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Abstract

In order to be able to bear the risk they are taking, insurance companies have to set aside a certain
amount of cushion that can guarantee the payment of liabilities, up to a defined probability, and
thus to remain solvent in case of bad events. This amount is named capital. The calculation of
capital is a complex problem. To be sustainable, capital must consider all possible risk sources that
may lead to losses among assets and liabilities of the insurance company, and it must account for
the likelihood and the effect of these bad (and usually extreme) events that could occur to the risk
sources. Insurance companies build models and tools in order to perform this capital calculation.
For that, they have to collect data, build statistical evidence, build mathematical models and tools
in order to efficiently and accurately derive capital.

The papers exposed in this thesis deal with three major difficulties. First, the uncertainty be-
hind the choice of a specific model and the quantification of this uncertainty in terms of additional
capital. The use of external scenarios, i.e. opinions on the likelihood of some events happening,
allows to build a coherent methodology that make the cushion more robust against wrong model
specification. Second, the computational complexity in using these models in an industrialized
environment, and numerical methods available for increasing their computational efficiency. Most
of these models cannot provide an analytical formula of capital. Consequently, one has to approx-
imate it via simulation methods. Considering the high number of risk sources and the complexity
of insurance contracts, these methods can be slow to run before providing a reasonable accuracy.
This often makes these models unusable in practical cases. Enhancements of classical simulation
methods are presented in the aim of making these approximations faster to run for the same level
of accuracy. Third, the lack of reliable data and the high complexity of problems with long time
horizons, and statistical methods for identifying and building reliable proxies in such cases. A
typical example is life-insurance contracts that imply being exposed to multiple risks sources over
a long horizon. Such contracts can in fact be approximated wisely by proxies that can capture the
risk over time.

Key words: model uncertainty, scenario aggregation, statistical divergence, importance sampling,
quasi-random numbers, copula, dependence models, conditional distribution method, risk measure,
expected shortfall, value-at-risk, tail event, replicating portfolio, Swiss Solvency Test, Solvency
capital, insurance, asset-liability portfolio
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Résumé

Afin de supporter le risque qu’elles prennent, les companies d’assurance doivent conserver un coussin
de sécurité qui a pour but de guarantir, jusqu’à une certaine probabilité, le remboursement de son
passif d’assurance et donc de rester solvable en cas d’évènements adverses. Ce coussin de sécurité
est appelé le capital. Le calcul de ce capital est un problème complexe. Afin qu’il soit approprié,
il doit être calculé en prenant en compte toutes les sources de risque parmis l’actif et le passif de
l’assurance, qui pourraient provoquer des pertes. De plus, il doit prendre en compte la probabilité
et l’effet de ces évènements adverses (souvent extrêmes). Pour cela, les compagnies d’assurance
construisent des modèles et des outils afin de calculer ce capital. Plus précisemment, elles collectent
des données, les analysent et en déduisent des évidences statistiques, construisent les modèles sur
ces évidences afin de calculer de manière efficiente et précise le capital requis.

Les papiers de recherche présentés dans cette thèse se concentrent sur trois difficultés majeures.
Premièrement, l’incertitude dans le choix d’un modèle spécifique et la quantification de cette in-
certitude en terme de capital supplémentaire. Des opinions exogènes sur la probabilité de certains
évènements nous permettent de construire une méthode afin de rendre ce coussin de sécurité plus
robuste contre de possibles erreurs faites dans la spécification de modèle. Deuxièmement, la com-
plexité de l’utilisation de ces modèles dans une réalité de production industrielle et les méthodes
numériques visant à accrôıtre l’efficacité de ces outils. La plupart de ces modèles ne permettent
pas de calculer le capital de manière analytique et exacte. L’utilisation de méthodes de simulations
numériques est donc nécessaire. Au vue du grand nombre de sources de risque et de la complexité de
certains contrats d’assurance, ces méthodes ne peuvent souvent fournir un résultat d’une précision
acceptable avant un temps de calcul important, de telle sorte que leur utilisation pratique est par-
fois remise en cause. Des améliorations de ces méthodes numériques sont présentées afin de les
accélérer de manière importante tout en conservant un niveau de précision élevé. Finalement, le
manque de données utilisables et la complexité élevée de certains problèmes avec un horizon de
temps important, et les méthodes statistiques afin d’identifier et de construire des approximations
suffisamment précises pour de tels cas. Un exemple typique serait un contrat d’assurance vie qui
expose la compagnie d’assurance à divers risques durant un horizon de temps important. De tels
contrats peuvent en fait être approximés par des proxies qui capturent l’évolution du risque au
cours du temps.
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Model Uncertainty and Scenario Aggregation, [20]
Mathematical Finance, forthcoming.

B Philipp Arbenz, Mathieu Cambou, Marius Hofert
An Importance Sampling Approach for Copula Models in Insurance, [4]
Submitted

C Mathieu Cambou, Marius Hofert, Christiane Lemieux
Quasi-Random Numbers for Copula Models, [22]
Published in Statistics and Computing

D Mathieu Cambou, Damir Filipović
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Introduction

The role of an insurance company consists in relieving individuals, groups and institutions of dam-
age to property and loss of life caused by abnormal events (Property and Casualty Insurance) and
of diseases and death while providing pensions and annuity saving plans (Life Insurance). Risk is
the essential sustaining element of this industry. Insurance companies are compensated for taking
the risk to face the uncertain outcome of the insurance contracts they are underwriting. This com-
pensation is what the insured parties are paying to (partially) transfer this risk. Also considering
the assets that these insurance companies hold, the nature of the risks that they bear on their
balance sheets can potentially be highly heterogeneous. Typically, it depends on the type of the
underlying event that drives the result of the outcome (e.g. car accidents, loss reserves, storms,
flooding, interest rates, credit spreads,. . . ). It also depends on the type of contract in which the
firm is engaged (e.g. derivatives, reinsurance contracts, alternative risk transfers,. . . ). The un-
derstanding and the quantification of these risks are crucial for, e.g., underwriting and valuing
insurance contracts, renewing and expanding the insurance exposure in a cost-efficient manner,
deriving regulatory capital cushion in order to fulfil minimum solvency requirements, managing di-
versification and the impact of rare events,. . . These questions usually require a particular approach
to modelling and their answers depend on a particular quantification of risk. However, they all have
the same characteristic: the risks of these exposures arise from a finite collection of sources that
are common to all exposures. For example, change in interest rates may simultaneously affect life
insurance contracts and fixed income assets while storms would typically impact several insurance
and (re)insurance contracts on the balance sheet of the same company.

These risk sources do not change in an isolated and independent manner. For example credit
worthiness of debtors tend to decrease when interest rate increase while it is sometimes observed
that car accidents increase following storms or flooding. In consequence, we cannot assume these
risks sources to be independent. The modelling of risk in insurance therefore stands on an important
probabilistic and statistical field: the joint modelling of random events, i.e. the joint modelling of
the risk sources. A good overview of the applications of this field in finance and insurance can be
found in [89]. It requires modelling the marginal behaviour of these risk sources, i.e. how they
behave individually isolated from the other sources, and the dependency structure between them.
When setting up a joint modelling framework in place, companies adopt a statistical approach, i.e.

• collecting, cleaning and analysing the data,

• building, comparing, selecting and possibly fitting models using these data,

• doing inference, predictions and estimations based on these models.

Ultimately, the derivations made by these models can serve different purposes. The focus of this
thesis will be on the derivation of capital.
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Capital is a risk-adjusted value requirement on the current balance sheet of an insurance com-
pany to be economically or regulatory acceptable. Capital is calculated by applying a risk measure
to the profit and loss distribution of the asset-liability portfolio over a time horizon that is typically
one year. Risk measures are quantifications of outcomes when facing future and uncertain events.
In general, it is meant that the outcomes are the ones with adverse effects. In the insurance and
financial industries, these adverse effects are typically losses incurred by insurance and financial
exposures. [5] is an early reference for the goal of risk measures in these industries and the funda-
mental properties they should have. Risk measures are typically used for deriving capital, managing
risk and evaluating fair compensations for underwriting insurance contracts.

Capital can be economic capital or regulatory capital. Economic capital, in a nutshell, is an
amount that can be invested in risky but liquid assets an insurance company has to put aside, as a
cushion against future adverse events. These events are typically tail scenarios in the distribution
of balance sheet over specific time horizons, typically 1 year. Hence the use of risk measures. The
calculation of economic capital is mostly guided by risk assessment and methodologies that are
internal to the insurance company, with an internal view of risk exposures. The aim of this capital
cushion is to remain solvent. This cushion has a cost. Hence companies derive metrics such as
return on risk-adjusted capital (RORAC) or capital contribution in order to assess the profitability
of business lines, contracts, projects,. . . Regulatory capital’s primary goal is to protect policyholders
against events that may affect the solvency of the insurance company. The methodology is typically
guided and reviewed by the regulators. It is shaped from the view of the regulators that typically
take a more global view of risk exposures and have access to more industry data in order to account
for the systemic aspect of financial and insurance risks. Examples of regulatory capital can be found
in e.g. [24], [52].

Several challenges arise in deriving capital. The literature of mathematics for insurance and
finance is now providing a rich content for addressing these challenges. We are drawing attention
to the following ones:

(i) Although a model is chosen with all the available information and the best knowledge of the
modellers, it may be misspecified. Due to the dimensionality of the problems that are being
solved, it may happen that models are inappropriate although they show good fit to empirical
data or attractive intuitive explanation. The derivation of risk measures based on statistical
models may therefore not account for this uncertainty and therefore gives an underestimation
of the true capital needed for maintaining solvency.

(ii) Even if risk measures and capital are well defined, their derivations are often cumbersome.
Large obstacles are

• the complexity of the risk to quantify (e.g. the risk of highly non-linear insurance
contracts that depend on several risk sources, the distribution of risk of these insurance
contracts over time,. . . ),

• the complex and highly non-linear dependence between the various risk sources,

• the computing resources demanded by high-dimensional modelling frameworks and the
rarity of the events for which they intend to capture the impact.

A commonly used approach for deriving estimates of a quantity that cannot be derived ana-
lytically is the Monte–Carlo approach. The main drawback of these computational methods
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is that their convergence rate to the true result may be poor, i.e. the runtime for obtaining an
estimate with a reasonable error could be extremely long. As a result, insurance companies
sometimes run simulations for several hours, or days, and consume high computing resources
in order to obtain reasonably accurate results for problems that are typically difficult to
implement in parallel.

These two subjects are addressed in this thesis across four papers. More precisely:

• Paper A gives an introduction to joint modelling of risk in insurance, to capital calculation
and proposes an approach to bring robustness against model uncertainty.

• Papers B and C introduce variance reduction techniques for capital calculation in a particular
joint modelling framework and study two specific methods, namely importance sampling and
quasi-random sampling.

• Paper D proposes an alternative method to a highly involved nested Monte–Carlo problem.
The Replicating Portfolio approach is not a new concept, however it is presented with an
extensive improvement.

While Paper A is a generic improvement of modelling frameworks, Papers B-C give a contribution
to the numerical methods that can be used in order to derive capital from models. Paper D applies
to a specific context of capital calculation. The following gives a first introduction to these papers.

Model Uncertainty and Scenario Aggregation

The design of a model for deriving capital usually raises questions of appropriateness at many levels.
The choices of the marginal models in order to model events individually or of the dependency
structure in between these events are of typical concerns and are challenged by regulators, auditors
or model validation teams. The inherent ambiguity in these choices is usually referred as model
uncertainty. Paper A provides a coherent method for incorporating external views on scenarios into
a model. The method is called scenario aggregation. It originally aims at supporting regulatory
purposes, such as stress testing. It can in fact serve as a generic device in order to address model
uncertainty.

A model in insurance can be formalized as a loss random variable L for a given time horizon
defined on a probability space (Ω,F ,P), which assigns to any possible state of the world ω ∈ Ω a
loss L(ω). The probability measure P and the random variable L are specific for each insurance
institution. While Ω can be viewed as a universal object, one can argue that the σ-algebra F is
not, as different institutions may not access the same information. We assume that F is universal,
taking F to be the σ-algebra generated by all institution-specific σ-algebras and an appropriate
extension of P if needed. The aim of the scenario aggregation method is to reduce the uncertainty
in the specification of P. Section 2 of Paper A gives a deeper introduction to notion of model for
capital calculation, in an insurance context.

Scenario are events, that are often given as narrative descriptions of state of the world. Math-
ematically, this event is a set S ∈ F . A view on such scenario S is a requirement of the form
Q[S] ≥ c, for some target probability c, to be satisfied by any probability measure Q. If a model
P does not satisfy this view, the method would require to replace it by some alternative model
Q which satisfies it. Under the premise that models are designed with the best knowledge of the
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modeller, the objective is then to choose the alternative model Q as close as possible to P. The
distance of Q to P is measured through a statistical tool, called divergence and noted d(Q,P).
Aggregating the views on scenarios can now be defined as finding a solution of the optimization
problem

minimize d(Q,P)

subject to views.

The paper details the coherent aspect of the method and puts a strong emphasis on the fact that
it satisfies criteria that are particularly relevant from a regulatory point of view. In particular, it
boils down to a finite-dimensional convex optimization problem which is a highly tractable numer-
ical exercise. The alternative model resulting from the minimum divergence scenario aggregation
is an interpolation between the original model and the views within minimal distance from the
original model. In a regulatory framework, it gives remote control to the regulators over the capital
requirements of insurance companies as he can tune the trade off between idiosyncrasy (companies
own model) and standardization (regulator’s views) via increasing the number of scenarios.

Variance reduction methods for copula models

For capital calculation, the quantity of interest can often be written E[Ψ0(X)], where X =
(X1, . . . , Xd) : Ω → Rd is a random vector with distribution function H on a probability space
(Ω,F ,P) and Ψ0 : Rd → R is some measurable function. Note that, as per the above notation, X
could be the losses of each business lines of an insurance company and thus L = 1TX could be the
loss of the entire company. Since components of X are typically dependent, a way to account for
this dependence is to model the distribution of X as

H(x) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd,

where Fj(x) = P(Xj ≤ x), j ∈ {1, . . . , d}, are the marginal distribution functions of H and
C : [0, 1]d → [0, 1] is a copula, i.e., a distribution function with standard uniform univariate margins.
Such a dependence model allows one to separate the dependence structure from the marginal
distributions.

The estimate of interest can be rewritten E[Ψ0(X)] = E[Ψ(U)] where U = (U1, . . . , Ud) : Ω→
Rd is a random vector with distribution function C, Ψ : [0, 1]d → R is defined as Ψ(u1, . . . , ud) =
Ψ0(F

−
1 (u1), . . . , F

−
d (ud)), and the F−

j (p)’s are the marginal quantile functions. If C and the Fj ’s
are known, we can use Monte Carlo simulation to estimate E[Ψ(U)]. For a (pseudo-)random sample
{Ui : i = 1, . . . , n} from C, the classical Monte Carlo estimator of E[Ψ(U)] is given by

1

n

n∑
i=1

Ψ(Ui) ≈ E[Ψ(U)].

The accuracy of this estimator can be given in terms of the estimation error. For some error
norm ‖ · ‖e, Monte Carlo analysis have to be run in a setting such that∥∥∥∥∥ 1

n

n∑
i=1

Ψ(Ui)− E[Ψ(U)]

∥∥∥∥∥
e
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is sufficiently small. In a classical approach this essentially means having a reasonably high sampling
size n. Computation resource (CPU, memory, . . . ) and time are increasing functions of n. In some
practical situations n is such that the computation time counts in days for reaching a given error
acceptance level, n is in fact itself an increasing function of the problem dimension d, which is often
high in insurance related problems.

In Paper B, we propose an importance sampling method in order to reduce the estimation error
of the Monte–Carlo method for a given sampling size n. As typical for capital calculation, we
focus on problems where Ψ0 mostly depends on the tail of the distribution of X. This is the case
where Ψ is large only when at least one of the components of X is large. These are rare-event
problems, which correspond to a region in the sampling space of X that has a small probability of
occurrence. In such problems, the estimation error has a rate of convergence that is even slower
than most problems. The idea of importance sampling is to find a random variable V : Ω→ [0, 1]d

such that E[Ψ(U)] = E[Ψ(V )w(V )] for some weight function w : [0, 1]d → [0,∞), and such that V
concentrates its samples in the region of interest for our specific problem. The paper details how to
build the distribution FV of this alternative random variable, as a mixture of copula distribution,
and how to efficiently sample it (including closed-form sampling scheme for specific copula families
for C). We measure the reduction in estimation error that allows this approach through case studies
that illustrate typical insurance problems in realistic settings.

In Paper C, we apply Quasi Monte-Carlo (QMC) methods to our copula setting. The underlying
idea of QMC methods is to replace a (pseudo) random sample {Ui : i = 1, . . . , n} by point {vi : i =
1, . . . , n} from a deterministic sequence of points in the unit hypercube. In fact, it can be observed
that random samples {Ui : i = 1, . . . , n} will inevitably show regions of [0, 1]d which are lacking
points, and other areas which contain more samples than expected by the uniform distribution.
To reduce this problem, quasi random number generators (QRNGs) do not aim at mimicking i.i.d
samples but instead at producing a homogeneous coverage of [0, 1]d. The homogeneity of a sequence
of points over the unit hypercube can be measured by its discrepancy1. The estimation error is
thus also deterministic, and it can be shown that is satisfies∣∣∣∣ 1n

n∑
i=1

Ψ(vi)− E[Ψ(U)]

∣∣∣∣ ≤ V (Ψ)D∗({vi : i = 1, . . . , n}), (1)

where V (Ψ) denotes the total variation of the function Ψ and D∗({vi : i = 1, . . . , n}) the discrep-
ancy of the set. This inequality shows that the efficiency of a QMC method may actually strongly
depend on certain properties of Ψ, that is not a feature of standard Monte-Carlo method. This
paper is of particular relevance since QMC methods have been widely used for problems where the
random variables of interest were independent. In such cases, the transformation of the uniform
sample points into observations from the desired model can be easily obtained by transforming each
component of the uniform sample ploints using the inverse transform method, which is deemed to
work well with QMC in part because of its monotonicity, and also because it corresponds to an
overall one-to-one transformation from [0, 1)d to Rd. In our copula setting, the conditional distribu-
tion method (which is the inverse of the copula-based version of the Rosenblatt transform) appears
to be a good choice to use with quasi random numbers, as it is the direct multivariate extension
of the inverse transform. The paper details several of these approaches, with a particular emphasis
on the CDM approach. In addition, the paper derives for these sampling methods smoothness

1This relates to the error incurred by representing the Lebesgue-measure of subsets of the unit hypercube by the
fraction of points in these subsets.
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conditions on the function Ψ in order to satisfy the above bound for the error. The superiority of
the QRNGs applied to our copula setting is over the pseudo random approach is also illustrated
with several examples, including simulations addressing an application in the realm of insurance.

Replicating Portfolio Approach to Capital Calculation

Paper D deals with a challenging problem that arises mainly in life insurance. In particular for the
calculation of regulatory capital, insurance companies need to model the profit and loss distribution
of the asset-liability portfolio on a one-year time horizon while most of liabilities, such as life
insurance contracts, have uncertain cash flows that run up to 40 years and beyond. The issue
is therefore that no observable data would be available for deriving the change in value of these
contracts over a one-year time horizon. For that, one could think of nesting Monte-Carlo samples of
these cash-flow values over the years until contract termination. Since contract terms are typically
long, nested simulations are highly computationally costly and in most cases not feasible. The
replicating portfolio (RP) approach consists in projecting the discounted losses of the asset-liability
portfolio, at terminal time T , onto a set of factors, usually generated by a set of financial assets,
whose discounted profit and loss processes can be efficiently simulated.

Writing Z for the terminal discounted loss of the liability and Vt for the discounted value process
of replicating assets, we propose to use

L1 = V1, and L2 = V1 + Z − VT ,

as two possible approximations for the one-year discounted loss of the asset-liability portfolio.
When estimating capital requirements with such proxies, two main sources of error could mate-

rially deteriorate the accuracy of our estimate: the approximation error from the approximation of
liability losses with financial instruments, and the Monte-Carlo error from the use of finite-sample
estimates in order to derive capital that cannot be obtained in closed form. Paper D shows that
these proxies are consistent in an asymptotic setting. In addition, the materialities of these two
sources of error are compared. The current standard RP approach adopted by the industry is
static, in the sense that the proxies are derived only from fixed time value. The insurance market
is incomplete under static replication with financial assets, for two reasons. First, there are more
factors driving insurance cash flows than there are traded financial instruments for their replication.
Second, insurance cash flows are nonlinear in the underlying financial instruments. The paper shows
that a dynamic and path-dependent RP significantly outperforms the industry standard static RP.

Statement of Originality

I hereby certify that the four papers of this thesis are the results of my own work, where some
parts are the result of collaborations with my thesis supervisors Prof. Damir Filipović, as well as
my co-authors Dr. Philipp Arbenz, Dr. Marius Hofert and Prof. Christiane Lemieux. No other
person’s work has been used without due acknowledgement.
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Model Uncertainty and Scenario Aggregation∗

Mathieu Cambou† Damir Filipović‡

May 15, 2015

Abstract

This paper provides a coherent method for scenario aggregation addressing model uncer-
tainty. It is based on divergence minimization from a reference probability measure subject
to scenario constraints. An example from regulatory practice motivates the definition of five
fundamental criteria that serve as a basis for our method. Standard risk measures, such as
value-at-risk and expected shortfall, are shown to be robust with respect to minimum diver-
gence scenario aggregation. Various examples illustrate the tractability of our method.
Key words: model uncertainty, scenario aggregation, expected shortfall, value-at-risk, statistical
divergence, Swiss Solvency Test

1 Introduction

The last decades have seen strong developments in the statistical measurement of risk. The quanti-
tative methods used by banks and insurance companies for risk management serve many purposes
such as enterprise risk management, pricing, capital allocation or reporting to regulators. The
latter have required regulated institutions to implement and document internal models that should
be used to report their amount of required capital which is bearing the risk and to show that they
would remain solvent in case of extreme scenarios. Although the risk modeling methodology of an
institution is reported and subject to approval from the regulators or internal model validation,
uncertainty on the validity of the model remains inherent and should therefore be challenged. The
risk of inappropriate modeling can usually be raised at many levels. For example, in a factor model,
one could question a specific choice of risk factors, the marginal distribution of these risk factors or

∗We thank Matthias Aellig, David Babbel, Alexis Bailly, Rama Cont, Freddy Delbaen, Kabir Dutta, Paul Em-
brechts, Jan Friedrich, Hansjörg Furrer, Jean-Francois Guérin, Andreas Haier, Stefan Jaschke, Thorsten Pfeiffer,
Alexander Schied, Michael Schmutz, Ruodu Wang, three anonymous referees, the editor (Jerome Detemple), and
participants at the FINMA Workshop on Scenario Aggregation 2012 in Bern, the 2013 ASTIN Colloquium in The
Hague, the 2013 Workshop on Indices of Riskiness and New Risk Measures at ETH Zurich, the 2013 IMA Conference
on Mathematics in Finance in Edinburgh, the De Finetti Risk Seminar in Milano, Vienna Graduate School of Finance,
the 6th General AMaMeF and Banach Center Conference in Warsaw, RiskMinds Insurance 2014 in Amsterdam, the
expert forum on Risk Measures and Regulation in Insurance 2014 in Zurich, the 8th World Congress of the Bache-
lier Finance Society 2014 in Brussels, the Swiss Re Dependence Day 2014 in Zurich, the Journées Actuarielles de
Strasbourg 2014 for comments. As SCOR fellow, Mathieu Cambou thanks SCOR for financial support.
†EPFL, Institute of Mathematics, Station 8, EPFL, 1015 Lausanne, Switzerland

email: mathieucambou@gmail.com
‡EPFL and Swiss Finance Institute, Quartier UNIL-Dorigny, Extranef 218, 1015 Lausanne, Switzerland

email: damir.filipovic@epfl.ch

13



the dependence structure between them (see, e.g., [41, 43] for the last aspect). In many examples of
risk management processes, the model will be used to estimate risk measures that greatly depend
on the tail of the loss distribution and one should therefore check that this part of distribution is
appropriately modeled.

This paper provides a coherent method for incorporating external views on scenarios into an
internal model. This scenario aggregation method aims at supporting regulatory purposes, such as
stress testing, and serves as a device to address internal model uncertainty.

A clear distinction has been made in the literature, in the footsteps1 of [75], between the
notions of risk and uncertainty. The former relates to the unknowns with respect to future events
for which probabilities are known with certainty, while the latter notion happens whenever these
probabilities are unknown. Although the wording model risk is broadly used in both the academic
and industry literatures, it is usually meant to account for uncertainty and model uncertainty should
be equivalently used. For an exhaustive review of the literature on quantifying model uncertainty,
see [28, Section 2]. Our concern in this paper is the model uncertainty and the way it can be
challenged using views on scenarios.

In the nineties, the method of stress testing was introduced by (for) risk managers to provide
more understanding on the effect of (extreme) stress scenarios on portfolios of insurance or financial
contracts. The definition of stress testing was originally discussed in [84, 121, 79]. These stress
tests were not meant to quantify any model uncertainty as they were initially thought as a tool to
identify scenarios on the risk factors state space that could lead the institution to insolvency and
to evaluate their impact. It is only later, see, e.g, [11, 93, 113, 94, 81, 38], that probabilities were
assigned to the stress test events and were folded into the reference model in order to account for
uncertainty.

Although scenario aggregation can be used by any risk manager, or potentially any person that
would like to challenge a model, it is a technique that regulators can leverage to formulate universal
(i.e., non entity-specific) requirements on internal models. Currently, each regulator has its own
view on how stress scenarios should be defined and whether they should be aggregated or not.
On the banking side, the Basel Committee on Banking Supervision, see e.g, [8], requires banks to
evaluate stress scenarios which can then be used to set associated capital charges, see e.g., [9]. On
the insurance side, although Solvency II requires to evaluate stress scenarios, see [24], it does not
require the aggregation step. On the other hand, the scenario aggregation is a predominant point
of the Swiss Solvency Test (SST) implementation, see [52].

This paper provides a new scenario aggregation framework, with a particular emphasis on
regulatory purposes. The mathematical framework is presented in Section 2. A practical example
of an existing scenario aggregation method, the SST, is exposed in Section 3, which serves as a basis
to shape important criteria that such a method should satisfy. In Section 4, we formally define the
minimum divergence scenario aggregation method. We show in Section 5 that it is equivalent to
solving a finite-dimensional convex optimization problem. We elaborate on the robustness of the
standard risk measures with respect to this method in Section 6. In Section 7, we show how to
solve the convex optimization problem associated and we give examples of some explicit solving.
In Section 8 we study the asymptotic properties of the minimum divergence aggregation when the

1“The practical difference between the two categories, risk and uncertainty, is that in the former the distribution of
the outcome in a group of instances is known (either through calculation a priori or from statistics of past experience),
while in the case of uncertainty this is not true, the reason being in general that it is impossible to form a group of
instances, because the situation dealt with is in a high degree unique.”, see Chapter VIII in [75].
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number of scenarios increases. An alternative method is presented in Section 9. For conciseness of
the paper, all figures are reported in Appendix A and proofs in Appendix B.

2 Internal models

We place under the umbrella of internal model any model developed by an institution that is
employed for risk management purposes. An internal model is formalized as a loss random variable
L for a given time horizon defined on a probability space (Ω,F ,P), which assigns to any possible
state of the world ω ∈ Ω a loss L(ω). The probability measure P and the random variable L are
institution specific. While Ω can be viewed as a universal object, one can argue that the σ-algebra F
is not, as different institutions may not access the same information. We assume that F is universal,
taking F to be the σ-algebra generated by all institution specific σ-algebras and an appropriate
extension of P if needed. Typically, for solvency models in insurance and financial institutions,
the time horizon is fixed to 1 year. Scenario aggregation will potentially result in modifying the
probability measure P, or alternatively, the loss distribution function FL(x) = P[L ≤ x].

We assume that the loss mapping L : Ω → R is not subject to model uncertainty. As L is
industry specific, from a regulatory perspective, it would be more difficult to design unified and
industry-wise supervision on L. Note however that the specification of L is an important issue
as it depends on the underlying accounting standards, such as actuarial accounting standards for
insurance products or mark-to-market accounting for financial securities. The financial crisis 2007–
08 has shown that mark-to-market accounting has its limits in times of market illiquidity, see
e.g. [14].

Remark 2.1. The description of internal models is general enough so that it can fit both insurance
and banks. Although this paper mainly tends to focus on the former, the model uncertainty which
comes with the specification of P arises in both industries.

Once the internal model is specified, the notions of quantiles and risk measures are necessary
for evaluating the risk of losses that the institution is exposed to. For a random variable X defined
on (Ω,F ,P), denote by

q−α (X) = inf {x : P[X ≤ x] ≥ α} ≤ inf {x : P[X ≤ x] > α} = q+α (X),

the left and right quantiles, respectively, at level α. In addition, we recall the definition of the
risk measures used for the required capital calculation. For more details and references on risk
measures, we refer to [51, Chapter 4].

Remark 2.2. In this paper, we follow the convention that the argument X refers to the loss and
−X to the profit, which is opposite in sign to [51].

Definition 2.3. The value-at-risk at level α ∈ (0, 1), VaRα(X), is defined as the left quantile at
level α of X, that is VaRα(X) = q−α (X).

Remark 2.4. The interpretation one must have of VaRα is the level that the loss will not exceed
with a probability α. In practice, if the loss distribution is sampled, then the (empirical) VaR99% one
will compute from, say, 100 realizations is the 99th largest observation. In that case, the (empirical)
right quantile would be the 100th largest.
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Definition 2.5. The expected shortfall at level α ∈ (0, 1), ESα(X), is defined as

ESα(X) =
1

1− α
E
[
(X − qα)+

]
+ qα,

for qα ∈ [q−α (X), q+α (X)], any α-quantile of X.

We note that Definition 2.5 is independent of the choice of the α-quantile qα ∈ [q−α (X), q+α (X)].
The expected shortfall can also be defined as an integral on (0, 1) of the quantile function. As it
can be shown that this is equivalent to ours, see [51, Lemma 4.51], we will work with Definition 2.5
for convenience.

The scope of risk management within insurance and other financial institutions is large, see
[89] as a quantitative reference. For the sake of conciseness and coherence with many regulatory
obligations, we will discuss the calculation of capital that the institution must hold as a buffer
against possible extreme losses over a fixed time horizon. This amount of capital can, for example,
be computed via risk measures such as the value-at-risk at level α, VaRα(L), or the expected
shortfall at level α, ESα (L). When this capital calculation is required by the regulators, it comes
with a specific risk measure and level of confidence. For example, the required capital asked to be
maintained by the SST is given by ESα (L) with α = 99%, see [52], while the Solvency II directives
advocate the use of VaRα (L) with α = 99.5%. We will avoid the discussion of differences between
the different notions of required capital defined by the different regulators, and we will speak in
full generality of required capital as a function of a risk measure applied to L.

In this paper, we focus on the uncertainty in the choice of P, through scenario aggregation and
we discuss the impact of changing the internal model on the capital calculation. An example that
has already been put in place by the Swiss Financial Market Supervisory Authority (FINMA) is
discussed in the next section.

3 A practical example: Swiss Solvency Test

A practical example will help to shape the main criteria we shall use for designing a scenario
aggregation method. Within the prudential framework set by the FINMA for the supervision of
insurance companies lies the Swiss Solvency Test (SST), see [52] for technical documentation. One
SST requirement is to evaluate a given list of d scenarios that have a small probability of occurrence,
and that would have a significant effect on the annual loss L. Each scenario is a narrative description
of a potential, and typically extreme, event. This includes, market crashes, pandemic or natural
catastrophes, etc. If d scenarios are prescribed, scenario i comes with an auxiliary probability weight
ci set subjectively by the regulator, for i = 1, . . . , d. Each scenario causes an extra-ordinary loss
zi = E[L | Scenario i] − E[L] that has to be calculated by the institution’s actuary. The stressed
loss distribution function conditional on scenario i is then set to be FL(x − zi). The scenario
aggregation is done via mixing of the shifted distributions, which leads to the following alternative
loss distribution

F SST
L (x) = c0 FL(x) +

d∑
i=1

ci FL(x− zi),

where c0 = 1−
∑d

i=1 ci is the implied probability weight for a “normal” unstressed year. We note
that the scenario aggregation is on the level of the loss distribution FL, not on P. In some specific
cases, the effect on P is tractable. For example, when L is a linear function of a set of risk factors,
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mixing shifted loss distributions is equivalent to mixing shifted risk factor distributions, see [57,
Lemma 1].

By the law of total probability it follows that F SST
L (x) is the distribution function of L + Z,

where Z is a discrete random variable, independent of L, that takes values z0 = 0, z1, . . . , zd with
probabilities ci, i = 0, . . . , d, respectively. Using this representation, the following lemma gives
bounds on ESα (L+ Z).

Lemma 3.1. Let X be an integrable random variable independent of L. Then we have

ESα(L) + E[X] ≤ ESα(L+X) ≤ ESα(L) + ESα(X).

The method described above on the incorporation of scenarios in the loss distribution raises a
few questions and motivates the following criteria that would be meaningful from a regulatory point
of view. These criteria tend to follow an overall regulatory rationale and they should be naturally
encoded in the mathematical method for scenario aggregation:

(1) No penalty for conservative internal models. The SST scenario aggregation method presented
in this section will tend to penalize any model to which it is applied, including the most
conservative ones. Indeed, we have from Lemma 3.1 that ESα (L+ Z) > ESα (L) as long as
E[Z] > 0, so that the required capital is increased even if scenarios are not tail loss events for
the insurer. The intent of a regulatory prudential framework is rather to control and validate
internal models, and to apply penalties only if it is not judged satisfactory according to the
regulator.

(2) Focus on tail loss events. The scenario impact in the SST method is modeled as a shift of the
loss distribution, regardless whether or not the scenario is a tail loss event for the insurer. As
capital requirements are calculated according to (tail-)risk measures, see Section 2, the tail of
the loss distribution should require more scrutiny than its mean.

(3) Control over distance from internal model. In order to be able to give weight to the internal
model, one needs to control how far the alternative internal model will be from the original
one. In the SST method, there is no control, a priori, on how far F SST

L (x) is from FL(x).

(4) Robustness of capital requirements. In order to ensure the stability of the industry, capital
requirements should be robust with respect to modifications of the internal model by scenario
aggregation. In the SST method, there is no control, a priori, on the robustness of capital
requirements with respect to scenario aggregation.

(5) Tractability. It is understood that any scenario aggregation method to be implemented in
practice should be computationally tractable, such as is the case for the SST method.

In the next section, we propose a new method for scenario aggregation that incorporates the
above criteria.

4 Scenarios, views and aggregation

The point of departure is a moment’s reflection on stress tests. A stress test is based on a selected
generic state of the world ω̂ ∈ Ω, which results in a specific loss of ` = L(ω̂). Interpreted as
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null hypothesis, the internal model P is said to pass the stress test if it is not rejected based on
the “observed” loss ` for a pre-specified significance level of c, e.g. c = 1%. In terms of the tail
loss scenario S = {L ≥ `}, the internal model is accepted whenever it satisfies ` ≤ q+1−c(L), or
equivalently P[S] ≥ c.2

As ` could possibly be unobserved, one can interpret this requirement as an expert view on
the probability of occurrence of scenario S. It means that the internal model must be conservative
enough that the probability assigned to the event of a loss larger than or equal to ` be at least c. If
P is rejected, it needs to be replaced by some alternative probability measure Q which satisfies the
view, Q[S] ≥ c. This leads to the following formalization, which is in the spirit of [57, Definition
3].

Definition 4.1. A view on a scenario S ∈ F is a requirement of the form Q[S] ≥ c, for some
target probability c ≥ 0, to be satisfied by a Q ∈ M, where M denotes the set of all probability
measures on (Ω,F).

We shall make a distinction between generic scenarios S ∈ F and insurer specific tail loss
scenarios which are of the form S = {L ≥ L(ω̂)} for some generic sample point ω̂ ∈ Ω. Although
the input ω̂ of a tail loss scenario is generic, its definition is specific to the insurer as it involves
the evaluation of the loss mapping L. The aforementioned stress test boils down to the view
P[L ≥ L(ω̂)] ≥ c, for the target probability c equal to the significance level of the test, to be
satisfied by the internal model P. Whenever the internal model P satisfies the view for a target
probability c ≥ 1− α, and is such that q−α (L) = q+α (L), then

VaRα(L) ≥ L(ω̂).

