flow erosion since the space between the blocks is minimized, and the 

interlocking is increased. The behavior of the latter protection was rarely studied for 

alpine river conditions. Therefore, an experimental investigation was carried out focusing 

on the stability of such packed riprap as river bank protection using a 10 m long and 1.5 m 

wide flume with a rough fixed bed. Riprap was reproduced with uniform crushed stones 

with three block sizes namely D50 = 0.037, 0.042 and 0.047 m. The tests were conducted 

on streamwise bed slopes of S = 0.015, 0.03 and 0.055, under supercritical flow 

conditions. Riprap stability was studied for a constant bank slope of 3.5V-5H (35°). A 

time-based analysis of failure was carried out where relationships among time to failure, 

shear velocity, and dimensionless bed shear stress were established. The result of 45 tests 

reveals that, for a given unit discharge, the rate of block erosion is significantly reduced 

if increasing the block size of the riprap. The time to failure also depends strongly on the 

longitudinal slope and the size of the blocks. An empirical prediction of riprap failure 

time was developed for a certain flood, which allows estimating the riprap failure time 

under specific conditions.  

5.1 Introduction 

Riprap is the most widely applied measure to protect river banks because it is flexible, 

long-lasting, easily constructed and natural in appearance (Schleiss, 1998). The stability 

of riprap is mainly determined by a combination of the submerged weight and the 

interlocking forces between adjacent blocks. Several equations were developed to predict 

the riprap stability considering the block size and the gradation, the thickness and the 

characteristics of an underneath filter (Stevens et al., 1976; Maynord et al., 1989; 

Escarameia and May, 1995).  

There are two main approaches to design riprap (Recking and Pitlick, 2013); one is 

taking shear stress into account, and the other is defining a permissible velocity. Both are 
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based on Shields and Isbash equations respectively. Both approaches predict the behavior 

of blocks being exposed to turbulent flow. They used either critical shear stress or critical 

velocity, which has been referenced widely despite differences in the experimental 

methods (Maynord et al., 1989; Maynord and Neil, 2008).  

Stevens et al. (1976) introduced a method based on a safety factor related to the 

stability of individual blocks in the riprap. They assumed that one block is stable if the 

different forces causing a possible displacement are below the reaction force resulting 

from the submerged weight. Wittler and Abt (1988) completed the study of Stevens et al. 

(1976), adding frictional and contact forces from adjacent blocks. Froehlich and Benson 

(1996) worked on different angles of repose in order to show the role of the bank slope 

effect on riprap stability. They proposed a “particle angle of initial yield” which was 

introduced earlier by Straub (1953), Grace et al. (1973), and Reese (1984). Brown and 

Clyde (1989) used the Manning-Strickler equation combined with the Shields relation to 

develop an equation for sizing stable blocks. Escarameia and May (1992) presented an 

equation for the design of riverbank ripraps and gabion mattresses. Stability of dumped 

riprap was also studied by Froehlich (2011) regarding the protection of banks from 

erosive forces. This evaluation was based on the ratio of static moments of resisting and 

provoking overturning. This ratio results in a safety factor of block overturning that 

indicates the potential for riprap failure. Stevens et al. (1984), Ulrich (1987) and Froehlich 

(2011) all considered the submerged weight of the blocks as the only resisting force. Abt 

et al. (2008) studied the effect of round-shaped riprap stability subjected to overtopping 

flow. Probabilistic procedures for the design of riverbank riprap were developed by Li et 

al. (1976), PIANC (1987), and later by Froehlich and Benson (1996). They describe the 

combination of different mechanisms including the persistence of hydrodynamic actions, 

which represents one of the advantages of these methods in the risk-based design 

procedure. 

Several manuals give guidelines for the general application of dumped block riprap. 

The latter manual of Centre for Civil Engineering Research and Code (CUR, 1995) 

includes an equation developed by Pilarczyk (1990) for the riprap stability, which 

considers strengthening and destabilizing forces. The U.S. Army Corps of Engineers 

Manual (USACE, 1994) showed a method for design riprap in channels and rivers based 

on different coefficients concerning vertical velocity distribution, incipient failure, and 
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riprap thickness. This method was mostly based on Maynord’s formula proposed in 1989 

(USACE, 1994). 

Most of these design methods are limited to dumped and medium size blocks. The 

incipient motion of particles is used as the failure criterion (De Almeida and Martin-Vide, 

2009). However, if large and heavy blocks are required for stability reasons, they have to 

be placed individually by machines because of their weight. Consequently, for such 

construction method the design used for a dumped riprap become conservative. 

Riprap failure occurs through different mechanisms. According to Lagasse et al. 

(2006), riprap failure modes are identified as (1) direct block erosion, (2) translational 

slide, (3) slump failure, and (4) side-slope failure. Direct block erosion started by flowing 

water is the most common mechanism. Most of the riprap design methods have been 

developed based on the failure criterion that considers the first movement of an individual 

block. Some other authors, such as Maynord (1989), proposed the start of the exposure 

of the filter underneath the riprap to the flow as failure criteria. This may cause other 

mechanism called translational slide or slump in the presence of multi-layers riprap 

(Jafarnejad et al., 2012). 

In the present study, the temporal evolution of the riprap protection failure with 

well-positioned blocks was investigated. Particular attention was given to the influence 

of time or flood duration, during which blocks remain still stable. One approach to 

consider the time is to treat riprap behavior as a transport problem by defining maximum 

allowable transport rates. This approach is acceptable if multiple layers of material are 

considered (Maynord et al., 1987). If riprap is built with one single layer, the use of this 

approach may be questionable.  

The erosion of one single block is hardly the reason for a total failure of a riprap 

with large and packed blocks placed individually by machines, mainly due to the 

interaction and support of packed and restablished blocks. Failure happens if a group of 

blocks slides and provokes an instability of the river banks. In the present study, the total 

collapse of all blocks in a section over the whole bank height is considered as failure. This 

failure is because of slumping or sliding down of riprap from toe of the embankment and 

full exposure of the filter to the flowing water. This situation causes bank instability and 
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consequently a downstream or upstream continuation of the riprap failure and the collapse 

of the bank.  

Herein, the effect of the large block arrangement (with varying block sizes) on the 

stability of riverbanks is analyzed. The blocks are individually placed as riprap for various 

streamwise channel slopes. The present work includes 45 experiments. The analysis 

focused mainly on the characteristic time to failure and relevant hydraulic parameters for 

failure. 

5.2 Experimental procedures 

The goal of this part of study is to evaluate the resistance of a river bank riprap, consisting 

of individually placed and packed large blocks, subjected to hydrodynamic forces. By 

varying the block size and streamwise channel slope, 45 experiments were conducted to 

analyze the effect of the block size of the riprap on its stability.  As explained in chapter 3, 

the laboratory tests were carried out in a tilting flume with a trapezoidal section. The setup 

of the flume is shown in Figure 5.1.      

The longitudinal slopes of flume for these series of tests were set to S = 1.5%, 3% 

and 5.5%. The transversal riprap bank slope was fixed at 3.5V-5H (35°). The used riprap 

blocks used consisted of uniform crushed limestones, with a specific density of SB =2.65. 

Three different equivalent average block sizes D = 0.037, 0.042 and 0.047 m were tested 

individually. Ahmed (1987) and Wittler and Abt (1990) reported that a riprap with a 

uniform gradation (when expecting similar D50) tends to be globally more stable. The 

blocks were then uniformly selected and applied in the experiments. Froehlich (2011) 

conducted tests with various block sizes (including those used herein), considering 

crushed material. Thus, the angle of repose of blocks of 40 to 41 degrees can be assumed 

as based on Froehlich experiments (Froehlich, 2011). 
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Figure 5.1 Photo of the experimental flume, streamwise view 

Blocks were packed and placed on a wide grain size distribution representing the 

filter and river bank material. In order to simulate natural hydraulic roughness conditions, 

the roughness of the channel bed was imposed using the same material glued to the 

channel bed as for the filter (Table 3.3). 

The distinction between dumped and packed set-up was based on porosity 

measurements. Preliminary tests were performed to obtain the air volume in a defined 

dumped or packed riprap volume. Table 3.2 shows the porosity (np) of these tests, as well 

as the averaged values per block size and construction type. When packed porosity 

reduced by 2% for D50 = 0.037 m, by 5% for D50 = 0.042 m, and by 10% for 

D50 = 0.047 m when compared dumped riprap. The interlocking forces increase as the air 

volume between blocks reduces since the blocks have a closer arrangement. The porosity 

of the riprap in the experiments by Maynord and Abt (Maynord et al., 1989 and Abt et 

al., 1998) was 44% to 46%, with limestones blocks D50 = 0.025 m and D50 = 0.051 m 

similar to the present blocks if dumped. 

Based on preliminary tests and typical flood peak durations in mountain rivers the 

maximum duration of the experiments was set to 180 minutes. The corresponding 

prototype time is important for the analysis of the results since it represents the expected 

maximum duration of the flood peak assuming a constant mean discharge, which may 

1 m 
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cause the riprap failure. The time scale of a physical model based on the Froude similarity 

is given as: 

𝜆𝑇 = √
𝐿𝑝

𝐿𝑚
=  

𝑇𝑝

𝑇𝑚
 

where T represents the time, L a length, and p and m are prototype and model, 

respectively. Considering a geometrical scale of the experimental set-up for typical alpine 

mountain rivers (for example Kleine Emme, Switzerland) of LP/Lm = 25, and then a time 

scale, λT = 5, is achieved. Experimental tests lasting three hours are thus roughly 

equivalent to prototype flood peak durations of 15 hours, which largely covers the flood 

observed durations. 

The experimental program was defined in order to identify the time to failure and 

the limiting unit discharge causing failure. Lower discharges could cause direct block 

erosion during the tests but not lead to full failure of the riprap. For the fixed channel 

slopes, supercritical flow conditions (1.09 < Fr < 1.89) occurred for all discharges. The 

discharge was increased subsequently (for subsequent test) until failure occurred, 

providing the failure discharge (Table 5.1). Flow depths were measured by ultrasonic 

probes with a precision of ±0.5 mm at four different positions located at each 2 m along 

the channel axis. They were all transversally located at the center. The first 6 m of the 

riprap from upstream was fixed on mortar, keeping, however, the same roughness, to 

avoid an influence of the model inlet. 

The riprap erosion rate was measured with a one-minute frequency by tracking and 

counting the number of eroded blocks, observed by three cameras. Furthermore, the 

eroded blocks were collected and weighed in a sediment trap at the downstream channel 

end to validate the total erosion. Single blocks eroded during the start of the tests 

(< 2 min) were not considered for the calculation of the erosion rate. Moreover, the results 

are grounded on the part of the flume between 6.5 m and 9.5 m where constant flow depth 

(roughly uniform flow) occurred. Blocks being eroded outside of that zone were 

excluded.  

The detailed parameters of the experiments are listed in Tables 5.1. Experiments 

were divided into three groups I to III. Each group includes a different block size 

 (5.1) 



Chapter 5 

72

(D50 = 0.037, 0.042 and 0.047 m, respectively). The riprap consisted of one single layer, 

and its thickness is accordingly D50. Tests were run until total failure occurred but with a 

maximum duration of 180 minutes. Figure 5.2 shows the set-up before and after three 

different tests. Eroded parts of the riprap and the failed area after the experiment are 

illustrated in figure 5.2b. In Figure 5.2b, direct block erosion is visible along the toe of 

the riprap. At the model end, total riprap failure over the whole bank height can be seen. 

5.3 Results and discussion 

The tests were divided into three groups, I, II and III corresponding to the block sizes 

used for the riprap (see Table 5.1). For each group, several unit discharges were tested. 

Some of them initiated failure while for other discharges no failure occurred during the 

maximum test duration of 180 minutes.  

Protection for the channel bank was materialized with one layer of riprap blocks. 

Table 3 summarizes the hydraulic parameters of all 45 tests under analysis for the three 

different channel slopes, including unit discharge (q), water depth (h), size of the blocks 

(D50), mean velocity (Vm, based on continuity), Froude number (Fr) and bed shear stress 

(τ) estimated considering uniform flow conditions. The time to failure (tf) and the riprap 

condition after the end of the test (failed, Yes, or remained stable, No) are given as well. 

Three examples of tests with an identical channel slope of S = 3% but different 

block sizes are shown in Figure 5.2, (tests 2, 10 and 17).  During the test number 2, with 

the smallest size of the blocks (D50 = 0.037 m) and a unit discharge of q = 0.262 m2s-1, 

direct block erosion started right after launching the test. However, the total bank failure 

occurred only after 94 minutes. For the test 10 with a block size of D50 = 0.042 m and a 

unit discharge of q = 0.421 m2s-1, the total failure occurred after 121 minutes. It can be 

observed that the filter was fully exposed over the bank height in the failed sections, 

whereas the riprap remained stable upstream and downstream. For the test 12, with a 

block size of D50 = 0.042 m and a unit discharge of q = 0.442 m2s-1, the total failure 

occurred after only 14 minutes. A significant erosion at the toe of the riprap protection is 

observed in this case. 

The time evolution of the cumulated number of eroded blocks for the different 

groups of experiments and a longitudinal slope of S = 3% is shown in Figure 5.3 (a to c) 
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(see Table 5.1). The total failure of a riprap that occurs at any channel section is indicated 

by an abrupt rise of the cumulative curve (inclination = ∞) corresponding to a sudden 

increase of the eroded block number. 

Figure 5.3a shows the tests of the smallest blocks (group I) for six different 

discharges. It is observed, as expected, that the time to failure increases when the 

discharge decreases. Two of the tests in this group had a total failure and the failure 

discharge for this block size is between q = 0.249 m2s-1 and q = 0.262 m2s-1, depending 

on the flood peak duration. The complete failure occurred after 94 minutes for 

q = 0.262 m2s -1 and already after 62 minutes for the unit discharge of q = 0.301 m2s-1.  

For medium size blocks (group II), the data of seven different tests is given in 

Figure 5.3b. The significant influence of increasing discharge at the time of total failure 

and the number of eroded blocks is evident. The first complete failure was observed for 

a discharge q = 0.407 m2s-1 after 162 minutes. By increasing the unit discharge, total 

failure occurs much earlier. 

For the largest blocks (group III, Figure 5.3c), the failure condition was reached 

only for the test with a discharge q = 0.480 m2s-1. Figure 5.3c indicates that larger blocks 

increase not only the failure discharge but also the time to failure. Thus, for similar unit 

discharge, the rate of block erosion reduces if the blocks become larger. 

