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ABSTRACT
A priori, locking seems easy: To protect shared data from concur-
rent accesses, it is sufficient to lock before accessing the data and
unlock after. Nevertheless, making locking efficient requires fine-
tuning (a) the granularity of locks and (b) the locking strategy for
each lock and possibly each workload. As a result, locking can
become very complicated to design and debug.

We present GLS, a middleware that makes lock-based program-
ming simple and effective. GLS offers the classic lock-unlock in-
terface of locks. However, in contrast to classic lock libraries, GLS
does not require any effort from the programmer for allocating and
initializing locks, nor for selecting the appropriate locking strat-
egy. With GLS, all these intricacies of locking are hidden from the
programmer. GLS is based on GLK, a generic lock algorithm that
dynamically adapts to the contention level on the lock object. GLK
is able to deliver the best performance among simple spinlocks,
scalable queue-based locks, and blocking locks. Furthermore, GLS
offers several debugging options for easily detecting various lock-
related issues, such as deadlocks.

We evaluate GLS and GLK on two modern hardware platforms,
using several software systems (i.e., HamsterDB, Kyoto Cabinet,
Memcached, MySQL, SQLite) and show how GLK improves their
performance by 23% on average, compared to their default locking
strategies. We illustrate the simplicity of using GLS and its de-
bugging facilities by rewriting the synchronization code for Mem-
cached and detecting two potential correctness issues.
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Figure 1: Different lock strategies under varying contention.

1. INTRODUCTION
Locking is arguably the most widely-used synchronization tech-

nique in concurrent programming. Essentially, every modern sys-
tem makes use of locks. Most operating systems (e.g., the Linux
kernel), DBMSs (e.g., MySQL), and key-value stores (e.g., Mem-
cached) heavily rely on locks. The wide adoption of locking can
be mainly attributed to the need for a simple and fast technique for
synchronization. Indeed, locking seems simple at a first glance.
However, in practice, there is more to using locks efficiently in sys-
tems than meets the eye.

Typically, the programmer must (i) map data to locks, (ii) declare
locks, (iii) allocate and initialize locks, (iv) use the locks (i.e., lock
and unlock), and (v) destroy and deallocate the locks. Of course,
she has to also select which lock algorithm(s) to use.

These steps are inflexible and error-prone. Every lock object
must be explicitly declared, hence, changing the mapping of data
to locks can be cumbersome. For example, moving away from the
global lock in the Linux kernel required significant effort [14, 43].
Common mistakes during lock-based programming include [19]:
(i) accessing uninitialized locks, (ii) trying to acquire the same lock
twice, (iii) releasing an already free lock, (iv) releasing a lock that
belongs to another thread, and, of course, (v) deadlocks. Theses
issues can be difficult to debug.

To make things even more complicated, in order to achieve good
performance, one has to fine-tune the locking strategies in use. In-
deed, there is no one-size-fits-all lock algorithm [21, 33]. Consider
Figure 1 that depicts the performance of different locking strate-
gies under increasing contention. Simple spinlocks are very fast
on low contention but do not scale well. Queue-based locks scale
well, but are slower than spinlocks on low contention and suffer on
multiprogrammed environments (i.e., when the number of threads
is larger than the number of hardware contexts). Blocking locks
(e.g., pthread mutexes) are suitable on that latter case, but are
very slow on non-multiprogrammed environments.

http://dx.doi.org/10.1145/2988336.2988357


Consequently, selecting the “wrong” algorithm can have detri-
mental performance results. For example, recent work [21, 30, 32,
33, 46] has shown significant performance improvements in mid-
dleware software, such as Memcached and LevelDB, by modify-
ing locking. Accordingly, the designer must select the appropriate
locking technique for each lock object in order to optimize her sys-
tem as much as possible. However, the “correct” lock algorithm
strongly depends on the lock contention levels which, in turn, de-
pend on the workload. Additionally, workloads tend to change over
time, thus the correct lock algorithm is a function of time. Ideally,
we would like a single lock algorithm that can dynamically adapt
to the workload, delivering the best performance among spinlocks,
queue-based locks, and blocking locks, at any point in time.

In this paper, we question whether we can have the cake and eat it
too. We present GLS, a generic locking service designed to solve all
the aforementioned intricacies related to lock-based programming.
GLS is a middleware that provides the traditional lock interface,
with two main functions to acquire and release a lock. However, in
contrast to traditional lock libraries, the locks are fully controlled
by GLS, thus the developer does not need to select a lock algorithm,
nor to declare, allocate, or initialize any locks. In fact, any arbitrary
memory address can be used as a parameter to gls_lock(). GLS
takes care of mapping the input address to a lock object.

Under the hood, GLS uses a fast concurrent hash table for map-
ping addresses to objects. As most locks are repeatedly used, this
hash table converges to a read-mostly hash table, thus incurring low
overhead. Having a central data structure, where all locks are kept,
allows us to develop very useful debugging extensions on top of
GLS. GLS can detect accesses to uninitialized locks, double lock-
ing, etc. Additionally, in §4.2, we show how to build low-overhead
deadlock detection on top of GLS, as well as lock profiling tools.

More importantly, the programmer does not need to select the
lock algorithm for each individual lock; GLS automatically adapts
the lock algorithm to the workload. GLS comes with an adaptive
lock called GLK, standing for generic lock. GLK keeps track of
the contention levels in order to dynamically adapt the algorithm
to the needs of the workload. On low contention, GLK behaves as
a simple spinlock (i.e., ticket lock [47]). On high contention, GLK
turns into a scalable queue-based lock (i.e., MCS lock [47]). On
high system load (multiprogramming), GLK transforms to a block-
ing lock (i.e., mutex lock). The adaptiveness of GLK is per lock,
thus a system might contain various locks that operate on different
modes depending on their contention levels (e.g., MySQL in §5.2).
Naturally, in a system with locking already in place, GLK can be
used with or without GLS to minimize the overhead.

Additionally, GLS offers explicit interfaces for many state-of-
the-art lock algorithms: test-and-set, test-and-test-and-set, ticket,
MCS, CLH [20], and mutex, and allows for easy deployment of
more algorithms. These interfaces can be used to manually spec-
ify the lock algorithm to be employed for a specific lock object. In
§5.1, we show how we use this interface to re-implement locking in
Memcached from scratch. The resulting implementation contains
26% less lock-related code than the initial design and delivers 14%
higher throughput on our benchmarks.

We evaluate GLS and GLK on various microbenchmarks and soft-
ware systems. Based on microbenchmark results, we show that GLS
adds low overheads compared to directly using locks. Addition-
ally, we show that GLK is always able to capture the needs of the
underlying workload, thus adapting to the best algorithm for each
workload phase. We plug GLK in various systems: HamsterDB,
Kyoto Cabinet, Memcached, MySQL, and SQLite, by overloading
the pthread mutex library. We improve the performance of these
systems by 23% on average, with essentially zero effort. Finally,

using the debugging facilities of GLS, we detect two potential cor-
rectness issues in Memcached.

The main contributions of this paper are as follows:
• GLS, a middleware locking service that simplifies lock-based

programming;
• GLK, a practical lock algorithm that dynamically adapts to the

contention of the underlying workload;
• Efficient implementations of GLS and GLK in our locking li-

braries – available at https://lpd.epfl.ch/site/gls;
• A novel approach for dynamically detecting correctness issues

in lock-based systems.
Of course, neither GLS, nor GLK are silver bullets. GLS adds both

latency and memory overheads compared to plain locking. Ad-
ditionally, the adaptiveness of GLK adds a low performance over-
head compared to directly using the corresponding lock algorithm.
Therefore, a fully-customized system, for a fixed workload config-
uration, with every lock object set to the correct lock algorithm,
will inevitably be slightly faster than with GLK. Finally, one can
devise scenarios where GLK will be frequently switching modes.
However, we never observe such behavior in practice.