Hence the internal model passes the stress test only if the required capital computed as value-at-risk
VaRα(L) can absorb the loss L(ω̂) resulting from the sample point ω̂.3

The following lemma gives an analogous interpretation of a view in terms of expected shortfall.

Lemma 4.2. Let S ∈ F be a scenario with target probability c ≥ 1 − α. If P satisfies the view
P[S] ≥ c, then

ESα(L) ≥ E[L|S].

Hence the required capital computed as expected shortfall ESα(L) can absorb the conditional expected
loss E[L|S] given scenario S.

From a regulator point of view, the motivation for a scenario aggregation requirement is to
discipline regulated institutions and to add a supervisory check on their internal models. In conse-
quence, it is important to treat equally all regulated institutions. So it is reasonable to require that
the scenarios to evaluate should be specified by universal inputs, without ambiguity. Views on such
scenarios can thus be reproduced and verified by any external third party. As views on scenarios
can be calibrated to exogenous expert opinion, they provide a natural device for addressing model
uncertainty. For example, experts may predict joint extreme events that would lead to higher joint-
tail probabilities than originally calibrated by the model. Typical examples of scenarios for factor

2For more details on hypothesis testing, see, e.g., [33, Section 7.3].
3Bank stress tests performed in most countries do indeed focus on capital adequacy. The adverse scenarios ω̂ are

typically provided without an explicit assessment of probabilities. Nonetheless, the criterion for passing a bank stress
test is based on capital adequacy, which implies implicitly assumed tail probabilities.
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models are quadrants of the form S = {x ∈ Rn | xj ≥ yj for some j}, for some threshold y ∈ Rn.
These are joint events and thus address the uncertainty of modeling the dependence of the risk
factors. Some recent articles have focused on more systematic approaches in choosing scenarios,
see, e.g., [17, 91, 16].

We now propose a new scenario aggregation method. Given are d possibly non-disjoint scenarios
S1, . . . , Sd ∈ F along with target probabilities c1, . . . , cd ≥ 0. In line with Definition 4.1 this induces
the views

Q[Si] ≥ ci, i = 1, . . . , d, (1)

to be satisfied by a Q ∈ M. If the internal model P does not satisfy the views (1), it needs to be
replaced by some alternative model Q ∈M which satisfies the views (1). The objective is to choose
Q as close as possible to P inM. This applies under the premise that the internal model, formalised
through P, has been designed to the best of the risk management’s knowledge, see Remark 5.6.

In order to measure how far Q is from P, we use the concept of statistical divergence which has
been well established in statistics and particularly information theory for more than six decades.

Definition 4.3. Let ϕ(t) be a real-valued continuous convex function on [0,∞) which is not linear
in any neighborhood of t = 1 and with ϕ(1) = 0. The ϕ-divergence of Q from P is then defined by

d(Q,P) =

{
E
[
ϕ
(
dQ
dP

)]
if Q� P,

+∞ else.

Examples of divergence functions ϕ(t) and their associated ϕ-divergences include

ϕ(t) =


t log t for the relative entropy dE(Q,P),

(
√
t− 1)2 for the Hellinger divergence dH(Q,P),

|t− 1|p for the Lp divergence dLp(Q,P), p ≥ 1.

(2)

Note that d(Q,P) 6= d(P,Q), and hence d(Q,P) is not a metric, in general. The following lemma
provides some other facts about ϕ-divergences. For more background we refer to [3, 31, 77, 83].

Lemma 4.4. (i) d(Q,P) ≥ 0, and d(Q,P) = 0 if and only if Q = P.

(ii) d(Q,P) is convex in Q, and strictly convex if ϕ(t) is strictly convex on (0,∞). Hence all but
the L1-divergence among the examples in (2) are strictly convex in Q.

(iii) The following inequalities hold

dL1(Q,P) ≤
√

2dE(Q,P),

dH(Q,P) ≤ dL1(Q,P) ≤
√

2dH(Q,P).

(iv) For Q� P we have dL1(Q,P) = 2 dTV (Q,P) where

dTV (Q,P) = sup
B∈F
|Q[B]− P[B]|

denotes the total variation distance between Q and P, which is a metric on M.
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Aggregating the views on the scenarios Si with the internal model P can now be defined as
finding a solution of the convex optimization problem

minimize d(Q,P)

subject to views (1)
(3)

with domain Q ∈ M. This is an infinite-dimensional problem. It is a priori not clear whether the
proposed minimum divergence scenario aggregation is actually tractable. In the following sections
we show that it can be efficiently solved and that it complies with the criteria listed in Section 3.

5 Minimum divergence problem

In this section we show that the infinite-dimensional problem (3) can be efficiently solved under
mild conditions on the target probabilities ci. Thereto, we denote by σ(S1, . . . , Sd) the σ-algebra
generated by the scenarios Si. Let U1, . . . , Un be the P-atoms of σ(S1, . . . , Sd). That is, U1, . . . , Un
are mutually disjoint with Uj ∈ σ(S1, . . . , Sd) and P[Uj ] > 0 for all j, and ∪nj=1Uj = Ω P-a.s.
Moreover, for every i there exists an index set J(i) ⊂ {1, . . . , n} such that Si = ∪j∈J(i)Uj P-a.s.
We define the convex set

Q =

{
Q� P | dQ

dP
is σ(S1, . . . , Sd)-measurable

}
⊂M.

The density dQ
dP of any measure Q ∈ Q is constant on the atoms Uj . Hence Q can be identified with

the vector q = (q1, . . . , qn)> of probabilities qj = Q[Uj ] ≥ 0 through

Q[B] =

n∑
j=1

qj
pj

P[B ∩ Uj ], B ∈ F (4)

where we write p = (p1, . . . , pn)> for the vector of probabilities pj = P[Uj ] > 0. In compact notation
the views (1) then read

∑
j∈J(i) qj ≥ ci, or in matrix form A q ≥ c for the d× n-matrix A defined

as Aij = 1 if j ∈ J(i) and 0 otherwise.
The following theorem is the main result in this section. It provides necessary and sufficient

conditions for the feasibility of the minimum divergence scenario aggregation.

Theorem 5.1. The following statements are equivalent:

(i) the convex optimization problem (3) admits a solution in M;

(ii) the convex optimization problem (3) admits a solution in Q;

(iii) there exists some Q ∈M that satisfies the views (1) and Q� P;

(iv) there exists some q ∈ [0,∞)n with 1>q = 1 and A q ≥ c.

In either case, there exists a solution q∗ of the convex optimization problem

minimize

n∑
j=1

pj ϕ

(
qj
pj

)
subject to Aq ≥ c

1>q = 1

(5)
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with domain q ∈ [0,∞)n. Any such solution q∗ determines through (4) a solution Q∗ ∈ Q of the
convex optimization problem (3). If ϕ(t) is strictly convex on (0,∞) then Q∗ is the unique solution
of (3) in M.

Theorem 5.1 shows that our scenario aggregation method is efficiently implementable via solv-
ing the finite-dimensional convex optimization problem (5). We will further elaborate on this in
Section 7. The dimension of problem (5) is bounded in terms of the number of scenarios as n ≤ 2d,
see (14) in Section 9.

Remark 5.2. In practice one often encounters simulation based internal models. Formally, a
simulation based model consists of a finite number M of simulated sample points ωi ∈ Ω and
associated weights P[ωi] > 0, for example obtained from an economic scenario generator. This
induces a probability measure on (Ω,F) through

P[B] =
∑
ωi∈B

P[ωi], B ∈ F .

Typically, one would have equally weighted sample points, P[ωi] = 1/M . According to (4) and
Theorem 5.1, we deduce that minimum divergence scenario aggregation boils down to reweighting
the sample points.

We now discuss two extreme cases. First, if the internal model P itself satisfies the views (1),
it is unaffected by the minimum divergence scenario aggregation.

Corollary 5.3. If P satisfies the views (1) then Q∗ = P is the unique solution of (3).

The other extreme case is if P is incompatible with the views (1).

Corollary 5.4. If P[Si] = 0 for some scenario Si with positive target probability ci > 0 then there
exists no solution of (3).

In the situation of Corollary 5.4, the internal model P is to be rejected by the regulator, and
to be recalibrated by the risk manager until P[Si] > 0 for any scenario Si with positive target
probability ci > 0. In the specific case of a simulation based internal model, see Remark 5.2,
this would mean producing additional sample points over the state space until all scenarios with
positive target probability contain at least one of them. Alternatively, one could adopt a scenario
aggregation method that works without the assumption that P[Si] > 0 for any scenario Si with
positive target probability ci > 0. The point-mass aggregation method exposed in Section 9 has
this feature.

Note that the converse of Corollary 5.4 is not true, in general. Indeed, let Ω = {ω1, ω2, ω3}
consist of three sample points. Consider the d = 2 scenarios S1 = {ω1, ω2} and S2 = {ω2, ω3}
with target probabilities c1 = c2 = 2/3. These two scenarios are non-disjoint, S1 ∩ S2 = {ω2}.
We assume that P[ωj ] > 0 for j = 1, 3, and P[ω2] = 0. Hence P[S1] > 0 and P[S2] > 0, but there
exists no solution of (3). Indeed, any Q ∈M with Q� P that satisfies the views (1) would imply
Q[ω1] = Q[ω3] = 2/3, which is absurd. Albeit there exists no solution of (3), defining Q[ωj ] = 1/3
for all j = 1, 2, 3 shows that there exists some Q ∈M that satisfies the views (1).

The following example shows that the strict convexity condition in Theorem 5.1 cannot be
relaxed in general without losing uniqueness of (3) in M.
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Example 5.5. We consider the L1 divergence, which is not strictly convex on (0,∞). Assume we
are given d = 1 scenario S with P[S] > 0 and target probability P[S] ≤ c ≤ 1. For any Q ∈ Q, we
use Lemma 4.4(iv) and the characterisation (4) to write

dL1(Q,P) = 2 sup
B∈F
|Q[B]− P[B]| = 2 sup

B∈F

∣∣∣∣ q

P[S]
P[B ∩ S] +

1− q
1− P[S]

P[B ∩ Sc]− P[B]

∣∣∣∣
≤ 2 sup

B∈F

∣∣∣∣ q

P[S]
P[B ∩ S]− P[B ∩ S]

∣∣∣∣ = 2

(
q

P[S]
− 1

)
sup
B∈F

P[B ∩ S]

= 2(q − P[S]).

Noting that the upper bound is attained when B = S, we conclude that dL1(Q,P) = 2(q − P[S]).
It follows that a solution of (5) is given by q∗ = (c, 1 − c)>. In consequence, a solution Q∗ ∈ Q
of (3) is such that

dQ∗

dP
=

{
c/P[S] on S

(1− c)/P[Sc] on Sc.

Assume now there exists a measurable partition of S = B ∪ C such that P[B] = P[C] = P[S]/2.
Define Q̃∗ ∈M through

dQ̃∗

dP
=


2c/P[S]− 1 on B

1 on C

(1− c)/P[Sc] on Sc.

Then Q̃∗ 6∈ Q and dL1(Q̃∗,P) = 2(c− P[S]), which shows that uniqueness of the solution Q∗ of (3)
in M does not hold.

Remark 5.6. Does the minimum divergence scenario aggregation method give incentives for gam-
ing the rules? An institution could modify its internal model on the sole purpose of satisfying the
views (1) while reducing its required capital. Suppose an institution with a continuous loss dis-
tribution FL(x) = P[L ≤ x] is given one tail loss scenario S = {L ≥ q} with target probability
1 − α, where q = q+α (L). By definition of q+α (L), the internal model P already satisfies the view
P[S] ≥ 1 − α. Hence it is unaffected by the minimum divergence scenario aggregation (Corol-
lary 5.3). The institution could decide to aggressively tune its model towards an alternative model
P′ where P′[L ≤ x] coincides with FL on (−∞, q+α (L)) and P′[L ≤ q+α (L)] = 1. The α-quantile of
the loss distribution under P′ is equal to q. Hence P′ still satisfies the view P′[S] ≥ 1 − α, and is
such that

ESP′
α (L) = q < ESα(L).

The tuned model P′ thus yields a strictly smaller required capital than the initial model P. However,
institutions are not tempted to do so, as they leverage their internal model for many core business
functions (such as pricing or enterprise risk management) and internal models are subject to model
validation processes (either internally, externally, or both). In consequence, it is reasonable to
assume that the institution will build its internal model using its best knowledge and assessment of
the risks.

Before solving the finite-dimensional convex optimization problem (5), we elaborate on the
robustness of the capital requirement with respect to the proposed scenario aggregation method in
the following section.
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6 Robustness

The notion of robustness in the specific context of risk management refers to the sensitivity of
risk measures to changes in the underlying stochastic model or in the data used for estimation.
Robustness has now become a key challenge of risk-based regulation, see, e.g., [23, Section 8]
and [42]. In our setting, we shall investigate the impact of minimum divergence modifications of
the internal model P on the required capital.

We consider a sequence of probability measures Pn in M. We shall denote by VaRPn
α (X) and

ESPn
α (X) the value-at-risk and expected shortfall of X under Pn. We start with an auxiliary result

that implies the lack of robustness of value-at-risk.

Lemma 6.1. Let X ∈ L0. If dL1(Pn,P) → 0 then the Pn-distribution functions of X converge in
Kolmogorov distance,

sup
x∈R
|Pn[X ≤ x]− P[X ≤ x]| → 0, (6)

and
q−α (X) ≤ lim inf

n
qn ≤ lim sup

n
qn ≤ q+α (X)

holds for any sequence qn of α-quantiles of X with respect to Pn. Hence, if q−α (X) = q+α (X) then

VaRPn
α (X)→ VaRα(X).

Note that Lemma 6.1 boils down to the property of lower (upper) semi-continuity of the left
(right)-quantile with respect to the Kolmogorov distance, see also [25]. The following example
illustrates that value-at-risk is not robust in general if left and right α-quantiles differ.

Example 6.2. Let us define X = 0 or 1 with P[X = 0] = α and the sequence of probability
measures Pn given by

dPn
dP

=

{
1 + (1− α)(−1)n/(αn) on {X = 0}
1 + (−1)n+1/n on {X = 1}.

It follows by inspection that dL∞(Pn,P)→ 0. However, the sequence of respective value-at-risk’s

VaRPn
α (X) =

{
0 = q−α (X), for n even

1 = q+α (X), for n odd

does not converge to VaRα(X) = q−α (X) = 0.

This situation is likely to occur in simulation based models, which are commonly used in practice,
see Remark 5.2 and [116].

Example 6.3. Consider a simulation based internal model consisting of M simulated sample points
ωi ∈ Ω with equal weights, P[ωi] = 1/M , and such that L(ω1) ≤ · · · ≤ L(ωM ). Assume that αM
is integer, so that VaRα(L) = q−α (L) = L(ωαM ). Suppose that a reweighting of the sample points
due to scenario aggregation leads to the scaling up of P [L ≥ L(ωαM+2)] to 1 − α, or equivalently
a scaling down of P [L ≤ L(ωαM+1)] to α. The value-at-risk at level α becomes L(ωαM+1), which
can be an arbitrarily large increase from L(ωαM ), see Figure 1.
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In contrast to value-at-risk, expected shortfall is always robust with respect to minimum Lp-
divergence modifications of P.

Theorem 6.4. Let p ∈ [1,∞) and r ∈ (1,∞] such that p−1 + r−1 = 1. If dLp(Pn,P)→ 0 then

ESPn
α (X)→ ESα(X), for all X ∈ Lr.

In view of Lemma 4.4(iii) the following corollary is immediate.

Corollary 6.5. If dE(Pn,P)→ 0 or dH(Pn,P)→ 0 then

ESPn
α (X)→ ESα(X), for all X ∈ L∞.

To summarize, the capital requirement based on expected shortfall is robust with respect to
minimum divergence modifications of the internal model. The same holds for value-at-risk only if
the loss distribution satisfies some continuity condition, which may fail in practice.

The robustness properties discussed in this section are weaker than the ones studied in [29, 76].
While we focus on the continuity of the risk measure as a function on the set of probability measures
Q� P with respect to Lp-divergence dLp(Q,P), the robustness in the above references boils down to
continuity of the (law invariant) risk measure as a function on the set of distributions with respect
to the Lévy distance, see [59] and [70, Theorem 2.21]. [29, Proposition 3.5] shows that value-at-
risk at level α is continuous with respect to the Lévy distance at any distribution for which the
left and right α-quantiles coincide. This is in line with Lemma 6.1, and does not contradict our
non-robustness Example 6.2. [70, Theorem 3.7] and [29, Theorem 3.4] show that expected shortfall
is not continuous with respect to the Lévy distance at any distribution, see [120, Section 2] for an
example. This is compatible with our robustness results as the topology used in Theorem 6.4 and
Corollary 6.5 is stronger than the one induced by the Lévy distance. If one splits the specification of
a stochastic model in a dependence function (copula) and the marginal distributions, [43] show that
expected shortfall is continuous with respect to the Lévy distance whenever the model uncertainty
only concerns the dependence function. It has also been shown in [120, 46] that expected shortfall
is continuous with respect to the Wasserstein distance.

7 Solving the optimization problem

The finite-dimensional convex optimization problem (5), and thus (3), can be efficiently solved
through numerical algorithms. In this section, we derive the Karush–Kuhn–Tucker (KKT) con-
ditions, which are first order necessary conditions for a solution to hold. Numerically solving the
optimization problem (5) boils down to numerically solving the KKT system of equations, see [102].
From the KKT conditions we derive closed form solutions of (5) for the case of disjoint scenarios
in general, and the case of two non-disjoint scenarios with relative entropy and L2-divergence.

7.1 KKT conditions

From now on, in addition to what is stated in Definition 4.3, we make the following standing
assumption on the divergence function.

Assumption 1. ϕ(t) is differentiable on (0,∞).
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Assumption 1 implies that ϕ′(t) is continuous on (0,∞), see [115, Corollary 25.5.1]. It is satisfied
by all, but the L1-divergence, of the examples in (2).

The Lagrangian function corresponding to (5) is

L(q,λ, ν) =

n∑
j=1

pjϕ

(
qj
pj

)
+ λ>(c−Aq) + ν

(
1>q − 1

)
for Lagrange multiplier values λ ∈ [0,∞)n and ν ∈ R. The following lemma provides the KKT
conditions. It follows from [115, Corollary 28.2.2 and Theorem 28.3] or [15, Sections 5.2.3 and
5.5.3].

Lemma 7.1. Assume that Slater’s condition is satisfied, i.e. there exists a q ∈ (0,∞)n such that
A q ≥ c and 1>q = 1. Then q∗ is a solution of (5) if and only if there exist Lagrange multiplier
values (λ∗, ν∗) which, together with q∗, satisfy the KKT conditions

λ ≥ 0, Aq ≥ c, λ>(Aq − c) = 0 (7)

1>q = 1 (8)

ϕ′
(
q

p

)
−A>λ+ ν1 = 0, (9)

where ϕ′(q/p) denotes the n-vector with components ϕ′(qi/pi), i = 1, . . . , n.

7.2 Disjoint scenarios

A closed form solution of (3) can be derived from the KKT conditions for the case of disjoint
scenarios.

Theorem 7.2. Assume the scenarios Si are mutually disjoint with P[Si] > 0 and ∪di=1Si = Ω P-a.s.
and such that, after re-ordering the indices if necessary, c1/p1 ≥ · · · ≥ cd/pd. Then n = d and we
can assume that Ui = Si for all i, so that A is the d× d identity matrix. A solution of (5) exists if
and only if

∑d
i=1 ci ≤ 1. If

∑d
i=1 ci = 1 then q∗ = c is the unique solution of (5). If

∑d
i=1 ci < 1

then a solution q∗ is given by q∗i = max {ci, pi µ∗} with

µ∗ =
1−

∑k∗−1
i=1 ci∑d

i=k∗ pi
, k∗ = min

{
1 ≤ k ≤ d | ck

pk
≤

1−
∑k−1

i=1 ci∑d
i=k pi

}
,

and where we write
∑0

i=1 ci = 0. In particular, this solution q∗ is independent of the specific choice
of the divergence function ϕ(t).

Theorem 7.2 provides a solution of (5), and thus (3), which does not depend on the choice of
the divergence function ϕ(t). However, Example 5.5 shows that this solution of (3) may not be
unique in M if ϕ(t) is not strictly convex on (0,∞). The examples in Sections 7.5 and 7.6 below
show that a solution of (3) does depend on the choice of ϕ(t) for the general case of non-disjoint
scenarios.

The case of one given scenario follows as a corollary.

25



Corollary 7.3. Assume that d = 1 scenario S ∈ F is given with target probability 0 ≤ c ≤ 1. Then
a solution Q∗ ∈M of the convex problem (3) is given by Q∗ ∈ Q such that

dQ∗

dP
=

{
max {1, c/P[S]} on S

min {1, (1− c)/P[Sc]} on Sc.
(10)

A special case of Corollary 7.3 is a stress test as described at the beginning of Section 4.

Corollary 7.4. Assume that d = 1 tail loss scenario S = {L ≥ `} is given with target probability
c = 1−α for some α ∈ (0, 1) and loss level ` ∈ R. Then minimum divergence scenario aggregation
results in an expected shortfall at level α of

ESQ∗
α (L) =

{
ESα(L), if P[S] ≥ 1− α,

ESP[L<`](L) = E[L | L ≥ `], otherwise.

Corollary 7.4 emphasizes an interesting property. Assume the internal model P does not pass
the stress test defined by the loss ` at the significance level 1 − α, and it is replaced by Q∗ ∈ M
the solution of the minimum divergence scenario aggregation method. Then the expected shortfall
under Q∗ at level α can directly be calculated as expected shortfall under P with level equal to
P[L < `] > α. In the following subsection we provide a numerical example.

7.3 Example: Stress test

In order to avoid non-uniqueness issues we assume in this and the following example that the
divergence function ϕ(t) is strictly convex on (0,∞), see Theorem 5.1.

We consider a stress test as in the beginning of Section 4 with a tail loss scenario S = {L ≥ `}
and associated target probability c > 0. We suppose that the loss random variable L has a Gaussian
distribution with mean 0 and variance 3 under P. Depending on ` and c, the minimum divergence
aggregation results in an alternative model Q∗.

The top panel of Figure 2 shows the values of VaRQ∗
99%(L) and ESQ∗

99%(L) for c ∈ [0, 2%] and
` ∈ {VaRα(L) | α ∈ [98%, 99.9%]}. For ` ≤ VaR1−c(L) we have P[L ≥ `] = 1 − α ≥ c, and hence
Q∗ = P by Corollary 5.3. In particular, VaRQ∗

99%(L) = VaR99%(L) and ESQ∗
99%(L) = ES99%(L). For

` > VaR1−c(L) we have P[L ≥ `] = 1− α < c, and P is replaced by an alternative model Q∗ ∈ M,
the solution of the convex problem (3), which verifies Q∗[L ≥ `] = c by Corollary 7.3. This implies
that VaRQ∗

99%(L) > VaR99%(L) and ESQ∗
99%(L) > ES99%(L), see also Corollary 7.4.

The middle panel of Figure 2 shows the respective value-at-risk and expected shortfall values at
level 99% for the SST aggregation method. The extra-ordinary losses z = E[L|L ≥ `]−E[L] > 0 are
all positive. As predicted by Lemma 3.1, the required capital is increased for all arguments (c, `),
no matter whether the internal model passes the stress test or not. This contradicts criterion 1 in
Section 3.

The bottom panel of Figure 2 shows the difference between capital requirements derived from
the SST and the minimum divergence aggregation. The difference is positive for most but not all
arguments (c, `). The comparison of the two aggregation methods in terms of capital requirements is
also reported in Table 1 for c = 0, 0.5%, 1%, 2% and ` ∈ {VaRα(L) | α = 98%, 99%, 99.5%, 99.9%}.

Figure 3 shows the distribution function of L under Q∗ for c = 1% and three loss levels ` ∈
{VaR99%(L), VaR99.5%(L), VaR99.9%(L)}. The 99%-quantiles of these distributions coincide with
the respective loss level `.
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7.4 Example: Tail loss event

In this example the loss random variable is given as non-linear function

L = max(X1,−1) + max (min(X2, 5),−1)

of two risk factors X1 and X2. The loss is monotonic in both factors. The loss is capped in X2 at 5
and the gain (negative loss) is floored in X1 and X2 at −1. For example, X1 could be related to an
interest rate change and X2 could be related to CAT events for which the insurer is re-insured. We
assume that (X1, X2) has a bivariate Gaussian distribution under P with mean zero, a correlation
of -0.5 and variances of 1 and 4, respectively.

We consider two disjoint scenarios S1 = {X1 ≥ 1, X2 ≥ 1} and S2 = {X1 < −2}, with associated
target probabilities c1 and c2. As the insurer has uncapped losses in X1, scenario S1 has a nonempty
intersection with the tail loss event W = {L ≥ VaR99%(L)}. Scenario S2 and W are disjoint, as
L = max (min(X2, 5),−1) − 1 ≤ 4 on S2 and VaR99%(L) > 4. Figure 4 shows these events in the
risk factor space.

The extra-ordinary losses for both scenarios are positive, z1 = E[L|S1] − E[L] > 0 and z2 =
E[L|S2] − E[L] > 0. The SST aggregation of either scenario, S1 or S2, results in an increase of
the required capital, see Lemma 3.1. This is remarkable as scenario S2 lies outside of the tail loss
event W of the insurer. This contradicts criterion 2 in Section 3. In contrast, minimum divergence
aggregation of S2 does not lead to an increase of the required capital.

Figure 5 shows value-at-risk and expected shortfall at level 99% resulting from the minimum
divergence aggregation (top), the SST aggregation (middle) and the difference between the two
(bottom), for a range of target probabilities c1, c2 ∈ [0, 4%]. The capital requirement for the
SST aggregation method is strictly increasing in both arguments, c1 and c2. As predicted by
Theorem 7.2, the capital requirement for the minimum divergence aggregation method is constant
in c1 for c1 ≤ P[S1] and increasing in c1 for c1 > P[S1], and constant in c2 for c2 ≤ P[S2] and
decreasing in c2 for c2 > P[S2]. The comparison of the two aggregation methods in terms of capital
requirements is also reported in Table 2 for c1 = 0, p1 and 4%, c2 = 0, p1, and 4%, with p1 = 1.2%
and p2 = 2.3%.

7.5 Example: Two non-disjoint scenarios with relative entropy

In this and the following section, we explicitly derive the unique solution of problem (5) for the
case of d = 2 non-disjoint scenarios S1 and S2 with relative entropy and L2 divergence. We assume
that P[S1 ∩ S2] > 0 and

∑2
i=1 P[Si] < 1, and let c1, c2 be the associated target probabilities. There

are n = 4 P-atoms U1 = (S1 ∪ S2)c, U2 = S1 ∩ S2, U3 = S1 \ S2 and U4 = S2 \ S1.
We first consider relative entropy, ϕ(t) = t log t. The objective function in the optimization

problem (5) is
∑4

j=1 qj log
qj
pj

. In consequence, the KKT condition (9) becomes

log q − log p+ 1−A>λ+ ν1 = 0. (11)

By inspection, we note that the first coordinate of (11) gives

q1 = p1e
−ν−1,

while the third and fourth coordinates give

q3 = max{c1 − q2, p3e−ν−1}, q4 = max{c2 − q2, p4e−ν−1},
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and subsequently the second one gives

q2 = eν+1p2 max

{
c1 − q2
p3

, e−ν−1
}

max

{
c2 − q2
p4

, e−ν−1
}
.

Using the KKT condition (8), we now solve for the values of q∗i , i = 1, . . . , 4, that give the
unique solution of (5). We do so by distinguishing between four different possible cases.

Case 1: (c1 − q2)/p3 ≤ e−ν−1, (c2 − q2)/p4 ≤ e−ν−1

We deduce that ν∗ = −1 and q∗i = pi, i = 1, . . . , 4. Hence Case 1 is equivalent to p ∈ I1 where

I1 =
{
p ∈ [0,∞)4 : c1 ≤ p2 + p3, c2 ≤ p2 + p4 and 1>p = 1

}
.

Case 2: (c1 − q2)/p3 > e−ν−1, (c2 − q2)/p4 ≤ e−ν−1

We deduce that ν∗ = − (1 + log ((1− c2)/(p1 + p3))) and

q∗1 =
(1− c2)p1
p1 + p3

, q∗2 =
p2c1
p2 + p3

, q∗3 =
p3c1
p2 + p3

, q∗4 =
(1− c2)p4
p1 + p3

.

Hence Case 2 is equivalent to p ∈ I2 where

I2 =

{
p ∈ [0,∞)4 : c1 >

(1− c2)(p2 + p3)

p1 + p3
, c2 ≤

c1p2(p1 + p3) + p4(p2 + p3)

(1− p2)(p2 + p3)
and 1>p = 1

}
.

Case 3: (c1 − q2)/p3 ≤ e−ν−1, (c2 − q2)/p4 > e−ν−1

We deduce that ν∗ = − (1 + log ((1− c1)/(p1 + p4))) and

q∗1 =
(1− c1)p1
p1 + p4

, q∗2 =
p2c2
p2 + p4

, q∗3 =
(1− c1)p3
p1 + p4

, q∗4 =
p4c2
p2 + p4

.

Hence Case 3 is equivalent to p ∈ I3 where

I3 =

{
p ∈ [0,∞)4 : c1 ≤

c2p2(p1 + p4) + p3(p2 + p4)

(1− p2)(p2 + p4)
, c2 >

(1− c1)(p2 + p4)

p1 + p4
and 1>p = 1

}
.

Case 4: (c1 − q2)/p3 > e−ν−1, (c2 − q2)/p4 > e−ν−1

Denote δ = p1p2 − p3p4. In this case, q∗2 will be solution of the quadratic equation

(q∗2)2δ − q∗2 ((c1 + c2)δ + p3p4) + p1p2c1c2 = 0.

and q∗1 = 1− c1 − c2 + q∗2, q
∗
3 = c1 − q∗2, q∗4 = c2 − q∗2. Case 4 is equivalent to p ∈ I4 where

I4 =
{
p ∈ [0,∞)4 : 1>p = 1

}
\ (I1 ∪ I2 ∪ I3) .
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7.6 Example: Two non-disjoint scenarios with L2 divergence

We consider the same scenario setup as in the previous section, but now with L2 divergence,
ϕ(t) = (t− 1)2. The objective function in the optimization problem (5) is

∑4
j=1 pj (qj/pj − 1)2. In

consequence, the KKT condition (9) becomes

2

(
q

p
− 1

)
−A>λ+ ν1 = 0. (12)

By inspection, we note that the first coordinate of (12) gives

q1 = p1

(
1− ν

2

)
,

while the third and fourth coordinates give

q3 = max
{
c1 − q2, p3

(
1− ν

2

)}
, q4 = max

{
c2 − q2, p4

(
1− ν

2

)}
,

and subsequently the second one gives

q2 = p2

(
max

{
c1 − q2
p3

, 1− ν

2

}
+ max

{
c2 − q2
p4

, 1− ν

2

}
− 1 +

ν

2

)
.

Using the KKT condition (8), we now solve for the values of q∗i , i = 1, . . . , 4, that give the
unique solution of (5). We do so by distinguishing between four different possible cases.

Case 1: (c1 − q2)/p3 ≤ 1− ν/2, (c2 − q2)/p4 ≤ 1− ν/2

We deduce that ν∗ = 0 and that q∗i = pi, i = 1, . . . , 4. Hence Case 1 is equivalent to p ∈ I1 where

I1 =
{
p ∈ [0,∞)4 : c1 ≤ p2 + p3, c2 ≤ p2 + p4 and 1>p = 1

}
.

Case 2: (c1 − q2)/p3 > 1− ν/2, (c2 − q2)/p4 ≤ 1− ν/2

We deduce from this case that ν∗ = 2(1− (1− c2)/(p1 + p3)) and

q∗1 =
(1− c2)p1
p1 + p3

, q∗2 =
p2c1
p2 + p3

, q∗3 =
p3c1
p2 + p3

, q∗4 =
(1− c2)p4
p1 + p3

.

Hence Case 2 is equivalent to p ∈ I2 where

I2 =

{
p ∈ [0,∞)4 : c1 >

(1− c2)(p2 + p3)

p1 + p3
, c2 ≤

c1p2(p1 + p3) + p4(p2 + p3)

(1− p2)(p2 + p3)
and 1>p = 1

}
.

Case 3: (c1 − q2)/p3 ≤ 1− ν/2, (c2 − q2)/p4 > 1− ν/2

We deduce that ν∗ = 2(1− (1− c1)/(p1 + p4)) and

q∗1 =
(1− c1)p1
p1 + p4

, q∗2 =
p2c2
p2 + p4

, q∗3 =
(1− c1)p3
p1 + p4

, q∗4 =
p4c2
p2 + p4

.

Hence Case 3 is equivalent to p ∈ I3 where

I3 =

{
p ∈ [0,∞)4 : c1 ≤

c2p2(p1 + p4) + p3(p2 + p4)

(1− p2)(p2 + p4)
, c2 >

(1− c1)(p2 + p4)

p1 + p4
and 1>p = 1

}
.
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Case 4: (c1 − q2)/p3 > 1− ν/2, (c2 − q2)/p4 > 1− ν/2

We deduce that

ν∗ = 2

1−
1−

(
c1

(
1
p2

+ 1
p4

)
+ c2

(
1
p2

+ 1
p3

))(
1
p2

+ 1
p3

+ 1
p4

)−1
p1 +

(
1
p2

+ 1
p3

+ 1
p4

)−1
 ,

and

q∗1 = p1

(
1− ν∗

2

)
, q∗2 =

c1
p3

+ c2
p4
− 1 + ν∗

2
1
p2

+ 1
p3

+ 1
p4

, q∗3 = c1 − q∗2, q∗4 = c2 − q∗2.

Case 4 is equivalent to p ∈ I4 where

I4 =
{
p ∈ [0,∞)4 : 1>p = 1

}
\ (I1 ∪ I2 ∪ I3) .

In both Examples 7.5 and 7.6 we obtain closed form solutions of (3). These solutions are given
by case distinction. Inspection shows that the solution for the relative entropy is different from the
solution for the L2 divergence. This shows that a solution of (3) depends on the choice of ϕ(t) in
general.

8 Asymptotic scenario aggregation

In this section we study the asymptotic properties of the optimal solution of (3) when the number
of scenarios increases, and the views (1) are derived from an auxiliary reference model A ∈ M.
This model could encode the regulator’s views on F .

Let C = {S1, . . . , Sd} denote the collection of scenarios. We say that C is closed under comple-
mentation if Sc ∈ C for any S ∈ C, and C is closed under intersection if S ∩S′ ∈ C for all S, S′ ∈ C.
If C is closed under complementation and intersection then it forms an algebra. The following
lemma, which we state here for its own interest, serves as a preliminary finding in preparation of
the asymptotic result.

Lemma 8.1. Assume the target probabilities are given by ci = A[Si] for i = 1, . . . , d. Then the
following properties hold.

(i) If C is closed under complementation then any Q ∈M satisfying the views (1) satisfies Q = A
on C.

(ii) If C forms an algebra then any Q ∈M satisfying the views (1) satisfies Q = A on σ(C).

(iii) If C forms an algebra and A� P then the measure Q∗ � P defined by dQ∗
dP = E

[
dA
dP | σ(C)

]
is

a solution of (3).

Note that the condition in (i) cannot be relaxed in general. For example, consider the case of
d = 1 scenario, C = {S}, with P[S] > A[S]. Then Q∗ = P is the unique solution of (3) and does
obviously not coincide with A on C.

By increasing the number d of scenarios the regulator can interpolate between the institution’s
internal model P and his reference model A. In the following theorem we show that, asymptotically,
the regulator has full remote control over the required capital of the institution, as the optimal
solutions of (3) converge to A when d goes to infinity.
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Theorem 8.2. Assume A� P, and let C1 ⊆ C2 ⊆ · · · be a sequence of nested algebras of scenarios
along with target probabilities given by A[S] for all S ∈ Cn, and such that F = ∨n≥1σ(Cn). Then

the measures Q∗n � P defined by dQ∗n
dP = E

[
dA
dP | σ(Cn)

]
are solutions of (3) subject to the respective

views. These solution measures converge to A in the sense that dQ∗n
dP →

dA
dP in L1(P). The respective

capital requirements converge as

VaRQ∗n
α (X)→ VaRA

α(X), for all X ∈ L0 with qA−α (X) = qA+α (X),

and
ESQ∗n

α (X)→ ESA
α(X), for all X ∈ L∞(P).

