Neurolmage: Clinical 12 (2016) 785-795

journal homepage: www.elsevier.com/locate/ynicl

Contents lists available at ScienceDirect r

Neurolmage:

| CLINICAL

Neurolmage: Clinical

Prediction of long-term memory scores in MCI based on

resting-state fMRI

@ CrossMark

Djalel-Eddine Meskaldji® P ¢*, Maria Giulia Preti®-?, Thomas AW Bolton®?, Marie-Louise Montandon{,
Cristelle Rodriguez*®, Stephan Morgenthaler€, Panteleimon Giannakopoulos®,
Sven Hallerf& M1 Dimitri Van De Ville®:P

Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
bDepartment of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland

CInstitute of Mathematics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

dDivisions of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
€Department of Psychiatry, University of Geneva, Switzerland

fAffidea CDRC - Centre Diagnostique Radiologique de Carouge, Switzerland

8Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden

hDepartment of Neuroradiology, University Hospital Freiburg, Germany

iFaculty of Medicine of the University of Geneva, Switzerland

ARTICLE INFO

Article history:

Received 22 June 2016

Received in revised form 16 September 2016
Accepted 6 October 2016

Available online 11 October 2016

Keywords:

Functional brain connectivity
Cross-validation partial least square regres-
sion

Extreme value modeling

Long term memory

Mild cognitive impairment

Medial temporal lobe

ABSTRACT

Resting-state functional MRI (rs-fMRI) opens a window on large-scale organization of brain function.
However, establishing relationships between resting-state brain activity and cognitive or clinical scores is
still a difficult task, in particular in terms of prediction as would be meaningful for clinical applications such
as early diagnosis of Alzheimer’s disease. In this work, we employed partial least square regression under
cross-validation scheme to predict episodic memory performance from functional connectivity (FC) patterns
in a set of fifty-five MCI subjects for whom rs-fMRI acquisition and neuropsychological evaluation was car-
ried out. We show that a newly introduced FC measure capturing the moments of anti-correlation between
brain areas, discordance, contains key information to predict long-term memory scores in MCI patients, and
performs better than standard measures of correlation to do so. Our results highlighted that stronger discor-
dance within default mode network (DMN) areas, as well as across DMN, attentional and limbic networks,

favor episodic memory performance in MCIL.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

averaged within each region, yielding a single time-course per region
of interest (ROI). In conventional analysis, Pearson correlation coef-

Large-scale brain organization can be studied based on resting-
state functional magnetic resonance imaging (rs-fMRI) data.
Functional connectivity (FC) based on rs-fMRI aims at describing
spontaneous fluctuations of brain activity as measured by means of
the blood oxygenation level dependent (BOLD) contrast. FC between
a pair of brain regions is defined as the statistical interdependence
between their BOLD time-courses (Friston et al., 1995). Before assess-
ing FC, fMRI signals are preprocessed to remove data acquisition
artifacts and other non-desirable confounds. Then, given an anatom-
ical segmentation of the brain cortex, voxel-wise BOLD signals are
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ficient between regionally averaged fMRI time-courses is used as a
measure of FC between the regions. The correlation values between
all pairs of regions are included in the FC matrix, also referred to as
the functional connectome, representing the whole-brain connectivity
pattern, a complex network that allows in-depth quantitative anal-
ysis of brain topology organization (Bullmore and Sporns, 2009;
Fornito et al., 2013; Meskaldji et al., 2013; Sporns, 2011).

From a clinical perspective, the potential of FC in depicting
functional alterations of resting-state networks was assessed in
many neurological disorders (see Fox and Greicius, 2010, for a
review), including Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) (Bai et al., 2008; Li and et al., 2009; Qi et al., 2010;
Sorg et al., 2007).

Being considered an intermediate phase between normal aging
and dementia (often AD), MCl is characterized by a deficit in at least
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one cognitive domain, without repercussions in daily life (Petersen,
2004). A thorough understanding of the brain functional processes
accompanying this condition could be of importance to both MCI
diagnosis and to allow early administration of AD drugs under
development.