The rest of the paper is organized as follows. In §2, we recall
background notions regarding lock-based programming. We intro-
duce GLK in §3 and use it in GLS in §4. We use GLS and GLK to
simplify and optimize modern software systems in §5. We discuss
related work in §6, and we conclude the paper in §7.

2. LOCK-BASED PROGRAMMING
Locks are objects with two states: busy or free. A lock can be

either free, or have a single owner, namely the thread that holds the
lock. Locks ensure mutual exclusion: Only the owner can proceed
with its execution, while any concurrent threads are waiting behind
the lock. Locks offer two operations: lock and unlock. The former
is used to acquire the lock (i.e., make the current thread the owner
of that lock). Unlock releases the lock so that it can be subsequently
acquired by another thread.

There are numerous lock algorithms. These algorithms mostly
differ in the way they handle contention, namely the situation where
threads are waiting for a busy lock to become free. Typical designs
employ either busy waiting, or blocking for waiting. With busy
waiting, waiting threads remain active, polling the lock until they
manage to acquire it. With blocking, waiting threads release their
hardware context to the OS. The OS is responsible for unblocking
these “sleeping” threads when the owner releases that lock.

There exist various busy-waiting algorithms. Simple spinlocks,
such as test-and-set (TAS), test-and-test-and-set (TTAS), and ticket
lock [47] (TICKET), use a single memory location on which threads
are busy waiting. Spinlocks are fast under low contention due to
their simplicity. However, simple spinlocks might generate a lot of
coherence traffic on the single memory location (i.e., cache line)
of the lock [10]. Queue-based locks (e.g., MCS [47], CLH [20])
generate a queue of waiting nodes so that each thread is spinning
on a unique location when busy waiting. Queue-based locks thus
remove the single-memory-location bottleneck of simple spinlocks.

The most well-known blocking lock is the mutex-lock (MUTEX),
part of the pthread library. Because the overheads of the OS for
blocking and unblocking a thread are high, blocking locks typically
employ a busy-waiting period before putting threads to sleep.

At a first glance, programming with locks looks simple. Lock-
ing is appealing precisely because of this simplicity. Nevertheless,
using locks efficiently (i.e., achieving correct and fast designs) can
become cumbersome, mainly because of various correctness and
performance problems that are often associated with locks.

https://lpd.epfl.ch/site/gls


Programming with Locks.
In short, programming with locks involves the following steps:

1. Recognizing the various critical sections and the data they pro-
tect (i.e., the granularity of each lock).

2. Selecting and using concrete lock implementations.
3. Declaring the lock objects. Non-statically allocated locks must

not only be declared, but allocated as well.
4. Initializing the locks.
5. Using the locks through their interface (i.e., lock, trylock, un-

lock) in order to protect the critical sections.
6. Destroying and possibly deallocating the locks.

If the developer implements any of these steps improperly, cor-
rectness and performance issues can emerge.

System Correctness with Locks.
The most well-known bugs associated with locks are deadlocks.

In a deadlock, a thread has acquired a lock l0 and is waiting for an
already acquired lock l1, the owner of which is waiting for a differ-
ent acquired lock l2 and so forth. Finally, there is a thread that has
acquired ln and is waiting for l0, in which case none of the threads
can make progress. Deadlocks are often a result of acquiring locks
in the wrong order and are notoriously hard to debug.

Another hard-to-detect issue with locks is using uninitialized
locks (i.e., trying to (un)lock a non-initialized lock object). This
issue results in executions where the system may or may not work
properly, depending on the initial value of the lock object’s mem-
ory. Other common mistakes with locks are trying to lock the same
object twice, unlocking a lock that is already free, or releasing a
lock that has been acquired by another thread.1 As with uninitial-
ized locks, the latter issues can break the system.

These issues are common in practice [19]. In §4.2, we present an
easy-to-use debugging extension of GLS for detecting all of these
issues. In fact, we use GLS to detect and solve two of these issues
in Memcached (§5.1).

System Performance with Locks.
In addition to correctness problems, locks might become a per-

formance bottleneck, mainly due to two different reasons.
First, highly-contended locks can easily become a bottleneck

(e.g., the global lock in Memcached v1.4.13 [30] or in the Linux
kernel [14, 43]). Removing these bottlenecks might require signif-
icant effort. The designer must redesign the critical sections and
change the granularity of the locks. This process is of course prone
to the correctness issues discussed earlier.

The second and more important reason is that different lock algo-
rithms are suitable for different workloads [21, 33]. As we show in
Figure 1, simple spinlocks shine under very-low contention, queue-
based locks are by far the best under medium to high contention,
and blocking locks are necessary under multiprogrammed work-
loads. Choosing the “wrong” algorithm under multiprogramming
can lead to livelocks, situations where although the threads execute,
the system throughput is close to zero (see MySQL in §5.2).

Naturally, while designing and implementing a general-purpose
system, the designer cannot predict every single deployment or
potential runtime fluctuation of the behavior of the workload.
Therefore, she must choose the common-denominator lock algo-
rithm (i.e., the one that works even on multiprogramming), namely
mutex. Unfortunately, studies have shown that mutex is slow com-
pared to other algorithms in the absence of multiprogramming [21].

1Releasing a lock owned by another thread, or acquiring a lock
twice, can be also used as a feature.

Figure 2: The three modes of GLK.

Locking on Modern Multi-cores.
In order to properly substantiate our claims regarding GLS and

GLK, we perform our experiments on two modern multi-cores from
Intel. We detail the characteristics of these platforms below:

Name Model #Cores Freq L1 L2 LLC
Haswell E5-2680 v3 12 2.5GHz 32KB 256KB 30MB

Ivy E5-2680 v2 10 2.8GHz 32KB 256KB 25MB

Haswell and Ivy are both 2-socket Intel Xeon machines, with
128GB of main memory attached to each socket. Both platforms
run Ubuntu 14.04.3 with Linux kernel 3.13.0-63 and glibc 2.19,
with dynamic voltage and frequency scaling (DVFS) disabled.

3. GLK: A GENERIC LOCK ALGORITHM
As we explain in §1 and §2, different lock algorithms are suitable

for different workloads. Simple spinlocks (e.g, ticket locks) are
the fastest locks under low contention. Queue-based spinlocks are
more suitable under high contention. For instance, MCS locks were
recently introduced in the Linux kernel to improve scalability of
highly-contended locks [17]. Nevertheless, spinlocks cannot prop-
erly handle multiprogrammed environments. Due to busy waiting,
threads waiting behind a spinlock might occupy a hardware context
instead of a thread that could perform some useful work. This phe-
nomenon is exacerbated in fair locks,2 where the thread that is next
in acquiring the lock might not be scheduled.

Accordingly, we design the generic lock algorithm (GLK), based
on the premise that there is no one-size-fits-all lock algorithm. GLK
adapts to the workload in order to select the most suitable way of
waiting behind a busy lock. In brief, GLK collects contention in-
formation and, based on this information, periodically adapts the
mode it operates in, between ticket, mcs and mutex (Figure 2). We
use TICKET instead of other simple spinlocks, as TICKET is fair and
more scalable than TAS and TTAS [21]. In what follows, we first de-
scribe the design of GLK and then perform a sensitivity analysis for
the configuration parameters of GLK on our target platforms.

The GLK Structure.
Figure 3 includes the code for the GLK structure. The struc-

ture contains a lock_type flag that indicates the current mode
of the lock, the three lock objects for ticket, mcs, and mutex,
and two counters for gathering statistics (num_acquired and
queue_total). The former counter measures the number of
completed critical sections, while the latter contains the amount
of queuing behind the lock.