9 Point-mass scenario aggregation

In this section we develop a scenario aggregation method that could serve as an alternative to the
minimum divergence method in case where the internal model P is incompatible with the views (1)
as described in Corollary 5.4.4 The method developed here is subject to more ad hoc specifications
than the minimum divergence scenario aggregation method, as illustrated by Example 9.2 below,
which makes it less attractive for regulatory purposes.

As in Section 4 we are given d possibly non-disjoint scenarios S1, . . . , Sd ∈ F along with target
probabilities c1, . . . , cd ≥ 0, inducing the views (1) to be satisfied by a Q ∈ M. We aggregate
these views on the scenarios Si with the internal model P by solving a similar convex optimization
problem as (3) but with the ϕ-divergence d(Q,P) being replaced by the total variation distance,

minimize dTV (Q,P)

subject to views (1).
(13)

Problem (13) with domain Q ∈ M is inherently infinite-dimensional, which makes it hard if
not impossible to solve it. We thus deliberately restrict the domain to a finite-dimensional simplex.
Thereto we consider the σ-algebra σ(S1, . . . , Sd) generated by the scenarios Si, and we let V1, . . . , VN
be the sample atoms of σ(S1, . . . , Sd). That is, V1, . . . , VN is the unique family of mutually disjoint
sets with σ(V1, . . . , VN ) = σ(S1, . . . , Sd) and ∪Nk=1Vk = Ω. Consequently, for every i there exists
an index set K(i) ⊂ {1, . . . , N} such that Si = ∪k∈K(i)Vk. Note that there are at least as many
sample atoms as P-atoms, n ≤ N , with equality if and only if P[Vk] > 0 for all k. The number of
sample atoms is bounded as

N ≤ 2d. (14)

Indeed, any sample atom Vk corresponds to a multi-index α ∈ {0, 1}d with αi = 1 if k ∈ K(i)
and αi = 0 otherwise. This correspondence is injective. Hence N is bounded by the cardinality
of {0, 1}d, which is 2d as claimed. Equality in (14) holds if and only if Si ∩ Sj 6= ∅ for all i, j and
∪di=1Si 6= Ω.

We now fix N sample points ω = (ω1, . . . , ωN ), one in each sample atom, ωk ∈ Vk, and such
that P[ωk] = 0 for all k.5 We then define the N -dimensional convex set

Qω =

{
Qr = (1− 1>r)P +

N∑
k=1

rkδωk
| r ∈ [0,∞)n, 1>r ≤ 1

}
⊂M

4It has also been discussed in [57] as an alternative to the current SST method.
5We assume here that F contains all singletons {ω}.
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where δω denotes the Dirac measure at ω. The measures in Qω and P are singular, but their total
variation distance can be easily computed.

Lemma 9.1. For any Qr ∈ Qω we have

dTV (Qr,P) =

N∑
k=1

rk. (15)

In compact notation the views (1) for a measure Qr ∈ Qω read∑
k∈K(i)

(1− 1>r)P[Vk] + rk ≥ ci, i = 1, . . . , d,

or in matrix form Mr ≥ b for the d×N -matrix M defined as Mij = 1−
∑

k∈K(i) P[Vk] if j ∈ K(i)
and Mij = −

∑
k∈K(i) P[Vk] otherwise, and the d-vector b defined as bi = ci −

∑
k∈K(i) P[Vk]. The

optimization problem (13) with domain Qω boils down to the N -dimensional linear problem

minimize 1>r

subject to Mr ≥ b,
1>r ≤ 1,

r ∈ [0,∞)N .

(16)

Solutions of a linear problem such as (16), when they exist, are not unique and not in closed form
in general, and numerical methods such as the simplex or the interior point methods are used, see,
e.g., [102, Chapters 13 and 14]. Note, while any solution r∗ of (16) does not depend on the specific
choice of ωk in Vk, the corresponding optimal measure Qr∗ solving problem (13) with domain Qω

does. We illustrate this with the following stress test example.

Example 9.2. We consider a stress test as described at the beginning of Section 4. We assume
that d = 1 tail loss scenario S = {L ≥ `} is given with target probability c = 1 − α for some
α ∈ (0, 1) and loss level ` ∈ R. We assume that 0 < P[S] < 1. The N = 2 sample atoms are
then V1 = S and V2 = Sc. We fix two sample points ω = (ω1, ω2) with ωk ∈ Vk and P[ωk] = 0 for
k = 1, 2. The linear problem (16) becomes

minimize r1 + r2

subject to (1− P[S])r1 − P[S]r2 ≥ c− P[S],

r1 + r2 ≤ 1,

r1, r2 ≥ 0.

(17)

We verify by inspection that the unique solution r∗ to (17) is given by r∗1 = (c−P[S])+/(1−P[S])
and r∗2 = 0. We obtain Qr∗ [S] = P[S] + (1 − P[S])r∗1 = P[S] + (c − P[S])+. If the internal model
is rejected, P[S] < c, then Qr∗ [S] = c and ` becomes an α-quantile of L under Qr∗ . The expected
shortfall of L is thus

ESQr∗
α (L) =

1

1− α
(
(1− r∗1)E

[
(L− `)+

]
+ r∗1 (L(ω1)− `)

)
+ `.
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As ω1 ∈ S we know that L(ω1)−` ≥ 0, and this difference can be arbitrarily large, up to ‖L‖L∞−`,
depending on the choice of ω1 in S. This result nicely illustrates that, while r∗ does not depend on
the specific choice of ω1 in S, the corresponding optimal measure Qr∗ solving problem (13) with
domain Qω does. Consequently, so does the expected shortfall under Qr∗ . This feature of the
point-mass scenario aggregation is potentially not desirable for regulatory purposes.

We also note that the value-at-risk does not depend on the choice of ω1 in S. It satisfies
VaRQr∗

α (L) ≤ `, with equality if ` is the left-quantile at level α.

10 Conclusion

Scenario aggregation is an important part of risk-based solvency regulation. It serves as a device to
address model uncertainty. The current SST method put in place by FINMA is subject to a critical
review. We provide a novel coherent scenario aggregation method based on minimum statistical
divergence subject to expert views on a given set of scenarios. This method has been designed to
satisfy five criteria that are particularly relevant from a regulatory point of view:

(1) No penalty for conservative internal models. According to Corollary 5.3, the minimum diver-
gence aggregation leaves the internal model unchanged whenever it already satisfies the views.

(2) Focus on tail loss events. As illustrated by Examples 7.3 and 7.4, the minimum divergence
aggregation allows to accurately focus on insurer specific tail events.

(3) Control over distance from internal model. The minimum divergence aggregation method is
designed to minimize the ϕ-divergence of alternative models from the internal model.

(4) Robustness of capital requirements. Capital requirements based on expected shortfall (value-
at-risk) are shown to be robust with respect to minimum divergence aggregation (under some
technical conditions).

(5) Tractability. The minimum divergence aggregation can be casted as a finite-dimensional convex
optimization problem. Efficient numerical algorithms are available in e.g. [102].

The alternative model resulting from the minimum divergence scenario aggregation is an inter-
polation between the internal model and the regulator’s views within minimal distance from the
internal model. The alternative model does not depend on the choice of the divergence function if
the scenarios are disjoint, but in general it does. The regulator has remote control over the capital
requirements as he can tune the trade off between idiosyncrasy (internal model) and standardiza-
tion (regulator’s views) via increasing the number of scenarios. An asymptotic result is available
in case where the scenarios form an algebra. We also provide a point-mass scenario aggregation
method that can serve as alternative in case where the minimum divergence method does not apply.
One could further elaborate on combining these two methods, and on quantifying the impact of
the choice of the divergence function.
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A Figures

P[L ≤ l]

l
L(ωαM−1) L(ωαM ) = VaRα(L) L(ωαM+1) L(ωαM+2)

α

1/M

1/M

1/M

P[L ≤ l]

l
L(ωαM−1) L(ωαM ) L(ωαM+1) = VaRα(L) L(ωαM+2)

α

α
αM+1

α
αM+1

1−α
M−αM−1

Figure 1: Cumulative distribution function of L in a simulation based model, before scenario
aggregation (top) and after scenario aggregation (bottom), from Example 6.3.
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Figure 2: Impact on VaRQ∗
99% (left) and ESQ∗

99% (right), of the minimum divergence scenario aggrega-
tion method (top), the SST method (middle), and the difference between the SST and the minimum
divergence aggregation method (bottom) for c ∈ [0, 2%] and ` ∈ {VaRα(L) | α ∈ [98%, 99.9%]}.
The difference between the value-at-risk numbers becomes negative for some (c, l). The red line on
the top plots indicates the curve (c, ` = VaR1−c(L)). See Example 7.3.
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`
3.56 4.03 4.47 5.35

c(%)

0
4.03 4.03 4.03 4.03
4.03 4.03 4.03 4.03
(0) (0) (0) (0)

0.5
4.03 4.03 4.03 4.37
4.21 4.25 4.28 4.35

(0.18) (0.22) (0.25) (-0.02)

1
4.03 4.03 4.47 5.35
4.40 4.49 4.58 4.80

(0.37) (0.46) (0.11) (-0.55)

2
4.03 4.47 4.85 5.73
4.80 5.02 5.26 5.91

(0.77) (0.55) (0.41) (0.18)

`
3.56 4.03 4.47 5.35

c(%)

0
4.62 4.62 4.62 4.62
4.62 4.62 4.62 4.62
(0) (0) (0) (0)

0.5
4.62 4.62 4.62 5.30
4.98 5.09 5.22 5.52

(0.36) (0.47) (0.60) (0.22)

1
4.62 4.62 5.01 5.88
5.30 5.50 5.72 6.27

(0.68) (0.88) (1.10) (0.39)

2
4.62 5.01 5.37 6.20
5.80 6.13 6.46 7.23

(1.18) (1.12) (1.09) (1.03)

Table 1: Impact on VaRQ∗
99% (top table) and ESQ∗

99% (bottom table), of the minimum divergence
scenario aggregation method (top numbers), the SST method (middle numbers), and the difference
between the SST and the minimum divergence aggregation method (bottom numbers in brackets)
for c ∈ {0.1%, 0.5%, 1%, 2%} and ` ∈ {VaRα(L) | α = 98%, 99%, 99.5%, 99.9%} = {3.56, 4.03, 4.47}.
The difference between the value-at-risk numbers is negative for c = 0.5%, 1% and ` = 5.35. See
Example 7.3.
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Figure 3: Distribution function of L under Q∗, x 7→ Q∗[L ≤ x], resulting from minimum divergence
scenario aggregation for c = 1% for different largest loss levels ` = VaR99%(L) (black), VaR99.5%(L)
(grey) and VaR99.9%(L) (blue). The vertical dashed lines draw the different levels of `, which
correspond to the 99% quantile of L under Q∗. See Example 7.3.
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and of the tail loss event W = {L ≥ VaR99%(L)}, where L = max(X1,−1) + max (min(X2, 5),−1),
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>. See Example 7.4.
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Figure 5: Impact on VaRQ∗
99% (left) and ESQ∗

99% (right), of the minimum divergence scenario aggre-
gation method (top), of the SST method (middle), and the difference between the SST and the
minimum divergence aggregation method (bottom) for c1, c2 ∈ [0, 4%]. The red lines in the above
pictures point to the required capital that would hold for target probabilities c1 = p1, c2 = p2. See
Example 7.4.
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c1
0 p1 4%

c2

0
4.00 4.00 4.16
4.00 4.22 4.75
(0) (0.22) (0.59)

p2

4.00 4.00 4.16
4.03 4.29 4.81

(0.03) (0.29) (0.65)

4%
4.00 4.00 4.15
4.09 4.34 4.86

(0.09) (0.34) (0.71)

c1
0 p1 4%

c2

0
4.33 4.33 4.67
4.33 4.90 5.61
(0) (0.57) (0.94)

p2

4.33 4.33 4.67
4.54 4.98 5.64

(0.21) (0.65) (0.97)

4%
4.30 4.30 4.66
4.62 5.03 5.66

(0.32) (0.73) (1.00)

Table 2: Impact on VaRQ∗
99% (left table) and ESQ∗

99% (right table), of the minimum divergence sce-
nario aggregation method (top numbers), of the SST method (middle numbers), and the difference
between the SST and the minimum divergence aggregation method (bottom numbers) for c1 = 0, p1
and 4%, c2 = 0, p2 and 4%, with p1 = 1.2% and p2 = 2.3%. See Example 7.4.

B Proofs

This appendix contains the proofs of all theorems, lemmas, and corollaries from the main text.

Proof of Lemma 3.16

As L and X are independent, we have that L+E[X] = E[L+X | L]. Because expected shortfall is
translation invariant and monotonic with respect to convex stochastic order, [51, Corollary 4.65],
we obtain the lower bound

ESα(L) + E[X] = ESα(L+ E[X]) ≤ ESα(L+X).

The upper bound follows from the subadditivity property of the expected shortfall, see, e.g,
[51].

Proof of Lemma 4.2

Let WCEα(L) = sup {E[L | B] | B ∈ F , P[B] ≥ 1− α} be the worst conditional expectation at level
α ∈ (0, 1) of L. Note that this definition is different from [51, Example 4.38] where the supremum
is taken over events B ∈ F with P[B] > 1 − α. In any case, note that [51, Corollary 4.54] applies
to our definition of WCEα, that is

ESα(L) ≥WCEα(L) ≥ E[L | S],

for any event S ∈ F , which proves the Lemma.

6Thanks to Ruodu Wang for suggesting this version of the proof.
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Proof of Lemma 4.4

(i) See, e.g., [31].

(ii) See, e.g., [31] for the first statement. The second statement follows from the fact that all
ϕ-divergences in (2) but ϕ(t) = |t− 1| are strictly convex on (0,∞).

(iii) To prove the lower bound, use the fact that (
√
t− 1)2 ≤ |

√
t− 1||

√
t+ 1|. To prove the upper

bounds, see [74, Theorem 6.1] for the first and [34, Theorem 1.3] for the second.

(iv) Follows from the fact that

dL1(Q,P) = 2 · E
[(

dQ
dP
− 1

)
1{dQ

dP≥1}

]
= 2 · sup

B∈F

∣∣∣∣E [(dQ
dP
− 1

)
1B

]∣∣∣∣ = 2 · dTV (Q,P).

Proof of Theorem 5.1

The proof of Theorem 5.1 relies on the following lemma, which we state here for its own interest.

Lemma B.1. For every Q ∈ M satisfying the views (1) and Q � P, there exists some Q′ ∈ Q
satisfying the views (1) and such that d(Q′,P) ≤ d(Q,P).

Proof. Let Q ∈M satisfy the views (1) and Q� P. Define Q′ ∈M by dQ′
dP = E

[
dQ
dP | σ(S1, . . . , Sd)

]
.

Hence, Q′ ∈ Q and we obtain

ci ≤ Q[Si] = E
[

dQ
dP

1Si

]
= E

[
dQ′

dP
1Si

]
= Q′[Si], i = 1, . . . , d,

where we have used the definition of conditional expectation in the second equality. In addition,
by Jensen’s inequality, we have

d(Q,P) = E
[
ϕ

(
dQ
dP

)]
≥ E

[
ϕ

(
E
[

dQ
dP
| σ(S1, . . . , Sd)

])]
= d(Q′,P),

which concludes the proof.

We now proceed to the proof of Theorem 5.1. The equivalence of (i) and (ii) follows from
Lemma B.1.

(ii)⇒ (iii): let Q∗ ∈ Q be a solution of (3). Then Q∗ satisfies the views (1) and Q∗ � P.
(iii)⇒ (iv): let Q� P satisfy the views (1). Lemma B.1 implies the existence of some Q′ ∈ Q

satisfying the views (1). Then q ∈ [0,∞)n given by qj = Q′[Uj ] satisfies 1>q = 1 and A q ≥ c.
(iv)⇒ (ii): let us define the feasibility set

C =
{
q ∈ [0,∞)n | A q ≥ c and 1>q = 1

}
, (18)

and the objective function ψ(q) =
∑n

j=1 pj ϕ
(
qj
pj

)
associated to the convex problem (5). As the

feasibility set C is not empty there exists a solution of (5). Indeed, this follows from continuity
of ψ(q) in the non-empty compact feasibility set C. Using Lemma B.1 and the finite dimensional
representation (4), we find that the existence of a solution of (3) in Q is equivalent to the existence
of a solution of (5). This implies (ii).

The uniqueness statement follows from Lemma 4.4(i) stating that the objective function d(Q,P)
of (3) is strictly convex in Q ∈M if ϕ(t) is strictly convex on (0,∞).
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Proof of Corollary 5.3

If P satisfies the views (1), then it is in the feasibility set of the convex optimization problem (3).
The statement of Lemma 4.4(i) then proves that Q∗ = P is the unique solution of (3).

Proof of Corollary 5.4

If Si is a scenario such that P[Si] = 0, then it doesn’t contain any P-atom of σ(S1, . . . , Sd). In
consequence, J(i) is empty. As the i-th inequality constraint of the feasibility set C given in (18) is∑

j∈J(i) qj ≥ ci > 0 and
∑

j∈J(i) qj = 0 when J(i) = ∅, it cannot be satisfied. In consequence, C is
empty and thus the convex problem (3) has no solution.

Proof of Lemma 6.1

Denote Fn(x) = Pn[X ≤ x], n ∈ N and F (x) = P[X ≤ x]. In addition, there should be no confusion
between F (q−), the left limit of F at q and F (q−), the evaluation of F at the left quantile q−.

Property (6) follows from Lemma 4.4(iv). For the second statement, assume that for some ε > 0
there exists a subsequence (qnk

)k∈N such that qnk
≤ q−α (X)− ε for all k ∈ N. Therefore,

Fnk
(qnk

)− F (qnk
) ≥ α− F (q−α (X)− ε) > 0 for all k ∈ N,

which is in contradiction to (6). Similarly, assume that form some ε > 0, there exists a subsequence
(qnk

)k∈N such that qnk
≥ q+α (X) + ε for all k ∈ N. Therefore,

F (qnk
−)− Fnk

(qnk
−) ≥ F ((q+α (X) + ε)−)− α > 0 for all k ∈ N,

which is again in contradiction to (6), hence allowing us to conclude the proof.

Proof of Theorem 6.4

Let us assume that for some ε > 0, there exists a subsequence (nk)k such that∣∣∣ES
Pnk
α (X)− ESα(X)

∣∣∣ ≥ ε for all k ∈ N. (19)

From Lemma 6.1, we know that there exists a subsequence of (nk)k (still denoted (nk)k for sim-
plicity) such that limk→∞ qnk

= q, for some accumulation point q ∈ [q−α (X), q+α (X)]. Defining
Znk

= dPnk
/dP, we thus obtain

(1− α)
∣∣∣ES

Pnk
α (X)− ESα(X)

∣∣∣
=
∣∣E [Znk

(X − qnk
)+
]
− E

[
(X − q)+

]
+ (1− α)(qnk

− q)
∣∣

≤
∣∣E [(Znk

− 1)(X − qnk
)+
]

+ E[(X − qnk
)+ − (X − q)+]

∣∣+ (1− α) |qnk
− q|

≤ ‖Znk
− 1‖p‖X‖r + |qnk

− q|+ (1− α) |qnk
− q| −→ 0,

where we used the fact that |(X − qnk
)+ − (X − q)+| ≤ |qnk

− q|. This result is in contradiction
with (19), hence proving the theorem.

Proof of Corollar 6.5

Follows from Lemma 4.4(iii) and Theorem 6.4.
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Proof of Theorem 7.2

The assumption of mutually disjoint scenarios Si with P[Si] > 0 and ∪di=1Si = Ω P-a.s implies
that A = Id, the d × d identity matrix. In consequence the feasibility set C of (5) given in (18) is
non-empty only if

∑d
i=1 ci ≤ 1, which is thus necessary for the existence of a solution.

To prove the sufficiency assume first that
∑d

i=1 ci = 1. Then C = {c}, and thus q∗ = c is

the unique solution of (5). Assume now that
∑d

i=1 ci < 1. Define qi(ε) = max{ci, ε}. Then, by

monotonicity and continuity of ε 7→ qi(ε), and thus of ε 7→
∑d

i=1 qi(ε), there exists some ε∗ > 0 such

that
∑d

i=1 qi(ε
∗) = 1. In consequence, q = (qi(ε

∗)) ∈ C and is such that q > 0, which satisfies the
hypothesis of Lemma 7.1, Slater’s condition, that can now be applied. The KKT conditions read
here

λ ≥ 0, q ≥ c, λ>(q − c) = 0 (20)

1>q = 1 (21)

ϕ′
(
q

p

)
− λ+ ν1 = 0. (22)

Note that the inequality condition λ ≥ 0 in (20) and the equality condition (22) can be reduced to
one inequality condition, we say that λ is a slack variable. The KKT conditions then become

1>q = 1 (23)

q ≥ c (24)

ϕ′
(
qi
pi

)
+ ν ≥ 0, i = 1, . . . , d (25)(

ϕ′
(
qi
pi

)
+ ν

)
(qi − ci) = 0, i = 1, . . . , d. (26)

It follows by inspection that q∗i = max {ci, pi µ∗} satisfies conditions (24), (25), (26) for ν∗ =
−ϕ′(µ∗). It thus remains to find µ∗ such that F (µ∗) = 1 where we define the function F (µ) =∑d

i=1 max {ci, pi µ}. The function F (µ) is continuous, non-decreasing, piecewise linear, and can be
represented as

F (µ) =


∑d

i=1 ci, if µ < cd
pd∑k−1

i=1 ci + µ
∑d

i=k pi, if ck
pk
≤ µ < ck−1

pk−1
for some k = 2, . . . , d

µ, if c1
p1
≤ µ.

As F (cd/pd) < 1 by assumption, the set K = {1 ≤ k ≤ d | F (ck/pk) ≤ 1} is non-empty, and there
exists a unique µ∗ > cd/pd with F (µ∗) = 1. It satisfies

k∗−1∑
i=1

ci + µ∗
d∑

i=k∗

pi = 1

with k∗ = minK. The proof follows by observing that K =

{
1 ≤ k ≤ d | ckpk ≤

1−
∑k−1

i=1 ci∑d
i=k pi

}
.
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Proof of Corollary 7.3

We know from Theorem 5.1 that finding a solution of (3) is equivalent to finding a solution of (5)
with two P-atoms given by S and Sc. It is clear that the assumptions of the corollary fall under
the umbrella of Theorem 7.2. A simple application of the theorem gives that a solution of (5) is
given by q∗ = (q∗, 1− q∗)> such that q∗ = max{P[S], c} and 1− q∗ = min{1− P[S], 1− c}.

Proof of Corollary 7.4

Given S = {L ≥ `} and c = 1−α, the solution Q∗ of the minimum divergence scenario aggregation
in Corollary 7.3 is such that

Q∗[L ≥ `] = max {P[L ≥ `], 1− α} .

Whenever P[L ≥ `] < 1− α, we have that l is an α-quantile of Q∗, i.e. ` ∈ (q−α , q
+
α ]. The expected

shortfall under the alternative internal model Q∗ at level α becomes

ESQ∗
α (L) =

1

1− α
EQ∗

[
L1{L≥`}

]
+

`

1− α
(1− α−Q∗[L ≥ `]) =

1

1− α
1− α

P[L ≥ `]
E
[
L1{L≥`}

]
= E [L | L ≥ `] =

1

P[L ≥ `]
(
E
[
L1{L≥`}

]
− `P[L ≥ `] + `P[L ≥ `]

)
= ESP[L<`](L).

Whenever P[L ≥ `] ≥ 1− α, Q∗ = P and ESQ∗
α (L) = ESα(L). This finishes the proof.

Proof of Lemma 8.1

(i) For any S ∈ C we have Q[S] ≥ A[S] and Q[Sc] ≥ A[Sc]. This can only hold if Q = A on C.

(ii) Follows from (i) and the fact that two probability measures coinciding on the algebra C also
coincide on the σ-algebra σ(C) generated by C, see [124, Lemma 1.6].

(iii) Theorem 5.1 (iii) and (ii) imply there exists a solution Q∗ ∈ Q of (3). Property (ii) of

this lemma implies that E
[
dQ∗
dP 1S

]
= Q∗[S] = A[S] = E

[
dA
dP1S

]
for all S ∈ C. As dQ∗

dP is

σ(C)-measurable this implies that dQ∗
dP = E

[
dA
dP | σ(C)

]
, and Q∗ is the desired solution.

Proof of Theorem 8.2

Assume first that views are given on Cn with target probabilities defined by A[S] for all S ∈ Cn.
By a direct application of Lemma 8.1 (iii), we have that the alternative measure Q∗n � P defined

by dQ∗n
dP = E

[
dA
dP | σ(Cn)

]
is a solution of (3). [124, Theorem 14.2] implies that dQ∗n

dP →
dA
dP in L1(P).

Using a similar argument as in proof of Lemma 4.4(iv), it follows that

sup
x∈R
|Q∗n[X ≤ x]− A[X ≤ x]| → 0, (27)

for X ∈ L0. The last two statements of the theorem then follow from a simple modification of the
proofs of Lemma 6.1 and Theorem 6.4.
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Proof of Lemma 9.1

By definition of the total variation, see Lemma 4.4(iv), we obtain

dTV (Qr,P) = sup
B∈F

∣∣∣∣∣(1− 1>r)P[B] +

N∑
k=1

rkδωk
(B)− P[B]

∣∣∣∣∣ = sup
B∈F

∣∣∣∣∣
N∑
k=1

rk(δωk
(B)− P[B])

∣∣∣∣∣
≤

N∑
k=1

rk sup
B∈F
|δωk

(B)− P[B]| =
N∑
k=1

rk.

Noting that the upper bound is attained whenever B = ∪Nk=1{ωk} concludes the proof.
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Abstract

An importance sampling approach for sampling copula models is introduced. We propose

two algorithms that improve Monte Carlo estimators when the functional of interest depends

mainly on the behaviour of the underlying random vector when at least one of the components

is large. Such problems often arise from dependence models in finance and insurance. The

importance sampling framework we propose is general and can be easily implemented for all

classes of copula models from which sampling is feasible. We show how the proposal distribution

of the two algorithms can be optimized to reduce the sampling error. In a case study inspired

by a typical multivariate insurance application, we obtain variance reduction factors between

10 and 30 in comparison to standard Monte Carlo estimators.

Key words: Copula, Dependence models, Importance sampling, Insurance, Risk measure, Tail

event

1 Introduction

Many insurance applications, see our motivation Section 2, lead to the problem of calculating a

functional of the form E[Ψ0(X)], where X = (X1, . . . , Xd) : Ω → Rd is a random vector on a

probability space (Ω,F ,P) and Ψ0 : Rd → R is a measurable function. If the components of X

cannot be assumed to be independent, it is popular to model the distribution of X with a copula,

such that

P [X1 ≤ x1, . . . , Xd ≤ xd] = C (FX1(x1), . . . , FXd(xd)) , x ∈ Rd,

where FXj (x) = P[Xj ≤ x], j = 1, . . . , d, are the marginal cumulative distribution functions (cdf)

and C : [0, 1]d → [0, 1] is a copula. A copula allows one to separate the dependence structure from
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the marginal distributions, which is useful for constructing multivariate stochastic models. We

assume the reader to have a basic knowledge on copulas and refer to [89] or [99] for introductions.

The usual approach to estimate E[Ψ0(X)] is by Monte Carlo simulation. In actuarial practice,

very often a set of outcomes of X with a low probability makes a large contribution to E[Ψ0(X)].

In this case, importance sampling can increase the number of samples lying in this set. Through a

weighting approach, an unbiased estimator with a reduced variance can be obtained.

Importance sampling for copulas has been investigated by [56] and [69] for the Gauss copula

only and [10] for absolutely continuous copulas. These papers are inspired by copula models in

financial applications and assume the copula to be either Gaussian or having a known density.

Copulas used in insurance however often deviate from these assumptions.

The main contribution of this paper is the study of importance sampling techniques that do not

rely on a specific copula structure. We consider the case where the functional Ψ0 of interest depends

mainly on the behaviour of the random vector X when at least one of the components is large.

Such problems often arise from dependence models in the realm of finance and insurance, where

distorted expectations of heavy tailed distributions are involved. We propose a new importance

sampling framework for this setup which can be implemented for all classes of copula models from

which sampling is feasible.

This paper is organized as follows. After motivating our work in Section 2, we introduce the

importance sampling approach in Section 3. Section 4 presents a rejection sampling algorithm

while Section 5 presents a direct sampling algorithm. For each of them, we expose the sampling of

the proposal distribution, the calculation of the importance sampling weights and we discuss the

optimal choice of the proposal distribution. Section 6 discusses the efficiency of our algorithms in

rare event settings. A case study is given in Section 7 and Section 8 concludes.

2 Motivation

In a copula model, we may write

E[Ψ0(X)] = E[Ψ(U)]

where U = (U1, . . . , Ud) : Ω→ Rd is a random vector with distribution function C, Ψ : [0, 1]d → R
is defined as

Ψ(u1, . . . , ud) = Ψ0

(
F−1
X1

(u1), . . . , F−1
Xd

(ud)
)
,

and F−1
Xj

(p) = inf{x ∈ R : FXj (x) ≥ p}, for j = 1, . . . , d.

If C and the margins FXj are known, we can use Monte Carlo simulation to estimate E[Ψ(U)].

For a random sample {Ui : i = 1, . . . , n} of U, the Monte Carlo estimator of E[Ψ(U)] is given by

µn =
1

n

n∑
i=1

Ψ(Ui). (2.1)

In this paper, we consider the case where Ψ is large only when at least one of its arguments

is close to 1, or equivalently, if at least one of the components of X is large. This assumption is

inspired by several applications in insurance, as the following examples illustrate:

47



• The fair premium of a stop loss cover with deductible T is E
[
max

{∑d
j=1Xj − T, 0

}]
. The

corresponding functional is Ψ(u) = max
{∑d

j=1 F
−1
Xj

(uj)− T, 0
}

; see the left hand side of

Figure 1 for a contour plot of Ψ for two Pareto margins.
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Figure 1: Left: Contour lines for the excess function Ψ(u1, u2) = max{F−1
X1

(u1) +F−1
X2

(u2)− 10, 0},
where the margins are Pareto distributed with FX1(x) = 1−(1+x/4)−2 and FX2(x) = 1−(1+x/8)−2.

The grey area indicates where Ψ is zero. Right: Contour lines for the product function Ψ(u1, u2) =

F−1
X1

(u1)F−1
X2

(u2), where X1 ∼ LN(2, 1) and X2 ∼ LN(1, 1.5).

• Risk measures for an aggregate S =
∑d

j=1Xj , such as Value-at-Risk, VaRα(S), or Expected

Shortfall, ESα(S), α ∈ (0, 1), cannot in general be written as an expectation of type E[Ψ0(X)].

However, they are functionals of the aggregate distribution function FS(x) = P[S ≤ x] =

E[Ψ(x)(U)], where Ψ(x) (x ∈ R) is the indicator function

Ψ(x)(u) = 1
{
F−1
X1

(u1) + · · ·+ F−1
Xd

(ud) ≤ x
}
.

We can therefore write

VaRα(S) = inf
{
x ∈ R : E[Ψ(x)(U)] ≥ α

}
, ESα(S) =

1

1− α

∫ 1

α
VaRu(S)du,

which depend only on those x for which E[Ψ(x)(U)] ≥ α holds. This is determined by the tail

behaviour of S, which is strongly influenced by the properties of the copula C when at least

one component is close to 1. Note that capital allocation methods such as the Euler principle

for Expected Shortfall behave similarly, see [122] and [89], page 260.

• Computing the covariance (or correlation) of two positive heavy-tailed random variables

X1 and X2 requires the calculation of E[X1X2]. The implied functional is Ψ(u1, u2) =
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F−1
X1

(u1)F−1
X2

(u2). A contour plot of Ψ for log-normal (LN) margins is shown in the right

hand side of Figure 1. In contrast to the preceding examples, this Ψ does not only depend on

the tail behaviour of (X1, X2). However, E[Ψ(U)] depends mainly on the copula behaviour

when at least one argument is close to 1, as Ψ becomes large in this case.

Note that in this framework we follow the convention of [89, Remark 2.1] that X refers to a loss

and −X to a profit, which is more common in an actuarial context. One could have equally well

worked with the P&L random variable −X by changing the area of interest to where components

of X are small.

3 Importance sampling

The idea behind importance sampling is to sample from a proposal distribution FV different from

the target distribution C. The proposal distribution concentrates more samples in the region driving

large contributions to E[Ψ(U)]. With a suitable weighting approach, one obtains an unbiased

estimator with lower variance.

Suppose the function Ψ under consideration is in the class illustrated above: Ψ is large if at

least one of its arguments is close to 1. In this case, a drawback of the estimator µn in (2.1) is

that, typically, for many of the samples Ui, none of the components is close to 1. Therefore, most

samples lie in a region of low interest. The estimation error of µn can thus be large, even if n is

large.

Let V = (V1, . . . , Vd) : Ω → [0, 1]d denote a random vector with distribution function FV. We

can rewrite the integral E[Ψ(U)] as

E[Ψ(U)] =

∫
[0,1]d

Ψ(u)dC(u) =

∫
[0,1]d

Ψ(u)
dC(u)

dFV(u)
dFV(u) = E

[
Ψ(V)

dC(V)

dFV(V)

]
, (3.1)

where dC/dFV denotes the Radon–Nikodym derivative of C with respect to FV. The Radon–

Nikodym derivative exists if and only if the copula C is absolutely continuous with respect to

FV. We will provide more details on this issue later in this section. If C and FV are absolutely

continuous with densities c and fV with respect to the Lebesgue measure, the Radon–Nikodym

derivative dC/dFV is simply the ratio of the densities c/fV.

For an i.i.d. sample {Vi : i = 1, . . . , n} of V, we can define the importance sampling estimator

µ̂n =
1

n

n∑
i=1

Ψ(Vi)w(Vi), (3.2)

where w(Vi) = dC(Vi)/dFV(Vi) are the sample weights. The goal is then to find FV such that

the variance of µ̂n is smaller than the variance of µn.

In order to define the proposal distribution FV, we suggest a mixing approach by taking a

weighted average of a multivariate cdf C [λ] : [0, 1]d → [0, 1] over different values of λ. Let FΛ denote

the distribution function of a random variable Λ : Ω 7→ [0, 1). We then define the distribution FV

of V as a mixture of C [λ] over the distribution FΛ:

FV(u) =

∫ 1

0
C [λ](u) dFΛ(λ), u ∈ [0, 1]d.
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The distribution C [λ] shall be understood as a distorted version of the copula C that will concentrate

samples in specific regions of the sampling space. These regions will then be parametrized by

the value of λ. More precisely, we will construct C [λ] so that it puts mass only in the region

[0, 1]d \ [0, λ]d. In the sequel, we will propose two possible definitions of C [λ] that will define two

importance sampling algorithms, namely a rejection sampling algorithm in Section 4 and a direct

sampling algorithm in Section 5.

We will see that this mixture approach is natural in order to allow C to be absolutely continuous

with respect to FV. In particular, the absolute continuity is guaranteed for any copula C if the

following condition is satisfied.

Condition A. The random variable Λ satisfies P[Λ = 0] > 0.

In order to obtain a well defined weight function w(V) and an unbiased estimator µ̂n, Condi-

tion A must be fulfilled. This condition does not require particular assumptions on C. Although it

seems restrictive, we will see that it is also needed to have a consistent estimator µ̂n. To that end,

we assume Condition A to be satisfied in what follows.

The construction of the proposal distribution FV as a C [λ]-mixture directly yields a sampling

method, as one can draw a realization of FV by first drawing Λ ∼ FΛ and then V ∼ C [Λ]. Therefore,

the following algorithm can be used to calculate µ̂n:

Algorithm 3.1. Fix n ∈ N. For i = 1, . . . , n, do:

1. draw Λi ∼ FΛ;

2. draw Vi ∼ C [Λi];

3. calculate w(Vi);

Return µ̂n = n−1
∑n

i=1 Ψ(Vi)w(Vi).

The following lemma establishes consistency and asymptotic normality of the estimator µ̂n.