The potential role of fMRI in the early detection of MCI appears
particularly promising today, given that the BOLD signal could detect
early MCI synaptic dysfunction before the occurrence of structural
damage such as cortical volume loss (Terry et al., 2015). Previous
resting-state FC studies attempted to define MCl-related alterations,
but results appear not fully consistent across studies, most likely
due to the use of different methodological approaches and to the
heterogeneity of the considered MCI populations. The analysis is
often limited to a priori selected regions (Agosta et al., 2012; Bai
etal, 2012, 2009; Binnewijzend et al., 2012; Cai et al., 2015; Jin et al.,
2012; Liang et al.,, 2011; Qi et al., 2010; Sorg et al., 2007; Wang et al.,
2012a,b, 2011; Yue et al., 2015; Zhang et al., 2015b), and only for a
few cases extended to the whole brain (Bai et al., 2008; Chen et al.,
2011; Yao et al.,, 2010; Zhang et al., 2015a). Further more, most of the
existing FC studies focus on investigating group differences between
MCI and age-matched healthy controls, without exploring the associ-
ations between imaging and neuropsychological performance within
the MCI sample.

Memory deficits, in particular episodic memory, are often one of
the predominant symptoms of MCI. Previous task-based fMRI studies
allowed to define the episodic memory network alterations accom-
panying MCI, mainly involving the medial temporal lobe (MTL) (see
Terry et al., 2015, for a review). In particular, discrepant hyper- and
hypo-activation of the MTL upon episodic memory tasks was reported
inthe literature (Terry et al., 2015), and its dependency on the severity
of the MCI pathology was proposed (Dickerson and Sperling, 2008).
A relationship between off-task intrinsic FC alterations and memory
performance was already found in elderly controls (Andrews-Hanna
et al., 2007; He et al., 2012; Mevel et al., 2013; Onoda et al., 2012;
Touroutoglouetal.,2015; Wangetal.,2010a,b; Yamashitaetal.,2015).
Applying a similar analysis to MCI would effectively reveal the brain
networks that are altered in this condition.

Only a few previous studies attempted to explore the correlation
between resting-state FC and memory scores in MCI (Chen et al.,
2011; Jin et al.,, 2012; Liang et al., 2011; Wang et al., 2012b, 2011;
Zhang et al., 2012), but the analysis was restricted to specific areas,
either a priori selected or showing FC group differences between MCI
subjects and controls.

To the best of our knowledge, cross-validated prediction mod-
els able to successfully correlate FC changes to memory decline
within a group of MCI patients are not present in previous litera-
ture. Doing that based on conventional FC measures appears diffi-
cult; in fact, Pearson correlation is limited in terms of robustness,
and previous studies already attempted to propose alternative FC
measures, e.g., involving non-Gaussian methods (Spearman non-
parametric correlation, mutual information (Hlinka et al., 2011)).
Recent interest in exploring dynamic FC measures (Allen et al., 2014;
Karahanoglu and Van De Ville, 2015; Leonardi et al., 2013) shed
light into the need to consider the dynamic aspects of FC to pro-
vide a complete picture of functional network organization. The
main motivation behind considering dynamics is non-stationarity
of brain FC, which cannot be captured with conventional averag-
ing operators such as Pearson correlation when it is computed for
the entire time acquisition. Switching between task positive and
task negative is also another non-stationarity aspect of brain FC, for
which anti-correlations are not considered as a brain dysfunction,
but an indication of performance. However, negative correlations
are often ignored in brain FC studies, without sufficient justification,
while it could contain pertinent information about brain function
and performance. This work attempts to show that anti-correlation
between fMRI time courses may contain meaningful information in

respect to brain activation facing cognitive challenge. To this aim,
we use two recently introduced FC measures, accordance and discor-
dance (Meskaldji et al., 2015b), which disentangle the information
contained in the traditional Pearson correlation into two comple-
mentary metrics in a robust way. These new measures have been
shown to bring more consistency and sensitivity in group compar-
ison studies (Meskaldji et al., 2015a). In this work, we show that
these two measures bring more predictive performance of individual
cognitive scores. Employing a partial least square regression (PLSR)
framework, we evaluated the extent to which large-scale FC based
on those measures is able to predict individual memory performance
in subjects with MCL

Prediction performance as assessed by correlation between actual
and predicted memory scores was r = 0.64 using discordance,
outperforming Pearson correlation and accordance (r = 0.53 and
r = 0.56, respectively). Results put forward the importance of dis-
cordance between default mode network (DMN) nodes, and between
DMN, attentional and limbic brain networks, in favoring episodic
memory performance in MCl individuals.