2Fair locks, such as ticket locks, offer FIFO ordering of lock ac-
quisitions. Queue-based locks are FIFO by design because they are
implemented as queues.



typedef struct g l k {
g l k _ t y p e _ t l o c k _ t y p e ;
g l k _ t i c k e t _ l o c k _ t t i c k e t _ l o c k ;
g l k _ m c s _ l o c k _ t mcs_lock ;
g l k _ m u t e x _ l o c k _ t mutex_ lock ;
uint32_t num_acqui red ;
uint32_t q u e u e _ t o t a l ;

} g l k _ t ;

Figure 3: The GLK structure.

Measuring Contention.
GLK contains a configuration parameter on how often to collect

contention statistics. On spinlock-mode (i.e., ticket or mcs), we
measure contention as the amount of queuing behind the lock.

Ticket locks provide this queuing information by design [47]. A
ticket lock comprises two counters: ticket and owner. To ac-
quire the lock, the thread grabs a ticket t by atomically increment-
ing (and fetching) the ticket field. It then spins until t becomes
equal to lock->owner. To release the lock, the owner simply
increments the owner field. Consequently, lock->ticket −
lock->owner shows how many threads are waiting behind the
lock (plus one for the current owner).

MCS creates a queue of waiting nodes. To measure the amount of
queuing, we count the number of nodes while traversing the queue.
It is important that this traversal is infrequent, because it breaks the
“each node is accessed by a single thread” design goal of MCS.

Finally, the aforementioned queuing information is not sufficient
for detecting multiprogramming. Multiprogramming does not re-
late to the contention of a single lock, but rather to the overall pro-
cessor load. In other words, multiprogramming might be caused by
other applications executing on the machine. Accordingly, to detect
multiprogramming, GLK compares the number of running tasks to
the number of available hardware contexts. On the first GLK invo-
cation, a background thread is spawned. This background thread is
shared across all GLK objects in a system and checks whether there
is oversubscription of threads to hardware contexts at the system
level, and whether GLK locks must switch to mutex mode.

Selecting the GLK Mode.
We perform a sensitivity analysis on when TICKET is faster than

MCS (see §3.1). TICKET is consistently faster than MCS when up
to three concurrent threads are accessing the lock. We thus config-
ure the transition from ticket to mcs to happen when the amount of
average queuing on a lock is more than three. To avoid frequent,
unnecessary transitions, we configure the opposite transition, from
mcs to ticket, to happen when queuing drops below two. Addition-
ally, we keep the exponential moving average of the statistics in
order to hide possible short-term workload fluctuations.

The periodic background thread that detects multiprogramming
wakes up approximately every 100 us. If the thread detects multi-
programming, it sets a library-wide flag to inform locks that they
must switch to mutex when they next try to adapt. However, locks
switching to mutex mode might cause a system-load decrease, as
threads block on mutex. Thus, the locks might continuously fluc-
tuate between mutex and the other modes. To avoid this effect, we
detect and avoid consecutive transitions from mutex to spinlocks,
by exponentially increasing the number of consecutive rounds with
no oversubscription required to switch away from mutex.

Additionally, locks that face close-to-zero contention do not
cause a problem on multiprogramming. In fact, these locks should
be simple spinlocks in order to complete these critical sections as
fast as possible. Therefore, GLK objects that operate with minimal
queuing do not switch to mutex, but remain in ticket mode.

1 void g l k _ l o c k ( g l k _ t ∗ l o c k ) {
2 do {
3 g l k _ t y p e _ t c u r r _ t y p e = lock−>l o c k _ t y p e ;
4 switch ( c u r r _ t y p e ) {
5 case TICKET_LOCK :
6 g l k _ t i c k e t _ l o c k ( l o c k ) ;
7 break ;
8 case MCS_LOCK:
9 g lk_mcs_ lock ( l o c k ) ;

10 break ;
11 case MUTEX_LOCK:
12 g l k _ m u t e x _ l o c k ( l o c k ) ;
13 }

15 if ( lock−>l o c k _ t y p e == c u r r _ t y p e &&
! g l k _ t r y _ a d a p ( lock , c u r r _ t y p e ) )

16 break ;
17 else g l k _ u n l o c k _ t y p e ( lock , c u r r _ t y p e ) ;
18 } while ( 1 ) ;
19 }

Figure 4: The GLK lock function.

We implement a version of MUTEX for GLK that incorporates the
collection of statistics required for adaptation. We also modify the
lock to support deadlock detection. Our MUTEX implementation is
more lightweight than the one in the pthread library, as it does
not include the various sanity checks of the latter. These sanity
checks (and more) are provided by GLS in debug mode (see §4.2).

Adapting the GLK Mode.
GLK contains a configuration parameter on how often adaptation

must be attempted. When adaptation is triggered, the thread cur-
rently holding the lock checks the lock statistics and decides which
GLK mode to use.

To acquire the lock, a thread (i) accesses the lock_type flag
of the lock, (ii) acquires the corresponding “low-level” lock object,
(iii) checks that lock_type has not been modified (if it has been
modified, the thread releases the low-level lock object and restarts),
and (iv) performs the adaptation (if needed). This approach has the
benefit that the lock and unlock functions of TICKET, MCS, and
MUTEX can be used almost unmodified. The only modifications
in their lock functions are in order to update the queuing and the
number of completed critical sections statistics.

The GLK lock function is included in Figure 4. The
glk_try_adap function first checks whether it should try to
adapt the GLK’s mode and then checks the statistics to decide on
which mode the lock will execute on. If a mode-transition hap-
pens, glk_try_adap returns true, hence the lock operation is
restarted (line 15).

Correctness.
The correctness of GLK is not obvious at a first glance. To un-

derstand GLK, we need to consider all possible interleavings of ex-
ecutions. First, we can differentiate between executions with and
without concurrent adaptation(s). In the latter case, without any
GLK adaptation, GLK is trivially correct because it acts exactly as
the low-level lock indicated by lock->lock_type.

Then, we will show that only a single thread t can succeed
the if statement in line 15 of Figure 4 at a time. If t succeeds
lock->lock_type == curr_type, then no other thread
can succeed this statement before t either adapts the lock, or re-
leases the low-level lock. Any other concurrent thread that uses the
same lock type as t will block at the low-level lock. All other con-
current threads will fail the statement. Accordingly, just t (i.e., one
thread at a time) has the chance to trigger adaptation and enter the
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Figure 5: Performance crosspoint: The number of threads that
should be concurrently accessing a lock object so that MCS out-
performs TICKET.

critical section. If no adaptation happens, glk_try_adap returns
false and t enters the critical section. Otherwise, glk_try_adap
returns true, thus t releases the low-level lock and re-runs the while
loop. In that case, any thread can take the position of t in succeed-
ing the first clause of line 15, without breaking the correctness of
our algorithm.

Including Additional Lock Algorithms.
In GLK, we chose to use a minimum number of algorithms to

cover the needs of most workloads. As such, we included a TICKET
spinlock algorithm for low contention cases, an MCS queue lock al-
gorithm for contended locks and a MUTEX lock algorithm in order
to cope with oversubscription of threads to hardware contexts. In
our experience, and as we show in our evaluation of GLK, these
locks are sufficient for a wide range of workloads. However, addi-
tional lock algorithms can be included in GLK: By modifying the
lock selection algorithm previously described and by introducing
new selection criteria, users can add more specialized lock algo-
rithms to address cases where such algorithms could yield better
performance (e.g., cohort locks [24]).

3.1 GLK Sensitivity Analysis
We perform a sensitivity analysis of the three most important

parameters of GLK: (i) the contention thresholds that control the
switch from/to ticket mode, (ii) adaptation period, and (iii) queue
sampling period. Based on our analysis, we set the default GLK
settings, which we believe are suitable for most workloads and x86
hardware platforms (in our evaluation we did not need to change
any of the settings). However, our scripts for this sensitivity anal-
ysis can be used to fine-tune GLK for specific hardware platforms
and workloads, if necessary.

ticket vs. mcs Mode.
Figure 5 shows how many threads must contend for a single lock

in order for an MCS lock to outperform a TICKET lock. On both of
our platforms, TICKET is typically faster than MCS on up to three
threads. Accordingly, we configure GLK in our experiments so that
it switches from ticket to mcs mode when the average queuing be-
hind the lock is more than three.