Lemma 3.2. Suppose that var[Ψ(U)] <∞ and that w( · ) ≤ B for some constant B <∞. Then

1. µ̂n converges P-almost surely to µ;

2. σ2 = var[Ψ(V)w(V)] <∞ and n1/2(µ̂n − µ) converges to N (0, σ2) in distribution.

Proof.

1. Since E[Ψ(V)w(V)] = E[Ψ(U)], consistency follows directly from the Strong Law of Large

Numbers.

2. Note that

E
[
Ψ(V)2w(V)2

]
= E

[
Ψ(U)2w(U)

]
≤ E

[
Ψ(U)2

]
B <∞,

where the first equality is justified by a change of measure, see (3.1). We can immediately

deduce asymptotic normality of µ̂n by the Central Limit Theorem, see, for example, Section

2.4 in [37], page 110. �

We will later show that under some mild assumptions on FΛ, the weight function will indeed

be bounded on [0, 1].
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4 A rejection sampling algorithm

For this algorithm, we propose C [λ] to denote the distribution of U conditioned on the event that

at least one of its components exceeds λ:

C [λ](u) = P [U1 ≤ u1, . . . , Ud ≤ ud |max{U1, . . . , Ud} > λ ] = P[U1 ≤ u1, . . . , Ud ≤ ud |U /∈ [0, λ]d]

=
C(u)− C (min{u1, λ}, . . . ,min{ud, λ})

1− C(λ1)
,

where λ1 = λ(1, . . . , 1) = (λ, . . . , λ) ∈ [0, 1)d. Note that C [λ] is a copula only if C(λ1) = 0, but

C [λ] does not need to be copula for our algorithm to work. By putting mass of Λ on (0, 1), we can

put more weight on the region of the copula where at least one component is large. For instance,

if FΛ is discrete and P[Λ = 0] = P[Λ = 0.9] = 0.5, then 50% of the samples of V are constrained

to lie only in [0, 1]d \ [0, 0.9]d while the other 50% of the samples will lie on [0, 1]d. Note that the

mass on [0, 1]d \ [0, 0.9]d would then be higher than 50%. On the other hand, the case P[Λ = 0] = 1

yields FV = C.

4.1 Sampling the proposal distribution

We shall now describe how samples from FV can be drawn. As FV is defined through a mixing

distribution, drawing a realization from FV is done by drawing first Λ ∼ FΛ and then V ∼ C [Λ],

see Algorithm 3.1. Unfortunately, for well-known copula classes, the conditional distribution C [λ] is

not analytically tractable. We are aware of only one class of shock copulas, namely Marshall–Olkin

copulas, for which it is possible to sample directly from the conditional distribution C [λ]. Details

and the corresponding algorithm are provided in Appendix A.

However, sampling from C [λ] for an arbitrary copula C is always possible through a rejection

algorithm, which is simple to implement but may be time consuming due to the rejection step.

With the following rejection algorithm, it is thus possible to draw a sample from FV for any copula

C. The only condition is that it is feasible to draw realizations from both FΛ and C. It is not

necessary to know further properties of C, such as its density. The basic idea is to first draw a

realization Λ from FΛ and then iteratively draw realizations from C until one obtains a maximum

component larger than Λ.

Algorithm 4.1. To draw one realization of FV:

1. draw Λ ∼ FΛ;

2. repeatedly draw V ∼ C until max{V1, . . . , Vd} > Λ;

3. return V.

A disadvantage of Algorithm 4.1 is that typically many samples of C are discarded, because of

the acceptance condition in Step 2. In practice, there are two important reasons why this approach

can be justified over standard Monte-Carlo. First, the evaluation of Ψ can be numerically more

expensive than sampling from the copula, if, for instance, marginal quantile functions are demanding

to compute or if Ψ0 has no closed form. Second, storing a large sample of U in computer memory

51



can be numerically more expensive than generating it. This case may appear for example in

estimating allocated capital, which requires storing the whole multivariate sample. In particular in

high dimensional problems, memory constraints can be quite prohibitive. For illustration, consider

the following example: for the calculation of risk capital and risk contributions in a setting with

heavy tailed marginals, a sample of size 10’000’000 is often not large enough to yield sufficiently

small estimation errors. However, in a 1’000-dimensional setting with double-precision floating

point numbers, this sample would require about 80 gigabytes of memory, which is more than an

average computer currently possesses in terms of RAM.

Algorithm 4.1 may require several realizations from U in order to generate one realization of V.

The following lemma gives an expression for the expected number of U’s for obtaining a realization

of V.

Lemma 4.2. Let NV denote the number of draws from C necessary to simulate one realization

from FV. The expected number of draws is

E[NV] =

∫ 1

0

1

1− C(λ1)
dFΛ(λ).

Proof. The probability that one draw from U ∼ C satisfies max{U1, . . . , Ud} > λ is P[max{U1, . . . , Ud} >
λ] = 1 − C(λ1). Therefore, the number of draws necessary to simulate from C [λ] for a fixed λ is

geometrically distributed with parameter 1 − C(λ1) and has expectation 1/[1 − C(λ1)]. In order

to simulate from V, Λ is drawn from FΛ. Therefore, E[NV] is given by averaging 1/[1 − C(λ1)]

over FΛ. �
Using the Fréchet–Höffding bounds (see Theorem 5.7 in [89]), we can give the following bounds

for E[NV], which depend only on FΛ and the dimension d, independent of the copula C.

Theorem 4.3. We have

1

d
E
[

1

1− Λ

]
≤ E[NV] ≤ E

[
1

1− Λ

]
.

Proof. Due to the upper Fréchet–Höffding bound, we have C(λ1) ≤ min{λ, . . . , λ} = λ. Hence,

E[NV] =

∫ 1

0

1

1− C(λ1)
dFΛ(λ) ≤

∫ 1

0

1

1− λ
dFΛ(λ) = E

[
1

1− Λ

]
.

Analogously, due to the lower Fréchet–Höffding bound:

E[NV] ≥
∫ 1

0

1

1−max{0, dλ− d+ 1}
dFΛ(λ) =

∫ 1

0
max

{
1,

1

d(1− λ)

}
dFΛ(λ) ≥ 1

d
E
[

1

1− Λ

]
. �

Due to Theorem 4.3, the number of draws from C necessary to draw one realization from V

has a finite expectation if and only if E[(1−Λ)−1] <∞. Intuitively, this implies that Λ should not

have mass concentrated near 1 in order to be able to use Algorithm 4.1.

We shall see in the next section that specific choices for the copula C and for FΛ will allow us

to find analytical expressions for E[NV].
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4.2 Calculation of sample weights

This section outlines how the weights w(Vi) used in Algorithm 3.1 can be calculated. We first

deduce a useful representation.

Theorem 4.4. The Radon–Nikodym derivative w(u) = dC(u)/dFV(u) can be written as

w(u) =

(∫ max{u1,...,ud}

0

1

1− C(λ1)
dFΛ(λ)

)−1

.

Proof. Due to the Leibnitz integral rule, we have dFV(u) =
∫ 1

0 dC [λ](u)dFΛ(λ). From the

definition of C [λ], we can deduce the differential

dC [λ](u) =

{
0, u ∈ [0, λ]d,

dC(u)
1−C(λ1) , otherwise.

Using both identities, we obtain

dFV(u) = dC(u)

∫ 1

0

1 {λ ≤ max{u1, . . . , ud}}
1− C(λ1)

dFΛ(λ),

leading to the desired result. �
The efficiency of our approach comes from the fact that the term dC(u) does not appear in

w(u). For instance, if C is absolutely continuous with respect to the Lebesgue measure, the density

of C does not have to be evaluated to calculate w(u). This is in an advantage in comparison to

most other importance sampling algorithms, for which the existence of the density of C is required.

In order to simplify the notation, let w̃(t) : [0, 1]→ [0,∞) be defined as

w̃(t) =

(∫ t

0

1

1− C(λ1)
dFΛ(λ)

)−1

,

such that w(u) = w̃(max{u1, . . . , ud}).

Lemma 4.5. Under Condition A, w̃ is bounded from above by P[Λ = 0]−1 on [0, 1].

Proof. Since C(λ1), λ ∈ [0, 1], the diagonal section of the copula C and the distribution function

FΛ are both increasing functions, the weight function w̃(t) is decreasing on [0, 1], it is therefore

bounded above by w̃(0) = P[Λ = 0]−1 <∞. �
As a consequence, Condition A is not only sufficient to obtain existence of the weights, but it

also guarantees that they are bounded. In virtue of Lemma 3.2, this is needed for consistency and

asymptotic normality of the importance sampling estimator.

For general C and FΛ, the evaluation of the weight function w̃ can be demanding. In general,

numerical integration schemes could be used. To circumvent these problems, we present two cases

in which the evaluation of w̃ is straightforward. Section 4.2.1 illustrates the case in which FΛ is

discrete. In Section 4.2.2, we assume that the copula C lies in a large class of copulas satisfying a

polynomial condition on the diagonal. For this class, there is a specific choice of FΛ which leads to

an analytical expression for w̃.
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4.2.1 Discrete FΛ

This section shows that in the case of a discrete FΛ, calculating w̃(t) is fast and can easily be

implemented. To this end, suppose FΛ is discrete with a finite number nΛ of atoms:

P[Λ = xk] = pk, k = 1, . . . , nΛ,

nΛ∑
k=1

pk = 1, p1 > 0, and 0 = x1 < · · · < xnΛ < 1.

Note that Condition A is satisfied. In this case, w̃ can be written as a step function

w̃(t) =

(
nΛ∑
k=1

1{xk ≤ t}
1− C(xk1)

pk

)−1

. (4.1)

In order to evaluate w̃(t), it is sufficient to calculate (or approximate) C(xk1) for k = 1, . . . , nΛ.

These values must be calculated only once for the whole sample. This approach with a discrete FΛ

can be used for any copula C. For E[NV], we obtain the explicit expression

E[NV] =

nΛ∑
k=1

pk
[1− C(xk1)]

.

4.2.2 Continuous FΛ

For continuous FΛ, the weight function w̃ can in general only be calculated numerically. In the

following, we assume that both C and FΛ are of a special polynomial form, which leads to an

explicit w̃. Suppose that C behaves as a monomial on its diagonal:

C(u1) = uα, 0 ≤ u ≤ 1.

Due to the Fréchet–Höffding bounds, α must satisfy 1 ≤ α ≤ d. This class of copulas is quite large.

The following list shows some popular copula families satisfying this condition.

• Marshall–Olkin copulas as proposed in Example A.2 of Appendix A. The corresponding ex-

ponent is α =
∑m

j=1 mini:j∈Ii(sj/s̃i).

• Sibuya copulas, as defined in [66], for which the default rate process is a homogeneous Poisson

process.

• Extreme value copulas with a Pickands dependence function A. The corresponding exponent

is α = dA(1/d, . . . , 1/d); see Section 7 in [89] for a definition of extreme value copulas. Note

that this class contains the well-known Gumbel copula, for example.

Apart from the copula C, we also make some specific assumptions about FΛ : [0, 1] → [0, 1].

Suppose that

FΛ(λ) = (1− γ) + γ
(

1− (1− λα)β
)
, β > 1, 0 ≤ γ ≤ 1.

54



The parameter α is given by the exponent of the copula diagonal, so cannot be chosen freely.

Furthermore, FΛ has an atom of weight 1−γ at zero. This distribution is similar to the distribution

of [78]. In this case, the weight function can easily be calculated as

w̃(t) =

(
1− γ + γβ

∫ t

0
αλα−1(1− λα)β−2dλ

)−1

=
β − 1

β − 1 + γ (1− β(1− tα)β−1)
. (4.2)

As E[NV] = 1/w̃(1) (c.f. Lemma 4.2), we obtain an explicit expression for E[NV]:

E[NV] = 1 +
γ

β − 1
. (4.3)

In order for Condition A to be satisfied, we assume γ < 1. In fact, using properties of the

hypergeometric function, it is possible to show that for γ = 1, the weight function is unbounded

and the variance of the weights var[w(V)] is always infinite.

There are many copula classes which have an explicit diagonal. For instance, the Clayton family

has a diagonal C(t1) = (dt−θ − d+ 1)−1/θ for some 0 < θ <∞. For future research, we may point

out that it would be interesting to find “conjugate” FΛ for copulas that also allow for an explicit

form of w̃(·).

4.3 Optimal proposal distribution

This section gives an approach to calibrate the distribution FΛ to the problem at hand. The basic

idea is to choose the proposal distribution FV in such a way that µ̂n has a smaller variance than

µn. In our case, this reduces to optimally choosing the distribution FΛ. In general, FΛ must have

an atom at 0 in order to satisfy Condition A. If Algorithm 4.1 is used for sampling, we also need

to fulfill the constraint that E[1/(1− Λ)] is not too large, and, in particular, finite.

Zero variance (i.e., no estimation error) would be obtained for µ̂n if

Ψ(u)w(u) = E[Ψ(U)], u ∈ [0, 1)d, (4.4)

see Section 4.1 in [6], page 128. This choice is obviously not possible as E[Ψ(U)] is unknown. To

obtain a small variance, we should choose Λ such that w(u)−1 is approximately proportional to

Ψ(u). Due to Theorem 4.4, we may write this relation as

K

∫ max{u1,...,ud}

0

1

1− C(λ1)
dFΛ(λ) ≈ Ψ(u), (4.5)

for some unknown constant K ∈ R+. In order to obtain a tractable optimization scheme, we use

our assumption that Ψ(u) is large if at least one of its components is large, namely

Ψ(u) ≈ Ψ
(
max{u1, . . . , ud}1

)
. (4.6)

Plugging (4.6) into (4.5), we obtain

K

∫ t

0

1

1− C(λ1)
dFΛ(λ) ≈ Ψ(t1), t ∈ [0, 1]. (4.7)

In the following, we propose methods to calibrate FΛ such that the approximate relation (4.7) is

satisfied. We illustrate this calibration with the two choices for FΛ being discrete and continuous.
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4.3.1 Discrete FΛ

In the discrete case, as defined in Section 4.2.1, specifying the distribution FΛ reduces to setting

the atoms xk and their weights pk = P[Λ = xk] for k = 1, . . . , nΛ. By plugging FΛ into (4.7), we

obtain

K

nΛ∑
k=1

1{xk ≤ t}pk
1− C(xk1)

≈ Ψ(t1), t ∈ [0, 1). (4.8)

We propose to set the pk’s by enforcing equality to hold in (4.8) only for t = x1, . . . , xnΛ . By

assuming without loss of generality, that xk < xk+1 for all k, Equation (4.8) leads to

K
k∑
l=1

1

1− C(xl1)
pl = Ψ(xk1), k = 1, . . . , nΛ.

This yields a triangular linear system of equations which can be easily solved with the following

algorithm; we propose to choose the xk’s on a finite logarithmic grid becoming denser towards 1.

Algorithm 4.6.

1. Choose nΛ ∈ N;

2. define xk = 1− (1/2)k−1, k = 1, . . . , nΛ;

3. define p̃1 = Ψ(0, . . . , 0) and p̃k = (Ψ(xk1)−Ψ(xk−11)) (1− C(xk1)), for k = 2, . . . , nΛ;

4. define pk = p̃k/(
∑

l p̃l).

The use of powers of 1/2 to set the xk’s is arbitrary; any other factor in (0, 1) can be used

instead. In numerical experiments, the impact of this choice was in general small, as the calculated

pk change accordingly.

In the following situations, Algorithm 4.6 may fail:

• if p1 = 0, then FΛ does not satisfy Condition A;

• if t 7→ Ψ(t1) is not monotone, then Algorithm 4.6 results in some of the pk’s being negative;

• if the function Ψ does not attain a finite value at (0, . . . , 0).

Since nΛ <∞, the condition E[1/(1− Λ)] <∞ is automatically satisfied. Of course, one could

also use discrete distributions for Λ supported by infinitely many points. However, in experiments

analogous to the case study presented in Section 7, this has led to waiting times E[NV] becoming

large without providing additional accuracy when using rejection sampling.
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4.3.2 Continuous FΛ

In the continuous case, as defined in Section 4.2.2, the optimization unfortunately cannot be done

as easily and explicitly as for the discrete case. By putting FΛ, see Equation (4.2), into (4.7), we

obtain

K

(
1 +

γ
(
1− β(1− tα)β−1

)
β − 1

)
≈ Ψ(t1), t ∈ [0, 1]. (4.9)

In order to optimize FΛ, we would need to find parameters K ∈ R, γ ∈ (0, 1) and β > 1 which

minimize some distance between the left and right hand side of (4.9). As distance function, one

can for instance use the quadratic norm. This minimization can be implemented through standard

numerical minimization procedures. Recall that α is fixed through the copula’s diagonal. In order

to have E[NV] not excessively high, one might want to impose a further parameter constraint by

bounding E[NV] = 1 + γ/(β − 1).

5 A direct sampling algorithm

As noted in the previous section, the rejection sampling algorithm may lead to large sampling time

due to the rejection step. This step was necessary due to the complexity of the conditioning event

in the definition of C [λ]. We now consider

C [λ](u) = d−1
d∑
i=1

P [U1 ≤ u1, . . . , Ud ≤ ud |Ui > λ] (5.1)

= d−1
d∑
i=1

C(u)− C (u1, . . . , ui−1,min{ui, λ}, ui+1, . . . , ud)

1− λ
, u ∈ [0, 1]d.

This distribution only involves the conditional copula where the conditioning event is only on one

element of the random vector U. This will have the practical advantage that a direct sampling

algorithm, i.e. with no rejection step, can be provided.

5.1 Sampling the proposal distribution

Let us denote Cuk the conditional copula given that the k-th component equals uk, that is

Cuk(u1, . . . , uk−1, uk+1, . . . , ud) = P[U1 ≤ u1, . . . , Uk−1 ≤ uk−1, Uk+1 ≤ uk+1, . . . , Ud ≤ ud |Uk = uk].

Sampling from FV can then be performed using the following algorithm.

Algorithm 5.1. To draw one realization of FV:

1. draw Λ ∼ FΛ;

2. draw I ∈ {1, . . . , d}, with P[I = i] = d−1;

3. draw VI ∼ U(Λ, 1);
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4. draw (V1, . . . , VI−1, VI+1, . . . , Vd) ∼ CVI ;

5. return V = (V1, . . . , Vd).

The main advantage of this algorithm is that it does not reject any sample and as a consequence,

in contrast to Algorithm 4.1, its run time does not depend on the distribution FΛ. In addition, one

can show that using a rejection algorithm for producing samples from (5.1) would yield an expected

waiting time of E[(1−Λ)−1], which would be higher than the expected waiting time of the rejection

sampling presented in Section 4, see Theorem 4.3. This justifies the fact that we propose two

specific distributions of C [λ] for each of these two algorithms.

In Step 4 of Algorithm 5.1, a sampling algorithm for the conditional copula Cuk , where k

can be any of the d components, is required. Depending on the form of the copula Cuk , efficient

sampling algorithms may be available, see for instance Examples 5.3 and 5.4 below, or one can use

the conditional distribution method. Note that the conditional distribution method is applied, for

example, for sampling vine copulas; see the VineCopula R package.

Along the lines of [39], we then propose the following general algorithm to sample from Cuk .

Algorithm 5.2. Given uk ∈ R, to draw one realization of Cuk , do:

1. draw U′ =
(
U ′1, . . . , U

′
k−1, U

′
k+1, . . . , U

′
d

)
∼ U(0, 1)d−1;

2. set

U1 = C−1(U ′1 |uk)
...

Uk−1 = C−1(U ′k−1 |U1, . . . , Uk−2, uk)

Uk+1 = C−1(U ′k+1 |U1, . . . , Uk−2, Uk−1, uk)

...

Ud = C−1(U ′d |U1, . . . , Uk−1, uk, Uk+1, . . . , Ud−1)

3. return (U1, . . . , Uk−1, Uk+1, . . . , Ud).

Following Theorem 2.27 and Remark 2.29 in [117], we have that for k > j

C(uj |u1, . . . , uj−1, uk) =
D1,...,j−1,kC1,...,j−1,j,k(u1, . . . , uj−1, uj , uk)

D1,...,j−1,kC1,...,j−1,k(u1, . . . , uj−1, uk)
, (5.2)

which simplifies to

C(uj |u1, . . . , uj−1) =
D1,...,j−1C1,...,j−1,j(u1, . . . , uj−1, uj)

D1,...,j−1C1,...,j−1(u1, . . . , uj−1)
,

whenever k < j. Here, D1,...,j,k denotes the partial derivatives with respect to the components

1, . . . , j, k and C1,...,j,k denotes the copula corresponding to the distribution of these components.

In general, tractable inverses of the conditional distributions (5.2) are not always available, and

numerical root-finding would need to be applied. However, there are cases where one can derive

explicitly such inverses, see, e.g., Example 5.5. In consequence, although this algorithm does not

involve a rejection step, it may require more implementation effort.
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Example 5.3 (Direct sampling of Farlie–Gumbel–Morgenstern copula). The Farlie–Gumbel–Morgenstern

(FGM) copula is defined by

Cθ(u) =

d∏
i=1

ui

1 + θ

d∏
j=1

(1− uj)

 , u ∈ Rd,

with θ ∈ [−1, 1], see, e.g., [54]. This copula is a special form of the more general Eyraud–Farlie–

Gumbel–Morgenstern copula, see page 19 in [72]. It is easily seen that

∂

∂uk
Cθ(u) =

d∏
i=1,i 6=k

ui

1 + θ(1− 2uk)
d∏

i=1,i 6=k
(1− ui)


= Cθ(1−2uk)(u1, . . . , uk−1, uk+1, . . . , ud),

where Cθ(1−2uk) is a FGM copula with parameter θ(1− 2uk) ∈ [−1, 1]. As a consequence, sampling

from Cθuk is reduced to sampling from Cθ(1−2uk). To this end, the conditional distribution method

can be used. Producing a sample U ∼ Cθ can indeed be reduced to drawing U′ ∼ U(0, 1)d and

setting U1 = U ′1, . . . , Ud−1 = U ′d−1, and

Ud =
2U ′d

1 +W +
√

(1 +W )2 − 4WU ′d
,

where W = θ
∏d−1
j=1(1− 2U ′j), see Section 8.7.12 in [114] for more details.

Example 5.4 (Direct sampling of Frank copula). According to Section 6 in [92], if C(u) =

ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
is a d-dimensional Archimedean copula with generator ψ, then the

(d− 1)-dimensional copula C̃ of the multivariate distribution Cuk is also Archimedean, with gener-

ator

ψuk(t) =
ψ′(t+ ψ−1(uk))

ψ′(ψ−1(uk))
, t ∈ [0,∞].

This can be used to show that if C is a Frank copula with parameter α ∈ R and generator ψα(t) =

−α−1 log(1− (1− e−α)e−t), then Cuk can be modeled by a multivariate distribution with copula of

type Ali–Mikhail–Haq with parameter θ(α, uk) = 1− e−αuk , generator

ψθ(α,uk)(t) =
1− θ(α, uk)
et − θ(α, uk)

(5.3)

and marginal distributions that have quantile functions

F−1
α,uk

(u) = − 1

α
log

(
e−α − 1

1 + e−αuk(u−1 − 1)
+ 1

)
, u ∈ [0, 1]. (5.4)

In consequence, sampling from Cuk is reduced to sampling from a Ali–Mikhail–Haq copula with

generator (5.3), for example using the fast Marshall–Olkin algorithm, see Sections 2.4 and 2.5

in [63], and then applying the quantile function (5.4) to the copula sample. In a similar fashion, if C

is Archimedean such that Cuk is easy to sample with the Marshall–Olkin algorithm (many examples

and techniques are known), and, additionally, the marginal distributions are easy to invert, then

one obtains a fast sampling technique for Step 4 in Algorithm 5.1.
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Example 5.5 (Conditional distribution method for Clayton copula). The Clayton copula is defined

by

Cθ(u) =

(
1 +

d∑
i=1

(u−θi − 1)

)−1/θ

, u ∈ Rd,

with θ > 0. Using (5.2), one can show that

Cθ(−1)(u′j |u1, . . . , uj−1, uk) =

(
1 +

(
1− (j − 1) +

j−1∑
k=1

u−θk

)(
(u′j)

− 1
j−1+1/θ − 1

))−1/θ

,

which allows one to easily implement Algorithm 5.2.

5.2 Calculation of sample weights

As for the rejection sampling approach, we derive a representation for the weights w(Vi) used in

Algorithm 5.1.

Theorem 5.6. The Radon–Nikodym derivative w(u) = dC(u)/dFV(u) can be written as

w(u) =

(
d−1

d∑
i=1

∫ ui

0

1

1− λ
dFΛ(λ)

)−1

.

Proof. Noting that

dC [λ](u) =
dC(u)

d(1− λ)

d∑
i=1

1{ui > λ},

we proceed similarly as in the proof of Theorem 4.4. �
As in the rejection sampling algorithm, we note that dC(u) does not appear in w(u), so that

the existence of the density of C is not a requirement for the derivation of the weights. In order to

insure consistency and asymptotic normality of the importance sampling estimator, we shall also

check the boundedness of the weight function.

Lemma 5.7. Under Condition A, the weight function w is bounded from above by P[Λ = 0]−1 on

[0, 1].

Proof. We note that w(u) is decreasing in all components. Hence, it is bounded above by

w(0, . . . , 0) = P[Λ = 0]−1 <∞. �
For general FΛ, the evaluation of the weight function w could be demanding. In general,

numerical integration schemes could be used. To circumvent these problems we propose to use the

same setup for FΛ as in Section 4, i.e., a discrete case and a continuous case.
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5.2.1 Discrete FΛ

If FΛ is discrete such that P[Λ = xk] = pk, p1 > 0, k = 1, . . . , nΛ, 0 = x1 < · · · < xnΛ < 1, then w

can be written as

w(u) = d

(
d∑
i=1

nΛ∑
k=1

1{xk ≤ ui}
1− xk

pk

)−1

. (5.5)

5.2.2 Continuous FΛ

Taking the cdf of Λ as

FΛ(λ) = (1− γ) + γ
(

1− (1− λ)β
)
, β > 1, 0 ≤ γ < 1,

gives, for any copula C, the following closed form for the weights

w(u) =
β − 1

β − 1 + γ − γβd−1
∑d

i=1(1− ui)β−1
. (5.6)

Note that we do not need any restriction on the copula diagonal, in contrast to Section 4.2.2

5.3 Optimal proposal distribution

To obtain a small variance, we should choose Λ such that w(u)−1 is approximately proportional to

Ψ(u). Due to Theorem 5.6, we may write this relation as

Kd−1
d∑
i=1

∫ ui

0

1

1− λ
dFΛ(λ) ≈ Ψ(u), (5.7)

for some unknown constant K ∈ R+. As per the rejection sampling approach, we shall restrict

the calibration to the diagonal in order to obtain a tractable optimization scheme and we use our

assumption that Ψ(u) ≈ Ψ
(
max{u1, . . . , ud}1

)
. Therefore (5.7) reduces to

K

∫ t

0

1

1− λ
dFΛ(λ) ≈ Ψ(t1), t ∈ [0, 1]. (5.8)

In the following, we propose methods to calibrate FΛ such that the approximate relation (5.8) is

satisfied. We illustrate this calibration with the two choices for FΛ as outlined in Sections 5.2.1

and 5.2.2.

5.3.1 Discrete FΛ

In the discrete case, we obtain

K

nΛ∑
k=1

1{xk ≤ t}pk
1− xk

≈ Ψ(t1), t ∈ [0, 1). (5.9)
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We propose to determine the pk’s by enforcing equality to hold in (5.9) only for t = x1, . . . , xnΛ

which leads to the triangular system

K

k∑
l=1

1

1− xl
pl = Ψ(xk1), k = 1, . . . , nΛ.

Choosing the xk’s as in the rejection sampling approach, we can solve for the pk’s using the following

algorithm:

Algorithm 5.8.

1. Choose nΛ ∈ N;

2. Define xk = 1− (1/2)k−1, k = 1, . . . , nΛ;

3. Define p̃1 = Ψ(0, . . . , 0) and p̃k = (Ψ(xk1)−Ψ(xk−11)) (1− xk), for k = 2, . . . , nΛ;

4. Define pk = p̃k/(
∑

l p̃l).

5.3.2 Continuous FΛ

In the continuous case, the optimization unfortunately cannot be done as easily and explicitly as

for the discrete case. In this case, the optimization on K ∈ R, γ ∈ (0, 1) and β > 1 is performed

such that

K

[
1 +

γ
(
1− β(1− t)β−1

)
β − 1

]
≈ Ψ(t1), t ∈ [0, 1]. (5.10)

6 Rare event analysis

As the importance sampling technique is intended to be used in cases where the functional Ψ is

large on sets which relate to rare events, we may want to study the efficiency of the algorithm in a

rare event setting. We shall consider Ψ(s)(u) as a functional that will take non-zero values only on

a small probability set. Let p(s) = E
[
Ψ(s)(U)

]
be the probability of interest. The rare event setting

assumes that lims→1 p
(s) = 0. For each s, we would select a new mixing distribution F

(s)
Λ , therefore

changing the calibration of the proposal distribution F
(s)
V and its sampling cost that we shall denote

T (s). In the direct sampling algorithm, see Section 5, this sampling cost is finite and constant in

s, whereas it is of order E[(1 − Λ)−1], see Theorem 4.3, in the rejection sampling algorithm from

Section 4.

Let µ̂
(s)
n = n−1

∑n
i=1 Ψ(s)(Vi)w

(s)(Vi) be the importance sampling estimate. In a rare-event

setting, we would ideally aim for a bounded relative error as s→ 1, see Chapter VI in [6], that is

lim sup
s→1

var
[
µ̂

(s)
n

]
(
p(s)
)2 T (s) <∞. (6.1)
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Replacing var
[
µ̂

(s)
n

]
by its upper bound n−1E

[
Ψ(s)(V)2w(s)(V)2

]
, we shall aim for an algorithm

that satisfies

lim sup
s→1

n−1E
[
Ψ(s)(V)2w(s)(V)2

](
p(s)
)2 T (s) <∞. (6.2)

Note first that the optimality condition (4.4) guarantees that E
[
Ψ(s)(V)2w(s)(V)2

]
/
(
p(s)
)2 ∝ 1.

We now assume a mild condition for the calibration of F
(s)
Λ that will be needed to obtain the

efficiency criteria (6.2).

Condition B. For all s > 0, the discrete distribution of Λ is constructed such that there exists

k ∈ {1, . . . , nΛ} with xk = s and pk > 0.

We first study the case of rejection sampling from Section 4, limiting ourselves to the setup of

a discrete distribution for Λ. Although typical rare event sets in the literature consider the sum

of margins, we will consider the maximum instead, which allows us to stay within a rare event

framework since {maxi ui > s} ⊆ {
∑

i ui > s}, u ∈ [0, 1]d.

Theorem 6.1. Assume that Ψ(s)(u) = 1{maxi ui > s} and that the proposal distribution FV and

the corresponding weight function w(u) are chosen as in Section 4. In addition, assume FΛ is a

discrete distribution with a finite number nΛ of atoms P[Λ = xk] = pk, k = 1, . . . , nΛ, 0 =

x1 < · · · < xnΛ < 1, calibrated as in Algorithm 4.6 and that the Condition B holds. Denote

k∗u = max{1 ≤ k ≤ nΛ : xk ≤ maxi ui},u ∈ [0, 1)d. Then

lim sup
s→1

E
[
Ψ(s)(V)2w(s)(V)2

](
p(s)
)2 <∞.

Proof. Under Condition B, we have that xk∗u ≥ s on the event {maxi ui > s}. Therefore,∫
[0,1]d

Ψ(s)(v)2w(s)(v)2dFV(v) =

∫
[0,1]d

Ψ(s)(u)w(s)(u)dC(u)

=

∫
[0,1]d

Ψ(s)(u)

(
nΛ∑
k=1

p̃k

)(
nΛ∑
k=1

1{xk ≤ maxi ui}p̃k
1− C(xk1)

)−1

dC(u)

=

∫
[0,1]d

Ψ(s)(u)

(
nΛ∑
k=1

Ψ(s)(xk1)(C(xk1)− C(xk−11))

)
Ψ(s)(xk∗u1)−1dC(u)

=

∫
[0,1]d

Ψ(s)(u) (C(xnΛ1)− C(s1)) dC(u)

≤ (1− C(s1))

∫
[0,1]d

Ψ(s)(u)dC(u) = (p(s))2, (6.3)

which proves the theorem. �
Note that Theorem 6.1 guarantees a bounded relative error as in (6.1) whenever lim sups→1 T (s) <

∞. This would not hold for the rejection algorithm. Indeed, since E[(1−Λ)−1] =
∑nΛ

k=1 pk/(1−xk),
we obtain in virtue of Theorem 4.3 that lim sups→1 T

(s) =∞ under Condition B.
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In the case of direct sampling, we can prove the corresponding version of Theorem 6.1 by taking

Ψ(s)(u) = 1{ui > s} for any i = 1, . . . , d and k∗u = max{1 ≤ k ≤ nΛ : xk ≤ ui},u ∈ [0, 1)d. Since

this algorithm has a computational cost T (s) constant in s, it shall then be prefered to the rejection

sampling algorithm in rare event settings, although it may require more implementation efforts.

The calibration of the proposal distribution FV is profiled on the assumption that Ψ(u) ≈
Ψ(maxi ui1). In Theorem 6.1 we have been able to show that when Ψ(u) = 1{maxi ui > s} for

some s ∈ (0, 1), i.e. when the assumption holds with equality, then E[Ψ(V)2w(V)2] ≤ E[Ψ(U)]2. By

Jensen’s inequality we obtain that E[Ψ(V)2w(V)2] ≤ E[Ψ(U)2], and thus that var(µ̂n) ≤ var(µn),

so a smaller estimator’s variance. Although the assumption that Ψ(u) ≈ Ψ(maxi ui1) is typical of

application in insurance mathematics, it does not often hold with equality and thus cannot be easily

incorporated into an analytical framework that would allow to prove a certain variance reduction

factor. However, we illustrate in the numerical Case Study of Section 7 that we obtain a substantial

variance reduction for several typical insurance problems.

7 Case study

In this section, we illustrate the performance of our importance sampling algorithms for functionals

Ψ relevant for insurance applications. We shall use the two importance sampling algorithms defined

in Section 4 and Section 5 on the same example. We use three random vectors, of dimension d = 2,

d = 5, and d = 25, respectively. Our case study will assume that marginal distributions of X =

(X1, . . . , Xd) are lognormal, parametrized as Xj ∼ LN(10−0.1j, 1+0.2j), j = 1, . . . , d, which yields

equal expectation for each margin, i.e, E[Xj ] = 36 315.5 and standard deviation E[Xj ]
√
e1+0.2j − 1.

We will consider two examples of copulas, namely Clayton and Gumbel. Kendall’s tau, see, e.g.,

Section 5.1.1 in [99], between each pair of margins is 1/3, which yields a Clayton parameter of 1

and a Gumbel parameter of 1.5. Note that our importance sampling method does not rely on

particular assumptions on the copula. In consequence, the general behavior of the algorithm does

not significantly change with the strength of the dependence. This case study has been implemented

using the R package copula.

We investigate the estimation of the following five functionals of X. All are formulated in

terms of the aggregate losses S =
∑d

j=1Xj , which is inspired by risk aggregation problems arising

frequently in actuarial practice:

• E[max{S−T, 0}], which is the fair premium of a stop-loss cover with deductible T . For T we

use T = 105d, which is approximately 3 times the expectation of S;

• VaR0.995(S) and ES0.99(S), which are the risk measures determining solvency capital under

Solvency II and the Swiss Solvency Test, respectively (see [52] and [24]);

• E[X1 |S > F−1
S (0.99)] and E[Xd |S > F−1

S (0.99)], which represent the capital allocated to the

first and last margin under the Euler principle, see [122].

For ease of calibration and simulation, we use the discrete framework for FΛ. As we want to

use the same sample to estimate all objective functions, we only conduct one calibration of FΛ

for each problem dimension. Recall from Section 2 that VaRα and ESα cannot be written as an
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expectation of type E[Ψ0(X)]. We thus calibrate FΛ using the stop-loss objective function Ψ̃(u) =

max{
∑d

j=1 F
−1
j (uj)−T, 0}. This is non-zero only for

∑d
j=1 F

−1
j (uj) above the deductible T , so that

calibration with this function will favour a high concentration of distorted samples in the region of

interest for our applications. Note that the calibration of FΛ depends on the choice of copula and

of the importance sampling algorithm, see Sections 4.3.1 and 5.3.1. The number of discretization

points is set to nΛ = 10. As shown in Table 1, the highest point x10 = 1 − (1/2)9 ≈ 0.998,

which is well beyond the highest VaR level under consideration. In order to satisfy Condition A,

we manually set the weight of x0 to be p0 = 0.1 and decrease the other weights proportionally.