2. Methods
2.1. Subjects

Fifty-five subjects diagnosed with MCI (mean age 74.334+6.10, 34
males and 21 females, see Table 1) were included in this study. After
formal approval by the local Ethics Committee, informed written
consent was obtained from all participants. All subjects had normal
or corrected-to-normal visual acuity, and none reported a history
of major medical disorders (neoplasm or cardiac illness), sustained
head injury, neurologic or psychiatric disorders, alcohol or drug
abuse. Subjects with regular use of neuroleptics, antidepressants,
mood stabilizers, anticonvulsant drugs, or psycho-stimulants were
excluded. All participants underwent the following neuropsycho-
logical assessment. We confirmed the MCI status with a shortened
test battery including the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975), the Hospital Anxiety and Depression Scale
(HAD) (Zigmond et al., 1983) and the Lawton’s instrumental activ-
ities of daily living(IADL) (Barberger-Gateau et al., 1992). Cognitive
assessment included attention (Trail Making Test A; Reitan, 1958),
verbal working memory (Digit Span Forward; Millis et al., 1999), ver-
bal episodic memory (RI-48 Cued Recall Test, Adam et al., 2007),
CERAD 10-word List Delayed Recall Test (Consortium to Establish a
Registry for Alzheimer’s Disease; Welsh et al., 1994) and RL/RI-16
Free and Cued Remaining Test (Van der Linden and Adam, S., 2004),
executive functions (Trail Making Test B; Reitan, 1958, and Phonemic
Verbal Fluency test; Cardebat et al., 1989), language (Boston Nam-
ing; Kaplan and Goodglass, W. S., 1983), and constructional praxis
(CERAD figures copy, Welsh et al., 1994). All individuals were also
evaluated with the Clinical Dementia Rating scale (CDR) (Hughes
et al, 1982). In agreement with the criteria of Petersen (2004),
participants with a CDR score of 0.5 but no dementia and a score
more than 1.5 standard deviations below the age-appropriate mean
in any of the previously mentioned tests were confirmed to have MCI.

Table 1
Summary of demographics and diagnostic data of MCI subjects.
Age MMSE HAD CERAD-10
All 74.33+£6.10 26.78 £2.17 7.17 £4.49 5.04 £2.25
Male 74.14+5.63 27.12+£2.13 7.58 £4.55 5.35+1.86
Female 74.62 +6.93 26.24+2.17 6.47 +4.41 4.524+2.75
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2.2. MRI acquisitions

The following acquisitions were performed for all participants
on an MR 3T scanner (TRIO, Siemens medical systems, Erlangen,
Germany): 1) 3D T1-weighted image: voxel size 1 mm? isotropic,
256 x 256 x 176 matrix, TE = 227 ms, TR = 2300 ms; 2)
multi-echo echo-planar imaging (EPI) covering the entire brain,
74 x 74 x 45 matrix, voxel size 3 mm? isotropic, TE = 30 ms,
TR = 3000 ms, 180 repetitions for 9 min duration. Simultane-
ously, a carbon dioxide (CO;) challenge was administered via a
nasal canula in a concentration of 7% mixed in synthetic air, fol-
lowing a block-based paradigm of 1 min OFF, 2 min ON, 2 min
OFF, 2 min ON, 2 min OFF. Subjects were asked to breathe nor-
mally through the nose and to lie still keeping their eyes closed
without thinking at something particular, following the standard
resting-state acquisition practice (Fox and Raichle, 2007). The ratio-
nale is that the CO, challenge would allow assessing neuronal
and vascular contributions using a single MR sequence. In the
current paper, we only regressed-out the (slow) CO, challenge and
analyzed the remaining residual time-course as regular resting-state
data.

In future work, we will address the potential of using the CO,
challenge to evaluate the cerebrovascular reserve (CVR), which
could be an additional parameter to further increase accuracy
and robustness of MR-based diagnosis of cognitive decline. The
CO, induces a vasodilation, which is a measure of the CVR
across the brain. Due to the auto-regulation of the brain, we can
assume that first the CVR should be depleted, before the auto
regulation is exhausted resulting in a reduction of baseline per-
fusion (e.g. measured in arterial spin labeling (ASL)). This means
that in principle, the CO, assessed CVR should be an earlier and
more sensitive marker compared to baseline perfusion assessed in
ASL.

2.3. Functional MRI preprocessing

The functional volumes were preprocessed using in-house
MATLAB scripts including functions from SPM8 DPARSF (Chao-Gan
and Yu-Feng, 2010) and IBASPM toolboxes (Aleman-Gomez et al.,
2006). Functional images were first spatially realigned to the mean
volume and then spatially smoothed by convolution with a Gaussian
kernel (8 mm FWHM). A previously published pipeline (Richiardi
et al,, 2011a, 2012) was used to assess FC. The high-resolution T1
image was linearly registered to the mean functional volume (SPM8
coregistration) and tissue maps (white matter, gray matter, cere-
brospinal fluid) were obtained by segmentation of the T1 image
with SPM8'’s New Segment algorithm. The gray matter of every sub-
ject was then parcellated into 90 cortical and subcortical regions
(AAL atlas; Tzourio-Mazoyer et al., 2002) using a modified version
of the IBASPM toolbox. Each parcellation was finally mapped back
onto the native resolution of the functional images, yielding the
subject-specific functional atlas used later on in the analysis.

