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Abstract
In tokamak fusion plasmas, micro-turbulence transport is known to be the cause of large
losses of heat and particles. The present work deals with the study of electrostatic micro-
turbulence transport driven by instabilities of essentially two types: the ion temperature
gradient (ITG) modes and the trapped electron modes (TEM). The plasma is described
within the gyrokinetic framework, which permits to save computational resources compared
to the classical Vlasov kinetic description. In gyrokinetic simulations of fusion plasmas,
the passing electrons are often assumed fast enough so that they respond instantaneously
to the electrostatic perturbations. In this case, their response is computed adiabatically
instead of kinetically. The main advantage is that this simplified model for the electron
response is less demanding in computational resources. This assumption is nonetheless
incorrect, in particular near mode rational surfaces where the non-adiabatic response
of passing electrons cannot be neglected. This thesis work focuses on the study of this
passing electron non-adiabatic response, whose influence on microturbulence is studied by
means of numerical simulations carried out with the gyrokinetic codes GENE and ORB5.

In the first part of this thesis work, the response of passing electrons in ITG and TEM
microturbulence regimes is studied by making use of the flux-tube version of the GENE
code. Results are obtained using two different electron models, fully kinetic and hybrid. In
the hybrid model, passing particles are forced to respond adiabatically while trapped are
handled kinetically. Comparing linear eigenmodes obtained with these two models enables
one to systematically isolate fine radial structures located at corresponding mode rational
surfaces, clearly resulting from the non-adiabatic passing-electron response. Nonlinear
simulations show that these fine structures on the non-axisymmetric modes survive in the
turbulent phase. Furthermore, through nonlinear coupling to axisymmetric modes, they
induce radial modulations in the effective profiles of density, ion and electron temperature
and zonal flows E ×B shearing rate. Finally, the passing-electron channel is shown to
significantly contribute to the transport levels, at least in our ITG case. Also shown
is that the passing electrons significantly influence the E ×B saturation mechanism of
turbulent fluxes.

Following this study in flux tube geometry, the influence of the non-adiabatic passing
electron response near mode rational surfaces is further studied in global geometry with
the global gyrokinetic code ORB5, in which a new field solver is implemented for the
gyrokinetic quasi-neutrality equation valid at arbitrary wavelength, overcoming the former
long wavelength approximation made in the original version of the code. A benchmark is
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conducted against the global version of the gyrokinetic code GENE, showing very good
agreement. Nonlinear simulations are carried out with the new solver in conditions relevant
to the TCV tokamak, with the physical deuterium to electron mass ratio (mi/me = 3672)
and are compared to simulations carried out with heavy electrons (mi/me = 400). The
particular spectral organization of the passing electron turbulent flux and its dependence
on the radial profile of the safety factor are revealed. In particular, the formation of
short-scale transport barriers is studied near low-order mode rational surfaces. Results
show that quantitatively correct nonlinear fully-kinetic simulations of tokamak transport
must be carried out in a full torus and with the physical mass ratio.

Key words: Tokamaks, plasma, microturbulence, turbulence, non-adiabatic response,
passing electrons, mode rational surfaces, field solver, finite elements.

ii



Résumé
Dans les plasmas de fusion des tokamaks, le transport micro-turbulent est connu pour
être la cause de grandes pertes de chaleur et de particules. Le travail présenté ici concerne
l’étude de la micro-turbulence électrostatique produite par des instabilitées de deux types :
les modes de gradient de température ionique (ITG) et les modes dus aux électrons
piégés (TEM). Le plasma turbulent est modélisé dans le cadre de la théorie gyrocinétique
qui permet de simuler la turbulence en utilisant moins de resources numériques que
l’approche Vlasov classique. Dans ces simulations gyrocinétiques des plasmas de fusion,
les électrons passants sont souvent supposés suffisamment rapides pour répondre de
manière instantanée aux perturbations électrostatiques. L’avantage principal est que ce
modèle simplifié pour les électrons est moins exigeant en resources computationelles. Cette
supposition est cependant fausse, en particulier à proximité des surfaces rationelles, où
la réponse non-adiabatique des électrons ne peut pas être négligée. Ce travail de thèse
concerne l’étude de cette réponse non-adiabatique des électrons passants aux surfaces
rationelles par le moyen de simulations numériques réalisées avec les code gyrocinétiques
GENE et ORB5.

La première partie de ce travail de thèse a porté sur l’étude de la réponse non-adiabatique
des électrons passants dans les régimes turbulents ITG et TEM via l’utilisation de
la version “flux-tube” du code GENE. Deux modèles ont été utilisés pour produire
les résultats : pleinement cinétique et hybride. Dans le modèle hybride, les particules
passantes sont forcées de répondre de manière adiabatique alors que les piégées sont traitées
cinétiquement. La comparaison des modes propres linéaires obtenus avec ces deux modèles
a permis de systématiquement mettre en évidence les fines structures radiales localisées
aux surfaces rationnelles correspondantes, fine structures qui résultent clairement de la
réponse non-adiabatique des électrons passants. Les simulations non-linéaires montrent que
ces structures fines sur les modes non-axisymétriques persistent dans la phase turbulente.
De plus, à travers le couplage non-linéaire aux modes axisymétriques, elles induisent
des modulations radiales dans les profils effectifs de densité, de température ionique et
électronique, et du taux de cisaillement des écoulements zonaux E ×B. Finalement, il est
montré que le canal des électrons passants contribue de manière significative au transport,
au moins dans le cas de test ITG. Il est aussi montré que les électrons passants influencent
significativement le mécanisme de saturation des flux turbulents par les écoulements
zonaux.

À la suite de cette étude en géométrie flux tube, l’influence de la réponse non-adiabatique
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des électrons passants proche des surfaces rationelles a été éxaminée en géométrie globale
avec le code gyrocinétique ORB5, dans lequel un nouveau solveur de champ a été
implémenté pour l’équation de quasi-neutralité dans une version valide pour les longueurs
d’ondes arbitraires, afin de ne plus être limité par l’approximation des grandes longueurs
d’ondes faite dans la version originale du code. Un benchmark a été réalisé avec la
version globale du code gyrocinétique GENE, démontrant un très bon accord entre
les résultats. Les premières simulations non-linéaires utilisant ce nouveau solveur sont
réalisées dans des conditions pertinentes pour le tokamak TCV avec le rapport de masse
deuterium/électron (mi/me = 3672) et sont comparées à des simulations réalisées avec
des électrons lourds (mi/me = 400). L’organisation spectrale propre aux flux turbulents
portés par la dynamique des électrons passants, ainsi que leur couplage avec le profil
radial du facteur de sécurité sont révélés. En particulier, la formation de fines barrières de
transport aux surfaces rationelles est étudiée. Les résultats montrent que les simulations
non-linéaires quantitativement correctes utilisant le modèle pleinement cinétique doivent
être réalisées avec un tore complet et le rapport de masse réel.

Mots clefs : Tokamaks, plasma, micro-turbulence, turbulence, réponse non-adiabatique,
électrons passants, surface rationelle, solveur de champ, éléments finis.
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List of symbols
(R,Z, ϕ) magnetic coordinates
R major radius (horizontal)
Z vertical direction
ϕ toroidal angle
(ψ, θ�, ϕ) straight field line magnetic coordinates
ψ poloidal magnetic flux
θ� straight field line angle
(x, y, z) field aligned coordinate system
x radial direction (any function of ψ)
y binormal direction
z parallel direction (z ≡ θ�)
J xyz Jacobian (|∂(x, y, z)/∂x|)

t time
tw time window
Δt time step

x particle position
X guiding-center
ρ Larmor vector
α gyroangle (or gyrophase)
v velocity
v⊥ perpendicular velocity
v‖ parallel velocity
μ magnetic moment

s radial coordinate (
√
ψ/ψedge)

ρvol radial coordinate (
√
V/Vedge)

V volume contained in a magnetic surface
R0 major radius on axis
a minor radius
εA inverse aspect ratio (a/R0)
ρ� rho star parameter (ρs/a)

E electric field
φ electrostatic potential
B magnetic field (B = Bb)
b magnetic field unit vector
B magnetic field amplitude
A vector potential
A� A+ (mv‖/q)b
B� ∇×A�

B�
‖ B� · b

J current
qs safety factor
ŝ magnetic shear

σ labels the species quantity
σ = e for electrons
σ = i for ions

q electric charge
qe = −e for electrons
qi = Zie for ions

m particle mass
(or poloidal mode number)

αt fraction of trapped particles
Ω cyclotron frequency
N density
T temperature
P pressure
vth thermal velocity (

√
T/m)

cs sound speed (� √
Te/mi)

ρ Larmor radius
ρs sonic Larmor radius (cs/Ω0)
ρth thermal Larmor radius (vth/Ω0)
τ temperature ratio (Te/Ti)
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List of symbols

ε small (gyrokinetic) parameter
εB small magnetic parameter (ρ/R)

∇ gradient
∇× rotational
∇· divergence
∂ partial derivative
d total derivative∫

integral∮
integral over the periodic direction

≡ equivalent
� approximately equal to
∝ proportional to

• optionaly used in operator notation
to represent an operated quantity
example: ∇× • (rotational)

•̇ time derivative (Ȧ = dA/dt)
〈•〉 averaging operation
〈•〉FS flux surface average
〈•〉S surface average
〈•〉α gyroaverage
〈•〉s average over the radial direction s
〈•〉x average over the radial direction x
〈•〉y average over the binormal direction y
〈•〉z average over the parallel direction z
〈•〉yz average over both y and z
〈•〉t time average
•̃ deviation from gyroaverage

example: Ã = A− 〈A〉α

J0 0th order Bessel function
I0 modified Bessel function
Γ0 scaled modified Bessel function

Λ finite element
•̂ Fourier transformed qtty

example: f(ϕl) =
∑

n f̂ne
ı2πnl

δx radial width

0 labels the equilibrium quantities
δ prefix the prerturbation quantities

example: B = B0 + δB

ω frequency (of the perturbation)
ωr real frequency
γ growth rate
k wave vector (of the perturbation)

ω∗ diamagnetic drift frequency
ωN density gradient contribution to ω∗

ωT temperature gradient contribution to ω∗

ωD gc drift frequency
〈ωD〉 gc drift frequency averaged over the Maxwellian
ωE×B E ×B zonal flow shearing rate

vE×B E ×B (or electric) drift
vE same as vE×B

vcurv curvature drift (vcurv = vκ + v∇P )
vκ kappa drift
v∇P ∇P drift
v∇B ∇B drift
vgc unperturbed perpendicular drift

vgc = vκ + v∇B (+v∇P )

Γ particle flux
Qkin kinetic energy flux
qH heat flux

f distribution function
fM Maxwellian distribution function
fcan Canonical distribution function
f0 background distribution function
δf perturbation distribution function
δh δh = δf + qδφN0/T0
δg δg = δf − (q/m)δA‖∂f0/∂v‖

Ek gyrocenter kinetic energy
Ef gyrocenter potential energy
〈Ek〉 plasma kinetic energy
〈Ef 〉 plasma potential energy
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List of acronyms
3D 3 dimensional
5D 5 dimensional
BC Boundary Condition
CBC Cyclone Based Case
DFT Discrete Fourier Transform
ETG Electron Temperature Gradient
FLR Finite Larmor Radius
FS Flux Surface
FWHM Full Width at Half Maximum
GB Gyro Bohm
GC (or gc) Guiding-Center
ITG Ion Temperature Gradient
LHS Left-Hand-Side
LMRS Lowest order Mode Rational Surface
MHD Magneto Hydro Dynamic
MRS Mode Rational Surface
PIC Particle-In-Cell
RHS Right-Hand-Side
QNE Quasi-Neutrality Equation
TCV Tokamak à Configuration Variable
TEM Trapped Electron Mode
ZF Zonal Flow

CHEASE name of a MHD equilibrium code
GENE name of an Eulerian gyrokinetic code
GLOGYSTO name of a gyrokinetic code
ORB5 name of a PIC gyrokinetic code

ad adiabatic
hyb hybrid
kin kinetic
pas passing
trp trapped
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1 Introduction

Today, the energy supply is mainly based on fossil fuels whose non-renewable stocks are
limited and non-homogeneously distributed on the earth surface. To sustain the human
society development in a fair way, it is of prime interest to develop new concepts of energy
production based on reasonably abundant and accessible resources. The research related
to the achievement of a magnetic fusion reactor aims at providing a clean, sustainable,
and on-demand source of energy based on the fusion of light atoms. For example,
these fusion reactors can be fueled by a combination of deuterium, D, and tritium, T ,
which fusion reaction produces an atom of Helium, He, and a neutron, n, and releases
17.6 MeV of energy. This release of energy coming essentially from the mass defect,
Δm = mD +mT −mHe −mn between the D-T system and the He-n system, as predicted
by the Einstein’s equation E = Δmc2. This D-T fusion reaction is described by the
equation

D[10 keV] + T[10 keV] → He[3.5MeV] + n[14.1MeV].

In terms of fuel resources, deuterium is particularly abundant in the ocean, but tritium,
which is a radioactive element with a half-life time of 12 years, is a rare resource. Tritium
can be produced from lithium by fusion reaction with a neutron and lithium is an
abundant resource. The breeding of tritium from lithium in the blanket of the reactor
during operation is one of the challenges on the path to achieve magnetic fusion as a new
source of energy.

As addressed in [Lawson, 1957], the plasma of an efficient fusion reactor must provide
at least as much electric power as it consumes. In this break-even scenario, the net
output power Pout is converted, with an efficiency η, to electric power PE = ηPout of the
same level as the heating power Paux used for sustaining the plasma operation. This
heating power is necessary for compensating the losses due to the radiation PBr and
heat transport W/τE , where W is the kinetic energy content of the plasma and τE is
the energy confinement time. The output power is composed of the power losses and of
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Chapter 1. Introduction

the power produced by fusion reactions Pα. Therefore, one has Paux = PBr +W/τE and
Pout = Pα + PBr +W/τE . To reach the break-even with a power transfer efficiency of
η = 1/3, the Lawson criteria stipulates a necessary condition on the triple product

NeTτE ≥ 1021 [keV s/m3],

with T the plasma temperature and Ne the electron density. A more constraining scenario
would also take into account the efficiency, ε � 1/2, for converting the electric power
into heating power, such that in this more constraining scenario Paux = εPE = εηPout.
In general, for an industrial reactor, i.e. when considering all the processes of energy
transformation so that the power plant net output is economically profitable, the relation
Paux = Pout/30 is more appropriate and leads to the condition on the triple product
NeTτE ≥ 2× 1022 [keV s/m3], see [Lister, 2011]. One of the key challenge of magnetic
fusion research is the optimization of the confinement time τE of fusion reactor prototypes.

The tokamak is one of the most promising concept of magnetic fusion reactor. Among
the different existing tokamak experiments, let us mention that JET (United Kingdom,
Culham) is the one that operated in the closest conditions to break-even with 16 MW of
fusion power from 24MW of input power (Q = 16/24 � 0.67), and that ITER (France,
Cadarache) is designed to operate a long-pulsed plasma with 500 MW of fusion power
from 50 MW of input power (Q = 10), numbers taken from www.iter.org. The stellarator
concept, first proposed by [Spitzer, 1951], is an alternate toroidal device prototype whose
periodic magnetic field is solely produced by coils of complex geometry. The most advanced
stellarator experiment is Wendelstein 7-X (Germany, Greifswald). Its first Helium plasma
has been succesfully produced in December 2015. A recent comparison between these
two toroidal devices has been carried out in [Helander et al., 2012]. The main known
advantages of the stellarator over the tokamak is that it operates in steady state because
its poloidal field is not generated by induction and that it is not subject to disruptions.
Disadvantages are that its neoclassical transport is bigger than in tokamaks. Note that
this thesis work concerns essentially the study of the tokamak turbulent transport in the
core of the reactor.

Micro-turbulence occurring in the core of tokamak magnetic confinement experiments is
known to be responsible for large losses of heat and particles. These losses are essentially
due to the turbulent transport driven by instabilities of various types, as for example
the ion temperature gradient (ITG) modes, the trapped electron modes (TEM), or the
electron temperature gradient (ETG) modes. The dynamics of these regimes have different
characteristic length and time scales and, because these modes can coexist in a fusion
plasma, plasma turbulence is a multi-scale problem [Görler, 2009, Howard et al., 2014,
Maeyama et al., 2015, Howard et al., 2016].

When studying microinstabilities and associated turbulence at the ion time scale, as
in the cases of ion temperature gradient (ITG) and trapped electron mode (TEM), it
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is often assumed that the real frequencies ωr of these modes are sufficiently low such
that the highly mobile passing electrons are responding adiabatically. The reduced
adiabatic (Boltzmann) response [Horton, 1999] for passing electrons has thus been exten-
sively applied in gyrokinetic codes with the purpose of studying turbulent transport in
the ITG and TEM regimes, for example in ORB5 [Tran et al., 1999, Jolliet et al., 2007],
GT5D [Idomura et al., 2008], and GYSELA [Grandgirard et al., 2007]. This approxima-
tion is practical due to the large time scale separation between the ion and electron
dynamics, especially that of passing electrons. Resolving the full kinetic evolution of all
species corresponds to a multi-scale computation which therefore remains a significant
numerical challenge.

The assumption of an adiabatic response for the passing electrons is based on the
argument that these particles are sufficiently mobile along the magnetic field line to
remain in thermal equilibrium even in the presence of field fluctuations [Horton, 1999].
This adiabatic response is justified as long as |ωr/k‖| 
 vthe, i.e. the parallel phase
velocity ωr/k‖ of ITG/TEM microinstabilities is small compared to the electron thermal
velocity vthe =

√
Te0/me, where k‖ is the component parallel to the magnetic field of a

given mode wave vector k, Te0 the equilibrium temperature of the electrons, and me their
mass. Near mode rational surfaces (MRSs) of low order, i.e. magnetic surfaces where
the safety factor qs is a low order rational number, qs = −m/n with m,n integer, the
adiabatic assumption is in fact not justified. Indeed, near such a MRS, resonant Fourier
modes with poloidal and toroidal mode numbers (m,n) align with the magnetic field line,
k‖ ≈ (nqs +m)/Rqs = 0 when qs = −m/n. It results that the associated parallel phase
velocity |ωr/k‖| becomes larger than the electron thermal velocity vthe within a certain
radial width δx around this surface. The condition for adiabatic response is thus clearly
violated within this interval.

Thesis contribution

This thesis work addresses the physics of passing electrons near mode rational surfaces
where their response to the electrostatic perturbation is non-adiabatic. This study has
been carried out with the gyrokinetic codes GENE and ORB5 which are briefly described
in chapter 2.

The importance of accounting for the non-adiabatic response of passing electrons when
simulating ITG or TEM micro-turbulence is shown with the flux-tube version of the
GENE code. To pursue this study in global geometry with the ORB5 code, a new field
solver valid for arbitrary wavelegnth in k⊥ρi is implemented. This new solver enables the
study of the non-adiabatic passing electron response which is associated to the presence
of fine radial structures on the perturbation fields near mode rational surfaces. This new
solver implementation is benchmarked with the global version of the gyrokinetic Eulerian
code GENE, which includes an arbitrary wavelength solver. To study the passing electron

3



Chapter 1. Introduction

channel of turbulent transport with this new solver, new 3D diagnostics and associated
post-processings have been implemented in the ORB5 code. The radial organization of
the turbulence spectra is thus studied in a global nonlinear simulation relevant for the
TCV tokamak. The differing roles of the sub- and supra-thermal electrons within the
electron channel of transport are furthermore studied.

The main numerical contribution of this thesis work is thus the implementation of a
new arbitrary wavelength solver in the ORB5 code, see chapter 4. This upgrade was
realized in order to overcome the former long wavelength approximation made in the
original version of the code. During the testing of this new arbitrary wavelength solver,
side contributions have been made: the possibility to run a manufactured problem for
the field equation, the cubic finite elements of ORB5 have been modified to be exactly
the Bsplines defined in [de Boor, 1978]; and; because the new arbitrary solver is much
more sensitive to small numerical errors, its verification resulted in the detection and
correction of already existing minor bugs, among which the numerical implementation of
the boundary conditions. The collaboration with Ben McMillan was fruitful during all
phases of the implementation of this new solver. A benchmark effort has been carried out
for validating this new functionnality of the ORB5 code, in collaboration with Gabriele
Merlo.

To permit the study of the global micro-turbulence organization, and more particularly
to permit the study of the radial organization of the turbulence spectra, new diagnostics
associated to new post processings have thus been implemented for the ORB5 code.
These new diagnostics are based on the 3D finite-element representation of the turbulence
and take advantage of the field-aligned organization of the turbulence to only store the
essentially field-aligned part of the species distribution function moments. This filtering
results in a significant reduction of the output file size (factor 100 for medium size
tokamaks). Associated post-processings have been implemented which allow us to reveal
the organization of the turbulence in simulations relevant for the TCV tokamak, see
chapter 5.

During the study of the non-adiabatic response of passing-electrons with the GENE code,
many post-processing analysis have been implemented in Matlab. The low level data
access post-processings have been benchmarked with the original GENE post-processing
written in IDL. A panel of these diagnostics have been used in chapter 3.

Outline

In chapter 2, the gyrokinetic models and codes used for simulating micro-instabilities and
micro-turbulence in the frame of this thesis work are introduced. The flux-tube version
of the Eulerian gyrokinetic code GENE and the global gyrokinetic PIC code ORB5 are
presented.
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Chapter 3 is a study of the influence of the non-adiabatic response of passing electrons
on the ITG and TEM unstable modes, in linear and nonlinear simulations carried out
with the flux-tube version of the GENE code. The presence of fine structures due to the
non-adiabatic response of passing electrons near MRSs is shown. The influence of these
fine structures on microturbulence is studied.

In chapter 4, the implementation of a new generalized field solver in the ORB5 code is
described in detail. This new field solver, which is valid for arbitrary wavelength in k⊥ρi,
is necessary to the ORB5 code for pursuing the study of the fine layers of non-adiabatic
passing-electron response near MRSs in global geometry. The former long wavelength
approximation made in the code precludes the study of fine radial structures on the
perturbation field. A benchmark between the global version of the GENE code and the
ORB5 code is carried out for both the ITG and TEM parts of the spectra, using ideal
MHD equilibria. Benchmarks are carried out for the three electron models: adiabatic,
hybrid, and kinetic; and for the three different versions of the new ORB5 field solver:
long wavelength, arbitrary wavelength, and Padé approximation.

In chapter 5, global nonlinear simulations relevant for TCV are carried out using the
physical deuterium to electron mass ratio and compared to heavy electron simulations.
The electron channel of turbulent transport is studied focusing on the radial organization
of the turbulence spectra and on the subgroups of subthermal and suprathermal particles.

Finally, main results are summarized in the last chapter and an outlook of possible
follow-up studies is drawn.
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2 Physical model for simulating core
plasma turbulence

The core plasma turbulence and associated micro-instabilities are modeled within the
gyrokinetic framework. This framework describes the plasma dynamics in a reduced 5d
phase-space which is independent of the fast gyromotion of particles. This reduction is
possible because of the adiabatic invariance of the magnetic moment of particles evolving
in typical tokamak equilibrium.

The remainder of this chapter is organized as follow. In Sec.2.1, the tokamak ideal
MHD equilibrium is described. In Sec. 2.2, one briefly describes single particle orbits in
electromagnetic fields. In Sec. 2.3 the Vlasov-Maxell system is introduced. In Sec. 2.4,
the diamagnetic drift is described. In Sec. 2.5, the reduced gyrokinetic framework is
introduced. In Sec. 2.6, the different electron models used in this thesis are described.
In Sec. 2.7, the ion temperature gradient (ITG) and trapped electron mode (TEM)
instabilities are introduced by means of local dispersion relations. Finally, in Sec. 2.8, the
gyrokinetic codes GENE and ORB5 are briefly presented.

2.1 Magnetic equilibrium

In magneto-hydro-dynamics (MHD), the plasma equilibrium is described by its pressure
P , current J, and magnetic field B. At equilibrium these quantities must obey the
following system of equations⎧⎪⎪⎨⎪⎪⎩

∇P = J×B, (Force balance)

∇×B = μ0J, (Ampère)

∇ ·B = 0. (Divergence free)

(2.1)

The divergence-free magnetic field can be written B = ∇×A with A the potential vector.

A tokamak being axisymmetric, its equilibrium is conveniently described with cylindrical
coordinates (R,ϕ, Z) with R the major radius, Z the vertical direction, and ϕ the toroidal

7



Chapter 2. Physical model for simulating core plasma turbulence

Figure 2.1 – Cartoon of a truncated magnetic flux surface (grey). The system is axisym-
metric in the ϕ direction. The axis-of symmetry is the Z axis, which is located at R = 0.
The magnetic axis located at major radius R0 is represented with a black dashed line.
A fraction of a twisted magnetic field line is represented with a blue line. Two poloidal
coordinate systems are illustrated: (R,Z) Cartesian and (ψ, θ�) polar-like. A poloidal
surface Sp with a ribbon topology is represented in yellow.

angle in the direction of the symmetry, see figure 2.1. One neglects the fact that in reality
the toroidal component of the tokamak magnetic field is constructed with a discrete
number of coils so that the system is not exactly axisymmetric.

Grad-Shafranov equation

The equilibrium magnetic field of a tokamak is both divergence free, B = ∇×A, and
axisymmetric, ∂B/∂ϕ = 0. Therefore its general solution takes on the form

B(R,Z) = ∇ϕ×∇ψ(R,Z) + I (ψ) ∇ϕ, (2.2)

where ψ = RAϕ, I = R
(
∂AR/∂Z − ∂AR/∂Z

)
= RBϕ, A = AR∇R+AZ∇Z +Aϕ∇ϕ =

ARêR +AZ êZ +Aϕêϕ, and (êR, êZ , êϕ) = (∇R,∇Z,R∇ϕ). Note that 2πψ corresponds
to the poloidal magnetic flux

ψP = 2πψ =

∫
Sp

dσ ·B =

∫
Sp

dσ · ∇ ×A =

∮
∂Sp

dl ·A = 2πRAϕ,

where the poloidal surface Sp has the topology of a ribbon enclosed by two toroidal lines,
one of which is on the magnetic surface ψ and the second is chosen to be the magnetic
axis. The magnetic axis is the curve Caxis := {R = R0, Z = 0, ϕ ∈ [0, 2π]} with R0 the
major radius. The magnetic field amplitude on the axis is Baxis and the magnetic flux on
axis is ψaxis = 0.
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2.1. Magnetic equilibrium

The divergence of Ampere’s law also leads to a similar form for the axisymmetric current

J(R,Z) = μ−1
0 ∇ϕ×∇I (ψ) + Jϕ(R,Z)∇ϕ. (2.3)

To obtain the Grad-Shafranov equation, one injects equation (2.2) and (2.3) in Euler’s
equation, giving

∇P (ψ) = −R−2Jϕ∇ψ − (μ0R
2)−1I∇I (2.4)

with

μ0R
−2Jϕ = (∇×B)·∇ϕ = ∇·(B×∇ϕ) = ∇·(∇ϕ×∇ψ×∇ϕ) = ∇·(R−2∇ψ) = R−2Δ∗ψ.