The weights pk for k = 1, . . . , nΛ resulting from the calibration using the Gumbel copula and the

rejection sampling approach are shown in Table 1 for dimensions d = 2, 5 and 25.

k 1 2 3 4 5 6 7 8 9 10

xk 0.000 0.500 0.750 0.875 0.937 0.968 0.984 0.992 0.996 0.998

d = 2 pk 0.100 0.000 0.000 0.000 0.115 0.325 0.206 0.128 0.787 0.048

d = 5 pk 0.100 0.000 0.000 0.000 0.129 0.302 0.202 0.131 0.084 0.053

d = 25 pk 0.100 0.000 0.000 0.000 0.022 0.252 0.216 0.174 0.135 0.102

Table 1: Calibrated probability weights pk using the Gumbel copula.

The weight functions w̃(·) = w(·1) and a scatter plot of 5 000 samples of V are plotted in

Figure 2, when the reference copula is Gumbel and the rejection sampling approach is used. Given

the setup of this case study, it is easy to check that Lemma 3.2 is satisfied. Due to the construction

of FV, more samples lie close to the upper or right border than what would be observed for a copula

sample.

As the objective functions use estimates of the distribution function of S, we normalize the

sample weights to sum to 1. This further reduces the estimation error as advocated in Section 4.2.2

in [55] or Section 2.5.2 in [85].

In order to assess the improvements provided by importance sampling, we present a simulation

study for d ∈ {2, 5, 25}. We use a sample size of n = 10 000 to calculate the importance sampling

estimators µ̂n for each of the two algorithms and the standard Monte Carlo estimators µn for all

objective functions. A total of 500 repetitions is used to obtain an empirical distribution of these

estimators, and thus to estimate their variance. Although the sampling size has an impact on

the value of the sample variance, it should not play a significant role in the study of algorithmic

efficiency. The results are presented in Tables 2, 3 for the Gumbel and Clayton cases using the

rejection algorithm, and Tables 4, 5 for the Gumbel and Clayton cases using the direct algorithm.

Although the value of the estimates may be different depending on which algorithm is used for

sampling, we only present the reference value obtained from the plain Monte Carlo simulation

since our empirical study has shown only negligible differences. The main results in these tables

are in the form of variance reduction factors, which represent the sample variance of the plain

Monte Carlo estimator divided by the sample variance of our importance sampling estimator.

Tables 2, 3, 4 and 5 show that the importance sampling algorithms greatly decrease the esti-

mation error for all objective functions. It is not surprising that the largest reduction is for the
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Figure 2: Left: Discrete weight function w̃(t) = w(t1) for t ∈ [0.96, 1] for the Gumbel copula, for

dimensions d ∈ {2, 5, 25} and using the rejection sampling approach. From 0 to 0.968 the function

w̃ is constant. Right: A scatter plot of 5 000 samples of V sampled using the rejection sampling

approach.

stop-loss cover, since FΛ is calibrated to this functional. A larger reduction for the other functionals

could be achieved with a specific calibration for each of them. The smallest reduction factors are for

VaR0.995(S), because this functional does not depend on the tail behaviour of S beyond the 99.5%

quantile, where the largest gain in accuracy is obtained by our importance sampling approach.

The variance reduction can also be observed from the boxplots in Figures 3 and 4 that allow us to

compare the entire distribution of the plain Monte Carlo to the importance sampling estimators

for VaR0.995(S) and ES0.99(S), using the two algorithms for d = 5. We note that the bias indeed

appears negligible and that variance of these empirical distributions has been greatly reduced by

the importance sampling approaches.

In order to fairly assess the efficiency of the method and to compare the two sampling algorithms,

one should divide the variance reduction factors in Tables 2 and 3 by the expected waiting time of

the rejection sampling algorithm, E[NV], given in Table 6.

In most cases, the expected waiting time is larger than the variance reduction ratio, hence

rendering the rejection algorithm inefficient for this case study. We recall that this waiting time

issue is only a concern when using the rejection sampling algorithm from Section 4.

Although the conditional sampling algorithm might be a bit more computationally intensive

than the direct sampling of the copula C, e.g., when inverting the conditional distributions in

Algorithm 5.2 for certain copulas, this complexity is insignificant and does not become more pro-

nounced if one puts more mass of Λ towards 1. For this reason, we conclude that the efficiency of

the importance sampling method is not reduced with the conditional sampling approach.
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d = 2 d = 5 d = 25

Objective function Ref. val. Red. fact. Ref. val. Red. fact. Ref. val. Red. fact.

E[(S − T )+] 10 498 80.8 29 648 39.1 310 499 17.3

VaR0.995(S) 645 162 12.4 1 795 071 11.5 15 183 823 9.9

ES0.99(S) 774 616 18.6 2 241 589 17.5 24 541 482 13.9

E[X1|S > F−1
S (0.99)] 351 077 21.4 332 560 19.3 324 231 11.3

E[Xd|S > F−1
S (0.99)] 423 539 22.3 570 105 18.1 1 676 897 17.7

Table 2: Reference values (Ref. val.) of the objective functions and variance reduction factors

(Red. fact.) with Fλ discrete and C Gumbel copula, using the rejection sampling algorithm.

d = 2 d = 5 d = 25

Objective function Ref. val. Red. fact. Ref. val. Red. fact. Ref. val. Red. fact.

E[(S − T )+] 7 765 63.08 13 657 23.59 119 531 9.05

VaR0.995(S) 526 254 14.14 1 101 395 10.60 7 235 669 6.05

ES0.99(S) 610 928 19.74 1 272 925 14.84 9 963 262 8.47

E[X1|S > F−1
S (0.99)] 259 814 31.18 139 127 19.18 68 702 5.62

E[Xd|S > F−1
S (0.99)] 351 113 26.04 384 475 16.92 1 009 675 15.81

Table 3: Reference values (Ref. val.) of the objective functions and variance reduction factors

(Red. fact.) with Fλ discrete and C Clayton copula, using the rejection sampling algorithm.

8 Conclusion

We proposed an importance sampling approach for copula models with two algorithms, specifically

designed for problems arising frequently in insurance and financial applications.

The starting point for the construction of an alternative sampling distribution was to consider

the copula conditional on the event that some of its components exceed a certain threshold. In the

rejection sampling approach, we require that the maximum of all components exceeds the threshold.

In the direct sampling approach, we require that a specific component exceeds the threshold. The

proposal distribution has then been constructed by mixing over different thresholds.

In order to minimize the estimation error of the importance sampling estimator, we proposed

several procedures to set up and optimize the mixing distribution. Unlike other importance sam-

pling approaches, our method does not have requirements on the original copula and it can be

applied to any copula from which sampling is feasible.

The variance reduction of our approach has only been shown analytically for a simplified case.

Through a case study inspired by a typical insurance application, we have shown that the rejection

and the direct sampling algorithms are able to largely reduce simulation errors in more general

estimation problems relevant to actuarial practitioners.

In the rejection sampling approach, sampling the proposal distribution can easily be imple-

mented through a rejection algorithm, which only requires that samples from the original copula
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d = 2 d = 5 d = 25

Objective function Ref. val. Red. fact. Ref. val. Red. fact. Ref. val. Red. fact.

E[(S − T )+] 10 498 116.03 29 648 80.27 310 499 21.71

VaR0.995(S) 645 162 14.25 1 795 071 15.83 15 183 823 8.97

ES0.99(S) 774 616 20.98 2 241 589 19.78 24 541 482 12.14

E[X1|S > F−1
S (0.99)] 351 077 23.84 332 560 19.01 324 231 11.85

E[Xd|S > F−1
S (0.99)] 423 539 23.87 570 105 20.67 1 676 897 19.52

Table 4: Reference values (Ref. val.) of the objective functions and variance reduction factors

(Red. fact.) with Fλ discrete and C Gumbel copula, using the direct sampling algorithm.

d = 2 d = 5 d = 25

Objective function Ref. val. Red. fact. Ref. val. Red. fact. Ref. val. Red. fact.

E[(S − T )+] 7 765 72.17 13 657 22.34 119 531 5.82

VaR0.995(S) 526 254 14.74 1 101 395 11.05 7 235 669 6.33

ES0.99(S) 610 928 20.18 1 272 925 12.60 9 963 262 5.23

E[X1|S > F−1
S (0.99)] 259 814 31.41 139 127 14.93 68 702 10.55

E[Xd|S > F−1
S (0.99)] 351 113 25.57 384 475 14.84 1 009 675 10.98

Table 5: Reference values (Ref. val.) of the objective functions and variance reduction factors

(Red. fact.) with Fλ discrete and C Clayton copula, using the direct sampling algorithm.

can be drawn. It is acknowledged that the computational cost of the algorithm is increased due

to the rejection sampling procedure, which however is not always a disadvantage. In addition, the

direct sampling algorithm based on the inversion of conditional distributions has been proposed.

Although it requires a more advanced implementation, this algorithm has the striking advantage

that it has a reduced computational complexity, of order of the cost of sampling C and that it does

not depend on the calibration of the proposal distribution FV. We have also shown that the later

algorithm is efficient in a rare-event setting in the sense of [6].

For further research, we emphasize the problem of sampling from conditional distributions such

as the C [λ]’s proposed in Section 4 and 5. One could aim at finding copulas for which the sampling

of C [λ] is sufficiently simple, an example is given in Appendix A. More generally, families of copulas

such that C [λ] stays within the same class for all λ ∈ [0, 1] could be of interest. Note that copulas

that are invariant under conditioning on subregions of [0, 1]d have been investigated in [26], [71] or

[36]. However, the conditional regions are always d-rectangles such as
∏d
i=1[αi, βi] ⊆ [0, 1]d. The

regions we condition on in the rejection sampling approach, {maxi ui > λ} , are unions of stripes.
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Figure 3: Boxplots for the importance sampling estimators of VaR0.995(S) and ES0.99(S) from the

N = 500 independent copies of the estimator, using the rejection sampling algorithm in the Gumbel

(top) and Clayton (bottom) cases for d = 5.

A Direct sampling of C [λ] for shock copulas

This appendix shows that for a certain class of shock copulas, it is possible to directly sample from

the conditional distribution C [λ], as defined in Section 4. The Marshall–Olkin copula is a special

case of this class.

We now introduce a multivariate construction for shock copulas. Let Zj : Ω→ R, j = 1, . . . ,m,

for some m ∈ N, denote continuous independent random variables. We call the Zj “shocks” and

denote their cdf’s by FZj . Suppose each component Xj of X = (X1, . . . , Xd) is exposed to a subset

of shocks with indices Ij ⊂ {1, . . . ,m} through the maximum:

(X1, . . . , Xd) =

(
max
k∈I1

Zk, . . . ,max
k∈Id

Zk

)
. (A.1)
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Figure 4: Boxplots for the importance sampling estimators of VaR0.995(S) and ES0.99(S) from the

N = 500 independent copies of the estimator, using the direct sampling algorithm in the Gumbel

(top) and Clayton (bottom) cases for d = 5.

As the Zj ’s are independent, the marginal cdf’s FXj can be calculated as

FXj (x) =
∏
k∈Ij

FZk(x), x ∈ R. (A.2)

By rearranging the arguments, and due to the fact that the Zj ’s are independent, we can write the

joint distribution of X as

P[X1 ≤ x1, . . . , Xd ≤ xd] =

m∏
j=1

P
[
Zj ≤ min

k : j∈Ik
xk

]
.

Hence, the copula induced by X is given by

C(u) =
m∏
j=1

FZj

(
min
k : j∈Ik

F−1
Xk

(uk)

)
. (A.3)
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d = 2 d = 5 d = 25

Clayton (θ = 1) 44.16 19.48 6.89

Gumbel (θ = 1.5) 54.69 31.11 15.83

Table 6: Expected waiting time, E[NV], of the rejection sampling algorithm.

As the copula can be expressed in terms of the independent shocks, we can write the conditional

distribution C [λ] in a tractable form. To this end, let the constants φj and the random variables

Bj for j = 1, . . . ,m be defined by

φj = min
k : j∈Ik

F−1
Xk

(λ), Bj = 1{Zj > φj}.

Then, we can express conditioning on U /∈ [0, λ]d through the following equivalent statements

U /∈ [0, λ]d ⇔ max{U1, . . . , Ud} > λ

⇔ Xi > F−1
Xi

(λ) for at least one i ∈ {1, . . . , d}

⇔ max
k∈Ii

Zk > F−1
Xi

(λ) for at least one i ∈ {1, . . . , d}

⇔ Zj > F−1
Xk

(λ) for at least one j ∈ {1, . . . ,m} and k s.t j ∈ Ik
⇔ Zj > φj for at least one j ∈ {1, . . . ,m}
⇔ max{B1, . . . , Bm} = 1.

Note that, unconditionally, the Bj ’s are independent Bernoulli variables with parameter

pj = P[Bj = 1] = 1− FZj (φj), j = 1, . . . ,m.

The following algorithm can be used to draw a realization from C [Λ]. First, a realization from

the conditional distribution of (B1, . . . , Bm) given that max{B1, . . . , Bm} = 1 is drawn through

iterative conditioning. Then the shocks are simulated conditionally on the Bj ’s, which is easy

as the shocks are independent under this conditioning. Finally, by calculating the corresponding

realization of X with (A.1), we obtain the sample from C [λ]. This approach is fast because the

conditional distribution of (B1, . . . , Bm) given max{B1, . . . , Bm} = 1 is analytically tractable, as

the following algorithm also shows.

Algorithm A.1. In order to draw a realization from C [λ], do:

1. Draw a realization from (B1, . . . , Bm) given that max{B1, . . . , Bm} = 1 through iterative

conditioning as follows.

For k = 1, . . . ,m:

(a) Set

p̃k =


pk

1−
∏m
l=k(1−pl) , if k = 1 or max1≤j<k Bj = 0,

pk, if max1≤j<k Bj = 1.
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(b) Draw Bk ∼ Bernoulli(p̃k).

2. Draw a realization from (Z1, . . . , Zm) given (B1, . . . , Bm) as follows:

For k = 1, . . . ,m:

(a) Draw Ũk ∼ U(0, 1)

(b) Set

Zk =

F
−1
Zk

(
pkŨk

)
, if Bk = 0,

F−1
Zk

(
pk + (1− pk)Ũk

)
, if Bk = 1.

3. Set Xj = maxk∈Ij Zk and Uj = FXj (Xj), where FXj is defined in (A.2).

4. Return U = (U1, . . . , Ud).

Although it is not an issue for the purpose of sampling, note that for most choices of shock

distributions FZj , the copula C in (A.3) does not have an analytic form. One possible choice for

FZj yielding an analytic expression for C is illustrated in the following example.

Example A.2 (Marshall–Olkin copula). Suppose the Zj’s are Fréchet distributed with FZj (x) =

exp(−sj/x), x > 0, j = 1, . . . ,m, with scale parameters sj > 0. Then the Xj are also Fréchet

distributed, with FXj (x) = exp(−s̃j/x), where s̃j =
∑

k∈Ij sk, j = 1, . . . , d. The copula (A.3) then

reduces to

C(u) =

m∏
j=1

exp

−sj
(

min
i:j∈Ii

(
− log ui
s̃i

)−1
)−1

 =

m∏
j=1

min
i:j∈Ii

u
sj/s̃i
i .

This copula is of the Marshall–Olkin type, see [87]. As an example, consider d = 2, m = 3,

I1 = {1, 3}, and I2 = {2, 3}. In this case, X1 = max{Z1, Z3}, X2 = max{Z2, Z3}, and the copula

can be written as

C(u1, u2) = u
s1/(s1+s3)
1 · us2/(s2+s3)

2 ·min
{
u
s3/(s1+s3)
1 , u

s3/(s2+s3)
2

}
= min

{
u1u

s2/(s2+s3)
2 , u2u

s1/(s1+s3)
1

}
.
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Quasi-random numbers for copula models∗

Mathieu Cambou† Marius Hofert‡ Christiane Lemieux§

March 01, 2016

Abstract

The present work addresses the question how sampling algorithms for commonly applied cop-
ula models can be adapted to account for quasi-random numbers. Besides sampling methods
such as the conditional distribution method (based on a one-to-one transformation), it is also
shown that typically faster sampling methods (based on stochastic representations) can be used
to improve upon classical Monte Carlo methods when pseudo-random number generators are
replaced by quasi-random number generators. This opens the door to quasi-random numbers
for models well beyond independent margins or the multivariate normal distribution. Detailed
examples (in the context of finance and insurance), illustrations and simulations are given and
software has been developed and provided in the R packages copula and qrng.
Key words: Quasi-random numbers, copulas, conditional distribution method, Marshall–Olkin
algorithm, tail events, risk measures

1 Introduction

In many applications, in particular in finance and insurance, the quantities of interest can be written
as E[Ψ0(X)], where X = (X1, . . . , Xd) : Ω → Rd is a random vector with distribution function H
on a probability space (Ω,F ,P) and Ψ0 : Rd → R is a measurable function. The components of X
are typically dependent. To account for this dependence, the distribution of X can be modeled by

H(x) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd, (1)

where Fj(x) = P(Xj ≤ x), j ∈ {1, . . . , d}, are the marginal distribution functions of H and
C : [0, 1]d → [0, 1] is a copula, i.e., a distribution function with standard uniform univariate margins;
for an introduction to copulas, see [89, Chapter 5], [99] or [73]. A copula model such as (1) allows
one to separate the dependence structure from the marginal distributions. This is especially useful

∗We thank the Associate Editor and the two anonymous reviewers for their helpful comments, which helped us
improve this paper. The first author wishes to thank SCOR for their financial support. The second and third authors
acknowledge the support of NSERC through grants #5010 and #238959, respectively.
†EPFL, Institute of Mathematics, Station 8, EPFL, 1015 Lausanne, Switzerland

email: mathieucambou@gmail.com
‡Department of Statistics and Actuarial Science, University of Waterloo, Canada

email: marius.hofert@uwaterloo.ca
§Department of Statistics and Actuarial Science, University of Waterloo, Canada

email: clemieux@uwaterloo.ca
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in the context of model building and sampling in the case where E[Ψ0(X)] mainly depends on the
dependence between the components of X, so on C; for examples of this type, see Section 5.

In terms of copula model (1), we may then write

E[Ψ0(X)] = E[Ψ(U)]

where U = (U1, . . . , Ud) : Ω→ Rd is a random vector with distribution function C, Ψ : [0, 1]d → R
is defined as

Ψ(u1, . . . , ud) = Ψ0(F−1 (u1), . . . , F−d (ud)),

and F−j (p) = inf{x ∈ R : Fj(x) ≥ p}, j ∈ {1, . . . , d}, are the marginal quantile functions. If C
and the margins Fj , j ∈ {1, . . . , d}, are known, we can use Monte Carlo simulation to estimate
E[Ψ(U)]. For a (pseudo-)random sample {Ui : i = 1, . . . , n} from C, the (classical) Monte Carlo
estimator of E[Ψ(U)] is given by

1

n

n∑
i=1

Ψ(Ui) ≈ E[Ψ(U)].

The main challenge of a Monte Carlo simulation is thus the sampling of the copula. This
challenge also holds for quasi-Monte Carlo (QMC) methods, and is actually amplified by the fact
that these methods are more sensitive to certain properties of the function Ψ. Thus the choice
of the construction method of a stochastic representation for C can have complex effects on the
performance of QMC methods, a feature that does not show up when using Monte Carlo methods.
The present work includes a careful analysis of these effects, as they must be thoroughly understood
in order to successfully replace pseudorandom numbers by quasi-random numbers into different
copula sampling algorithms.

Let us briefly summarize the idea behind QMC methods and how they can be used for copula
models; more precise definitions on some of the concepts used here will be given later. The idea is
to start with a so-called low-discrepancy point set Pn = {v1, . . . ,vn} ⊆ [0, 1)k, with k ≥ d, which
is designed so that its empirical distribution over [0, 1)k is closer (in a sense to be defined later) to
the uniform distribution U[0, 1)k than a set of independent and identically (i.i.d.) random points
is. Assuming that for U ′ ∼ U[0, 1]k we have a transformation φC such that φC(U ′) ∼ C, we can
then construct the approximation

1

n

n∑
i=1

Ψ(φC(vi)) ≈ E[Ψ(U)]. (2)

Figure 1 shows the points φC(vi) obtained using either pseudo-random or quasi-random numbers,
for a transformation φC designed for the Clayton copula.

QMC methods are typically used to approximate integrals of functions over the unit cube via

Qn =
1

n

n∑
i=1

f(vi) ≈
∫

[0,1)k
f(v)dv = I(f). (3)

A widely used upper bound for the integration error |I(f)−Qn| is the Koksma–Hlawka inequality
(see, e.g., [101]), which is of the form V (f)D∗(Pn), where V (f) measures the variation of f in the
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Figure 1: 1000 realizations of a bivariate Clayton copula with θ = 2 (Kendall’s tau equals 0.5),
generated by a pseudo-random number generator (top) and by a quasi-random number generator
(bottom).
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sense of Hardy and Krause, while D∗(Pn) measures the discrepancy of Pn, i.e., how far Pn is from
U[0, 1)k.

To analyze the properties of the QMC approximation (2) for E[Ψ(U)], there are two possible
approaches. The first one is to define f = Ψ ◦ φC and work within the traditional framework given
by (3), the Koksma–Hlawka inequality with this composed function and the low-discrepancy point
set Pn. The second one is to think of (2) as approximating

E[Ψ(U)] =

∫
[0,1)d

Ψ(u)dC(u)

and work with generalizations of the Koskma–Hlawka inequality that apply to measures other than
the Lebesgue measure; see [62] or [2]. In the latter case, we work with the function Ψ and view
the transformation φC as one that is applied to the low-discrepancy point set Pn rather than to Ψ.
That is, here we work with the transformed point set P̃n = {φC(v1), . . . , φC(vn)} and analyze its
quality via measures of discrepancy that quantify its distance to C rather than comparing Pn to
U[0, 1)k.

QMC methods have been used in a variety of applications, but so far most of the problems
considered have been such that the stochastic models used can be formulated using independent
random variables (e.g., a vector of dependent normal variates can be written as a linear transforma-
tion of independent normal variates). In such cases, the transformation of the uniform vector v into
observations from the desired stochastic model can be easily obtained by transforming each compo-
nent vj of v using the inverse transform method, which is deemed to work well with QMC in part
because of its monotonicity, and also because it corresponds to an overall one-to-one transformation
from [0, 1)d to Rd.

In the more general copula setting considered in this paper, at first sight the so-called conditional
distribution method (CDM) (which is the inverse of the copula-based version of the Rosenblatt
transform) appears to be a good choice to use with quasi-random numbers, as it is the direct
multivariate extension of the inverse transform mentioned in the previous paragraph. Namely, it is
a one-to-one transformation that maps [0, 1)d to [0, 1)d and it is monotone in each variable.

A transformation with k = d is certainly desirable (and preferable to a many-to-one transforma-
tion with k > d) when used in conjunction with QMC methods, since these methods do better on
problems of lower dimension. Also, intuitively the monotonicity should be helpful to preserve the
smoothness of Ψ (for the first approach) and the low-discrepancy of Pn (for the second approach).

An additional advantage of the CDM is that it is applicable to any copula C (and the only
known algorithm such general). However, the involved (inverses of the) conditional copulas are
often challenging to evaluate which has led to other sampling algorithms being more frequently
used. An example is the Marshall–Olkin algorithm for sampling Archimedean copulas, which we
also address in this work.

The paper is organized as follows. Section 2 provides a short introduction to quasi-random
numbers. Section 3 shows how quasi-random samples from various copulas (and thus multivariate
models with these dependence structures) can be obtained using different sampling algorithms.
Detailed examples are given. In Section 4 we discuss the theoretical background supporting each
of the two approaches mentioned earlier to analyze the use of low-discrepancy sequences for copula
sampling. Numerical results are provided in Section 5. Finally, Section 6 includes concluding
remarks and a discussion of future work. Note that most results and figures presented in this paper
(as well as additional experiments conducted) can be found in the R packages copula (see the
vignette qrng) and qrng (see demo(basket options) and demo(test functions)).
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2 Quasi-random numbers

Here we assume that a random sample {Ui : i = 1, . . . , n} from a copula C can be generated by
transforming a random sample {U ′i : i = 1, . . . , n} from U[0, 1]k with k ≥ d; several algorithms for
copula models fall under this setup. Due to the independence of the vectors U ′i , realizations of the
sample {U ′i : i = 1, . . . , n} (obtained by so-called pseudo-random number generators (PRNGs))
will inevitably show regions of [0, 1]k which are lacking points and other areas of [0, 1]k which
contain more samples than expected by the uniform distribution. To reduce this problem of an
inhomogeneous concentration of samples, quasi-random number generators (QRNGs) do not aim
at mimicking i.i.d. samples but instead at producing a homogeneous coverage of [0, 1]k.

The homogeneity of a sequence of points over the unit hypercube can be measured by its
discrepancy, which relates to the error incurred by representing the (Lebesgue-)measure of subsets
of the unit hypercube by the fraction of points in these subsets. Quasi-random sequences aim
at achieving smaller discrepancy than pseudo-random number sequences and are thus also called
low-discrepancy sequences.

2.1 Discrepancy

The notion of discrepancy applies to sequences of points X = {v1,v2, . . .} in the unit hypercube
[0, 1)k. Denote by Pn = {v1, . . . ,vn} ⊆ [0, 1)k the first n points of the sequence. Let J ∗ be the
set of intervals of [0, 1)k of the form [0, z) =

∏k
j=1[0, zj), where 0 < zj ≤ 1, j = 1, . . . , k. Then the

discrepancy function of Pn on an interval [0, z) is the difference

E([0, z);Pn) =
A([0, z);Pn)

n
− λ([0, z)),

where A([0, z);Pn) = #{i; 1 ≤ i ≤ n,vi ∈ [0, z)} is the number of points from Pn that fall in [0, z)
and λ([0, z)) =

∏k
j=1 zj is the Lebesgue measure of [0, z).

The star discrepancy D∗ of Pn is defined by

D∗(Pn) = sup
[0,z)∈J ∗

|E([0, z);Pn)|.

An infinite sequence X satisfying D∗(Pn) ∈ O(n−1 logk n) is said to be a low-discrepancy sequence.
For a function Ψ : [0, 1)k → R, we have the well-known Koksma–Hlawka error bound given by∣∣∣∣ 1n

n∑
i=1

Ψ(vi)− E[Ψ(U ′)]

∣∣∣∣ ≤ V (Ψ)D∗(Pn), (4)

where U ′ ∼ U[0, 1]k and V (Ψ) denotes the variation of the function Ψ in the sense of Hardy and
Krause. See [110] for a detailed account of the notion of variation and its applicability in practice.
We also refer the interested reader to [60] and [119] for results handling unbounded functions (and
thus of unbounded variation).

2.2 Low-discrepancy sequences

There are two main approaches for constructing low-discrepancy sequences: integration lattices
and digital sequences. Only the latter are used in this paper, so our discussion will focus on those.
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Digital sequences contain the well-known constructions of [118], [48], and [100], and are also
closely related to the sequence proposed in [58]. The basic building block for this construction is
the van der Corput sequence in base b ≥ 2, defined as

Sb(i) =

∞∑
r=0

ar(i)b
−r−1, i ∈ N, (5)

where ar(i) is the rth digit of the b-adic expansion of i−1 =
∑∞

r=0 ar(i) b
r. To construct a sequence

of points in [0, 1)k from this one-dimensional sequence, one approach is the one proposed by [58],
which consists of choosing k pairwise relatively prime integers b1, . . . , bk and defining the ith point
of the sequence as

vi = (Sb1(i), . . . , Sbk(i)), i ∈ N.

Another possibility is to fix the base b, and choose k linear transformations that are then applied
to the digits ar(i) from the expansion of i − 1 before being used in (5) to define a real number
between 0 and 1. More precisely, let M1, . . . ,Mk be (unbounded) “∞×∞” matrices with entries
in Zb and let

S
Mj

b (i) =
∞∑
r=0

∞∑
l=0

mr+1,l+1al(i)b
−r−1, (6)

where mr,l is the element in the rth row and lth column of Mj . Here we assume for simplicity
that b is prime and all operations in (6) are performed in the finite field Fb. One can then define a
sequence of points in [0, 1)k by taking

vi = (SM1
b (i), . . . , SMk

b (i)) (7)

as its ith point. Sobol’ was the first to propose such a construction, working in base 2 and defining
the matrices M1, . . . ,Mk so that he was able to prove that the obtained sequence has D∗(Pn) ∈
O(n−1 logk n); see [118].

We also point out that Halton sequences can be generalized using the same idea as in (7). That
is, one can choose matrices M1, . . . ,Mk with the elements of Mj in Zbj , and “scramble” the digits of
the expansion of i− 1 before reverting them via (5) to produce a number between 0 and 1. A very
simple way to achieve this is via diagonal matrices Mj , each containing a well-chosen element (or
factor) of Zbj . In our numerical experiments, we use such an approach, with the factors provided
in [49]; see the R package qrng for an implementation.

2.3 Randomized quasi-Monte Carlo

In contrast to the error rate O(n−1/2) for Monte Carlo methods based on PRNGs, approximations
based on QRNGs have the advantage of having an error in O(n−1 logk n) when the function of
interest Ψ is of bounded variation. However, in practice it is also important to be able to estimate
the corresponding error. While bounds such as the Koksma–Hlawka inequality are useful to un-
derstand the behaviour of approximations based on quasi-random sequences, they do not provide a
practical way to estimate the error. To circumvent this problem, an approach that is often used is to
randomize a low-discrepancy point set in such a way that its high uniformity (or low discrepancy)
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is preserved, but at the same time unbiased estimators can be constructed (and sampled) from it.
Another advantage of this approach is that variance expressions can be derived and compared with
Monte Carlo sampling for wider classes of functions, i.e., not necessarily of bounded variation (see
[107], [82] and the references therein). This approach gives rise to randomized quasi-Monte Carlo
(RQMC) methods.

To apply this approach, we need a randomization function r : [0, 1)s × [0, 1)k → [0, 1)k with
s ≥ k such that for any fixed v ∈ [0, 1)k, we have that if U ′ ∼ U[0, 1]s, then r(U ′,v) ∼ U[0, 1]k.
Hence the individual RQMC samples have the same properties as those from a random sample; the
difference lies in the fact that the RQMC samples are dependent.

An early randomization scheme originally proposed by [30] is to take

r(U ′,v) = (v +U ′) mod 1. (8)

A randomized point set is then obtained by generating a uniform vector U ′ and letting P̃n(U ′) =
{ṽ1, . . . , ṽn}, where ṽi = r(U ′,vi), i ∈ {1, . . . , n}.

Hence the same shift U ′ is applied to all points in Pn. If we let U ′1, . . . ,U
′
B be independent

U[0, 1]s vectors, we can construct B i.i.d. unbiased estimators

µ̂ln =
1

n

∑
ṽi∈P̃n(U ′l )

Ψ(φC(ṽi)), l ∈ {1, . . . , B}

for E[Ψ(U)], whose variances can be estimated via the sample variance of µ̂1
n, . . . , µ̂

B
n .

In addition to the simple random shift described in (8), several other randomization schemes
have been proposed and studied. A popular randomization method for digital nets is to “scramble”
them, an idea originally proposed by [106] and subsequently studied by [107], [108], [109], [88] and
[67], among others.

A simpler randomization for digital nets is to use the digital counterpart of (8), where instead
of adding two real numbers modulo 1, we add (in Zb) the digits of their base b expansion. That is,
for u =

∑∞
r=0 urb

−r−1 and v =
∑∞

r=0 vrb
−r−1, we let

u⊕b v =

∞∑
r=0

((ur + vr) mod b)b−r−1

and define r(u,v) = u⊕bv, where the ⊕b operation is applied component-wise to the k coordinates
of u and v. The same idea can be applied to randomize Halton sequences (as shown, e.g., in [82]),
but where a different base b is used in each of the k coordinates. Digital shifts for the Sobol’ and
generalized Halton sequences are available in our R package qrng.

3 Quasi-random copula samples

Sampling procedures for a d-dimensional copula C can be viewed as transformations φC : [0, 1]k →
[0, 1]d for some k ≥ d, such that, for U ′ ∼ U[0, 1]k, U := φC(U ′) ∼ C; that is, φC transforms
independent U[0, 1] random variables to d dependent random variables with distribution function
C.

The case k = d is mostly known and applied as conditional distribution method (CDM) and
involves the inversion method for sampling univariate conditional copulas (although, for example,
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for Archimedean copulas another transformations φC with k = d is known; see [125]). This approach
thus naturally uses d independent U[0, 1] random variables as input. The case k ≥ d (often: k > d)
is typically known as stochastic representation and is usually based on sampling k univariate random
variables from elementary probability distributions, as we will see in Section 3.2.

In what follows we consider the above two approaches and show how they can be adapted to
quasi-random number generation.

3.1 Conditional distribution method and other one-to-one transformations (k =
d)

3.1.1 Theoretical background

The only known general sampling approach which works for any copula is the CDM. For j ∈
{2, . . . , d}, let

C(uj |u1, . . . , uj−1) = P(Uj ≤ uj |U1 = u1, . . . , Uj−1 = uj−1)

denote the conditional copula of Uj at uj given U1 = u1, . . . ,
Uj−1 = uj−1. If C−(uj |u1, . . . , uj−1) denotes the corresponding quantile function, the CDM is
given as follows; see [39] or [63, p. 45].

Theorem 3.1 (Conditional distribution method). Let C be a d-dimensional copula, U ′ ∼ U[0, 1]d,
and φCDM

C be given by

U1 = U ′1,

U2 = C−(U ′2 |U1),

...

Ud = C−(U ′d |U1, . . . , Ud−1).

Then U = (U1, . . . , Ud) = φCDM
C (U ′) ∼ C.

To find the conditional copulas C(uj |u1, . . . , uj−1), for j ∈ {2, . . . , d}, for a specific copula C,
the following result (which holds under mild assumptions) is often applied. A rigorous proof can
be found in [117, p. 20], an implementation is provided by the function rtrafo() in the R package
copula. The corollary that follows is an immediate consequence of Sklar’s theorem, for example.

Theorem 3.2 (Computing conditional copulas). Let C be a d-dimensional copula, which, for d ≥ 3,
admits continuous partial derivatives with respect to the first d − 1 arguments. For j ∈ {2, . . . , d}
and ul ∈ [0, 1], l ∈ {1, . . . , j},

C(uj |u1, . . . , uj−1) =
Dj−1...1C(u1, . . . , uj)

Dj−1...1C(u1, . . . , uj−1)

=
Dj−1...1C(u1, . . . , uj)

c(u1, . . . , uj−1)
, (9)

where Dj−1...1 denotes the derivative with respect to the first j−1 arguments, C(u1, . . . , uj) denotes
the marginal copula corresponding to the first j components and c(u1, . . . , uj−1) denotes the density
of C(u1, . . . , uj−1). If C admits a density, then (9) equals

C(uj |u1, . . . , uj−1) =

∫ uj
0 c(u1, . . . , uj−1, zj) dzj

c(u1, . . . , uj−1)
. (10)
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Corollary 3.3 (Conditional copulas for general multivariate distributions). Let H be a d-dimensional
absolutely continuous distribution function with margins F1, . . . , Fd and copula C. For j ∈ {2, . . . , d}
and ul ∈ [0, 1], l ∈ {1, . . . , j},

C(uj |u1, . . . , uj−1) = H(F−j (uj) |F−1 (u1), . . . , F−j−1(uj−1)). (11)

3.1.2 Examples

We now present several copula families and show how the corresponding conditional copulas and
their inverses can be computed. To the best of our knowledge, several of these results have not
appeared in the literature before.

Elliptical copulas

An elliptical copula describes the dependence structure of an elliptical distribution; for the latter,
see [19], [40], [39], or [89, Sections 3.3, 5]. The most prominent two families in the class of elliptical
copulas are the Gauss and the t copulas.