The fMRI voxel time-courses were detrended and nuisance
variables were regressed out using the DPARSF toolbox (6 head
motion parameters, average cerebrospinal fluid and white matter
signal from segmentation masks mapped to fMRI resolution). A CO,
challenge regressor was defined (Richiardi et al., 2015) and regressed
out, in order to exclude the effect of the administrated CO, from the
functional connectivity estimation. Statistical testing showed a negli-
gible Cohen'’s d effect between with and without CO, parts of the time
courses. Then, the preprocessed voxel time-courses were spatially
averaged within the cortical regions of the functional atlas, yielding 88
regional time-courses (bilateral Pallidum was discarded due to ventral
signal dropout). These were eventually band-pass filtered ([0.01-
0.15 Hz]), to limit the analysis at the resting-state frequency range

(frequencies contributing to FC in the cerebral cortex in resting-state
data), and z-scored.

2.4. Functional connectivity estimation

FC should reflect activation in individual brain ROIs. Tagliazucchi
et al. (2012) modeled the fMRI signals as a point process by con-
sidering its extreme values. However, FC should also reflect how
much pairs of ROIs are activated or deactivated at the same time.
Recently, Meskaldji et al. (2015a,b) proposed a robust, consistent and
yet exhaustive FC estimator based on extreme values. This estimator
measures how much two regions are co-activated (co-deactivated)
and how much they are not. Specifically, for each pair of regions, two
measures are estimated: (1) the accordance, which measures how
much two brain ROIs are co-activated and co-deactivated at the same
time (co-activation or co-deactivation),and (2)the discordance, which
measures the amount of activation-deactivation (no-co-activation
and no-co-deactivation) of a pair of time-courses. Fig. 1 illustrates
some of the concepts introduced in this section.

This estimator disentangles between parts of the entire time-
course that give positive correlation and those parts that give
negative correlation (anti-correlation), and hence, reflects non-
stationarity features of spontaneous fluctuations of the brain activity.

Formally, let ZT = z;,2,...,zy be the robustly normalized
fMRI signals (by subtracting the median and dividing by the median
absolute deviation of each time course (Hoaglin et al., 1983)), with
Z = z({). ... ,z¥) e RT, where N is the number of ROIs and T is the
total acquisition time.

In order to keep only significant activations or deactivations of the
corresponding brain ROIs, only extreme events of the observed time-
courses are considered, that is, each time-course z;,i = 1,...,N, is
compared to a positive and a negative threshold based on a predefined
quantile g = 0.8. Larger thresholds give more sparse connectivity,
while smaller thresholds give non-robust FC estimation (Meskaldji et
al., 2015b). The chosen value is close to the one used in Tagliazucchi et
al. (2012) (q ~ 0.84). We set for each vector z, the thresholded vector

Z%suchthatforallt € {1,...,T}:z} = 0ifz; < uandz} = 1otherwise.
Similarly, Z! is derived from the vector z such that forall t € {1,...,T}:
zZl = 0ifz > land z} = —1 otherwise. The robust normalization and

the binarization reduce the influence of very high extremes that might
be fMRI time-series artifacts. In the following, we use the notationz«z’
for the inner product of z and z'. The accordance a;; and discordance
d;; values between two ROIs i and j, with corresponding normalized
time courses z; and z;, are given by

aijz(z}‘*z]‘»‘-f—z%*z})/(a,-aj) (1

dij = (z:‘ x2) +2f zj“) / (0i0)), (2)

where

o =,/(z' «2V) + (z}*z}) (3)
For a given time-course z, the following holds: a(z,z) = 1,

a(z,-z) = 0 and d(z,z) = 0,d(z,—z) = —1. The discordance value

obtained by the algorithm is always negative. However, for ease of
interpretation, we use its absolute value from now on. Finally, to
study the consistency of FC measures, cross-subject average connec-
tivity matrices were computed for each measure.
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Fig. 1. Illustration of the concepts used in the definition of accordance and discordance FC estimator. The figure shows two normalized time-courses. Only parts above the
positive threshold (red parts) and below the negative threshold (blue parts) are considered as significant activations and deactivations, respectively. The overlapping of activation
parts represents co-activation, and the overlapping of deactivation parts represents co-deactivation. These parts contribute in computing accordance value. The overlapping of
activation parts of one time-course with deactivation parts of the second time-course (purple) contributes in computing discordance values. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