Table 5.2 represents the water level measurements in 3 different positions in the 

distance of 4, 6 and 8 meters from upstream of the channel. The error calculation with the 

average of 0.002 shows that the flow is quasi-uniform and velocity could be calculated 

based on continuity.   
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 (a)      (b) 

Figure 5.2 Riprap (a) before, and (b) after failure for tests 2 and 10 and 17 

(according to Table 5.1) 

Test 17 Test 17 

Test 2 

Test 10 Test 10 

Test 2 
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Table 5.1 Characteristics and main results of the tests with three different longitudinal 

slopes 

Test 

Channel 

Slope Group 

D50 

(m) 

q 

(m2s-1) 

h 

(m) 

vm 

(m) 

Fr 

(-) 

τ 

(Pa) 

tf 

(min) 

Failure 

(-) 

1 3% I 0.037 

 

0.166 0.121 1.59 1.46 35.61 - No 

2 0.208 0.131 1.84 1.62 38.55 - No 

3 0.242 0.143 1.97 1.66 42.08 - No 

4 0.249 0.145 1.99 1.67 42.67 - No 

5 0.262 0.150 2.03 1.67 44.15 94 Yes 

6 0.301 0.165 2.13 1.67 48.56 62 Yes 

7 II 0.042 0.348 0.167 2.27 1.78 49.15 - No 

8 0.380 0.175 2.38 1.81 51.50 - No 

9 0.407 0.183 2.44 1.83 53.86 162 Yes 

10 0.421 0.186 2.49 1.84 54.74 121 Yes 

11 0.430 0.188 2.52 1.85 55.33 68 Yes 

12 0.442 0.193 2.52 1.83 56.80 14 Yes 

13 0.473 0.200 2.61 1.87 58.86 6 Yes 

14 III 0.047 0.432 0.188 2.53 1.85 55.92 - No 

15 0.443 0.191 2.55 1.87 56.21 - No 

16 0.461 0.196 2.59 1.87 57.68 - No 

17 0.480 0.210 2.65 1.89 58.86 160 Yes 

18 1.5% I 0.037 

 

0.287 0.181 1.510 1.10 21.22 - No 

19 0.303 0.197 1.540 1.11 21.43 172 Yes 

20 0.314 0.202 1.554 1.10 21.85 87 Yes 

21 0.330 0.209 1.582 1.11 22.40 43 Yes 

22 0.346 0.215 1.607 1.11 22.94 9 Yes 

23 II 0.042 

 

0.387 0.220 1.580 1.09 23.67 - No 

24 0.402 0.239 1.682 1.10 24.88 143 Yes 

25 0.423 0.246 1.718 1.11 25.44 123 Yes 

26 0.433 0.250 1.730 1.11 25.75 63 Yes 

27 0.458 0.259 1.767 1.11 26.45 6 Yes 

28 III 0.047 

 

0.432 0.252 1.714 1.09 25.91 - No 

29 0.452 0.259 1.745 1.10 26.45 134 Yes 

30 0.472 0.266 1.774 1.10 26.99 95 Yes 

31 0.482 0.270 1.784 1.10 27.30 71 Yes 

32 5.5% I 0.037 

 

0.2022 0.100 2.391 2.03 60.13 - No 

33 0.2314 0.109 2.424 2.05 60.82 120 Yes 

34 0.2552 0.117 2.463 2.04 62.89 42 Yes 

35 0.2731 0.122 2.506 2.05 63.91 4 Yes 

36 II 0.042 

 

0.2602 0.121 2.15 2.00 51.71 - No 

37 0.2767 0.123 2.250 2.05 53.73 151 Yes 

38 0.3315 0.139 2.385 2.04 59.43 55 Yes 

39 0.3547 0.145 2.446 2.05 61.51 8 Yes 

40 0.4287 0.163 2.630 2.08 67.61 2 Yes 

41 III 0.047 

 

0.310 0.135 2.53 1.85 55.92 - No 

42 0.3372 0.141 2.55 1.87 57.68 135 Yes 

43 0.3466 0.143 2.59 1.87 58.86 111 Yes 

44  0.3671 0.149 2.65 1.89 59.71 50 Yes 

45  0.3809 0.152 2.68 1.9 55.92 5 Yes 

Unit discharge q,, water depth h, diameter of blocks D, time of total failure tf, mean velocity vm, Froude number Fr and 

bed shear stress τ. 
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Table 5.2 Water level slope calculations and slope errors 

 
Test 

Channel 

slope Group 

D50 

(m) 

q 

(m2s-1) 

h  

at 4 m 

(m) 

h  

at 6 m 

(m) 

h  

at 8 m 

(m) 

Water level 

slope 

(-) 

Error 

(-) 

1 3% I 0.037 

 

0.166 0.122 0.121 0.118 0.0310 0.001 

2 0.208 0.131 0.131 0.128 0.0308 0.001 

3 0.242 0.143 0.143 0.14 0.0308 0.001 

4 0.249 0.145 0.145 0.141 0.0310 0.001 

5 0.262 0.151 0.150 0.145 0.0315 0.002 

6 0.301 0.166 0.165 0.16 0.0315 0.002 

7 II 0.042 0.348 0.168 0.167 0.16 0.0320 0.002 

8 0.380 0.176 0.175 0.168 0.0320 0.002 

9 0.407 0.182 0.183 0.177 0.0313 0.001 

10 0.421 0.187 0.186 0.179 0.0320 0.002 

11 0.430 0.188 0.188 0.18 0.0320 0.002 

12 0.442 0.195 0.193 0.186 0.0323 0.002 

13 0.473 0.201 0.200 0.194 0.0318 0.002 

14 III 0.047 0.432 0.189 0.188 0.183 0.0315 0.002 

15 0.443 0.191 0.191 0.186 0.0313 0.001 

16 0.461 0.197 0.196 0.19 0.0318 0.002 

17 0.480 0.212 0.210 0.198 0.0335 0.004 

18 1.5% I 0.037 

 

0.287 0.182 0.181 0.179 0.0158 0.001 

19 0.303 0.197 0.197 0.195 0.0155 0.001 

20 0.314 0.203 0.202 0.2 0.0158 0.001 

21 0.330 0.21 0.209 0.206 0.0160 0.001 

22 0.346 0.217 0.215 0.211 0.0165 0.002 

23 II 0.042 

 

0.387 0.22 0.220 0.218 0.0155 0.001 

24 0.402 0.24 0.239 0.236 0.0160 0.001 

25 0.423 0.246 0.246 0.243 0.0158 0.001 

26 0.433 0.25 0.250 0.246 0.0160 0.001 

27 0.458 0.26 0.259 0.255 0.0163 0.001 

28 III 0.047 

 

0.432 0.254 0.252 0.25 0.0160 0.001 

29 0.452 0.261 0.259 0.253 0.0170 0.002 

30 0.472 0.268 0.266 0.261 0.0168 0.002 

31 0.482 0.273 0.270 0.267 0.0165 0.002 

32 5.5% I 0.037 

 

0.2022 0.105 0.100 0.092 0.0583 0.003 

33 0.2314 0.111 0.109 0.103 0.0570 0.002 

34 0.2552 0.119 0.117 0.109 0.0575 0.003 

35 0.2731 0.123 0.122 0.118 0.0563 0.001 

36 II 0.042 

 

0.2602 0.124 0.121 0.117 0.0568 0.002 

37 0.2767 0.126 0.123 0.119 0.0568 0.002 

38 0.3315 0.143 0.139 0.134 0.0573 0.002 

39 0.3547 0.149 0.145 0.141 0.0570 0.002 

40 0.4287 0.168 0.163 0.157 0.0578 0.003 

41 III 0.047 

 

0.310 0.138 0.135 0.131 0.0568 0.002 

42 0.3372 0.142 0.141 0.136 0.0565 0.001 

43 0.3466 0.146 0.143 0.139 0.0568 0.002 

44  0.3671 0.151 0.149 0.144 0.0568 0.002 

45  0.3809 0.155 0.152 0.148 0.0568 0.002 
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(c) 

Figure 5.3 Time evolution of cumulative block erosion rate for different tests for a 

longitudinal channel slope of 3% with (a) D = 0.037 m (Group I), 

(b) D = 0.042 m (Group II) and (c) D = 0.047 m (Group III) 

  

The dimensionless bed shear stress represents the balance of hydrodynamic forces 

acting on the riprap and the submerged weight of the blocks as:  

𝜏∗ =
𝜏

(𝑆𝐵 − 1)𝑔𝜌𝐷
 

where SB is the specific gravity of blocks, g is the gravitational acceleration, D50 is 

the size of blocks, and ρ is water density. Bed shear stress, 𝜏 was calculated as: 

 𝜏 = 𝜌𝑔𝑅ℎ𝑆 

where Rh is the hydraulic radius and S is the channel slope.  

In Figure 5.4, the dimensionless bed shear stress (Shields parameter) calculated 

according to relation (5.2) is compared with the time to failure which is normalized with 

the total time of the experiment, which is 180 minutes. The value of 𝑡∗ =
𝑡

180
=1.00 

corresponds to tests where failure was not observed within the experiments time 

framework. The results in Figure 5.4 show an overlap in terms of failure time for the slope 
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of S = 3%. It can be observed as well that a limit of the Shields parameter of 0.7 seems to 

exist after which the failure occurs. 

In relation to the characteristic block diameter, a dimensionless time to failure TD*

can be defined with the block size as length scale as follows:

where u* is:

The friction velocity (shear velocity), considered as a velocity scale representative 

of the shear causing erosion and acting on the blocks of size D. In order to understand 

what influences the time to failure, the dimensionless bed shear stress was compared to 

the dimensionless time to failure  (Figure5. ).

(a) (b)

Figure 5.4 (a) Dimensionless failure time TD* as a function of dimensionless bed
shear stress τ*, grouped by slopes S = 1.5%, 3% and 5.5% for the tests
encounter the failure. The dotted lines represent linear regressions made
within the same slope. (b) Dimensionless failure time TD* as a function
of the dimensionless bed shear stress (τ*S–0.7). The dotted line
corresponds to a linear regression of the data.

It can be seen in Figure 5.4 a that for a certain channel slope, the relationship 

between and  is linear with good agreement: R2 ≈ 0.94, 0.83 and 0.90 for S = 1.5%,

3% and 5.5% respectively, with R2 as coefficient of determination. Nevertheless a small 

change in has very high effect on  , which diminishes with increasing slope. For each
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slope group, the relationship between and seems to be linear. Figure 5.4 also shows

that the inclination of the linear relation between and changes with S. Results

confirm, as expected, that a higher bed shear stress is needed to generate the same 

characteristic time to failure.  

Figure 5.4b shows the relation between and the Shields parameter multiplying 

by the term . The linear regression shown in Figure 5.4b has a significant correlation

coefficient of 0.60. In Figure 5.4 only the block size D was used as geometric scale to 

normalize the variables in the description of the time to failure. Dimensional analysis 

considerations indicate that, however, the time to failure may also be normalized using 

the flow depth h as geometric parameter:

This normalization indicates that the flow depth scales with the shear stress action 

responsible for the block movement.

(a) (b)

Figure 5.5 (a) Dimensionless failure time Th* as a function of dimensionless bed
shear stress τ*, grouped by slopes S = 1.5%, 3% and 5.5% for the tests
encounter the failure. The dotted lines represent linear regressions made
within the same slope.
(b) Dimensionless failure time (Th*) as a function of the dimensionless
bed shear stress (τ*S-0.7). The dotted line corresponds to a linear
regression of the data.

Figure 5.5a shows the dimensionless time to failure again as a function of for

the three tested longitudinal slopes. There is still a good agreement for a linear 

relationship between  and (R2 ≈ 0.85, 0.83 and 0.96 S = 1.5%, 3% and 5.5%,
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respectively). Figure 5.5b shows again that the time to failure normalized with the flow 

depth presents a good collapse as a function of Shields parameter multiplied by 𝑆−0.7. 

Compared to the approach with 𝑇ℎ
∗ , this results in a better correlation coefficient of  

R2 = 0.78 which indicates a stronger influence of the flow depth. 

The time to failure (tf) for tests which remained stable during the three hours tested 

is now predictable based on Figure 5.5b and on the parameters defined in relations (5.2) 

and (5.6). In Figure 5.6, the cumulative number of the eroded blocks is shown as a 

function of time normalized by the time to failure (T* = t/tf).  

In the experiments where the failure occurred, the number of eroded blocks presents 

an asymptote for T* = 1. In the stable experiments, data on the number of eroded blocks 

stop within the time range of 0 < T* < 1. For these experiments, the unit discharge is lower 

than the critical value for the occurrence of the failure. The range of block erosion in this 

figure shows that the number of eroded blocks are not increased drastically comparing to 

the predicted normalized time to failure. This means that total block erosion remains in a 

narrow range until the failure occurs, independent of the block size.  

 
                                                 (a)       (b) 

 
  (c)                               (d)     

Slope 1.5% 

Group I 

Slope 3.0% 

Group I 
Slope 3.0% 

Group II 

Slope 3.0% 

Group III 
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  (e)                           (f) 

 
 (g)                   (h) 

 
             (i) 

Figure 5.6 Relative failure time of cumulative block erosion rate for different tests: 

for the same longitudinal channel slope of 3% (a) with D = 0.037 m; (b) 

with D = 0.042 m; and (c) with D = 0.047 m, for the longitudinal 

channel slope of 1.5% (d) with D = 0.037 m; (e) with D = 0.042 m; and 

(f) with D=0.047 m and for the longitudinal channel slope of 5.5% (g) 

with D = 0.037 m; (h) with D = 0.042 m; and (i) with D = 0.047 m 

The block erosion for the different experiments shown in Figure 5.6 remains in a 

similar pattern. An approximated model for the block erosion, bounded by the beginning 

of the hydrodynamics action and the failure of the riprap, may be established based on 

Figure 5.6. A fast erosion happens at the beginning of the experiment; then the rate of 
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Group II 
Slope 1.5% 

Group III 

Slope 5.5% 
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erosion becomes roughly constant until near the failure time. The number of eroded 

blocks just before the time of failure increases asymptotically.  