Adaptation and Queue Sampling Periods.
Figure 6 contains the relative throughput of GLK compared to

GLK with adaptation disabled, under the extreme scenario of empty
critical sections. For the 2-thread execution we fix the non-adaptive
GLK to ticket mode, while for the 8-thread execution to mcs mode.
For both experiments the results show that – as expected – short
adaptation periods incur a high performance overhead. In both
cases, the results stabilize as we increase the adaptation period. Ac-
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Figure 6: Relative throughput of GLK in ticket and mcs modes
compared to GLK with adaptation disabled, depending on the
adaptation period (left) and the queue sampling period (right).

cordingly, in our experiments, we set the adaptation period to 4096
critical sections and the sampling period to 128 critical sections.
With these settings, we obtain a sufficient number (4096/128 = 32)
of queuing samples per adaptation.

3.2 GLK Evaluation
We start by evaluating the overhead of GLK due to its adaptive-

ness. We then compare the performance of GLK with TICKET, MCS,
and MUTEX on a set of microbenchmarks. In §5, we plug in and
compare the performance of these algorithms in software systems.
Before we proceed with the evaluation, we describe the experimen-
tal settings in our microbenchmarks.

Experimental Methodology.
Threads execute in a loop, performing lock and unlock opera-

tions on lock object(s). On every run, we configure (i) the number
of threads, (ii) the number of lock objects, and (iii) the duration of
the critical section (in CPU cycles). Furthermore, after every loop
iteration, threads wait for a short duration to avoid long runs [48].
On every loop iteration, each thread selects a lock object at ran-
dom. Our results use the median value of 11 repetitions of 10 sec-
onds each. We do not pin threads to cores, but let the OS do the
scheduling. Additionally, for fairness and for avoiding false cache-
line sharing, we pad all locks to 64 bytes (one cache line). Due to
space limitations, we only show the results on our Haswell machine
(see §2). We get very similar results on our Ivy machine.

Overhead.
We evaluate the overhead of GLK due to its adaptiveness.

Compared to the vanilla TICKET, MCS, and MUTEX algorithms,
GLK additionally executes the following steps: (i) it accesses the
lock_type flag, (ii) it increments the num_acquired counter
on almost every critical section,3 (iii) it updates the queuing statis-
tics of the lock every 128 critical sections, (iv) it tries to adapt
the lock type every 4096 critical sections, and (v) it checks the
lock_type flag for a second time. Additionally, the conditional
statement on whether adaptation should be attempted is executed
on every lock acquisition.

Figure 7 shows the throughput of GLK on three distinct configu-
rations, each suitable for TICKET, MCS, and MUTEX, respectively.
On the single-thread execution, all acquires and releases are local
and uncontested (we use empty critical sections). GLK operates on
ticket mode but is 22% slower than TICKET, mainly because of the
switch statement on the lock_type when locking and unlocking.
Even if we turn adaptation off (i.e., overhead steps (ii)-(iv)), GLK is
still 19% slower than TICKET. This comparison reveals an inherent
3In TICKET mode, we take advantage of the current counter of
the lock to avoid incrementing the num_acquired counter.
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Figure 7: Relative throughput of GLK compared to the best
per-configuration lock on various configurations.

overhead of GLK: An adaptive lock must access a flag to find the
lock type to use. Still, GLK delivers 24% and 30% more throughput
than MCS and MUTEX, respectively.

The second workload includes 10 threads and empty critical sec-
tions, a configuration suitable for MCS locks. In this case, GLK is
7% slower than MCS. Again, even if we remove adaptation from
GLK, GLK is still 6% slower than MCS. The overhead in mcs mode
is lower than in ticket, because there is actual contention behind the
lock, thus the overhead is partly hidden by waiting. Again, regard-
less of the overhead of GLK, GLK is still significantly faster than
TICKET and MUTEX, respectively.

Finally, the third configuration of Figure 7 involves 10 threads
and multiprogramming (we initialize 48 additional threads that just
spin locally). In this configuration, GLK is only 1% slower than
MUTEX, but much faster than TICKET and MCS. As we have
pointed out, fair locks suffer on multiprogrammed workloads.4

Single Lock Behavior.
We evaluate the behavior of a single lock as the number of con-

current threads increases. Critical section are 1024 cycles long.
Figure 8 includes the results of this experiment. As expected, on a
low thread count (i.e., up to 3 threads), TICKET is the fastest lock.
On these executions, GLK operates in ticket mode and follows the
performance of TICKET closely. As we increase the contention fur-
ther, GLK switches to mcs mode, thus behaving similarly to MCS.
Finally, when using more than 48 threads, where there is oversub-
scription of threads to hardware contexts, GLK executes in mutex
mode, in order to handle multiprogramming.

Multiple Locks Behavior.
We experiment with eight locks as the number of concurrent

threads increases, using critical sections of 1024 cycles. On ev-
ery iteration, each thread selects one of the locks at random, using
a zifpian skewed distribution with alpha set to 0.9. In other words,
some locks are more frequently utilized than the rest. The two most

4There do exist techniques, such as time-published queue-based
locks [34], for alleviating this problem.
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Figure 8: A single lock on varying contention.
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Figure 9: Eight locks on varying contention.

busy locks serve 34% and 18% of the requests, respectively. Intu-
itively, in a software system, some locks might be more contended
than others: This is one of the cases that we aim at capturing with
GLK. The developer must not have the difficult duty of identifying
contended locks and customizing their algorithm accordingly.

Figure 9 includes the results of this test. For up to three threads,
all eight locks face low contention. Thus, TICKET and GLK (in
ticket mode) are the fastest. For more threads, the contention on one
to two locks increases, thus MCS is the most suitable choice. GLK is
able to adapt to mcs mode only these highly-contended locks, while
keeping the rest in ticket mode. This behavior results in GLK being
approximately 20% faster than MCS on the non-multiprogrammed
configurations. Under multiprogramming, GLK uses mutex mode
for the two contended threads, while the rest remain in ticket mode.

Varying Workload.
We evaluate the behavior of a single lock when the contention

varies over time. More precisely, the execution is broken into
phases of 0.5-1s.5 In each phase, the number of threads that exe-
cute is selected at random from 1-24. Additionally, 30 background
threads run on the processor. These background threads represent
other applications that could be executing on the same machine.

Figure 10 shows the throughput of different lock algorithms
as a parameter of time and per-phase configuration. On average,
GLK delivers 15% higher throughput than the second fastest lock,
namely MCS. GLK achieves this by dynamically adapting its con-
figuration during every phase, depending on the needs of the work-
load. For instance, in phase 3, where contention is very low, GLK
switches to ticket mode, thus delivering the same performance as
TICKET. In contrast, in phases 0-1, where contention is very high,
GLK switches to mcs to better scale with the number of contend-
ing threads. Finally, in multiprogrammed phases, such as 2 and
10, GLK switches to mutex in order to avoid potential performance
degradation caused by busy waiting.

Conclusions.
GLK can successfully adapt to the needs of the underlying work-

load at runtime, in order to deliver performance that is close to the
best lock algorithm at any point in time. Of course, due to the adap-
tation overhead, GLK is usually slightly slower than the best per-
configuration lock algorithm for fixed workloads. Based on these
results, we claim that GLK delivers close-to-optimal performance
for any workload and configuration combination. Additionally, as
we show in §5, in systems with many locks and complex interac-
tions, GLK can outperform any lock algorithm precisely because of
its adaptiveness.