2.5. Prediction

As mentioned in the introduction, previous correlation/prediction
studies have been focusing on specific regions of the brain known
to be related to memory performance. Other studies have first
identified connections that differ between MCI subjects and healthy
controls and then focused on those. Contrarily, our approach uses

the whole set of connections, which might capture interactions that
relate to memory performance better than in prior or difference-
based subset selection. However, this makes prediction challenging
due to the large number of connections. For this reason, we used
PLSR to predict the memory scores (MSs), that is, the CERAD
10-word list delayed recall test for episodic memory in MCI
subjects.

womebmpeeng UNCtiONGI Embedding
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wew el estimation Connectivity matrices ' '§
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6'-:) P ] %
T - A Actudl
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Fig. 2. Processing pipeline to derive prediction models and evaluate their performances.
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PLSR is one of the multivariate regression methods that have
been widely used in various application fields such as social sciences,
bioinformatics and neuroscience (Cramer et al., 1988;McIntosh et al.,
1996;Nguyen and Rocke, 2002). The reason is that PLSR could be used
as an alternative to linear regression in situations where the number
of predictors is relatively large compared to the number of avail-
able samples. Instead of projecting the response vector into the space
spanned by the co-variables, PLSR projects both the response and the
co-variables into a new space formed by latent variables.

PLSR benefits from dimensionality reduction by using only few
loading components.

To construct the design matrix X, for each measure, we embed
the N(N —1)/2 = 88(88 — 1)/2 = 3828 connectivity values of each
subject in a vector, i.e., each column of the X matrix corresponds
to a connection in the functional connectome, and each line of the
X matrix corresponds to one subject. Hence, the X matrix for each
measure (Pearson correlation, accordance or discordance) is of size
nxN(N—1)/2 = 55 x 3828, where n is the number of subjects. Then,
PLSR is performed to derive regression coefficients for predicting
the MSs from the connectivity measures X. For more details, see
Appendix A.

PLSR predictive performance is evaluated by 1) estimating the
correlation between the actual and the predicted MSs, and 2) by
estimating the prediction R?, which is given by

k=1 (?k - Yk)z

R*=1- —,
k=1 (Yk—Y)

where Yy is the predicted score for subject k, and Y is the mean
of actual scores. It is evident that the more the number of vari-
ables/components in the model, the better (closer to one) is the
R-square. Even if we randomize subject scores, we still obtain good
performances of regression. This problem is known as overfitting. In
order to avoid it, the prediction is realized under cross-validation
(CV) scheme. We trained a PLSR model by excluding some subjects
from the data. Once the regression coefficients are estimated from
the training set, we use them to predict the MSs for the excluded
subjects (testing set).

We considered the following CV cases: 1) leave-one-out cross-
validation (LOO-CV) (Lachenbruch and Mickey, 1968), in which the
testing set consists of one subject only; 2) random (not necessar-
ily independent) 5 folds with possibly different sizes (CV-5-rand);
and finally, 3) 5 independent folds with equal size 11 (CV-5-indep).
Except for the first case (LOO-CV), there are many possibilities to
chose the training set in order to estimate PLS coefficients for the
testing set. In all theses cases, we repeated the process 1000 times
and we report their summary predictive performance. We compared
the PLS performance of the LOO-CV to the one obtained by random-
ization of subject labels. This affords us to estimate non-parametric
permutation test p-values. Note that if we randomize scores, the cor-
relation between actual and LOO-predicted scores is close to zero
under cross-validation.

We used bootstrapping to find the optimal number of PLSR com-
ponents. Because of the non-linearity relationship between memory
scores and connectivity measures, the variance of predicted mem-
ory scores is reduced compared to the variance of actual scores.
Consequently, bearing in mind that the predicted mean scores is
the same as the mean of the actual scores, the predicted scores are
rescaled around the mean proportionally to the root square of the
ratio between the variance of the actual scores and the variance of
the predicted scores (see Appendix A). This solution does not affect
the ranking of the predicted scores. We integrated this rescaling
under the CV framework. For example, in the LOO case, the rescaled
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Fig. 3. Mean connectivity matrices (across subjects) corresponding to the Pearson
correlation, accordance and discordance measures, respectively.
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predicted values are given by
. - - . 1/2
Ye =Y+ (Y, — Y)(var(Y)/var(Y_k)) ,

where Y, is the PLS estimated score and Y_j is the vector of all
estimated PLS scores except Y.

