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Abstract

To address the growing difficulty of performance debugging
on modern processors with increasingly complex micro-
architectures, we present Hierarchical Cycle Accounting
(HCA), a structured, hierarchical, architecture-agnostic
methodology for the identification of performance issues in
workloads running on these modern processors.

HCA reports to the user the cost of a number of execution
components, such as load latency, memory bandwidth,
instruction starvation, and branch misprediction. A critical
novel feature of HCA is that all cost components are presented
in the same unit, core pipeline cycles. Their relative
importance can therefore be compared directly.

These cost components are furthermore presented in a
hierarchical fashion, with architecture-agnostic components
at the top levels of the hierarchy and architecture-specific
components at the bottom. This hierarchical structure is useful
in guiding the performance debugging effort to the places
where it can be the most effective.

For a given architecture, the cost components are computed
based on the observation of architecture-specific events,
typically provided by a performance monitoring unit (PMU),
and using a set of formulas to attribute a certain cost in cycles
to each event. The selection of what PMU events to use, their
validation, and the derivation of the formulas are done offline
by an architecture expert, thereby freeing the non-expert from
the burdensome and error-prone task of directly interpreting
PMU data.

We have implemented the HCA methodology in Gooda, a
publicly available tool. We describe the application of Gooda
to the analysis of several workloads in wide use, showing how
HCA’s features facilitated performance debugging for these
applications. We also describe the discovery of relevant bugs
in Intel hardware and the Linux kernel as a result of using
HCA.

1. Introduction

Performance tuning plays a crucial role in the quest for higher
efficiency, but the increasing complexity of modern processors
makes it more difficult to identify the causes of poor
performance. Modern processors include a performance
monitoring unit (PMU) that provides statistics on the
execution of an application, in the form of counts or
frequencies for thousands of micro-architectural events, such
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as, for instance, frontend stalls or cache misses. Their presence
is required to provide coverage for the multitude of complex
interactions and issues that can occur. Tools, like perf in
Linux, make this information available to the user [1].
Choosing the data to collect and its direct interpretation by end
users has proven unreasonably difficult and error-prone. For
instance, simple values such as those displayed by perf-stat
may or may not highlight a possible performance problem, but
do not in any case lead to any specific action. In addition,
variations between PMUs on various generations of hardware
make it difficult to explain changes in application performance
(or the lack thereof) on different platforms, in particular for
non-experts. There is no guarantee an event, advertised as
“generic” by the software — that is having the same name and
purportedly measuring the same effect on any architecture —
actually really measures the same phenomena on different
architectures.

It is natural to attempt to raise the level of abstraction at which
execution statistics are communicated to the end user. Ideally,
the mundane quirks of PMU data collection would be
obscured (such is Yasin’s approach in [2]), and the amount of
detailed architecture knowledge would be reduced.

Hierarchical Cycle Accounting (HCA) is a new performance
tuning methodology defining a hierarchy of higher-level
metrics computed from PMU results, and improving on state
of the art in several ways. Most importantly, in HCA all
metrics are reported in terms of cycles. Such a uniform
presentation of results makes them easier for the user to
interpret, allowing direct comparison between different
metrics in the tree and between architectures. Metric values
can be reported per execution, if sourced from PMU counting
data, or per code location at various granularities, if sourced
from PMU interrupt based profiling data.

The details of creating an integrated analysis using up to
hundreds of carefully selected, validated events is not
something that should be enforced on the typical code
developer (recent work highlights related difficulties
[31[4][5]). HCA has been incorporated in a performance
tuning tool, called Gooda, publicly available in open-source.
Gooda has been in use since 2012, and we report on some of
the experience obtained in using the tool over this time. In
particular, we provide results from using Gooda on a large
scientific application, focusing on how employing HCA and
Gooda allowed non-architecture experts to diagnose and
optimize certain performance problems.



The contributions of this paper are:

1) HCA, a new method for application performance tuning. It
quantifies in cycles the cost of microarchitectural issues,
systematizes them and makes an expert tuning methodology
more accessible to non-experts.

2) Gooda, a new profiler implementing the HCA methodology
on several variants of x86, supporting power 7/8§ and ARM
Instruction Set Architectures.

3) A set of observations emerging from practical work with
microarchitectural events as reported by PMUs.

The outline of the rest of the paper is as follows. Section 2
describes the HCA methodology and its novel features.
Section 3 shows in detail how HCA has been implemented on
the Intel Ivy Bridge architecture, and briefly discusses possible
implementations on other architectures. Section 4 describes
the Gooda tool, which incorporates the HCA methodology.
Section 5 reports on the use of HCA on example applications.
Section 6 discusses related work and draws conclusions.

2. The HCA Methodology

Hierarchical Cycle Accounting (HCA) is a structured,
hierarchical, architecture-agnostic ~methodology for the
identification and quantification of known performance issues
in workloads running on modern processors.

HCA helps users minimize the number of cycles their
programs consume and waste. Its goal is to make a (so far)
expert methodology more accessible to a wider audience and
to improve the quality of results — in particular in terms of
accuracy and the estimated cost of discovered issues. Further,
it can enable the comparison of hierarchy components between
different architectures. HCA is based on the premise of cycle
accounting. In cycle accounting [6], the fundamental metric of
merit is a cycle, and cycles consumed by the program can be
assigned to specific architectural activities. The approach was
popular with TA-64 systems [7] and was implemented in a
limited fashion on x86 processors [8]. Our contributions
improve on the basic ideas in the following ways.