5Note that GLK is able to adapt with much more fine-grain granu-
larity. Assuming 1M acquires/s, adaptation happens approximately
every 4 ms, hence the phase length can be as low as roughly 10 ms.
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4. GLS: A GENERIC LOCKING SERVICE
GLS is a generic locking service that simplifies lock-based pro-

gramming by handling many of the complexities that developers
must typically cope with when using locks. GLS provides the
classic lock interface (e.g., functions for locking and unlocking).
However, unlike traditional lock libraries, GLS accepts any arbi-
trary memory address (or even value) as an input parameter to
gls_lock. With GLS, gls_lock(17) is a valid lock invoca-
tion. GLS maps the input address to a lock object behind the scenes.
Accordingly, the user of GLS does not need to worry about declar-
ing and initializing locks.

Additionally, GLS offers two very useful extensions: (i) a de-
bugging extension that can detect the most common bugs in lock-
based programming, and (ii) a profiler that reports the amount of
contention on each lock. We first describe the default design and
implementation of GLS and then we detail the debugging and pro-
filer extensions of GLS.

4.1 Programming with GLS

Interface.
Table 1 presents the interface of GLS. Apart from the initializa-

tion functions, GLS includes various calls for locking and unlocking
using different algorithms. These functions accept any arbitrary
value as an input, except for NULL. The default interface of GLS
(gls_lock) utilizes the GLK algorithm. In addition, GLS offers
an explicit interface to six other algorithms.

Implementation.
GLS is essentially a cache for locating the lock object that cor-

responds to an address. We implement GLS on top of a modified
version of the lock-based CLHT hash table [22]. CLHT has sev-
eral properties that are necessary in GLS: (i) it uses cache-line-

Function Description

gls_init() Initialize GLS

gls_destroy() Stop GLS and cleanup
gls_lock(void* m)
gls_trylock(void* m)
gls_unlock(void* m)

Lock, trylock, or unlock m using
GLK algorithm

gls_A_lock(void* m)
gls_A_trylock(void* m)
gls_A_unlock(void* m)

Lock, trylock, or unlock m using
algorithm A. A can be tas, ttas,
ticket, mcs, clh, or mutex

gls_free(void* m) Remove m from GLS

Table 1: GLS interface.

sized buckets, hence operations typically complete with at most one
cache-line transfer, (ii) searching for a key is a read-only, wait-free
operation, (iii) failing to insert a key is also read-only and wait-
free, and (iv) it is resizable. Consequently, when the lock objects
used in a system are stable (i.e., there are not many allocations and
deallocations of locks), the CLHT hash table in GLS becomes a read-
mostly hash table, thus incurring low overhead. The workflow of
gls_lock is as follows:

1 int g l s _ l o c k (void∗ add r ) {
2 g l k _ t ∗ l o c k = ( g l k _ t ∗ ) g l s _ c l h t _ p u t ( add r ) ;
3 return g l k _ l o c k ( l o c k ) ;
4 }

In line 2, GLS is searching in the hash table for the lock object
that corresponds to the given address. We modify clht_put
to create and initialize a new lock object for addr if addr is
not found. If addr already exists in the hash table, then the
corresponding lock object is returned. The gls_unlock func-
tion uses gls_clht_get to fetch the lock which maps to the
given address. (As we show in §4.2, if gls_clht_get re-
turns NULL, GLS detects that an uninitialized lock is used in un-
lock.) The gls_A_lock functions perform the same workflow as
gls_lock, but initialize and use the lock function of the corre-
sponding algorithm A.

Lock-cache Optimization.
In locking, the most common pattern involves acquiring and later

releasing the same lock, without accessing any other locks in the
meantime (the opposite case is called lock nesting). Additionally,
there is temporal locality of accesses: A lock that is used by a thread
will be reused in the near future by the same thread with high prob-
ability. To optimize for these patterns, we introduce a single object
cache in GLS. This cache keeps track of the address and the lock
object of the latest lock that has been accessed. If a lock/unlock
operation finds the target address in the cache, there is no need to
access the GLS hash table. On a cache miss during locking, the
cache is updated with the target address-lock object pair.

Memory Overhead.
GLS adds memory overhead over traditional locking, mainly due

to the hash table. CLHT keeps up to three key-value pairs per cache
line (64 bytes), hence the minimum overhead introduced by GLS is
one-third of a cache line per lock. In our experience, the CLHT used
in GLS typically achieves 60-70% occupancy, thus we estimate the
overhead per lock to be approximately 32 bytes, or 50% of a cache-
line-sized lock object.



0

20

40

60

1				
lock

512	
locks

4096	
locks

O
ve
rh
ea
d	
(c
yc
le
s) Lock	Latency

TICKET MCS

0
1
2
3
4

1				
lock

512	
locks

4096	
locks

Unlock	Latency
MUTEX GLK

Figure 11: Latency overhead of GLS over directly using locks
on a single thread.

Performance Overhead.
We evaluate the performance overhead of GLS compared to using

locks directly.

Single Thread. Figure 11 depicts the latency overhead of GLS on
a single thread, depending on how many locks are accessed. On
each iteration, the thread picks a lock at random. Evidently, with
a single lock, the overhead of GLS is just a few cycles due to the
lock cache that is always able to locate the lock without accessing
the GLS hash table. The same applies for the unlock latencies in
this experiment, regardless of the number of locks: Unlock opera-
tions always hit on the lock cache (no lock nesting). Without the
cache, the unlock latency overhead is close to the GLS overhead in
lock functions. With 512 locks, GLS adds approximately 30 cycles
overhead, which corresponds to roughly 100% increase in lock la-
tency. As we increase the number of locks, the size of the hash table
does not fit in the L1 cache, thus the overhead of GLS increases.

Multiple Threads. Figure 12 compares the throughput of different
lock algorithms when used in GLS to direcly using the lock algo-
rithm, with 10 threads competing for 1, 512, or 1024 locks (high,
medium and low contention respectively). Each thread randomly
chooses among the locks and spends 1024 cycles in the critical sec-
tion. When locks are not contested (4096 locks to choose from), the
overhead of GLS is proportional to the duration of the critical sec-
tion. In the presence of contention, however, the overhead of GLS
can be masked by waiting.

4.2 Debugging with GLS
GLS can be configured to detect several lock-related issues. In

order to detect potential bugs, including deadlocks, GLS in debug
mode keeps track of the owner of each lock object. In what follows,
we describe the issues that GLS can detect. Note that some of these
issues could be seen as features depending on the semantics of the
specific lock algorithm in use.

Uninitialized Locks.
GLS handles the mapping of addresses to lock objects. Accord-

ingly, GLS can detect when a thread is trying to access an uninitial-
ized lock. Upon releasing a lock, uninitialized locks are detected
when the target address does not exist in the hash table, which
means that the lock was not acquired before. In order to detect
uninitialized locks while trying to acquire a lock, GLS adds spe-
cial values in the overloaded MUTEX locks for static initialization
(instead of the default ones used by the pthread mutex). When
trying to acquire a lock, if the call to gls_clht_put does not
find an address-lock mapping, there are two possible cases: either
the lock has been statically initialized, or the lock has not been ini-
tialized at all. To discern between the two, GLS checks whether the
MUTEX object contains the special values used for static initializa-
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Figure 12: Relative throughput of GLS over directly using locks
on 10 threads.

tion. If that is the case, the lock was statically initialized, otherwise
an error is detected. Due to the static declaration of these locks, it
is certain that if not initialized, they will contain a zero value [1].

Double Locking.
GLS can check whether the current owner of a lock tries to ac-

quire that same lock again. GLS implements this functionality by
comparing the id of the thread that is performing the operation with
the id of the lock owner. Of course, double locking is a subset of
deadlock detection.