Gauss copulas. Gauss copulas are given by

CGa
P (u) = ΦP (Φ−1(u1), . . . ,Φ−1(ud)),

where ΦP denotes the d-variate normal distribution function with location vector 0 and scale matrix
P (a correlation matrix) and Φ−1 is the standard normal quantile function. Consider the dimension
to be j and let X ∼ ΦP with X = (X1:(j−1), Xj). Furthermore, assume

P =
(
P1:(j−1),1:(j−1) P1:(j−1),j

Pj,1:(j−1) Pj,j

)
to be positive definite. It follows from [47, p. 45 and 78] that

Xj |X1:(j−1) = x1:(j−1) ∼ N (µj|1:(j−1)(x1:(j−1)), Pj|1:(j−1)),

where

µj|1:(j−1)(x1:(j−1)) = Pj,1:(j−1)

(
P1:(j−1),1:(j−1)

)−1
x1:(j−1),

Pj|1:(j−1) = Pj,j − Pj,1:(j−1)

(
P1:(j−1),1:(j−1)

)−1
P1:(j−1),j ; (12)

so H(xj |x1, . . . , xj−1) is again normal. With Φ−1(u1:(j−1)) = (Φ−1(u1), . . . ,Φ−1(uj−1)), it follows
from (11) that

C(uj |u1, . . . , uj−1) = H(Φ−1(uj) |Φ−1(u1:(j−1)))

= Φµj|1:(j−1)(Φ
−1(u1:(j−1))),Pj|1:(j−1)

(Φ−1(uj))

= Φ

(
Φ−1(uj)− µj|1:(j−1)(Φ

−1(u1:(j−1)))√
Pj|1:(j−1)

)
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and thus that

C−(uj |u1, . . . , uj−1)

= Φ
(
Φ−1
µj|1:(j−1)(Φ

−1(u1:(j−1))),Pj|1:(j−1)
(uj)

)
= Φ

(
µj|1:(j−1)(Φ

−1(u1:(j−1))) +
√
Pj|1:(j−1)Φ

−1(uj)
)
.

An implementation of this inverse is provided via rtrafo(, inverse=TRUE) in the R package
copula.

t copulas. t copulas are given by

Ctν,P (u) = tν,P (t−1
ν (u1), . . . , t−1

ν (ud)),

where tν,P denotes the d-variate tν distribution function with location vector 0 and scale matrix
P (a correlation matrix) and t−1

ν is the standard tν quantile function. The following proposition
guarantees stability of the t copula upon conditioning; see the appendix for its proof and rtrafo()

for an implementation. We are not aware that this result has appeared before. Given the importance
of t copulas in practice, this is rather remarkable.

Proposition 3.4 (Conditional t copulas and inverses). With the notation as in the Gauss case,
the conditional t copula at uj, given u1, . . . , uj−1, and its inverse are given by

C(uj |u1, . . . , uj−1) = tν+j−1

(
s1

(√
P−1
j,j t
−1
ν (uj) + s2

))
,

C−(uj |u1, . . . , uj−1) = tν

(
t−1
ν+j−1(uj)/s1 − s2√

P−1
j,j

)
,

for s1, s2 as given in the proof.

Figure 2 displays 1000 samples from a t copula with three degrees of freedom and correlation
parameter ρ = P1,2 = 1/

√
2 (Kendall’s tau equals 0.5), once drawn with a PRNG (top) and once

with a QRNG (bottom). We can visually confirm in this case that the low discrepancy of the latter
is preserved. How this seemingly good feature translates into better estimators of the form (2) will
be studied further through the theoretical results of Section 4 and the numerical experiments of
Section 5.

Archimedean copulas

An (Archimedean) generator is a continuous, decreasing function ψ : [0,∞]→ [0, 1] which satisfies
ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0, and which is strictly decreasing on [0, inf{t : ψ(t) = 0}]. A
d-dimensional copula C is called Archimedean if it permits the representation

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)),

where u = (u1, . . . , ud) ∈ [0, 1]d, and for some generator ψ with inverse ψ−1 : [0, 1]→ [0,∞], where
ψ−1(0) = inf{t : ψ(t) = 0}. For applications and the importance of Archimedean copulas in the
realm of finance and insurance, see, e.g., [65].
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Figure 2: 1000 realizations of a t copula with three degrees of freedom and correlation parameter
ρ = 1/

√
2 (Kendall’s tau equals 0.5), generated by a PRNG (top) and by a QRNG (bottom).
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[90] show that a generator defines an Archimedean copula if and only if ψ is d-monotone,
meaning that ψ is continuous on [0,∞], admits derivatives ψ(l) up to the order l = d− 2 satisfying
(−1)lψ(l)(t) ≥ 0 for all l ∈ {0, . . . , d−2}, t ∈ (0,∞), and (−1)d−2ψ(d−2)(t) is decreasing and convex
on (0,∞).

Assuming ψ to be sufficiently often differentiable, conditional Archimedean copulas follow from
Theorem 3.2 and are given by

C(uj |u1, . . . , uj−1) =
ψ(j−1)

(∑j
l=1 ψ

−1(ul)
)

ψ(j−1)
(∑j−1

l=1 ψ
−1(ul)

) , (13)

where ul ∈ [0, 1], l ∈ {1, . . . , j}, and thus

C−(uj |u1, . . . , uj−1)

= ψ

(
ψ(j−1)−1

(
ujψ

(j−1)

( j−1∑
l=1

ψ−1(ul)

))
−

j−1∑
l=1

ψ−1(ul)

)
. (14)

The generator derivatives ψ(j−1) and their inverses ψ(j−1)−1
can be challenging to compute. The

former are known explicitly for several Archimedean families and certain generator transformations;
see [64] for more details. To compute the inverses, one can use numerical root-finding on [0, 1]; see
rtrafo(..., inverse=TRUE) in the R package copula. This can be applied, e.g., in the case of
Gumbel copulas.

The following example shows the case of a Clayton copula family, for which (14) can be given
explicitly and thus where the CDM is tractable; this explicit formula is also utilized by rtrafo(,

inverse=TRUE).

Example 3.5. [Clayton copulas] If ψ(t) = (1 + t)−1/θ, t ≥ 0, θ > 0, denotes a generator of the
Archimedean Clayton copula, then ψ(j)(t) = (−1)j(1 + t)−(j+1/θ)

∏j−1
l=0 (l + 1/θ). Therefore, (13)

equals

C(uj |u1, . . . , uj−1) =

(
1− j +

∑j
l=1 u

−θ
l

2− j +
∑j−1

l=1 u
−θ
l

)j−1/θ

and (14) equals

C−(uj |u1, . . . , uj−1) =(
1 +

(
1− (j − 1) +

j−1∑
l=1

u−θl

)(
uj
− 1
j−1+1/θ − 1

))− 1
θ

.

Figure 1 displays 1000 samples from a Clayton copula with θ = 2 (Kendall’s tau equals 0.5), once
drawn with a PRNG (top) and once with a QRNG (bottom).
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Marshall–Olkin copulas

A class of bivariate copulas for which C−(u2 |u1) is explicit is the class of Marshall–Olkin copulas
C(u1, u2) = min{u1−α1

1 u2, u1u
1−α2
2 }, α1, α2 ∈ (0, 1), where one can show that

C−(u2 |u1)

=


u
α1
1

1−α1
u2, if u2 ∈ [0, (1− α1)u

α1(1/α2−1)
1 ],

u
α1/α2

1 , if u2 ∈ ((1− α1)u
α1(1/α2−1)
1 , u

α1(1/α2−1)
1 ),

u
1

1−α2
2 , if u2 ∈ [u

α1(1/α2−1)
1 , 1].

Figure 3 shows 1000 samples, once drawn from a PRNG (top) and once from a QRNG (bottom).
Here again we can visually confirm the low discrepancy.

Another class of copulas not discussed in this section which is naturally sampled with the CDM
and thus can easily be adapted to construct corresponding quasi-random numbers is the class of
pair copula constructions; see, e.g., [80]. For this purpose, we modified the function RVineSim() in
the R package VineCopula (version ≥ 1.3). It now allows to pass a matrix of quasi-random numbers
to be transformed to the corresponding samples from a pair copula construction; see the vignette
qrng in the R package copula for examples. Note that if sampling of the R-vine involves numerical
root-finding (required for certain copula families), the corresponding numerical inaccuracy may
have an effect on the low discrepancy of the generated samples.

3.2 Stochastic representations (k ≥ d, typically k > d)

3.2.1 Theoretical background

As mentioned above, pair-copula constructions are one of the rare copula classes for which the
CDM is applied in practice. For most other copula classes and families, faster sampling algorithms
derived from stochastic representations of U ∼ C are known, especially for d� 2. They are mostly
class- and family-specific, as can be seen in the examples below.

3.2.2 Examples

Elliptical copulas

Gauss and t copulas are typically sampled via their stochastic representations.

Gauss copulas. A random vector X ∼ ΦP admits the stochastic representation X = AZ where
A denotes the lower triangular matrix from the Cholesky decomposition P = AA> and Z is a vector
of d independent standard normal random variables. A random vector U ∼ CGa

P thus admits the
stochastic representation Φ(X) = Φ(AZ) for Z = (Φ−1(U ′1), . . . , Φ−1(U ′d)) and U ′ ∼ U[0, 1]d; here
Φ is assumed to act on AZ component-wise. Note that for Gauss copulas, this sampling approach
is equivalent to the CDM.

t copulas. A random vectorX ∼ tν,P admits the stochastic representationX =
√
WAZ where A

and Z are as above and W = 1/Γ for Γ following a Gamma distribution with shape and rate equal
to ν/2. A random vector U ∼ Ctν,P thus admits the stochastic representation tν(X) = tν(

√
WAZ);
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Figure 3: 1000 realizations of a Marshall–Olkin copula with α1 = 0.25 and α2 = 0.75 (Kendall’s
tau equals roughly 0.23), generated by a PRNG (top) and by a QRNG (bottom).
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as before, tν is assumed to act on
√
WAZ component-wise. Note that for t copulas with finite ν,

this sampling approach is different from the CDM.

Archimedean copulas

The conditional independence approach behind the Marshall–Olkin algorithm for sampling Archimedean
copulas is one example for transformations φC for k > d; see [86]. For this algorithm, k = d + 1
and one uses the fact that for an Archimedean copula C with completely monotone generator ψ,

U = (ψ(E1/V ), . . . , ψ(Ed/V )) ∼ C, (15)

where V ∼ F = LS−1[ψ], independent of E1, . . . , Ed ∼ Exp(1); here, F = LS−1[ψ] denotes
the distribution function corresponding to ψ by Bernstein’s Theorem (LS−1[·] denotes the inverse
Laplace–Stieltjes transform). To give an explicit expression for the transformation φC = φMO

C in
this case, we assume that v1 is used to generate V via the inversion method, and vj+1 is used to
generate Ej , for j ∈ {1, . . . , d}. Then we have that φMO

C = (φMO
C,1 , . . . , φ

MO
C,d ), where

φMO
C,j = φMO

C,j (v1, vj+1) = ψ

(
− log vj+1

F−(v1)

)
, j ∈ {1, . . . , d}. (16)

We can use a low-discrepancy sequence in k = d+ 1 dimensions to produce a sample based on
this method. Having k = d+ 1 instead of k = d is a slight disadvantage, since it is well known that
the performance of QMC methods tends to deteriorate with increasing dimensions.

To explore the effect of the transformation φC on Pn, we generated 1000 realizations of a
three-dimensional Halton sequence; see the top of Figure 4 where we colored points falling in two
non-overlapping regions in [0, 1)2. The first two of the three dimensions are then mapped via φCDM

C

(see the bottom of Figure 4) to a Clayton copula with parameter θ = 2 (such that Kendall’s tau
equals 0.5). As we can see, the non-overlapping colored regions remain non-overlapping after the
one-to-one transformations have been applied. To study the effect of the Marshall-Olkin algorithm,
we look at when the first dimension of the Halton sequence is mapped to a Gamma Γ(1/θ, 1)
distribution by inversion of v1(the distribution of V in (15) for a Clayton copula) and the last
two to unit exponential distributions (by inversion of 1 − vj for j = 2, 3, so that the obtained
uj is increasing in each of v1 and vj+1 for j = 1, 2). The top of Figure 5 shows the second and
third coordinates of the Halton sequence, and colors the points belonging to two different three-
dimensional intervals (this is why not all two-dimensional points are coloured in the two-dimensional
projected regions). We see on the bottom of Figure 5 that here again, the colored regions remain
non-overlapping. However, it should also be clear that two points in a given interval defined over
the second and third dimension could end up in very different locations after this transform, if the
corresponding first coordinates are far apart. Hence, the fact that the Marshall-Olkin transform
uses k = d + 1 uniforms (and thus is not one-to-one) makes it more challenging to understand
its effect when used with quasi-random numbers. On the other hand, because it is designed so
that the first uniform v1 is very important, it may work quite well with QMC since these methods
are known to perform better when a small number of variables are important (i.e., see [35, 82]).
This combination (QRNG with the Marshall–Olkin approach) is studied further in Section 4, with
numerical results provided in Section 5.
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Figure 4: 1000 realizations of the first two components of a three-dimensional Halton sequence with
colored points in the regions [0,

√
1/8]2 and [1−

√
1/8, 1]2 (top): corresponding φCDM

C -transformed
points (bottom) to a Clayton copula with θ = 2 (Kendall’s tau equals 0.5).
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Figure 5: 1000 realizations of the second and third components of a three-dimensional Halton
sequence with colored points corresponding to the regions [0, 0.5]3 and [0.5, 1]3 (top): corresponding
φMO
C -transformed points (bottom) to a Clayton copula with θ = 2 (Kendall’s tau equals 0.5).
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Marshall–Olkin copulas

Bivariate (d = 2) Marshall–Olkin copulas C also allow for a stochastic representation in our frame-
work φC for k > d. For example, it is easy to check that for (U ′1, U

′
2, U

′
3) ∼ U[0, 1]3,

(max{U
′ 1
1−α1

1 , U
′ 1
α1

3 }, max{U
′ 1
1−α2

2 , U
′ 1
α2

3 }) ∼ C.

This construction can be generalized to d > 2 (but we omit further details about Marshall–Olkin
copulas in the remaining part of this paper).

3.3 Words of caution

The plots showing copula samples obtained from QRNGs that we have seen so far have been
promising, in that the additional uniformity (or low discrepancy) compared to pseudo-sampling
was visible. Here we want to add a word of caution to the effect that it is crucial to work with high
quality quasi-random numbers, as defects that exist with respect to their uniformity on the unit cube
will translate into poor copula samples. Figure 6 illustrates this by showing two-dimensional copula
samples obtained from quasi-random numbers of poor quality, corresponding to the projection on
coordinates (20,21) of the first 1000 points of the Halton sequence (top) and a similar sample
obtained from a generalized Halton sequence (bottom), which was designed to address defects of
this type in the Halton sequence. More precisely, here the problem is that this particular projection
is based on the twin prime numbers 71 and 73 for the base. Defects of this type are discussed further,
e.g., in [95].

4 Analyzing the performance of copula sampling with quasi-random
numbers

In this section, we discuss the two approaches outlined in the introduction to analyze the validity
of sampling algorithms for copulas that are based on low-discrepancy sequences.

4.1 Composing the sampling method with the function of interest Ψ

Our goal here is to assess the quality of a quasi-random sampling method for copula models by
viewing the transformation φC as being composed with the function Ψ of interest, so that we can
work in the usual Koksma–Hlawka setting based on uniform discrepancy measures.

Given that a copula transform φC = (φC,1, . . . , φC,d) is regular enough, denote its Jacobian by

JφC =
∂ (φC,1, . . . , φC,d)

∂ (u1, . . . , ud)
,

and write

E [Ψ(U)] =

∫
[0,1]d

Ψ(u)c(u)du

=

∫
[0,1]d

Ψ(φC(v))c(φC(v))|JφC (φC(v))| dv.
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Figure 6: Samples obtained from Clayton copula with θ = 2 with the CDM method based on
coordinates 20 and 21 of the Halton sequence (top) and the generalized Halton sequence (bottom).
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In the case of φC = φCDM
C , one can easily show that |JφC (φC(v))| = c(φC(v))−1, and thus

E [Ψ(U)] =

∫
[0,1]d

Ψ(φC(v))dv. (17)

While the properties of the CDM approach allow one to directly show (17) in its integral form
as done above, this equality holds more generally for any transformation φC : [0, 1]k → [0, 1]d such
that φC(U) ∼ C whenever U ∼ U[0, 1]k; see also [18, 112].

In the case where (17) holds, one can apply the Koksma–Hlawka error bound (4) to transformed
samples.

Proposition 4.1 (Koksma–Hlawka bound for a change of variables). Let U ∼ C, φC such that (17)
holds, and ui = φC(vi) for Pn = {vi, i = 1, . . . , n} in [0, 1]d. Then∣∣∣∣ 1n

n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣ ≤ D∗(Pn)V (Ψ ◦ φC).

Note that V (Ψ) <∞ does not imply V (Ψ ◦φC) <∞ in general. To get further insight into the
conditions required to have a finite bound on the integration error, we work with a slight variation
of the above bound that is given in [101, pp. 19–20] (see also [62, (4’)] and [61, (4)]), where the
term V (Ψ ◦ φC) is replaced by an expression given in terms of the partial derivatives of Ψ ◦ φC
assuming the latter exist and are continuous. It is given by∣∣∣∣ 1n

n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣ ≤ D∗(Pn)‖Ψ ◦ φC‖d,1,

where

‖Ψ ◦ φC‖d,1 =
s∑
l=1

∑
α

∫
[0,1)l

∣∣∣∣∂lΨ ◦ φC(vα1 , . . . , vαl ,1)

∂vα1 · · · ∂vαl

∣∣∣∣ dvα1 . . . dvαl

and the second sum is taken over all nonempty subsets α = {α1, . . . , αl} ⊆ {1, . . . , d}. Furthermore,
the notation 1 in Ψ◦φC(vα1 , . . . , vαl ,1) means that each variable vj with j /∈ {α1, . . . , αl} is set to 1.

The following proposition provides sufficient conditions on the functional Ψ and on the copula
C to ensure that ‖Ψ ◦ φC‖d,1 <∞ when φC = φCDM

C .

Proposition 4.2 (Conditions to have bounded variation with variable change in the CDM). As-
sume that Ψ has continuous mixed partial derivatives up to total order d and there exist m,M,K > 0
such that for all u ∈ (0, 1)d, c(u) ≥ m > 0 and∣∣∣∣∂kC(ui |u1, . . . , ui−1)

∂uα1 · · · ∂uαk

∣∣∣∣ ≤M, α1, . . . , αk ∈ {1, . . . , i}, (18)

for each 1 ≤ k ≤ i ≤ d. Furthermore, assume that for all 1 ≤ k ≤ l ≤ d and {α1, . . . , αl}
⊆ {1, . . . , d}, we have∣∣∣∣∂kΨ(u1, . . . , ud)

∂uβ1 · · · ∂uβk

∣∣∣∣ ≤ K, βj ∈ {α1, . . . , αl}, 1 ≤ j ≤ k. (19)
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Then there exists a constant C(d) (independent of n but dependent on Ψ) such that for the choice
φC = φCDM

C , we have∣∣∣∣ 1n
n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣ ≤ D∗(v1, . . . ,vn)KC(d)(Md/m)2d−1,

where ui = φCDM
C (vi), i = 1, . . . , n.

Proof. See [62, (11) and the remark thereafter].

Remark 4.3. 1. As we will see in the discussion preceding the next proposition, in general, to
ensure that ‖Ψ◦φC‖d,1 <∞ holds, a possible approach is to bound the mixed partial derivatives
involving Ψ and then to verify that the mixed partial derivatives involving φC are integrable.
As explained in [62], Condition (18) ensures that the latter condition is verified in the case of
the CDM (or Rosenblatt) transform, and avoids having to deal with the function φC and its
partial derivatives. Unfortunately (and while it may seem easier to work with the conditional
copulas C(uj |u1, . . . , uj−1) than with φC), in many cases the copulas involved do not have
bounded mixed partial derivatives everywhere, with singularities appearing near the boundaries
when one or more arguments are 0 or 1. A non-trivial case where we were able to verify (18)
is for the Eyraud-Farlie-Gumbel-Morgenstern copula (see [72]), assuming the parameters are
chosen so that the density c(u) and thus the denominator of C(uj |u1, . . . , uj−1) is bounded
away from 0 for all u ∈ [0, 1)d.

2. We note that the conditions given in (19) are not the same as those required to prove that

‖Ψ‖d,1 =

d∑
l=1

∑
α

∫
[0,1)l

∣∣∣∣∂lΨ(uα1 , . . . , uαl ,1)

∂uα1 · · · ∂uαl

∣∣∣∣ duα1 . . . duαl

is bounded; in the latter case, we only need to consider mixed partial derivatives of order at
most one in each variable (since the αj’s are distinct). However, in (19), the βj’s are not
necessarily distinct. In particular, this means that we need to consider the partial derivative
of Ψ of order d with respect to each variable and make sure it is bounded.

Remark 4.4. 1. As we will see in the discussion preceding the next proposition, in general, to
ensure that ‖Ψ◦φC‖d,1 <∞ holds, a possible approach is to bound the mixed partial derivatives
involving Ψ and then to verify that the mixed partial derivatives involving φC are integrable.
As explained in [62], Condition (18) ensures that the latter condition is verified in the case of
the CDM (or Rosenblatt) transform, and avoids having to deal with the function φC and its
partial derivatives. Unfortunately (and while it may seem easier to work with the conditional
copulas C(uj |u1, . . . , uj−1) than with φC), in many cases the copulas involved do not have
bounded mixed partial derivatives everywhere, with singularities appearing near the boundaries
when one or more arguments are 0 or 1. A non-trivial case where we were able to verify (18)
is for the Eyraud-Farlie-Gumbel-Morgenstern copula (see [72]), assuming the parameters are
chosen so that the density c(u) and thus the denominator of C(uj |u1, . . . , uj−1) is bounded
away from 0 for all u ∈ [0, 1)d.
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2. We note that the conditions given in (19) are not the same as those required to prove that

‖Ψ‖d,1 =
d∑
l=1

∑
α

∫
[0,1)l

∣∣∣∣∂lΨ(uα1 , . . . , uαl ,1)

∂uα1 · · · ∂uαl

∣∣∣∣ duα1 . . . duαl

is bounded; in the latter case, we only need to consider mixed partial derivatives of order at
most one in each variable (since the αj’s are distinct). However, in (19), the βj’s are not
necessarily distinct. In particular, this means that we need to consider the partial derivative
of Ψ of order d with respect to each variable and make sure it is bounded.

Let us now move away from the CDM method and consider a general transformation φC . In
order to study ‖Ψ ◦ φC‖d,1, we first need to decompose mixed partial derivatives of the form

∂l(Ψ ◦ φC)(vα1 , . . . , vαl ,1)

∂vα1 · · · ∂vαl
in terms of Ψ and φC separately. To do so, we follow [62], as well as [27, Theorem 2.1], and obtain
an expression for the mixed partial derivative of a composition of functions via the representation

∂lΨ ◦ φC(vα1 , . . . , vαl ,1)

∂vα1 · · · ∂vαl

=
∑

1≤|β|≤l

∂|β|Ψ

∂β1u1 . . . ∂βdud

l∑
s=1

∑
γ,k

cγ

s∏
j=1

∂|γj |φC,kj (vα1 , . . . , vαl ,1)

∂γj,1vα1 . . . ∂
γj,lvαl

(20)

where β ∈ Nd0 and |β| =
∑d

j=1 βj . Here we do not specify over which values of γj and kj the inner
sum in the above expression is taken: details can be found in the proof of Proposition 4.5. But let
us point out that in the product over j, each index α1, . . . , αl appears exactly once. On the other
hand – and as noted in item 2 of Remark 4.4 above – in the mixed partial derivative of Ψ, a given
variable can appear with order larger than 1.

From (20), we see that a sufficient condition to show that ‖Ψ ◦ΦC‖d,1 <∞ is to establish that
all products of the form

∂|β|Ψ

∂β1u1 . . . ∂βdud

s∏
j=1

∂|γj |φC,kj (vα1 , . . . , vαl ,1)

∂γj,1vα1 . . . ∂
γj,lvαl

, s ∈ {1, . . . , l}, (21)

are in L1.
We note that for the MO algorithm (assuming as we did in (16) that v1 is used to generate V

and vj+1 is used to generate Ej), φC,j is a function of v1 and vj+1 only, for j ∈ {1, . . . , d}. Hence
the only partial derivatives of φC,j that are nonzero are those with respect to variables in {v1, vj+1}.
This observation is helpful to prove the following result, which shows that the error bound obtained
when using the MO algorithm has the desired behavior induced by the low-discrepancy point set
used to generate the copula samples; note that it does not show that Ψ◦ΦC has bounded variation.
Its proof can be found in the appendix.

Proposition 4.5 (Error behaviour for MO for continuous V ). Let φMO
C be the transformation

associated with the Marshall–Olkin algorithm, as given in (16), and that V ∼ F is continuously
distributed. Let Pn = {vi, i = 1, . . . , n} be the point set in [0, 1)d+1 used to produce copula samples
via the transformation φMO

C and let ui = φMO
C (vi). If
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1. the point set Pn excludes the origin and there exists some p ≥ 1 such that min1≤i≤n vi,1 ≥
1/pn;

2. the function Ψ satisfies |Ψ(u)| <∞ for all u ∈ [0, 1)d+1 and

∂|β|Ψ

∂β1u1 . . . ∂βdud
<∞ for all β = (β1, . . . , βd), (22)

with βl ∈ {0, . . . , d} and |β| ≤ d;

3. and the generator ψ(·) of the Archimedean copula C is such that

(a) ψ′(t) + tψ′′(t) has at most one zero t∗ in (0,∞) and it satisfies −t∗ψ′(t∗) <∞; and

(b) F−1(1− 1/pn) is in O(na) for some constant a > 0;

then there exists a constant C(d) (independent of n but dependent of Ψ and φMO
C ) such that∣∣∣∣ 1n

n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣ ≤ C(d)(log n)D∗(Pn).

Remark 4.6. We note that if E[V ] <∞, as is the case for Clayton’s copula family, Condition 3 3b
can be easily checked via Markov’s inequality. In the case of the Gumbel copula, V has an α-stable
distribution and it can be shown that P (V > x) ≤ cx−α for x ≥ x0 and for some constant c, where
c and x0 depend both on the parameters of the distribution; see [103, Theorem 1.12]. Therefore
F−1(1 − 1/pn) can be bounded by a constant time na in this case (namely by max{x0, (cpn)1/α}).
As for Condition 3 3a, one can show that t∗ = θ and t∗ = 1 are the only zeros for the Clayton and
Gumbel copulas, respectively.

When F is discrete, we can split the problem into subproblems based on the value taken by
V . Then, in each case, the bounded variation condition is much easier to verify, because the
transformation φC given V is essentially one-dimensional as it is mapping each vj to an exponential
Ej−1 for j ∈ {2, . . . , d+ 1}. Its proof can be found in the appendix.

Proposition 4.7 (Error behaviour for the Marshall–Olkin algorithm for discrete V ). Let φMO
C be

the transformation associated with the Marshall–Olkin algorithm, as given in (16) and assume C is
an Archimedean copula whose distribution function F of V is discrete. Let Pn = {vi, i = 1, . . . , n}
be the point set in [0, 1)d+1 used to produce copula samples via the transformation φMO

C and let
ui = φMO

C (vi). If (22) holds and

1. there exists some p ≥ 1 such that the point set Pn satisfies max1≤i≤n vi,1 ≤ 1− 1/pn;

2. there exist constants c > 0 and q ∈ (0, 1) such that 1− F (l) ≤ cql for l ≥ 1;

then there exists a constant C(d) (independent of n but dependent of Ψ and φMO
C ) such that∣∣∣∣∣ 1n

n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣∣ ≤ C(d)(log n)D∗(Pn).
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Remark 4.8. We note that the Frank, Joe and Ali-Mikhail-Haq copulas are such that F is discrete.
The condition on the tail of F stated in the proposition can be shown to hold for the Frank and
Ali-Mikhail-Haq copulas, but not for the Joe copula (the distribution of V in this case has a Sibuya
distribution, for which no moments exists, i.e., it has a very fat tail).

Let us now move on to RQMC methods. We already mentioned that an advantage they have
over their deterministic counterparts is that much weaker conditions are required to provide variance
expressions for their corresponding estimators. The following result shows that this also holds after
composing Ψ with φC .

Proposition 4.9 (Variance expression with a change of variables). If P̃n = {ṽ1, . . . , ṽn} is a
randomly digitally shifted net with corresponding RQMC estimator µ̂n = 1

n

∑n
i=1 Ψ(φC(ṽi)) and if

Var(Ψ(U)) <∞ with U ∼ C, then we have that

Var(µ̂n) =
∑

0 6=h∈L∗d

|Ψ̂ ◦ φC(h)|2, (23)

where L∗d is the dual net of the deterministic net that has been shifted to get P̃n, and f̂(h) is the
Walsh coefficient of f at h, while

(Ψ̂ ◦ φC)(h) =
∑
k∈Zd

Ψ̂(k)P (h,k),

P (h,k) =

∫
[0,1)d

e2πi(k·φC(w)−h·w)dw

= E
[
e2πi(k·φC(W )−h·W )

]
, W ∼ U[0, 1]d.

Proof. It is clear from Theorem 6.1 in the appendix and using Representation (17) that (23) holds
and the condition Var(Ψ(U)) <∞ with U ∼ C ensures it is finite. So what remains to be shown is
the expression for the Walsh coefficient of the composed function Ψ ◦ φC . It is obtained as follows:

(Ψ̂ ◦ φC)(h) =

∫
[0,1)d

Ψ(φC(w))e−2πi〈h,w〉bdw

=

∫
[0,1)d

∑
k∈Zd

Ψ̂(k)e2πi〈k,φC(w〉b)e−2πi〈h,w〉bdw

=
∑
k∈Zd

Ψ̂(k)

∫
[0,1)d

e2πi(〈k,φC(w)〉b−〈h,w〉b)dw

=
∑
k∈Zd

Ψ̂(k)P (h,k),

where the third equality holds thanks to Fubini’s theorem.

By adding assumptions on the smoothness of Ψ and thus on the behavior of its Walsh coefficients,
one could obtain improved convergence rates for the variance given in (23) compared to the O(1/n)
we get with MC, something we plan to study in future work.
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4.2 Transforming the low-discrepancy samples

As mentioned in the introduction, we can think of φC as transforming the point set Pn instead of
being composed with Ψ. The integration error can then be analyzed via a generalized version of
the Koksma–Hlawka inequality such as the one studied in [2], which we now explain.

Similarly to the Lebesgue case we define the copula-discrepancy function with respect to a
copula-induced measure PC on an interval B (i.e., PC(B) = P(U ∈ B) for U ∼ C) as

EC(B;Pn) =
A(B;Pn)

n
− PC(B).

Let J be the set of intervals of [0, 1)d of the form [a, b) =
∏d
j=1[aj , bj), where 0 ≤ aj ≤ bj ≤ 1.

The copula-discrepancy DC of Pn is then defined as

DC(Pn) = sup
B∈J
|EC(B;Pn)|, (24)

and similarly for D∗C(Pn), the star-copula-discrepancy function when the sup in (24) is taken over
J ∗ instead.

The generalization of the Koksma–Hlawka inequality studied in [2, Theorem 1] then provides∣∣∣∣ 1n
n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣ ≤ V (Ψ)D∗C(u1, . . . ,un),

where we assume ui = φC(vi), i ∈ {1, . . . , n}. To get some insight on this upper bound, we need to
know how D∗C(u1, . . . , un) behaves as a function of n. Unfortunately, in general we cannot prove
that D∗(v1, . . . ,vn) ∈ O(n−1 logd n) implies that D∗C(u1, . . . ,un) ∈ O(n−1 logd n). Here are a few
things we can say, though.

First, an obvious case for which discrepancy is preserved is when φC maps rectangles to rect-
angles, because then φC(B) ∈ J for all B ∈ J , and thus

DC(P̃n) ≤ D(Pn),

D∗C(P̃n) ≤ D∗(Pn),

where P̃n = {u1, . . . ,un}. However, this only happens when C is the independence copula, and in
this case the equality holds. This is not a very interesting case since our focus here is on dependence
modelling.

For the more realistic setting where φC does not map rectangles to rectangles, the following
result from [62] holds and gives a much slower convergence rate for D∗C(P̃n).

Proposition 4.10. Let C be such that the Rosenblatt transform φ−1
C is Lipschitz continuous on

[0, 1]d w.r.t. the sup-norm ‖ · ‖∞, and {ui = φC(vi)} for some sequence of points {vi} in [0, 1]d.
Then

DC({u1, . . . ,un}) ≤ c(d)D({v1, . . . ,vn})1/d,

for some function c(d), constant in n.
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Note that the above results fully depend on the properties of φC . The aim would then be to
choose φC such that a low-discrepancy sequence {φC(vi)} w.r.t. the copula measure PC results
whenever applied to a low-(Lebesgue-)discrepancy sequence {vi}. A more fundamental approach
would be to directly produce a low-discrepancy sequence {ui} where the discrepancy is measured
w.r.t. the copula measure C. This is something we intend to study in future work.

Now, computing DC or D∗C is usually not feasible in practice. If we replace the sup-norm
by the L2-norm, we obtain L2-discrepancies which are usually more practical to compute. Let
L2-discrepancies TC(u1, . . . ,un) and T ∗C(u1, . . . ,un) be defined by

TC(u1, . . . ,un)

=

(∫
{(y,z)∈[0,1]2d;yi<zi}

(
A([y, z);Pn)

n
− PC([y, z))

)2

dydz

)1/2

,

and

T ∗C(u1, . . . ,un) =

(∫
[0,1]d

(
A([0, z);Pn)

n
− C(z)

)2

dz

)1/2

,

respectively. Proceeding similarly to [95], T ∗C can be computed as

T ∗C(u1, . . . ,un)

=
1

n2

n∑
k=1

n∑
l=1

d∏
i=1

(1−max(uk,i, ul,i)) +

∫
[0,1]d

C(z)2dz

− 2

n

n∑
k=1

∫ 1

uk,1

· · ·
∫ 1

uk,d

C(z)dz.

If we consider a convex combination C(u1, . . . , ud) = λ
∏d
i=1 ui + (1 − λ) min(u1, . . . , ud), λ ∈

(0, 1), of the independence copula and the upper Fréchet–Hoeffding bound, then one can compute
T ∗C explicitly via

T ∗C(u1, . . . ,un) =
1

n2

n∑
k=1

n∑
l=1

d∏
i=1

(1−max(uk,i, ul,i)) +
λ2

3d

+
2(1− λ)2

(d+ 1)(d+ 2)
+

2λ(1− λ)d!∏d
i=1(2i+ 1)

− λ

n2d−1

n∑
k=1

d∏
i=1

(1− u2
k,i)

− 2(1− λ)

n

n∑
k=1

 d∑
i1=1

∑
i2 6=i1

∑
id 6=i1,...,id−1

1− ud+1
k,id

(d+ 1)!

−
d−1∑
l=1

d∑
i1=1

· · ·
∑

il 6=i1,...,il−1

ul+1
k,il

(1− uk,il+1
)

(l + 1)!

 .

5 Numerical results

Through typical examples from the realm of finance and insurance and a few test functions, we
now illustrate in this section the efficiency of QRNG in comparison to standard (P)RNG for copula
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sampling. More precisely, we compare Monte Carlo sampling approaches with two types of QRNGs
based on randomized low-discrepancy sequences: The Sobol’ sequence and the generalized Halton
sequence, both randomized with a digital shift. Variance/error estimates are obtained by using
B = 25 i.i.d. copies of the randomized sequence and comparisons are made with MC sampling
based on the same total number of replications. Each plot includes lines showing n−0.5, n−1 and/or
n1.5 convergence rates. In addition, on top of each plot and for each QRNG method, we provide
the regression estimate of α < 0 such that the variance/error is in O(nα). For PRNG, we only show
the results with the CDM sampling algorithm, since the choice of method does not affect the error
or variance very much. On the other hand, for QRNG we show the results both with CDM and
MO (when applicable), as this seems to sometimes make a difference. Understanding better why it
is so and under what circumstances a sampling algorithm perform better when used in conjunction
with QRNG will be a subject of further research.

While the examples given in the next section illustrates the use of our proposed method in
typical contexts where they might be used, the test functions results in the section that follows
are meant to focus on assessing the performance of QRNG compared to PRNG on the sole basis
of generating copula samples U – without including the effect of the marginal distributions – and
also to see if the sampling algorithm (CDM or MO) has an effect on the performance of QRNG.