In Figure5.6a to 5.6c, the rate of time to failure is shown for the slope of 3% for 

three different block sizes. The cumulative number of eroded blocks for 90% of the 

normalized time are less than 200 for all block sizes. It can be seen that lower block sizes 

face to failure with lower unit discharges. Figure 5.6d to 5.6f also show the rate of time 

to failure for three different block sizes when the longitudinal channel slope is 1.5%. The 

cumulative number of eroded blocks for 90% of the normalized time are less than 150 for 

all block sizes. Figure 5.6g to 5.6i indicate the rate of time to failure for the slope of 5.5% 

also for three different block sizes. The cumulative number of eroded blocks for 90% of 

the normalized time are less than 100. The limits in the rate of erosion are higher for 

S=3% as compared to the other slopes. It should be noticed that the unit discharge in each 

group of tests increases with the larger block size. 

5.4 Conclusion  

The stability behavior of packed, well-positioned riverbank riprap consisting of one layer 

was experimentally analyzed herein, considering the influence of the block sizes, the 

specific discharge and river bed slope on the time to failure. Particular attention was given 

to the time of failure defined as the duration for which the riprap collapsed totally after 

beginning of the experiments. The experiments included three different longitudinal 

channel slopes of 1.5%, 3% and 5.5% and embankment slope of 3.5V-5H. The block sizes 

varied from 0.037 m to 0.047 m. A maximum three hours duration of the flume tests was 

established to cover roughly a 15 hours flood duration when taking into account a typical 

scale factor.   

Classical stability criterion is typically limited to the steady boundary condition 

which means that the failure occurs at the time of the first movement as a direct block 

erosion. For packed riprap, the criterion of failure is linked to the time to failure. Sliding 

the riprap in a section and a complete failure occurs after a specific duration of block 

erosion. Thus, a time-dependent analysis of failure was implemented.  

The results of this study indicates that the time to failure is dependent on the tested 

parameters as block size, channel slope, and specific discharge. The result also revealed 
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that the slope of the channel has a significant effect on the characteristic time to failure 

regardless the block size. In addition, not only the larger block sizes postponed the time 

to failure but also reduced the block erosion rate for a fixed longitudinal slope. 

A clear relationship between the time to failure and the bed shear stress 

adimensionalized with the block size could be found. However, the best results were 

obtained using an approach of adimensionalizing the time to failure based on the flow 

depth. This empirical relationship gives the possibility of calculating the time to failure 

for the tests which remained stable. The results revealed that the range of erosion which 

is shown in the number of eroded blocks are not increased severely comparing to the 

predicted normalized time to failure. This means that total numbers of eroded block could 

be remained in a specific range until the failure occurs. The cumulative number of eroded 

blocks is distributed in a narrow band, independent from the block size.  

This study can be utilized as a forecasting model for the time to failure of packed 

riprap used as river banks protection in the range of application corresponding to the 

experimental setup here described. 
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Effect of a Second Layer on the Stability of 

Packed Riprap as Riverbank Protections 

This Chapter analyses the effect of two layers of blocks on the stability of packed riprap 

comparing to one layer. A time based analysis is performed to clear this comparison and 

the results revealed that the second layer could reduce the size of the blocks up to 10%.  
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Abstract 

This study addresses the effect of thickness on the stability of packed and compressed 

riprap as river bank protection. There are several methods to design riprap which are 

limited to dumped and medium size blocks. Nevertheless, an additional resistance against 

erosion can be achieved by individually placing blocks in one or several layers instead of 

dumping them arbitrarily. An experimental investigation has been performed to evaluate 

the stability of large blocks which are packed as a river bank protection in one and two 

layers. The influence of the riprap layering (e.g. riprap thickness) on the bank stability 

was thus studied by 49 series of tests. The investigation was performed in a 10 m long 

and 1.5 m wide tilting flume, with a rough fixed bed. Riprap median particle size was 

chosen as D50 = 0.037 m. Testing was conducted for longitudinal channel slopes 0.015, 

0.030 and 0.055 and riprap side slopes of 27, 31, and 35 degrees. Supercritical flow 

conditions were considered, given the steep channel slope. The complete removal of the 

riprap in a section under a constant discharge was defined as the failure criterion. The 

results revealed that, in similar conditions, the second layer delays the time to failure. 

Nonetheless, block erosion rate was found to be increased in this latter situation. The 

analysis of riprap bank slope variation also indicated that in the same longitudinal channel 

slope, the second layer has more stabilizing role when the angle of the protection layer is 

closer to the angle of repose of the blocks. 

6.1 Introduction 

The existing studies mainly define the riprap sizing but rarely focus on the thickness 

of the riprap and the number of block layers respectively. Maynord (1988) performed a 

limited number of experiments to evaluate the thickness effect and reported it as stability 

criteria. For relatively low-turbulence applications such as riverbank protections USACE 

(1994) specifies a minimum thickness of D100 or 1.5 D50 whichever is greater. Stability 

tests of Abt et al. (1988) and Maynord (1988) revealed that any additional thickness above 

these minima results in rising the stability. Consequently, a larger thickness of a smaller 

gradation may sometimes provide equivalent stability. The increase in stability with 

thickness is more substantial and for very wide block gradations but relatively low for 

uniform gradations (Maynord and Neil, 2008).  The improvement in stability with 

increasing thickness results can be explained by the fact that more material is available 
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which can move to damaged area and cover it again. Thus, more energy should be 

dissipated to expose the filter underlying the blocks (Simons, 1995). 

Existing design methods are limited to dumped blocks, and the first movement of 

particles is used as failure criterion (De Almeida and Martín-Vide, 2009). However, if 

large and dense blocks are needed for stability reasons in mountain rivers, they must be 

positioned individually due to their high weight. Based on hydraulic model studies for 

several flood protection projects, Schleiss (1998) suggests to use a critical shear stress of 

θcr = 0.1 instead of Shields critical shear stress usually taken as 0.047. Therefore, in large 

packed blocks as rock ripraps, the erosion of one single block may not cause a total failure 

due to the added support of packed blocks. Failure happens when a group of blocks slips 

and exposes a large of the river bank to the flow. This kind of failure included the 

observation of lateral breakdown of the blocks on the riverbank slope (as a slide or slump) 

is identified as failure criterion in this investigation.  

Figure 6.1 shows a riprap under construction in two layers where large blocks are 

separately placed on a geo-textile. Furthermore, the toe blocks are lined together by 

cables. This research analysis the influence of a second layer of these large blocks 

individually placed as riprap. However, one of the issues which not yet fully known in 

the design of riprap protection is the influence of time (flow duration) on failure 

(Jafarnejad et al. 2013).  

 

Figure 6.1 Riprap built of individually placed large blocks in two layers on Reuss 

river in Switzerland (by A.J. Schleiss, 1988) 
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Therefore, the effect of thickness on riprap installation on changing the time to 

failure is investigated herein through flume experiments by considering the dynamic 

behavior of packed large blocks. The study presented in this chapter is based on the result 

of forty-nine series of tests performed to evaluate the failure process. The analysis focuses 

mainly on the characteristic time to failure and on the critical hydraulic parameters for 

the occurrence of the complete failure. In the end, relative roughness as a function of 

modified Froude is analyzed and compared to the finding in chapter 6.4.   

6.2 Experimental setup and procedure 

The main goal of this study is to evaluate the role of the second layer in the resistance of 

river bank riprap protection, built by individually positioned large blocks, due to 

hydrodynamic forces. In this part the experimental setup, experimental design and 

procedure, the preliminary and systematic tests are explained. 

Forty-nine systematic experiments were performed to analyze the impact of 

thickness on the stability of packed riprap. The tests were conducted in one layer, and two 

layers of the same block size. These laboratory tests were applied in a straight 10 m long, 

1.5 m wide flume with a trapezoidal section. Water in the channel was supplied by the 

internal closed pumping circuit of the laboratory. A schematic sketch of the longitudinal 

side view and cross section of the setup can be seen in Figure 6.2. 

 

   

Figure 6.2 Sketch of cross-section view of the experimental flume with schematic 

one and two layers of blocks (units in mm) 

5H:3.5V 

5H:3V 

5H:2.5V 

m=V/H 
1 
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The experiments were performed for a longitudinal slope of the flume as 1.5% and 

3% and 5.5%. The transversal riprap bank slopes were varied as 2.5V-5H (27°), 3V-5H 

(31°), and 3.5V-5H (35°). Studied riprap material consists uniform crushed stones with 

block sizes of D50 = 0.37m. Blocks were placed individually in a packed way over a wide 

grain size distribution filter. In order to simulate natural hydraulic conditions, the 

roughness of the natural river bed was reproduced with the same material of the filter 

(cf. Table 3.3), fixed on the bed of the channel. 

 

 

Figure 6.3 The experimental set up of test 8 before (left) and after (right) the test 

with the complete failure of the riprap protection (see Table 6.2 for tests 

numbering). 

For the experiments the difference between dumped and packed riprap was assessed 

by means of porosity measurements. Tests (explained in Chapter 3) were performed to 

obtain the air volume within the dumped or packed riprap volume. Table 6.1 shows the 

porosity (np) of these tests, as well as the averaged values per construction type. The test 

results show that the porosity of packed blocks reduced in average by 2.2% (from 43.7% 

to 41.5%) for D50 = 0.037 m, when compared to the dumped ones. The interlocking forces 

increase as the air volume between blocks reduces since the blocks have a closer 
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arrangement. The porosity of the riprap in the experiments by Maynord and Abt 

(Maynord et al., 1989 and Abt et al., 1998) was equal to 44% with limestone blocks in 

size of D50 = 0.035 m, comparable to the blocks in the present study if they are dumped.  

 

Table 6.1 Porosity (np) of dumped and packed riprap for the blocks corresponding to 

D50 = 0.037 m; results are shown for four porosity tests and the averaged 

values. 

D50 

(m) 

Dumped 𝑛𝑝  

(%) 

Average 

(%) 

Packed 𝑛𝑝 

(%) 

Average  

(%) 

0.037 42.96 43.71 41.86 41.52 

43.05 42.02 

44.62 41.00 

44.20 41.22 

As shown in , forty-nine tests were run with the parameters including thickness 

(number of layers), slope of channel, riprap side slope, unit discharges (q), flow depth 

(h). The time to failure (tf) considering uniform flow conditions is also given. From this 

forty-nine experiments, 28 tests were performed with one layer and 23 tests with two 

layers of riprap installations. The discharge was kept constant during maximum three 

hours of each experiment for both one and two layers.  Thus, the delay of failure due to 

the changes of the thickness of the riprap is comparable. Lower discharges may cause 

direct block erosion during the experiments but not a full failure of the bank slope whereas 

higher discharges may cause very fast failure. Tests were carried out under supercritical 

flow conditions (Table 6.2). Water depth, block erosion rate and time to failure were 

measured during the tests. Channel was fed by two pumps, measured by electromagnetic 

flow meters with of ±2 l/s of precision. Furthermore, the eroded rocks were collected and 

weighed in a sediment trap at the downstream end of the channel. Each run of the tests 

had a constant specific discharge. 

Tests were run during maximum three hours unless the total failure of the blocks 

occurred in a section. Failure criterion that causes the stop of the test in these series of 

experiments were the time that the total collapse or sliding of the blocks over bank slope 

occurs and the section became unstable.  In Figure 6.3 an example of installation, the 

view before and after one test of two layers can be seen (the test 8 in this case, cf. Table 

6.2).  
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Table 6.2 Tests Program 

Series 

Number of 

layers 

Slope of Channel 

(%) 

Slope of riprap 

(o) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

1 one 0.015 35 0.287 0.187 - 

2 one 0.015 35 0.303 0.197 172 

3 one 0.015 35 0.314 0.202 87 

4 one 0.015 35 0.330 0.209 43 

5 one 0.015 35 0.36 0.190 9 

6 two 0.015 35 0.392 0.233 - 

7 two 0.015 35 0.400 0.235 165 

8 two 0.015 35 0.408 0.239 73 

9 two 0.015 35 0.433 0.248 10 

10 one 0.030 35 0.210 0.122 - 

11 one 0.030 35 0.244 0.134 - 

12 one 0.030 35 0.251 0.136 - 

13 one 0.030 35 0.263 0.141 94 

14 one 0.030 35 0.281 0.145 73 

15 one 0.030 35 0.301 0.165 62 

16 one 0.030 35 0.313 0.167 12 

17 two 0.030 35 0.280 0.150 - 

18 two 0.030 35 0.299 0.163 161 

19 two 0.030 35 0.313 0.168 102 

20 two 0.030 35 0.332 0.182 23 

21 one 0.030 31 0.209 0.126 - 

22 one 0.030 31 0.230 0.134 143 

23 one 0.030 31 0.314 0.147 27 

24 one 0.030 31 0.345 0.170 3 

25 two 0.030 31 0.239 0.132 - 

26 two 0.030 31 0.245 0.140 137 

27 two 0.030 31 0.316 0.151 78 

28 two 0.030 31 0.359 0.167 14 

29 one 0.030 27 0.186 0.118 - 

30 one 0.030 27 0.212 0.129 - 

31 one 0.030 27 0.233 0.137 - 

32 one 0.030 27 0.247 0.142 - 

33 one 0.030 27 0.258 0.146 172 

34 one 0.030 27 0.268 0.150 44 

35 one 0.030 27 0.301 0.157 33 

36 one 0.030 27 0.344 0.170 17 

37 two 0.030 27 0.258 0.145 - 

38 two 0.030 27 0.301 0.157 92 

39 two 0.030 27 0.320 0.162 44 

40 two 0.030 27 0.344 0.170 21 

41 one 0.055 35 0.202 0.100 - 

42 one 0.055 35 0.235 0.109 120 

43 one 0.055 35 0.255 0.117 42 

44 one 0.055 35 0.273 0.122 4 

45 two 0.055 35 0.231 0.109 - 

46 two 0.055 35 0.255 0.117 146 

47 two 0.055 35 0.273 0.122 101 

48 two 0.055 35 0.291 0.127 62 

49 two 0.055 35 0.307 0.138 11 
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6.3 Results and discussion 

6.3.1 General observations 

Figure 6.4 shows an example of the experiments, two instants of the test 8 (cf. Table 6.2 

for tests numbering) where the riprap protection, before (left) and after (right) failure, is 

observed. In this experiment, with a channel slope of 1.5%, the external layer is covered 

with red blocks. Eroded parts of riprap in both layers, as well as the collapsed area, can 

be seen as red blocks in Figure 6.4 (right). The slope of the channel was 1.5% and a unit 

discharge of q = 0.408 (m2s-1), direct block erosion occurred at the beginning of the test. 

However, total failure was observed after 73 minutes. It can be witnessed that in the failed 

sections the filter and the second layer were fully visible while other areas were still 

stable.  