Finally projecting equation (2.4) in the direction normal to the magnetic surface, ∇P (ψ) ·
∇ψ, one obtains the Grad-Shafranov equation

Δ∗ψ = R2∇ · (R−2∇ψ) = R
∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂Z2
= −μ0R2∂P

∂ψ
− I

∂I

∂ψ
= μ0Jϕ. (2.5)

One can then compute the solution to this equation for any given profiles of pressure
P = P (ψ) and poloidal plasma current flux I = I(ψ).

The circular ad-hoc geometry

The circular ad-hoc geometry is an approximation of a solution to the Grad-Shafranov
equation (2.5), but is not a true solution to the Grad-Shafranov equation. In this circular
ad-hoc geometry, the nested magnetic surfaces, ψ = ψ(r), have circular poloidal cross-
sections and they respect the relation dψ/dr = B0 r/q̄(r) with q̄(r) the pseudo safety
factor and r the minor radius. In this ad-hoc geometry, the magnetic field is

B(r, θ) =
B0(r, θ)R0

R(r, θ)

(
êϕ +

r

R0q̄(r)
êθ

)
, (2.6)

where (r, θ, ϕ) are the toroidal coordinates, and r and θ are the geometric radius and
angle. The pseudo safety factor, q̄, can be related to the safety factor

qs(r) =
1

2π

∮
dθ

B · ∇ϕ
B · ∇θ � rBϕ

RBθ
,

by the relation q̄(r) = qs(r)
√

1− ε2A with εA = a/R0 the inverse aspect ratio, a the minor
radius of reference, and R0 the major radius of reference.

9



Chapter 2. Physical model for simulating core plasma turbulence

The straight field line coordinate system

A common set of coordinates used in tokamak geometry are the magnetic coordinates
(ψ, θ�, ϕ) with ψ the poloidal magnetic flux, ϕ the toroidal angle, and θ� the straight field
line poloidal angle defined by

θ�(r, θ) =
1

qs

∫ θ

0
dθ′

B · ∇ϕ
B · ∇θ′ ,

such that

qs(ψ) =
B · ∇ϕ
B · ∇θ� . (2.7)

The corresponding poloidal plane coordinates system (ψ, θ�) is a polar like coordinate
system which is singular on axis. Any bijective function of ψ can be chosen for the radial
coordinate, as for example s =

√
ψ/ψedge. The Jacobian in magnetic coordinates is

written J ψθ�ϕ = [(∇ψ ×∇θ�) · ∇ϕ]−1.

More details on the system of coordinates are given by [D’haeseleer et al., 1991] and a
convention system has been defined in [Sauter and Medvedev, 2013].

The field-aligned coordinate system

Another set of coordinates, which is used in the GENE code, is the field-aligned coordinate
system (x, y, z) where x = f(ψ) labels the flux surfaces, y = Cy[qs(ψ)θ

� − ϕ] labels the
field lines on a surface, and z = θ� is the parallel coordinate. The equilibrium magnetic
field, equation (2.2), expressed with these field aligned variables takes on the Clebsh form
B = C(x)∇x ×∇y with C(x) a flux-surface quantity [Lapillonne, 2010]. This notation
reveals the topology of the magnetic field which is organized in nested magnetic flux
surfaces, labeled x, themselves covered by magnetic field lines, labeled y. The angular
nature of the coordinates y is due to the periodicity of the dimension: a same line is
distant to itself within a finite length in the direction y. Note that the angle y acquires
units of length because of the multiplicative constant Cy = r0/q0.

2.2 Particle orbits

The motion of a non-relativistic electrically charged particle in an electromagnetic field,
(E,B) = (−∇φ− ∂A/∂t,∇×A) with ∇ ·A = 0 the Coulomb gauge, can be described
by the equation of motion

mv̇ = q(E+ v×B) = q(−∇φ− ∂A/∂t) + qv× (∇×A) = ∇(−qφ+ qv ·A)− qȦ.
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2.2. Particle orbits

Its Lagrangian reads L = mẋ2/2 + qẋ ·A(x; t)− qφ(x; t) with m the particle mass and q
the particle electric charge.

The velocity of a single charged particle evolving in a magnetic field can be decomposed
in two components, respectively, parallel and perpendicular to the magnetic field line,
such that v = v‖b+ v⊥ with b = B/B.

In the case of a uniform magnetic field, B = �const, with no electric field, E = 0, the
particle motion consists of a parallel translation along the magnetic field line, v‖ = v‖B/B,
associated to a gyration around this magnetic field line, v⊥ = vc = qρ × B/m. The
gyration also called “gyromotion” is a circular trajectory of radius equal to the Larmor
radius ρ = v⊥/Ω and of angular frequency Ω = qB/m. The center of rotation, which is
moving at constant v‖, in this particular case, is called the guiding center.

In the case that the particle experiences an external force F its trajectory drifts by a
drift velocity vD = F ×B/qB2. Such a force can be the consequence of the magnetic
field line curvature, a change of magnetic field amplitude along the line, or the existence
of an electric field perturbation. The perpendicular velocity is now composed of two
components: v⊥ = vc + vD. In the frame of this thesis work, these drifts are considered
slow compared to the gyromotion, vD < ρΩ. The computation of these drifts in arbitrary
geometry will be discussed in section 2.5 when introducing the gyrokinetic framework.

An adiabatic invariant can be deduced from the cyclic gyromotion of particles. In the
case of a smooth magnetic field slowly varying in space and time, i.e., ρth∇ lnB 
 1 and
dB/dt 
 BΩ with ρth =

√
Tm/qB, the gyromotion of the particle around the guiding

center can be approximated to be a closed circular orbit. This closed orbit describes an
elementary current loop of intensity i = qΩ/2π and magnetic moment μ = (qΩ/2π)(πρ2⊥)
with S = πρ2⊥ the surface enclosed by the closed orbits. If in addition the perturbed
electric field varies slowly in time, dE/dt
 EΩ, the magnetic moment μ = iS = mv2⊥/2B
is an adiabatic invariant. This adiabatic invariant can be obtained by computing the
action associated to the gyroangle

Jμ =

∮
Cα

dlρ ·p⊥ =

∮
Cα

dlρ ·(mv⊥+qA) = m

∮
Cα

dlρ ·ρ×Ω+q

∫
Sα

dS·∇×A =
2πm

−q μ,

with dlρ ≡ ρdα the elementary displacement along the closed gyro orbit Cα and Sα a
surface contained in this closed orbit. The electric field fluctuations need to be slow
enough so that the work done on the particle cancels over a gyroperiod

q

∫ 2π/Ω

0
dtvc ·E = vc

∮
C
dl ·E =

∮
S
dS∇×E = −

∮
S
dS∇×∇φ = 0.

For a particle evolving in a curved magnetic field of varying amplitude along the magnetic
field lines, the invariance of μ might preclude the particle to reach the region where the
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Chapter 2. Physical model for simulating core plasma turbulence

B

Figure 2.2 – Cartoon of the orbits a passing electron (red) and trapped electron (green)
with v‖ > 0, in case of a vertical drift vD,e− = −|vD|êZ . These orbits are actually
projected on a poloidal plane. The gray dashed line symbolizes the magnetic surface on
which the particle evolves at leading order.

magnetic field amplitude is maximum. For example in a tokamak, the magnetic field
lines are twisted on torus-shaped magnetic surfaces and the magnetic field strength, B,
which is roughly proportional to 1/R, varies along field lines. Therefore, the particle
guiding-center, which follows these lines at leading order, evolves from region of low
field toward region of strong field with a parallel velocity v‖ =

√
2(Ek − μB)/m where

Ek = mv2‖/2 + μB0. There might thus exist points on the magnetic field line where
Ek = μB0 such that v‖ = 0 and the particle bounces back. Such bouncing particles are
called trapped and are identified anywhere in the plasma by the condition on the parallel
velocity v‖ < v‖c with

v‖c(x, μ) =
√

2μ[B0,max(ψ)−B(x)]/m,

where B0,max(ψ) is the maximum amplitude of the magnetic field on the surface ψ where
the particle lies, ψ = ψ(x). The particle which are not trapped are called passing
(v‖ > v‖,c), see cartoon in figure 2.2.

The passing and trapped particles are actually not exactly lying on a magnetic surface.
Their orbits are rather slightly shifted from the surface, because of the existence of velocity
drifts and of the twisted nature of the magnetic field lines. A simple way of picturing the
origin of this excursion consists in looking at the projection of the guiding-center orbits
on a poloidal plane where its vertical velocity is vZ = (v‖b+ vd) · êZ = v‖,Z + vd,Z and
its radial velocity is vR = (v‖b+vd) · êR = v‖,R + vd,R (along the horizontal major radius
direction). In case that there is no drift, one has vZ(v‖) = −vZ(−v‖), vR(v‖) = −vR(−v‖),
and the particle sticks to a magnetic surface with no excursion. In case that there is a
vertical drift such that sgn(q)vd,Z > 0 and vd,R = 0, the vertical velocity of the particle
will change with the sign of v‖, because |v‖,Z + vd,Z | �= | − v‖,Z + vd,Z |. In the cartoon
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2.3. Vlasov-Maxwell system

of figure 2.2, the influence of the vertical drift on a trapped electron is illustrated with
a green curve. Its banana orbit is composed of a trajectory A→ B outside the volume
delimited by ψ when v‖ > 0, and one trajectory B → A inside the volume delimited by
ψ when v‖ < 0. As illustrated by the variation of safety factor, the particle experiences
different curvatures on these two trajectories such that the particle drifts toroidaly after
each bounce orbit (A) → (B) → (A). A passing electron has a parallel velocity of constant
sign, such that, compared to the magnetic surface of reference, its orbits is shifted in the
horizontal direction. This shift is outward or inward depending on the sign of the parallel
velocity. An example of passing electron orbit projection on the poloidal plane is plotted
in figure 2.2.

2.3 Vlasov-Maxwell system

Now that the motion of a single particle in an electromagnetic field has been introduced,
one is interested to briefly introduce the Vlasov-Maxwell system of equations used for
describing the dynamics of a plasma.

The plasma evolution can be described with species particle distribution functions fσ
which obey the Vlasov equation

dfσ
dt

=
∂fσ
∂t

+ ẋ · ∂fσ
∂x

+ v̇ · ∂fσ
∂v

= 0, (2.8)

and the self-consistent fields are obtained from the associated Maxwell equations{
∇ ·E = �/ε0, ∇×E+ ∂B/∂t = 0,

∇ ·B = 0, ∇×B− μ0ε0 ∂E/∂t = μ0J,
(2.9)

where the source terms are obtained from the species contributions{
�(x; t) =

∑
σ qσ

∫
dv fσ(x,v; t),

J(x; t) =
∑

σ qσ
∫
dv vfσ(x,v; t).

(2.10)

Note that σ labels the species.

The reversible nature of the Vlasov equation does not allow the distribution function
to relax towards an equilibrium. To avoid an endless filamentation of the phase space,
nonlinear kinetic simulations require finite dissipation, see reference [Garbet et al., 2010]
and references therein. Examples of numerical implementation of dissipation are discussed
in section 2.8 on gyrokinetic codes.
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2.4 Diamagnetic drift

When considering the plasma as an ensemble of particles, which is the case when using
the Vlasov-Maxwell description previously introduced, the diamagnetic nature of particle
motion evolving in an inhomogeneous plasma leads to the existence of diamagnetic drifts.

These diamagnetic drifts which result from plasma inhomogeneities, can be illustrated
in the case of a simple slab geometry, see thesis [Brunner, 1997]. The slab system
consists of: a straight magnetic field of constant amplitude in the direction b = ê3,
density and temperature gradients in the direction ê1, and a perturbation in the direction
ê2. The basis (ê1, ê2,b) is taken orthogonal. In this system, the particle distribution
function is entirely defined by its constants of unperturbed motion: X = ê1 · (x − ρ)

the guiding-center “radial” position and Ek the particle kinetic energy, such that, at the
phase-space position (x,v) = (X+ ρ, v‖b+ v⊥), the equilibrium distribution function
reads f0(X, Ek) ≡ f0(x + vy/Ω,mv

2
‖/2 + μB0). Taking a guiding-center Maxwellian

distribution function for the equilibrium

fM (X, Ek) = N(X)

[2πT (X)/m]3/2
exp [−Ek/T (X)],

one obtains f0(x, Ek) = fM (x, Ek) + O(ρ/Lc) at leading order with Lc � Ln � LT ,
1/LN = −∇ lnN , and 1/LT = −∇ lnT . At first order in ρ/Lc, the equilibrium particle
distribution function in particle variables reads

f0(x, Ek) =
[
1 +

vy
Ω

(
d lnN

dx
+

1

T

d lnT

dx

∂

∂T

)]
fM (x, Ek) +O(ρ/Lc)

2.

From this equilibrium particle distribution function, one can compute the diamagnetic
velocity

v∗ =
1

N

∫
dv vf0(x,v) � 1

N

(
d lnN

dx
+

1

T

d lnT

dx

∂

∂T

)∫
dvy

v2y
Ω
fM (x, Ek) êy =

−∇P ×B

qB2N
.

Note that the direcion of this drift depends on the sign of the species electric charge.

2.5 The gyrokinetic framework

Resolving the 6D Vlasov-Mawell system of equations for studying the tokamak plasma
turbulence is beyond today numerical capacities. Nonetheless the core plasma turbulence
respects spatial and temporal ordering, i.e. the so-called gyrokinetic ordering, and
conserves the magnetic moment of particles. The gyrokinetic framework thus uses these
features for modeling tokamak turbulence with a reduced 5D Vlasov-Maxwell system
of equations by averaging out the fast gyromotion. This reduced system is much less
demanding in computational resources for simulating the turbulent transport.
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2.5. The gyrokinetic framework

In the following, the equations of motions are obtained in this reduced phase-space, from
a variational principle δ

∫
γ = 0 with γ = Ldt the Poincaré-Cartan one-form and L the

phase-space Lagrangian expressed in canonical variables (q,p).

This discussion is based on several references among which references are [Littlejohn, 1983],
[Hahm, 1988], [Brizard and Hahm, 2007], [Cary and Brizard, 2009], [Brizard, 2009], and
[Abel et al., 2013].

Gyrokinetic ordering

The gyrokinetic ordering, which is valid in the core of the tokamak, is usually summarized
by the relation

ω

Ω
� k‖
k⊥

� |k⊥|ρi eδφ
T0e

� ρi
LN

= O(ε), (2.11)

where LN = |∇ ln0 |−1 is the characteristic length scale of the background density.

The turbulence fluctuates at a frequency of the order of the diamagnetic drift frequency,
roughly equal to ω � ω� � Tk⊥/qB0LN , which is much smaller than the cyclotron motion
of the particles, ω/Ω0 = O(ε).

The turbulence perturbation, in the core of the fusion reactor, is essentially field aligned
k‖/k⊥ � O(ε).

Electrostatic fluctuations follow the ordering |k⊥|ρiqφ/T0 � O(ε), see [Dimits et al., 1992].
Note that in general one considers regimes for which |k⊥ρi| � O(1).

The typical turbulence length scale λturb � ρL is small compared to the inverse gradient
length of the magnetic field amplitude, LB � ∇ lnB, such that ρL/LB = O(εB).

The species density and temperature profiles of equilibrium vary smoothly over a distance
of about a Larmor radius such that ρL/LN,T = O(ε) where LN = |∇ lnN0|−1 and
LT = |∇ lnT0|−1 with N0 the background density and T0 the background temperature.

The amplitude of the perturbation is small compared to the background: δN/N0 � O(ε),
δT/T0 � O(ε), as well as δf/f0 � O(ε).

The one-form in gyrocenter variables

The dynamics of a particle in an electromagnetic field (φ,A) can be described by the
canonical single particle Hamiltonian: H = [p− qA(q)]2/2m+ qφ(q, t) where (q,p) are
the canonical coordinates, i.e., q̇ = ∂pH and ṗ = −∂qH. The corresponding Lagrangian
is obtained from a Legendre transform, leading to L = p · q̇−H, and the one-form in
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Chapter 2. Physical model for simulating core plasma turbulence

non-canonical coordinates, (x,v) = (q,p− qA), reads

γ(x,v) = [qA0(x) +mv] · dx− mv2

2
dt︸ ︷︷ ︸

γ0

+−qδφ(x, t)dt+ qδA(x, t) · dx︸ ︷︷ ︸
γ1

, (2.12)

where φ(x; t) = δφ(x; t) is a pure perturbation, A(x; t) = A0(x)+ δA(x; t) is decomposed
in a background component A0 and a fluctuating component δA, and γ0 and γ1 are the
respective zero and first order terms of the one-form.

Prior to obtaining the one-form in gyrocenter variables, the one-form is expressed in
guiding-center variables (X, v‖, μ, α). These guiding-center coordinates are defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X = x− ρ(X, μ, α) = x− [v⊥(X, μ)/Ω0(X)]a(X, α) (guiding center)

μ = mv2⊥/2B0(X) (magnetic moment)

v‖ = v · b (parallel velocity)

α = arctan (v · ê1/v · ê2), (gyro angle)

(2.13)

where (ê1, ê2) is an orthonormal basis vector in the plane perpendicular to the magnetic
field line at the guiding-center position, a = ê1 cosα− ê2 sinα, b = B0/B0, c = a× b =

∂a/∂α = −ê1 sinα − ê2 cosα, Ω0(X) = qB0(X)/m, and v⊥ = v⊥c = v − v‖b. The
Jacobian of this change of coordinates is Jgc = |∂(x,v)/∂(X, v‖, μ, α)| = B�

0‖/m with
B�

0‖ = B�
0 · b and B�

0 = B0 + (mv‖/q)∇× b.

Applying the change of variables from particle to guiding-centers (x,v) �→ (X, v‖, μ, α),
leads to

γ0 =
[
mv‖b+mv⊥c+ qA0(X+ ρ)

] ·d[X+ρ(X, μ, α)]−
[
mv2‖
2

+ μB0(X)

]
dt, (2.14)

where by definition of the guiding center, equation (2.13), one has

dρ =
v⊥

Ω0(X)
[∇a(X, α)− a(X, α)∇ lnB0(X)] · dX+

a(X, α)

qv⊥
dμ+ ρ(X, μ)c(X, α)dα.

(2.15)

By using the first order expansion A0(X + ρ) � A0(X) + ρ · ∇A0|X and keeping the
terms at leading (gyrokinetic) order for this change of variable, one obtains the zeroth
order (gyro-averaged) one-form in guiding-center variables

Γgc,0(X, v‖, μ) =
[
mv‖b+ qA0(X)

]︸ ︷︷ ︸
qA�

0(X,v‖)

·dX+
m

q
μdα−

[
mv2‖
2

+ μB0(X)

]
dt. (2.16)

16



2.5. The gyrokinetic framework

The first order component of the guiding-center one-form follows in a straightforward
manner

Γgc,1(X, v‖, μ, α) = −qδφ(X+ ρ, t)dt+ qδA‖(X+ ρ)b · dX,

where ρ = ρ(X, μ, α) and only the parallel component of the vector potential is kept, i.e.,
δA � δA‖b.

The perturbed guiding-center one-form depending on the gyroangle, the reduction consists
in finding the gyrocenter coordinates for which the one-form is gyrophase-independent.
For this purpose, the one-form in gyrocenter coordinates, Γ, is obtained thanks to the
transformation Γ = T−1Γgc + dS where T−1 is the push-forward operator and dS is
a phase-space gauge. The inverse of this push-forward operator, namely the pull-back
operator, T , is composed of individual Lie transforms, such that T = ...T3T2T1 with
Tn = exp (εn£n). Under a Lie derivative, a scalar, s, and a one-form, γ, transform,
respectively, as

£ns =
∑
i

gin
∂s

∂zi
and (£nγ)j =

∑
i

gin

(
∂γj
∂zi

− ∂γi
∂zj

)
, (2.17)

where gin = ∂Zi/∂εn are the generators of the Lie transformations, Zi the new coordinates,
zi the original coordinates, and γ =

∑
i γidz

i. The one-form Γgc is pushed forward up to
first order, giving

Γ = T−1
1 (Γgc,0 +Γgc,1) + dS1 +O(ε2) = Γgc,0︸︷︷︸

Γ0

−£1Γgc,0 + Γgc,1 + dS1︸ ︷︷ ︸
Γ1

+O(ε2), (2.18)

with dS0 = 0, gtn = 0 as time in not transformed, and dS1 is a phase-space gauge. The
term Γ0 is directly identified by noting Γ0 = Γgc,0 +O(ε) which is expected from a near
identity transformation. The gauge and generator functions are, at this point, a set of
tools which can be used to manufacture the new one-form. It then suffices to take out
the gyroangle dependency from the one-form by choosing

Γ1 = −q〈δφ〉α dt+ q〈δA‖〉α b · dX, (2.19)

so that the generator functions are defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

gX1 = 1
qB�

0‖

(
∇S1 × b− qB�

0
m

∂S1
∂v‖

)
,

g
‖
1 = 1

mB�
0‖
∇S1 ·B�

0 +
q
m

[
A‖(X+ ρ)− 〈A‖〉α(X, μ)

]
,

gμ1 = q
m

∂S1
∂α ,

gα1 = − q
m

∂S1
∂μ .

(2.20)

The operation 〈 〉α is the gyro-averaging operation. The gyro-averaged electrostatic
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Chapter 2. Physical model for simulating core plasma turbulence

potential is

〈δφ〉α(X, μ) =
∮
dα′

2π
δφ(X+ ρ(X, μ, α′)). (2.21)

From the definition of the phase-space gauge, one can compute the first-order phase-space
gauge

S1(X, μ, α) =
q

Ω0

∫ α

0
dα′

[
δ̃φ(X, μ, α′)− v‖δ̃A‖(X, μ, α′)

]
, (2.22)

which contains the non gyro-averaged fields and where the operator •̃ is the deviation
from the gyro-averaged field

δ̃φ(X, μ, α) = δφ(X+ ρ)− 〈δφ〉α(X, μ). (2.23)

Stopping the derivation at first order (as no higher order terms are implemented in the
gyrokinetic codes used in the frame of this thesis work), one obtains an expression for the
gyrocenter one-form

Γ(X, v‖, μ) = q
[
A�

0(X, v‖) + 〈δA‖〉α(X, μ)b
] · dX+

m

q
μdα

−
[
mv2‖
2

+ μB0(X) + q〈δφ〉α(X, μ)
]
dt. (2.24)

Equations of motion

The equations of motion are obtained from the variational principle

δ

∫
dziγi = δ

∫
dZj ∂z

i

∂Zj
γi = δ

∫
dZjΓj = 0,

which leads to the Euler-Lagrange equations

∑
j∈{X,v‖,μ,α}

ω̂ij
dZj

dt
=

(
∂Γi

∂t
− ∂Γt

∂Zi

)
, with ω̂ij =

(
∂Γi

∂Zj
− ∂Γj

∂Zi

)
. (2.25)
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2.5. The gyrokinetic framework

Therefore using the one-form described in equation (2.24), one obtains

μ̇ = 0, (2.26)

α̇ = Ω0 +Ω0
q

B0

∂

∂μ

(〈δφ〉α − v‖〈δA‖〉α
)
, (2.27)

Ẋ =
1

B�
0‖

(
v‖B�

0 −
μ

q
∇B0 × b−∇〈δφ〉α × b+ v‖∇〈δA‖〉α × b

)
, (2.28)

v̇‖ = − Ẋ

mv‖
· (μ∇B0 + q∇〈δφ〉α + q∂t〈δA‖〉αb

)
= − Ẋ

mv‖
· (μ∇B0 − qE�) ,(2.29)

with ∇ × (〈δA‖〉αb) � ∇〈δA‖〉α × b, Ω0 = Ω0(X), 〈δφ〉α = 〈δφ〉α(X, μ), 〈δA‖〉α =

〈δA‖〉α(X, μ), B�
0 = B�

0(X, v‖) = ∇ × A�
0, A�

0 = A0 + (m/q)v‖b, E� = −∇〈δφ〉α −
∂t〈δA‖b〉αb, B0 = B0(X), and ∂t• = ∂ • /∂t is the partial time derivative.

Equation (2.26), μ̇ = 0, proves that the gyrocenter magnetic moment is an exact adiabatic
invariant.

Equation (2.27) describes the gyrophase evolution. The first term on the right-hand-side
is the cyclotron frequency (zero-th order), the second term is the first order correction
related to the perturbation fields. The gyroangle is not evolved in a 5D gyrokinetic code.
It is nonetheless interesting to see that the deviation from the cyclotron frequency is
related to the perturbations. Indeed, in the limit of vanishing perturbation, the dynamics
of guiding centers and gyrocenters are identical.

Equation (2.28) contains the different drift contributions

Ẋ = v‖b+ vκ + v∇P + v∇B + vĒ,

with v‖b the parallel motion, vκ the kappa drift, v∇P the (kinetic) pressure gradient
drift, and vĒ the electric drift. The parallel velocity, v‖b, and both drifts vκ and v∇P

are obtained from the decomposition

1

B�
0‖
v‖B�

0 = v‖b+
v2‖

ΩσB�
0‖
b×∇B0︸ ︷︷ ︸
vκ

+
v2‖

ΩσB�
0‖

μ0
B0

b×∇P0︸ ︷︷ ︸
v∇P

, (2.30)

where one employed the relation B0∇× b = ∇×B0 · bb−∇×B0 × b× b−∇B0 × b

and the ideal MHD equilibrium MHD equation (2.1). The curvature drift is defined by

vcurv = vκ + v∇P =
v2‖

ΩσB0B�
0‖
b×∇(B2

0/2 + μ0P0),
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Chapter 2. Physical model for simulating core plasma turbulence

where the pressure gradient contribution is typically small in electrostatic simulations.
The plasma pressure is often normalized to the magnetic one, and referred to as the
quantity β = P0/2μ0B

2
0 . The second term of the right-hand-side of equation (2.28) is the

“grad B” drift, v∇B = (μ/qB�
0‖)b×∇B0, which can be associated with the kappa drift to

give

vκ + v∇B =
1

Ω0B�
0‖
(v2‖ + v2⊥/2)b×∇B0.