We also used bootstrapping to estimate t-scores that assess
the importance of each connection in the PLSR model in the LOO
case. The corresponding p-values are thresholded at level 0.005 to
highlight the subset of relevant connections related to long-term
memory.

All the steps described above are performed for each measure
(Pearson correlation, accordance and discordance). Fig. 2 summa-
rizes the undertaken steps of the pipeline.

3. Results
3.1. FC measures consistency

Fig. 3 illustrates the average Pearson correlation, accordance
and discordance connectivity matrices across all MCI subjects.
These average matrices reflect the consistency of the connectivity
pattern between subjects. It is observable that the average Pear-
son correlation matrix shows much stronger positive than nega-
tive values, ranging between —0.05 and 1. The positive pattern of
average Pearson correlation is replicated by the average accordance,
which catches the co-activations and co-deactivations of signals.
The narrower range of negative correlations is instead captured
and amplified by discordance. By having two distinct measures
for the depiction of positive and negative correlation (respectively,
accordance and discordance), we can plot both with positive sign
(high values of discordance, which would have been negative in
correlation, are now displayed as positive).

3.2. Comparison between the three prediction models

Fig. 1 (Supplementary material) shows the root mean squared
error of prediction (RMSEP) of the three PLSR models built on
Pearson correlation, accordance and discordance data, respectively.
According to these plots, the optimal number of components is 5 for
all measures; Pearson correlation, accordance and discordance.

Fig. 4 shows the predicted MSs as obtained by PLSR with the
aforementioned number of components under LOO-CV scheme,
versus the actual episodic MSs. Among the models, the one based

Pearson, performance = 0.527

Accordance, performance = 0.561
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on discordance is the best in terms of correlation between predicted
values and actual values (r = 0.64, permutation p = 1e—5), whereas
Pearson and accordance yield almost similar performance (r = 0.53,
permutation p = 1.23e—3 and r = 0.56, permutation p = 1.9e—4,
respectively). The permutation p-values are obtained on the basis of
105 permutations. The estimated R? shows also better performance
for discordance compared to accordance and Pearson correlation.
R? is 0.26, 0.31 and 0.41 for Pearson, accordance and discordance,
respectively. The two other CV schemes give slightly less predictive
performance while preserving the advantage of discordance over
accordance and of accordance over Pearson correlation (see Supple-
mentary material, Table 1).

Fig. 5 shows the PLSR t-values for the three models estimated
with the bootstrapping technique. As for the mean connectivity
matrices, a clear resemblance between the correlation and accor-
dance cases is observable ( correlation between Pearson based t-
statistics and accordance based t-statistics = 0.84, p < 2.2e—16),
while a different pattern is found for discordance (correlation =
0.04, p = 0.002 with accordance t-statistics, and 0.02, p = 0.11 with
Pearson t-statistics).

3.3. Most predictive connections

In order to retain the most important connections related to the
long-term MS, we thresholded the p-values corresponding to PLSR
coefficients, at p=0.005. After this thresholding, the three measures
(Pearson correlation, accordance and discordance) yielded 14, 26 and
30 most important connections. The different number of selected
connections reflects the fact that the PLSR t-maps are more organized
and structured in accordance- and discordance-based models than
in the Pearson correlation based model. These retained connec-
tions are listed in Tables 2, 3 and 4 in the Supplementary material.
Connections of discordance model are also represented in brain
graphs, in Fig. 6 (connections of Pearson and accordance based mod-
els are represented in brain graphs in Fig. 2 in the Supplementary
material). In the brain maps, orange connections contribute posi-
tively to the MS (positive regression coefficient in the PLSR model),
while blue connections contribute negatively to the MS (negative
regression coefficient in the PLSR model). We used the Brain Net
Viewer tool for the brain maps visualization (Xia et al., 2013).

The prediction models based on Pearson correlation and accor-
dance seem to involve the same regions as network hubs: larger
Pearson correlation or accordance measures of middle and inferior
frontal gyri with the rest of the brain (positive t-values), and lower
values for amygdala (negative t-values) contribute to better memory

Discordance, performance = 0.641
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Fig.4. Predicted vs measured memory scores corresponding to different measures (Pearson correlation, accordance and discordance). Predicted values are obtained by performing
LOO PLSR models, in which co-variables are the connectivity values. We also report the correlation between predicted and measured values for each model.
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Fig. 5. T-statistic maps corresponding to the coefficients of the PLSR models for the
different measures (Pearson correlation, accordance and discordance).

performance. Instead, distinct brain networks appear to be involved
in the discordance model, highlighting in particular the role of
the DMN (including the hippocampus and temporal regions), the
attention network, the limbic system (thalamus, amygdala) and the
supplementary motor areas (SMA).