 

       

Figure 6.4 The experimental set up before (left) and after (right) one test (the test 

8, cf. Table 6.2) 
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6.3.2 Temporal analysis of failure 

In chapter 5, a time-dependent analysis was performed where the time to total failure of 

the riprap was investigated based on the evolution of the sediment transport measured at 

the downstream section. Here a similar analysis is shown aiming at investigating the time 

delay caused by the existence of a second layer of riprap in the bank protections. The 

results are analysed and discussed taking into account the effect of the channel 

longitudinal slope and the riprap bank slopes on the time to failure.  

Figures 6.5 to 6.8 show the time evolution transport rate of the blocks from the 

riprap protection that is measured at the downstream section of the channel. The time 

evolution allows identifying the total failure of a section bank corresponding to a sudden 

increase in the transport rate, where a vertical asymptote is observed (as in chapter 5). In 

this and the following figure, and for visualization purposes, the time is normalized by 

the maximum duration of the tests Tmax =180 as follows: 

𝑡∗ =
𝑡

𝑇𝑚𝑎𝑥
 

 (6.1) 



Chapter 6 

94

 

(a) 

  

(b) 

Figure 6.5 Time evolution of the cumulative block erosion rate for one layer and 

two layers with the same discharge for channel slope of 3% and riprap 

slope of 27° and for two different unit discharges provoking failure, a) 

q = 0.301 m2s-1 and b) q = 0.344 m2s-1. 

The results in Figures 6.5 to 6.8 generally illustrate that, although all the unit 

discharges shown provoke failure for single and double layered riprap protections, having 

two layers of riprap induces a delay on the failure time of the protection. In Figure 6.5a a 

significant delay of the time to failure is verified when using a double layer protection; 

however, by increasing the unit discharge to which the bank protection is exposed of 

about 12%, the effect of the second layer becomes minor. These results indicate thus that 

the use of two layer protection for high discharges became ineffective on the delay of 

structural failure in Figure 6.5b.  
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(a) 

 
(b) 

Figure 6.6 Time evolution of the cumulative block erosion rate for one layer and 

two layers with the same discharge for channel slope of 3% and riprap 

slope of 31° and for two different unit discharges provoking failure, (a) 

q ≈ 0.315 m2s-1 and (b) q ≈ 0.350 m2s-1. 

The effect of the increase in the unit discharge in a decrease of the time to failure is 

evident when comparing the results in Figure 6.5 and Figure 6.6.  However, for the case of 

one layer protection, the effect on the reduction of the time to failure is less (about 15% 

when compared to 38% in the two layers case), indicating that there is a limit to the 

advantage of the using two layers of riprap bank protections in postponing failure. 

For different riprap side slopes with the same longitudinal channel slope (Figure 6.6 

and Figure 6.7), the results in terms of time evolution of structural failure of the riprap, 

for the one layer and two layer situations, are similar to the comments above. Once again, 

results in Figure 6.6, for a different riprap side slope, display that the use of two layers of 

Test 24 

Test 28 

Test 23 

Test 27 



Chapter 6 

96

the riprap as bank protection delays the failure time. The effectiveness of the delay of the 

failure time by the use of two layers is also reduced with the increase of the discharge 

acting on the bank protection, for lower riprap side slope. Comparing results of Figure 

6.5 and Figure 6.6 reveals that the riprap side slope has a stabilizing effect. It can be 

observed that considering the same discharges in both side slopes, the time to failure 

reduced smoother in lower bank slope.  

                 

Figure 6.7 Time evolution of cumulative block erosion rate for one layer and two 

layers with the same discharge for channel slopes of 3% with riprap 

inclination of 35° 

 

Figure 6.8 Time evolution of cumulative block erosion rate for one layer and two 

layers with the same discharge for channel slopes of 5.5% with riprap 

slope of 35° 

In the case represented in Figure 6.7, a significant decrease in the time of occurrence 

of a total failure in one layer test is visible, which has been reduced by more than 50%. 

This shows that the use of two layers not only delayed considerably the time to failure 
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Test 18 
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but also increased the resistance of the protection to the erosive action of the flow greatly. 

The comparison of the time to failure of riprap set up in one and two layer in highest 

longitudinal channel slope of 5.5% (Figure 6.8) shows a shift of 10% in a time to failure. 

However, the impact of thickness is reduced when compared to the lower longitudinal 

channel slope. 

6.3.3 Parameterization of the time to failure 

The influence of the second layer on the stability of riprap protections, namely on the 

delay to failure above observed is now investigated by means of normalization of the time 

to failure. The dimensionless bed shear stress which represents the balance of 

hydrodynamic forces acting on the riprap and the submerged weight of the blocks and is 

calculated as equation (5.2) and (5.3). 

A dimensional analysis is applied based on the characteristic time to failure as a 

function of dimensionless bed shear stress as:  

𝑇∗~𝑓(𝑡𝑓, 𝑉, 𝑢∗, ℎ, 𝜌, 𝑔, 𝐷, 𝛾𝑤, 𝛾𝑠) 

A dimensionless parameter for the characteristic time to failure  𝑇ℎ
∗ can be defined 

with the flow depth as length scale and the friction velocity as kinematic scale as equation 

(5.6) and (5.7) 

The friction velocity (shear velocity) is considered as a velocity scale 

representative of the shear causing erosion and acting on the blocks of size D. In order to 

understand what is influencing the time to failure, the dimensionless bed shear stress was 

compared to the characteristic time to failure 𝑇ℎ
∗ (Figure 6.9).  

Figure 6.9 shows the dimensionless time to failure 𝑇ℎ
∗ as a function of 𝜏∗for the 

three tested longitudinal slopes. There are good agreements for a linear relationship 

between 𝑇ℎ
∗  and τ* for one layer tests when the pairs of results are grouped by slope 

(R2 ≈ 0.92, 0.95 and 0.99 for S = 1.5%, 3% and 5.5%, respectively). The same condition 

is shown for the two layers tests with a shift of maximum 10% to higher dimensionless 

bed shear stress with a good agreement for a linear trend (R2 ≈ 0.89, 0.96 and 0.96 for 

S = 1.5%, 3% and 5.5%, respectively). This normalization, indicating that for each slope 

group the relationship between 𝑇ℎ
∗ and 𝜏∗ seems to be linear, suggests that the flow depth 

 (6.2) 

 (6.3) 
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combined with the bed shear stress is an appropriate scale to describe the block 

movement. Figure 6.9 also shows that the inclination of the linear relation between 𝑇ℎ
∗  

and 𝜏∗ changes with S, which suggests that a relationship with the inclusion of a factor of 

this variable should be introduced to obtain similitude. Results confirm, as discussed 

above that at the same characteristic time to failure higher bed shear stress is needed for 

the steeper channel. 

 

Figure 6.9 Dimensionless failure time Th
* as a function of dimensionless bed shear 

stress τ*, grouped by slopes S = 1.5%, 3% and 5.5% for the tests 

encounter the failure. 

From the results above discussed, a functional relation of the characteristic time to 

failure with modified dimensionless parameters is proposed as made in chapter 5. Figure 

6.10 displays that the time to failure normalized by the flow depth presents a good 

collapse with the Shields parameter multiplied by 𝑆−0.7(Chapter 5). This normalization 

indicates the importance of the longitudinal slope and the flow depth scales for the block 

movement. The data groups now by the thickness of the layer instead of the longitudinal 

slope, thus Figure 6.10 provides the possibility of forecasting the delay in the time to 

failure provoked by the second layer or riprap protection. Figure 6.10 illustrates the 

improvement of the stability due to the presence of a second layer.  
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Figure 6.10 Dimensionless failure time (Th
*) as a function of the dimensionless bed 

shear stress (τ*
S

-0.7). The straight lines correspond to linear regressions 

applied to the results with single (dashed) and double (continuous) 

riprap layer. 

The characteristic time to failure for a channel with a longitudinal slope of 3%, as 

a function of dimensionless shear stress, is shown in Figure 6.11 for three different riprap 

side slopes and considering single and double layered riprap bank protections. The range 

of τ* varies from 0.055 to 0.072 for highest side slope in two layer tests. However, for 

other lower riprap side slopes the result shows the same ranges between 0.053 and 0.067 

with the same pattern for the one layer and two layers. The results reveal a shift (dashed 

line) to higher dimensionless shear stress in the highest bank slope while this shift is less 

for the other tests. The difference in riprap side slope of 35° between two conditions is 

10%. Since the angle of repose for the blocks in the size of 0.037 m is 41°, therefore, the 

analysis of the variation of riprap side slope specified that in the same channel slope, the 

second layer has more stabilizing role when the riprap side slope gets closer to the angle 

of repose of the blocks, which is 41° for the blocks of 0.037 m.  
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Figure 6.11 Characteristic time to failure Th
* as a function of the dimensionless bed 

shear stress (τ*) in three riprap side slopes of 27°, 31° and 35° and 

channel slope of 3%. The straight lines correspond to linear regressions 

applied to the results with single (dashed) and double (continuous) 

riprap layer. 

6.3.4 Critical conditions for failure 

By applying dimensional analysis, one can establish a relationship between the relative 

roughness and the following variables: 

𝐷

ℎ
= 𝑓 [(

𝛾𝑤

𝛾𝑠 − 𝛾𝑤
)

1
2⁄ 𝑉

√𝑔ℎ
] 

The basic relationship between relative roughness (𝐷
ℎ⁄ ) and depth average velocity 

(V), considering both the single and double layers of riprap is shown in Figure 6.12. The 

stable and failed tests are presented for both thicknesses with distinct symbols. So called 

limit conditions are also represented and correspond to the tests with specific discharges 

that have the first failure and the lower discharges remained stable in an equilibrium state, 

thus corresponding roughly to critical conditions of stability. These critical discharges are 

chosen as the envelope of both conditions. The full and dashed lines are the linear 

regressions of the critical condition in one layer and two layers tests respectively. The 

results show a slight shift representing that there is more stability in the application of a 

double layered riprap protection when compared to the single layer test, for the same 
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block size. This difference is about 2% which means roughly 10% reduction of the 

designed blocks’ diameter when they are constructed in two layers. Also, the trend line 

related the critical discharges for two layer tests has better agreement with the equation 

(4.10) in chapter 4, which referred to all the experiments with different sizes, riprap, bank 

slopes and thicknesses. In developing a velocity based procedure of design, it is important 

to define a reference velocity to be evaluated which here corresponds to the mean velocity 

in the middle of the channel. 

 
Figure 6.12 Relative roughness as a function of modified Froude number for Stable 

and Failed test in one and two layers  

6.4 Conclusion 

This research was performed to analyze the effect of thickness on the stability of packed 

and packed riprap as riverbank protections. Empirical results are shown in terms of 

channel longitudinal slope, riprap side slopes and thickness of the protection layer. The 

influence of a second layer of the riprap protection is considered on both the time to 

failure and sizing of riprap. In contrast to the dumped blocks, the failure criterion in the 
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packed riprap is defined at the time that the blocks slipped on the side slope, and the 

section became unstable. The observation of the experiments showed that: 

 The results revealed that in the same longitudinal channel slope and side slope, 

the second layer stabilized the section and postponed the failure. However, the 

block erosion rate is increased significantly. 

 The higher is the discharge that causes the failure; the less is the effect of the 

second layer on stabilizing the section. It means that in the lower discharges, the 

thickness has more influence on the stability of the riprap. 

 Regarding the riprap side slope, double layer tests are more stable in higher 

inclinations (side slope) comparing to single layer.  

 Results also show that longitudinal slope of the channel seems to be the most 

dominant parameter. Nevertheless, the impact of thickness in higher channel slope 

reduced comparing to the lower channel slope. 

 A time-dependent analysis showed that the characteristic time to failure has a 

functional relationship with dimensionless shear stress (τ*) and longitudinal slope.  

 The analysis revealed that the two layer tests resist for higher τ* at the same time 

to failure. In the other word, for the identical forces acting to move the blocks the 

characteristic time for failure is higher for double layer riprap.  

 The thickness of the riprap has a more considerable influence to protect channel 

bank for higher riprap side slope than the flatter ones. It means that, by variation 

of riprap side slope, the second layer has a more stabilizing role when the riprap 

side slope gets closer to the angle of repose of the blocks.  

In this study, tests with the occurrence of failure and tests that remained stable are 

compared. The limit between failed and stable tests is defined. Finally, as the second layer 

stabilizes the protection system considerably, in addition to delaying the failure time, in 

practical terms the blocks can be designed in a smaller size riprap, with higher thickness.
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Probabilistic Failure Analysis of Riprap as 

Riverbank protection under flood Uncertainties 

In this chapter, the concept of a probabilistic assessment model based on Monte Carlo 

Simulation, Moment Analysis Methods, and Point Estimation Method are presented. The 

probability of failure in different mechanisms is defined. The failure probability of riprap 

is assessed by a probabilistic function in terms of the design safety factor. 
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Abstract 

Existing riverbank riprap could face the risk of failure if the flood regime changes in 

future. Additionally, changed sediment transport in rivers, as a possible result of climate 

change, impacts the failure risk of flood protection measures. Evaluation of this potential 

failure is the primary issue of riprap stability and safety assessment. The consequences of 

the bank failure are probably uncontrolled erosion and flooding with disastrous 

consequences in residential areas or damage to infrastructures. Thus, a probabilistic 

analysis of riprap failure considering different mechanisms due to the flood and sediment 

transport uncertainties is required to assess embankment stability. In this chapter, the 

concept of a probabilistic assessment model based on Monte Carlo Simulation, Moment 

Analysis Methods, and Point Estimation Method are presented to define the failure risk 

of riprap bank protection. The probability of failure in different modes, namely direct 

block erosion, toe scouring and overtopping, has been defined by taking into account the 

bed level variation based on bedload transport described with a probabilistic function of 

the peak discharge. 

7.1 Introduction 

7.1.1 Failure risk of riprap 

Changing atmospheric condition will influence the amount of precipitation and its 

regional distribution, thus possibly the frequency and the magnitude of extreme flood 

events and their time of occurrence will change respectively. The expectation is that 

climate change will impact flooding and sediment transport in mountain rivers and 

catchments of Switzerland in future (Köplin et al. 2012). This modified hydrological and 

hydraulic regime will further impact on sediment transport dynamics as well. Sediment 

yield in a catchment is dependent both on the transport capacity of the stream and 

availability of loose material. Therefore, sediment transport flow will be influenced by 

climate change (Turowski et al., 2009). These changes will affect the behaviour and 

performance of flood protection measures and may increase their risk of failure. 