The third and fourth terms of equation (2.28) can be regrouped in a perturbation drift

vĒ = Ē× b /B�
0‖ = −∇〈δφ− v‖δA‖〉α × b /B�

0‖,

with Ē = −∇〈δφ− v‖δA‖〉α. The quantity 〈δφ− v‖δA‖〉α is sometimes referred to as the
gyrokinetic potential [Merz, 2009, Lapillonne, 2010].

The equation (2.29) describes the evolution of the parallel velocity. The first term of
the RHS, which is proportional to μ∇B0, is related to the diamagnetic force acting on
the particle, it is the term which can cancel the parallel velocity of trapped particles
along the unperturbed trajectories. The other terms of the RHS correspond to the
particle interaction with the perturbation which take the form of an electric force qE� =

−q(∇〈δφ〉α + ∂t〈δA‖〉αb).

Note that in case of purely electrostatic perturbations (δA‖ = 0), the equations simplify
with Ē = E and E� = E.

The gyrokinetic equation

The gyrokinetic equation is a 5D reduced Vlasov equation, expressed in gyrocenter
variables:

dfσ
dt

=
∂fσ
∂t

+ Ẋ · ∂fσ
∂X

+ v̇‖ ·
∂fσ
∂v‖

= 0, (2.31)

having taken into account μ̇ = 0 and ∂fσ/∂α = 0.

The particle distribution function is split into a stationary background term fσ0 and a
time-dependent perturbation term δfσ, such that fσ = fσ0 + δfσ. The subscript σ labels
the plasma particle species.

The stationary background particle distribution function is usually taken as a near
equilibrium solution to the unperturbed gyrokinetic equation

dfσ0
dt

∣∣∣∣
u.t.

=
1

B�
0‖

(
v‖B�

0 + b×∇B0

) · (∂fσ0
∂X

− 1

v‖mσ
μ∇B0

∂fσ0
∂v‖

)
= 0, (2.32)
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2.5. The gyrokinetic framework

where d/dt|u.t. is the total time derivative along unperturbed trajectories. This choice
leads to the following gyrokinetic equation

0 =
∂δfσ
∂t

+
1

B�
0‖
Ē× b ·

(
∂fσ0
∂X

− 1

v‖mσ
μ∇B0

∂fσ0
∂v‖

)
(2.33)

+
1

B�
0‖

(
v‖B�

0 −
μ

q
∇B0 × b+ Ē× b

)
·
(
∂δfσ
∂X

+
1

v‖mσ
qE�∂fσ0

∂v‖

)
− 1

v‖mσB�
0‖

(
v‖B�

0 −
μ

q
∇B0 × b+ Ē× b

)
· (μ∇B0 − qE�)

∂δfσ
∂v‖

.

Gyrokinetic field equations

The self consistent perturbation fields can be computed from the perturbation source
terms. These sources are defined as moments of the particle distribution functions. The
particle distribution functions are recovered from the gyrocenter distribution functions by
means of the pull-back operator Tε = TgcT

f(x,v) = Tgcfgc(T
−1
gc Zgc) = Tεf̄(T

−1
ε Z̄),

with Tgc the pull-back from guiding-center to particles, which is implicitly defined by the
system of equations (2.13), and T the pull-back from gyrocenter to guiding-center, which
is defined by the generator transformations (2.20). Note that, in this subsection, we use
a bar over the gyrocenter distribution function, for clarity. In other part of the thesis,
such a distinction is not made .

In the frame of this thesis work, the pull-back transformation involves only terms which
are linear in the perturbation, such that

fσ,gc = f̄σ0 + δf̄σ +
qσ
B0
δ̃φ
∂f̄σ0
∂μ

+
qσ
mσ

δ̃A‖
∂f̄σ0
∂v‖

− qσ
B0
v‖δ̃A‖

∂f̄σ0
∂μ

+O(ε2),

having neglected higher order terms. Higher order terms are mentioned when dis-
cussing equation (4.1). In case of a Maxwellian distribution function, f̄σ0(v‖, μ) ∝
exp−(mσv

2
‖/2Tσ + μB0/Tσ), this equation simplifies into

fσ,gc = f̄σ0 + δf̄σ +
qσ
B0
δ̃φ
∂f̄σ0
∂μ

+O(ε2),

because in this case (qσ/mσ)δ̃A‖∂f̄σ0/∂v‖ − (qσ/B0)v‖δ̃A‖∂f̄σ0/∂μ = 0.

The Poisson equation, −∇2δφ =
∑

σ �σ, for solving the electrostatic field consistently
is replaced by the quasi-neutrality equation,

∑
σ �σ=0, where �σ symbolizes the species

21



Chapter 2. Physical model for simulating core plasma turbulence

charge density �σ = qσNσ = qσ
∫
d3vfσ. This approximation is valid because, in the

core of the tokamak, the deviation from quasi-neutrality is small compared to the charge
density contributions, i.e., |∇2φ/�σ| 
 1. In case of a Maxwellian gyrocenter distribution
function, the particle density is

Nσ(x) =

∫
dZ δ(X+ ρ− x)T f̄σ(X, v‖, μ)

= N0(x) +

∫
dZ δ(X+ ρ− x)

[
δf̄σ +

qσ
B0
δ̃φ
∂f̄σ0
∂μ

]
+O(ε2),

and one obtains the gyrokinetic quasi-neutrality equation for the self-consistent field

δφ =

{∑
σ

∫
dZ δ(X+ ρ− x)

qσ
B0

∂f̄σ0
∂μ

•̃
}−1∑

σ

∫
dZ δ(X+ ρ− x)δf̄σ. (2.34)

In the frame of this thesis work, this integral equation for solving the self consistent
electrostatic field has been implemented in the ORB5 code, see chapter 4.

The Ampère equation, ∇×∇×A = μ0
∑

σ Jσ, for solving the potential vector consistently
is replaced by the parallel Ampère law ∇2

⊥δA‖ = μ0
∑

σ δJ‖σ. In case of a Maxwellian
gyrocenter distribution function, the parallel current perturbation is

δJ‖,σ(x) = qσ

∫
dZ δ(X+ ρ− x)v‖δf̄σ +O(ε2),

and one recovers the gyrokinetic parallel Ampere equation

δA‖ =
{∇2

⊥
}−1∑

σ

qσ

∫
dZ δ(X+ ρ− x)v‖δf̄σ +O(ε2). (2.35)

This equation is in general not solved in this form but, for example, in the form

δA‖ =

{
∇2

⊥ +
∑
σ

∫
dZ δ(X+ ρ− x)v‖

q

m
〈•〉α∂f̄σ0

∂v‖

}−1

×
[∑

σ

qσ

∫
dZ δ(X+ ρ− x)v‖δgσ

]
+O(ε2), (2.36)

with δgσ = δf̄σ − (q/m)〈δA‖〉α∂f̄σ0/∂v‖, see reference [Told, 2012]. Other form can be
considered [Bottino et al., 2010, Biancalani et al., 2016] by using p‖ = mv‖ + q〈δA‖〉α
instead of v‖.
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2.5. The gyrokinetic framework

Background particle distribution function

The splitting of the particle distribution function into a background and a perturbation,
f = f0 + δf , is preferably made such that f0 is a solution to the unperturbed gyrokinetic
equation, df0/dt|u.t. = 0. This choice is practical for obtaining linearized Vlasov-Maxwell
equations when doing basic stability analysis, as well as for optimizing the signal to noise
ratio in numerical simulations based on a Particle-in-Cell (PIC) representation of the
phase space such as in the ORB5 code, see section 2.8 on gyrokinetic codes.

Any function of the unperturbed constants of motion is a solution of the unperturbed
gyrokinetic equation. Usually, a Maxwellian distribution is assumed, which we call here
“canonical” Maxwellian. This canonical Maxwellian distribution function which is solution
to the unperturbed gyrokinetic equation reads

f0,can(Ek, μ,Ψ) =
Neq(Ψ)

[2πT0(Ψ)/m]3/2
exp [−Ek/T0(Ψ)],

where Ek = mv2‖/2 + μB0 is the kinetic energy and Ψ = Ψ(ψ0, Ek, μ). We define
Ψ(ψ0, Ek, μ) = ψ0+ψ0corr with ψ0 = q−1∂L/∂ϕ̇ = ψ+v‖mRBϕ/B the toroidal canonical
momentum and

ψ0corr = −sign(v‖)(q/m)R0

√
2(Ek − μBmax) H(Ek − μBmax),

see reference [Angelino et al., 2006] .

A local Maxwellian which is not an exact solution to the unperturbed gyrokinetic equation
can also be used. It reads

f0,loc(Ek, μ, ψ) = Neq(ψ)

[2πT0(ψ)/m]3/2
exp [−Ek/T0(ψ)],

which is function of the magnetic flux ψ.

Let us specify that one makes the difference in between N0 andNeq, so that the background
quasi neutrality (qiN0i − qeN0e = 0) is ensured. For example, in ORB5, the electron
background profile is computed numerically from the ion gyrodensity, i.e., N0e = Ngy

0i =∫
dZδ(X+ ρ− x)fi0, see reference [Angelino et al., 2006].

Gyrokinetic moments and fluxes

For each species, we are interested in observing macroscopic quantities which are moments
of the species distribution functions. These observables should be obtained from the
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Chapter 2. Physical model for simulating core plasma turbulence

pulled back gyrocenter distribution function

Aσ = 〈a〉Tfσ(x) =

∫
dX

∫
V
dμdv‖

∮
dα
B�

0‖
mσ

δ(X+ρ−x)a(X, v‖, μ)Tfσ(X, v‖, μ), (2.37)

where Aσ is a moment of the distribution Tfσ weighted by a(X, v‖, μ). At leading order
in δfσ/fσ0 these moments are obtained from the background distribution function. One
thus has A = A0 + δA � 〈a〉fσ0 + 〈a〉δfσ + 〈a〉£1fσ0 , according to the definition of the
pull-back T . In electrostatic simulations the moment computed from £1f0 is a polarization
correction and requires only the knowledge of δφ.

The main quantities of interest for a species σ are:

• The gyro density: δNσ = 〈1〉δfσ+£1fσ0 .

• The parallel fluid velocity: δu‖,σ = 〈v‖〉δfσ+£1fσ0/Nσ0.

• The parallel temperature: δT‖,σ = 〈(v‖ − δu‖,σ)2〉δfσ+£1fσ0 − Tσ0δNσ/Nσ0.

• The perpendicular temperature: δT⊥,σ = 〈v2⊥〉δfσ+£1fσ0 − Tσ0δNσ/Nσ0.

• The particle flux: Γσ = 〈vĒ〉δfσ+£1fσ0 � vE δNσ.

• The kinetic energy flux: Qσ = 〈vĒmσv
2/2〉δfσ+£1fσ0 � vE 〈mσv

2/2〉δfσ+£1fσ0 .

• The parallel momentum transport: Πσ = 〈vĒmσv‖〉δfσ+£1fσ0 � vEmσδu‖,σ.

Note that these species diagnostics can be furthermore split into subgroups: e.g. pass-
ing/trapped and subthermal/suprathermal. This can be done by splitting the velocity
phase-space volume V , used for integrating equation (2.37), into subgroups g of volume
Vg, such that V =

∑
g Vg.

Diagnostics implemented for GENE in the chapter 3 of this thesis work are based on these
definitions. New 3D diagnostics have been implemented in ORB5, see chapter 5. In these
new diagnostics the moments are split into these species subgroups: passing/trapped and
subthermal/suprathermal.

2.6 The electron models

The electrostatic (δφ) plasma turbulence which is driven by the ions or by the bounce-
averaged motion of the trapped electrons is typically evolving at a velocity of the order
of the sound speed cs �

√
Te0/mi. This turbulence motion is slow in comparison with

the fast parallel motion of the electrons which is of the order of the thermal velocity,
vthe =

√
Te0/me. It is therefore a good approximation to assume that these electrons
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2.6. The electron models

respond instantaneously to the electrostatic turbulence, as long as the following ordering
holds

|ω/k‖| 
 vth,e “Adiabatic electron condition” .

The adiabatic electron response to the electrostatic perturbation δφ can be obtained
from the fluid description of the parallel force balance in which the electron mass is
neglected me = 0 and the electron population is assumed isothermal on a magnetic surface
Te0 = Te0(ψ), leading to

me
dve
dt

= ∇‖Pe + eNe∇‖δφ → 0 = T0e∇‖Ne + eN0e∇‖δφ.

The solution of this equation is Ne = N0e exp (eδφ/T0e) + cst with cst a constant. In a
tokamak, this constant is chosen such as to have a constant density over the magnetic
surfaces, giving an expression for the density perturbation

δNad
e =

eN0e

T0e
(δφ− 〈δφ〉FS) . (2.38)

This expression for the electron density perturbation can substitute the gyrokinetic electron
response in the quasi-neutrality equation. This model is referred to as the adiabatic
electron model. Numerically, one does not need to evolve the electron distribution function
when using this model.

A hybrid electron model is also used for approximating the electron response. In this case
the passing electrons are also adiabatic but the trapped electrons are kinetic. Indeed,
the kinetic description of the trapped electron dynamics is required for describing their
precessional drift motion which is at the origin of the trapped electron mode (TEM)
instability, see section 2.7. The hybrid electron response to the electrostatic perturbation
is thus computed from equation

δNhyb
e = (1−αt)

eNe0

Te0
(δφ−〈δφ〉FS)+

∫
trp
dZ δ(X+ρe−x)

(
δfe +

q

B0
δ̃φ
∂fe0
∂μ

)
, (2.39)

where αt is the trapped electron fraction

αt =

∫
V=trap

d3v
fe0
Ne0

=

√
1− B0

B0,max(x)
. (2.40)

For the case of a Maxwellian distribution function fe0 with constant background quantities,
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Chapter 2. Physical model for simulating core plasma turbulence

such as in flux tube geometry, this equation can be approximated by

δNhyb
e � (1− αt)

eNe0

Te0
(δφ− 〈δφ〉FS) + 2π

∫ +∞

0
dμ

∫ +v‖c

−v‖c
dv‖

B�
0‖
me

〈δfe〉α

+ αt
eNe0

Te0
δφ− eNe0B0

T 2
e0

erf
(
v‖c
2vthe

)∫ +∞

0
dμ〈〈δφ〉〉α exp

(
−μB0

Te0

)
, (2.41)

where in the first line the fluctuating component of the electron charge density on the right
hand side yields two contributions: the first term from the passing particles, handled adia-
batically, and the other terms from the trapped particles, handled kinetically. The trapped
electron contribution, at a position x, is obtained by integrating the kinetic estimate over
the velocity phase-space volume of trapped particles

∫
V=trp dμdv‖ =

∫ +∞
0 dμ

∫ +v‖c
−v‖c dv‖. In

equation (2.39) the presence of the error function, erf(x) = (2/
√
π)
∫ x
0 dt e

−t2 , results from
the analytical integration of the background Maxwellian distribution appearing in the
polarization drift term over the parallel velocity phase-space of trapped electrons. Note
that in the limit of αt → 0 (v‖c → 0), one recovers the adiabatic model of equation (2.38)
from equation (2.39).

In a gyrokinetic code, when using this hybrid model, the distribution for both trapped
and passing electrons must be evolved, because the microturbulence perturbation of the
particle trajectories can lead to passing particles becoming trapped and vice versa.

The gyro kinetic model is also used. In this case both trapped and passing are evolved
kinetically, and the electron density perturbation reads

δNkin
e =

∫
dZ δ(X+ ρe − x)

(
δfe +

q

B0
δ̃φ
∂fe0
∂μ

)
. (2.42)

In case of a Maxwellian distribution function fe0 with constant background quantities,
such as it is the case in flux tube geometry, this equation can be approximated by

δNkin
e � 2π

∫ +∞

0
dμ

∫ +∞

−∞
dv‖

B�
0‖
me

〈δfe〉α

+
eNe0

Te0

[
δφ− B0

Te0

∫ +∞

0
dμ〈〈δφ〉〉α exp

(
−μB0

Te0

)]
.

In the second line, the background Maxwellian distribution function appearing in the
polarization-drift term has been analytically integrated over the v‖ variable. This response
corresponds to the hybrid electron response in the limit v‖c → ∞ (αt → 1) where all
electrons are handled kinetically. The operator 〈〈φ〉〉α is computed from

〈〈φ〉〉α =

∮
dα

2π

∮
dα′

2π
δφ

(
X+ ρ(X, μ, α)− ρ′(X+ ρ, μ, α′)

)
.
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2.7. Micro-instabilities

A drift kinetic model for electrons can also be used. This model is equivalent to the gyro
kinetic model in the limit of small electron mass such that the gyrocenter polarization is
neglected, δ̃φ � 0. This approximation is valid in the turbulent regimes of interest for
this thesis work. It gives

δNkin
e =

∫
dZ δ(X+ ρe − x) δfe = 2π

∫ +∞

0
dμ

∫ +∞

−∞
dv‖

B�
0‖
me

〈δfe〉α. (2.43)

2.7 Micro-instabilities

The ion temperature gradient (ITG) and the trapped electron mode (TEM) are turbulent
electrostatic regimes studied in the frame of this thesis work. The electron temperature
gradient (ETG) electrostatic regime and other electromagnetic turbulence have not been
studied in the frame of this thesis work.

The ITG and TEM unstable modes are illustrated in the following subsections with local
dispersion relations. Such local studies were introduced in reference [Catto, 1978] and
furthermore studied in references [Romanelli and Briguglio, 1990, Brunner, 1997] (non
exhaustive list). The influence of the kinetic response of the passing electrons will be
introduced and studied in more detail in chapter 3.

Ion temperature gradient (ITG)

See figure 2.3 and caption for a qualitative description of the toroidal ITG destabilizing
mechanism.

The linearized version of the gyrokinetic equation (2.33) for the ion gyrokinetic non-
adiabatic response is δhi = δfi − qi〈δφ〉αfi0/Ti0

d

dt

∣∣∣∣
u.t

δhi =
∇〈δφ〉α × b

B�
0‖

· ∇ψ
[
∂ψ lnNi0 + ∂ψ lnTi0

( Ek
Ti0

− 3

2

)]
fi0 +

qfi0
Ti0

∂〈δφ〉α
∂t

,

with d/dt|u.t. the total derivative along the unperturbed trajectories defined by equa-
tion (2.32), fi0(ψ, μ, ε) a local Maxwellian, Ek = miv

2
‖/2 + μB0 the ion kinetic energy,

and neglecting the term propotionnal to ∂δhi/∂v‖.

The non-adiabatic ion response is thus given by equation

δ̂hi(ω,k) =
qi
Ti0

δ̂φJ0(k⊥v⊥/Ωi)
ω − ω∗

i

ω − k‖v‖ − ωDi
fi0,

with ω∗
i = ωNi(1+ηiTi∂Ti), ωNi = −kyTi/qiB0LN , 1/LN = |∇ lnNi0|, 1/LT i = |∇ lnTi0|,
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Figure 2.3 – Cartoon of the ITG destabilization. The ion and electrons species experience
vertical averaged drifts 〈vDσ〉 = 〈vcurv + v∇B〉 = 2NσTσb × ∇ lnB0/qσ in opposite
directions which causes a charge separation and thus an electric drift. This electric drift
furthermore amplify the perturbation on the unfavorable side of the tokamak.

ηi = LN/LT i, ωDi = −ky(v2‖ + v2⊥/2)/Ω0B0LB, ky is the wave vector in the binormal

direction y = b × ∇ψ/|∇ψ|, J0 is the Bessel function, δh =
∑

ω,k δ̂h(ω,k)e
−ı(ωt−k.X),

and δφ =
∑

ω,k δ̂φ(ω,k)e
−ı(ωt−k.X).

Finally, the adiabatic electron dispersion relation, ε(ω,k) = 0, is obtained from the
quasi-neutrality equation when considering kinetic ions (δfi), adiabatic electrons, and a
quasi neutral background Ne0 = ZiNi0, thus leading to

0 =
Ti0
Te0

+ Zi

[
1−

∫
d3v J2

0

(
k⊥v⊥
Ωi

)
ω − ω∗

i

ω − k‖v‖ − ωDi

fi0
Ni0

]
, (2.44)

where there is an additional J0 term in the ion kinetic response because of the guiding-
center to particle transformation (

∮
dαeρ·k), and qi = Zie.

This dispersion relation can be simplified in a fluid limit |ω/k‖vthi| � 1, with slow
guiding-center drifts |ωDi/ω| � |ωDi/ω

∗| 
 1 and by keeping finite Larmor radius effect
at low order J2

0 (ξ) � 1− ξ2/2. These approximations lead to

0 =
Ti0
Te0Zi

+
ωNi

ω
+
[
1− ωN

ω
(1 + ηi)

](
k2⊥ρ

2
⊥ − 〈ωDi〉

ω
−
k2‖v

2
thi

ω2

)
,

where 〈ωDi〉 =
∫
dv ωDifi0/Ni0 = −2Ti0k⊥/qiB0LB is the drift frequency moment of

the Maxwellian distribution function. A first solution can be obtained for the case of a
homogeneous equilibrium with no diamagnetic drift ω∗ = 0 and no force drift ωDi = 0.
In this case, the dispersion relation ω2 = k2‖c

2
s/(1 + k2⊥ρ

2
s) keeps FLR effects. A second

solution, illustrating the interchange nature of the toroidal ITG, can be found in the
particular case of k‖ � 0 (field aligned), ωNi(1 + ηi) � ωTi (ITG), and keeping ωDi �= 0
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Figure 2.4 – Local dispersion relation obtained with the adiabatic electron model (green)
and with the hybrid electron model (light blue and dark blue). The growth rates are
plotted with full lines and the real frequencies are plotted with dashed lines. The crosses
in subplot (a) indicates the point from which the scan with respect to R/LT i is carried
out in subplot (b).

(toroidal). In this particular case the dispersion relation simplifies into

0 = ω2

(
1 +

Ti0
Te0Zi

)
− ω

(
ωT ik

2
⊥ρ

2
⊥ − 〈ωDi〉

)
+ ωT iωDi,

which has unstable branches for Δ =
(
ωT ik

2
⊥ρ

2
⊥ − 〈ωDi〉

)2 − 4
(
1 + Ti0

Te0Zi

)
ωT i〈ωDi〉 < 0.

This condition, only possible if ωT i〈ωDi〉 > 0, thus illustrates the interchange nature of the
toroidal ITG instability. In our approximation |〈ωDi〉/ωT i| 
 1 so that increasing k2⊥ρ

2
⊥,

when keeping both 〈ωDi〉 and ωT i constant, stabilizes the mode (Δ becomes positive).

Numerical application: Fig. 2.4 shows an example of ITG branch (green) obtained
with the local dispersion relation (2.44). The ITG is shown to be unstable for long
wavelengths compared to the ion Larmor radius with a maximum of the growth rate
near kyρi � 0.4. The destabilizing influence of the ion temperature gradient is illustrated
in subplot (b). In dark blue the same ITG branch is obtained when using the hybrid
electron model instead of the adiabatic model.

Trapped electron mode (TEM)

The precessional motion of the trapped electrons is slow enough compared to their bounce
motion along the magnetic field line, such that there exists an adiabatic invariant associated
to this bounced motion which permits to reduce these trapped electron orbits to the
one of their bounce center, see [Brunner, 1997]. As a consequence, the trapped electrons
have a slow toroidal precessional motion which could resonate with the perturbation
thus leading to the so-called trapped electron mode (TEM). A kinetic description of
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Figure 2.5 – Cartoon of the TEM destabilization. The green trajectory represents the
bounce motion of a trapped electron. This trajectory is composed of a bounce motion in
the region of low field and of a toroidal precessional drift 〈ϕ̇〉.

the trapped electron orbits is necessary for characterizing this resonance. For the local
dispersion relation, one thus uses the bounce-averaged kinetic description for the trapped
electrons and the adiabatic response for the passing electrons, see [Brunner, 1997],

δNe,trp

Ne0
= αt

eφ

Te0

(
1− 4π

∫ +∞

0
dε
√
2ε

ω − ω�
e

ω − n〈ϕ̇〉
fe0
Ne0

)
, (2.45)

where ε = (v2⊥ + v2‖)/2 is the kinetic energy divided by the mass and n〈ϕ̇〉 is the toroidal
precessional drift frequency of the trapped electrons. Introducing the dispersion function
W (z) = (2π)−1/2

∫
Υ dx e

−x2/2 x/(x− z), this last equation reduces, see [Brunner, 1997],
to

δNe,trp

Ne0
= αt

eφ

Te0

{
1 +

(
1− ω�

e

ω

)[
z2beW (zbe)

]}
, (2.46)

where ωϕe = n〈ϕ̇〉v2the/ε = ωNeGLN/R, G � 1 and zbe = sgn(ωϕe)
√
2ω/ωϕe has been

chosen in order to respect causality over the Landau contour Υ of the integral defining
W (z).

The local dispersion relation, when considering kinetic ions and hybrid electrons, is finally
obtained from the quasi-neutrality equation

0 = Zτ − Zτ

∫
d3v J2

0

ω − ω�
i

ω − k‖v‖ − ωDi

fi0
Ni0

+ 1 +

(
1− ω�

e

ω

)[
αtz

2
beW (zbe)

]
. (2.47)

Numerical application: Fig. 2.4 shows two unstable branches: an ITG (dark blue)
and a TEM (light blue). These unstable branches are obtained with the hybrid electron
local dispersion relation (2.47). The ITG is the most unstable mode at long wavelength
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and the TEM is the most unstable mode at shorter wavelength. It is noticeable that the
ITG branch is furthermore destabilized by the non-adiabatic trapped electron response.