HCA accounts for cycle usage by means of abstracted
architecture-agnostic metrics expressed in core pipeline
cycles. Examples include load latency, bandwidth saturation,
instruction starvation, branch misprediction — described in
section 2.2. For all architectures, at high levels there is a single
tree-based decomposition. The architecture-agnostic metrics
are constructed as bottom-up sums of event counts times
penalties, from carefully selected, validated performance
events that have well defined measurable penalties. The events
are selected on the basis of positional accuracy of the
generated interrupts for profiling, only counting what is
desired (so there is a well-defined penalty) and using sufficient
numbers of performance events (to ensure the ability to
distinguish related problems with distinct optimization
approaches). Differences are avoided whenever possible, as
the positional accuracy of a difference is unacceptable due to
difference in the interrupt skid [9][3] of the events used.
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As a bottom-up sum of positionally accurate events is used,
the relative importance of issues in different branches and in
different regions of code is always comparable even at the
finest Instruction Pointer granularities (functions and
disassembly) and at the most detailed levels of the tree (e.g.,
remote socket access to modified cache lines vs. branch
mispredictions). This powerful consistency results in never
changing the relative size or units of performance data as the
largest, easiest to fix issues are evaluated.

The requirement of using a sufficient number of events to
identify problems with different solutions defines the quality
of the PMU coverage. HCA is architecture-agnostic, but not
all problems can be identified on all processors. For example,
if the memory access events used to compute load latency due
to cacheline movement include anything other than cacheline
movements due to retiring loads (e.g., stores, prefetches, cache
line movements due to speculative instructions, instruction
fetches, and other effects — also discussed in [5]) then that
PMU is incapable of producing an accurate answer and does
not have coverage for the problem. Similarly, the different
treatment of even simple events from this group by different
architectures (e.g., Intel and AMD x86) questions the coverage
of “generic events”. The lack of accurate coverage is one of
the dominant problems facing hardware based performance
analysis efforts.

2.1 The HCA metric tree and its levels

The core component of HCA is its metric tree, forming a
taxonomy of possible issues (Figure 1). The top two levels of
the tree are characterized and constructed as follows.

Total cycles are divided into halted and unhalted. The halted
state is entered when the OS finds it is blocked from executing
anything useful. This is usually an indication that the threads
are waiting for interrupts from IO requests. In the halted state
the core PMU is frequently powered down (e.g., on Intel
processor families SNB, IVB, HSW, or ARM [10]).

The unhalted state can be investigated using the events of the
core PMU. Execution cycles can be divided into those with
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Figure 1: The HCA metric tree



and without pipeline stalls. The exact way these two classes
are defined is not of major importance as the objective is to
determine the nature and location of the large, easy to fix
performance issues, which require a far greater level of detail.

The critical decomposition starts at the third level by defining
high level metrics, that might in principle exist on any
processor. The categories are shown at the right of Figure 1.
These abstracted metrics, measured in cycles, can be directly
compared when a given program is run on a range of
architectures, as long as each has the event coverage enabling
accurate measurement.

Figure 5 in the Appendix shows a block schema for a typical
out—of-order processor pipeline. The events measured by the
PMU indicate activity at different places in such a diagram.
Because an understanding of the measurements ultimately
rests on an understanding of the relationship between the
abstractions in Figure 1 and the implementation of the
measurement in Figure 5, these relationships are highlighted in
the discussion of the architecture-agnostic metrics that follows
in section 2.2.

As HCA reconstructs its metrics as sums of events from the
bottom-up, there is the possibility of temporally overlapping
issues causing a cycle overcount. In practice, we observed this
is rarely a large issue. When it does occur it shows that more
than one issue must be addressed to realistically achieve a net
performance gain, so there is actually considerable value in
exposing this information. This suggests that additional
measurements can be useful and having supplementary
informational metrics displayed in an analysis tool can assist
in understanding the performance problem rather than
obscuring it. These are also critical to discovering problems
with the event implementation in the hardware.

2.2 Level 3 — Architecture-Agnostic Metrics

The requirements on the abstracted metrics are that they cover
all potential performance bottlenecks and that they are
sufficiently fine-grained to convey actionable information,
either for performance comparison across architectures or the
identification of solvable performance problems. Further, they
must be accurately positioned in an interrupt-generated profile
[11], otherwise there is no possibility of their being useful for
problem identification in an actionable way. Again, this
precludes the use of differences or ratios and should only rely
on sums if at all possible. For example, a single covering
backend metric would not meet such requirements as it leads
to no action.

The “stalled cycles” branch covers a range of possible sources
of stalls, expressed in a generic fashion and computed as a
sum of event counts times penalties (to put all metrics in the
units of cycles), so both the count per address and the penalties
need to be accurately defined.

2.2.1 Stalled cycles

Load latency estimates the penalty for execution stalls due to
long latency data loads. It is used to pinpoint the sources of
long loads hitting different levels of the memory hierarchy.
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This is the most complex metric due to the hierarchy of the
cache architecture (Figure 5, items 1, 21, 22) and its many
distinct latencies. Thus, to achieve coverage, one PMU event
per data source/penalty is required and measured. In addition,
they must only count retiring load driven cacheline movement.
For CPUs with a DTLB, DTLB translation costs are shown
here creating a multi-level structure (see 2.3).

Bandwidth saturation is a condition which occurs when the
memory subsystem’s data transfer capability is saturated. It is
useful for understanding the bottlenecks of memory-intensive
code. Measuring the cost of bandwidth saturation is a subtle
affair. Measuring the bandwidth is not useful in ascribing a
cost in cycles, as bandwidth is a time average and not a cycle-
by-cycle measurement. If bandwidth saturation occurs in very
short bursts of less than a few milliseconds, it would simply go
into a longer time average and will remain undetected.
Therefore, to measure the cycles which are bandwidth
saturated we detect cycles with large numbers of cacheline
retrievals simultaneously in flight. This can be accomplished
by monitoring the cycles with high occupancy in the cache
miss queues. Bandwidth Saturation conditions can frequently
overlap with Load Latency, for example in a gather operation,
where Load Latency may account for many times the total
cycle count. It is precisely this combination of the two
measurements that identifies the nature of the underlying
issue. Depending on the location of the queue being
monitored, bandwidth saturation can include last-level cache
bandwidth saturation. Thus additional cacheline movement
count measurements can be used to clarify the issue.
Implementation specific details are discussed in section 3.