Destruction or collapsing of flood protection measures will result in uncontrolled flooding 

and lateral erosion with a displacement of meanders and the formation of braided river 

patterns. These processes can have catastrophic consequences for urban areas and 
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infrastructures, especially along Alpine rivers. For this reason, flood protection strategies 

have to be adopted to cope with changing conditions due to climate change. Hence, 

probabilistic analysis of failure mechanisms of riprap due to flood events and sediment 

transport is necessary. 

 

Figure 7.1 The view of riverbank riprap and residential area in the central part of 

Switzerland (Kander, Switzerland, 2012) 

Riprap is one of the most commonly used protection measures to keep the stability 

of the riverbank. In this paper, a probabilistic assessment of riprap failure is assessed 

probabilistically for different mechanisms of failure and models of riprap design as well 

as risk analysis methods will be discussed in the following part. Then the probabilistic 

simulation methods and the results will be described and concluded. 

7.1.2 Failure mechanisms of riprap 

According to Blodgett and McConaughy (1986), riprap failure mechanisms are identified 

as direct block erosion, translational slide, slump, and side-slope failure. Direct block 

erosion by flow is the most often considered erosion mechanism. This mode of failure 

occurs when the resistance against the flow decreases if the blocks are not large enough. 

Blocks tend to be dislodged more by rolling rather than sliding (Stevens et al. 1976 and 

Froehlich 2011).  Downslope of riprap material movement can cause a translational slide 

as a failure. The initial phases of a translational slide are shown by cracks in the upper 

part of the riprap blanket that extend parallel to the channel. Translational slides are 

initiated by the steep slope of the riverbank and excessive hydrostatic pore pressure. 

However, this failure process mostly occurs due to toe scouring and instability of the 

riprap caused by the weakness in the toe foundation. Modified slump failure of riprap is 



Chapter 7 

106

the mass movement of material within only the riprap blanket, and the blocks seem to 

slide on each other. Probable causes of the modified slump are the steep slope of the 

embankment and lack of toe support. Slope instability of the riprap is causing mostly due 

to overtopping. It would be a rotation-gravitational movement of material along a surface 

of rupture. It relates to the shear failure of the underlying base material that supports the 

riprap. While overtopping occurs, the water saturates the riprap and the material behind 

it. Once the level of the water decreases the water in the saturated part tends to release 

faster, and the slide-slope in riverbank riprap takes place (Jafarnejad et al. 2012). To sum 

up, the main reasons for failure in riprap due to extra forces that overlap the resistance 

and stability could be categorized in three modes: Direct block erosion; Toe Scouring; 

Overtopping. Such failure occurs since the hydrodynamic forces are higher than designed 

resistance or sediment deposition or erosion changes the bed level. Consequently, the 

water depth (h) and the foundation depth of the riprap changes as the bed changes. This 

bed level variation (Δhs) could cause toe scouring as soon as the erosion depth reaches 

the level of buried part of riprap (Figure 7.2).  

 

Figure 7.2 Selected trapezoidal section showing bed and water level variation due 

to change in sediment and different failure modes 

7.1.3 Riprap design methods 

Details of riprap design methods are explained in chapter 2 and in the introduction of 

chapter 4 and 5. However, this study focuses on the probabilistic simulation of the bank 

failure in a section protected by riprap by a Monte Carlo simulation method and defining 

the probability of failure in different mechanisms. This model mainly adopted Stevens et 

al. (1976) approach to define the riprap failure based on direct block erosion. Another 

failure mode is described as riprap sliding or slumping caused by toe scouring when the 

bed erosion continues until the whole riprap foundation exposes to the water. The 
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overtopping mode is also the condition that the water level is over the section height and 

causes the damage of riprap mostly based on slope instability. A Moment Analysis 

Method and Rosenblueth method are also applied to compare the results with Monte 

Carlo simulation to evaluate the accuracy of achieved probabilities of failure.  

7.1.4 Probabilistic Simulation methods and risk analysis 

Risk (R) is a joint measure of the probability and severity of an opposing effect. It is often 

estimated by the product of the probability of the adverse event occurring, also called 

failure probability (Pf), and the expected consequences or damage. In the case of flood 

protection measures, a contrary effect refers to a structural failure of them. Therefore, risk 

analysis necessitates first determination of failure probabilities and then the probabilistic 

estimation of consequences (Kassa, 2009).  

The methods for conducting probabilistic risk analysis are classified differently. For 

instance, PIANC (1987b) categorized them into three classes based on the approach of 

conducting uncertainty. According to PIANC, the Joint Committee on Structural Safety 

distinguished three levels: 

Deterministic approach (often called “quasi-probabilistic approach”): It 

presents constructional design methods with relevant safety factors. The approach 

simplifies the problem by assuming design parameters as primarily deterministic 

variables and uncertainty is accounted through the use of empirical safety factors. Safety 

factors are derived based on historical experiences.  

Semi-probabilistic approach: This comprises some approximate methods in 

which normal distributions can often be assumed for both strength and loading. The 

reliability function is linearized at a specific point to determine the actual probability of 

failure. Point estimate methods, and Moment Analysis Methods are categorized in this 

group. 

Full probabilistic approach: This method takes into account the exact probability 

distribution functions including correlations among the parameters. This approach gives 

the best-fit probability density functions of all related stochastic design parameters from 

both strength and load sides. The Monte Carlo Simulation Method can be categorized 

under this group. While the act of a designed system is a function of design parameters, 
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and design parameters are random variables, the performance of the systems is 

consequently a function of RV (Haldar and Mahadevan, 2000). 

7.2 Set up of probabilistic simulations 

The riverbank riprap model is developed by a probabilistic approach. Three different 

failure modes as direct block erosion, toe scouring and overtopping are simulated as the 

limit functions. The simulation code was set up with mathematical and statistical software 

based on Monte Carlo Simulation Method, Moment Analysis Method, and Rosenblueth 

Point Estimation Method. The hypothesis and sediment transport concept considered to 

compute the probability of failure. 

7.2.1 The Monte Carlo Simulation Method (MCSM) 

Monte Carlo Simulation Method is a statistical trial method. In MCSM design parameters 

(Xi’s) are random variables by a certain probability density function. The simulation is 

run randomly to produce arrays of Xi’s from the possibilities defined by the respective 

bounding pdf of the Xi’s. It means that the generation of values is based on the 

corresponding probability. At each simulation step, a corresponding value of Yi is 

calculated using functional relations in design equations. In this way, the simulation 

calculates many scenarios for outputs. Adequate number of simulations is taken to 

converge the solution. In MCSM, random design variables have to be described using 

continuous distributions (pdf’s). The technique has the advantage that it is relatively easy 

to implement and can deal with a wide range of multivariate functions (Haldar and 

Mahadevan, 2000; Ang and Tang, 2005; Kassa, 2009). This method has been applied in 

this research in order to define the best probability function of riprap failure.  

The objective of the probabilistic simulation is to define the failure risk of riprap 

considering future changes in sediment transport and water discharge. The riprap failure 

modes can be categorized in direct block erosion, overtopping and toe scouring. Figure 

7.3 illustrates the implication of the model of MCSM to define the probability of failure 

for the different failure mechanisms. 

The Hypothesis is to study the stability of riprap by comparing the conditions before 

and after a flood. The initial condition will change until the section reaches its equilibrium 
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condition after a flood. In other words, at the end, the final sediment transport capacity of 

the section will be equal to the sediment supplied to the channel.  

According Figure 7.3 the MCSM is implemented with the following steps of 

assumption: 

(i) The procedure starts with a histogram of the predicted n-years flood (𝑄𝑛), for 

example 100 years flood, of a specific river. Next step is generating 𝑄𝑛 based 

on Monte Carlo Simulation technique.  

(ii) Flow depth (ℎ) corresponding to the generated 𝑄𝑛  is calculated by using 

uniform flow conditions according to Manning-Strickler: 

𝑄 = 𝐾𝑠𝐴𝑅ℎ

2
3  𝐽

1
2 

which defines the discharge based on the initial slope (𝐽), hydraulic radius 

(𝑅ℎ), roughness coefficient (𝐾𝑠), and cross section area (𝐴).  

(iii) A distribution of flow depth (ℎ values) with their corresponding probabilities 

can then be obtained by this method. Sediment transport capacity of the 

section is estimated according Smart and Jäggi (1983) formula. Bedload 

discharge can be calculated as 𝑄𝑠 = 𝑞𝑠𝑏 which b is bed width of the section 

and 𝑞𝑠  is the bedload unit discharge; 𝑑𝑚  is Mean diameter of bedload 

sediments; q corresponds to unit discharge. 

𝑞𝑠 = 2.5𝐽0.6𝑞 (𝐽 −
𝑑𝑚

12.1ℎ
) 

Where ms  is a sediment transport rate coefficient that gives sediment 

transport supply from upstream compared to the transport capacity and 

indicated as: 

𝑚𝑠 =
𝑄𝑏 𝑠𝑢𝑝𝑝𝑙𝑦

𝑄𝑏 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

If the supply sediment (Qb supply) is higher than the transport capacity of the 

reach (Qb capacity), deposition on the channel bed occurs. On the contrary, 

erosion of the channel bed will take place. To reach the equilibrium condition 

in the section, the final capacity of the reach should be equal to the sediment 

 (7.1) 

 (7.2) 

 (7.3) 
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supply from upstream. In this case, there are two equations of hydraulics and 

sediment transport capacity of the section (Eqs. 1 and 2) with two variables. 

The variables are slope and water depth before and after the flood in an 

equilibrium condition. By considering a fixed point of the channel bed at the 

certain distance in downstream, end of the considered river reach, the bed 

level change (𝛥ℎ𝑠) can be calculated. 

(iv) Toe scouring happens if the bed erosion depth is below the level of the deepest 

block under the bed (Δhs > z0) (Figure 7.2). 

(v) If the final computed water depth (heq) exceeds the height of riprap (z), 

overtopping failure occurs (Figure 7.2).  

(vi) The safety factor of the riprap is computed according Stevens et al. (1976). 

Direct block erosion occurs when the safety factor is less than 1.0. According 

to Schleiss (1998), for large blocks in mountain river the modification of 

Stevens’ safety factor  can be explained as below: 

𝜂 =
𝜏

𝜏∗
=

7.7ℎ𝐽

(𝑠 − 1)𝑑𝐵
 

Equations (7.5) to (7.7) describe the calculation of safety factor based on 

Stevens et al. (1976) based on parameters explained in Table 7.1. 

𝜉 = 𝜂
𝑆𝑚

𝑐𝑜𝑠 𝛼
 

𝑆𝑚 =
𝑡𝑎𝑛 𝜙

𝑡𝑎𝑛 𝛼
 

𝑆𝐹 =
𝑆𝑚

2
(√𝜉2 + 4 − 𝜉) 

This safety factor just corresponds to the failure mechanism of direct block 

erosion and a confrontation of demand and capacity which means the values 

less than 1 show the failure occurrence. 

(vii) NO Failure presented the condition that none of the failure modes as toe 

scouring and overtopping occur, and the calculated safety factor is more than 1. 

 (7.4) 

 (7.5) 

 (7.6) 

 (7.7) 
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Figure 7.3 MCSM implementation for riprap safety assessment 
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The probabilistic function of the safety factor and the probability of the different 

failure mechanisms can be obtained by this simulation. In this study various probabilistic 

simulation and assessment models are applied in order to define the failure risk of river 

bank protection structures. These probabilistic simulations allow assessing the riprap 

safety regarding the changed flood and sediment transport in the future. 

7.2.2 The Moment Analysis Methods (MAM) 

Moments of distributions are used to summarize important characteristics of distributions 

as a single value. The first orders of moments as mean, variance, skew and kurtosis are 

the most important ones in probabilistic design. MAM are approximate ways of solving 

distribution problems involving Function of Random Variables (FRVs) (Haldar and 

Mahadevan, 2000).  

The basic principle of MAM is specifying of randomness of uncertain variables that 

are arguments of a design equation by their moments- mean, variance, skew, and kurtosis, 

as 𝜇𝑋𝑖, 𝜈𝑋𝑖, 𝑠𝑋𝑖, 𝑘𝑋𝑖, etc. Then the moments of the outputs of the design equations are 

available as a function of moments (Kassa, 2009). However, we cannot achieve a 

distribution of known standard type for the outputs. Nevertheless, the distributions of 

result (𝑌) can be approached using the derived moments 𝜇𝑌 and 𝜈𝑌. The most frequently 

used moment methods are first-order second moment (FOSM) and second order second-

moment approximations (SOSM) which use Taylor’s series expansion for the first and 

second orders. According to Hartford and Baecher (2004) in these methods the procedure 

for calculating the mean (𝜇𝑌 ) for outputs involves expanding the FRV 𝑌 = ℎ(𝑋) as 

Taylor series about mean values of the random variables in ℎ and determining 𝜇𝑌  by 

calculating the terms in the expansion. In many practical applications 𝜇𝑌 is near ℎ(𝜇𝑋𝑖), 

so higher terms in the series become small and can be neglected. The FOSM is when the 

truncation is done after the first order term, and a better precision is achievable by second-

order term called SOSM. Figure 4 presents the implementation architecture of these 

approximate methods. 

There are several equivalent forms of writing Taylor’s series for multiple variables. 

One of the commonly used versions, in general, is Equation (7.8). 
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𝑌 = ℎ(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = ℎ(𝜇𝑥1
, 𝜇𝑥2

, ⋯ , 𝜇𝑥𝑛
)

+
1

1!
∑(𝑥𝑖 − 𝜇𝑥𝑖

)
𝜕ℎ

𝜕𝑥𝑖

𝑛

𝑖=1

+
1

2!
∑ ∑(𝑥𝑖 − 𝜇𝑥𝑖

)(𝑥𝑗 − 𝜇𝑥𝑗
)

𝜕2ℎ

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+
1

3!
∑ ∑ ∑(𝑥𝑖 − 𝜇𝑥𝑖

)(𝑥𝑗 − 𝜇𝑥𝑗
)(𝑥𝑘 − 𝜇𝑥𝑘

)
𝜕3ℎ

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

+ ⋯ 

This model cannot take all different mechanisms of failure into account. Direct 

block erosion is the only mechanism that can be taken in this case. Herein, for a condition 

with no failure in toe scouring and overtopping, Y can be substituted by Safety Factor as 

seen in (7.9): 

𝑌 = 𝑆𝐹 = ℎ(𝑄𝑛,  𝑑𝐵,  𝐽,  ⋯ ) 

This Y function can be calculated by equations (7.4) to (7.7). Figure 7.4 illustrates 

the implementation of the model of moment analysis to define the probability of failure 

by describing the safety factor. 