2.8 The gyrokinetic codes GENE and ORB5

The gyrokinetic codes GENE and ORB5 evolve electromagnetic turbulence in ideal MHD
equilibrium background by solving the gyrokinetic equation (2.31) together with the
self-consistent field equations (2.34) and (2.35). In these codes, the plasma phase space is
represented with an Eulerian grid in GENE and by marker particles in ORB5. To reduce
the cost of numerical simulations both codes take advantage of a “delta f” representation
of the plasma such that each species, σ, gyrocenter distribution function fσ = fσ0 + δfσ
is decomposed into a background fσ0 and perturbation component δfσ.

Regarding the magnetic geometry, both GENE and ORB5 can handle generalized axi-
symmetric equilibria with triangularity, elongation, Shafranov shift,... The ORB5 code
has the particularity of including the magnetic axis, and it exists only in a global version.
The GENE code exists in both flux tube and global versions. The flux tube version of
the GENE code has been extensively used in chapter 3. The global version of these codes
are used in chapters 4 and 5.

The global Lagrangian gyrokinetic code ORB5

The gyrokinetic code ORB5, orginally presented in reference [Tran et al., 1999] is to-
day a multi-scale, multi-species, collisional, electromagnetic, and global gyrokinetic
PIC code, in which the statistical numerical noise is controlled using Krook opera-
tors or coarse graining procedures. The main steps which led to the current state
of the code are: the inclusion of zonal flows [Angelino et al., 2006], the inclusion of
straight-field-line coordinates and a field-aligned Fourier filter [Jolliet et al., 2007], the
inclusion of new sources and noise control [McMillan et al., 2008], an electromagnetic
version [Bottino et al., 2010] sometimes referred to as NEMORB, a field-aligned Fourier
field solver [McMillan et al., 2010], inter- and intra-species collisions [Vernay et al., 2010],
and the effect of strong flows [Collier, 2015].

To enable carrying out multi-scale simulations in global geometries with the gyrokinetic
code ORB5, a new arbitrary-wavelength (compared to the ion Larmor radius) electrostatic
field solver has been implemented, see chapter 4. This new feature of the ORB5 code
overcomes the limitations of the former long-wavelength approximation made in the
original version of the code.
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Lagrangian representation of the phase space

In the Lagrangian code ORB5, the phase space is represented by numerical particles or
markers, such that

δf(X, v‖, μ; t) ≡
Nph

N

N∑
p=1

mpwp(t)

2πB�
‖(X)

δ(Xp(t)−X)δ(v‖p(t)− v‖)δ(μp − μ), (2.48)

where Nph is the physical number of particles and N is the number of numerical
particles, p indexes the marker particles located at phase-space position (Xp, v‖p, μp)
and wp is a marker weight. Each numerical particle represents a phase-space volume
Ωp = (B�

‖/mp)dXdv‖dμdα/dN with dN the number of markers in an infinitesimal
phase-space volume. The numerical marker position X(t) and v‖(t) are obtained by
integrating numerically the equations of motion (2.28) and (2.29), respectively. See
thesis [Jolliet, 2010] for the implementation of these equations. Note that when solving
electromagnetic perturbations, the phase-space variable v‖ is replaced by the variable
p‖ = mv‖ + q〈δA‖〉α and the equation for v̇‖ is replaced with an equation for ṗ‖, see
references [Bottino et al., 2010, Biancalani et al., 2016] for more details concerning the
electromagnetic feature of ORB5. The weights must be evolved consistently with the fact
that for the collisionless Vlasov equation one has df/dt = 0, such that dδf/dt = −df0/dt.
Two techniques can be employed for computing the weights. One can evolve the weight
according to equation

1

Ωp

dwp

dt
=

N

Nph
τ
(
〈E〉α(Xp, μp)

)
,

where τ(E) = −df0
dt can be estimated with

τ(E) = −f0(Υ)
∂ ln f0
∂Υ

dΥ

dt

∣∣∣∣
1

+
qf0
T0(Υ)

〈E〉α · (v‖b+ vκ + v∇P + v∇B)

with dΥ(X, v‖)/dt|1 the perturbation component of the total time derivative Υ̇, see
thesis [Jolliet, 2010]. Indeed, d/dt = d/dt|0 + d/dt|1 is the total time derivative used in
the equation of motion (2.28) and (2.29), i.e., Ẋ = dX/dt|0+dX/dt|1 and v̇‖ = dv‖/dt|0+
dv‖/dt|1, where d/dt|0 represent the component independent of the perturbations and
d/dt|1 the evolution due to the perturbed fields. For example, dX/dt|0 = v‖b + vκ +

v∇P + v∇B and dX/dt|1 = vĒ. Alternatively, these weights can be computed directly

wp(t)

Ωp
=

[
f0(Xp(0), v‖p(0), μp) + wp(0)/Ωp︸ ︷︷ ︸

fp

− f0(Xp(t), v‖p(t), μp)
]
,

which is obtained from the fact the fp is conserved along characteristics, see the-
sis [Vernay, 2013] and references therein. Evolving the particles requires the knowledge
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of the self-consistent fields which are, in ORB5, represented with finite elements

δφ(x) =
∑
ν

δφν Λν(x) and δA‖(x) =
∑
ν

δA‖,ν Λν(x),

with Λν(x) a 3D finite element basis. These perturbation fields are solved self-consistently
by using a weak variational formulation of the quasi-neutrality and Ampère’s equations.
For example, the weak formulation for the fully kinetic quasi-neutrality equation is∫

dxΛν(x)
∑
σ

∫
dZδ(X+ ρ− x)

q2σ
B0(X)

∑
ν′
δφν′ [Λν′(x)− 〈Λν′〉α(X, μ)]∂fσ0

∂μ

=

∫
dxΛν(x)

∑
σ

qσ

∫
dZδ(X + ρ − x)δfσ(X, v‖, μ) (2.49)

which can be written in the matrix form Lνν′δφν′ = Sν and the source term is computed
using a Galerkin projection of the weighted markers

Sν =
∑
p

qpwp〈Λν〉α(Xp, μp).

In the frame of this thesis work, this solver has been entirely rewritten and upgraded
in order to account for the ion polarization drift contribution to the quasi-neutrality
equation in its integral form. See chapter 4 for a complete description of the equation
and discretization. Ampère’s law is discretized following the same technique based on a
finite-element representation of the perturbation fields, see [Bottino et al., 2010].

One of the consequences of using a PIC representation of the phase space is the inevitable
presence of statistical noise. The level of noise present in a PIC simulation can be decreased
by: increasing the number of numerical particles, decreasing the grid resolution, or using
an optimized loading of the marker particles to reduce the weight variance. In ORB5,
the perturbation fields are represented by their nearly field-aligned Fourier components.
Therefore, it is not the resolution of the grid which matters, but rather the number
of Fourier modes used for representing the perturbation. See thesis [Jolliet, 2010] and
references therein for more details. The ORB5 code is also equipped with noise reduction
techniques: a modified Krook operator presented in [McMillan et al., 2008] and a coarse
graining procedure presented in [Vernay, 2013] and references therein. These techniques
also ensure dissipation at short scales which is necessary for obtaining quasi-steady state
as discussed in [Garbet et al., 2010]. The modified Krook operator has been used in the
frame of this thesis work for global nonlinear simulations of the TCV tokamak. The
modified Krook operator permits a weight spreading reduction. This modified Krook
operator acts as a right-hand-side for the gyrokinetic equation (2.31)

d

dt
f = −γkδf(X, v‖, μ; t) + Scorr(X, v‖, μ; t),
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Figure 2.6 – Magnetic surfaces of the TCV tokamak. Data taken from simulations carried
out in chapter 4. In black the magnetic axis, in red the edge surface ψedge, and in blue a
surface ψ. The mesh is in {s, θ�, ϕ} coordinates.

where γk is the Krook damping rate usually taken to be a tenth of the maximum linear
growth rate, and Scorr is a correction term which ensures conservation properties. This
term is constructed such as to optionally conserve any of the following flux-surface averaged
quantities: zonal flow component, density, temperature, and parallel momentum.

Global geometry

In ORB5, the global geometry equilibrium is described in straight-field-line magnetic
coordinates {s, θ�, ϕ} with s =

√
ψ/ψedge. This equilibrium can be a circular ad-hoc

geometry or an ideal MHD equillibirum, see section 2.1. Results presented in chapter 4
are obtained from simulations carried out with an ideal MHD equilibrium relevant for
the TCV tokamak, see figure 2.6. These magnetic equilibria are obtained from the ideal
MHD code CHEASE [Lütjens et al., 1996]. Density and temperature profiles can either
be chosen consistently with the ideal MHD equilibrium or independently by user-defined
specifications.

The ORB5 simulation volume has the topology of a torus with either the full domain
s ∈ [0, smax] or an annulus with s ∈ [smin, smax] and 0 < smin < smax ≤ 1. For the case
of a torus including the magnetic axis, unicity and regularity boundary conditions are
applied on the perturbed field on axis, because the polar-like coordinates are singular
at this position. For the case of an annular domain, the same boundary conditions are
applied on both edges. For the differential long wavelength operator, Dirichlet boundary
conditions are applied. For the new arbitrary wavelength solver, boundary conditions are
not imposed but rather natural. More details are given in chapter 4.
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The Eulerian gyrokinetic code GENE

The flux tube version of the GENE code has been initially presented by [Jenko et al., 2000].
Collisions and a multi-species feature have been added by [Merz and Jenko, 2008]. The
flux tube version has been extended to a global version by [Görler, 2009, Lapillonne, 2010].

The GENE basic description and main references are provided on http://genecode.org/.

The Eulerian representation of the phase space

In the Eulerian code GENE, the plasma phase-space is represented on a grid

δfσ ≡ δfσ(Xg,v‖g, μg) and fσ0 ≡ fσ0(Xg,v‖g, μg),

where g indexes the points of the 5D grid. The associated species density and temperatures,
as well as the fields are defined on the corresponding position grid xg ≡ Xg. The
plasma perturbation is evolved with the gyrokinetic equations (2.33) which is furthermore
simplified in GENE:

∂δgσ
∂t

= −vĒ ·
(
∂fσ0
∂X

− μ

v‖mσ
∇B0

∂fσ0
∂v‖

)
− (

v‖b+ vκ + v∇P + v∇B + vĒ

) · (∂δfσ
∂X

− qσ
mσv‖

∇〈δφ〉α∂fσ0
∂v‖

)
(2.50)

+
μ

mσv‖

(
v‖b+ vκ + v∇P

) · ∇B0
∂δfσ
∂v‖

,

thus evolving δgσ = δfσ − (qσ/mσ)〈δA‖〉α∂v‖fσ0 instead of δfσ. The only nonlinear term
which is kept is vĒ ·∇Xδfσ. The parallel non linearity is neglected, see [Lapillonne, 2010].
This approximation is not made in ORB5 [Jolliet et al., 2009, Garbet et al., 2010]. In
GENE, the linearized gyrokinetic equation can be solved with an eigenmode solver or
with a time integrator. The time integrator is a 4th order Runge-Kutta with an adaptive
time step. The fields are consistently solved on the grid from the discretized version of the
field equations (2.34) and (2.35). For example, in a flux tube, the electrostatic potential
is obtained from

δ̂φ =

∑
σN0σπB0qσ

∫ +∞
−∞ dv‖

∫ +∞
0 dμJ0(k⊥ρσ)δ̂gσ

���k2⊥λ
2
D +

∑
σ(q

2
σNσ0/Tσ0)[1− Γ0(k⊥ρ2th/2)]

, (2.51)

where the deviation from quasi-neutrality k2⊥λ
2
D is neglected and having used a Fourier

representation of the phase-space quantities and fields δ̂φ = δ̂φ(kx, ky, z, v‖, μ). Indeed,
one anticipated the fact that the radial direction x is handled in Fourier space in a flux
tube, see discussion in next section. In such a Fourier representation, the integral equation
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for the polarization drift contribution to the density becomes an algebraic relation∫
dv‖dμ

qσ
B0

∂fσ0
∂μ

[δ̂φ− 〈〈δ̂φ〉〉α] � qσNσ0

Tσ0

[
1− Γ0(k

2
⊥ρ

2
th,σ/2)

]
δ̂φ,

with Γ0(ξ) = e−ξI0(ξ) the scaled modified Bessel function. The QNE (2.51) has been
expressed with the gyrokinetic model for the electrons but one can trivially replace this
gyrokinetic electron response with the adiabatic or hybrid electron response introduced
in section 2.6.

Compared to Lagrangian codes, Eulerian codes do not suffer from sampling noise, but the
associated Eulerian numerical schemes have low dissipation effects due to finite difference
discretization. Finally, additional hyper diffusivity is necessary to control the phase-space
filamentation. This hyper diffusive term is added on the RHS of the GKE. It reads

Dn
hyp δ̂g =

(
h‖

∂n

∂v‖
+ hz

∂n

∂z
+ hxk

n
x + hyk

n
y

)
δ̂g,

where n = 4 typically. The hyper-diffusion has been used in nonlinear simulations
presented in chapter 3.

The flux tube

In GENE, the configuration space is described with field-aligned coordinates (x, y, z), see
Sec. 2.1. These coordinates are a natural choice for representing the fluctuating fields of
microturbulence, as they are themselves aligned with the equilibrium magnetic field B0

(B0 ‖∇x×∇y). In GENE, the simulation box is centered on a flux surface of reference
ψ0. The radial coordinate is arbitrarily chosen to be zero on this surface x = r − r0,
where r is a function of ψ with units of length and r0 = r(ψ0).

In flux-tube geometry, see Fig. 2.7, the plasma is described in the limit of ρ� → 0 with
ρ� = ρs/a the “rho star” parameter, ρs the ion sound Larmor radius, and a the tokamak
minor radius. This ρ� parameter symbolizes the scale separation in between the turbulence
and the background quantities. In this limit, the background and magnetic equilibrium
quantities are assumed independent of the radial coordinates x. The only exception is
the radial profile of safety factor which is linearized [Beer et al., 1995]

qs(x) = qs(r0) + x
dqs
dr

∣∣∣∣
r=r0

= q0

(
1 + ŝ

x

r0

)
, (2.52)

where ŝ = (r0/q0)dqs/dr|r=r0 stands for the magnetic shear and one has furthermore
defined q0 = qs(r0). This linearized radial profile is taken into account when applying the
pseudo-periodic boundary conditions. The background quantities and their radial gradients
are assumed constant and evaluated at the flux-surface of minor radius r0: Nσj0 = Nσ0(r0),
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~Fluxtube

Figure 2.7 – Cartoon of a flux tube.

Tσ0 = Tσ0(r0), 1/LNσ = −d log Tσ0/dr|r=r0 , and 1/LTσ = −d log Tσ0/dr|r=r0 . The
essential magnetic equilibrium quantities only depend on the parallel coordinate: the
magnetic field amplitude B0 = B0(z), its gradient components ∂B0

∂x = ∂B0
∂x (z) and

∂B0
∂z = ∂B0

∂z (z), the Jacobian J xyz = J xyz(z), and the metric coefficients gνμ(z) = ∇ν ·∇μ
with ν and μ the flux-tube coordinates (x, y, z).

Boundary conditions in a flux tube

According to the standard flux-tube model, periodic boundary conditions are imposed
in both the radial direction x and binormal direction y. The periodicity in x is justified
by the spatial scale separation between the correlation length of turbulent eddies, ∼ ρs,
and the characteristic equilibrium length Lc ∼ LN , and LT ∼ a. This scale separation is
usually appreciated with the rho star parameter ρ� 
 1. The periodicity in y reflects the
2π-periodicity of any physical field A with respect to the toroidal angle ϕ. In the limit
where the flux tube covers the full magnetic surface, the y periodicity corresponds exatcly
to A(ψ, χ, ϕ) = A(ψ, χ, ϕ + 2π). These periodic boundary conditions in x and y are
naturally accounted for by considering a Fourier representation in both these directions

A(x, y, z) =

+∞∑
k,l=−∞

Â(kx, ky, z) exp (ıkxx+ ıkyy), (2.53)

having defined kx = k kx,min, ky = l ky,min, kx,min = 2π/Lx, ky,min = 2π/Ly, as well as
Lx and Ly denoting the width of the flux tube in the x and y directions, respectively.

In field-aligned coordinates, pseudo-periodic boundary conditions are applied in the z
direction

A(x, y, z + 2π) = A(x, y − Cyqs(x)2π, z), (2.54)
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as a consequence of the poloidal periodicity of the fields A(ψ, χ, ϕ) = A(ψ, χ+ 2π, ϕ),
see references [Beer et al., 1995, Scott, 1998, Merz, 2009]. In the Fourier representation,
equation (2.53), these pseudo-periodic boundary conditions translate into

+∞∑
k,l=−∞

Â(kx, ky, z + 2π) exp (ıkxx+ ıkyy) =

+∞∑
k,l=−∞

Â(kx, ky, z) exp (ıkxx+ ıkyy) exp {−ı2πkyCy q0(1 + ŝx/r0)}, (2.55)

having used the linearized profile of safety factor, equation (2.52). Accounting for this
radial variation of qs(x) in the boundary conditions with respect to z provides the essential
magnetic topology required for studying the particular particle dynamics that may develop
in the vicinity of low order MRSs. For a given ky mode, equation (2.55) leads to a coupling
between different kx Fourier modes:

Â(kx + 2πŝky, ky, z − π) = eı 2πkyCy q0︸ ︷︷ ︸
=1

Â(kx, ky, z + π). (2.56)

This relation illustrates how a given ky mode followed along a magnetic field line generates
finer and finer radial structures after each poloidal turn, as a result of the magnetic shear.
In GENE, the phase factor exp (ı 2πkyCy q0) in equation (2.56) is set to 1 for all ky modes,
following the standard flux-tube model convention. One can show that this corresponds
to a simple shift of the origin of the x coordinate to the position of the nearest considered
lowest-order mode rational surface. This explains why x = 0 always coincides with a
MRS for all ky modes. The linearization of the safety factor profile naturally implies
that the MRSs related to a given ky = l ky,min mode are equidistant and located at
the radial positions x = ΔmLMRS = ΔmLLMRS/l, with p, l integers, LMRS(ky) = 1/ŝky
standing for the distance between mode rational surfaces (MRSs) related to any ky, and
LLMRS = LMRS(ky,min) the distance between lowest-order mode rational surface (LMRS),
i.e. related to ky,min.

In a tokamak, a linear eigenmode has a fixed ky mode number as a result of the axisymme-
try of the considered equilibrium, but in general is a superposition of an infinite number
of coupled kx modes given by kx = kx,0 + p 2πŝky, p ∈ Z, as described in equation (2.56).
Such a linear eigenmode thus reads:

Aky(x, y, z) = exp (ıkyy) exp (ıkx,0x)

×
+∞∑

p=−∞
Â(kx,0 + p2πŝky, ky, z) exp (ıp2πŝky x). (2.57)

From the coupled z-dependent coefficients Â(kx,0 + p2πŝ, ky, z) appearing in equa-
tion (2.57), one may construct the so-called ballooning envelope, denoted Âb(z) and

38



2.8. The gyrokinetic codes GENE and ORB5

defined over the infinite space z ∈ [−∞,+∞]. This envelope, consistent with the standard
ballooning representation [Connor et al., 1978, Hazeltine and Newcomb, 1990], is defined
as follows:

Âb(z + p2π) = Â(kx,0 + p2πky ŝ, ky, z), z ∈ [−π, π], p ∈ Z. (2.58)

Note that Âb(z) is a continuous function, in particular at the connection points z = π+p2π,
p ∈ Z, as a consequence of equation (2.56). One can furthermore show that kx,0 is related
to the so-called ballooning angle χ0 according to the relation kx,0 = −ky ŝχ0.

GENE flux-tube phase-space grid

In GENE, the 5D particle distribution function δf and the 3D self-consistent fields are
represented with grids in coordinates (kx, ky, z, v‖, μ) and (kx, ky, z), respectively. The
phase-space simulation volume is thus discretized with nkx × nky × nz × n‖ × nμ grid
points and represents a volume Lkx × Lky × Lz × L‖ × Lμ.

The simulation box in respectively the radial and binormal directions is composed of
nkx = nx and nky = ny/2 complex Fourier modes. Only positive ky modes, ky ≥ 0, are
considered in the binormal direction by invoking the reality condition. The simulation box
lengths in these spectral directions are Lkx = nkxkx,min and Lky = nkyky,min. The box
size in the z direction Lz must be equal to Lz = 2π, i.e. one poloidal turn, for consistency
between flux-tube and global geometries as demonstrated in reference [Scott, 1998]. This
direction is discretized using nz grid points.

The considered gyrocenter velocity space variables are (v‖, μ). The numerical represen-
tation of these directions are restricted to −vmax < v‖ < +vmax and 0 < μ < μmax =

mv2max/2B0 where typically vmax = 4 − 5 vthσ. This species-dependent velocity phase
space is discretized with nv‖ equidistant mesh points in the v‖ direction and with nμ points,
either equidistant or given by Gauss-Legendre integration points, in the μ direction.
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3 How non-adiabatic passing-electron
layers of linear microinstabilities
affect turbulent transport
3.1 Introduction

The non-adiabatic response of passing electrons in ion temperature gradient (ITG) and
trapped electron mode (TEM) microturbulence regimes is investigated in tokamak plasmas
making use of the flux-tube version of the gyrokinetic code GENE [Jenko et al., 2000].
The presence of fine structures near MRSs due to this non-adiabatic electron response
was observed in linear simulations [Chowdhury et al., 2008], as well as in nonlinear
simulations [Waltz et al., 2005, Candy, 2005, Waltz et al., 2006]. The quasi-linear esti-
mate of the particle flux was shown to be altered by the passing electrons in refer-
ences [Hallatschek and Dorland, 2005, Angioni et al., 2007] and turbulence simulations
including full passing electrons dynamics have also been discussed in [Scott, 2006]. This
chapter contains a systematic study of the non-adiabatic response of passing electrons in
the vicinity of MRSs in both ITG and TEM dominated regimes. Results are obtained
using three different electron models, adiabatic, hybrid, and fully kinetic. See the de-
scription of these electron models in section 2.6. Comparing linear eigenmodes obtained
with the hybrid and the fully kinetic electron models enables to systematically isolate fine
radial structures located at corresponding mode rational surfaces, clearly resulting from
the non-adiabatic passing-electron response. Nonlinear simulations show that these fine
structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore,
through nonlinear coupling to axisymmetric modes, they induce radial modulations in
the effective profiles of density, ion and electron temperatures, and E ×B shearing rate.
Finally, the passing-electron channel is shown to significantly contribute to the transport
levels, at least in our ITG case. Also shown is that the passing electrons significantly
influence the E ×B saturation mechanism of turbulent fluxes.

The chapter is organized as follows. In Sec. 3.2, the ITG and TEM test cases of reference
are presented. In Sec. 3.3, the impact of the non-adiabatic response of passing electrons
on the linear mode destabilization is addressed. Systematically comparing eigenmodes
obtained from GENE linear simulations where the electron response is fully kinetic, with
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eigenmodes obtained from simulations where the electron response is hybrid, one clearly
identifies a fine structure near MRSs resulting from the non-adiabatic response of passing
electrons [Dominski et al., 2012]. The underlying mechanisms of the destabilization near
MRSs due to the non-adiabatic response of passing electrons are revealed by the derivation
of a local dispersion relation to which GENE results are confronted. A systematic
comparison based on the estimate of the fine radial structure width, within which the
electrons respond non-adiabatically, is carried out by scanning physical parameters: the
magnetic shear ŝ, the safety factor q0, the electron to ion temperature ratio τ = Te0/Ti0,
the ion to electron mass ratio μ = mi/me and the wave vector in the binormal direction
kyρi (normalized to the ion Larmor radius). The interplay between the non-adiabatic
response of passing electrons and the nonlinear turbulence is analyzed in Sec. 3.4. The
persistence in the turbulent regime of these fine structures on the considered ky �= 0 modes
is first addressed. The resulting radial modulation of the axisymmetric mode (ky = 0) due
to the nonlinear coupling with the ky �= 0 modes is shown. In particular, the development
of corrugations in the flux-surface-and-time-averaged profiles is pointed out as already
observed [Waltz et al., 2005, Candy, 2005, Waltz et al., 2006]. The importance of the
passing electron contribution to the different turbulent fluxes is quantified as well as their
influence on the E ×B saturation mechanism. Conclusions are finally drawn in Sec. 5.6

3.2 Test cases of reference

Differences between three electron models are briefly illustrated by looking at the linear
spectra obtained with the GENE code when using alternatively the fully kinetic, adiabatic,
and hybrid electron models. The physical parameters of these test cases are summarized
in table 3.1. The real frequencies ωr and growth rates γ of the most unstable mode at
each wave number ky are presented in figure 3.1 subplots (a,b,c,d). This figure shows the
results obtained for two different instability regimes: an ITG and a TEM. These two cases
are the reference cases considered in this entire work. The ITG is close to the cyclone
base case (CBC), whose characteristic gradients lengths of density and ion/electron
temperatures have been slightly modified to avoid the presence of secondary TEM or ETG
modes. The TEM case is inspired by reference [Merz and Jenko, 2008] but considering
the temperature ratio τ = 1 instead of 3, this change is made to obtain a TEM case whose
turbulent fluxes are significantly saturated by the zonal flows (ZFs). In the ITG case,
figure 3.1 (a) and (c), for small wave numbers, 0 < kyρi � 0.7, the fully kinetic electron
model (blue) provides an ITG instability (ωr < 0), well reproduced by the hybrid (red)
but not so well reproduced by the adiabatic model (green): there is indeed a ∼ 50% lower
γ with this latter model, resulting from the trapped electrons being forced to respond
adiabatically, when in fact they are essentially passive for this ITG. Accounting for the
fully kinetic electron response provides essentially the same spectra as when accounting
for the hybrid electron response, in this ITG case where no unstable TEM or ETG are
present.
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Figure 3.1 – Growth rates γ (full lines) and real frequencies ωr (dashed lines) in units
vthi/R as a function of kyρi for the test cases of reference described in table 3.1, and
considering different electron models: adiabatic (green), hybrid (red), fully kinetic (blue).
Both ITG (left column) and TEM (right column) cases shown. Results obtained with
(a-d) GENE and (e-f) local dispersion relation. Also plotted are the results obtained with
GENE when running simulation with the reduced mass ratio μ = 400 (thin lines with
circles). For the local dispersion relation, one considers k‖Rq0 = 0.2 for all the electron
models, and one considers the additional case with k‖Rq0 = 0 (lines with asterisk) for
the kinetic electron model.
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For all cases: concentric circular geometry with q0 = 1.4, ŝ = 0.8, Z = 1,
τ = Te0/Ti0 = 1. β = 10−3 for fully-kinetic model.
Case R/Ln R/LTe0 R/LTi0 ky,minρi μ = mi/me ε = r0/R

ITG 2.0 2.0 6.0 0.3 (0.07) 1836 (400) 0.18
TEM 3.0 6.0 0.0 0.3 (0.04) 1836 (400) 0.16
Grid resolution:

nx × nky × nz × nv‖ × nμ = 64× 1× 32× 64× 32 (linear),
= 432× 64× 16× 64× 8 (nonlinear ITG),
= 256× 64× 16× 64× 16 (nonlinear TEM).