Instruction starvation occurs when the instruction scheduler,
aka reservation station (Figure 5, item 14), has insufficient
instructions to schedule effective use of the execution units.
This metric, sometimes referred to as simply “Frontend” (FE),
estimates the number of idle cycles spent waiting for
instructions. It allows to locate sources of code starvation
which lowers execution efficiency. In server applications this
is dominated by instruction fetch from caches (primarily L2
and above). In client applications substantial contributions can
also come from decoding bottlenecks, FE pipeline flow
redirection and related effects. Instruction starvation can be
measured either by counting cycles where the FE delivers no
pops (micro-operations) to the scheduler or by measuring low
occupancy in the scheduler. The latter provides higher
positional accuracy, being closer to retirement, and avoids
counting cycles where a large scheduler already has plenty of
pops to keep the execution stages occupied (see sections 3.3
and 5.2). Both techniques suffer from also counting cycles
associated with recovering from pipeline flushes due to branch
misprediction. Further, store resource saturation can result in
the scheduler draining due to blocked pop flow from the FE.
Thus overlapping counting is inevitable in all schemes.

Instruction latency estimates cycles of long latency
instructions, which can easily create performance limitations.
The most common examples are sqrt and divide operations.



This component is frequently only covered and measured by
events detecting those two cases.

Store resource saturation occurs upon the exhaustion of the
finite resources for allowing store instructions to retire without
the data having been committed to cache (store buffers, within
item 15 on Figure 5). Detecting this condition helps locate
code exerting high pressure on store resources. Latency issues
[5] aside, when all such resources are in use, execution can
become blocked. Cache coherence requires that stored results
become visible in caches in instruction scheduled order.
Retrievals of cachelines from long latency sources can in turn
result in pop flow being blocked from the FE and the
scheduler being drained, causing overlapping counting
between the HCA branches. The overlapping counting is
identified by seeing both measurements at the same location
and the absence of other sources of the scheduler draining.

Branch misprediction occurs when branching prediction
mechanisms fail. This metric helps assess and localize the true
cost of branching issues. Each branch misprediction (or non-
prediction) incurs a series of costs. First, the speculative path
is followed until the misprediction is detected. This is
followed by flushing the wrong path pops from the pipeline
and in parallel starting retrieval of the correct path. We choose
to group the long latency fetching of mispredicted paths along
with the long latency fetching of correctly predicted paths and
collecting this cost under instruction starvation. The short
fetches from L1I are included in the cost of recovering from
the branch mispredict or non-predict. The measurement of the
speculative/wrong path execution currently requires a
difference of pops being issued by the frontend and the pops
retiring. These measurements can have the full size of the
scheduler and even some of the reorder buffer between them.
With modern object oriented compiled code resulting in
instructions retired/call of ~50, these measurements are likely
made in different functions. This is a major positional
accuracy limitation on all processors we have considered.

As non-predicted branches are the result of overwhelming the
branch history tables, and the solution is to reduce the total
number of branches in the code (e.g., debug assertions that
never execute), base positional accuracy is not required for
this event. Only the overall cost to the programs execution is
required to detect if this is an issue.

Multi-thread Collisions (blocks) can occur in processors with
hardware threading [9]. Detecting this condition helps
minimize the hardware side-effects of threading. For example,
the FE and retirement phases of the x86 out-of-order pipelines
are in-order and thread collisions may or may not occur at
those points. Although we are unaware of any processors that
measure these phenomena with dedicated events, the effects
can to some degree be evaluated in counting mode if an
assumption is made about the correlation of execution. It has
been done on occasion, assuming completely uncorrelated
execution including terms in spreadsheet calculations [12].
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2.2.2 Unstalled cycles

The “unstalled cycles” branch covers a range of potential
issues that can occur during execution. The penalties
established on this level only cover a part of the unstalled
cycles, limited to effects that are actually measureable using
hardware PMU based methods.

Port saturation occurs when the workload executes
dominantly on a single port (Figure 5, items 90-94). Detecting
this condition can lead towards a restructuring machine code
to reduce port pressure and thus improve efficiency. As a very
rough guideline, if 60-80% of cycles are spent on one port, as
measured by dedicated events, it is considered to be attention
worthy. A recompilation or partial rewrite may alleviate such
issues, for example using SIMD instructions to reduce the
number of loads. Of course, such saturation may not represent
a problem as in the case of a well coded dense matrix
multiply, where the vector FP units are utilized 90% of the
time.

Function call overhead estimates the penalty for call
handling (managing stack frames). It is a particularly useful
metric for large, compiled, object oriented code. Examples are
C++ based workloads with a considerable code base (e.g.,
>100 MB), where many relatively small methods are invoked.
This results in a low value of instructions retired/call (30-100).
In such cases various housekeeping tasks can account for a
large fraction of the total instruction count. Since these
characteristics are of importance to the programmer, they
should be measured and signaled for high usage functions and
methods.

Instruction serialization is low instruction throughput due to
dependent instruction serialization. It has not been
measureable by a PMU since TA-64. In principle it can be
constructed by assembly level analysis, as has been shown in
tools like Maqao [13].

Microcode and Exception handling focuses on cases where
FP exceptions can be handled through microcode (Figure 5,
item 12). The cycles in which such pops are issued can be
measured to localize offending code. This also identifies very
long microcoded instructions like rep mov, sincos and idiv. In
both cases these may be suboptimal and avoided by code
restructuring.

2.3 Comments on Levels 4 and 5

In most cases, Level 4 items lead directly to raw events on
Level 5. However, items included in this intermediate layer
are those that we found useful for tuning. Examples include
the DTLB substructure mentioned in section 2.2.1, as well as
the cost of branching described in section 3.1.

Overall, Level 4 items help draw parallels between
architectures, but may or may not be architecture-neutral.
Level 5 is composed entirely of raw events.