Finally, we note that QRNG based on Sobol’ point sets is typically slightly faster than PRNG,
while the generalized Halton sequence runs slower than PRNG.

5.1 Examples from the realm of finance and insurance

Consider a random vector X = (X1, . . . , Xd) modeling d risks in a portfolio of stocks or insurance
losses. We assume that the jth marginal distribution is either log-normal with Xj ∼ LN(log(100)+
µ − σ2/2, σ2), j ∈ {1, . . . , d}, where µ = 0.0001 and σ = 0.2, or Pareto distributed with the same
mean and variance as in the log-normal case. The copula C ofX throughout this numerical study is
either a Clayton or an exchangeable t copula with three degrees of freedom. To allow a comparable
degree of dependence, we will use the same Kendall’s tau for both models. This easily translates
to the parameter θ of a Clayton copula via the relationship θ = 2τ(1− τ)−1 and to the correlation
parameter ρ of an exchangeable t copula via ρ = sin(πτ/2). We denote S =

∑d
j=1Xj and consider

the estimation of the following functionals Ψ(X):

• the Best-Of Call option payoff (maxXi −K)+;

• the Basket Call option payoff (d−1S −K)+;

• the Value-at-Risk at level 0.99 on the aggregated risks

VaR0.99 (S) = F−1
S (0.99) = inf {x ∈ R : FS(x) ≥ 0.99} ,

• the expected shortfall at level 0.99 on the aggregated risks

ES0.99 (S) =
1

1− 0.99

∫ 1

0.99
F−1
S (u)du;

• the contribution of the first and middle margin to ES0.99 of the sum under the Euler principle,
see [122],

E[X1 |S > F−1
S (α)] and E[Xd/2 |S > F−1

S (α)].
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These two functionals are referred to as Allocation First and Allocation Middle, respectively.

Figures 7, 8, 9, and 10 (as well as Figures 13 and 14 in the online supplement) display selected
variance estimates for Clayton and t copulas with Kendall’s tau parameter equal to 0.2 and 0.5,
using either lognormal or Pareto margins, in dimensions d = 5, 10, 20 (displayed in different rows)
and sample sizes n ∈ {10 000, 15 000, . . . , 200 000}. In the Clayton case, the experiment uses both
the MO and CDM sampling methods. For the t copulas, while there is a sampling approach based
on a stochastic representation (as seen in Section 3.2.2), there is no version of the MO algorithm
available, so we only use the CDM method. In addition, both the Sobol’ and generalized Halton
QRNGs are used. In all cases, we see that the variances associated with the Sobol’ and generalized
Halton quasi-random sequences are smaller and converge faster than the Monte Carlo variance. It
is not clearly determined whether one sampling method is performing considerably better than the
other. But we note that in some cases, such as the estimate of the Basket Call with τ = 0.2 in
d = 20 dimensions (Figure 7, bottom) the MO sampling seems to perform better than CDM.

5.2 Test functions

We now consider integration results on two different test functions. The results are shown in
Figures 11, 12, 15, and 16 (the latter two are in the online supplement), which are based on a
Clayton (or t) copula with τ = 0.2 and τ = 0.5, respectively. The first test function is given by

Ψ1(u) = 3(u2
1 + . . .+ u2

d)/d,

where the vector u is obtained after transforming the uniform points v using either the CDM
transform or the MO algorithm. Recall that the former requires d-dimensional points (using either a
PRNG or a QRNG), whereas the latter requires (d+1)-dimensional points. Note that Ψ1 integrates
exactly to 1 with respect to the copula-induced measure, since Uj ∼ U[0, 1], j ∈ {1, . . . , d}. While
we know the exact value of the integral in this case, we still compare estimators based on B i.i.d.
copies of either MC or RQMC, but we plot the average absolute error rather than the estimated
variance.

The second test function is given by

Ψ2(u) = g1((φCDM)−1(u)),

where

g1(v) =
d∏
j=1

|4vj − 1|+ αj
1 + αj

, αj = j,

which is often used as a test function in the QMC literature; see, e.g., [49] and the references
therein. So here we first apply the inverse of the CDM transform to the copula-transformed points
obtained either using the CDM approach or MO, and then apply the d-dimensional function g1.
While this has the effect of simply applying the standard test function g1 to the original sample
points vi in the case of the CDM, in the case of the MO algorithm, we are not falling back on the
original points vi. The hope is that if MO does not preserve so well the low discrepancy of the
original points, this function would be able to detect this problem.
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Figure 8: Variance estimates for the functional Best-Of Call with Pareto margins based on B = 25
repetitions for an exchangeable t copula with three degrees of freedom such that Kendall’s tau
equals 0.5 for d = 5 (top), d = 10 (middle) and d = 20 (bottom).
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Figure 9: Variance estimates for the functional VaR0.99 with lognormal margins for an exchange-
able t copula with three degrees of freedom such that Kendall’s tau equals 0.2 based on B = 25
repetitions for d = 5 (top), d = 10 (middle) and d = 20 (bottom).
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Figure 10: Variance estimates for the functional ES0.99 with Pareto margins for a Clayton copula
with parameter such that Kendall’s tau equals 0.5 based on B = 25 repetitions for d = 5 (top),
d = 10 (middle) and d = 20 (bottom).
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While the second test function is mostly interesting for Archimedean copulas, the first one can
be used more generally. This is why in the results reported in Figures 11 and 12, we also consider
an exchangeable t copula with three degrees of freedom and Kendall’s τ equal to 0.2.

For both test functions, we see that the Sobol’ and generalized Halton sequences always clearly
outperform Monte Carlo, with an error often converging in O(n−1) rather than the O(n−0.5) cor-
responding to Monte Carlo.

For the first function Ψ1, both the CDM and MO methods perform about the same. We believe
this might be due to the simplicity of Ψ1—a sum of univariate powers of the uj ’s—and the fact
that both methods perform equally well in the univariate case when combined with RQMC.

Looking at the results for Ψ2, we see that with RQMC the CDM method performs better than
MO, as there is no copula transformation performed in the case of CDM. However, RQMC with
MO is still better than Monte Carlo, which suggests that the MO algorithm manages to preserve
the low discrepancy of the original point set.

6 Conclusion and discussion

The main goal of this paper was to show how copula samples can be generated using quasi-random
numbers. This is of interest when replacing PRNGs by QRNGs in applications involving dependent
samples, possibly in higher dimensions. We have seen that different sampling approaches can
be used, with a focus on the CDM approach and, additionally for Archimedean copulas, on the
Marshall–Olkin algorithm. We have studied the error behaviour for both methods and have seen
that in order to prove that the composed function Ψ◦φC is smooth enough to satisfy the Koksma–
Hlawka bound for the error, sufficient conditions on the function Ψ are that it must have smooth
higher order mixed partial derivatives. For the Marshall–Olkin algorithm, we have shown that for
several Archimedean copula families, the corresponding transformation φC is smooth enough to
guarantee the good behaviour of the error bound. The superiority of QRNG over PRNG for copula
sampling was illustrated on several examples, including a simulation addressing an application in
the realm of finance and insurance. Most of the results in this paper are reproducible using the R
packages copula and qrng.

Some ideas for future work would be to follow-up on Proposition 4.9 and to analyze the speed
of decay of the Walsh coefficients of the composed function Ψ ◦ φC , based on assumptions on the
speed of decay of the Walsh coefficients of Ψ and the properties of the sampling method φC .

Concerning the copula-induced discrepancy studied in Section 4.2, a possible avenue for future
research would be to construct point sets that directly minimize this discrepancy, without first
transforming a (uniform-based) low-discrepancy sample. In addition, proving error bounds based
on the L2-discrepancy would be useful, as this discrepancy measure is easier to compute. Finally,
numerically computing the copula-induced discrepancy for samples transformed either using the
CDM or the MO algorithm would give us some insight as to how conservative the bound given in
Proposition 4.10 is.

Appendix

For all the randomization schemes mentioned in Section 2, in addition to having a simple method
to estimate the variance of the corresponding RQMC estimator, results giving exact expressions
for this variance are also known and typically rely on using a well-chosen series expansion of the
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Figure 11: Average absolute errors for the test functions Ψ1(u) = 3(u2
1 + . . . + u2

d)/d (top) and
Ψ2(u) = g1((φCDM)−1(u)) (bottom) for a Clayton copula with parameter such that Kendall’s tau
equals 0.2 based on B = 25 repetitions for d = 5; the middle plot shows results for Ψ1(u) and an
exchangeable t copula with 3 degrees of freedom and Kendall’s tau of 0.2.
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Figure 12: Average absolute errors for the test functions Ψ1(u) = 3(u2
1 + . . .+u2

d)/d (top), Ψ2(u) =
KC(C(u)) + 1/2 (middle), and Ψ3(u) = g1((φCDM)−1(u)) (bottom) for a Clayton copula with
parameter such that Kendall’s tau equals 0.2 based on B = 25 repetitions for d = 15; the middle
plot shows results for Ψ1(u) and an exchangeable t copula with 3 degrees of freedom and Kendall’s
tau of 0.2. 108



function Ψ of interest. The following result recalls this variance expression in the case of randomly
digitally shifted net; see [82] for a detailed proof. This result is used in the proof of Proposition 4.9
in Section 4.1.

Theorem 6.1 (Variance for randomly digitally shifted nets). Let P̃n = {ṽ1, . . . , ṽn} be a randomly
digitally shifted net in base b with corresponding RQMC estimator µ̂n given by

µ̂n =
1

n

n∑
i=1

Ψ(ṽi)

and assume Var(Ψ(U)) <∞ for U ∼ U [0, 1)d. Then we have that

Var(µ̂n) =
∑

0 6=h∈L∗d

|Ψ̂(h)|2,

where Ψ̂(h) is the Walsh coefficient of Ψ at h, given by

Ψ̂(h) =

∫
[0,1)d

f(u)e−2πi〈h,u〉bdu

where 〈h,u〉b = 1
b

∑d
j=1

∑∞
l=0 hj,luj,l+1 with hj,l and uj,l obtained from the base b expansion of

hj and uj, respectively, and L∗d = {h ∈ Zd : 〈h,vi〉b ∈ Z,∀i = 1, . . . , n} is the dual net of the
deterministic net Pn = {vi, i = 1, . . . , n} that has been shifted to get P̃n.

Proofs

Proof of Proposition 3.4. Assume P =
(
P1:(j−1),1:(j−1) P1:(j−1),j

Pj,1:(j−1) Pj,j

)
and P−1 =

( P−1
1:(j−1),1:(j−1)

P−1
1:(j−1),j

P−1
j,1:(j−1)

P−1
j,j

)
to be positive definite matrices. Corollary 3.3 implies that

C(uj |u1, . . . , uj−1) =

∫ xj
−∞ hν,P (x1, . . . , xj−1, zj) dzj

hν,P1:(j−1),1:(j−1)
(x1, . . . , xj−1)

,

where

hν,P (x1, . . . , xj) =
Γ
(ν+j

2

)
Γ
(
ν
2

)
(νπ)j/2

√
|P |

(
1 +

x>P−1x

ν

)− ν+j
2

(25)

is the density function of tν,P . Using the block matrix equality

P−1
1:(j−1),1:(j−1) − P

−1
1:(j−1),j(P

−1
j,j )−1P−1

j,1:(j−1) =
(
P1:(j−1),1:(j−1)

)−1
,

we have that

x>P−1x

= x>1:(j−1)P
−1
1:(j−1),1:(j−1)x1:(j−1) + x2

jP
−1
j,j + 2xjx

>
1:(j−1)P

−1
1:(j−1),j

= x>1:(j−1)

(
P1:(j−1),1:(j−1)

)−1
x1:(j−1) + x2

jP
−1
j,j + 2xjx

>
1:(j−1)P

−1
1:(j−1),j

+ x>1:(j−1)P
−1
1:(j−1),j(P

−1
j,j )−1P−1

j,1:(j−1)x1:(j−1)

= g + k(xj)
2,
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where

g = x>1:(j−1)

(
P1:(j−1),1:(j−1)

)−1
x1:(j−1),

k(xj)
2 =

(
xj

√
P−1
j,j + s2

)2
,

s2 = x>1:(j−1)P
−1
1:(j−1),j/

√
P−1
j,j .

We can thus rewrite (25) as

hν,P (x1, . . . , xj) = a
(

1 +
g

ν

)− ν+j
2
hν+j−1(l(xj)),

where hν+j−1 is the density of tν+j−1 and

a =
Γ
(ν+j−1

2

)√
(ν + j − 1)π

Γ
(
ν
2

)
(νπ)j/2

√
|P |

, l(xj) = k(xj)s1, s1 =

√
ν + j − 1

ν + g
.

Using a change of variable argument, we compute∫ xj

−∞
hν,P (x1, . . . , xj−1, zj) dzj = a

(
P−1
j,j

ν + j − 1

ν + g

)−1/2

tν+j−1(l(xj)).

Consequently,

C(uj |u1, . . . , uj−1) =

√
|P1:(j−1),1:(j−1)|
|P |P−1

j,j

tν+j−1(l(xj)) = tν+j−1(l(xj)),

where the last equality can be seen as follows. Let Pj|1:(j−1) be as in (12). Since |P | = |P[1:(j−1),1:(j−1)]||Pj|1:(j−1)|,
and Pj|1:(j−1) = (P−1

j,j )−1 by [68, (0.7.3.1)], we then have

|P | = |P1:(j−1),1:(j−1)| · |Pj|1:(j−1)| = |P1:(j−1),1:(j−1)|/P−1
j,j .

Proof of Proposition 4.5. We start by providing more details on the expression (20), which is given
by:

∂lΨ ◦ φC(vα1 , . . . , vαl ,1)

∂vα1 · · · ∂vαl
=

∑
1≤|β|≤l

∂|β|Ψ

∂β1u1 . . . ∂βdud

l∑
s=1

∑
(k,γ)∈ps(β,α)

cγ

s∏
j=1

∂|γj |φC,kj (vα1 , . . . , vαl ,1)

∂γj,1vα1 . . . ∂
γj,lvαl

where β ∈ Nd0, |β| =
∑d

j=1 βj , and the set ps(β,α) includes pairs (k,γ) such that k is an s-
dimensional vector k = (k1, . . . , ks) where each kj ∈ {1, . . . , d}, and γ is an sl-dimensional vector
γ = (γ1, . . . ,γs) where each γj is an l-dimensional vector whose entries are either 0 or 1, and∑s

j=1 γj,i = 1 for i ∈ {1, . . . , l}. Finally, the cγ are constants, which are defined in detail in [27],
along with further information on the precise definition of ps(k,γ).
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As mentioned in Section 4.1, a sufficient condition to show that ‖Ψ◦ΦC‖d,1 <∞ is to establish
that all products of the form (21) are in L1, which we recall is given by

∂|β|Ψ

∂β1u1 . . . ∂βdud

s∏
j=1

∂|γj |φC,kj (vα1 , . . . , vαl ,1)

∂γj,1vα1 . . . ∂
γj,lvαl

,

for s ∈ {1, . . . , l} and (k,γ) ∈ ps(β,α).
Recall also that for the MO algorithm, φC,l is a function of v1 and vl+1 only, for l = 1, . . . , d.

Hence the only partial derivatives of φC,l that are nonzero are those with respect to variables in
{v1, vl+1}.

Now, since we assume that (22) holds, then it means we just need to show that the product
found in (21) is in L1, under the conditions stated in the proposition. In turn, we first show that
this holds if the following bounds hold for the mixed partial derivatives of φC :∫ 1

0

∣∣∣∣∂φC,l(v1 = 1, vl+1)

∂vl+1

∣∣∣∣ dvl+1 <∞, (26)

∫
[0,1)l

∣∣∣∣∣∣∂
2φC,1(v1, v2)

∂v1∂v2

l−1∏
j=2

∂φC,j(v1, vj+1)

∂vj+1

∣∣∣∣∣∣ dv1dv2 . . . dvl <∞, and (27)

∫
[0,1)l−1

∣∣∣∣∂φC,r(v1, vr+1 = 1)

∂v1

∣∣∣∣
 l−1∏
j=1,j 6=r

∣∣∣∣∂φC,j(v1, vj+1)

∂vj+1

∣∣∣∣ dvj
dvl <∞ (28)

for all l ≤ d+ 1.
We have three cases to consider.

Case 1: 1 /∈ I. Then the product in (21) is given by

l∏
j=1

∣∣∣∣∂φC,j(v1 = 1, vj+1)

∂vj+1

∣∣∣∣ ,
where we assumed w.l.o.g. that I = {2, . . . , l + 1}, s = l and kj = j + 1 for j ∈ {1, . . . , s}. Since
each term in the product depends on a distinct variable, the product is in L1 if (26) holds.
Case 2: 1 ∈ I and j such that γj,1 = 1 has kj + 1 /∈ I. This case can be analyzed w.l.o.g. by
assuming I is of the form I = {1, . . . , r, r + 2, . . . , l+ 1} for some r ≥ 1. In that case, the products
in (21) are of the form ∣∣∣∣∣∣∂φC,r(v1, vr+1 = 1)

∂v1

l−1∏
j=1,j 6=r

∂φC,j(v1, vj+1)

∂vj+1

∣∣∣∣∣∣
and is thus in L1 as long as (28) holds.
Case 3: 1 ∈ I and j such that γj,1 = 1 has kj + 1 ∈ I. In this case, we can assume w.l.o.g. that
I = {1, . . . , l} and therefore the products in (21) are of the form∣∣∣∣∣∣∂

2φC,r(v1, vr+1)

∂v1∂vr+1

l−1∏
j=1,j 6=r

∂φC,j(v1, vj+1)

∂vj+1

∣∣∣∣∣∣
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and is thus in L1 as long as (27) holds.
The last part of the proof is to show that (26), (27), and (28) hold. First we study the partial

derivatives involved in these expressions and find they are given by:

∂φC,1(v1, v2)

∂v1
= ψ′

(
− log(v2)

x1

)
log v2

x2
1

∂x1

∂v1
,

∂φC,1(v1, v2)

∂v2
= −ψ′

(
− log(v2)

x1

)
1

x1v2
,

∂2φC,1(v1, v2)

∂v1∂v2
=
∂x1

∂v1

1

v2x2
1

[
ψ′
(
− log v2

x1

)
− log v2

x1
ψ′′
(
− log v2

x1

)]
,

where x1 = F−1(v1) and ∂x1
∂v1

= 1/f(x1), where f is the pdf corresponding to F , which exists since
we assumed F was continuous. Now, the partial derivatives with respect to either v1 or v2 are
clearly non-negative for all v1 and v2. Hence it is easy to see that (26) and (28) hold, because we
can remove the absolute value inside the integrals and therefore, these integrals amount to take
differences/sums of φC,r(·, ·) at different values over its domain, which obviously yields a finite value
since φC,r(·, ·) always takes values in [0, 1].

As for the mixed partial derivative with respect to v1 and v2, our assumption on ψ′(t) + tψ′′(t)
implies we have at most one sign change over the domain of the integral. If there is no sign change,
the argument used in the previous paragraph to handle (26) and (28) can be used to show (27) is
bounded. If there is one sign change, then we let t∗ be such that

ψ′(t) + tψ′′(t) ≤ 0 for 0 ≤ t ≤ t∗ and ψ′(t) + tψ′′(t) ≥ 0 for t∗ ≥ t.

Then let q(v) be a function such that − log q(v)/F−1(v) = t∗. For instance, one can verify that for
the Clayton copula, q(v) = e−θF

−1(v). When integrating the absolute value of the mixed partial
derivative ∂2φC,1(v1, v2)/∂v1∂v2, we get∫ 1

0

∂x1

∂v1

1

x2
1

[∫ q(v1)

0

1

v2

(
ψ′
(
− log v2

x1

)
− log v2

x1
ψ′′
(
− log v2

x1

))
dv2

+

∫ 1

q(v1)

1

v2

(
−ψ′

(
− log v2

x1

)
+

log v2

x1
ψ′′
(
− log v2

x1

))
dv2

]
dv1

= 2

∫ 1

0

∂x1

∂v1

1

x2
1

[
ψ′(− log q(v1)/x1) log q(v1)

]
dv1

=− 2t∗ψ′(t∗)

∫ 1

0

1

F−1(v1)

∂F−1(v1)′

∂v1
dv1 = −2t∗ψ′(t∗) logF−1(v1)

∣∣1
0
. (29)

Now, in most cases F−1(1) is not bounded, and thus we cannot prove that Ψ ◦ φC has bounded
variation. However, from there we can still get the upper bound on the error given in the result, by
using a technique initially developed by [119] to handle improper integrals, and later by [60] to deal
with unbounded integration problems taken w.r.t. to a measure that is not necessarily uniform (as
studied in Section 4.2). Note that to apply their approach more easily, we need to make a small
change and assume that rather than generating V as F−1(v1), we use F−1(1− v1), so that in our
study of the variation above (via the integral of the absolute value of the mixed partial derivatives),
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the boundedness condition fails at v1 = 0 instead of v1 = 1. Following the approach in [60] (see
their Equation (24)) and taking c = (1/pn, 0, . . . , 0), the integration error satisfies∣∣∣∣ 1n

n∑
i=1

Ψ(ui)− E[Ψ(U)]

∣∣∣∣
≤ 1

pn
Ψ(1, . . . , 1) +D∗(Pn)V[c,1](Ψ ◦ φC) + Irest

where V[c,1](Ψ ◦ φC) denotes the variation of Ψ ◦ φC over [c,1] and

Irest =

∣∣∣∣∫ 1

0
Ψ ◦ φC(v)dv −

∫ 1

c
Ψ ◦ φC(v)dv

∣∣∣∣ ≤ M

pn
for some M > 0,

since we assumed |ψ(u)| was bounded. As for V[c,1](Ψ ◦ φC), we can infer from the steps that led
to (29) that it is bounded by a constant times logF−1(1 − 1/pn) ≤ a log n + log c by assumption.
Therefore there exists a constant K(d) such that V[c,1](Ψ ◦ φC) ≤ K(d) log n.

Proof of Proposition 4.7. Let pl be such that P (V = l) = pl, for l ≥ 1. Let Pl =
∑l

k=1 pk for l ≥ 1
and P0 = 0. We also let φlC(v2, . . . , vd+1) = φC(Pl−1, v2, . . . , vd+1) for l ≥ 1 (transformation φC
when v1 generates the value l for V ). Consider a given value of n and low-discrepancy point set
Pn. If we use inversion to generate V , then we have that the subset P ln = {vi : Pl−1 < vi,1 ≤ Pl}
will be used to produce copula samples with V = l. Let ñl = |P ln| and nl = npl. It is clear that if l
becomes too large, then ñl will eventually be 0. Let L(n) be the largest value of l such that ñl > 0,
and let p̃l = ñl/n. Then we can write∣∣∣∣∫

[0,1)d+1

Ψ ◦ φC(v)dv − 1

n

n∑
i=1

Ψ ◦ φC(vi)

∣∣∣∣
≤
∣∣∣∣L(n)∑
l=1

pl

∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1 −
1

nl

∑
P ln

Ψ ◦ φC(vi)

∣∣∣∣
+

∞∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1

∣∣∣∣
≤
L(n)∑
l=1

p̃l

∣∣∣∣∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1 −
1

ñl

∑
P ln

Ψ ◦ φC(vi)

∣∣∣∣
+

∞∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1

∣∣∣∣
+

L(n)∑
l=1

∣∣∣∣(pl − p̃l) ∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1

∣∣∣∣
≤
L(n)∑
l=1

(p̃lA(n, d)) +B(n, d) + C(n, d),
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where A(n, d), B(n, d), and C(n, d) are bounds such that∣∣∣∣∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1 −
1

ñl

∑
P ln

Ψ ◦ φC(vi)

∣∣∣∣ ≤ A(n, d)

∞∑
l=L(n)+1

pl

∣∣∣∣∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1

∣∣∣∣ ≤ B(n, d)

L(n)∑
l=1

∣∣∣∣(pl − p̃l) ∫
[0,1)d

Ψ ◦ φlC(v)dv2 . . . dvd+1

∣∣∣∣ ≤ C(n, d).

First, by definition of D∗(Pn) we have |ñl−nl| ≤ 2nD∗(Pn) and thus |p̃l−pl| ≤ 2D∗(Pn). Hence
we can take C(n, d) = 2 E(|Ψ(U)|)D∗(Pn). Similarly, we can show that

∑∞
l=L(n)+1 pl ≤ D∗(Pn) and

can therefore take B(n, d) = E(|Ψ(U)|)D∗(Pn). The analysis of the expression to be bounded by
A(n, d) is more complicated. First, we note that under the assumption we have on Ψ and its partial
derivatives, we need to show that the product in (21) is in L1, but where each φC,kj is replaced by

φlC,kj for a given l. Since φlC,kj is solely a function of vkj+1, then it means that the only relevant
products to consider are of the form

r∏
j=1

∂φlC,kj (vkj+1)

∂vkj+1
(30)

in which each term is of the form −ψ′
(− log vkj+1

l

)
1

lvkj+1
which is non-negative for any vkj+1. Using

a similar reasoning to the one used in the proof of Proposition 4.5 (to conclude that (26) and (28)
hold), it is easy to see that (30) is in L1.

What remains to be done is to analyze the discrepancy of P ln. That is, here we are looking
for a bound on supz∈J ∗ |E(z;P ln)|, where we recall that J ∗ is the set of intervals of [0, 1)d of the

form z =
∏d
j=1[0, zj), where 0 < zj ≤ 1. So consider a given z ∈ [0, 1)d. Then E(z;P ln) =

A(z;P ln)/ñl − λ(z). Let z1 = (Pl, z) and z2 = (Pl−1, z), which are both in [0, 1)d+1. Note that
A(z1;Pn)−A(z2;Pn) = A(z;P ln). By definition of D∗(Pn), it is not hard to see that∣∣∣∣(A(z1;Pn)−A(z2;Pn))

n
− plλ(z)

∣∣∣∣ ≤ 2D∗(Pn)

and therefore ∣∣∣∣A(z;P ln)

ñl
− nl
ñl
λ(z)

∣∣∣∣ ≤ 2D∗(Pn)
n

ñl
.

Using the fact that |ñl − nl| ≤ 2nD∗(Pn), after some further simplifications we get that∣∣∣∣A(z;P ln)

ñl
− λ(z)

∣∣∣∣ ≤ 4D∗(Pn)
n

ñl
.

Hence we can take A(n, d) = 4D∗(Pn) nñl and then get
∑L(n)

l=1 p̃lA(n, d) ≤ 4L(n)D∗(Pn). To show
that the overall bound for the integration error is of the form (log n)D∗(Pn) times a constant, we
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simply need to show that L(n) ∈ O(log n). But this follows from our assumptions on Pn and F ,
since by definition, L(n) is the largest integer such that 1 − F (L(n)) > 1/pn but we also have
1− F (L(n)) ≤ cqL(n), hence

1/pn < cqL(n) ⇔ L(n) log(1/q)− log c < log p+ log n

and thus L(n) ≤ (log n+ log p+ log c)/ log(1/q), as required.

Online supplement

Additional numerical results

Here we provide a few additional results for the experimental setup described in Section 5, namely
for the finance and insurance examples (see Figures 13 and 14) and then for the test functions (see
Figures 15 and 16).
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Figure 13: Variance estimates for the functionals Allocation First for lognormal margins and an
exchangeable t copula with three degrees of freedom such that Kendall’s tau equals 0.2 based on
B = 25 repetitions for d = 5 (top), d = 10 (middle) and d = 20 (bottom).
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Figure 14: Variance estimates for the functionals Allocation Middle with Pareto margins and for a
Clayton copula with parameter such that Kendall’s tau equals 0.5 based on B = 25 repetitions for
d = 5 (top), d = 10 (middle) and d = 20 (bottom).
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Figure 15: Average absolute errors for the test functions Ψ1(u) = 3(u2
1 + . . . + u2

d)/d (top) and
Ψ2(u) = g1((φCDM)−1(u)) (bottom) for a Clayton copula with parameter such that Kendall’s tau
equals 0.5 based on B = 25 repetitions for d = 5: the middle plot shows results for Ψ1(u) and an
exchangeable t copula with three degrees of freedom and Kendall’s tau of 0.2.
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Figure 16: Average absolute errors for the test functions Ψ1(u) = 3(u2
1 + . . .+u2

d)/d (top), Ψ2(u) =
g1((φCDM)−1(u)) (bottom) for a Clayton copula with parameter such that Kendall’s tau equals
0.5 based on B = 25 repetitions for d = 15: the middle plot shows results for Ψ1(u) and an
exchangeable t copula with three degrees of freedom and Kendall’s tau of 0.2.
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Replicating Portfolio Approach to Capital Calculation∗

Mathieu Cambou† Damir Filipović‡

August 24, 2016

Abstract

The replicating portfolio (RP) approach to the calculation of capital for life insurance portfo-
lios is an industry standard. The RP is obtained from projecting the terminal loss of discounted
asset-liability cash flows on a set of factors generated by a family of financial instruments that
can be efficiently simulated. We provide the mathematical foundations and a novel dynamic
and path-dependent RP approach for real-world and risk-neutral sampling. We show that the
RP approach yields asymptotically consistent capital estimators. We illustrate the tractability
of the RP approach by two numerical examples.
Key words: asset-liability portfolio, chaos expansion, replicating portfolio, solvency capital

1 Introduction

The calculation of solvency and economic capital for life insurance portfolios is a challenging task,
which has not gained much attention in the finance literature yet. The new European regulatory
framework Solvency II and the Swiss Solvency Test require the modeling of the profit and loss
distribution of the asset-liability portfolio on a one-year time horizon, see [24] and [53]. Solvency
capital is determined as 99.5%-value at risk for Solvency II, and 99%-expected shortfall for the
Swiss Solvency Test, of this one-year profit and loss.

The value of insurance liabilities is defined as (conditional) risk-neutral expectation of the
accumulated discounted liability cash flows. For life insurance this requires simulations of cash
flows up to 40 years and beyond. These simulations are computationally costly, the modeling of
the one-year discounted loss on the asset-liability portfolio L cannot be done via nested simulations.
The replicating portfolio (RP) approach consists in projecting the terminal time-T discounted loss of
the asset-liability portfolio Z onto a set of factors generated by a family of m financial instruments,
whose discounted gains processes can efficiently be simulated. This results in a dynamic and path-
dependent self-financing portfolio, the RP, with discounted value process Vt that replicates Z in a

∗We thank Matthias Aellig, Valérie Chavez, Michel Dacorogna, Anthony Davison, Guido Grützner, Stephan Mor-
genthaler, Antoon Pelsser, Johan Segers, Sonja Sterki, Ralf Werner, and participants at the Oberwolfach Workshop
on The Mathematics and Statistics of Quantitative Risk Management 2015 for comments. An early version of this
paper was implemented in the Master thesis of Haobo Jia, “New Aspects of the Replicating Portfolio for Group Life
Insurance”, in the Financial Engineering program at EPFL and carried out at Swiss Life in 2013. The research lead-
ing to these results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307465-POLYTE.
†EPFL, Institute of Mathematics, Lausanne, Switzerland, email: mathieucambou@gmail.com
‡EPFL and Swiss Finance Institute, Lausanne, Switzerland, email: damir.filipovic@epfl.ch
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least-squares sense. We use L1 = V1 and alternatively L2 = V1 +Z −VT as proxies for L. We show
that the RP approach is asymptotically consistent in the sense that the value at risk and expected
shortfall of L1 and L2 converge to the true solvency capital, the value at risk and expected shortfall
of L. Our results hold for least-squares projections under both the real-world and risk-neutral
measures.

We also study the estimation errors that result from the finite sampling of Z. We show that the
simulation based estimator of the RP is unbiased and satisfies the law of large numbers (LLN) and
the central limit theorem (CLT) as the number n of simulations tends to infinity. As a consequence
we find that the Monte-Carlo estimate is asymptotically consistent. Again, this is done under both
the real-world and risk-neutral sampling measures.

The insurance market is incomplete under static hedging with the underlying financial instru-
ments for two reasons. First, there are more factors driving insurance cash flows than there are
traded financial instruments for their replication. Second, insurance cash flows are nonlinear in
the underlying financial instruments. We illustrate both effects and the performance of the RP ap-
proach in two numerical examples. We find that our dynamic and path-dependent RP significantly
outperforms the industry standard static RP.

Related literature is the following. [96] and [97] elaborate on the equivalence of optimal cash
flow matching and optimal terminal value matching, based on the setups of [7] and [105]. In [98]
they analyse bounds on the capital approximation error under a combination of real-world and
risk-neutral measures. A discussion of least-squares Monte Carlo methods (so-called regress-now
and regress-later) applied to insurance liability valuation is given in [12] and further elaborated
in [111] and [13]. We add to this literature by providing a novel dynamic and path-dependent
construction of the RP and establishing asymptotic consistency of the capital estimators under
both the real-world and risk-neutral sampling measures. Our RP is multilinear in the running
gains of the financial instruments such that it applies to generic insurance cash flows. In contrast,
least-squares Monte Carlo assumes that insurance cash flows are defined as specific functions of
the underlying factors. A technical report of the German Actuarial Society [32] compares various
proxy methods for capital calculation in life insurance. They discuss pros and cons for the nested
simulation, curve fitting, least-squares Monte Carlo, and RP approach. The advantage of RP over
curve fitting and least-squares Monte Carlo is that the latter two use abstract function classes and
underlying factors for the projection, while RP uses financial instruments as special functions with
a clear model-independent interpretation. It is also advised to match terminal discounted value
rather than cash flows because the scope is on the change of market value (profit and loss) of
the portfolio, which is what we do in our paper. [32] also reports as typical numbers in practice
n = 1000 to 5000 samples and m = 10 to 50 financial instruments.

The remainder of the paper is as follows. In Section 2 we introduce the formal setup. In
Section 3 we develop the RP theory and analyze the capital approximation error. In Section 4 we
analyze the Monte-Carlo error and prove asymptotic consistency of the capital proxy estimators. In
Section 5 we provide two numerical examples, and in Section 6 we conclude. Appendix A contains
the proofs of all lemmas and theorems. Appendix B contains all figures.

2 General setup

We consider an economy with a fixed time horizon T . Randomness is modeled on a filtered prob-
ability space (Ω,F ,Ft,P), t ≤ T , where P denotes the real-world measure. All financial values are
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discounted by some numeraire. The corresponding risk-neutral pricing measure Q ∼ P has density
process Dt = dQ

dP |Ft . For p ≥ 1, we denote by Lp(P) the Lebesgue space of random variables X with

norm ‖X‖Lp(P) = EP[|X|p]1/p and similarly for Lp(Q). Throughout, we assume that the following
constants are finite

CP
1 = ‖DT ‖L2(P) , CP

2 = ‖DT /D1‖L2(P) ,

CQ
1 = ‖1/DT ‖L2(Q) , CQ

2 = ‖1/D1‖L2(Q) .

Because 1/Dt is a Q-martingale, we obviously have CQ
2 ≤ C

Q
1 .1

Henceforth we let M be a placeholder for either P or Q. Here is a basic lemma, which we will
apply throughout the paper without further notice.

Lemma 2.1. For a random variable X we have

‖X‖L1(Q) ≤ CP
1 ‖X‖L2(P), ‖X‖L1(P) ≤ CQ

1 ‖X‖L2(Q).

Hence L2(P) ⊂ L1(Q) and L2(Q) ⊂ L1(P). If X ∈ L2(M) then∥∥∥EQ [X | F1]
∥∥∥
L1(P)

≤ CM
2 ‖X‖L2(M).

We denote by VaRα[X] the P-value at risk and by ESα[X] the P-expected shortfall of X for
a fixed confidence level α ∈ (0, 1). For Solvency II the risk measure is VaR99.5% and for the
Swiss Solvency Test it is ES99%. For the definition and basic properties of value at risk and
expected shortfall we refer the reader to [51]. For example, for any sequence of random variables Xn

converging in law to a random variable X whose left and right α-quantiles coincide, q−α [X] = q+α [X],
we have

lim
n→∞

VaRα[Xn] = VaRα[X]. (1)

The condition that left and right α-quantiles of the limit X have to coincide for the continuity (1)
of value at risk to hold is not to be underestimated. Indeed, the situation q−α [X]� q+α [X] is likely
to occur in simulation-based models, which are commonly used in practice. For a quantification of
this effect see [20, Example 6.3]. Value at risk also fails to be convex, which may have unpleasant
consequences as illustrated in Example 3.7. Expected shortfall, on the other hand, is convex and
Lipschitz continuous on L1(P),

|ESα[X]− ESα[Y ]| ≤ 1

1− α
‖X − Y ‖L1(P) . (2)

Henceforth we let ρ be a placeholder for either VaRα or ESα.