Table 3.1 – Physical parameters for the ITG and TEM reference cases, considered in
GENE simulations and in the local dispersion relation. The parameters ε and R stand
respectively for the inverse aspect ratio and the major radius. Parameter values in
parenthesis correspond to the ones considered in the nonlinear simulations when different
from the corresponding linear run values.

In the TEM case, figure 3.1 (b) and (d), the kinetic model (blue) provides a TEM
instability (ωr > 0) well reproduced by the hybrid model (red) for small to intermediate
wave numbers 0 < kyρi � 1.5. At high wave numbers, kyρi � 1.5, the fully kinetic spectra
shows a progressive transition of the TEM mode towards an ETG instability, at which
point the hybrid representation starts to fail. The adiabatic electron model does not
give any TEM instability because this response cannot be used to reproduce the TEM
destabilization mechanism which is caused by a resonance between the perturbation and
the toroidal precessional drift of the trapped electrons.

3.3 Fine structures at low order MRS, in linear regimes

3.3.1 Analytical estimate of the radial width of fine structures

An analytical estimate of the radial width δxth measuring the region centered around
a MRS, within which the passing electron response is expected to be non-adiabatic, is
derived. The considered MRS is assumed located at x0 = 0 where q0 = −m/n. The
wave vector of the Fourier mode of poloidal-toroidal mode numbers (m,n) is given by
k = m∇χ+ n∇ϕ and its component parallel to B0 reads:

k‖ = k · B0

B0
=

B0 · ∇χ
B0

[m+ nqs(x)] =
B0 · ∇ϕ
B0qs

[m+ nqs(x)],

having used qs = B0 · ∇ϕ/B0 · ∇χ, constant on a magnetic surface for the straight field
line poloidal angle χ. Near the MRS located at x0, one clearly has k‖ → 0 and the
condition of validity for limiting the passing electron response to their adiabatic response,
|ωr/k‖| 
 vthe, breaks down. Note that the parallel component of the wave vector goes
to zero as the mode aligns with the magnetic field at the position of the MRS.
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To have an estimate of the parallel phase velocity ωr/k‖ with respect to x, one Taylor
expands the parallel component of the wave vector around x0 with respect to the small
deviation x = x− x0, leading to:

k‖(x) �
ŝ

q0

x

R
ky, (3.1)

with qs defined in equation (2.52), ky = −nq0/r0, and B0 · ∇ϕ ≈ B0/R with R the major
radius. Then, assuming that the electrons respond non-adiabatically in the region where
the phase velocity of the perturbation is larger than the electron thermal velocity, one
estimates the boundaries of this region to be where |ωr/k‖(±δxth/2)| = vthe. Finally, the
distance between these boundaries located on both sides of the MRS gives the so-called
“theoretical” estimate of the fine structure

δxth

ρi
= 2

|ωr|
vthi/R

q0
ŝ
√
τμ kyρi

. (3.2)

This theoretical estimate requires the knowledge of the real frequencies, ωr, which we take
here from GENE linear simulations. For example, to estimate the theoretical width of the
kyρi = 0.3 mode of reference, the real frequencies of the ITG and TEM cases are taken
from figure 3.1(c,d): ωr ≈ −0.7vthi/R and 0.6vthi/R, respectively. Then considering
appropriate physical parameters from table 3.1, one roughly estimates the respective
radial widths to be δxth ≈ 0.21ρi and 0.18ρi. This narrow region of non-adiabatic electron
response motivates the use of high radial resolution in GENE simulations.

3.3.2 Fine structures near MRS in linear GENE simulations

Linear flux-tube simulations of ITG and TEM eigenmodes have been carried out by using
the spectral approach provided in the GENE code, which enables one to compute dominant
as well as sub-dominant unstable eigenmodes with complex frequency ω = ωr + iγ, as
detailed in references [Kammerer et al., 2008, Roman et al., 2010, Merz et al., 2012]. In
the GENE representation, an eigenmode of a field A thus takes on the functional form

A(x, y, z; t) = Â(x, z) exp[i(kyy − ωt)].

The eigenmode is therefore essentially characterized by the complex amplitude Â(x, z),
which represents the slow spatial variation, the fast phase variation being contained in
the factor exp(ikyy), see Sec.2.8. Typical eigenmode envelopes of fluctuating fields of
interest (φ, δN , δTe and δTi which are weighted by the Jacobian J xyz) are shown in
Figs. 3.2 and 3.3, for both the ITG and TEM test cases in respectively the left and
right columns of these figures. Note that, as introduced in Sec. 2.8, in a linear flux-tube
simulation, due to the imposed periodic boundary conditions in x, the system size Lx

along this direction is taken as the distance between consecutive lowest-order MRSs for
the considered ky mode number such that all kx modes are coupled and the ballooning
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Figure 3.2 – (x, z)-envelopes of fluctuation fields φ, δN , δTe, δTi weighted by the Jacobian
J xyz and corresponding to the ITG (a,c,e,g) and to the TEM (b,d,f,h) reference cases
whose parameters are given in Tab. 3.1. The fully kinetic model has been used and
kyρi = 0.3. Color coding: dark blue = zero, dark red = maximum value.

angle range is maximized: Lx = 1/(ky ŝ), and the origin of the x coordinates is always
chosen to be located at MRS. For kyρi = 0.3 and ŝ = 0.8 considered here, one thus
obtains Lx = 4.17 ρi.

In figure 3.2, whose results are obtained with the fully kinetic electron model, the
characteristic ballooned structures of ITG/TEM modes is recovered: the amplitude of
the slow spatial envelope of the perturbation is systematically modulated in the z ≡ χ

direction with a minimum located in the inner mid-plane at z = ±π and a maximum
located in the outer mid-plane at z = 0. Indeed the maximum of amplitude is positioned
in both cases at the outer mid-plane of the tokamak where the interchange is unfavorable
in the ITG case and where the trapped electrons are resonating with the perturbation
in the TEM case. Remarkable on all fields, except δTi, is the presence of a fine radial
structure centered on the MRS located, as previously mentioned above, at x = 0 where
the non-adiabatic response of the passing electrons cannot be neglected.

To clearly identify the effect of the non-adiabatic response of passing electrons, the
envelopes of the electrostatic potential |φ| obtained with the hybrid model and with
the fully kinetic model, respectively, are compared in figure 3.3. Subplots (a,b) present
results carried out with the fully kinetic model, while subplots (c,d) show results carried
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Figure 3.3 – Envelopes J xyz|φ̂|(x, z) of linear eigenmodes for the same ITG and TEM
cases as in figure 3.2. The first and second row of sub-plots respectively present the
results from the fully kinetic and hybrid electron models. The difference Δ|φ̂| is shown
in the third row and its z-averaged profile in the fourth row, from which the numerical
FWHM δxsimlin (magenta circles) estimate for the fine structure width can be obtained.
Color coding: dark blue = zero, dark red = maximum value.
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out with the hybrid model. Note that the ballooned structure is recovered for the case
of hybrid electron model. A notable difference, however, is the presence of the fine,
almost slab-like, structure centered at the MRS (x = 0) in the eigenmodes from the fully
kinetic model, which is absent in the hybrid model results, thus clearly identified as a
feature resulting from the non-adiabatic response of passing electrons in the vicinity of
the lowest-order MRS of the considered ky mode number. The slab-like feature along
z at x = 0 ensures |k‖| ≈ |∂ log φ̂/∂z| ≈ 0, essential for a non-adiabatic response of
passing electrons. ∂φ̂/∂z = 0 is clearly only possible at MRS. By subtracting the mode
envelopes obtained from the two different electron models, Δ|φ̂|(x, z) = |φ̂kin| − |φ̂hyb|,
we are able to cleanly isolate the radial structure, see figure 3.3 (e,f). Note that prior
to this subtraction, the field φ̂hyb has been normalized such that 〈|φ̂hyb|〉z = 〈|φ̂kin|〉z
at x = ±Lx/2, i.e. at the most distant radial points from the MRSs where the fields
provided by the fully kinetic and hybrid models are essentially identical. Furthermore
z-averaging provides an average radial profile

〈Δ|φ̂|〉z(x) =
∫
dzJ xyzΔ|φ̂|(x, z)∫

dzJ xyz
, (3.3)

shown in subplots (g,h) of figure 3.3, from which a numerical estimate δxsimlin of the
structure width is measured as the full width at half maximum (FWHM): δxsimlin /ρi ≈ 0.27

(ITG) and 0.48 (TEM). Numerical estimates are of the same order of magnitude than the
theoretical ones, δxth/ρi ≈ 0.21 (ITG) and 0.18 (TEM), with good agreement for ITG
and a factor 2.5 larger for TEM.

These fine structures can be indirectly observed through the presence of so-called “Gi-
ant tails” [Hallatschek and Dorland, 2005] in the ballooning representation envelope [as
defined by relation (2.58)] of the electrostatic potential. Indeed, giant tails in Fourier
space correspond to a localized fine structure in direct space. Corresponding giant tails
as illustrated in figure 3.4, for the ITG case, are present in the fully kinetic case, when
no such big tails are present in the hybrid or adiabatic cases, thus confirming that the
fine radial structures are due to the non-adiabatic response of the passing electrons.
Nonetheless tails of lower amplitude (2 orders of magnitude smaller) are also present in
the hybrid cases corresponding to much weaker radial modulation in direct space and
visible in Fig 3.3(c-d). They are due to the trapped electrons response as there is no such
tail of low amplitude in the adiabatic case. In the TEM case, not shown here, results are
essentially the same.

3.3.3 Local dispersion relation

In this section, the local destabilization of the plasma is studied by the use of a local
dispersion relation. This simple code is independent of the GENE code. The purpose is
to address the basic mechanisms of destabilization and to have a model of comparison
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Figure 3.4 – Ballooning representation envelope of the electrostatic potential |φ| obtained
in linear GENE simulations when using the different electron models. ITG test case with
nx = 128.

against the GENE linear results, such a comparison is addressed in the next section 3.3.4.

Model

In this section one introduces the local dispersion relation used to describe both ITG
and TEM instabilities at the most unfavorable position (χ = 0). In this local approach
the field-aligned coordinate system is approximated by a local Cartesian system whose
orthogonal directions are: the radial direction where the typical gradients are defined
(1/LN,Ti,Te = d ln(N,Ti, Te)/dx), the binormal direction which is associated in this local
approach to be the perpendicular direction (k⊥ ≡ ky), and the parallel direction to the
magnetic field (k‖ ≡ kz). This dispersion relation is based on the gyrokinetic QNE.
The perturbed density contribution of each species σ to the QNE is obtained from the
gyrokinetic equation [Romanelli and Briguglio, 1990]:

δNσ = −qσφ
Tσ0

∫
V
d3v

[
1− J2

0 (ϑσ)
ω − ω�

σ

ω − k‖v‖ − ωdσ

]
fσ0, (3.4)

where the first term in the square brackets of the RHS gives the adiabatic response and
the second term containing the Bessel function of the first kind J0 gives the non-adiabatic
response. Other parameters are: ϑσ = k⊥v⊥/Ωσ, Ωσ = qσB0/mσ the cyclotron frequency,
ωdσ = −(v2‖ + v2⊥/2)k⊥/RΩσ the drift frequency related to curvature and gradient of B0,
ω�
σ = ωNσ(1 + ησTσ0∂/∂Tσ), ωNσ = −Tσ0k⊥/qjB0LN , and ησ = LNσ/LTσ . The kinetic

estimate of the ion perturbed density with charge qi = Ze is obtained from equation (3.4)
where the domain of integration is the whole velocity space, giving:

δNi

Ni0
= −Zeφ

Ti0

[
1−

∫ +∞

−∞
d3v J2

0 (ϑi)
ω − ω�

i

ω − k‖v‖ − ωDi

fi0
Ni0

]
. (3.5)
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In the frame of the hybrid electron model, the electron density is composed of two
contributions: the adiabatic response of the passing electrons δNe,pas/Ne0 = (1−αt)eφ/Te0
and the bounce-averaged kinetic response of the trapped electrons

δNe,trp

Ne0
= αt

eφ

Te0

(
1− 4π

∫ +∞

0
dε
√
2ε

ω − ω�
e

ω − n〈ϕ̇〉
fe0
Ne0

)
, (3.6)

where ε = (v2⊥ + v2‖)/2 is the kinetic energy divided by the mass and n〈ϕ̇〉 is the toroidal
precessional drift frequency of the trapped electrons. Introducing the dispersion function
W (z) = (2π)−1/2

∫
Υ dx e

−x2/2 x/(x− z), this last equation reduces [Brunner, 1997] to

δNe,trp

Ne0
= αt

eφ

Te0

{
1 +

(
1− ω�

e

ω

)[
z2beW (zbe)

]}
, (3.7)

where ωϕe = n〈ϕ̇〉v2the/ε = ωNeGLN/R, G ≈ 1 and zbe = sgn(ωϕe)
√
2ω/ωϕe has been

chosen in order to respect causality over the Landau contour Υ of the integral defining
W (z).

In order to study the fully kinetic response of the plasma in this local approach, the
previously ignored non-adiabatic response of the passing electrons is introduced. The
passing electron drift frequency is averaged to zero ωde = 0 because these passing electrons
circulate successively over the favorable and unfavorable sides of the poloidal plane with
a much higher transit frequency ωt than the typical ITG/TEM frequencies. The Larmor
radius of electrons being small enough, k⊥ρe 
 1, the electron finite Larmor radius
effects are neglected: J0(ϑe) ≈ 1. The non-adiabatic response of passing electrons is
then obtained by integrating equation (3.4) with ωde = 0 and J0 = 1 over the passing
velocity phase space

∫
pas d

3v = 2π
∫ +∞
−∞ dv‖

∫ v⊥c

0 dv⊥, where v⊥c = v‖ tan θc is the critical
perpendicular velocity above which the electrons are trapped. Finally, the fully kinetic
response of the passing electrons reads:

δNe,pas

Ne0
= (1− αt)

eφ

Te0

{
1−

(
1− ω�

e

ω

)[
1− W (ze)− αtW (ze/αt)

1− αt

]}
, (3.8)

where W (z) is the dispersion function and ze = ω/k‖vthe. Finally, having a quasi-neutral
background (ZNi0 = Ne0), the dispersion relation of the fully kinetic model is:

0 = Zτ + 1− Zτ

∫
d3v J2

0 (ϑi)
ω − ω�

i

ω − k‖v‖ − ωDi

fi0
Ni0

+

(
1− ω�

e

ω

)[
αtz

2
beW (zbe)

]
+

(
1− ω�

e

ω

)[
−1 + αt +W (ze)− αtW

(
ze
αt

)]
. (3.9)

Removing both terms proportional to (1−ω�
e/ω) which contain the non-adiabatic response
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of electrons gives the dispersion relation of the adiabatic model. Removing only the
second term proportional to (1− ω�

e/ω) gives the dispersion relation of the hybrid model.

Analytical solution at MRS

We are now interested in deriving an analytical solution at MRS, i.e. k‖ = 0, by keeping
the essential terms of this local dispersion relation. Equation (3.9) is simplified by noting
that k‖v‖/ω = 0. For all cases, ion finite Larmor radius effects turn out to be essential in
the destabilization mechanism at MRS, and they are kept at second order by employing
the approximation J2

0 (ϑi) ≈ 1− ϑ2i /2. This seems to be a reasonable approximation for
our reference cases as k⊥ρi = 0.3. Also assuming |ω/ωDi| � 1, the ion density response
at MRS reads

δNi

Ni0
≈ −Zeφ

Ti0

{
1− ω − ω�

i

ω

[
1− ξi + (2− 3ξi)

〈ωDi〉
2ω

]}
, (3.10)

where ξi = (k⊥ρi)2 and 〈ωDi〉 =
∫
dv ωDifi0/Ni0 = −2Ti0k⊥/qiB0R is the drift frequency

moment of the Maxwellian distribution function. The kinetic response of the trapped
electrons is assumed to be passive (= 0) in the ITG case and to be the bounce-averaged
one in the TEM case. The latter response is obtained by taking the asymptotic expansion
W (zbe) � −z−2

be − z−4
be when assuming |zbe| � 1, thus giving [Brunner, 1997]

δNe,trp

Ne0
� αt

eφ

Te0

[
ωNe − 3ωϕe/2

ω
+

3

2
(1 + ηe)

ωNeωϕe

ω2

]
. (3.11)

The kinetic response of passing electrons is obtained by making use of the asymptotic
expansion W (ze) � −z−2

e for |ze| � 1 which in the limit k‖ → 0 leads to

δNe,pas

Ne0
=

k‖→0
(1− αt)

eφ

Te0

ωNe

ω
. (3.12)

These approximations finally lead to the so-called asymptotic dispersion relation

0 = ω2
(
ξi +

c1
Zτ

)
+ ω

{
ωNi [1− c2 − (1 + ηi) ξi]− 〈ωDi〉

(
1− 3

2
ξi

)}
+ ωNi〈ωDi〉

[
(1 + ηi)

(
1− 3

2
ξi

)
− 3

2
ηiξi

]
− c3 ωNi

{
ω − 3LNG

2R
[ω + ZτωNi (1 + ηe)]

}
, (3.13)

where c1 is the proportion of adiabatic electrons, c2 is the proportion of kinetic passing
electrons, and c3 is the proportion of kinetic trapped electrons. In the ITG case for
adiabatic electrons (c1 = 1, c2 = 0, c3 = 0), for hybrid electrons (c1 = 1− αt, c2 = 0, c3 =
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Figure 3.5 – Growth rate γ at the MRS (k‖ = 0) obtained with the local dispersion relation
equation (3.9) (full line), and with the asymptotic dispersion relation equation (3.13)
(dash-dotted line). ITG case (a) and TEM case (b). Electron models: kinetic (blue),
hybrid (red) and adiabatic (green). The vertical dotted line indicates the reference
temperature ratio τ = 1.

0), and for fully kinetic electrons (c1 = 0, c2 = 1 − αt, c3 = 0). In the TEM case for
the hybrid electron model (c1 = 1− αt, c2 = 0, c3 = αt) and for the fully kinetic model
(c1 = 0, c2 = 1− αt, c3 = αt). Note that in all cases c1 + c2 + c3 = 1 except in the ITG
case for hybrid and fully kinetic models where c1 + c2 + c3 = 1− αt as trapped electrons
are assumed to be passive.

The second order polynomial equation (3.13) of the form Aω2 +Bω + C = 0 accounts
for an instability if and only if the discriminant Δ = B2 − 4AC is negative. Noting that
A > 0, in all cases, a necessary condition for instability is thus C > 0 which in turns
requires ωNi(1 + ηi)〈ωDi〉 > 0 reflecting the interchange nature of the instability.

In order to appreciate the agreement between the local dispersion relation (3.9) and the
asymptotic one (3.13), a scan in τ is carried out in figure 3.5. The destabilizing influence
of the non-adiabatic electron response, near MRSs, is recovered with both dispersion
relations: γkin > γhyb > γad. The growth rates obtained from equation (3.13) are in
a quite good agreement with those obtained from equation (3.9) in the ITG case but
appear to be overestimated in the TEM case by a factor ≈ 2 − 3: this may be due to
the approximation |zbe| � 1 when in fact |zbe| � 1 in this TEM case when k‖ = 0. Also
for both local and asymptotic dispersion relations, increasing τ , which corresponds to
decreasing the adiabatic response, has the effect of reducing the difference between the
growth rates obtained with the different electron models.

We now discuss results obtained with the local dispersion relation equation (3.9).
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Local destabilization near MRS, results

We first illustrate the destabilizing influence of the three electron models, in the frame of
the local dispersion relation study, by carrying out a ky scan of the most unstable branch
using equation (3.9). Results are plotted in figure 3.1 subplots (e) and (f), for the ITG
and TEM cases, respectively. The complex frequencies obtained with these local models
(plain lines with no markers) are in a qualitative agreement with results obtained from
GENE and plotted in subplots (a-d) but the local dispersion relation overestimates the
real frequencies and growth rates up to a factor two. This difference can be explained by
the fact that the local dispersion is located at the most unstable position, but the flux
tube accounts for both unstable and stable sides of the magnetic surface. Note that these
results were obtained with the k‖ parameter set to: k‖Rq0 = 0.2, such that |ωr/k‖| 
 vthe.
For the fully-kinetic electron model, also plotted (with asterisk) are the results obtained
with a second value of the parallel wave vector: k‖Rq0 = 0, such that |ωr/k‖| � vthe. In
this latter case, the unstable branch in both ITG and TEM cases is now an ion unstable
branch (ωr < 0) which is unstable at very short scales. Notice that our previous analytical
results pointed out the ion interchange nature of this destabilization when k‖ = 0.

The plasma stability study conducted with the local dispersion-relation, equation (3.9),
demonstrates the destabilizing role of the non-adiabatic response of passing electrons near
MRSs. Note that in this local description of the plasma, the distance from the MRS is
adjusted with the parameter k‖, by using the mapping k‖ �→ x defined by equation (3.1).
Results plotted in figure 3.6 (a,b) clearly show that when getting closer to the MRS, i.e.
k‖ going to zero, the kinetic model provides larger growth rates than the hybrid model.
It thus reveals the destabilizing role of the non-adiabatic response of passing electrons
near MRS. Moreover, as one can appreciate in figure 3.6 (c,d), this divergence between
kinetic and hybrid results starts from a value of k‖ where the parallel phase velocity of
the wave is of the order of the electron thermal velocity (|ωr/k‖vthe| ≈ 1). It validates
the choice of the criteria |ω/k‖| = vthe used to derive the theoretical width estimate of
the fine structures equation (3.2).

In order to compare these local results with GENE results, we define a “local” width
estimate of the fine structure in which the unstable growth rate obtained with the fully
kinetic model is significantly larger than the one obtained with the hybrid electron
model. This local estimate of the fine structure width is defined as the FWHM of
Δγ = (γkin−γhyb). For comparison purpose, Δγ, as well as the difference between kinetic
and hybrid envelopes of the electrostatic potential, Δ|φ| = |φkin| − |φhyb|, obtained with
GENE are plotted with respect to the radial distance to the MRS in figure 3.7. It is
remarkable that the abrupt increase of the growth rate due to the non-adiabatic response
of passing electrons near MRS occurs within a radial region where the radial fine structure
is present over the perturbation fields of GENE results. The FWHM of Δγ localizes the
fine structure “boundary” to be at x/ρi ≈ 0.1 (ITG) and 0.2 (TEM), in figure 3.6. At
these respective positions one has |ωr/k‖vthe| ≈ 1 and 0.4.
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Figure 3.6 – Solution to the local dispersion relations equation (3.9) obtained when
considering the different electron models: adiabatic (green), hybrid (red) and fully kinetic
(blue), for both (a,c) ITG and (b,d) TEM test cases of reference described in Tab. 3.1.
In the top subplots (a) and (b), the growth rate is plotted with full lines and the real
frequency with dashed lines. In the bottom subplots (c) and (d), the phase velocity
normalized with respect to the electron thermal one is shown as a function of the distance
x to the MRS. The radial distance to the MRS x, in the x-axis of (a) and (b) is mapped
to the value of k‖ in the x-axis of (c) and (d) by using equation (3.1). The FWHM
which corresponds to the local width estimate of the fine structure δxloc is plotted with
magenta circles. Growth rates obtained with the asymptotic dispersion relation (3.13)
are indicated with an asterisk in subplots (a) and (b).
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ŝ
0 0.5 1

(e)

kyρi

 

 

   deut./e−

       proton/e−
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For the different scans of figure 3.8: τ (+), μ(◦), qs(∗), ŝ(�) and ky(×). ITG in blue and
TEM in red. Lines of constant slope have been plotted such that δx = κ δxsimlin .

3.3.4 Systematic scan of physical parameters and comparison of the
radial width estimates

Numerical width estimates δxsimlin plotted in figure 3.8 are obtained while scanning the
aforementioned physical parameters of equation (3.2): τ , μ, q0, ŝ, and ky. It is remarkable
that a fine structure is always present over the eigenmode of the electrostatic potential
with a radial width systematically smaller than an ion Larmor radius or so, except for
ŝ→ 0. It is also remarkable that the width estimate obtained from the local dispersion
relation is in qualitative agreement with GENE simulation results, thus confirming that
the radial fine structures are related to a local destabilization of the plasma due to the
non-adiabatic response of passing electron near MRSs. The influence of the scanned
physical parameters over the structure width can be obtained by fitting the results with
power scaling laws: in the ITG case we obtain δxsimlin,ITG ∝ μ−1/2q0 and in the TEM case

we obtain δxsimlin,TEM ∝ τ1/2μ−1/2q
3/2
0 ŝ−1k

−1/2
y . The difference of these two relations with

the theoretical relation given by equation (3.2) reflects the fact that ωr is not constant
and its value taken from GENE varies with the scanned parameters.

In figure 3.9, for each linear simulation carried out with GENE when scanning the physical
parameters, the numerical width estimate δxsimlin is compared to both theoretical estimate
δxth and local estimate δxloc obtained with corresponding parameters. In subplot (a),
the numerical estimates obtained from GENE simulations are in good agreement with
the theoretical ones, as their ratio is of order unity. In the ITG case, for the majority
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of scanned parameters one has κ = δxth/δxsimlin ≈ 1. In the TEM case, this velocity
ratio is of the order of, but smaller, than unity: κ = δxth/δxsimlin ≈ 0.4 indicating that
the destabilization occurs for slower parallel wave velocities in this case than for ITG
modes. It thus validates the choice of using the criteria |ωr/k‖| ≈ vthe to localize, at
leading order, the boundaries of the non-adiabatic region when defining the theoretical
estimate δxth of the width, equation (3.2). In subplot (b), the numerical width estimates
obtained from GENE δxsimlin are in good agreement with the local ones δxloc for all scanned
parameters of both the ITG and TEM test cases. This good agreement between the
results obtained with GENE and the results obtained with the local dispersion relation,
also clearly appreciable in figure 3.8, shows that the fine structures near MRSs are related
to the local destabilization due to the passing electrons dynamics.