2.4 The HCA phases

Apart from the analysis tree, HCA presents a suggestion of
several steps to follow for an efficient and correct use of the
methodology, in what might be seen as a mini-process.



Event selection — in this phase, key architecture-specific
events are chosen by an architecture or PMU expert for future
collection. At this point their coverage and penalties are not
known exactly.

Validation — in this phase, chosen events are validated to
measure what is intended (and nothing else), and penalties are
established using microkernels. Although a small number of
penalties might be workload-dependent, the differences
observed in practice are not large enough to shift the
bottleneck to a different bin and generate misleading
conclusions. Validation should be carried out by the expert as
well, who will embed their knowledge in a tool or a
specification, although it can also be conducted by
experienced users using microkernels.

Collection — in this phase, performance data is collected on
the system under test, using a collection tool. The tool must be
capable of collecting architecture-specific events for that
machine, but the specific choice of the tool is not of great
importance.

Analysis — in this phase, the gathered PMU event data is
automatically analyzed, organized into the tree, and later
presented to the end user for further interpretation. For
counting mode data this can be done with a simple spreadsheet
template. Interrupt data (e.g., from perf-record) requires that
the interrupt location data, disassembly/asm analysis and
compiler generated debug information identifying source lines
be incorporated into the analysis. While the user is presented
with an abstract tree containing useful tuning information,
they still must have access to the underlying event data to
identify the exact nature of the issues they need to address.

3. HCA implementation on Intel Ivy Bridge

In this section we present an example implementation of
selected parts of the HCA tree using the established Intel Ivy
Bridge architecture.

As described in section 2, the HCA tree is composed of three
architecture-agnostic levels (Figure 1) and of two virtual levels
that are architecture-specific. In this implementation Level 4
mostly contains architecture-specific metrics that support the
11 HCA branches. Level 5 contains the PMU events used as
subcomponents for Level 4 metrics.

In the Ivy Bridge case, for a counting mode (perf-stat) analysis
we make use of nearly 240 PMU events on Level 5, to distill
roughly 70 events and metrics on Level 4 [12]. The metrics
which do not directly enter Level 3 formulas are displayed for
informational purposes, and some of these are devoted to cross
checks of measurement accuracy. Although many of the Level
3 metrics could be constructed out of simpler formulas
involving fewer events, we attempt to take full advantage of
the events already existing in the robust Intel PMU in order to
increase accuracy and completeness of interpretation. In a
general case, a future PMU could add support for the events
defined in levels 1-3, and therefore fill all the branches of the
tree directly, without the need for partial metrics. However,
doing that would leave the user without a detailed breakdown
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of the actual performance problems as even the HCA metrics
are on the border of being too coarse to be directly actionable.

In the case of a tree built for profiling where such a large
number of basic events would be prohibitive to data collection
limitations (perf-record, vtune [14] and similar tools), the
platform-specific low-level event list can be paired down to
the minimum required to accurately cover -considered
performance problems. Whenever possible, the 11 branches
are computed directly from the low-level events without
intermediate metrics. On levels 1 and 2 (Table 7 in the
Appendix), most formulas map directly onto existing events.

When in the halted state, the CPU may enter a low power state
and reduce its frequency, therefore to calculate the halted
cycle metric, reference cycles coming from the TSC must be
used. When measuring stalled and unstalled cycles, we use
event masks which count the number of cycles where the
measured condition reached at least the specified numerical
value (“cmasks”), or which invert the condition to a “less
than” (“invmasks”). Therefore here, we measure cycles where
at least one pop was retired, or cycles where no pops were
retired.

It is worth noting that already a metric as simple as cycles can
be tricky to interpret. For instance, depending on the processor
family, a generic event of “unhalted cycles” could measure
bus cycles (early Intel Core), reference clock cycles, base
frequency cycles (Intel Nehalem to Haswell), turbo boosted
core pipeline cycles, uncore cycles or some other frequency
used in the system. In HCA, most penalties are for on-socket
issues, measured in core cycles. The only exception of DRAM
access uses a constant cycle penalty.

Using simple metrics such as UNHALTED_CORE_CYCLES
on the architected counter and
CPU_CLK_UNHALTED:THREAD_P on one of the 4 (8 in
HT off mode) programmable counters, it is possible to verify
multiplexing quality. This number can be further referenced to
a sum of cycles where pops were issued or were not issued.

The metrics for Level 3 are shown in Table § in the Appendix.
Due to the lack of space, we are unable to discuss every metric
in detail, and we present Branch Misprediction in section 3.1
as well as the most complex metric, Load Latency, in section
3.2 and Table 1. We also make a comment on our choice of
the Instruction Starvation (“Front End”) metric.

3.1 The Branch Misprediction metric
In HCA on Ivy Bridge, costs of mispredicted branches are
summed by accumulating the cost of three conditions:

e  Branch misprediction events
Branch Address Calculator clears (BACLEAR)

Cycles spent on the wrong path.

Splitting branch prediction issues into those components is of
high importance: Each of these effects generates a penalty of
its own and the first two are solved by different approaches.
Furthermore, it is possible to localize with a good degree of
accuracy the occurrences of branch misprediction events, but
not BACLEARSs or cycles spent on the wrong path. This is



because BACLEARs are detected at the front end of the
pipeline and have very large skid [3], that is the sampling
interrupt doesn’t occur on the instruction which caused the
event. Fortunately, the solution is to reduce total branch count
in the program, so the location is unimportant. The last term
can only be computed as a difference of a frontend and
backend events currently — the distance between the two can
be dozens of pops, the size of a typical function - and thus the
two measurements could be located in entirely different
functions. This would benefit from improvements in future
hardware - a pops canceled backend event would help localize
the sources of wasted cycles.