Releasing a Free Lock.
Releasing an already free lock can either break some lock algo-

rithms (e.g., TICKET), or result in race conditions where a thread is
trying to acquire the lock while another is falsely releasing it at the
same time. GLS checks whether an unlock function call operates
on a lock that is already free.

Releasing a Lock with Wrong Owner.
GLS checks that the owner id of the lock to be released is the

same as the id of the thread performing the unlock operation.

Deadlocks.
Deadlocks can be very hard to detect and debug [28]. GLS imple-

ments a technique for detecting and reporting deadlocks at runtime.
GLS implements deadlock detection in the following steps:
1. GLS augments the hash table with a waiting array that indicates

which lock each thread is waiting on (if any).
2. Before calling the lock/trylock function in the
gls_clht_put invocation, GLS records that the corre-
sponding thread is waiting on the target address.

3. When the lock is acquired (or the trylock function completes),
GLS updates the waiting structure to indicate that this thread is
not waiting behind that lock anymore.

4. Additionally, the owner of that lock is set to the thread id. For
trylock, the owner id is set iff the lock was successfully ac-
quired.

5. On lock release, the owner id for that lock is cleared.
Based on the aforementioned steps, if the thread is waiting be-

hind a lock for a long time (i.e., more than a second), GLS triggers
the following deadlock-detection procedure:

// the invoking thread is waiting on wait_lock
wai t_on = w a i t _ l o c k ;
do {

/* find the owner of the lock that the
previous thread is waiting on */

owner_ id = g l s _ d e b u g _ g e t _ o n w e r ( wa i t_on ) ;
// if the invoking thread re-appears
if ( owner_ id == g l s _ g e t _ i d ( ) )

g l s _ d e b u g _ d e a d l o c k _ p r i n t ( ) ;
// find the lock that owner_id is wating on
wai t_on = g l s _ d e b u g _ g e t _ w a i t _ o n ( owner_ id ) ;

} while ( w a i t _ o n _ l o c k != NULL) ;



In short, the invoking thread owner0 tries to find a cycle with
owner0 → waiting0 → owner1 → waiting1 → ... → owner0 rela-
tionships. If such a cycle exists (a series of relationships that starts
and ends with the same id) a deadlock is detected. In that case, GLS
prints the details of the cycle as well as the backtrace of the call
that caused the deadlock:

[GLS]WARNING> DEADLOCK 0x1ad0010 - cycle detected
[2 waits for 0x1ad0010] ->
[9 waits for 0x1acfff4] ->
[8 waits for 0x1acfff8] ->
[2 waits for 0x1ad0010]
[BACKTRACE] Execution path:
[BACKTRACE]#0 ./stress_error_gls(glk_lock+0x4b)
gls/src/glk.c:392
[BACKTRACE]#1 ./stress_error_gls(gls_lock+0x54)
gls/src/gls.c:196
[BACKTRACE]#2 ./stress_error_gls(test+0x248)
gls/bmarks/stress_error_gls.c:160

Note that this output is a simplified version of the actual output.
GLS can provide more details for debugging the deadlock easier
(e.g., automatically setting GDB breakpoints and printing the ac-
tual pthread ids of threads).

Removing GLS Deadlock-detection Overhead.
The overhead of GLS’s detection technique is high, because every

lock and unlock operation has to update some metadata in the GLS
hash table. In our microbenchmarks, GLS in debugging mode per-
forms up to 4 times slower than without debugging. However, this
metadata (regarding waiting-for relations and lock ownership) is
only checked when the deadlock-detection procedure is triggered.
Accordingly, we can avoid updating this metadata in normal opera-
tion and only have the threads update it when they are stuck behind
a lock for a significant amount of time. With this approach, dead-
lock detection happens after a couple of invocations to the detection
procedure, but we almost completely remove the overheads while
threads operate normally.

4.3 Profiling with GLS
GLS can be configured to operate in a low-overhead profiler

mode. In this mode, GLS reports per-lock statistics regarding the
average queuing behind the lock, the lock acquisition latency, and
the critical-section duration. For instance, in SQLite the output is
similar to the following:6

[GLS] queue: 0.03 | l-lat: 96 | cs-lat: 194
@ (0x7fe6318eb660:sqlite3.c:pthreadMutexEnter)
[GLS] queue: 4.50 | l-lat: 13963 | cs-lat: 2848
@ (0x7fe6318eb4e0:sqlite3.c:pthreadMutexEnter)

We use this profiler mode to easily detect highly-contended locks
that are likely to become a scalability bottleneck as we scale a sys-
tem. For example, in §5, we use the profiler to better redesign
locking in Memcached and to better understand the performance
results on various systems.

Additionally, GLK can be configured to print the mode transi-
tions that it performs, as well as the reason behind each transition.
This output can be used to better understand potential variations
in the workload behavior. It can also be used to decide on a pre-
determined lock algorithm that is the most suitable for a given lock
object in a system (in case the designer selects to use a per-lock
custom algorithm).
6SQLite wraps mutex calls in a function. We could get the actual
location of this invocation by printing the backtrace of the call.

5. GLS / GLK IN LOCK-BASED SYSTEMS
We modify locking in various concurrent systems in order to

evaluate the effectiveness of GLS and GLK. In most systems, mod-
ifying locks is as simple as overloading the pthread mutex func-
tions with our own lock implementations. We first show how we
can easily employ GLS in debugging and optimizing Memcached.
We then plug GLK in various modern software systems in order to
improve their performance.

5.1 Re-engineering Memcached with GLS
Debugging Memcached.

We notice that when we overload pthread mutexes with cer-
tain lock algorithms (i.e., TICKET, MCS and GLK), Memcached (v.
1.4.20) hangs. We identify this behavior as the perfect opportunity
to show the debugging capabilities of GLS in action. Indeed, GLS
reports the following output:

[GLS]WARNING> LOCK 0x6344e0 - Uninitialized lock
[BACKTRACE] #0 memcached/thread.c:662
[BACKTRACE] #1 memcached/assoc.c:72

[GLS]WARNING> UNLOCK 0x62a494 - Already free
[BACKTRACE] #0 memcached/slabs.c:836
[BACKTRACE] #1 memcached/assoc.c:249

The first warning is about locking the uninitialized
stats_lock in assoc.c. The second one involves un-
locking the slabs_rebalance_lock before it is ever
acquired. Based on the output of GLS, we easily fix these two
issues. Notice that these issues do not manifest with MUTEX,
because (i) the stats_lock is always initialized to zero due
to its static declaration [1], and (ii) unlocking a free lock with
MUTEX leaves the lock in the same state. However, the first issue
(locking the uninitialized stats_lock) is indeed a programming
error, as the behavior of MUTEX in such cases is undefined [9].
The second issue (unlocking the slabs_rebalance_lock
without acquiring it) can either be an error, or not, depending on
the configuration of pthread mutex.

Optimizing Memcached.
The main goal of GLS is to make programming with locks easier.

To showcase using GLS in practice, we re-implement synchroniza-
tion in the Memcached key-value store from scratch, using the GLS
API directly. We remove the code for lock declaration and initial-
ization and replace the calls to pthread locks with calls to GLS.
We use the gls_lock and gls_unlock functions and let GLK
choose the most suitable locking technique for our workloads. We
remove 26% of the synchronization code of the application and
modify 186 lines of code in total. This implementation is the way
we expect that most GLS users will be using the service, allowing
for fast and easy development of lock-based applications.
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HamsterDB [2] An embedded key-value store. We run three tests
with random reads/writes, varying the
read-to-write ratio among 10% (WT), 50%
(WT/RD), and 90% (RD).

Version: 2.1.7
# Threads: 2

Kyoto [3] An embedded NoSQL store. We stress Kyoto
with a mix of operations for three database
versions (CACHE, HT DB, B+-TREE).