3.4 Fine structures in nonlinear simulations and their effect
on transport

3.4.1 ITG and TEM test cases

Nonlinear simulations with hybrid and fully kinetic electrons have been carried out
considering the reduced mass ratio μ = 400 (see table 3.1) over a sufficiently long time
(up to t ∼ 300R/vthi) to ensure good statistics over the saturated turbulent phase, as
illustrated in figure 3.10 showing the time traces of the ion and electron kinetic energy
fluxes, Qi and Qe respectively, for both the ITG and TEM cases. Also reported in
these plots are the running time averages, Qrun

j (t) =
∫ t
ts
Qj(t

′)dt′/(t − ts), taken over
the turbulent saturated regime, which has been estimated to start in both cases at
ts = 20R/vthi. The final values of these running averages provide the time-averaged
fluxes over the full saturated turbulent phase of the simulation. In the following, 〈·〉t
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stands for the time average of different physical quantities taken over the so-defined
saturated time window.

Turbulence simulations involve the evolution of a spectrum of nonlinearly coupled ky modes
which consists, in our simulations, of a set of 64 modes ky = iyky,min (iy = 0, .., 63), so that
ky,min ρi = 0.07 and 0.04, in ITG and TEM cases, respectively. The kx spectrum consists
of a set of nkx = 432 (resp. 256) modes kx = ixkx,min (ix = −nkx/2, .., 0, ..., nkx/2), so
that kx,min ρi = 0.032 (resp. 0.056), in ITG (resp. TEM) case. A convergence study with
respect to the number of kx modes, nkx = nx, is conducted in Sec. 3.4.3.

Shearing of turbulent eddies by turbulence-generated Zonal Flows (ZFs) is understood
to be the dominant saturation mechanism of ITG-driven turbulence and therefore of
the associated transport fluxes [Lin et al., 1998, Diamond et al., 2005, Itoh et al., 2006].
As various studies have shown [Lang et al., 2008, Merz and Jenko, 2008], the role played
by ZFs in saturating TEM driven turbulence is more complex. In particular, in ref-
erence [Lang et al., 2008] the efficiency of turbulence saturation by ZFs is strongly de-
pendent on the parameter range considered. It is to be noted that the physical pa-
rameters for the considered TEM case are essentially the same as the ones considered
in Ref [Merz and Jenko, 2008], except for the temperature ratio τ = 1 considered here
instead of τ = 3. According to Ref [Lang et al., 2008], going from τ = 3 to τ = 1 pushes
the system from a regime where ZFs play a sub-dominant role in the saturation mechanism
of the TEM turbulence towards a regime where ZFs play a dominant role. This has been
confirmed in our simulations by artificially zeroing out the ZFs, which led to a 10-fold
increase of the turbulent fluxes, clearly reflecting the essential role played by the ZFs in
regulating the turbulence.

As already mentioned when discussing the linear results, the boundary conditions require
the radial length Lx of the simulation to be an integer multiple of the distance between
MRSs for each considered ky mode. Note that it is sufficient for this condition to be verified
by Lx for ky,min for it to be verified for all ky. One thus needs to set Lx = M LLMRS,
with M an integer and LLMRS = 1/ŝky,min the distance between lowest-order MRSs. For
the ITG and TEM cases, M = 8 and 4 were chosen, giving respectively Lx = 142.9 ρi
and 125.0 ρi, thus ensuring a large enough box (> 100 ρi) compared to the typical radial
turbulence correlation length of order ∼ 10 ρi. The number of radial grid points nx is
taken so as to resolve the fine structures in the corresponding linear eigenmodes of the ky
modes which dominate the turbulent flux spectra (see figure 3.15). The values nx = 432

and 256 were thus chosen for the basic simulations, corresponding to radial grid spacings
Δx = Lx/nx = 0.33 ρi and 0.49 ρi for the ITG and TEM cases, respectively. Figure 3.11
confirms that these resolutions are indeed sufficient according to this criteria. Note
that the radial widths δxsimlin of linear eigenmode structures as a function of kyρi shown
in figure 3.11 are very similar to the results shown in figure 3.8(e), these widths being
however broadened as a result of the reduced mass ratio considered here. This is explained
by the fact that δx ∝ ωr/μ

1/2 according to equation (3.2) with the real frequency ωr
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Figure 3.11 – Comparing fine structure widths as a function of ky: linear theoretical
estimate δxth (equation (3.2), squares), linear GENE δxsimlin (= FWHM[Δ|φ̂|], crosses),
and nonlinear GENE (δxsimnon−lin = FWHM[|φ̂|], triangles) for both the (a) ITG and (b)
TEM test cases. The distance 1/ŝky between MRSs is indicated with a blue dashed line.
nx = 432.

being essentially unchanged when reducing μ from the physical value 1836 to the reduced
value 400 as shown in figure 3.1. This has been confirmed with linear simulations when
establishing the power scaling laws δxsimlin,ITG and δxsimlin,TEM both proportional to μ−1/2.
Simulations with other values of nx were carried out as well and are presented in Sec. 3.4.3
where the issue of radial resolution convergence of fine structures is discussed. The
broadening of the radial structures are the main rationale for considering a reduced mass
ratio for the nonlinear simulations, as it enables to more easily ensure sufficient radial
resolution with a tractable number of grid points.

Concerning the grid resolutions in the other phase space directions, nz = 16 points
along z were chosen for both the ITG and TEM cases. Boundaries along the velocity
space directions were set to v‖,max = 4.2 vth and μmax = 9T/B0 for each species both
in the ITG and TEM cases, with the corresponding resolutions nv‖ × nμ = 64× 8 and
64 × 16 respectively. Note the slightly higher velocity resolution for the latter case,
to ensure an accurate description of the trapped/passing boundary, essential for TEM
simulations. In GENE, the filamentation of the phase space in the v‖ and z directions
is either controlled by considering physically realistic collisions (inter- and intra-species
linearized Landau collision operators) or thanks to fourth order hyper-diffusion terms.
For the results presented in this paper, the latter approach is considered by using fourth
order hyper-diffusion terms [Pueschel et al., 2010, Hatch et al., 2013] to the RHS of the
gyrokinetic equation: D/Dt = −ν‖∂4/∂v4‖ − νz∂

4/∂z4. In our ITG and TEM test cases,
we set the numerical parameters equal to ν‖/Δv4‖ = 0.5 and 1, and hz = νz/Δz

4 = 0.5

and 1, respectively. No significant differences were observed when using lower v hyper
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xŝky

−2 −1 0 1 2
2

3

4

5
(d) kyρi = 0.04

−6 −3 0 3 6

5

10
(e) kyρi = 0.12

−10 −5 0 5 10
2

4

6

8
(f ) kyρi = 0.20

xŝky
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Figure 3.12 – Radial dependence of the z- and time- averaged electrostatic potential
amplitude 〈|φ̂ky |〉zt(x) for the nonlinear (a-c) ITG and (d-f) TEM cases. Comparing
results from both the fully kinetic (blue) and hybrid (red) electron models for different
values of kyρi. For each ky, associated MRSs are pointed out with tick marks along the
box edge of the corresponding figure.

diffusion: there is at maximum 1 to 4% of difference between the fluxes due to the effect
of decreasing the hyper-diffusion at a value of hv = 0.2, in both the ITG and TEM test
cases with nx = 256.

3.4.2 Fine structures at MRSs

Fine structure over ky �= 0 modes

The z- and time- averaged amplitudes of non-zero ky Fourier modes obtained from
the electrostatic potential, 〈|φ̂ky |〉zt(x, z), are shown in figure 3.12. These plots clearly
illustrate for each mode ky �= 0 the presence in the fully kinetic results of fine radial
structures located at the associated MRSs, positioned at x = δm/ŝky, δm integer and
indicated with tick marks in the corresponding plots. Similar fine structures are essentially
(see the next paragraph) absent in the hybrid simulations. This confirms that the fine
structures related to the non-adiabatic passing electrons and originally identified in the
linear simulations actually persist in the nonlinear turbulent regime. The systematic
procedure applied in the linear study for measuring their radial width δx, based on
subtracting the eigenmode envelope related to the hybrid computation from the one
obtained with fully kinetic electrons, is however not applicable in any straightforward way
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for analyzing the nonlinear data. One can nonetheless estimate the widths δx by directly
measuring on 〈|φ̂kinky

|〉zt(x) the FWHM of fine structures appearing at corresponding
MRSs. As the nonlinear simulation system contains multiple MRSs for each ky �= 0, one
in fact estimates an average δx over all associated structures. Corresponding results in
figure 3.11, labeled δxsimnon−lin, show that structures, although persisting in the nonlinear
regime, are significantly broadened compared to the linear widths δxsimlin in both the ITG
and TEM cases, by up to a factor ∼ 9 for the lower ky modes.

In the TEM nonlinear hybrid simulations, the particular case of the kyρi = 0.12 mode
shows, in figure 3.12 (e), radial corrugations over the time-averaged envelope of |φ|hyb.
Indeed as shown with linear hybrid electron simulations in figure 3.3 (c) and (d), a large
radial modulation of weak amplitude is already present on the linear mode envelope
|φhyb|. This weak corrugation not exactly aligned with the MRS is even more visible on
the small ky modes in adiabatic electrons simulations (kyρi < 0.15) - not shown in this
paper. We attribute this weak radial corrugation to the ion dynamics.

Fine radial corrugation of ky = 0 modes

In nonlinear simulations, the axisymmetric Fourier modes (ky = 0) are coupled to, and
thus driven by, the unstable non-axisymmetric modes (ky �= 0). As a result, the radial
structures located at MRSs of ky �= 0 modes lead to similar structures on the ky = 0

modes in case of fully kinetic electron simulations. Such coupling is brought to the
fore by studying time- and flux-surface- averages of various fluctuation field quantities,
〈·〉FS = 〈·〉yz in flux-tube coordinates. Note that averaging over the y-direction provides
the ky = 0 Fourier component. This is clearly illustrated in figure 3.13(a-b) where
the time-averaged shearing rate 〈ωE×B〉t related to the zonal E ×B flow has been
plotted. This shearing rate is related to the zonal component 〈φ〉yz(x, t) =

∫
φ̂(x, ky =

0, z, t)J xyzdz/
∫ J xyzdz by the relation ωE×B(x, t) � (1/B0)∂

2〈φ〉yz/∂x2. As will appear
even clearer in figure 3.14, radial structures can be identified not only at the position of
lowest order MRSs (i.e. related to ky = ky,min) but to the positions of next order MRSs
(corresponding to ky = 2ky,min and ky = 3ky,min) as well. This appearance of radial
structures on the ky = 0 Fourier modes through nonlinear coupling can be identified on
essentially all fluctuation fields. As an example, the radial gradient profile ∇x〈δTe〉yzt of
the time- and flux-surface- averaged electron temperature fluctuation (with δTe computed
using δTj =

∫
d3vδfjv

2/3N0 − Tσ0δN/Nσj0) is shown in figure 3.13(c-d). Note how
corresponding simulation results obtained with the hybrid electron model provide profiles
with radial structures which either present much weaker amplitudes and/or whose radial
positions do not appear to be correlated to MRSs. It is important to point out that
in the nonlinear turbulent simulations, the fine radial structures are fully revealed only
after time-averaging the fluctuations. The standard deviation over time, σ(x), of the
flux-surface-averaged fluctuations have been reported in figure 3.13 as well. Note that
σ appears to be only very weakly dependent on x. The fact that σ in the case of fully
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Figure 3.13 – (Color online) (a, b) Time-average of the E ×B shearing rate 〈ωE×B〉t
related to the zonal component 〈φ〉yz , as well as (c, d) the radial gradient ∇x〈δTe〉yzt
of the time- and flux-surface- averaged electron temperature fluctuation for hybrid (red)
and kinetic (blue) electron response models. Showing results for both (a, c) the ITG and
(b, d) the TEM cases. Shaded areas reflect the radially local standard deviation levels
σ(x) of corresponding fluctuation components (areas delimited by −σ(x) and +σ(x) for
hybrid and kinetic models resp.). The maximum linear growth rate γref , estimated as
detailed in Sec. 3.4.3, is plotted with horizontal dashed lines.

kinetic electron simulations is of the same order as the radial modulation amplitude of the
time averages (both for ωE×B and ∇x〈δTe〉yzt) reflects that the time-averaged component
of the fluctuations is at least partly “drowned” by the time-dependent component. This
is all the more so in the case of the hybrid simulations, where the weak non-zero time-
averaged component is significantly smaller than the time dependent component [e.g.
maxx(|ωE×B|) ∼ σ/2 and maxx(|∇x〈δTe〉yzt|) ∼ σ/8].

Characteristic profile modulation of flux-surface averaged fields and related
gradients

Remarkable in figure 3.13 on both radial profiles 〈ωE×B〉t and ∇x〈δTe〉yzt of the fully
kinetic electron simulations are their periodicity with respect to the distance LLMRS

between lowest-order MRSs. This periodicity is emphasized in figure 3.14, where the time-
and flux-surface- averaged profiles over the full radial simulation length Lx =M LLMRS of
various fluctuation fields have been cut into M segments which were then superimposed,
the lowest-order MRSs of each segment having been positioned at the center x = 0
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of these plots. The nearly perfect alignment of profile segments for simulation results
obtained with the fully kinetic electron model, both in the ITG and TEM case, thus
clearly reflects the periodicity of radial structures, while the obvious misalignment in
corresponding plots obtained with the hybrid model reflects that such periodicity of
structures related to positions of MRSs is lacking or at least much weaker in these latter
simulations. A hint of periodic structures aligned with the lowest-order mode rational
surfaces is nonetheless apparent in the hybrid electron ITG simulation, Figs. 3.14(b) and
3.14(f). These structures must however be related to the particular resonant dynamics
near MRSs of passing ions and corresponding widths are therefore much wider than in
the simulations with fully kinetic electrons.

In particular, the radial gradient ∇x〈δA〉yzt of the time- and flux-surface- averaged
fluctuations for different field quantities A normalized with respect to corresponding
background gradients |∇xA0| = A0/LA are plotted in the first row of figure 3.14. Shown
are profiles related to density, A = N , as well as electron and ion temperatures, i.e. A = Te
and A = Ti respectively. The appearance of non-zero profiles ∇x〈δA〉yzt which converge
in time during the saturated turbulent phase obviously correspond to a modification of the
average profiles from the initial background profiles A0. The total time- and flux-surface-
averaged radial gradient profile of a given field A = A0 + δA can indeed be written:

∇x〈A〉yzt = ∇xA0 +∇x〈δA〉yzt = |∇xA0|(−1 + ζA),

noting that −∇xA0 = |∇xA0| = A0/LA and having used the notation

ζA = ∇x〈δA〉yzt/(A0/LA),

for the normalized averaged fluctuation profiles as appearing in Figs. 3.14(a-d). Therefore
where ζA > 0, respectively ζA < 0, the profile of A is locally flattened, respectively
steepened, compared to the initial background A0. In particular, a value of ζA = +1

corresponds to a full (100%) flattening.

One observes that in the case of fully kinetic electron simulations, for both the ITG
and TEM cases, all three gradients ratios ζN , ζTe , and ζTi present maxima at the
low order mode rational surfaces. These maxima are most prominent for the electron
temperature profile at the position x = δm/ŝky,min of the lowest-order mode rational
surfaces, presenting values up to ζTe = +0.5 and thus reflecting a 50% flattening at these
positions, in both the ITG and TEM cases. Somewhat lower local maxima are also clearly
visible at the positions x = δm/ŝky of next order mode rational surfaces, i.e. at least for
ky = 2 ky,min and 3 ky,min. Between these lowest-order MRSs, ζA of the different fields
takes on negative values, reflecting steepening of corresponding profiles. Most prominent
minimum values are again reached in case of the electron temperature, with values down
to ζA = −0.3 corresponding to a 30% steepening. Due to the periodic radial boundaries in
a flux-tube simulation, the radial average of the total profile gradient cannot be modified.
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Figure 3.14 – (Color online). (a-d) Radial gradient ∇x〈δA〉yzt of the time- and flux-
surface- averaged fluctuations for different field quantities A normalized with respect to
corresponding background gradients |∇xA0| = A0/LA: density A = N (green), electron
temperature A = Te0 (blue), and ion temperature A = Ti0 (red). Profile sections of
length LLMRS have been superimposed (with lowest-order MRSs at x = 0), emphasizing
periodicity in case of fully kinetic electron simulations. In the TEM case, ∇xTi0 = 0 so
that ∇x〈δTi〉yzt is given in units of Ti0/ρi instead of Ti0/LT,i (black). (e-f) Time-averaged
shearing rate 〈ωE×B〉t estimated with E = −∇x〈φ〉yz (green) and effective shearing rate
〈ωi,e

E×B〉t felt by the ions and electrons estimated with gyroaveraged E = −∇x〈φ〉yz (red
and blue respectively). Horizontal dashed lines represent γref of linear simulations. Shown
are ITG results with (a,e) kinetic and (b,f) hybrid electrons, as well as TEM results with
(c,g) kinetic and (d,h) hybrid electrons.
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3.4. Fine structures in nonlinear simulations and their effect on transport

Locally flattened regions must therefore necessarily alternate with locally steepened ones:
〈ζA〉x = 0.

Characteristic profile modulation of ωE×B and of its gyroaverage

In the second row of figure 3.14, the M segments of the shearing rate profile 〈ωE×B〉t
have been superimposed as well. In fact, the effective electric field felt by the particles is
a gyroaveraged one. As the width δx of radial structures apparent on the 〈ωE×B〉t shear
profiles are comparable to the ion Larmor radius, an effective shearing rate 〈ωj

E×B〉t should
be computed separately for each species using the gyroaveraged zonal flow component
of φ, i.e. ωj

E×B � (1/B0)∂
2〈φ〉yz/∂x2, with φ= Gjφ and the gyroaveraging operator Gj ,

itself averaged over the Maxwellian background distribution, given in Fourier space by

Ĝj =
B0

T0,j

∫ +∞

0
dμ exp

(
−μB0

T0,j

)
J0

(
k⊥v⊥
Ωj

)
= e−ξj/2, (3.14)

recalling the notation ξj = (k⊥ρj)2. For ions, the so-obtained gyroaveraged shearing
rate 〈ωi

E×B〉t is reduced by nearly 50% in both the ITG and TEM simulations with
fully kinetic electrons. For electrons, the corresponding effective shearing rate 〈ωe

E×B〉t is
essentially identical to the non-gyroaveraged profile 〈ωE×B〉t. This is to be expected as
the radial structures remain large with respect to electron Larmor radii. In the hybrid
simulations, the structures on the 〈ωE×B〉t profile are less affected by the gyroaveraging
effects, even for ions, as their widths are significantly larger than in the fully kinetic
electron simulations.

Finally, comparing the gradients with the E ×B shearing rate, in ITG and TEM cases
with kinetic electrons, it appears that ζN , ζTi and ζTe have an extremum where the ωE×B

shearing rate is zero. Conversely, ζN , ζTi and ζTe are zero when the ωE×B is extremum.
In comparison, no such regular and well defined pattern seems to appear in the hybrid
simulation cases. In figure 3.13, this basic pattern organization can be clearly recognized
in the ITG case not only for the ky,min related MRSs but also for the 2 ky,min and 3 ky,min

MRSs as already observed [Waltz et al., 2006] over the electron temperature profiles. The
same structures related to 2 ky,min and 3 ky,min Fourier modes, although somewhat fainter,
can be seen for the TEM case as well.

3.4.3 Turbulent fluxes

The turbulent radial fluxes result from the x-component of the E ×B drift, given by
vE×B,x = −(1/B2

0)(∇φ×B0) ·∇x/|∇x| � −(1/B0)∂φ/∂y, where φ is the scalar potential
related to the essentially electrostatic fluctuations. One notes that although magnetic
fluctuations have been accounted for in the fully kinetic simulations, their contribution to
the turbulent fluxes represent less than 1% of the total fluxes and are not discussed here.
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The electrostatic fluxes, specific to each species j and averaged over the flux-tube volume
V =

∫
d3x =

∫
dxdydzJ xyz, are essentially of the form:

Fj [•](t) = 1

V

∫
d3x

1

B0

(
−∂φ
∂y

)
(x, t)

∫
d3v • δfj(x,v, t). (3.15)

In particular, the particle flux and kinetic energy flux are given by Γj = Fj [1] and
Qj = Fj [mjv

2/2], and have been normalized to the following ion Gyro-Bohm units
ΓGB,i = N0vthiρ

2
i /R

2 and QGB,i = N0Ti0vthiρ
2
i /R

2, respectively. In our ITG and TEM
reference cases Z = 1 and therefore Γi = Γe = Γ.

A fundamental issue, due to limited simulation statistics, is in providing error estimates
of time-averaged fluxes 〈F〉t. The practical approach considered here consists in dividing
the quasi-stationary turbulent phase of the simulation into N disjoint time intervals of
equal span and computing the time averages 〈F〉n over each of these sub-intervals. An
estimate of the error 〈v2〉t on the total time-average flux can then be provided by the
root mean square deviation:

Err[F ] =

[
1

N

N∑
n=1

(〈F〉n − 〈F〉t)2
]1/2

. (3.16)

The number of time intervals N one can consider is usually very limited (typically 3
for our simulations) as each must contain at least a few (∼ 10) turbulent bursts. The
rough error estimate on the time-averaged fluxes obtained in this way is less than 5% for
nonlinear simulation results shown in Figs. 3.15, 3.16, and 3.17.

kx and ky Spectra

Flux spectra enable to study the contribution to transport from the different fluctuation
scale lengths. Such spectra are derived by expressing relation (3.15) in terms of the
Fourier representations of φ and δfj with respect to x and y. In particular, the Fourier
decomposition of φ reads:

φ(x, y, z, t) =
∑
kx,ky

φ̂(kx, ky, z, t) exp[i(kxx+ kyy)].

In the case of particle flux, for example, equation (3.15) then becomes:

Γj(t) =
∑
kx,ky

∫
dzJ xyzB−1

0 ikyφ̂
�δ̂N j∫

dzJ xyz
=

∑
kx,ky

Γ̃j(kx, ky, t),
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Figure 3.15 – Time-averaged, turbulent particle flux spectra 〈Γ̃〉t in units of ΓGB,i with
respect to (a and b) kx and (c and d) ky for the ITG (a and c, nx = 432) and TEM (b and d,
nx = 256) test cases (log-log scale). Fully kinetic (blue) and hybrid (red) electron models.
Peaks in the fully kinetic electron spectra at the harmonics kx = p 2π/LLMRS, p = 1, 2, . . .,
are related to the non-adiabatic response of passing electrons near lowest-order MRSs.
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having identified the flux spectra as

Γ̃j(kx, ky, t) =

〈
1

B0
ikyφ̂

�δ̂N j

〉
z

,

where φ̂� is the complex conjugate of φ̂.

The time-averaged kx- and ky- particle flux spectra are plotted for both the ITG and
TEM cases in figure 3.15, obtained by summing 〈Γ̃〉t(kx, ky) over ky and kx, respectively.
For comparison, the figure shows simulation results obtained with both the fully kinetic
and hybrid electron models. All these spectra present a typical decay towards the shorter
wavelengths, which is roughly algebraic, ∼ k−α, corresponding to a straight line in log-log
scale, often referred to as the “inertial range”. The contributions to the fluxes from the
shortest considered wavelength modes are thus at least three orders of magnitude smaller
than the one from the spectrum peak, typically located at kyρi = 0.2 − 0.3, which is
a clear indication of a well-converged turbulent simulation in terms of the number of
Fourier modes considered. The spectrum peak itself is well resolved, reflecting a good
spectral resolution Δkx,y = kx,y,min = 2π/Lx,y, i.e. a sufficiently large simulation box. In
the ITG case, at the very edge (Nyquist limit) of the spectra, one observes however a
slight deviation from the algebraic decay, in the form of a flattening or even roll-over for
the ky-spectra. This is clearly not due to a linearly unstable mode at these scales, as
shown in figure 3.1(a) (see results for μ = 400 and τ = 1), but is most probably related
to a pile-up of energy cascading down toward small scales. In the TEM case, no roll-over
is present at the very edge (Nyquist limit) of the spectra even if the curve’s decay slightly
lessen for kyρi ≈ 1.5. The absence of roll-over has also been confirmed for simulations
with higher radial resolutions.