3.2 The Load Latency metric

The most complex metric in HCA is Load Latency, and for
this reason we present it in detail. Table 1 presents the
dominant components on Ivy Bridge and some of the range of
problems they can identify. This illustrates the point that while
a high-level metric leads to the problem, it is the lowest-level
platform-specific events which enable precise identification of
the nature of the performance bottleneck, either alone or in
many cases in conjunction with other events. The events
needed to evaluate the load latency cost also distinguish
NUMA, data layout and even thread synchronization
problems.

These events only count line movements due to loads and
most of them are PEBS events for retiring loads (PEBS, or
Precise Event Based Sampling, improves the accuracy of
sampling on Intel hardware). Thus they are the most precise
measurements available.

The variety of problems identified by the different events and
the large variation in the penalties illustrate why this level of
detail is required. Although HCA summarizes the penalty in a
single metric, it also gives the developer the opportunity to
drill deeper so that they can establish a precise fix
corresponding to the real reported problem. For example, in
this Ivy Bridge case, remote access to modified lines
(“remote_hitm”) is a completely different problem from local
DRAM latency issues, which has different solutions from L3
non snoop access due to the difference in the latency that must

Table 1: Dominant components of Load Latency

Event Penalty | Identified
(cycles) | problem
Mem_load_pops_llc_hit_retired
Xsnp_none 52 Prefetch/layout
Xsnp_hit 75 threading
Xsnp_miss 75 threading
Xsnp_hitm 85 Thread synch
Mem_load_pops_llc_miss_retired
Local_dram 200 Prefetch/layout
Remote_dram 400 Numa/pf/layout
Remote_hit_fwd 325 Threading/numa
Remote_hitm 400 Thread synch
Dtlb_load_misses
Walk_completed 7
Walk_duration cycles | Layout/large
pages
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be hidden. If these issues were grouped together, the
information in most cases would be insufficiently detailed to
help the developer.

L2 cache hits and second level TLB hits are not used normally
as most or all of the small penalties (6-8 cycles) can easily be
hidden through compiler and/or OOO execution load hoisting.
Loads blocked from store forwarding are also not used, as the
penalties can vary by almost two orders of magnitude and their
location cannot be accurately determined with the current
event spectrum.

These metrics can be supplemented with additional
measurements to add further insight. The ‘cycle_activity’
event can be very useful, but it is subject to cacheline
movements due to speculative loads and some of its
components can have intermittent errors in counting. Further,
it is not a precisely located event as are the ones HCA depends
on.

3.3 Instruction Starvation on Ivy Bridge

The final component explained in detail is Instruction
Starvation. It is a simple metric, which on Ivy Bridge is
reduced to a measurement of the number of cycles during
which the Reservation Station is empty. A commonly used
alternative [2][14][1] are cycles where no pops were delivered
— but this count is less precise, since it does not address the
case in which the reservation station might in fact still have a
large pool of instructions to work on already. Figure 2
illustrates the absolute difference between the two
measurement techniques, expressed as a percentage of cycles
of each hotspot, evaluated on a per function basis on a large
C++ application discussed in section 5.2.

3.4 Notes on HCA on other architectures

HCA was originally developed on the Intel Westmere
architecture, which was the first Intel processor with sufficient
problem coverage by hardware events to attempt it with a real
chance of success. In section 0 we describe an optimization
case with that implementation.

Furthermore, the IBM Power 7 and 8 families have reasonable
problem coverage [15], although determining how good it is

Deviations between two FE issue measurement methods
on a large 00 sample

Number of functions

5% 10% 15% 20% 25%

Deviation as % of hotspot cycles

More

Figure 2: Differences between two Instruction Starvation
measurement methods expressed as a percentage of hotspot
cycles



requires detailed event validation as described in section 2.3.
The Gooda distribution has a collection of micro kernels for
event validation for x86 under Linux. Most of these can be
ported to the Power instruction set with relative ease.

Other architectures, such as Intel Knights* (Xeon Phi) or Intel
Avoton, can be added relatively easily assuming the event
coverage is sufficient to make the effort worthwhile.

In particular, HCA is not tied to the architecture itself as much
as it is tied to the problem coverage a PMU provides on that
architecture. Implementing HCA on an architecture with
inadequate coverage is unlikely to give good results.

4. Implementation of the Gooda tool

In this section we present an architecture-independent
production profiling tool we implemented to support the HCA
methodology. The open-source software, called Gooda, has
been published online [12] and was used in successful tuning
scenarios on large-scale production code, as we describe in
section 5. Architecture-specific examples in this section refer
to the Intel Ivy Bridge architecture, and largely to its
predecessor, Westmere.

Gooda, which runs on Linux, is a result of a collaboration
between Google, LBNL, the ATLAS experiment at CERN,
and the CERN openlab. It consists of three main components:
linux perf, the analyzer and the visualizer. In addition, scripts
for the perf tool are supplied in the distribution for a range of
architectures.

4.1 Performance data collection

The collection of data is performed with the help of perf, in
one of two standard modes, with identical overheads as perf
itself:

e In counting mode, summary data about an application run
is collected in counting mode using “perf-stat”. The result
is a single value for each event, without the possibility to
drill down into modules, functions, source or assembly
lines. This approach is useful for exploration, general
workload  characterization, platform  tuning and

comparison.

In sampling mode (“profiling”, started with “perf-record”),
the sampling infrastructure of perf collects data for the
events specified for a given architecture. It does so by
periodically sampling the location of the Instruction
Pointer every time the count of an event reaches a
predefined value, and writing a binary data file (perf.data)
with records for each interrupt captured. Practical
experience, which cannot be widely discussed here due to
space constraints, suggests that in order to obtain reliable
results from multiplexing, there should be at least one
second of steady state workload runtime per each collected
PMU event.