Version: 1.2.76
# Threads: 4
Memcached [5] An in-memory cache. We evaluate Memcached

using a Twitter-like workload [42]. We vary the
get ratio from 10% (SET), 50% (SET/GET), to
90% (GET). We dedicate one socket on each
machine to the Memcached server and the other
to the clients.

Version: 1.4.22
# Threads: 8

MySQL [7] A relational DBMS. We use Facebook’s
LinkBench and tune the MySQL server following
Facebook’s guidelines [4] for in-memory (MEM)
and SSD-drive (SSD) configurations.

Version: 5.6.27

SQLite [8] A relational DB engine. We use TPC-C with 100
warehouses varying the number of concurrent
connections (i.e., 8, 16, 32, and 64).

Version: 3.8.5

Table 2: Software systems and configurations.

Figure 13 compares the performance of Memcached when using
MUTEX, GLK, as well as GLS using GLK on our Ivy platform. The
GLS version is 7% slower than directly using GLK. This is due to
the overheads of GLS. Still, the GLS version is 7% faster than the
default Memcached implementation with MUTEX.

We then set out to better understand the performance of locking
in Memcached. We first observe the output of GLK and notice that
most locks operate in TICKET mode, which hints at these locks
facing little contention. We then use the GLS profiler mode (see
§4.3) to understand the different requirements and behavior of each
lock. What we discover is that all the locks used in Memcached
exhibit low contention, with the exception of specific global locks
(e.g. the stats_lock).

Accordingly, we devise a second version of Memcached, again
using GLS. This time we use the explicit interface of GLS (see Ta-
ble 1), choosing the lock algorithm that best suits each lock. We
use MCS locks for the contended global locks and TICKET locks
for the internal hash table and all other locks. GLS allows us to use
any lock algorithm by simply modifying the lock and unlock func-
tion calls. This enables us to avoid the adaptation overheads and
tailor our synchronization code to the optimal strategy. Figure 13
shows that the performance gains from this implementation are
significant. Specifically, GLS SPECIALIZED achieves 14% higher
throughput than the default MUTEX version, the same as GLK. Pro-
grammers with experience in lock-based programming can use this
interface to achieve higher performance while still benefiting from
the simplicity of GLS.

5.2 Optimizing Systems with GLK
We modify locking in five software systems. We select the set

of systems so that they employ locking in diverse ways, including
concepts such as global locking, fine-grained locking, reader-writer
locks, and conditional variables. Table 2 includes a short descrip-
tion of the systems that we use, as well as the workloads that we
use to evaluate them. All of our experiments use a dataset size of
10 GB, except for the MySQL SSD configuration. For this experi-
ment, we use a dataset of 100 GB. We tune each system to achieve
maximum throughput and configure the number of threads used
based on the maximum-throughput configuration with their default
MUTEX locks. Figures 14 and 15 show the throughput of the target
systems when employing different lock algorithms on our Ivy and
Haswell platforms respectively.

Overall.
For both platforms, we see that in 14 out of 15 configurations

for Ivy (and 12 out of 15 for Haswell), GLK improves the perfor-
mance over the default MUTEX lock on the target systems. The
performance gains range from 1% to 80% on our Ivy machine, and
from 3% to 53% on our Haswell machine. On average, GLK deliv-
ers 25% higher throughput than MUTEX on Ivy and 21% higher
on Haswell by selecting the most appropriate locking technique
per lock, per phase, and per configuration. Naturally, there do ex-
ist configurations where spinlocks are sufficient. In these cases,
the performance of both TICKET and MCS is similar. Addition-
ally, there are few configurations where MUTEX delivers the high-
est throughput. In these configurations, where GLK does not de-
liver the highest throughput, GLK is slower only up to 8% than
the best performing lock. In contrast, in the configurations where
GLK delivers the best performance, we see the power of adaptive-
ness, as no static algorithm can capture the characteristics of the
workload. The overall trends in the results are intuitive. In low-
contention configurations, TICKET (i.e., simple spinlocks) delivers
the best performance due to its simplicity. On higher contention
levels, MCS is the fastest. Finally, in multiprogrammed configura-
tions, blocking locks, such as MUTEX, are necessary.

HamsterDB.
The HamsterDB embedded key-value store [2] relies on a global

lock. Of course, the contention on that lock is very high. We mea-
sure with the GLS profiler that with N worker threads, the average
queuing behind the lock is always close to N−1. Consequently, we
use just two threads as the application cannot scale further. TICKET
delivers the best performance. GLK operates in ticket mode, de-
livering throughput very close to TICKET. MUTEX lags behind in
performance because it employs, unnecessary for this workload,
block and unblock invocations.

Kyoto Cabinet.
The Kyoto Cabinet NoSQL store [3] comes in two flavors: a

hash table, and a B+-tree-based implementation. The hash-table
version has two extensions, a store (HT DB) and a cache (CACHE).
All three versions protect the main data structure with a highly-
contended global reader-writer lock.7

Additionally, the hash-table versions use 16 mutexes, each pro-
tecting a group of buckets. These locks typically face very low
contention: We use GLS in profiler mode to measure the con-
tention and discover that the average queuing behind locks is less
than 0.1 and 0.05 for CACHE and HT DB, respectively. However,
the throughput of CACHE is approximately 10-times higher than
that of HT DB, which means that there is significantly higher traf-
fic on the locks of the former. Additionally, CACHE utilizes up
to 10 levels of lock nesting. Nesting with MCS locks is expen-
sive because, for each lock, threads must find and use a separate
queue node. These behaviors are reflected in the results of CACHE,
where TICKET is significantly faster than MCS. For CACHE, GLK
operates in ticket mode and thus delivers throughput very close to
TICKET. On HT DB, locks are accessed less frequently, hence the
performance gains obtained by changing the locks used are smaller
than those on CACHE.

The tree-version uses reader-writer locks for the nodes of the tree
and mutexes for a custom cache of the tree nodes. These mutexes
are highly contended: Both MCS and GLK significantly outperform
TICKET and MUTEX.

7For TICKET, MCS, and GLK, we overload the pthread reader-
writer locks with our custom TTAS-based implementation.
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Figure 14: Normalized (to MUTEX) throughput of various systems with different locks on our Ivy machine.
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Figure 15: Normalized (to MUTEX) throughput of various systems with different locks on our Haswell machine.

Memcached.
As we describe earlier in this paper (Section 5.1), the locks in

our Memcached experiments typically face low contention. Thus,
TICKET delivers the highest performance for Memcached. Con-
sequently, with GLK, most locks operate in ticket mode, achieving
performance that is very close to that of TICKET for both platforms.

MySQL.
MySQL is a complex system that handles most low-level syn-

chronization with custom locks (semaphores). Clearly, neither sim-
ple, nor queue-based spinlocks are sufficient for MySQL: In both
workloads, MySQL oversubscribes threads to hardware contexts.
The result is a livelock for both MCS and TICKET that deliver less
than 100 operations per second. Notice that the fairness of these
two locks exacerbates the problem. In comparison, a TTAS lock –
not shown in the graph – gives 90% and 50% lower throughput than
MUTEX on the MEM and SSD workloads, respectively.

On MySQL, we see an inherent limitation, but also the true
power of adaptiveness. On the in-memory workload, GLK is 4%
slower than MUTEX on Ivy and 1% slower on Haswell. This dif-
ference in throughput is due to the adaptiveness overhead. Directly
using the mutex implementation of GLK results in the exact same
throughput as MUTEX. However, on the SSD workload we see
the power of adaptiveness: Many locks in MySQL are lightly con-
tended, thus using ticket mode instead of mutex results in 9% higher
throughput on Ivy and 3% higher throughput on Haswell. In com-
plex systems, such as MySQL, it is nearly impossible to manually
customize every single lock with the “correct” algorithm.