4. Discussion
4.1. Consistent estimation of FC

The newly introduced measures of accordance and discordance
represent a robust and exhaustive estimator of FC. It is robust
because it only considers significant activations and deactivations,
and it is exhaustive because it splits the correlation into two parts:
the first one mainly contributing to positive correlation and the
second one to negative correlation (i.e., anti-correlation). Accordance
captures the common activations or deactivations of brain areas,
which are usually seen in the positive values of correlation. Negative
values of Pearson correlation also exist, but vary within a narrower
range, as pointed out in the mean Pearson correlation matrix in
Fig. 3 (positive average Pearson correlation range: [0; 1], negative
average Pearson correlation range: [—0.05; 0]). Discordance is able
to capture this less often assessed information, which may also be
relevant for FC analysis but is usually hidden by Pearson correlation.
The use of the same sign for the two measures avoids the problem
of having negative values when estimating network topological
measures, encountered with correlation-based connectivity matri-
ces (Meskaldji et al., 2015c). Finally, a study of the consistency and
sensitivity of FC measures should include the estimation of the intra-
class correlation coefficient, which affords an in-depth comparison
between the extreme based measures and other FC measures.

4.2. Prediction of memory scores from FC

Compared to most previous works, our analysis was conducted
in a whole-brain manner, avoiding initial bias resulting from seed
selection. Only a minor subset of studies has attempted to do so,
but without reaching a consensus on the connectivity alterations
characterizing memory performance in MCI. Furthermore, these
studies limited their analysis to group comparison between healthy
and MCI individuals. In the present work, we explore a more
challenging approach in which we implement a PLSR model able
to highlight the subset of relevant connections for the prediction of
long-term MSs within a group of MCI patients.

Overall, all measures give good prediction performance despite
the heterogeneity of the MCI population. This shows the ability
of predicting memory performance from fMRI data, which is
promising and a clear indication that rs-fMRI data contains an
important amount of information about brain function, organization
and synchronization. Although leave one out CV already consid-
ers independent sets for validation since each built model is tested
on an external or independent data, it suffers from some unde-
sirable features in some cases. However, with our data we show
that LOO and k-folds cross-validations have almost the same pre-
dictive performances and preserve the ranking of predictive per-
formance (discordance, accordance and Pearson correlation). The
small difference could be explained either by the differences in
the techniques themselves or by the level of homogeneity of the
data (Meskaldji et al., 2016). It is important to bear in mind the
possible bias in the prediction caused by the variability of the mem-
ory scores, which is one of the limitations of this study. In future
investigation, it is recommended to use more accurate estimation
of memory performance. This could be obtained, for example, by
averaging several test runs. The prediction performance could be
improved by using non-linear models to avoid bias in variance esti-
mation under cross-validation as we have encountered in this study.
It could be further improved using other meaningful features of
brain connectivity such as graph theory measures that character-
ize topology of brain networks (Richiardi et al., 2011b; Smith et al.,
2013). Here again, the combination of accordance and discordance
has a conceptual advantage if these two measures are considered
separately, especially, in local brain analysis (Meskaldji et al., 2015d).
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Fig. 6. Significant connections obtained by thresholding p-values (at level 0.005) corresponding to the coefficients of the discordance based model. The connection color represents
the sign of the coefficient corresponding to each connection in the PLSR model (orange for positive coefficients and blue for negative coefficients). The node size is proportional to
the node degree in the absolute t-map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Surprisingly, of the three FC measures explored, the discordance
based model showed the best performance in terms of correlation
between the predicted and the actual MSs (Fig. 4). This finding raises
the question about negative correlations that are often ignored, with-
out strong argumentation, while we see clearly that anti-correlation
contains meaningful information about memory performance.

4.3. Episodic memory-related networks in MCI: new insights from
discordance

The additional networks provided by the discordance model with
respect to the usual Pearson correlation analysis included areas from
the DMN (right middle frontal gyrus, anterior cingulate cortices,
left angular gyrus, bilateral hippocampi and temporal areas), the
attention network (right precentral gyrus and bilateral paracentral
lobules), additional limbic regions (right amygdala, bilateral thala-
mus and insula), and bilateral supplementary motor areas (SMA; see
Supplementary Table 3). All these systems of areas have been related

to healthy-to-MCI changes in past seed-based or whole-brain stud-
ies (Sorg et al., 2007; Bai et al., 2009; Qi et al., 2010; Wang et al,,
2011; Wang et al., 2012b; Liang et al., 2011; Wang et al., 2012a; Cai
et al., 2015; Bai et al., 2008; Wang et al., 2011; Yi et al., 2012; Liu et
al., 2012; Yao et al., 2010; Chen et al., 2011; Wee et al., 2012; Wee
et al,, 2015; Zhang et al.,, 2015a), even if no specific link to memory
performance is drawn in most cases.