4.2 Performance data analysis
The Gooda analyzer, written in C, parses the collected
perf.data files. For every supported architecture, an analysis
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1

Figure 3: The Gooda tool, main view

template spreadsheet is prepared by experts and included in
the distribution. It contains key information about the events
and metrics that form the HCA tree on a given architecture.
The columns specified in the template mostly belong to
specific branches of the HCA tree (Figure 6 in the Appendix).
The branch metrics can be expanded in the visualizer to
display the contributing components and additional
informational metrics or events that are deemed useful (e.g.,
cycle_activity under Load Latency, offcore_response in
bandwidth saturation). The analyzer will also display any
events not specified in the template that the user chooses to
collect in addition.

Adding analysis for an Instruction Set Architecture (ISA) that
is already supported (x86, Power and arm32) requires only
making a new template and a few lines of code to identify
when the new template should be used.

The output of the analyzer is a directory tree of precomputed
spreadsheets of annotated asm and source files, as well as
basic block control flow graphs (CFGs). The source, asm and
CFG files are generated for either the top 95% functions
across all processes and modules monitored (limited to 200).
With this data made available, it is highly unlikely the binary
data file ever needs to be re-analyzed.

The analyzer can also construct a call count graph of the
binary using the Last Branch Records on Intel processors,
without any instrumentation in the code or at runtime (Figure
4 in the Appendix).

In most of our experiments on x86, Gooda’s analyzer was
approximately two orders of magnitude faster than Intel’s
VTune 2013, and delivered results even on complex code.

4.3 Performance data visualization

The Gooda visualizer is a javascript application which makes
the interactive visualization, analysis and sharing of
performance data possible through a standard web browser, as
a regular link (profiles can also be distributed as small single
file archives). The visualizer organizes data as precomputed,



server-side report, each of which is the result of the analysis of
a single perf.data file.

The top part of the screen (Figure 3) accounts performance
penalties to binaries (processes and load modules), while the
bottom part accounts performance penalties to functions and
methods within the available binaries or to selected modules
from the upper spreadsheet. Clicking on a function leads to a
combined source assembly view and a panning, zoomable
basic block control flow diagram (CFG). Hot basic blocks are
highlighted in red and orange, and can be navigated
dynamically as an interactive map. Clicking a basic block on
the map takes the user directly to the related location in the
code. The graphical manipulations possible with the visualizer
are too extensive to describe here (e.g., call count graph, basic
block execution counts, sorting, search).

S. Results

We start our report on the results with a discussion of a kernel
that highlights several key properties of HCA. We continue by
showing results from a SPEC 2006 benchmark and scientific
codes, running in production on hundreds of thousands of
cores. The section concludes with a discussion of an Intel
microprocessor bug, which was discovered thanks to HCA’s
cross-architectural portability and internal consistency metrics.

Except for Case 3, the system employed for performance
studies was a dual socket server with Intel Xeon E5-2695 v2
CPUs. A total of 24 cores (24 threads) could access 96 GB of
DDR3 memory. The frequency of the CPUs was constant, jobs
were pinned to their cores and prefetching was turned on. The
operating system used was a Red Hat Linux 6.5 clone, on
triple Intel 520 series SSDs.

5.1 Case 1: Walker kernel

This synthetic kernel demonstrates how HCA’s accurate cycle
accounting produces actionable information in its branches, in
this case Bandwidth Saturation and Load Latency and the
subcomponents of the latter. The kernel initializes a memory
structure on core 0 of socket 0 and subsequently walks through
it as a randomized linked list, reaching the shared L3 cache,
the local DRAM and remote DRAM depending on the size of
the buffer created and core on which the walk is initiated —
simulating potential real issues with data access.

The Load Latency branch highlights heavy usage, which is
quantified in cycles and directly attributed to a particular level
of the memory hierarchy. Branches not shown in Table 2
consume between 0 and 1% each. Each cycle consumption
value calculated by HCA through memory penalties is

Table 2: Percentage of program cycles consumed by memory
related effects

Load latency cycles — 87 %
Level Bandwidth
3 saturation L3 Local Remote
cycles—13% | cycles DRAM DRAM
cycles cycles
Values 4% 26% 53%

proportional to the separately measured actual wall clock time
spent in the walking routine for a particular memory level —
demonstrating full consistency. The data provided clearly
indicates that performance improvements should focus on load
latency problems. The reason this is clear to the user is
because all costs are expressed in cycles, the relative
importance of contributing factors and magnitude of the
potential gains in applying individual fixes for each can be
compared directly to the bandwidth metric (or any other
metrics in HCA for that matter). If the data provided was for
instance the number of accesses at each level, it would be far
harder for the user to take action on that information.

5.2 Case 2: SPEC2006 OmnetPP

OmnetPP is a SPEC benchmark with a sizeable (~50%)
memory latency component. However, HCA points out
another considerable issue of this benchmark, not detected in
other methodologies: store resource saturation [9][18]. Gooda
quantifies the penalty to be approximately 15% of the cycles.
Such a considerable (more than a few %) backlog of stores
should be investigated, since it is likely to lead to instruction
starvation, draining the reservation station.

One of the culprits is a simple constructor, where storing
initial values of the object causes enough pressure on store
resources to slow down execution. The values are used as
markers in only one place of the code, which suggests that an
optimization of this area would save cycles.

Table 3: Relevant HCA branches for a run of OmnetPP

Load Instruction | Bandwidth Store Branch
; . Resource .
Latency Starvation Saturation . Mispr.
Saturation
47% 9% 19% 15% 6%
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5.3 Case 3: The ATLAS framework

The ATLAS framework is a large, compiled application
written in C, C++ and Fortran, spanning 6 million lines of
code — a challenge for many profiling tools. It processes data
for the ATLAS particle detector at CERN, the European
Organization for Nuclear Research. Multiple instances of this
scientific application run on a network of 150 datacenters
totaling roughly 500’000 cores. The case analyzed in this work
is CPU bound and is run on a single core with a single thread.