SQLite.
SQLite is based on a B-tree data structure. SQLite implements

concurrency with both coarse and fine-grained locks. SQLite uses
a MUTEX for each database (e.g., each new connection), another
for memory allocation, and a last one for protecting the database
cache. However, the nodes of the B-tree are protected by custom
reader-writer locks. The mutexes of SQLite become contended as
we increase the number of connections.

With 8 and 16 connections, MCS gives the best performance,
with GLK following closely. However, on 32 connections, the
workload has some phases with multiprogramming, thus the per-
formance of MCS and TICKET drops. As expected, on 64 connec-
tions, using fair spinlocks results in livelocks. In comparison, TTAS
– not shown in the graph – delivers 30% lower throughput than
MUTEX. On both 32 and 64 connections, GLK achieves slightly
better throughput than MUTEX on Ivy and follows closely MUTEX
on Haswell, with lightly contended locks remaining in ticket mode.

Conclusions.
GLK is able to adapt and capture the needs of all the 15 work-

loads on the five systems that we evaluate. Doing so, GLK improves
the performance of these systems by 25% and 21% on average on
our two platforms, with practically zero effort on the developer’s
side. Even on the configurations that GLK does not deliver the best
performance, due to the overheads of adaptation, GLK is only up
to 8% slower than the best performing lock. Consequently, our
experimental results validate our claim that GLK can deliver close-
to-optimal performance regardless of the configuration.



6. RELATED WORK
Lock Algorithms.

Apart from the traditional spinlock algorithms (e.g., test-and-set,
ticket locks [47]), there are several efforts towards designing more
scalable locks. Mellor-Crummey et al. [47] and Anderson [10] in-
troduce several alternatives, such as queue-based locks. Luchangco
et al. [45] design a hierarchical CLH lock [20] for NUMA architec-
tures. Dice et al. [24] generalize the design of NUMA-aware hier-
archical locks by introducing a technique for converting any lock
algorithm to be hierarchical. Chabbi et al. [18] and Zhang et al. [60]
design locks for NUMA systems, delivering performance in various
contention scenarios. David et al. [21] analyze various lock algo-
rithms on different platforms and point out that “every lock has its
fifteen minutes of fame.” Our GLS middleware and GLK algorithm
directly build on top of the observations and the results of such
prior work. Concurrently with our work, Guiroux et al. [33] study
the performance of lock algorithms in applications and confirm the
previous findings. Their LiTL library uses a similar approach to
GLS, but with the aim of easily switching between lock algorithms.

Adaptiveness in Locks.
Karlin et al. [39] analyze the cost of busy waiting and block-

ing and show that adaptive techniques (i.e., adapting the amount of
spinning before threads block) deliver the best performance. Simi-
larly, Falsafi et al. [29] design a mutex algorithm that dynamically
adapts the amount of spinning when locking/unlocking, to achieve
higher energy efficiency. Many modern lock designs, such as the
classic mutex lock, both on Linux [6] and on Solaris [56], include
this type of adaptiveness. Similarly, the Hotspot 7 JVM modifies its
semaphore algorithm at runtime to save memory, based on the idea
of thin locks [12]. If there are no threads waiting behind the lock,
the JVM represents the lock with just a few bits, otherwise it con-
verts the lock to keep track of the queue of waiting threads. Lock
elision [31, 52, 53] aims at reducing the overhead of locking when
critical sections do not actually conflict. A thread can optimistically
execute its critical section without acquiring a lock. If a data con-
flict appears, then the thread rolls back and executes the critical sec-
tion normally. Diniz and Rinard [25] introduce dynamic feedback,
where the compiler generates various synchronization policies that
can then be selected at runtime based on sampling.

Lim and Agarwal [41] propose reactive locks, an adaptive syn-
chronization scheme that switches between different protocols and
waiting strategies. In this sense, GLK can be viewed as an instance
of reactive locks. However, GLK is a fully practical adaptive lock
algorithm, tailored to modern multicores. GLK includes three con-
crete lock algorithms which cover the needs of modern software
systems, tuned approaches for collecting contention statistics for
the locks, as well as a low-overhead method for detecting multi-
programming and switching to a blocking lock when necessary.

Johnson et al. [38] present a locking technique (LC) that decou-
ples waiting from thread scheduling. A global monitor controls
how many threads must block, while the remaining threads use
time-published MCS locks [34]. The background thread of GLK
is similar to this global monitor. However, in GLK, every lock ob-
ject is a “normal” lock with just a hint on whether it should employ
the mutex mode.

Debugging Locks.
Debugging locks is notoriously hard. The main techniques avail-

able today can be categorized into static and dynamic. Static tech-
niques identify deadlocks by analyzing the lock and flow graphs
of an application and by employing heuristics for identifying the
prerequisites for a deadlock [28, 50, 58]. Dynamic deadlock-
detection techniques employ ways of monitoring the acquired locks

for each thread and discovering cycles in the locks that are being
locked [40, 51, 54, 57]. More specifically, Koskinen et al. [40] im-
plement a deadlock detection algorithm that allows lock operations
to expire. Pyla et al. [51] implement a runtime for deadlock de-
tection for applications that use pthreads. Samak et al. [54] use
dynamic analysis and execution traces to identify possible dead-
locks. GLS includes a low-overhead, dynamic debugging mode,
which can identify issues in lock-based applications.
Alternatives to Traditional Locks.

Transactional memory, in software (STM) [27, 49, 55] or in
hardware (HTM) [23, 36], replaces locks with transactions as a
concurrency-control mechanism. On the one hand, STMs are typi-
cally slower than locks, due to their instrumentation overhead. On
the other hand, HTMs are not mature enough and cannot yet fully
replace locking [59]. Flat combining [35] is a technique for op-
timizing coarse-grained locks (e.g., the global lock of a queue).
With flat combining, a critical section translates to a message to a
dedicated server thread that executes the request on behalf of the
invoking thread. Similarly to flat combining, RCL [44] overloads
the lock function for highly-contended locks with remote proce-
dure calls on a dedicated server thread. Unlike flat combining and
RCL, GLK optimizes both lightly- and highly-contended locks.
Locks in Systems.

There are various efforts in operating systems to minimize shar-
ing [15], to remove lock-related bottlenecks [16, 17], or to com-
pletely avoid locks [11, 13] in order to resolve scalability bottle-
necks. Similarly, in data stores and DBMSs, recent projects [26,
30, 32, 37, 44, 46] show significant performance improvements in
systems such as Memcached and RocksDB, mainly by removing
contended locks. GLS is designed to make development of such
systems easier, while achieving high performance.

7. CONCLUSIONS
We introduced GLS, a generic locking service and the accom-

panying GLK lock algorithm. GLS is a middleware that makes
lock-based system development significantly easier (i) by removing
the need for manually handling lock declaration and initialization,
(ii) by detecting several common lock-related correctness issues,
and (iii) by profiling and reporting per-lock statistics, such as the
contention behind a lock and its acquisition latency. GLK simpli-
fies things further, by monitoring the contention levels of a lock in
order to dynamically adapt the locking algorithm to the needs of
the underlying workload, delivering the best performance among
spinlocks, queue-based locks, and blocking locks.

We showed that GLS can simplify concurrent programming,
adding low overheads compared to directly using a locking algo-
rithm. We also showed that GLK is always able to capture the needs
of the workload, adapting to the best-performing algorithm for each
workload phase. We used GLS to re-implement synchronization in
Memcached, resulting in 26% less lock-related code and achieving
14% higher throughput. We also used the debugging facilities of
GLS to detect two locking issues in the initial Memcached imple-
mentation. Finally, we used GLK in five software systems: Hams-
terDB, Kyoto Cabinet, Memcached, MySQL, and SQLite, compar-
ing against their default locking algorithm, as well as the different
modes that GLK can operate in. We improved the performance of
these five systems by 23% on average, on two different platforms,
using GLK, with essentially zero effort.
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