(i) First step defines the moments of random variables of discharge 𝑄𝑛  

determined from variables of a probability density function of it for future. 

(ii) Then the function of random variables which is Safety Factor could be 

defined as a function of water depth (𝑆𝐹 = ℎ(ℎ𝑖)). This has to be expanded 

by Taylor series on the mean values 𝜇ℎ𝑖 of random variables and truncate it 

at appropriate order. 

(iii) In the next step the nth central moment function of Safety factor 

(𝜇𝑆𝐹𝑖 , 𝜈𝑆𝐹𝑖 , 𝑠𝑆𝐹𝑖 , 𝑘𝑆𝐹) is obtained by calculating the expectation of terms in 

expansion and substitution 𝜇𝑄𝑛. 

(iv) Finally the probability density function of the safety factor (𝑆𝐹 ) can be 

defined and analyzed. 

 (7.8) 

 (7.9) 
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Figure 7.4 MAM implementation for safety riprap assessment 

7.2.3 Rosenblueth Point Estimation Method (RPEM) 

Point Estimation methods offer a direct procedure to obtain the moments (particularly 

mean and variance) from known moments of RV. Rosenblueth (1975) first proposed the 

model to solve the problems with symmetric, uncertain and correlated input factors. Then, 

the original method was modified to apply for asymmetric random variables. When the 

probability distribution function of the state variables is unknown, it is possible to obtain 

1 order moment, 2 order center moment, and 3, 4 order center moment of the state 

function (safety factor). Thus, the reliability index of the assumed probability distribution 

can be achieved (Conciatori et al., 2009).  

Process 

Expand FRV SF=h(h
i
) as Taylor series 

about the mean values μh
i 
of random 

variables and cut it at appropriate order. 

Function of Random Variables 
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)  
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n
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i 
, sSF

i
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by calculating expectation of the terms in 
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Calculate moments of Q as a random variable  

(Determined from variables pdf or discrete)  
(i) 

(iv) 

(iii) 

(ii) 



 Probabilistic Failure Analysis of Riprap as Riverbank protection under flood Uncertainties 

 115

RPEM is based on the hypothesis that the area under the entire probability 

distribution of a chosen random variable 𝑋𝑖 can be rearranged to a finite number of 

distinct points, which the first moments of the distribution are preserved.  

7.3 Results and discussion 

7.3.1 Monte Carlo Simulation results 

7.3.1.1 Results for a straight channel 

The riverbank riprap model on MCSM was mathematically set up as described under 

section 2.1. The parameters used in the simulation, such as the geometry of cross section, 

sediment transport, and hydraulic parameter are described in Table 7.1 with their 

reference values for a selected river cross section. The data was considered as an example, 

and the peak discharge is taken as a normal distribution. 

In Table 7.2, the size of the blocks at different levels of the riprap is given. The goal 

of this example is to show the variation of the block sizes in one specific river section 

protected by riprap. In Table 3 the probability values for the different failure modes in 

this trapezoidal section are summarized. The presented model allows for taking the 

probabilistic values of any variables into account.  

Figure 7.6 shows the probability of the safety factor for different failure 

mechanisms and stable conditions. First two columns are representing the probability of 

failure in toe scouring and overtopping. The next part shows the range of safety factors 

(SF) in the selected trapezoidal section. The values of safety factor for less than 1 express 

the probability of failure in direct block erosion for each calculated safety factor. The rest 

values regarding the frequency of occurrences belong to the stable condition. 
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Table 7.1 Description and reference values of parameters used in hydraulics and bedload 

transport calculations 

Description Variable Value Unit 

Bed width of the section b 55 m 

Angle of riprap  α 30 ° 

Slope  J 3%   

Bed roughness  Ks 37 m⅓/s 

Density ratio s =  ρs/ρ  2.65   

Angle of repose  ϕ 60 ° 

Mean diameter of bedload sediments  dm 0.014 m 

Mean peak discharge of n-years flood (here is 100) µQn 800 m³/s 

Standard deviation of peak discharge of n-years flood (here is 100) σQn 180 m³/s 

Sediment transport rate  ms 0.9 — 

Distance between the considered section and the next fix point  L 1000 m 

Depth of riprap protection from initial bed level  z 2.50 m 

Depth of deepest riprap block below initial bed level  z0 −1.90 m 

Depth of deposit (+) or erosion (-) compared to initial bed 

(explained in Figure 7.5) 
Δhs — m 

 

 

Table 7.2 Size of the blocks for the selected riprap at two different levels 

Level hi (m) dB (m) 

I 
–1.00 

0.80 
  1.00 

II 0.40   2.80 

 

 

Table 7.3 Probability of the safety factor (SF) and failure modes  

Safety Factor Ranges / Failures Frequency Percent 

Toe Scouring: Δhs > z0  50 5.0% 

Overtopping: heq > z 147 14.7% 

0 < SF < 1 (Direct Block Erosion) 315 31.5% 

SF ≥ 1 (No Failure) 488 48.8% 

 

 

Figure 7.5 Deposition (+) and erosion (–) of sediment in a section due to flood 
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Figure 7.6 The probability of the safety factor in different failure modes of a 

selected trapezoidal section 

7.3.1.2  Curved channel vs. straight channel 

The model was also developed for a curved channel. In the bend, a secondary current 

occurs which consequences an outer bend scour. The transverse velocity profile has been 

investigated experimentally by Kikkawa et al. (1976). Their empirical equation has been 

chosen for this study. In order to obtain the bend scour with Kikkawa et al.'s equation, the 

inner and outer radius of the bend has to be given. Table 7.4 shows the data of specific 

river section in straight and curved channel with external radius of 2000m. 

Safety Factor  
y  

Safety Factor = 1 

Safety Factor  
y  
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Table 7.4 Description and values of parameters using in hydraulics and bedload 

transport calculations in curved channel 

Description Variable Value Unit 

Bed width of the section b 55 m 

Angle of riprap  α 30 ° 

Slope  J 1%   

Bed roughness  Ks 37 m⅓/s 

Density ratio s =  ρs/ρ  2.65   

Angle of repose  ϕ 60 ° 

Mean diameter of bedload sediments  dm 0.014 m 

Mean peak discharge of n-years flood (here is 100) µQn 600 m³/s 

Standard deviation of peak discharge of n-years flood (here is 100) σQn 150 m³/s 

Sediment transport rate  ms 0.9 — 

Distance between the considered section and the next fix point  L 1000 m 

Depth of riprap protection from initial bed level  z 6.5 m 

Depth of deepest riprap block below initial bed level  z0 −2 m 

Depth of deposit (+) or erosion (-) compared to initial bed 

(explained in Figure 7.5) 
Δhs — m 

 

Figure 7.7 Failure probability distribution function of a riprap in a straight channel 

by Monte Carlo Simulation 

In Figure 7.7 the probability of failure in a straight channel is shown. In the same 

condition, by adding a curve with an external radius of 2000 m in the channel the 

probability of failure changes to 100% as can be seen in Figure 7.8.   
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Figure 7.8 Failure probability distribution function of a riprap in a curved channel 

by Monte Carlo Simulation. 

7.3.2 Results of MAM and comparison with MC 

The MAM model as explained in part 7.2.2 was implemented for the example related to 

Table 4. In this especial case, safety factor of riprap design is  𝑆𝐹 = ℎ(𝑋) with only one 

independent variable 𝑄 (uni-variate FRV’s). When the value of ℎ is given for some value 

of 𝑄 = 𝜇𝑄 , then 𝑆𝐹 = ℎ(𝑄) can be found for any other values of 𝑄 in the neighborhood 

of 𝜇𝑄 using Taylor’s series as: 

𝑆𝐹 = ℎ(𝑄) = ℎ(𝜇𝑄𝑋) +
1

1!
(𝑄 − 𝜇𝑄)

𝑑ℎ

𝑑𝑄

+
1

2!
(𝑄 − 𝜇𝑄)2

𝑑2ℎ

𝑑𝑄2
+

1

3!
(𝑄 − 𝜇𝑄)3

𝑑3ℎ

𝑑𝑄3
+ ⋯ 

where derivatives are evaluated at the point 𝑄 = 𝜇𝑄. 

Figure 7.9 compares the results of MCSM and First Order Second Moment method 

for the example presented in Table 7.4. Mean values of both distributions are similar, and 

just one failure mechanism occurred in this example. The difference between the 

probabilities of safety factor of less than 1 in these two methods is less than 10% that 

could be seen in Figure 7.9.   
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Figure 7.9 MCSM versus MAMs (MCSM, FOSM) 

7.3.3 Results of Rosenblueth method and comparison with MAM and MC 

simulations 

The Rosenblueth Point Estimation Method was applied in order to obtain the probability 

function of safety factor for the same example. As explained in section 2.3, this model 

can be used for two random variables or more. However, in following example only one 

variable was taken into account to make the comparison with the results of Monte Carlo 

Simulation and First Order Second Moment analysis. On the other hand, the variability 

of the other parameters could be smaller. The function of random variable Qn can be 

defined as: 

𝑆𝐹 =  ℎ (𝑥) =  ℎ(𝑄𝑛) 

The average and variance of Qn for the example of one variable according to Table 

4 is taken as 𝜇𝑄𝑛= 600 m3/s and 𝜎𝑄𝑛= 150 m3/s. 

ℎ1 = ℎ(𝜇𝑄𝑛 +  𝜎𝑄𝑛) =  ℎ(450) =  1.19 

ℎ2 = ℎ(𝜇𝑄𝑛 −  𝜎𝑄𝑛) =  ℎ(750) =  1.04 

𝑃𝑗 =
1

2
(𝑗 = 1,2) 
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 𝜇𝑆𝐹 = ∑ 𝑃𝑗

2

1

ℎ𝑗 =
1.28 + 0.8

2
=  1.11 

𝜎𝑆𝐹
2 =  (∑ 𝑃𝑗

2

1

ℎ𝑗
2) − 𝜇𝑆𝐹

2 =  1.7 − 1.23 =  0.00562 

𝜎𝑆𝐹 = 0.075 

It is assumed that 𝑆𝐹 = ℎ(𝑄𝑛) is normally distributed and 𝑍~ 𝑁( μ𝑆𝐹 , μ𝑆𝐹
2 ), Then 

the reliability index 𝛽 is (G.B Baecher and J.T. Cristian  2003): 

𝛽 =
 𝜇𝑆𝐹 − 1

𝜎𝑆𝐹
 =  1.53 

Then, failure probability will become: 

𝑃𝑓 =  1 −  Ф(𝛽) =  1 − 0.068 =  93.2% 

In Figure 7.10 the results of the three methods are compared for the example in 

Table 4. A correlation among three methods can be observed. The functions provided by 

Monte Carlo Simulation and First Order Second Moment method have closer values as 

the means of the distributions are the same. Rosenblueth method gives a different mean 

value. The probability of failure (SF < 1) which represented the direct block erosion 

increases only around 5% from MCSM to FOSM and RPEM. The higher probability of 

failure is calculated by RPEM in this example. 

The asymmetric result for the safety factor as a reliability function and the balance 

of the correlation coefficient causes the different mean. However, the standard deviation 

is similar. 
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Figure 7.10 MCSM versus Moment Analysis and Point Estimation Methods 

(FOSM, MCSM, and RPEM) 

The higher moments also were checked, and slight changes were shown in this 

example and can thus be neglected. Since we put other parameters as variables like block 

size (wide block size distribution) or the slope variation or bed level variation, the MAMs 

could not be accurate and Monte Carlo Simulation needs more runs. In this situation, the 

Rosenblueth point estimation could be a convenient model to reach the probability 

function of failure.  

7.4 Conclusion 

The potential failure probabilities of ripraps have been evaluated by using Monte Carlo 

Simulation and MAM as well as Rosenblueth Point Estimation Method. The advantages 

of the probabilistic model are the flexibilities on covering different failure mechanisms 

and utilization as a multivariate probabilistic method. Herein, the results were compared 

with the mentioned methods. MCSM is categorized in the full probabilistic level in risk 

assessment. Monte Carlo Simulation results are the most accurate ones that have the most 

precise results depending on the number of iterations. The results of other methods as the 

first levels showed good correlation though. 
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The study also reveals the sensitivity of different parameters in riprap design and 

sediment transport. The most sensitive mechanism of failure found as toe scouring which 

is related to the bed level variation. The bed level variation as the principal variable and 

the geometry and hydraulic parameters can change the state of the river bank riprap.  This 

simulation method can be implemented on the water surface, and bed load calculation 

models. This allows applying the method on other rivers for computing the probability of 

failure based on prevailing sediment transport regime. The final goal is to have an 

assessment of the failure risk of riverbank riprap and other flood protection measures 

under changed flood and sediment yield scenario in the future under climate change. 

 

. 
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Application of Probabilistic Model on Swiss 

Rivers: Kleine Emme and Brenno 

In this chapter the application of the model explained in chapter 7 on two Swiss rivers is 

presented. The chosen rivers, Kleine Emme and Brenno, are described and the 

development of the model based of sediment transport prediction and probabilistic 

simulations are explained. Finally, the example of modelling is presented to show the 

probability of failure in each section in different mechanisms for two rivers. 
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8.1 Introduction 

To apply the probabilistic model on a real condition explained in chapter 7, two Swiss 

rivers, the Kleine Emme and the Brenno (Figure 8.1 and Figure 8.2) are selected. Bedload 

transport prediction of these two rivers has been studied in Swiss Federal Institute for 

Forest, Snow and Landscape Research (WSL) based on model sedFlow. (Heimann et al, 

2015). Based on their study, the Kleine Emme was chosen since extensive data are 

available to validate the model sedFlow and could be the representative of pre-alpine river 

due to testing the model in this catchment. The Brenno river was selected as a case study 

to include a wide range of channel gradients as an alpine river. In this chapter, the river 

Kleine Emme which is located in the pre-alpine area of central Switzerland is analyzed 

to define the probability of failure in each section (Fig. 8.1). The river is located in an 

area of 477 km2 with length of 58 km and drains into the Reuss at Reussegg (presented 

by Geoportal Kanton Luzern, 2013). The Kleine Emme is a mountain river catchment 

with mild slopes, with no glaciers inputs and with only the impact of hydropower 

installations, however, with variations by fluvial engineering. (FOEN, 2005) (Heimann 

et al, 2015). 