The experiments described in this sub-section were conducted
by experienced scientists who are versed in programming but
did not have a formal education in computer science and are
not PMU experts [19]. Gooda was used as the profiler on a
system with dual Intel Westmere processors, and the example
is meant to demonstrate the workflow and outcomes,
supported by cycles expressing the cost of issues and thus
prioritizing them for tuning non-experts. The metric tree
described in Section 2.2 was prepared by a PMU expert
earlier, and users received the event documentation distributed
with the package.

An initial tuning session reported a large number of stall
cycles in one of the top consumers, a part of the code




responsible for the handling of the magnetic field generated by
the detector. The stall branch of the tree showed a high
number of cycles in Load Latency and Instruction Latency in
that location. It led to a discovery that the function was still
written in Fortran and had not yet been rewritten to C++. A
rewrite in C++ doubled the speed of the function thanks to
more advanced compiler optimizations being enabled.

A second pass at the newly rewritten piece of code indicated a
further problem with stalls taking ~70% of the cycles, and
more precisely Instruction Latency caused by the busy divider.
70% of all stalls were accounted to this bin. After an
examination of the offending locations, divisions in forms of:

constl*dBdphi[1]/r + const2*dBdphi[2]/r..

were replaced by inverse multiplications. This optimization
produced a 40% speedup in that function, which produced an
overall 5-20% improvement for the whole application in this
test scenario.

Further, several other functions suffered from further stall
problems, coming from Instruction Starvation. Through source
code inspection, frequent software vector and matrix
operations were discovered in those methods. They were
rewritten to support hardware vectorization and achieved a
2.5x speedup per function.

In a last tuning step described here, considerable Call
Overhead was signaled on memory allocation routines.
Although this issue was already reported earlier by other
methods and was therefore known before, the penalty was
quantified in the straightforward metric of cycles, and was
sufficiently high to trigger an investigation.

5.4 Case 4: High Energy Physics simulation

This case demonstrates how HCA, as implemented in Gooda,
correctly identifies and assigns costs to scaling bottlenecks, by
showing correct values at Level 3 (supported by detailed
metrics at Level 4). It is a generalized and more sophisticated
illustration of HCA properties. Geant4 [17] is a complex C++
toolkit for Monte Carlo simulation of particles passing through
matter. It is used to build applications in many scientific
domains ranging from medicine to aerospace with estimated
deployments reaching 300’000 cores world-wide.

Large server code based on toolkits such as this one often
suffers from side effects of compiled C++: memory latency,
instruction starvation and branch mispredictions, all accounted
for by HCA. Indeed, in this sample, which is a proprietary
particle physics simulation, HCA shows several such problems
of comparable importance.

Table 4: Selected metrics in Simulation

Level | Instruction Starvation —
3 15% Load Branch
Level Latency | Mispred.
e:e R.S. empty — 15% -14% -12%
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Table 5: Physics simulation: percentage of program cycles for
selected HCA metrics and events (starred events are
explanatory and not a fractional part of the HCA branch)

Level | Instruction Starvation — Load Latency - 14%
3 15%
L2 L2 L2 L2
Level RS code code miss to data data
4 empty | RD RD | DRAM | RD | RD
miss* hit* hit miss
% of 15% 8% 13.5% | 0.04% | 6.7% | 6.2%
cycles
%of | 00% | N/A | N/A | 0.001% | 48% | 44%
parent

A condition in which no wuops are delivered (e.g.
idq_uops_not_delivered >= 4) is commonly used to highlight
frontend fetch problems. In this benchmark, other methods
would display a value of 40% for the number of such cycles,
and this might lead the developer to investigate them as a first
priority. However, HCA instead constructs the Instruction
Starvation metric out of a more appropriate event — RS empty
(see 3.3), and thus the value for Instruction Starvation is only
15%. While it is a bottleneck here, it does not stand out on its
own, which drives towards a more detailed investigation
demonstrating that the issue is actually more subtle than a pure
uop delivery problem (see Table 5).

Still in Instruction Starvation, we look deeper to note a
relatively high percentage of code read demands active as well
as a considerable percentage of code read misses from L2. At
the same time, the Load Latency branch shows a high
percentage of data related L2 time. This comparison, enabled
by the systematic approach enforced by HCA, directly leads to
the conclusion that the code and data keep evicting each other,
and that the program would benefit from a processor with a
larger L2 cache. Examining the counters only, without the
context provided by HCA, would not have led to this
conclusion as quickly or would have required more expert
knowledge from the user. This picture is also supported by
observing some bandwidth saturation, but only to L3 and not
to DRAM. This case also presents a difficulty — in the Ivy
Bridge architecture, instruction fetches (being a frontend
event) cannot be reliably localized, and would need a
dedicated precise event to be truly traceable.

Further, looking at the Mispredicted Branch component:
because all penalties in HCA are expressed as cycles, Branch
Misprediction penalties can be ordered by their significance
(by function) and dealt with like standard hotspots in a profile,
which is not the case in other methods. In a prototype multi-
threaded version of this benchmark, a high number of branch
non-predictions (see 2.2.1), not monitored by other methods,
was traced to conditional statements and asserts used for
debugging. Hiding these statements behind compiler ifdefs
produced a speedup of roughly 15-18% at 24 threads.

5.5 Case 5: The Intel HT PMU bug
Internal consistency metrics in HCA calculate at times the
same value using data from different sources — in this example



Table 6: Intel Ivy Bridge cross-talk between counters

Westmere Ivy Bridge Ivy Bridge
HT on HT off
Loads from | 33.5 million 5.1 million 33.8 million
local DRAM
on ht #0
LBR inserts | N/A 11.9 million | O (expected)
on ht #1 (0 expected)

we demonstrate the usefulness of this approach. Especially
memory events can be complex to work with — for example,
the sum of L2 load misses should correspond to the number of
L3 load hits and misses. Similarly, the number of L3 load
misses should correspond to the number of memory loads
retired sourced from L3 misses plus remote cache forwards.