Remarkable on the kx-spectra of fully kinetic electron simulations are peaks at harmonics
k
(p)
x = p 2π/LLMRS = pMkx,min. These peaks are most clearly visible in the particle

flux spectra of the ITG case, and most prominent for p = 2, 3, and 4. These are clearly
related to the Fourier mode components giving rise to the periodic structures located
at the lowest-order MRSs and are thus absent from the hybrid simulation results. The
origin of the peaks in the time-averaged kx spectra 〈Γ̃〉t,ky(kx) =

∑
ky
〈Γ̃〉t(kx, ky) is

shown to be due to the presence of peaks aligned along the line ky = kx/2πŝ in the
time-averaged bi-dimensional spectra 〈Γ̃〉t(kx, ky) which are plotted in figure 3.16. These
modes correspond, for each ky, to the first order coupling to the mode (kx, ky) = (0, ky)

resulting from the pseudo periodicity boundary conditions described by equation (2.54).
Very similar features are also observed on both electron and ion kinetic energy flux spectra
(not shown).
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Figure 3.16 – Time-averaged, turbulent particle flux spectra 〈Γ̃〉t(kx, ky) for same cases
as in figure 3.15 (shown is log 〈Γ̃〉t(kx, ky)). ITG (a and b) and TEM (c and d) cases with
kinetic (a,b) and hybrid (c,d) electron models. For the kinetic results, a black dotted
line is plotted at ky = kx/2πŝ to emphasize the (kx, ky) coupling due to pseudo-periodic
boundary conditions equation (2.54) and positions of the harmonics k(p)x with p = 1..8
are plotted with black tick marks along the x-axis. The ky = 0 modes are not shown as
they do not contribute to the transport in the ∇x direction: ∂/∂y ≡ −iky = 0.
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Figure 3.17 – Flux-surface and time averaged particle and kinetic energy fluxes plotted
with respect to the radial resolution Δx = Lx/nxρi, and effective E ×B shearing rate
ωeff (tw = γ−1

ref ) plotted with respect to the number of points in the radial direction nx.
In ITG (a,b,c,d) and TEM (e,f,g,h) regimes with hybrid (circles) and kinetic (asterisk)
electrons. Also plotted are the fluxes solely due to the trapped electrons (triangle). In
hybrid simulations particle flux is computed with ion (circles) and with trapped electrons
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2
i /R

2; QGB,i = N0Ti0vthiρ
2
i /R

2. Vertical dotted lines indicate
the fine structure width of kyρi ≤ 1 modes in linear simulations taken from figure 3.11.
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Numerical radial resolution

As can be observed in figure 3.11, the widths of the fine structures roughly scale as half
the distance between consecutive lowest-order MRSs for each ky. Nonlinear simulation
cases considered in this work are composed of 64 ky modes; the biggest ky mode has the
highest number of MRSs (64×M) within the box boundaries: 512 (ITG) and 256 (TEM).
As a result, if one wants for example a minimum of 10 points between the MRSs to resolve
the fine radial structures of all modes, it respectively requires 5120 and 2560 points in x.
Nonetheless, as discussed in Sec. 3.4.3, the turbulence spectra is dominated by low ky
modes (kyρi < 0.3) which have the largest radial structures at MRSs: δxnumnon−lin � 2ρi.
To have at least 10 points between these ky’s lowest-order MRSs, it requires to have
nx > 340 and 300. In our convergence study, we went beyond this resolution by taking
nx = 512 and 1024. Note that these two runs with very high radial resolutions have been
carried out over a shorter time window tend ≈ 200vthi/R compared to other simulations
for which tend ≈ 300vthi/R.

In the convergence study (figure 3.17), we scanned a range of radial point numbers, nx,
for which the mesh size in units of the ion Larmor radius, Δx/ρi = Lx/nxρi, varies
from 0.28 to 1.49 in the ITG case and from 0.12 to 1.30 in the TEM case. The highest
resolutions provide more than 7 (ITG) and 16 (TEM) radial grid points over the fine
structure widths, δxsimnon−lin, of dominant ky modes (kyρi < 0.3). In comparison, the lowest
resolutions provide less than two grid points over the fine structure widths of almost all
ky modes. This low resolution is clearly not sufficient to describe the radial corrugations
present near MRSs in kinetic electron simulations. In figure 3.17, we show with dashed
lines the linear fits that have been extrapolated to obtain the converged values (Δx→ 0).

The particle and kinetic energy fluxes of ions and electrons, as well as the effective
E ×B shearing rate ωeff , which are obtained from simulations running with the hybrid
model, are essentially converged already for low resolutions (circles in figure 3.17). On
the contrary, the fluxes and ωeff obtained from simulations carried out with the kinetic
electron model (asterisk in figure 3.17) are not converged at low resolutions. In subplot
(h), the ωeff does not appear clearly converged, even at the highest resolution. As we
discuss now, the effective shearing rate ωeff considered in this work includes a fluctuating
contribution. The following results show that the strong increase of the effective shearing
rate, occurring in the TEM case when Δx→ 0, is due to the contribution from the rapid
fluctuations. The effective E ×B shearing rate is defined by:

ωeff (tw) =

〈∣∣∣∣ 1tw
∫ t+tw

t
dt′ ωE×B(x, t

′)
∣∣∣∣〉

xt

, (3.17)

which is a function of the time-window tw. In the last row of figure 3.17, the effective
shearing rate is plotted using a value of the time window equal to the the typical
growth time of the turbulence: tw = γ−1

ref . This choice permits to filter out the ωE×B

fluctuations assumed to oscillate too rapidly to be able to suppress turbulence [Hahm, 1994,
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Figure 3.18 – Effective shearing rate ωeff = 〈|〈ωE×B〉tw |〉xt with respect to a time window
tw for different radial resolutions indicated for (a) ITG and (b) TEM test cases. Both
hybrid (dashed) and kinetic (full line) electron models are considered here where each
resolution respects the same color code as indicated in the plots. The linear growth rate
of reference γref is plotted with horizontal dotted line and its corresponding time γ−1

ref is
plotted with vertical dotted line.

Hahm et al., 1999] but to still account for the slower ones which should be effective in
suppressing turbulence. In the ITG case, this particular time window is chosen as the
inverse of the maximum linear growth rate of the dispersion relation in figure 3.1(a).
In the TEM case, it is chosen as the maximum growth rate over the spectrum interval
0.1 < kyρi < 0.4 of the dispersion relation in figure 3.1(b). This limited spectrum interval
considered for the TEM case corresponds to modes which contribute the most to the
turbulent fluxes (see 3.15(d)).

The fact that the ωeff is essentially converged at lower resolution in hybrid electron
simulations is clearer in figure 3.18 (dashed lines). In this figure, the effective shearing
rate is plotted with respect to the time window width for different radial resolutions.
In the TEM case (figure 3.18.b) with kinetic electrons (full line), the effective shearing
rate strongly increases when the mesh size nx increases, especially for small values of
the time window tw. This short scale effect is particularly important in the highest
resolution simulation. Going back to figure 3.17 (f) and (h), we note that going to
higher resolution has the effect of increasing ωeff while decreasing the turbulent fluxes.
This is in agreement with the drift wave-zonal flow paradigm for nonlinear saturation.
Comparing the ωeff between hybrid and kinetic simulations is not forcefully significant as
the difference of the ZFs spatial organization is not taken into account by this indicator;
but comparing the ωeff between simulations with the same electron model and the same
magnetic equilibrium, i.e. the same spatial organization of ZFs, one can expect that with
a larger ωeff the ZFs will be more effective for suppressing turbulence.

As a conclusion of this section, we emphasize the necessity to use a high radial resolution
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for converging the flux levels and associated E ×B saturation mechanisms. Fully kinetic
simulations carried out with too low radial resolution can lead to strong over-estimate of
the fluxes correlated to a strong under-estimate of the E ×B shearing rate.

Passing electrons contributions to the turbulent transport

In this section, we note 〈•〉t the time-averaged level of transport extrapolated at Δx = 0

by linear fits indicated with dashed lines in figure 3.17.

In the ITG case, the particle and kinetic energy fluxes of ion and electron species are
underestimated when running simulations using the hybrid electron model: 〈Γhyb

e 〉t ≈
27%〈Γkin

e 〉t, 〈Qhyb
e 〉t ≈ 36%〈Qkin

e 〉t, and 〈Qhyb
i 〉t ≈ 69%〈Qkin

i 〉t. The error due to the
extrapolation method is small enough to be confident in these numbers.

The particle flux is composed of a passing electron flux and of a trapped electron flux:
Γe = Γe,pas + Γe,trp. In simulations running with kinetic electrons, the main contribution
to the flux comes from the passing electron channel of transport: 〈Γkin

e,pas〉t ≈ 63%〈Γkin
e 〉t.

The passing electrons being adiabatic in the hybrid model, one obviously has Γhyb
e,pas = 0.

The trapped electron particle fluxes obtained from simulations running with hybrid or
kinetic electron models are of same order: Γhyb

e,trp ≈ Γkin
e,trp.

The kinetic energy flux is composed of a heat flux [Hinton and Hazeltine, 1976] and of
an advective flux:

Qj = qh,j +
5

2
T0jΓj , (3.18)

where the heat flux [Hinton and Hazeltine, 1976] is defined by qh,j = Fj [mj(v
2−5v2thj)/2]

and Fj [•] is defined by equation (3.15). With the fully kinetic model, the advective
contribution from the passing electrons dominates the electron kinetic energy flux:
(5/2)Te0〈Γkin

e,pas〉t ≈ 78%〈Qkin
e 〉t.

The ion kinetic energy flux, which is the most important for an ITG regime, is underes-
timated by simulations running with the hybrid model: 〈Qhyb

i 〉t ≈ 69%〈Qkin
i 〉t. Having

ambipolar fluxes, 〈Γi〉t = 〈Γe〉t, the hybrid model underestimation of the kinetic energy
flux, i.e. 〈Qhyb

i 〉t < 〈Qkin
i 〉t, is significantly due to the missing passing electron channel of

transport: (5/2)Te0〈Γhyb
e,pas〉t = 0.

In the TEM case, the extrapolated levels of transport obtained with the hybrid
and kinetic models are: 〈Γhyb

e 〉t ≈ 61%〈Γkin
e 〉t, 〈Qhyb

e 〉t ≈ 85%〈Qkin
e 〉t, and 〈Qhyb

i 〉t ≈
180%〈Qkin

i 〉t. In absolute value, the differences between these hybrid and kinetic fluxes
are of the order of the uncertainty on their amplitude due to the choice of extrapolation
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method.

The particle flux, in simulation with kinetic electrons, is mainly composed of the trapped
electrons transport channel: 〈Γkin

e,trp〉t ≈ 119%〈Γkin
e 〉t, and the passing electron flux is

inward. The trapped electron fluxes obtained from simulations carried out with hybrid
and kinetic electron models are of comparable level: 〈Γhyb

e,trp〉t ≈ 134%〈Γkin
e,trp〉t. The

difference being of the order of the error due to the extrapolation method.

The electron kinetic energy flux is the major transport channel causing power loss in this
TEM case, as expected of a TEM regime. In simulation with kinetic electrons, this flux
is essentially due to the trapped electrons channel: 〈Qkin

e,trp〉t ≈ 87%〈Qkin
e 〉t, and it has a

non negligible advective component (see equation (3.18)): (5/2)Te0〈Γkin
e 〉t ≈ 37%〈Qkin

e 〉t.
Not shown here is the fact that, in both hybrid and kinetic simulations of the TEM
case, the electron heat flux is solely due to the trapped electrons: 〈qkinh,e 〉t = 〈qkinh,e,trp〉t
and 〈qhybh,e 〉t = 〈qhybh,e,trp〉t. The transport levels obtained from hybrid and kinetic electron
simulations are only different by ≈ 15%. This is not a significant difference regarding the
error due to the extrapolation method.

The transport levels of ion kinetic energy obtained with the kinetic and hybrid electron
models are different enough to at least say that this flux is decreased by the influence of
the passing electron dynamics. But this ion kinetic energy flux remains much lower than
the electron kinetic energy flux.

3.5 Conclusion

The non-adiabatic response of passing electrons near mode rational surfaces has been
characterized in the flux-tube geometry by identifying its role in linear and nonlinear
collisionless plasma, studying instabilities and turbulent saturated regimes of ITG and
TEM dominated test cases. This characterization was achieved by systematically com-
paring results obtained when accounting for the fully kinetic response of the electrons
with results obtained with a hybrid model in which the trapped electrons are handled
kinetically and the passing electrons are forced to respond adiabatically.

In linear simulations, fine radial structures due to the non-adiabatic response of passing
electrons are systematically present near MRSs. These fine structures develop in the
vicinity of MRSs where k‖ is small enough to have |ωr/k‖| � vthe. The condition
|ωr/k‖| = vthe appears to be a good criteria to localize the boundaries of the region where
passing electrons are non-adiabatic. The dependence on the main physical parameters of
the fine structure radial width has been characterized.

For comparison, the underlying destabilization occurring near MRS and related to the
passing electrons dynamics have been described with a local dispersion relation. It was
shown that in the radial region where the fine structure related to the non-adiabatic
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response of passing electrons is present, the growth rate obtained with the local dispersion
relation is significantly raised, by a factor two or more, when including the non-adiabatic
response of passing electrons. The radial width estimate based on this local growth rate
was found to be in good agreement with the one directly measured in the results from
GENE numerical simulations.

This local dispersion relation has then been reduced to a second order polynomial equation,
in order to compute an analytical solution. In this simple form, the finite ion Larmor
radius effects cannot be neglected if one wants to correctly describe the destabilization
mechanism due to the passing electrons near MRSs. Finally, with this analytical dispersion
relation, an instability condition showing the interchange nature of the instability at
MRSs has been found for both ITG and TEM cases.

In nonlinear simulations (carried out with the reduced mass ratio mi/me = 400), fine
structures due to the non-adiabatic response of passing electrons over ky �= 0 modes
persist in the turbulent saturated regime, somewhat broadened compared to the linear
case. By nonlinear coupling with the ky = 0 mode, it leads to periodic radial corrugations
over the flux-surface- and time- averaged gradients of temperature and density, as well as
over the time-averaged E ×B shearing rate. Consequently, dominant ky modes which
contribute the most to the fluxes, as illustrated in direct space and Fourier space, require
to be finely resolved in the radial direction to properly account for the particular dynamics
of passing electrons near MRSs. It has been necessary, with the fully kinetic model, to
use a much higher radial resolution for converging the flux levels and associated E ×B

saturation mechanisms than with the hybrid model. Fully kinetic simulations carried out
with too low radial resolution can lead to strong over-estimates of the fluxes correlated to
a strong under-estimate of the E ×B shearing rate.

In the ITG case, the hybrid model is shown to systematically underestimates the flux
levels: 〈Γhyb

e 〉t ≈ 27%〈Γkin
e 〉t, 〈Qhyb

e 〉t ≈ 36%〈Qkin
e 〉t, and 〈Qhyb

i 〉t ≈ 69%〈Qkin
i 〉t (flux

levels are extrapolated from the radial resolution convergence study). A first cause of
this difference is related to the different radial organizations of the ZFs for simulations
carried out with the hybrid model and simulations carried out with the fully kinetic
model. These differences in the radial organization of the ZFs thus affect the turbulence
saturation mechanism and associated transport levels. A second identified shortcoming
of the hybrid model is directly related to the hypothesis of an adiabatic response of the
passing electrons which consequently leads to ignore their contribution to the fluxes. The
hybrid model then fails to reproduce the passing electrons channel of transport which
represents, in the ITG case: 63% and 78% of particle and electron kinetic energy fluxes,
respectively.

In the TEM case, the flux levels of hybrid and kinetic simulations, obtained in the radial
resolution convergence study, are different but this difference is not significantly bigger
than the uncertainty due to the extrapolation method. Nonetheless, for fully kinetic
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simulations, a much finer radial resolution was required to converge the fluxes than for the
hybrid electron simulations. It shows that the turbulence dynamics and self regulation
mechanisms are affected by the passing electron dynamics. Indeed, it could be interesting
to carry out simulations of other TEM test cases to see if there are regimes for which
the transport level obtained with the hybrid and kinetic electron models diverge more
significantly. It should be recalled that not all the TEM cases are dominantly saturated
by zonal flows, as mentioned when discussing the choice of temperature ratio for our TEM
case. Therefore our results are relevant for particular TEM cases and do not contradict
previous gyrokinetic studies.
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4 An arbitrary wavelength solver for
resolving fine layers of nonadiabatic
passing electron response in the
gyrokinetic code ORB5

4.1 Introduction

In the previous chapter, it has been shown that the non-adiabatic response of passing
electrons significantly alters the level of turbulent transport, as well as the zonal flows
organization. In particular, this non-adiabatic response is associated to the presence of
fine radial structures (sub-ion Larmor radius scale) near low-order mode rational surfaces
over the electrostatic potential, see references [Waltz et al., 2006, Chowdhury et al., 2008,
Dominski et al., 2015]. Therefore, to enable the pursue of the study of the non-adiabatic
passing-electron response in global geometries with the gyrokinetic code ORB5, a new
arbitrary-wavelength (compared to the ion Larmor radius) electrostatic-field solver
has been implemented. This new feature of the ORB5 code overcomes the former
long-wavelength approximation made in the original version of the code, see refer-
ences [Tran et al., 1999] and [Jolliet et al., 2007]. The gyrokinetic code ORB5 is today a
multi-scale, multispecies, collisional, electromagnetic, and global gyrokinetic PIC code,
in which the statistical numerical noise is controlled using modified Krook operators or
coarse graining procedures. The main steps which led to the current state of the code
are: the inclusion of new sources and noise control [McMillan et al., 2008], an electro-
magnetic version [Bottino et al., 2010] includes electromagnetic effects in the frame of a
project called NEMORB, a field-aligned Fourier solver [McMillan et al., 2010], inter- and
intra-species collisions [Vernay et al., 2010], and the effect of strong flows [Collier, 2015,
Collier et al., 2016].

We present in this chapter first ORB5 results obtained with this new generalized field solver.
In this solver, in which the field is represented with finite elements [Fivaz et al., 1998,
Tran et al., 1999], the linearized polarization drift contribution to the quasi-neutrality
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equation (QNE) is accounted for in its integral form by following a similar method
to [Lin and Lee, 1995, Mishchenko et al., 2005]. In this latter reference, the phase-space
integral necessary for computing the polarization drift contribution to the quasi-neutrality
equation is carried out with a Monte-Carlo-type integration. In such type of integration,
the phase-space integral is carried out by summing samples of the integrand taken at
different phase-space positions. In our proposed method, this phase-space integral is
replaced by quadratures over an Eulerian grid in the (s, θ�, v⊥, α) directions and by
integrating analytically in the v‖ direction, having used a local Maxwellian distribution
function for the background. These quadratures are adapted to the resolution of the grid
on which the field is represented in order to resolve the short scales provided by this grid.
Moreover, in this new ORB5 solver the field is solved for the poloidal and toroidal discrete
Fourier representation of its finite-element coefficients. This discrete Fourier representation
significantly reduces the size of the corresponding matrix system [McMillan et al., 2010].
A Padé version of the solver has also been implemented and is compared to the integral
solver results. Comparison of results obtained using such a Padé approximation with
results considering a generalized solver was originally done in reference [Lin and Lee, 1995],
where a generalized electrostatic field solver was also presented.

The remainder of this chapter is organized as follows. In section 4.2, the quasi-neutrality
equation and the different electron and ion models implemented are introduced. In
section 4.3, the version of the quasi-neutrality equation discretized with finite elements
and its weak formulation are introduced. In section 4.4, the new field solver imple-
mentation valid for arbitrary geometry is introduced. Finally, in section 4.7, a linear
benchmark is carried out with ORB5 against the global version of the gyrokinetic code
GENE [Jenko et al., 2000, Görler et al., 2011] in global realistic MHD geometry consid-
ering the three electron models: adiabatic, hybrid, and kinetic.

4.2 Quasi-neutrality equation

The self-consistent field quasi-neutrality equation (QNE) can be obtained from a variation-
nal approach when considering the variation of the particle-field Lagrangian with respect to
the perturbation field δφ, see references [Dubin et al., 1983, Sugama, 2000, Brizard, 2000].
The QNE reads

∑
σ qσNσ(x; t) = 0 with qσ the electric charge of species σ, and Nσ the

density is obtained from the gyrokinetic description [Hahm et al., 1999]

Nσ(x; t) =

∫
dZ δ(X+ ρ− x)

(
fσ +

qσ
B0
δφ̃
∂fσ
∂μ

+
mσ

qσB2
0

∇δΦ̃× b · ∂fσ
∂X

)
, (4.1)

where the deviation from quasi-neutrality is neglected and neither the strong flows or
magnetic perturbations are considered in this work. In the following, the quasi-neutrality
equation will be linearized, and the contribution coming from the term proportional
to ∇δΦ̃ × b · ∂Xfσ will be neglected invoking the fact that both terms δΦ̃ =

∫ α
dαδφ̃
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and ∂Xfσ are small. In equation (4.1), one has fσ(X, v⊥, μ; t) the particle distribution
function in gyrocenter variables which is evolved according to the gyrokinetic equa-
tion [Brizard and Hahm, 2007], X the guiding center, ρ = ρ(X, μ, α) the Larmor vector, α
the gyro-angle, μ = mσv

2
⊥/2B0 the magnetic moment, v⊥ the magnitude of the particle ve-

locity component perpendicular to the magnetic field, v‖ the magnitude of the velocity com-
ponent parallel to the magnetic field, dZ = dXdv‖dμdα(B�

0‖/mσ) the infinitesimal phase-
space volume in guiding-center coordinates (X, v‖, μ, α), B�

0‖ = B0 + (mσ/qσ)v‖b · ∇× b,
B0 the equilibrium magnetic field amplitude, b = B0/B0, and δ(X+ ρ− x) the Dirac
delta function. The polarization term is explicitly function of the electrostatic field δφ

through the term δφ̃(X, μ, α) = δφ(X+ ρ)− 〈δφ〉α(X, μ) with

〈δφ〉α(X, μ) =
∮
dα

2π
δφ(X+ ρ), (4.2)

standing for the gyro-averaged field. Note that the norm of the Larmor vector is
ρσ(X, μ) = v⊥/Ωσ0(X) with Ωσ0(X) = qσB0(X)/mσ the cyclotron frequency and mσ

the species mass. Moreover, the species thermal Larmor radius is defined by ρth,j(x) =
vth,j(x)/Ωσ0(x) with vth,j(x) =

√
Tσ0(x)/mσ the thermal velocity, and Tσ0(x) the species

background temperature. The ion sound Larmor radius is ρs(x) = cs(x)/Ωi0(x) with
cs =

√
NeTe/

∑
σmσNσ the sound speed approximated by cs(x) �

√
ZiTe0(x)/mi where

i labels the main ion species with ionization degree Zi.

As the background plasma is assumed neutral,
∑

σ qσNσ0(x) = 0, the quasi-neutrality
equation can then be rewritten by keeping only the perturbation terms

∑
σ qσδNσ(x; t) = 0,

where the particle distribution function fσ is split into a time-independent background,
fσ0, and a time-dependent perturbation, δfσ, such that fσ(X, v‖, μ; t) = fσ0(X, v‖, μ) +
δfσ(X, v‖, μ; t). From equation (4.1), the background density is

Nσ0(x) =

∫
dZ δ(X+ ρ− x)fσ0(X, v‖, μ), (4.3)

and the perturbation density is composed of two terms: the gyro-density contribution

δNgy
σ (x; t) =

∫
dZ δ(X+ ρ− x)δfσ(X, v‖, μ; t), (4.4)

and the linearized polarization-drift contribution

δNpol
σ (x; t) =

∫
dZ δ(X+ ρ− x)

qσ
B0(X)

δφ̃(X, μ; t)
∂fσ0(X, v‖, μ)

∂μ
, (4.5)

such that δNσ = δNgy
σ + δNpol

σ and having neglected the nonlinear contribution to the
polarization density. Nonlinear polarization drift contribution to the QNE has been
considered in references [Mishchenko et al., 2005, Idomura, 2012].

In the present work, different approximations and models are considered for the per-
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turbation density, which we will briefly list here. For ion species and for sufficiently
long wavelengths with respect to the ion Larmor radius, k⊥ρi 
 1, with k⊥ the pertur-
bation wavenumber in the direction perpendicular to the magnetic field, the so-called
long-wavelength approximation may be considered for estimating

δNpol
i (x; t) � qi

mi
∇⊥ · Ni0(x)

Ω2
i0(x)

∇⊥δφ(x; t), (4.6)

with qi = eZi the ion charge and e the elementary electric charge. This approximation
was made in the previous versions of the gyrokinetic code ORB5 [Tran et al., 1999,
Jolliet et al., 2007, Bottino et al., 2010]. For the present work, a new field solver is
implemented in the ORB5 code, for which the linear polarization contribution to the
perturbed density is computed from the integral form as described in equation (4.5). Note
that, as an improvement over the long-wavelength approximation equation (4.6), a Padé
approximation version of this integral solver has been implemented as well, for which the
ion polarization drift term is estimated using the relation

δNpol
i (x; t) � [

1−∇⊥ · ρ2i (x)∇⊥
]−1

[
eZi

mi
∇⊥ · Ni0(x)

Ω2
i0(x)

∇⊥δφ(x; t)
]
. (4.7)

This approximation is based on the expression of the polarization drift term in Fourier space
for a homogeneous plasma [Lebrun and Tajima, 1995, Lin and Lee, 1995] δN̂pol

i (k) =

(qNi0/Ti0)
[
1− Λ0(k

2
⊥ρ

2
th,i)

]
δφ̂(k) and on the Padé approximation of the scaled modified

Bessel function of order zero Λ0(ξ) = e−ξI0(ξ) � 1/(1 + ξ). In practice, the operator
[1 − ∇⊥ · ρ2i∇⊥] is applied to all terms of the QNE effectively canceling the operator
[1−∇⊥ · ρ2i∇⊥]−1 in equation (4.7). For electrons and for small wavelengths with respect
to the ion Larmor radius, k⊥ρi � 1, but still sufficiently long with respect to the electron
Larmor radius, k⊥ρe 
 1, the drift-kinetic approximation can be made. It consists in
neglecting the electron polarization term, equation (4.5), thus reducing the electron
perturbed density to its gyro-density in which the Larmor radius is taken to be zero

δNe(x; t) � δNgy
e (x; t) �

∫
dZ δfe(x, μ, v‖; t). (4.8)

For certain types of fluctuations the electron response can also be computed from the
adiabatic (Boltzmann) approximation [Horton, 1999]

δNad
e (x; t) =

eN0e

T0e
[δφ(x; t)− 〈δφ〉FS(s; t)] , (4.9)

where 〈δφ〉FS the flux-surface averaged potential reads

〈δφ〉FS =
1∮

dϕ
∮
dθ�J

∮
dϕ

∮
dθ�J δφ,

in magnetic coordinates (s, θ�, ϕ) with s the flux-surface label, θ� the straight-field-line

80



4.3. Discretized QNE with finite elements

poloidal angle, ϕ the toroidal angle, and J the associated Jacobian. Finally, a hybrid
model can also be considered, in which the trapped electrons are described kinetically
and the passing electrons are described adiabatically δNhyb

e (x) = δNkin
e,trp(x) + δNad

e,pas(x).
More details concerning these electron models are given in references [Jolliet, 2010,
Dominski et al., 2015].

Considering the different possible electron models and approximations, the most general
form of the quasi-neutrality equation can be written

−
∑

σ∈{kin}

∫
dZδ(X+ρ−x)δφ̃

q2σ
B0

∂fσ0
∂μ

+
∑

σ∈{ad}
Nσ0

q2σ(δφ− 〈δφ〉FS)

Tσ0
=

∑
σ∈{kin|dk}

qσδN
gy
σ ,

(4.10)

where one uses the sets {kin}, {ad}, and {kin|dk} to denote the (subgroup) species
which are modeled kinetically, adiabatically, and either kinetically or drift-kinetically,
respectively.