 

 

Figure 8.1 The Kleine Emme catchment in central Switzerland from 

Doppleschwand to the confluence with the Renggbach is shown by the 

blue line. 

2Km 

Renggbach 

Doppleschwand 
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For the reach scale analysis, a total length of 20 km of the Kleine Emme was 

simulated by sedFlow, starting downstream of Entlebuch and continuing until Littau, 

which is located 5 km upstream of the confluence with the Reuss.  

 

Figure 8.2 The Brenno catchment in southern Switzerland from Olivone to Biasca 

is shown by the blue line. 

The Brenno is situated in southern Switzerland (Fig. 8.2) and flows into the river 

Ticino. Its drainage area is 397 km2. The two catchments are impacted and show a range 

of engineering constructions like many mountain catchments. The Kleine Emme is 

marked by river training works, including numerous bottom sills and riprap revetments 

2 km 

Biasca 

Olivone 
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in some locations. The Brenno is strongly influenced by controls on water and sediment 

delivery to the channel. The Brenno’s hydrology is considerably influenced by 

hydropower production.  

The two catchment areas have similar size but channel is steeper in the Brenno river 

than in the Kleine Emme. In the Kleine Emme, channel bank erosion is the most important 

parameter in feeding sediment to the transport system, in the Brenno lateral sediment 

input due to debris flows from tributaries was important during the calibration period 

(Heimann et al, 2015).  

In summary, the two study catchments differ substantially and present a range of 

characteristics common to many mountain catchments. Several channel cross sections are 

periodically surveyed for both rivers. In the case of the Kleine Emme, they are measured 

by the Swiss Federal Office for the Environment (FOEN) and in the case of the Brenno, 

they are measured by the authorities of the canton of Ticino. Cross-sectional profiles are 

recorded at 200 m intervals in the Kleine Emme and at about 150 m intervals in the 

Brenno. For the Kleine Emme measurements from September 2000 to November 2005 is 

used. Measurements from April 1999 to June/July 2009 are used for the Brenno. 

8.2 Model development 

The probabilistic model developed in chapter 7 can be applied on the rivers according the 

output of WSL study.  

A bivariate copula model fitting developed in WSL which has provided the 

probability of occurrence due to two parameters:  

1. Flood volume which is defined as the sum of the complete discharge between 

the start and end of a flood. The start of a flood is defined as the point in time, at 

which discharge exceeds some threshold discharge, and the end of a flood is 

defined as the point in time, at which discharge again falls below the same 

threshold discharge. For example, in Kleine Emme the 2005 event volume is 

chosen to be folded to range of volume factors. 

2. The peak of flood which is related to the return period. 
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The probability of occurrence for nine different volume factors (0.8 ~ 2.0 for Kleine 

Emme and 0.87 ~ 1.51 for Brenno) and nine return period peak factors (30 to 300 year 

floods) are obtained and model sedFlow were run for these. The shapes of flood volumes 

are chosen as three different historical flood events in each catchment. The other outputs 

were discharge, bed levels, channel slope and maximum flow depth for 154 reaches in 

Kleine Emme and 160 reaches in Brenno. Eighty-one probabilistic conditions for three 

different Scenarios (historical flood events shape) are developed. 

For one flood scenario in one reach the probability of Toe Scouring, Overtopping, 

Direct block erosion and remaining Stable (in 4 different risk level) are obtained. Then 

the probability of 1) Most occurred mechanism and 2) First occurred mechanism are 

calculated. Then the probability calculation of all 81 conditions for three flood scenarios 

in two rivers are performed (totally 243 conditions). Safety factor regarding the direct 

block erosion is taken in 4 level of risk. From SF = 1 to 1.4 with elapse of 0.1. 

The results are shown in following charts (Figure 8.4 to Figure 8.5) as examples 

based on three assumptions by varying block sizes, angle of repose, riprap bank slope and 

riprap foundation height represented in Table 8.1. Assumptions I, II and III are shown in 

Table 8.1 as well. Appendix 3 presents some of the results of simulations in both rivers.  
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Table 8.1 parameters notation of model 

Notation Description Unit Comments 
r  River Id —  
e  Elevation Reach Id —  
s  Scenario Id —  
c  Condition Id —  
t  Time Elapsed sec  
Hfre

  Riprap Foundation Height m = (I)0.8, (II)0.4, (III) 0.2 
DBre

  Block Size m = (I)0.8, (II)0.65, (III) 0.5 

β
re

  Riprap Bank Slope ° = (I)45, (II) 45, (III) 45  

φ
re

  Angle of Repose ° = (I)60, (II)55, (III) 50  

SBre
  Block Specific Gravity — = 2.65  

Pre  Cross Section Point Id —  
xPre

  X of Cross Section Point m  
zPre

  Z of Cross Section Point m Level from origin 

p
rc

  Probability of Condition —  

Lresct  Bed Elevation m Level from origin 

J
resct

  Bed Slope —  

hresct  Water Depth m  

SFresct Safety Factor —  

SSresct Safety or Failure State — TS Toe Scouring 

OT Over-topping 

DBE Direct Block Erosion 

S Stable 
pSSres

F  Probability of First Occurrence of Safety 

State   
—  

pSSres
M  Probability of Most Occurrence of Safety 

State   
—  

 

 

Here is the model development in levels of defining probability of failure in each 

mechanism and final results in each reach.  

For each r, e, s, c, t: 

Lresct < zBre
− Hfre

 

→ SSresct = TS 

↛ Lresct + hresct > zTre
 

→ SSresct = OT 

↛ SFresct < 1.4 

→ SSresct = DBE 

↛ SSresct = S 

 

SFresct =
1

2

tan φ
re

tan αre

(√ξ
resct

2 + 4 − ξ
resct

) 

ξ
resct

=
7.7hresctJresct tan φ

re

(SBre
−1)DBre

 sin αre

Aggregation 

For each r, e, s, c, SS: 

 (8.1) 
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RSSresc
=

count
resc

SSresct

count
resc

r
 

SSresc
F = SSresct  where  t = min

resc
tSSresct

 

SSresc
M = SSresct  where  RSSresc

= max
resc

RSSresc
 

For each r, e, s, SS: 

p
SSres

F = ∑ p
re

Nc

c

  where  SSresc = SSresc
F

 

p
SSres

M = ∑ p
re

Nc

c

  where  SSresc = SSresc
M

 

 

8.3 Results  

The Figure 8.3 shows the limits of failure in one flood scenario. Figures 8.4 and 8.5 are 

the result of two assumptions in one flood scenario and one occurrence condition of 

failure. 

 

Figure 8.3 The limit of each failure mechanism during one flood.  
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. 

 

Figure 8.4 The probability of failure in different mechanism for the scenario of 

flood in Brenno in 1987, first occurrence mechanism and assumption I 

 

Figure 8.5 The probability of failure in different mechanism for the scenario of 

flood in Brenno in 1987, first occurrence mechanism and assumption II 
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8.4 Conclusion  

This chapter presented the application of probabilistic model on two different rivers of 

Switzerland. The Kleine Emme which is located in pre-alpine catchment in centre of 

Switzerland and Brenno which is in southern part of this country are analysed to define 

the riprap failure status. The model was run based on the result of sedFlow model 

developed in WSL to predict the flood and sediment transport in river catchment due to 

flood regime changes in future. Critical parameters are derived to define the status of 

failure in terms of toe scouring, over-topping, direct block erosion and stability based on 

safety factor over one in four different risk levels. This results are based on bivariate 

probabilistic model of peak and volume of various floods in different return periods.  

This method has the flexibility of defining different mechanisms of failure. The 

examples presented in this chapter and Appendix 3 show that how the failure status can 

be changed by varying the parameters. The vulnerability of the river reach can be measure 

in case of unexpected flood to rehabilitate and proactive actions of protecting river bank 

riprap. This model could be used to define risk maps for the application concerns. 
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Conclusions and Recommendations 

 

9.1 Introduction 

Stream power in mountain rivers has impact on the channel stability and risk of scouring 

the bed and bank. Therefore, the erodible river banks need to be protected against the 

possible scouring, practically during the flood events. Among all kind of river bank 

protection measures, riprap is one of the most frequently used protection to avoid bank 

erosion. Destruction or collapsing of riverbank will result in uncontrolled flooding and 

lateral erosion with displacement of meanders and the formation of braided river patterns. 

These processes can have catastrophic consequences on urban areas and infrastructures 

especially along Alpine rivers. Thus, an optimum design which provide a safe condition 

is crucial. Riprap design has been developed for a long time. Thus, several methods of 

riprap sizing are mostly derived for dumped median size blocks. However, in mountain 

rivers and steep channels, extra stability can be provided by packing the large blocks and 

individually positioned riprap. This model of installation has been rarely studied and it 

was the motivation of current study to analyse the stability and design of such packed 
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riprap. In Chapter 1, main questions illustrated the motivation and concerns of the present 

research. The answers achieved based on the experimental data obtained in systematic 

laboratory tests and also the probabilistic modelling. The outcomes of this research is as 

following: 

9.2  Sizing riprap 

The sizing of large block riprap, i.e. the design of the required block weight, for river 

bank protection in steep mountain rivers was studied taking into account the minimum 

possible spaces among the blocks when they are placed individually. The involved 

parameters are the diameter of the riprap blocks D, the longitudinal channel slope S, the 

bank slope of the riprap β and the hydraulic conditions. The stability of packed riprap is 

evaluated and analysed through a vast dataset of 98 one layer riprap experiments carried 

out with varying flume slopes, bank slopes and size of the blocks. Thirty-four dumped 

riprap laboratory tests are also performed in order to have a comparison with existing 

design methods of dumped riprap.  

By comparing the 34 dumped riprap tests with the existing design methods, good 

agreement with design equations of HEC-11 (1998) and EM-1601 (1994) was obtained 

confirming the experimental setup. The bank slope effect could be reproduced correctly 

regarding the limit between stable or failed condition. However, the existing equations 

for dumped riprap overestimated also the size of blocks in some of the tests performed 

with dumped riprap.  

The failure occurs when the blocks are eroded and slide down; then the section 

becomes unstable. The detailed data analysis as well as the visual observations reveal 

that, under the same hydraulic conditions, the tests with packed blocks, are more stable 

and considerably delay the process of bank failure. The channel slope as a design 

parameter has the strongest effect on the block erosion rate and the failure time. The block 

erosion decreases significantly for packed riprap due to interlocking between the blocks 

when they are closely packed by individual placement in the prototype.  

An empirical, new relationship between the relative roughness and the modified 

Froude number is proposed. The definition is based on the boundary between stability 

and failure providing the required size of the blocks remaining stable for certain hydraulic 
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conditions. This relationship results smaller block sizes for the stable condition for packed 

block riprap when comparing it with dumped blocks. The new empirical relationship can 

be also used to re-evaluate the stability of existing packed riprap facings. The following 

equation for designing the optimum block size for individually placed riprap, based on 

Froude number, relative roughness and bank slope modified by repose angle of blocks, is 

herein proposed: 

𝐷 = 0.22𝐶𝑓 ℎ(
𝑉 

√((𝑆𝐵−1)𝑔ℎ)

)0.88       (cf. equation (4.11)) 

Where h is flow depth, V is the mean velocity, and Cf is a factor of bank slope 

effect (cf. equations (4.13) and (4.14)). This study shows the significant effect of 

bank slope on the stability of the blocks. The results revealed that by increasing the bank 

slope the Cf increases and the size of the blocks should be greater to be resistant against 

the flood. The empirical relationship has been validated by a logistic classification 

approach comparing to the experimental transition condition. 

9.3  Time to failure 

The influence of the use of packed block riprap on the time to failure was analysed in 

detail. Particular attention was given to the time to failure defined as the duration of the 

experiment until the riprap collapsed totally over the whole bank height. A maximum 

duration of the flume tests of three hours was used which covers roughly a 15 hour flood 

duration when taking into account a typical scale factor of (1:25). This duration may be 

considered as sufficient for flood durations in typical Alpine rivers.   

Classical stability criterion for dumped riprap are typically limited to the steady 

boundary condition which means that the total failure occurs at the time of the first 

movement as a direct block erosion. It means that the failure occurs very fast once the 

first blocks are eroded and transported downstream. For packed riprap, the criterion of 

failure is strongly linked to the time to failure. Complete sliding or erosion of the riprap 

over the whole bank height in a certain channel section, defined as complete failure, 

occurs only after a specific duration of block erosion. Thus, a time-dependent analysis of 

failure was implemented.  
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The time to failure depends on the tested parameters as block size, channel slope, 

and specific discharge. The slope of the channel has a significant effect on the 

characteristic time to failure for all tested block size. However, larger block sizes not only 

postponed the time to failure but also reduced the block erosion rate for a fixed 

longitudinal slope. 

A clear relationship between the time to failure and the bed shear stress 

adimensionalized with the block size could be found. Nevertheless, the best results were 

obtained using an approach of adimensionalizing the time to failure based on the flow 

depth. The relationship gave the possibility of estimating roughly the time to failure for 

the tests which remained stable (cf. Figure 5.6). The results revealed that the range of 

erosion, which is defined as the number of eroded blocks, is not increased severely 

comparing to the predicted normalized time to failure.  

9.4  Effect of a second layer in packed riprap 

The effect of thickness, respectively the effect of a second layer on the stability of packed 

and packed riprap as riverbank protections was studied with 23 additional experiments 

with two layers of riprap. Empirical results are presented in terms of longitudinal channel 

slope, riprap side slopes and thickness of the protection layer. The influence of a second 

layer in the riprap protection is considered on both the time to failure and sizing of riprap.  

For the same longitudinal channel slope and bank slope, the second layer had a 

stabilizing effect and postponed the failure. However, the block erosion rate is increased 

significantly, since the upper layer has to be eroded first and attachment between blocks 

are less than the blocks and filter.  

By increasing the discharge, the effect of second layer reduced. It means that in the 

lower discharges, thus, the second layer has more influence on the stability of the riprap 

for lower failure discharge. 

Regarding the riprap bank slope, a double layer riprap is more stable for higher 

bank slope comparing to a single layer. The longitudinal slope of the channel is the most 

dominant parameter. Nevertheless, the effect of the second layer in higher channel slope 

showed to be reduced comparing to the lower channel slope. 
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A time-dependent analysis shows that the characteristic time to failure has a 

functional relationship with dimensionless shear stress (τ*) and the longitudinal slope. 

The two layer tests resist for higher bed shear stresses at the same time to failure. In the 

other word, for identical flow forces acting on the blocks, the characteristic time to failure 

is higher for a double layer riprap. The second layer is more stabilizing when the riprap 

bank slope becomes close to the repose angle of the blocks.  