3 Replicating portfolio theory

We consider an asset-liability portfolio whose discounted cash flows accumulate to the discounted
terminal loss Z ∈ L2(M) at t = T . We assume the portfolio is fairly priced at t = 0 such that

1There is no such relation between CP
1 and CP

2 . For example, let DT /D1 be such that EP [D2
T /D

2
1 | F1

]
= 1/D2

1

and that assume EP [1/D2
1

]
=∞. Then CP

1 = 1 but CP
2 =∞. Conversely, assume that DT = D1 and EP [D2

1

]
=∞.

Then CP
2 = 1 but CP

1 =∞.
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EQ[Z] = 0.2 The discounted one-year loss is given by

L = EQ [Z | F1] .

Solvency capital calculation boils down to compute the value at risk or expected shortfall,

K = ρ[L].

The P-distribution of L is not known in closed form in general and has to computed by simulating
Z and its conditional Q-expectation L. But the simulation of Z is costly in practice for several
reasons. The time horizon T can be rather large of the order of 40 years and more. The liability cash
flows are strongly path-dependent because of embedded options such as minimum rate guarantees,
management and regulatory rules such as policyholder participation, and policyholder behaviour
such as lapsing. Moreover, the number of economic factors underlying the liability cash flows is
large and can be of the order of thousands. This renders nested simulation or least-square Monte
Carlo methods infeasible.

The RP approach builds on m financial instruments, in addition to the numeraire, with dis-
counted gains processes

Gt = (G1t, . . . , Gmt)
>

that can be efficiently simulated. Absence of arbitrage requires that Gt is a Q-martingale. We aim
at approximating Z, and thus L, by a portfolio invested in the financial instruments Gt. Thereto
we consider dynamic portfolio strategies of the following kind. Fix a time partition 0 = t0 < t1 <
· · · < tN = T , containing tj = 1 for some j, and write

∆Gij = Gitj −Gitj−1

for the gain of instrument i on the interval (tj−1, tj ], for j = 1 . . . N . Our portfolio strategies are
multlinear in the running gains ∆Gij ; that is, linear in the running product of such gains. In
stochastic analysis this is known as chaos expansion and is formalized as follows. Let P be a family
of pairs (I,J ) where J is a subset of {1, . . . , N} and I : J → {1, . . . ,m} is a mapping. For any
(I,J ) ∈ P we define the corresponding product of gains

∆G(I,J ) =
∏
j∈J

∆GI(j)j ,

and we assume that ∆G(I,J ) ∈ L2(M). The Q-martingale property of Gt then implies

EQ [∆G(I,J ) | Ftj
]

= 0 for all j < minJ . (3)

Any choice of deterministic coefficients φ = {φ(I,J ) | (I,J ) ∈ P} ∈ R|P| and initial wealth v gives
rise to a self-financing portfolio with value process

V v,φ
t = v +

∑
(I,J )∈P|tmaxJ≤t

φ(I,J )∆G(I,J ).

2The computation of the initial asset-liability value is not the subject of this paper. But it could be estimated by
the same methods.
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Property (3) implies that V v,φ
t is a Q-martingale. Note that, while the coefficients φ are deter-

ministic and exogenous, the positions in the instruments Gt can be path-dependent. Specifically,
the gain φ(I,J )∆G(I,J ) results from holding φ(I,J ) ×

∏
j∈J\{maxJ}∆GI(j)j units of instrument

I(maxJ ) during the interval (tmaxJ−1, tmaxJ ].
The following two examples clarify important special cases.

Example 3.1. Assuming that |J | = 1 for all (I,J ) ∈ P, we obtain the first-order portfolio with
value process

V v,φ
t = v +

∑
tj≤t

m∑
i=1

φij∆Gij

for the components φij = φ(I,J ) where J = {j} and I(j) = i. This example is further illustrated
in Section 5.1.

Example 3.2. Assuming only one risky asset m = 1, all formulas above simplify as we can omit
the trivial mapping I(j) ≡ 1 and write φIJ = φJ . Hence P becomes a family of subsets J of
{1, . . . , N} and we write

∆GJ =
∏
j∈J

∆Gj

and
V v,φ
t = v +

∑
J∈P|tmaxJ≤t

φJ∆GJ . (4)

This example is further illustrated in Section 5.2.

For further use, we write

A =
(
∆G(I,J ) | tmaxJ ≤ 1

)>
, B =

(
∆G(I,J ) | tmaxJ > 1

)>
for the random vectors of portfolio gains up to one year and after one year, respectively. Accordingly,
we decompose the portfolio coefficient vector φ> = (φ>A, φ

>
B). With this convention, the portfolio

values of V v,φ
t at t = 0, 1, T become simple expressions,

V v,φ
0 = v, V v,φ

1 = v + φ>AA, V v,φ
T = v + φ>AA+ φ>BB.

Lemma 2.1 and (1)–(2) suggest to choose a strategy (v,φ) which solves the L2(M)-norm mini-
mization problem

min
(v,φ)∈R1+|P|

∥∥∥Z − V v,φ
T

∥∥∥
L2(M)

. (5)

The respective self-financing portfolio V v,φ
t is called replicating portfolio (RP), though the replica-

tion of Z is not perfect in general.

Remark 3.3. The family of instruments Gt is said to have the chaotic representation property
(CRP) if the terminal values of all self-financing portfolios {V v,φ

T } form a basis of L2(Q). The
replication of Z would thus be perfect. However, the CRP is a strong property that is not shared by
all martingales, see e.g. [44] for a discrete-time approach. The prototype of a martingale with the
CRP in continuous time is the Brownian motion, see e.g. [45] and Section 5.2 below.
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Geometrically speaking, the terminal value of the RP V v,φ
T is the L2(M)-projection of Z onto

{1,A,B}. For M = P the formal solution of (5) is given by the general closed-form expressionvPφPA
φPB

 =M−1EP

 Z
AZ
BZ

 (6)

with Gram matrix

M = EP

 1 A> B>

A AA> AB>

B BA> BB>

 .
For M = Q the above expressions simplify. In view of the martingale property (3) we have

EQ[A] = 0, EQ[B] = 0, and EQ[AB>] = 0. The solution of (5) is thus given by

vQ = 0,

(
φQA
φQB

)
= N−1EQ

[(
AZ
BZ

)]
(7)

with block-diagonal reduced Gram matrix

N = EQ
[(
AA> 0

0 BB>

)]
.

In practice, for large dimensions, the Gram matrices M and N can be close to singular due to
possible strong correlation between the instruments Gt. This can cause numerical problems for
their inverse. Instruments for which there exist closed-form expressions for M and N are thus a
preferred choice. Fortunately, there is a large class of so-called polynomial models in finance that
have this feature, see [50].

Denote by
εM = Z − vM − φMA>A− φMB>B

the residual from the L2(M)-projection. Then we can represent the one-year loss as

L = vM + φMA
>A+ EQ

[
εM | F1

]
.

As the computation of EQ[εM | F1] is infeasible for the same reasons as the direct computation of
L, we now study the following two proxies for L,

LM
1 = vM + φMA

>A,

LM
2 = vM + φMA

>A+ εM = Z − φMB>B.

Accordingly, we approximate the capital requirement K by

KM
1 = ρ[LM

1 ] = vM + ρ[φMA
>A],

KM
2 = ρ[LM

2 ] = ρ[Z − φMB>B].

Unless EQ [εM | F1

]
and L are negatively correlated in the tail of L, the proxy KM

1 will tend to
underestimate K, while KM

2 is likely to overshoot. Note that LM
2 is a good proxy for L under any

of the conditions stated in the following lemma, whose proof is elementary and thus omitted.
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Lemma 3.4. The following are equivalent:

(i) EQ[εM | F1] = εM;

(ii) εM is F1-measurable;

(iii) cash flows beyond t = 1 are spanned by the instruments Gt,

Z − L = φMB
>B.

Our first main result provides an upper bound on the L1(P)-approximation error for either
proxy.

Theorem 3.5. The L1(P)-approximation errors are bounded by∥∥∥L− LM
1

∥∥∥
L1(P)

≤ CM
2

∥∥∥εM∥∥∥
L2(M)

(8)

and ∥∥∥L− LM
2

∥∥∥
L1(P)

≤
∥∥∥EQ[εM | F1]− εM

∥∥∥
L1(P)

≤

{(
CP
1 + CP

2

)
‖εM‖L2(P),

CQ
1

∥∥EQ[εM | F1]− εM
∥∥
L2(Q)

,

(9)

where the last factor is bounded by ‖εM‖L2(Q).

As a meta corollary of Theorem 3.5 we conclude that the RP approach to capital calculation,
based on either LM

i , for i = 1, 2, M = P,Q, and ρ = VaRα,ESα, is asymptotically consistent as
we increase the number |P| of factors such that, asymptotically, {1,A,B} forms a basis of L2(M).
Indeed, if the residual εM → 0 in L2(M) then the proxies LM

i → L in L1(P). In view of (1) and (2),
this implies that the capital approximation error converges to zero,

KM
i → K,

where for value at risk, ρ = VaRα, we have to assume that q−α [L] = q+α [L]. Note that increasing the
number |P| of factors can be through increasing the number m of instruments Gt (see Section 5.1)
or the number N of time steps and/or the degree of path-dependence |J | (see Section 5.2)

For expected shortfall, ρ = ESα, we can combine (8)–(9) with the Lipschitz property (2) to
obtain upper bounds on the capital approximation errors

∣∣K −KM
i

∣∣. However, while asymptotically
powerful, these bounds are not sharp. A more useful upper range of the true capital requirement
is given by the following result.

Lemma 3.6. For expected shortfall, ρ = ESα, the capital requirement K is dominated by

K ≤ ESα [ZDT /D1] , (10)

K ≤ KM
1 + ESα

[
εMDT /D1

]
(11)

and we have
KM

2 ≤ KM
1 + ESα

[
εM
]
.
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Note that the upper bounds in Lemma 3.6 do not hold for value at risk, ρ = VaRα, because it
is not convex as the following example shows.

Example 3.7. Let DT = 1 such that P = Q and F1 be the trivial σ-algebra. Assume P[Z = 0] = α
and P[Z = 1] = 1− α, and hence L = EP[Z] = 1− α. Then K = VaRα[L] = 1− α > 0 = VaRα[Z].

The following example contrasts our approach with the current industry standard.

Example 3.8. Industry standard is a static first-order RP based on Example 3.1. This nests
formally in our framework by setting N = 2, t1 = 1, A = G1 −G0, B = GT −G1, and φA = φB.
The constrained L2(M)-norm minimization problem (5) can be rewritten as the unconstrained
L2(M)-norm minimization problem

min
(v,ψ)∈R1+m

∥∥∥Z − v − ψ>(A+B)
∥∥∥
L2(M)

and we set φA = φB = ψ. For M = P the formal solution is given by the general closed-form
expression (

ṽP

φ̃PA

)
= M̃−1EP

[(
Z

(A+B)Z

)]
, φ̃PB = φ̃PA,

with Gram matrix

M̃ = EP
[(

1 (A+B)>

A+B (A+B)(A+B)>

)]
.

For M = Q the formal solution is given by

ṽQ = 0, φ̃QA = φ̃QB = Ñ−1EQ [(A+B)Z]

with reduced Gram matrix
Ñ = EQ

[
(A+B)(A+B)>

]
.

It is understood that our dynamic and path-dependent RP approach should outperform the
static industry approach. The main improvement comes from the fact that we can easily generate
a large number |P| of factors based on a given family of m financial instruments by increasing the
number N of time steps and/or the degree of path-dependence |J |. Numerical illustrations are
given in Sections 5.1 and 5.2.

Remark 3.9. While we have developed the RP theory for both projection measures M = P and
M = Q, there are several reasons to stick to M = Q in practice. First, the RP expressions
simplify and we do not need to estimate vQ = 0. Second, simulating Q-dynamics of the financial
instruments Gt on a large time horizon T seems preferable to simulating P-dynamics. The former
are martingales, while the latter are subject to possible misspecification of the risk premiums, which
may propagate and accumulate to large model errors over long time horizons. The specification of
insurance risks under Q is not problematic, because one can usually assume that insurance risks and
the density process Dt are independent. Third, along with Z and Gt one can always simulate the
martingale 1/Dt under Q and obtain samples of the Radon–Nikodym likelihood ratio dP/dQ = 1/DT

in order to quantify real-world likelihoods of the risk-neutral scenarios.

We have also tested other projection norms, different from L2(M), in (5). This included L1(M)
projections. We did not find that such would improve the approximation errors. For the sake of
analytical tractability we thus stick to L2(M).
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4 Monte-Carlo analysis

In practice we have to solve the L2(M)-norm minimization problem (5) by empirical regression.
We thus henceforth assume that AZ,BZ ∈ L2(M). Simulate n i.i.d. copies(

A(j),B(j), Z(j)
)
, j = 1 . . . n, (12)

of (A,B, Z) under M. We denote by G the σ-algebra generated by the sample (12).3 For M = P
in view of (6) we obtain unbiased estimators v̂Pφ̂PA

φ̂PB

 =M−1 1

n

n∑
j=1

 Z(j)

A(j)Z(j)

B(j)Z(j)


of the strategy (vP, φPA, φ

P
B). The LLN implies that(

v̂P, φ̂PA, φ̂
P
B

)
→
(
vP, φPA, φ

P
B

)
a.s. as n→∞. (13)

The CLT implies that, asymptotically for large n,
(
v̂P, φ̂PA, φ̂

P
B

)
is normal with mean

(
vP, φPA, φ

P
B

)
and covariance given by

covP


 v̂Pφ̂PA
φ̂PB


 =

1

n
M−1covP

 Z
AZ
BZ

M−1 =
1

n
CP. (14)

For M = Q the above expressions simplify. In view of (7) we obtain unbiased estimators

v̂Q = 0,

(
φ̂QA

φ̂QB

)
= N−1 1

n

n∑
j=1

(
A(j)Z(j)

B(j)Z(j)

)

of the strategy vQ = 0 and (φQA, φ
Q
B). The LLN implies that(

φ̂QA, φ̂
Q
B

)
→
(
φQA, φ

Q
B

)
a.s. as n→∞. (15)

The CLT implies that, asymptotically for large n,

(
φ̂QA, φ̂

Q
B

)
is normal with mean

(
φQA, φ

Q
B

)
and

covariance given by

covQ

[(
φ̂QA

φ̂QB

)]
=

1

n
N−1covQ

[(
AZ
BZ

)]
N−1 =

1

n
CQ. (16)

3Formally, we assume that primary and sample random variables A(ω) = A(ω1) and A(j)(ω) = A(j)(ω2), etc.
with ω = (ω1, ω2) are modeled on a product space Ω = Ω′ × Ω′, F = F ′ ⊗ F ′ equipped with product probability
measures M = M′ ⊗M′.
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We obtain estimators of the solvency capital proxies KM
i ,

K̂M
1 = v̂M + ρ

[
φ̂MA
>A | G

]
,

K̂M
2 = ρ

[
Z − φ̂MB

>B | G
]
,

(17)

where ρ [· | G] denotes the conditional value at risk or expected shortfall given G generated by
the sample (12). Our second main result shows that the Monte-Carlo estimate is asymptotically
consistent as the sample size n tends to infinity.

Theorem 4.1. We have K̂M
i → KM

i a.s. as n→∞, where for value at risk, ρ = VaRα, we assume
that q−α

[
LM
i

]
= q+α

[
LM
i

]
.

For expected shortfall, ρ = ESα, we can further quantify this result. The total capital estimation
error amounts to ∥∥∥K − K̂M

i

∥∥∥
L2(M)

≤
∣∣∣K −KM

i

∣∣∣+
∥∥∥KM

i − K̂M
i

∥∥∥
L2(M)

. (18)

The first term on the right hand side of (18) is the approximation error, which can be bounded
by Theorem 3.5 in conjunction with (2). The second term on the right hand side of (18) is the
Monte-Carlo error. Here is an upper bound.

Theorem 4.2. For expected shortfall, ρ = ESα, asymptotically for large n, the Monte-Carlo error
is bounded by ∥∥∥KM

i − K̂M
i

∥∥∥
L2(M)

≤
√

1

n
MCEM

i

with constants

MCEM
i =



√
CP
vv + 1

1−α

√
tr
(
CP
AAEP[AA>]

)
, if i = 1 and M = P,

1
1−α

√
tr
(
CQ
AAEP[AA>]

)
, if i = 1 and M = Q,

1
1−α

√
tr
(
CM
BBEP[BB>]

)
, if i = 2

where CP
vv, CM

AA, and CM
BB denote the respective diagonal 1× 1-, |A| × |A|-, and |B| × |B|-blocks

of matrix CM.

Remark 4.3. One would expect that, while the capital approximation error is decreasing in the
number |P| of factors, the Monte-Carlo error is decreasing in the sample size n but increasing
in |P|. Hence for a given computer time budget n there is likely an optimal choice of |P| which
minimizes the total capital estimation error. However, in the numerical examples below the Monte-
Carlo error is always dominated by the corresponding approximation error. This stipulates that in
applications one would prefer more factors over less factors.

We finally address the computation of value at risk or expected shortfall ρ[X] of a random

variable X, such as X = φ>AA and X = Z − φ>BB in (17) for given φA = φ̂MA and φB = φ̂MB . Recall
that, due to law-invariance of value at risk and expected shortfall, ρ[X] = ρ[µ] is a function of the
P-distribution µ of X. We state and prove a general consistency result whose application to the
computation of the expected shortfall in (17) is straightforward.
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Theorem 4.4. Let X be a random variable satisfying{
q−α [X] = q+α [X], if ρ = VaRα,

X ∈ L1(P), if ρ = ESα.

Let (X(j), dP/dM(j)), j ≥ 1, be an i.i.d. sequence of random variables with the same M-law as
(X, dP/dM). For any n ≥ 1, define the weights

w(j) =
dP/dM(j)∑n
k=1 dP/dM(k)

(= 1/n if M = P)

and the empirical P-distribution of X(1), . . . , X(n),

µ̂n =
n∑
j=1

w(j)δX(j) .

Then ρ[µ̂n]→ ρ[X] a.s. as n→∞.

Theorem 4.4 is well known for M = P. This case can be proved using methods from [123], see
also [1, Proposition 4.1] and [76, Theorem 2.6]. What is less known is the statement for M = Q
where the empirical P-distribution of X is sampled under Q.

Remark 4.5. While A and B can be efficiently simulated such that their P-distributions can be
assumed to be known, this might be less so for Z. In practice, one would reuse the M-sample (12)
and apply Theorem 4.4, assuming that the sample size n is large enough for an accurate estimation
of the value at risk or expected shortfall in (17). If M = Q, this requires an extension of the

Q-sample (12) by the Radon–Nikodym density dP/dQ(j) = 1/D
(j)
T .

5 Examples

There are two sources for incompleteness of the insurance market under static hedging with the
underlying financial instruments. First, there are more factors driving the insurance cash flows
than there are traded financial instruments for their replication. Second, insurance liability cash
flows are nonlinear functions of the financial instruments. Both effects superpose in practice. In
the following two examples, we disentangle these effects. We consider first an economy where
the insurance losses are linear functions of a multidimensional Brownian motion and financial
instruments form a subset of the driving Brownian motions. In the second example the loss is a
nonlinear (exponential) function of a scalar Brownian motion which constitutes the only available
financial instrument.

5.1 Arithmetic Brownian motion

Consider a d-dimensional P-Brownian motion Wt = (W1t, . . . ,Wdt)
> with d� 1. The market price

of risk is a constant γ ∈ Rd, such that

Dt = exp

(
−γ>Wt −

‖γ‖2

2
t

)
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is the Radon–Nikodym density process for the pricing measure Q. We assume a time partition
t0 = 0, t1 = 1, t2 = T , and two volatility regimes λA, λB ∈ Rd, such that the one-year and terminal
losses are

L = λ>A(W1 + γ),

Z = L+ λ>B (WT −W1 + γ(T − 1)) ,

respectively.
Now letm ≤ d. For any vector x ∈ Rd we write x[m] = (x1, . . . , xm)> and x\[m] = (xm+1, . . . , xd)

>.
The financial instruments, next to the numeraire, have gains processes Gt = W[m]t + γ[m]t. We
consider first-order portfolios as in Example 3.1 such that

V v,φ
1 = v + φ>AA, V v,φ

T = v + φ>AA+ φ>BB

for A = G1 − G0 = G1 and B = GT − G1. It is readily seen that the solution of the L2(M)-
projection (5) is given by

φPA = φQA = λA[m],

φPB = φQB = λB[m],

vP = EP[Z]− φPA>EP[A]− φPB>EP[B]

= λ>A\[m]γ\[m] + λ>B\[m]γ\[m](T − 1),

(19)

and vQ = 0. The proxies become

LP
1 = λ>Aγ + λ>B\[m]γ\[m](T − 1) + λ>A[m]W[m]1,

LQ
1 = λ>A[m]γ[m] + λ>A[m]W[m]1,

and
LP
2 = LQ

2 = λ>A(W1 + γ) + λ>B\[m]

(
W\[m]T −W\[m]1 + γ\[m](T − 1)

)
,

such that for m = d we obtain perfect replication, LM
i = L. The P-distribution of LM

i is normal
with mean µMi and variance cMi where

µP1 = λ>Aγ + λ>B\[m]γ\[m](T − 1),

µQ1 = λ>A[m]γ[m],

cP1 = cQ1 =
∥∥λA[m]

∥∥2
and

µM2 = µP1 ,

cM2 = ‖λA‖2 +
∥∥λB\[m]

∥∥2 (T − 1).

The solvency capital proxies are then given by the following well know formula for value at risk
and expected shortfall of normal random variables:

KM
i = ρ[LM

i ] = µMi +
√
cMi ρ[N (0, 1)]
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where

ρ[N (0, 1)] =

{
qα[N (0, 1)], for ρ = VaRα,
1

1−α
1√
2π

e−qα[N (0,1)]2/2, for ρ = ESα.
(20)

and qα[N (0, 1)] is the α-quantile of the standard normal distribution. We have

q99.5%[N (0, 1)] ≈ 2.5758, q99%[N (0, 1)] ≈ 2.3263, (21)

and ES99%[N (0, 1)] ≈ 2.6652. The true solvency capital equals the proxies, K = KM
i , for m = d.

As for the Gram matrices we obtain

M =

 1 γ>[m] (T − 1)γ>[m]

γ[m] Idm + γ[m]γ
>
[m] (T − 1)γ[m]γ

>
[m]

(T − 1)γ[m] (T − 1)γ[m]γ
>
[m] (T − 1)Idm + (T − 1)2γ[m]γ

>
[m]


and

N =

(
Idm 0

0 (T − 1)Idm

)
.

For a numerical implementation we choose the time horizon T = 5, number of Brownian motions
d = 5, market price of risk γ = 0.1×1, where we write 1 = (1, . . . , 1)>. As risk measure we consider
expected shortfall, ρ = ES99%. Note that λA and λB are nonpositive because economically we expect
a negative risk premium on the liabilities such that the P-expected loss is negative, EP[Z] < 0. We
consider two cases:

(i) λA = λB = −0.2 × 1/
√
d: constant volatility. In this case, in view of (19), the industry

standard static proxies from Example 3.8 coincide with our dynamic and path-dependent
proxies, L̃M

i = LM
i .

(ii) λA = −0.2× 1/
√
d, λB = 0: no cash flows beyond t = 1. In this case LP

2 = LQ
2 = L are exact

proxies.

The following capital requirements and proxies are normalised, using the homogeneity of ex-
pected shortfall, such that always K = 1. Figure 1 shows the capital requirement and proxies as
functions of m for case (i). The proxies KP

1 and KQ
1 underestimate the true capital requirement by

80% and 50% for m = 1 and converge monotonically to K as m increases to d = 5. The proxies
KP

2 = KQ
2 overestimate the true capital requirement by 80% for m = 1 and converge monotonically

to K as m increases to d = 5. Figure 2 illustrates case (ii) and reveals that the industry stan-
dard static proxies from Example 3.8 are vastly outperformed by our dynamic and path-dependent
proxies.

Figure 3 shows the upper bounds (10) and (11) from Lemma 3.6 on the capital requirement as
functions of m. In case (i) (left panel) the bound (10) is almost six times greater than K. The
bounds (11) for both M = P and Q are tighter but still more than three times greater than K for
m ≤ 4, which has to be compared to the relative approximation errors of 80% and less reported
above. In case (ii) (right panel) the bounds are economically more reasonable and useful as their
overshoot of K by 80% and less compares to the relative approximation errors shown in Figure 2.

Figures 4 and 5 show the corresponding Monte-Carlo errors, see (18), for our proxies with
a sample size of n = 1000. They have been computed by repeated sampling both with exact
computation of the expected shortfall in (17) either using (20) or a very large independent P-sample
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(top panels) and with reusing the corresponding M-sample (12) as outlined in Remark 4.5 (bottom
panels). The latter Monte-Carlo errors are larger than the former because they are composed of the
variances (14) and (16), as described in Theorem 4.2, and the variances implicit in Theorem 4.4. All
Monte-Carlo errors are dominated by the corresponding approximation errors shown in Figures 1
and 2, except when the proxies are exact. This stipulates that a larger number m should be
preferred over smaller m in applications.

5.2 Geometric Brownian motion

This example works only for the risk-neutral projection measure M = Q. Consider a scalar P-
Brownian motion Wt. The market price of risk is a constant γ ∈ R, such that

Dt = exp

(
−γWt −

γ2

2
t

)
is the Radon–Nikodym density process for the pricing measure Q. There is one financial instrument,
next to the numeraire, with gains process Gt = Wt + γt. We define the Q-martingale

Mt = exp

(
λGt −

λ2

2
t

)
and assume that one-year and terminal losses are L = M1 − 1 and Z = MT − 1.

The Wiener chaos expansion theory tells us that Mt can be expanded as orthogonal series in
L2(Q) as

Mt = 1 +
∞∑
k=1

∫
0<s1<···<sk≤t

λk dGs1dGs2 · · · dGsk , (22)

see e.g. [104, Exercise 1.1.1]. On the other hand, the following representation holds

Mt = 1 +
∞∑
k=1

λk

k!
tk/2Hk

(
Gt√
t

)
,

for the Hermite polynomials Hk(x) = (−1)k exp
(
x2/2

)
dk

dxk
exp

(
−x2/2

)
. Note that tk/2Hk

(
Gt/
√
t
)

are orthogonal Q-martingales for all k ≥ 1.
Comparing the chaos expansion (22) with the expression (4) suggests that in discrete time we

have
v = 0, φJ = λ|J |.

Asymptotically, for N →∞ with max |tj − tj−1| → 0, we thus obtain

LQ
1 =

J∑
k=1

λk

k!
Hk (G1) , LQ

2 = LQ
1 + εQ

with

εQ = MT − 1−
J∑
k=1

λk

k!
T k/2Hk

(
GT√
T

)
,

for various approximation degrees J = 1, 2, . . . , related to the maximal path dependence degree
|J | ≤ J .
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As logM1 is normal with mean λγ − λ2

2 and variance λ2, we obtain for the solvency capital

K = ρ[M1 − 1] = ρ[M1]− 1

=

{
exp

[
λγ − λ2

2 + |λ|qα[N (0, 1)]
]
− 1, for ρ = VaRα,

1
1−α exp [λγ] Φ (|λ| − qα[N (0, 1)])− 1, for ρ = ESα,

where qα[N (0, 1)] is the α-quantile and Φ the cumulative distribution function of the standard
normal distribution, see (21). The capital proxies KQ

i have to be computed by simulation, see
Theorem 4.4.

For a numerical implementation we choose the time horizon T = 5, varying approximation
degrees J = 1, . . . , 5, market price of risk γ = 0.1, and volatility λ = −0.2. As in the previous
example, λ is negative because economically we expect a negative risk premium on the liabilities
such that the P-expected loss is negative, EP[Z] < 0. As risk measure we consider expected shortfall,
ρ = ES99%.

The following capital requirement and proxies are normalised, using the homogeneity of expected
shortfall, such that K = 1. Figure 6 shows the capital requirement and proxies as functions of J .
The relative approximation errors for the proxies KQ

1 and KQ
2 are less than 0.5% for J ≥ 2. The

industry standard static proxies from Example 3.8 correspond to J = 1. The relative approximation
error for KQ

1 is ten times larger for J = 1 than for J ≥ 2.
Figure 7 shows the upper bounds (10) and (11) from Lemma 3.6 on the capital requirement as

functions of J . While the bound (10) is 3.5 times larger than K, the bound (11) is much tighter
and compares to the relative approximation errors for J ≥ 2.

These findings suggest that the second and higher order RPs capture the nonlinearities of the
insurance liability cash flows significantly better than the first-order industry standard static RP.

6 Conclusion

We provide the mathematical foundation and a dynamic and path-dependent extension of the
replicating portfolio (RP) approach to capital calculation for life insurance or other long-term
asset-liability portfolios. We show that value at risk and expected shortfall-based capital estimates
are asymptotically consistent under real-world and risk-neutral sampling. Two numerical examples
illustrate that the dynamic and path-dependent RP outperforms the industry standard static RP.
The dynamic and path-dependent extensions could be readily built into existing projection tools
used in practice. Our findings also suggest that the approximation error dominates the Monte-Carlo
error. This stipulates that more factors, that is, large |P|, should be preferred over few factors in
applications. This calls for a real-world study, which is left for future research.

A Proofs

This appendix contains all proofs.
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Proof of Lemma 2.1

The first statement follows from the Cauchy–Schwarz inequality. As for the second statement we
note that ∥∥∥EQ [X | F1]

∥∥∥
L1(P)

≤ ‖XDT /D1‖L1(P) =
∥∥∥√DTX

√
DT /D1

∥∥∥
L1(P)

.

Applying the Cauchy–Schwarz inequality to the second and third expression yields the claim for
M = P and M = Q, respectively.

Proof of Theorem 3.5

The bound (8) follows from Lemma 2.1. The bound (9) follows similarly, where we write∥∥∥EQ[εM | F1]− εM
∥∥∥
L1(P)

≤
∥∥∥εM∥∥∥

L1(P)
+
∥∥∥EQ[εM | F1]

∥∥∥
L1(P)

for the P-bound.

Proof of Lemma 3.6

We have K = ESα
[
EP[ZDT /D1 | F1]

]
. Monotonicity with respect to stochastic order of expected

shortfall yields (10), see [51, Corollary 4.59]. Using subadditivity of expected shortfall the other
inequalities follow similarly.

Proof of Theorem 4.1

The theorem follows from combining (1) and (2) with the LLN (13) and (15).

Proof of Theorem 4.2

Assume i = 1. Using Lipschitz property (2) of expected shortfall we derive∥∥∥KM
1 − K̂M

1

∥∥∥
L2(M)

=
∥∥∥vM − v̂M + ESα[φMA

>A]− ESα

[
φ̂MA
>A | G

]∥∥∥
L2(M)

≤
∥∥∥vM − v̂M∥∥∥

L2(M)
+

1

1− α

√
EM
[
EP
[(

(φMA − φ̂MA )>A
)2
| G
]]

=
∥∥∥vM − v̂M∥∥∥

L2(M)
+

1

1− α

√
EM
[
(φMA − φ̂MA )>EP[AA>] (φMA − φ̂MA )

]
.

The CLT (14) and (16) now yields the claim. The case i = 2 follows similarly.

Proof of Theorem 4.4

Denote by µ the P-distribution of X. We claim that

µ̂n → µ weakly a.s. (23)

Let f(x) be a continuous function with compact support. Write∫
f(x) dµ̃n =

1
n

∑n
j=1 f(X(j))dP/dM(j)

1
n

∑n
k=1 dP/dM(k)

.
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By the law of large numbers the numerator and denominator converge,

1

n

n∑
j=1

f(X(j))dP/dM(j) → EM [f(X)dP/dM] = EP [f(X)] a.s.

and
1

n

n∑
k=1

dP/dM(k) → EM [dP/dM] = 1 a.s.

Hence ∫
f(x) dµ̃n →

∫
f(x) dµ a.s.

As by assumption we have XdP/dM ∈ L1(M) for expected shortfall, ρ = ESα, the same holds for
f(x) = |x|, ∫

|x| dµ̂n →
∫
|x| dµ a.s. (24)

Because the space of continuous functions with compact support is separable, there exists a mea-
surable Ω0 ∈ F such that M[Ω0] = 1 and such that for each ω ∈ Ω0 the desired properties (23) and
(24), respectively, hold. The theorem now follows directly from (1) for ρ = VaRα and using the
arguments as in the proof of [76, Theorem 2.6] for ρ = ESα.
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Figure 1: Capital requirement and proxies as functions of number of instruments m for case (i)
in the example with arithmetic Brownian motion given in Section 5.1. Risk measure is expected
shortfall, ρ = ES99%. The left panel shows the true capital requirement K = 1 (dotted line) and
the proxies KP

1 (black line) and KQ
1 (grey line). They coincide with the corresponding industry

standard static proxies K̃P
1 and K̃Q

1 from Example 3.8. The right panel shows the true capital

requirement K = 1 (dotted line) and the proxies KP
2 = KQ

2 = K̃P
2 = K̃Q

2 (black line).

138



●

●

●

●

●
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

m

C
ap

ita
l

1 2 3 4 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

m

C
ap

ita
l

1 2 3 4 5

●

●

●
●

●

Figure 2: Capital requirement and proxies as functions of number of instruments m for case (ii)
in the example with arithmetic Brownian motion given in Section 5.1. Risk measure is expected
shortfall, ρ = ES99%. The left panel shows the true capital requirement K = 1 (dotted line), the
proxies KP

1 (black solide line) and KQ
1 (grey solide line), and the corresponding industry standard

static proxies K̃P
1 (black dashed line) and K̃Q

1 (grey dashed line) from Example 3.8. The right panel

shows the true capital requirement K = 1, which coincides with the proxies KP
2 = KQ

2 (black solide

line), and the proxies K̃P
2 = K̃Q

2 (black dashed line).
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Figure 3: Upper bounds from Lemma 3.6 on the capital requirement as functions of number of
instruments m for the example with arithmetic Brownian motion given in Section 5.1. Risk measure
is expected shortfall, ρ = ES99%. The left and right panels correspond to cases (i) and (ii). Dotted
lines show the capital requirement K = 1, dashed lines show the bound (10), solid lines show the
bound (11) for M = P (black) and M = Q (grey).
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Figure 4: Monte-Carlo errors as functions of number of instruments m for case (i) in the example
with arithmetic Brownian motion given in Section 5.1. Risk measure is expected shortfall, ρ =
ES99%. The top panels show the Monte-Carlo errors for KP

1 (left panel, black line), KQ
1 (left panel,

grey line), KP
2 (right panel, black line), and KQ

2 (right panel, grey line). The bottom panels show
the corresponding Monte-Carlo errors when expected shortfall in (17) is estimated reusing the
corresponding M-sample (12) as outlined in Remark 4.5.
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Figure 5: Monte-Carlo errors as functions of number of instruments m for case (ii) in the example
with arithmetic Brownian motion given in Section 5.1. Risk measure is expected shortfall, ρ =
ES99%. The top panels show the Monte-Carlo errors for KP

1 (left panel, black line), KQ
1 (left panel,

grey line), KP
2 (right panel, black line), and KQ

2 (right panel, grey line). The bottom panels show
the corresponding Monte-Carlo errors when expected shortfall in (17) is estimated reusing the
corresponding M-sample (12) as outlined in Remark 4.5.
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Figure 6: Capital requirement and proxies as functions of approximation degree J for the example
with geometric Brownian motion given in Section 5.2. Risk measure is expected shortfall, ρ =
ES99%. Dotted line shows the true capital requirement K = 1, solid lines show the proxies KQ

1

(black) and KQ
2 (grey). The industry standard static proxies K̃Q

1 and K̃Q
2 from Example 3.8

correspond to J = 1.
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Figure 7: Upper bounds from Lemma 3.6 on the capital requirement as functions of approximation
degree J for the example with geometric Brownian motion given in Section 5.2. Risk measure is
expected shortfall, ρ = ES99%. Dotted line shows the capital requirement K = 1, dashed line shows
the bound (10), grey solid line shows the bound (11) for M = Q.
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[45] M. Émery. Chaotic representation property of certain Azéma martingales. Illinois J. Math.,
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