We measured memory events and generated HCA consistency
metrics for many workloads with Hyper Threading on and off.
An expected result would have been identical values for all
metrics regardless of the conditions, such as HT state. Indeed
with HT off, that was the case. We observed that the
consistency metrics for a group of memory events (MEM_*),
similar to those just described, did not align for many
workloads with Hyper Threading on, and depending on the
architecture used. Our results, obtained while monitoring a
steady state workload in parallel to a sleep loop (Table 6) on
the same core but on two SMT threads, showed that events
from one counter would “leak” to another — decreasing the
count in the first counter and increasing it in the second. In the
Ivy Bridge “HT on” scenario, a part of the DRAM event
“leaks” to the sibling hyperthread of the same core,
programmed to count an unrelated event, that should yield
exactly 0. The overall sum is exactly half of the real event
count, as only one hardware thread is programmed to count
the local DRAM event, instead of two.

The net result of this investigation is bug BT243 [20] filed
against the Intel Xeon ES processor family, for which there is
no fix as of the time of writing. As a workaround, we
measured with Hyper Threading turned off when profiling. A
straightforward consequence of the issue is that event counts
will be incorrect for certain combinations of counters and
events. At the same time, interrupt-driven profiling results will
suffer from large positional inaccuracies.'

Similar techniques have been used to cross-compare different
architectures and same architecture machines with different
BIOS configurations, leading to the discovery of PMU related
bugs in the Linux kernel, affecting any PMU measurements
based on certain memory events (not only HCA).

6. Related work and conclusions

In this work, we demonstrated HCA a structured,
architecture-agnostic  methodology for working  with
performance issues on modern processors. Three other major

! For counting mode, as long as the events on the two HTs are aligned and
added, we have noted that the total is correct. Thus manually multiplexing
the events four at a time can produce the correct answers if done carefully
as a workaround with HT on.
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reference points exist for such activities: the cycle breakdown
offered by perf-stat, the “classic” variants of cycle accounting
and the Top-Down method published by Yasin [2].

Perf-stat’s [1] cycle breakdown is a non-hierarchical approach,
based on generic events, not generic metrics. In a standard
case, only five-six metrics directly mapped to architecture-
specific events are reported, and they often measure different
phenomena on different architectures despite bearing the same
name. To add yet another example, “last-level cache misses”
measures quite different things depending on whether the
cache hierarchy ends at the L3 (e.g., Ivy Bridge) or L4 (e.g.,
Haswell). Any additional information has to come from
additional architecture-specific events explicitly programmed
by the user.

Also, PAPI [21] works on many architectures and provides
facilities for “Event Sets”, but does not offer a methodology
similar to HCA, and is exposed to risks of generic events. Its
strength lies in a universal, portable measurement interface,
which Gooda could potentially use in the future.

“Classic” cycle accounting [6][7] introduces structure on a
level  constrained to  halted/unhalted cycles and
stalled/unstalled cycles. Stall decomposition is flat and does
not attempt to account for such effects as stall overlaps.
“Classic” cycle accounting approaches from the past were
architecture-specific, although the concept itself does not
necessarily have to be — the property that we exploit in HCA
to enable cross-architectural comparisons.

Yasin’s Top-Down method [2][22] is an impressive and much
needed work, similar in spirit to HCA. Top-Down uses
retirement slot utilization to assess efficiency and issues. A
key difference in HCA is that cycles, an intuitive metric, are
uniformly used throughout all levels of the tree and all levels
of code granularity, because HCA metrics are constructed as
bottom-up sums. This enables straightforward comparisons of
metrics from different branches of the HCA tree, allows to
quickly assess the relative importance of problems the
programmer is presented with, and enables organizing
optimization work into ordered hotspots — much like in any
commonly used profiler. With that, HCA delivers the same
results regardless of the level of analysis — module, function or
assembly line. Further, because cycles are used as a base,
higher levels of the HCA metric tree are predominantly simple
sums of those below. This also allows the controlled mixing of
penalties coming from different stages of the pipeline. Overall,
HCA has slightly more high-level metrics, which is why it
could be considered slightly more general, while Top-Down
puts more effort into describing x86-like architectures in
detail. This means that HCA has higher chances for support in
non-x86 architectures, like IBM’s Power series [15] or future
versions of ARM. Using cycles as the main unit has one
further advantage informed comparisons between
architectures can be made with relative ease (which has
already been shown to give results in practice, €.g., in the case
of the HT bug).
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7. Appendix

Table 7: Level 1 and 2 HCA metrics on Ivy Bridge

Level HCA Metric construction Point of
metric measurement
0 Total Halted + Unhalted 0s supphed
cycles metric
1 Halted Total - unhalted
cycles
1 Unhalted cpu_clk_unhalted
cycles
2 ?:t;:l;zg pops_retired:any:c=1:i=1 retirement
2 UE;SS:d pops_retired:any:c=1 retirement
Table 8: Level 3 HCA metrics on Ivy Bridge
HCA metric | Metric construction Point . of
detection
Port Port usage cycles for each port Output  of
Saturation RS
Function Call | 3*br_instr_retired:near_call retirement
overhead
Instruction Cannot be measured at this time N/A
Serialization
Exception Microcode sequencer active cycles Front End
Handling,
ucode
Load Latency | Mem*retired:data_source* Mostly at
penalty(data_source) + dtlb_load_cost| retirement
details shown later
Bandwidth Offcore_requests_outstanding:data_rd:c=6 | Superqueue
Saturation
Instruction RS_events:rs_empty RS
Starvation
Instruction Arith:div_busy Execution
Latency
Store Resource_stalls:st Allocation
Resource
Saturation
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Multithread | Cannot be measured at this time N/A
Collisions

Branch 6*(Baclears:any +|FE, BE,
Misprediction | br_mispred_retired:any) +|and
pops_issued:any — pops_retired:slots Allocation

Figure 4: A zoomed-in fragment of an LBR-based call graph
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Figure 5: A simplified block diagram of an out-of-order processor core (modeled after “Computer Architecture — A Quantitative
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