In this study, tests with the occurrence of failure and tests, which remained stable 

are compared, and the boundary between failed and stable tests is defined, representing 

the critical boundary for failure. The same functional relation proposed sizing stable 

riprap in equation (4.11) had good agreement with double layer tests results. Finally, as 

the second layer stabilizes the protection system considerably, in addition to delaying the 

failure time, in practical terms the blocks can be designed in a smaller size riprap with 

higher thickness.  

9.5  Probability analysis of failure 

The potential failure probabilities of ripraps have been evaluated by using MCSM and 

MAM as well as RPEM. The probability of failure is defined for the three different 

mechanisms of failure, namely toe scouring, overtopping and direct block erosion. The 

advantages of the probabilistic model are the flexibilities on covering different failure 

modes and utilization as a multivariate probabilistic method. MCSM is categorized in the 

full probabilistic level in risk assessment. Monte Carlo Simulation results are the most 

accurate ones, which has the most precise results depending on the number of iterations. 

The results of other method as the first levels showed a good correlation though. 

This study also reveals the sensitivity of different parameters in riprap design and 

sediment transport. Toe scouring was found as the most sensitive mechanism of failure, 

which is strongly related to the bed level variation as a result of bed load transport 

conditions. The bed level variation as the principal variable and the geometry and 

hydraulic parameters can change the stability state of the river bank riprap. This 

probabilistic failure simulation method can be implemented in water surface and bed load 

calculation models. This allow to compute the probability of failure based on prevailing 

flow and sediment transport regime. The final goal is to have an assessment of the failure 
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risk of riverbank riprap and other flood protection measures under changed flood and 

sediment yield scenario in the future under climate change. The application of the model 

was run on two rivers of Switzerland Kleine Emme and Brenno. The input data of 

sediment transport in these two rivers was based on the model sedFlow developed in WSL 

and present the probability of failure for riverbanks as riprap protects them under flood 

uncertainties.  

9.6 Recommendations for future research 

 The present investigation is inherently limited to a relatively small number of 

configurations that partially covers the broad range of influent factors on the stability of 

large and packed blocks. In addition, the experiments presented herein were conducted 

under idealized conditions, and the results only refer to supercritical flow and with fixed 

bed. To deepen the knowledge about the design of this arrangement of blocks applied in 

mountain rivers, the following topics are proposed for future laboratory and numerical 

investigations:  

• Systematic laboratory experiments with mobile bed can be conducted in order to 

study the influence of this parameter on the time to failure of the riprap. Other 

mechanisms of failure in laboratory tests as toe scouring is possible to investigate by 

applying a mobile bed. 

• Other configurations in terms of bank and bed slope, block size and gradation, 

variation of thickness and filter behind the riprap are further parameters which could be 

addressed.  

• Most of the existent design methods for dumped riprap over-estimate the required 

block size in the case of packed riprap and result in a non-economical design. Field 

investigation regarding the porosity of packed riprap and angle of repose of large blocks 

can be the next step.  

Finally, the probabilistic simulations to study of the risk of failure constitutes a quite 

challenging and interesting topic, which would provide an excellent tool for predicting 

the evolution of risk under flood uncertainties in future (e.g. climate change). 
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Appendix 1  
Pictures of Selected Experiments 

 

 

Some examples of experimental procedure are presented in next pages. The first three 

photos show the longitudinal channel in time of starting the tests, the time that failure 

occurs and after finishing the test. Last two pictures present the front view of before and 

after the tests.   
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Table A1.1 Configuration of test Double 8 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

Double 8 two 0.037 1.5 3.5V-5H 0.408 0.229 73 

  
 

T=0 min 

T=73 min 

After the test 

Before the test After the test 
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Table A1.2 Configuration of test Double 21 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

Double 21 two 0.037 3 3V-5H 0.209 0.150 NB 

Q 

T=0 min 

T=180 min 

After the test 

Before the test After the test 
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Table A1.3 Configuration of test 24 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

24 one 0.037 3 2.5V-5H 0.345 0.154 3 

  
 

T=0 min 

T=3 min 

After the test 

Before the test After the test 
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Table A1.4 Configuration of test 48 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

48 one 0.037 3 3V-5H 0.314 0.164 27 

  
 

T=0 min 

T=27 min 

After the test 

Before the test After the test 
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Table A1.5 Configuration of test 54 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

54 one 0.042 3 3V-5H 0.359 0.199 13 

 
 

T=0 min 

T=13 min 

After the test 

Before the test After the test 



 Pictures of Selected Experiments 

 153 

Table A1.6 Configuration of test 55 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

55 one 0.042 3 3V-5H 0.364 0. 201 6 

 
 

T=0 min 

T=6 min 

After the test 

Before the test After the test 
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Table A1.7 Configuration of test 43 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

43 one 0.047 3 3V-5H 0.438 0.205 148 

 
 

T=0 min 

T=148 min 

After the test 

Before the test After the test 
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Table A1.8 Configuration of test 44 

Series 

Number 

of layers 

Block 

Size 

(m) 

Slope of 

Channel 

(%) 

Slope of 

Riprap 

(_) 

q 

(m2s-1) 

h 

(m) 

tf 

(min) 

44 one 0.047 3 3V-5H 0.457 0.211 172 

 
 

T=0 min 

T=172 min 

After the test 

Before the test After the test 
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Appendix 2  
Sensitivity Analysis of Monte Carlo Simulation 

The Figures A2.1 to A2.3 show the variation of the probabilistic function of the failure 

probability. The sensitivity analysis for the case study indicates that the angle of riprap, 

shown in Figure A2.1 (left), has a relevant effect on the safety factor and direct block 

erosion while the other mechanisms can be neglected. However, the slope of the channel 

bed has also a significant impact on the failure of the riprap and not only changes the 

failure probability but also changes the failure mechanisms (Figure A2.1, right). 

Simulation shows that by decreasing the slope of channel the failure mode completely 

changes from overtopping to toe scouring. It means that the slope of channel is one of the 

dominant parameters. As shown in Figures A2.2 and A2.3, the rate of sediment supply 

and the height of riprap also have significant influences on the model. On the other hand, 

the grain size of the sediments (Figure A2.2 left) has no significant effect on failure of 

the riprap. The diameter of the blocks has an impact on probability of failure (Figure 

A2.3, left) but there is no significant change in failure modes. The sediment transport rate 

can influence the failure probability when it is reduced 20% (Figure A2.3 right). It can be 

witnessed that the failure mode changes totally from direct block erosion to toe scouring. 
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Figure A2.1 Probability of safety factor and failure modes with different 

slope angle of riprap (α) (left) and channel bed slope (S) (right) 

 

Figure A2.2 Probability values of safety factor and failure modes with different 

grain size (Dm) (left) and water level (hi) (right) 

 

Figure A2.3 Probability values of safety factor and failure modes with different 

diameter of blocks (DB) (left) and sediment transport rate (ms) (right) 

The potential failure probabilities of ripraps have been evaluated not only by Monte 

Carlo Simulation but also by First Order Second Moment analysis method. A sensitivity 

analysis of the case study showed that the most dominant parameters are slope of the 
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channel, height of the riprap and sediment transport rate. They change both the failure 

mechanisms and the probability of each failure modes. However, the diameters of the 

blocks and slope angle of riprap just have an impact on direct block erosion mode. 
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Appendix 3
 

Application of Probabilistic Model: Kleine Emme 

and Brenno 

The application of the model explained in chapter 7 and 8 in two rivers are presented in 

Figures A3.1 to A3.15. Table A3.1 presents the definitions of failure status in different 

colours shown in Figures A3.1 to A3.15. The maps of Kleine Emme from Figure A3.1 to 

A3.7 are based on assumption of result set III, flood shape of November 1979 and as the 

first occurred condition. Table A3.2 shows that each reach is located in which distance 

from downstream of the Kleine Emme river.   

The maps of Brenno from Figure A3.8 to A3.15 are based on assumption of result set II, 

flood shape of November 2002 and as the most occurred condition. Table A3.3 shows 

that each reach is located in which distance from downstream of the Brenno river.   
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Table A3.1 Definitions of failure status by colours used in results for both rivers 

Mechanisms of Failure or Stability Status Colour 

Toe scouring 

Over-topping 

Direct block erosion 

Stable condition with risk level 1 

Stable condition with risk level 2 

Stable condition with risk level 3 

Stable condition with risk level 4 

Stable  

A3.1 Kleine Emme 

Figure A3.1 Kleine Emme Sheets 

A 

B C 

D E 
F 
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Figure A3.2 Kleine Emme Sheet A 
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Figure A3.3  Kleine Emme Sheet B 
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Figure A3.4  Kleine Emme Sheet C 
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Figure A3.5  Kleine Emme Sheet D 
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Figure A3.6  Kleine Emme Sheet E 
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Figure A3.7  Kleine Emme Sheet F 
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Table A3.2 The Kilometrage of Kleine Emme Reach Ids 

 

Reach Id Km  Reach Id Km  Reach Id Km  Reach Id Km 

1 25.000  41 20.850  81 16.735  121 10.600 

2 24.800  42 20.800  82 16.600  122 10.474 

3 24.700  43 20.615  83 16.496  123 10.400 

4 24.616  44 20.500  84 16.400  124 10.200 

5 24.550  45 20.460  85 16.350  125 10.000 

6 24.500  46 20.410  86 16.300  126 9.800 

7 24.400  47 20.325  87 16.250  127 9.752 

8 24.300  48 20.270  88 16.194  128 9.718 

9 24.245  49 20.180  89 16.000  129 9.600 

10 24.184  50 20.115  90 15.911  130 9.425 

11 24.105  51 20.050  91 15.831  131 9.400 

12 24.048  52 19.985  92 15.600  132 9.200 

13 24.000  53 19.818  93 15.400  133 9.144 

14 23.900  54 19.800  94 15.200  134 9.000 

15 23.800  55 19.650  95 15.000  135 8.845 

16 23.700  56 19.500  96 14.918  136 8.800 

17 23.620  57 19.450  97 14.800  137 8.600 

18 23.500  58 19.317  98 14.600  138 8.400 

19 23.455  59 19.200  99 14.400  139 8.200 

20 23.400  60 19.000  100 14.200  140 8.000 

21 23.300  61 18.800  101 14.000  141 7.800 

22 23.200  62 18.750  102 13.800  142 7.600 

23 23.300  63 18.600  103 13.600  143 7.400 

24 23.100  64 18.590  104 13.400  144 7.200 

25 23.000  65 18.576  105 13.200  145 7.100 

26 22.873  66 18.448  106 13.000  146 6.951 

27 22.800  67 18.400  107 12.800  147 6.800 

28 22.785  68 18.277  108 12.762  148 6.600 

29 22.625  69 18.200  109 12.600  149 6.470 

30 22.600  70 18.000  110 12.600  150 6.400 

31 22.439  71 17.800  111 12.400  151 6.200 

32 22.400  72 17.606  112 12.200  152 6.000 

33 22.200  73 17.500  113 12.031  153 5.800 

34 22.000  74 17.400  114 12.000  154 5.600 

35 21.811  75 17.359  115 11.800    

36 21.600  76 17.200  116 11.600    

37 21.460  77 17.065  117 11.400    

38 21.400  78 17.034  118 11.200    

39 21.200  79 16.878  119 11.000    

40 21.000  80 16.800  120 10.783    

 

 



Appendix 3 

170 

A3.2 Brenno 

 

Figure A3.8 Brenno Sheets 

F 

G 

E 

D 

C 

B 

A 
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Figure A3.9 Brenno Sheet A 
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Figure A3.10 Brenno Sheet B 
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Figure A3.11 Brenno Sheet C 
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Figure A3.12 Brenno Sheet D 
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Figure A3.13 Brenno Sheet E 
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Figure A3.14 Brenno Sheet F 
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Figure A3.15 Brenno Sheet G 
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Table A3.3 The Kilometrage of Brenno Reach Ids 

 

Reach Id Km  Reach Id Km  Reach Id Km  Reach Id Km 

1 22.105  41 15.760  81 9.310  121 4.858 

2 22.106  42 15.595  82 9.260  122 4.758 

3 21.830  43 15.595  83 9.160  123 4.658 

4 21.640  44 15.320  84 9.082  124 4.610 

5 21.425  45 15.025  85 8.918  125 4.505 

6 21.235  46 14.870  86 8.748  126 4.433 

9 20.975  47 14.580  87 8.406  127 4.295 

8 20.785  48 14.363  88 8.226  128 4.461 

7 20.980  49 14.252  89 7.858  129 4.395 

10 20.785  50 14.030  90 7.758  130 4.170 

11 20.565  51 13.810  91 7.708  131 4.008 

12 20.340  52 13.632  92 7.658  132 3.862 

13 20.110  53 13.482  93 7.558  133 3.692 

14 19.860  54 13.345  94 7.458  134 3.573 

15 19.640  55 13.260  95 7.358  135 3.479 

16 19.440  56 13.140  96 7.258  136 3.373 

17 19.240  57 12.960  97 7.158  137 3.274 

18 19.050  58 12.805  98 7.058  138 3.175 

19 18.925  59 12.650  99 6.958  139 3.097 

20 18.742  60 12.490  100 6.858  140 2.903 

21 18.585  61 12.340  101 6.758  141 2.753 

22 18.415  62 12.155  102 6.658  142 2.556 

23 18.225  63 11.975  103 6.558  143 2.302 

24 18.155  64 11.765  104 6.458  144 2.086 

25 18.055  65 11.635  105 6.358  145 1.964 

26 17.866  66 11.495  106 6.258  146 1.768 

27 17.790  67 11.345  107 6.258  147 1.549 

28 17.720  68 11.180  108 6.158  148 1.420 

29 17.580  69 11.070  109 6.058  149 1.313 

30 17.433  70 10.915  110 5.958  150 1.200 

31 17.245  71 10.735  111 5.858  151 1.100 

32 17.105  72 10.565  112 5.758  152 0.959 

33 16.920  73 10.440  113 5.658  153 0.846 

34 16.720  74 10.330  114 5.558  154 0.757 

35 16.535  75 10.175  115 5.458  155 0.666 

36 16.495  76 10.025  116 5.358  156 0.558 

37 16.375  77 9.900  117 5.258  157 0.451 

38 16.235  78 9.760  118 5.158  158 0.320 

39 16.050  79 9.608  119 5.058  159 0.229 

40 15.885  80 9.465  120 4.958  160 0.092 
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