Temporal areas, including the hippocampus and medial temporal
gyrus, are well-known linked to the memory system and were non-
surprisingly found in several previous studies. Here, we can observe
that a higher discordance between hippocampal regions and the
anterior cingulate cortex (both included as DMN regions) impedes
episodic memory performance (blue connections in Fig. 6). This find-
ing appears in line with previous work in which it was shown that
the medial temporal lobe formation can dissociate from the canon-
ical DMN in resting-state (Yeo et al., 2011), contributing to a more
restricted network that activates upon episodic memory retrieval
(Andrews-Hanna, 2012).
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At the same time, the anti-correlation between the attentional
system (bilateral paracentral and right precentral lobules) and some
regions of the DMN (left anterior cingulate cortex, left inferior tem-
poral gyrus), the left insula and the orbitofrontal gyri, goes with
better long-term memory performance. These results could reflect
a worse capability of the more memory-impaired MCI subjects
to synchronously alternate between the task-positive (attentional)
and task-negative (default-mode) systems, which squares well with
previous findings showing a loss of this inter-network relationship
along the progression of Alzheimer’s disease (Brier et al., 2012).

Interestingly, the lower discordance of the bilateral SMA with the
right amygdala and the hippocampal formation seems to favor mem-
ory performance. As the SMA has also been linked to lexical selection
(Alario et al., 2006), we can speculate that the anti-correlated
behavior of this network with the salience network (amygdala)
and memory system (hippocampus) plays a detrimental role in the
words-recalling test considered here.

Finally, the thalamus seems to play a relevant role for episodic
memory, standing out as the largest hub node in the discordance
brain graphs. Specifically, its higher antagonistic interaction with a
wide network including temporal, occipital and insular areas favors
long term-memory. This finding is in line with recent evidence
pointing at the thalamus as a fundamental intermediate region for
the communication between different cortical areas (Sherman, 2007,
2016).

5. Conclusion

In this work, we highlight the importance of discordance as
an alternative or complementary measure of FC to capture yet
under-looked aspects of brain functional interactions. Deploying this
measure, inter-individual mnemonic differences could be accurately
resolved in a set of MCI subjects, highlighting the importance of anti-
correlation both within and across some of the major resting-state
brain systems (DMN, attentional, limbic).

Acknowledgments

This work was supported in part by the Swiss National Science
Foundation (grant numbers: 200020-144467 and PPOOP2-146318),
by the Bertarelli Foundation, and by the Center for Biomedical Imag-
ing (CIBM) of the Geneva-Lausanne Universities and the EPFL.

Appendix A. Appendix

In the usual linear regression modeling, the least square solution
for

Y=XB+¢ (4)
is given by

-1
B= (xTx) XTy. (5)

When the number of parameters is large compared to the num-
ber of samples, it happens that (X"X)~! is singular, and the solution
cannot be evaluated, unless a regularization is applied such as the
LASSO method (Tibshirani, 1996). PLSR regression overcomes this
singularity by decomposing both X and Y into orthogonal scores and
loadings. The general formulation is given by

X = TP + & (6)

Y =UQ" +¢&, (7)

where T and U are scores, while P and Q are the loading matrices
for X and Y, respectively. & and &y are independent errors. The
scores and the loadings are chosen to explain the maximum variance
between X and Y. PLSR tries to find the directions in X that better
explain the maximum variance in Y. There are many algorithms
to solve the PLSR problem. In our application, we used the “pls”
(Mevik and Wehrens, 2007) R-package (http://cran.r-project.org).
In this package, the choice of the optimal number of components
is based on the root mean squared error of prediction (RMSEP).
There are two cross-validation estimates of the RMSEP: the ordi-
nary CV estimate, and the bias-corrected CV estimate (Mevik and
Cederkvist, 2004; Mevik and Wehrens, 2007). After estimation of
the LOO-PLSR models, the importance of connections in the mod-
els is assessed using the bootstrapping Jackknife test estimator
(Martens and Martens, 2000) also implemented in the “pls” (Mevik
and Wehrens, 2007) R-package.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.nicl.2016.10.004.
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