4.3 Discretized QNE with finite elements

In this section, the Ritz-Galerkin method is used to project the quasi-neutrality equation
(QNE) on a set of finite-elements {Λν(x)}. Solving the QNE using the Ritz-Galerkin
method is equivalent to consider the weak variational [Sugama, 2000, Brizard, 2000] form
of the QNE∫

dxδΨ(x)

[∑
σ

qσ

∫
dZδ(X+ ρ− x)

(
fσ +

qσ
B0
δφ̃
∂fσ0
∂μ

)]
= 0, (4.11)

where the test function δΨ(x) can be any of the finite-elements Λν(x). The continuous
integral equation is thus transformed into a system of linear equations [Fivaz et al., 1998,
Tran et al., 1999]∑

ν′
Lνν′ δφν′ = Sν , (4.12)

where Lνν′ δφν′ and Sν are, respectively, the Galerkin projections,
∫
dxΛν(x)..., of the

left and right hand sides of equation (4.10). The unknown terms δφν′ in this system of
linear equations are the coefficients of the finite element representation of the electrostatic
field

δφ(x) =
∑
ν′
δφν′ Λν′(x). (4.13)
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The source term Sν is the projection of the gyro-density

Sν = 2π
∑

σ∈{kin|dk}
qσ

∫
dXdv‖dμ

B�
0‖

mσ
〈Λν〉α(X, μ) δfσ(X, μ, v‖), (4.14)

where one performed the simplification
∫
dxΛν(x)δ(X + ρ − x) ≡ Λν(X + ρ). In PIC

representation, as considered in the ORB5 code [Tran et al., 1999], this source term is
computed from the marker particles

Sν =
∑
p

qpwp 〈Λν〉α(Xp, μp), (4.15)

with p the subscript labeling the particle quantities and wp the particle weight. Finally,
the matrix Lνν′ is composed of the linearized polarization-drift contribution(s), Lpol

νν′ , as
well as of the possibly adiabatic electron response, Lad

νν′ , with Lνν′ = Lpol
νν′ + Lad

νν′ .

The adiabatic response matrix reads

Lad
νν′ = −

∑
σ∈{ad}

q2σ

∫
dx
Nσ0(x)

Tσ0(x)
Λν(x) [Λν′(x)− 〈Λν′〉FS(s)] , (4.16)

with {ad} the set of species sub-groups which are modeled adiabatically, see equa-
tion (4.10).

The arbitrary-wavelength polarization matrix, weak formulation of equation (4.5), reads

Lpol
νν′ = 2π

∑
σ∈{kin}

qσ

∫
dXdv‖dμ

B�
0‖

mσ

qσ
B0

(
−∂fσ0
∂μ

)
[〈ΛνΛν′〉α − 〈Λν〉α〈Λν′〉α] , (4.17)

where 〈Λν〉α = 〈Λν〉α(X, μ). This latter matrix is symmetric and positive definite because
it is the positively weighted (−∂fσ0/∂μ > 0) sum of the symmetric and positive definite
sub-matrices Pνν′ = 〈ΛνΛν′〉α − 〈Λν〉α〈Λν′〉α (P = P t and 〈φ2〉α ≥ 〈φ〉2α for all φ).

The long-wavelength polarization matrix, defined by equation (4.6), reads

Lpol
νν′ =

∑
σ∈{kin}

q2σ
mσ

∫
dx
Nσ0(x)

Ω2
σ0(x)

∇⊥Λν(x)∇⊥Λν′(x), (4.18)

where one has performed an integration by parts of the form∫
Ω
dxΛν(∇⊥F∇⊥δφ) =

∫
∂Ω

ΛνF∇⊥δφ · dS−
∫
Ω
dx∇⊥Λν F∇⊥δφ,

and the boundary term,
∫
∂Ω ..., is replaced by imposing Dirichlet boundary conditions to

the solution.
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In case of the Padé approximation, the operator (1−∇⊥ · ρ2i∇⊥) is applied on both sides
of the QNE. For a two-species plasma with drift-kinetic electrons, this Padé version of
the discretized QNE reads

− q2i
mi

∇⊥ · Ni0

Ω2
i0

∇⊥φ = (1−∇⊥ · ρ2i∇⊥)
∑

σ={i,e}
qσ

∫
dZ δ(X+ ρσ − x) δfσ, (4.19)

where |ρe| = 0 and qe = −e. Compared to the long wavelength version of the solver, the
difference is the presence of the operator (1−∇⊥ · ρ2i∇⊥) on the RHS of equation (4.19).
This operator effectively necessitates the computation of an additional source term on
the RHS of equation (4.12), which now reads

∑
ν′ L

pol
νν′δφν′ = Sν + Scorr

ν with Scorr
ν =∑

ν′ L
corr
νν′ sν′ and

Lcorr
νν′ = −

∑
ν′

∫
dx ρ2th,i(x)∇⊥Λν(x)∇⊥Λν′(x), (4.20)

where an integration by parts and Dirichlet boundary conditions have been used, and
the sν stand for the coefficients of the decomposition into finite elements of the total
gyro-density:

∑
ν′ sν′Λν′(x) =

∑
s qs

∫
dZ δ(X + ρs − x) δfs. The above relation can

be inverted for sν by projection onto the basis elements Λν(x) and making use of the
definition (4.14) of Sν , leading to

sν′ =
∑
ν

M−1
ν′ν Sν , (4.21)

where Mνν′ =
∫
dxΛν(x)Λν′(x) is the mass matrix. In this Padé version of the solver,

the weak formulation of the QNE is thus Lpol
νν′δφν′ = SPade

ν , where Lpol
νν′ is given by

equation (4.18) and SPade
ν = Sν + Scorr

ν = (1 +
∑

ν′ L
corr
νν′

∑
ν M

−1
ν′ν)Sν .

The main advantages of the Padé version of the solver is that the additional Padé matrices
are smaller and easier to converge than the ion polarization drift matrix of the arbitrary
wavelength solver. The matrix accounting for the ion polarization drift computed in its
integral form is numerically very demanding as we will discuss in the following section.

4.4 Matrix assembly in discrete Fourier representation

In ORB5, the field quantities are represented in magnetic coordinates (s, θ�, ϕ) where
s =

√
ψ/ψedge, ψ is the poloidal magnetic flux and ψedge its value at the edge, θ� is

the straight-field-line poloidal angle, and ϕ is the periodic toroidal angle. The 3D finite
elements Λν(x) introduced in section 4.3 are chosen to be tensor products of 1D basis
functions

Λν(x) = Λi(s)Λj(θ
�)Λl(ϕ),
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Figure 4.1 – Cubic (d = 3) BSpline [de Boor, 1978] basis functions, Λi(s), such as used in
ORB5 for the radial direction. These basis functions are arbitrarily labeled with i = 1..9.
The radial direction is split into 6 regular intervals.

where Λi(s), Λj(θ
�), and Λl(ϕ) are Bspline [de Boor, 1978] finite elements of degree d in the

radial, poloidal, and toroidal directions, respectively, and the index ν corresponds to the
triple index (i, j, l). Each one of these finite elements is defined on a regular grid composed
of ns, nθ, and nϕ intervals in the radial, poloidal, and toroidal directions, respectively.
The toroidal grid on which the toroidal finite elements, Λl(ϕ), are defined being regular,
it permits to preserve discrete translational symmetry, i.e., Λl(ϕ) = Λ0(ϕ− 2πl/nϕ). A
similar comment can be made in the poloidal direction. In the radial direction, ns + d

Bspline basis functions are defined with the DeBoor algorithm [de Boor, 1978] and only
one finite element is non-zero at each boundary, see figure 4.1. In this finite element
representation, the field perturbation reads

δφ(s, θ�, ϕ) =
∑
i,j,l

δφijl Λi(s)Λj(θ
�)Λl(ϕ),

and the discretized QNE (4.12) reads∑
i′,j′,l′

L(ijl)(i′j′l′)δφi′j′l′ = Sijl. (4.22)

The value of the matrix elements L(ijl)(i′j′l′) with respect to l and l′ in fact depends
only on the difference l − l′, because of the symmetry of the background quantities with
respect to ϕ. One thus defines L(l−l′)

(ij)(i′j′) = L(ijl)(i′j′l′). The sum over l′ on the LHS of
equation (4.22) thus corresponds to a discrete convolution∑

l′

∑
i′,j′

L
(l−l′)
(ij)(i′j′) δφi′j′l′ = Sijl,

which takes an algebraic form in Fourier representation. A discrete Fourier transform
(DFT) is thus applied on both the matrix coefficients and the finite-element coefficients
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used for representing the fields⎧⎪⎪⎨⎪⎪⎩
δφ̂

(n)
ij = n−1

ϕ

∑nϕ−1
l=0 δφijl e

−ı2π nl/nϕ ,

Ŝ
(n)
ij = n−1

ϕ

∑nϕ−1
l=0 Sijl e

−ı2π nl/nϕ ,

L̂
(n)
(ij)(i′j′) = n−1

ϕ

∑nϕ−1
Δl=0 L

(Δl)
(ij)(i′j′) e

−ı2π nΔl/nϕ ,

(4.23)

with Δl = l − l′, in order to obtain a system of decoupled equations [Tran et al., 1999]

nϕ
∑
i′,j′

L̂
(n)
(ij)(i′j′) δφ̂

(n)
i′j′ = Ŝ

(n)
ij .

In ORB5, the electrostatic perturbation is furthermore represented by the poloidal DFT
of its finite-element coefficients [McMillan et al., 2010]

ˆ̂
φ
(n)
im = n−1

θ

nθ−1∑
j=0

δφ̂
(n)
ij e−ı2πmj/nθ . (4.24)

The core electrostatic turbulence has a small parallel wave number k‖ � (nqs−m)/Rqs 
 1

and its spectrum is dominated by contributions of modes which are such that m �
nqs. Therefore, as already done in the previous version of the long-wavelength field-
aligned solver [McMillan et al., 2010], the turbulence can be accurately represented by
the set of poloidal mode numbers Kn

i which contains the mode numbers m ∈ [nqs(si)−
Δm, ..., nqs(si) + Δm] with Δm
 nθ/2 typically. This set of poloidal mode numbers is
adjusted radially as a result of the radial variation of the safety factor qs = qs(s). With
this representation, the system of equations used to discretized the QNE becomes

nϕ

ns+d∑
i′=1

∑
m′∈Kn

i′

ˆ̂
L
(n)
(im)(i′m′) δ

ˆ̂
φ
(n)
i′m′ =

ˆ̂
S
(n)
im , (4.25)

for allm ∈ Kn
i . Compared to L̂(n)

(ij)(i′j′) with j = 1..nθ and j′ = 1..nθ, the matrix ˆ̂
L
(n)
(im)(i′m′)

with m ∈ Kn
i and m′ ∈ Kn

i′ has the advantage of requiring a much smaller amount of
memory because a limited set of coefficients are stored, given that Δm
 nθ/2. These
smaller matrices are also faster to assemble, in particular for the arbitrary wavelength
solver.

In the considered discrete Fourier representation, the matrix Lpol
νν′ in equation (4.17)

becomes

ˆ̂
L
pol (n)
(im)(i′m′) = nθM

(n)
∑
σ∈kin

q2σ

∫
dsdθ�J

∫
dv⊥v⊥

Nσ,eq(s, θ
�)

T 2
σ0(s, θ

�)
exp

[
− mσv

2
⊥

2Tσ0(s, θ�)

]
×
[
〈ΛiΛ̂mΛi′Λ̂

∗
m′〉α(s, θ�, v⊥)− 〈ΛiΛ̂m〉α(s, θ�, v⊥)〈Λi′Λ̂

∗
m′〉α(s, θ�, v⊥)

]
, (4.26)
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where one introduced the notations Λ̂m(θ�) = n−1
θ

∑nθ−1
j=0 e−ı2π jm/nθΛj(θ

�) and Λ̂∗
m is

the complex conjugate of Λ̂m, and the background distribution function is assumed to be
a local Maxwellian

fσ0 =
Nσ,eq

(2πTσ0/mσ)3/2
exp

(
−
mσv

2
‖/2 + μB0

Tσ0

)
, (4.27)

the density field Nσ,eq is chosen such as to ensure quasi-neutrality of the background (see
reference [Angelino et al., 2006]), J is the Jacobian in (s, θ�, ϕ) coordinates, the integral
in the v‖ direction has been carried out analytically, the gyroaveraging is computed in
the approximation ρ · ∇ϕ = 0 such that the toroidal integral simplifies into the toroidal
mass matrix [Tran et al., 1999]

M (n) = n−1
ϕ

nϕ−1∑
Δl=0

e−ı2π nΔl/nϕ

∫ 2π

0
dϕΛΔl(ϕ)Λ0(ϕ).

In equation (4.26), one has kept the poloidal dependency of the density and temper-
ature fields in the equations, i.e., N = N(s, θ�) and T = T (s, θ�), to account for
the effect of strong flows as presented in references [Collier, 2015, Collier et al., 2016].
This is a further generalization to the field solver implementation described in ref-
erence [McMillan et al., 2008], more details are given in appendix A. Note that this
upgrade has been consistently carried out for all the solver matrices. For example the
long-wavelength ion polarization drift matrix, equation (4.18), in its discrete Fourier
representation is assembled from

ˆ̂
L
pol (n)
(im)(i′m′) = nθM

(n)
∑
σ∈kin

q2σ
mσ

∫
dsdθ�J (s, θ�)

Nσ0(s, θ
�)

Ω2
σ0(s, θ

�)

×∇polΛi(s)Λ̂m(θ�) · ∇polΛi′(s)Λ̂
∗
m′(θ�), (4.28)

where one uses the approximation ∇⊥ � ∇pol = ∇s∂s +∇θ�∂θ� .

To assemble the arbitrary wavelength matrix, the integrals in configuration space with
respect to the radial and poloidal directions are handled in a different manner for the
integral operator, equation (4.26), than for the differential operator, equation (4.28). The
rationale is that, in the integral operator, the integrand is composed of gyroaveraged
quantities such as, for example,

〈ΛiΛ̂m〉α(X, v⊥) =
∫
dαΛi

(
s(X+ ρ(α))

)
Λ̂m

(
θ�(X+ ρ(α))

)
,

which is not the case of the differential operator. In the integrand of the integral operator
equation (4.26), the finite elements are thus estimated at guiding-center positions shifted
by the Larmor vector, so that these shifted finite-elements are not systematically piecewise
continuous per radial or poloidal intervals of the grid (except in the particular case that
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(w,a)

Figure 4.2 – Sketch of the gyropoints used to compute velocity quadrature of the arbitrary
wavelength polarization matrix (4.26). Local grid of gyropoints (red dot markers),
{X+ ρ(v

(w)
⊥ , α(a))}, associated with a guiding center GC1 (red cross) located near the

magnetic axis (black dot marker). Also shown is a guiding-center GC2 located outside
the simulation domain (blue cross) with its associated gyroring crossing the simulation
domain (full blue line).

ρ = 0 for example). Therefore, there is no advantage to use Gauss points over the radial
and poloidal intervals for carrying out these radial and poloidal integrals accurately.
We thus decided to use equidistant points in these directions. Moreover, as a second
consequence of having shifted finite-elements in the integrand of equation (4.26), the
integral in the radial direction is carried out over a radial domain larger than the simulation
domain, because we account for guiding centers, X, which are outside the simulation
volume if a fraction of their gyroring, X+ ρ(α), is inside this simulation volume. See the
guiding-center and gyroring plotted in blue in figure 4.2. This volume of guiding-centers
which are outside the simulation domain represents a small volume of a few local thermal
Larmor radii in the radial direction, because the quadrature over the perpendicular
velocity is typically carried out from 0 to v⊥,max with v⊥,max = 5vth. The background
values Nσ0 and Tσ0 are extrapolated to be constant outside (s > 1).

To assemble the polarization drift matrix of the arbitrary wavelength solver, equa-
tion (4.26), the integrals in velocity space are carried out with quadrature points adapted
to the (s, θ�) grid resolution, because we intend to resolve the physics at all scales provided
by this grid. This grid of quadrature points (v⊥,w, αa) indexed by w and a integers is
chosen to be regular: v⊥,w = w v⊥,max(X)/n⊥ with w = 0..n⊥ − 1 and v⊥,max � 5vth(X)

typically, and αa = a 2π/nα with a = 0..nα − 1 and nα = nα(X, v⊥) is adapted in order
to keep the length of arc Δρα = 2πv⊥,w/nαΩ0(X) essentially constant. Note that the
solution converges with O(1/n4⊥) when using a regular grid in v⊥, instead of converging
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with O(1/n2⊥) when using a regular grid in μ. The density of quadrature points determined
by Δρα and n⊥ is now discussed. From a geometric point of view, this 2D grid of velocity
quadrature points, (v⊥,w, αa), corresponds to a 2D grid of gyropoints, {X+ρpol(v⊥,w, αa)}
with X = X(s, θ�) a given guiding-center, see the cartoon in figure 4.2. The density of
quadrature points is thus chosen such as to have a 2D grid of gyropoints significantly
denser than the resolution of the (s, θ�) grid. Such criteria might be too constraining near
axis where the poloidal resolution of the grid, Δθ� = 2π/nθ, includes arbitrarily short
scales as a result of having sΔθ� → 0 when s→ 0. Indeed, for a given guiding-center and
for a given v⊥, the gyroring representing the gyroaveraging path might lies on several grid
cells. Resolving the shortest poloidal length might require near axis to use nα > nθ with
nθ � 1000 typically. Nonetheless, when assembling the matrix ˆ̂

L
(n)
(im)(i′m′), the shortest

poloidal scales provided by the grid are filtered out by the field-aligned filter, in particular
near axis. The field-aligned filter thus permits to gyroaverage near axis with a reasonable
amount of gyroppoints, i.e., nα < nθ. No filter is applied in the radial direction, and when
using a regular grid in s =

√
ψ/ψedge, the radial resolution of this grid is, in general, the

highest near the axis. Note that in the present work, we study ITG or TEM regimes in
which cases the turbulence has a wavenumber kθρi � 2 typically, but we also account for
the fine radial structures due to the non-adiabatic response of passing electrons near mode
rational surfaces which requires a significantly higher resolution in the radial direction,
with krρi � 20 typically. We thus use grids for which one typically has a higher radial
resolution than poloidal resolution, and, in this case, we adapt the density of quadrature
points to the radial resolution.

Boundary conditions

The ORB5 simulation volume has the topology of a torus with either the full domain
s ∈ [0, smax] or an annulus with s ∈ [smin, smax] and 0 < smin < smax ≤ 1. In case of an
annulus, both edges are handled in the same way.

In case of simulating a full domain the field is regularized at the magnetic axis by
imposing unicity to the solution [Tran et al., 1999], δφ(s = 0, θ�) = 〈δφ〉θ(s = 0), for all
θ�. Imposing this condition is trivial because only the first radial basis function, Λ1(s),
is non-zero on axis, see figure 4.1. Therefore, one sets to zero all the m �= 0 Fourier
coefficients of the perturbation field at the axis position s = 0, by imposing that ∀ n and
∀ m �= 0 then δ ˆ̂φ(n)1m = 0.

The boundary condition on the edge is handled in a different manner for the arbitrary
wavelength solver than for the other solver versions. Instead of imposing Dirichlet
boundary conditions to the solution as it is done for the long wavelength and Padé
versions of the solver, in case of the arbitrary wavelength solver, the solution is let free
to obey natural boundary conditions of the weak QNE. As we will illustrate in a simple
example, these natural boundary conditions depend on the family of functions chosen for
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the finite-element basis function. In the poloidal direction, the choice of using translational
invariant basis function is natural, but in the radial direction different basis functions
could be used. Let us consider the case of a plasma composed of gyro-kinetic ions and
drift-kinetic electrons, in which case the self-consistent field δφ is computed from the
linear system of equation (4.25) where the matrix ˆ̂

L
(n)
(im)(i′m′) is only composed of the ion

polarization drift contribution matrix ˆ̂
L
pol(n)
(im)(i′m′) equation (4.26). In this linear system of

equations, the weak formulation of the polarization drift contribution, equation (4.26), is
of the form

P =

∫
dsdθ�J

∫
dμ′e−μ′Nσ0

Tσ0
(〈δΨδφ〉α − 〈δΨ〉α〈δφ〉α) , (4.29)

where μ′ = μB0/Tσ0 and δΨ is the test function. This integral equation can be formulated
in an integro-differential form by Taylor expanding the gyroaveraging operation using∫

dαδ(X+ ρ− x) ≡
∫
dα exp(ρ · ∇⊥) =

∫
dα

+∞∑
n=0

1

n!
(ρ · ∇⊥)n, (4.30)

which leads to

P =

⎡⎣ ∑
γ,σ≥0

bγσ
∂γδΨ

∂sγ
∂σδφ

∂sσ

⎤⎦
∂Ω

+

∫
Ω
dsdθ�J δΨ

∫
dμ′e−μ′Nσ0

Tσ0

⎛⎝ ∑
γ,σ≥0

cγσ
∂γ

∂sγ
∂σ

∂θ� σ

⎞⎠ δφ,

(4.31)

having assumed unicity of the solution on edge for simplicity of the discussion, and
where bγσ and cγσ are real coefficients. For natural boundary conditions, the boundary
term in square brackets is equal to zero. For example, in the typical long wavelength
approximation this boundary term, for which b01 = 1 else bγσ = 0, reads

0 =

[
δΨ

∂δφ

∂s

]
∂Ω

,

and corresponds to the condition

0 =

[
Λns+d(s)

∂δφ

∂s

]
∂Ω

,

because the last finite element Λns+d(s) is the only test function which is non-zero at the
edge, see figure 4.1. This equation, which corresponds to the Neuman boundary condition
∂δφ/∂s|edge = 0, is usually replaced by the Dirichlet boundary condition δφ|edge = 0.
Now considering the general case, equation (4.31), the general natural boundary condition
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on δφ

0 =

⎡⎣ ∑
γ,σ≥0

bγσ
∂γδΨ

∂sγ
∂σδφ

∂sσ

⎤⎦
∂Ω

,

depends on the value of the terms bγσ and on the value of the derivatives ∂γδΨ/∂sγ . The
values of these terms depend on the choice made for the finite element basis function
{Λi(s)}. First, it is obvious that if δΨ corresponds to any basis function Λi(s) then the
values of ∂γδΨ/∂sγ depends on the choice made for defining the Λi(s) basis functions.
In our case, only one radial basis function is non-zero on edge, but several ones have
derivatives which are non-zero on edge, see figure 4.1. Therefore, the general natural
boundary condition can be written as the system of equations

0 =

⎡⎣∑
i′
δφi′

∑
γ,σ≥0

bγσ
∂γΛi

∂sγ
∂σΛi′

∂sσ

⎤⎦
∂Ω

,

where one has one equation per index i for which there exists an integer value of γ ≥ 0

such that ∂γΛi/∂s
γ �= 0 at the edge, and having used the finite element representation

of the field δφ(s) =
∑

i′ δφi′Λi′(s). Moreover, the set of finite elements with at least
one non-zero derivative at the edge and the value of these derivatives depend on the
order of the finite elements, such that this system of equations determining the natural
boundary condition of the weak QNE varies with the order of the BSpline finite element
basis functions. Second, the choice made of defining the finite element only inside the
simulation volume (s ≤ 1) influences the value of the gyroaveraged quantities in the
vicinity of the edge where a fraction of gyroring might be outside the simulation volume.
Indeed, the fact that no finite element is defined outside s > 1 corresponds to the fact
that δφ = 0 outside, because no contribution can come from the fraction of gyroring
outside where δφ is not represented. This feature influences the nature of the kernel
of the integral equation (4.26) which is of the form of equation (4.29), and in terms of
equation (4.31) this feature influences the values of the coefficients bγσ and cγσ. Finally,
it turns out that the arbitrary wavelength solver such as presented in this chapter does
not respect the Dirichlet boundary conditions. Nonetheless, the solution obtained with
this new solver tends to these Dirichlet boundary conditions when the plasma conditions
are brought toward long wavelength conditions. In general, the amplitude of |δφ| at the
edge is small compared to its typical value inside the simulation volume where the physics
of interest is studied.

4.5 Gyroaveraging in magnetic coordinates

For all operations associated with gyro-averaging, the plane of the gyro-motion, which is in
fact perpendicular to the magnetic field, is approximated to the poloidal plane ϕ = const,
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for practical purposes. This approximation is justified in a tokamak of sufficiently large
aspect ratio. In particular, the operator ∇⊥ appearing in the equations of section 4.3 is
approximated by ∇⊥ � ∇pol = ∇s∂s +∇θ�∂θ� expressed in magnetic coordinates.

For computing gyro-averages appearing in equations (4.14) and (4.17), the gyropoints,
i.e. the particle positions along the gyroring are parametrized by the gyro-angle α

x(α) = X+ ρ(α) = X+ ρ
∇s
|∇s| cosα+ ρ

b×∇s
|b×∇s| sinα, (4.32)

where ρ = ρ(X, μ) and having dropped the index σ for species dependence to lighten
notation. The (s, θ�) coordinates of the gyropoints can be estimated by linearizing the
metric around the guiding-center position. However, such a linearization of the metric
is problematic when considering the polar-like coordinate system (s, θ�) which presents
a singularity at s = 0 (magnetic axis). Indeed, when approaching this point the metric
starts to vary significantly over the scale of the Larmor radius. To avoid this problem
one considers the pseudo-Cartesian coordinate system (ξ, η) = (s cos θ�, s sin θ�) which is
absent of any singular point. The radial variable s must be defined so as to be proportional
to the geometrical minor radius r near the magnetic axis, e.g., s ∝ √

ψ. The estimation of
the (s, θ�) coordinates of points along the gyro-ring is now carried out by performing an
analytical mapping in between the two sets of variables (s, θ�) ↔ (ξ, η) and by linearizing
the metric around the guiding-center position in the (ξ, η) coordinates, which leads
to [Lapillonne, 2010]⎧⎨⎩s(X+ ρ) =

√
[s(X) + ρ(α) · ∇s(X)]2 + s2(X) [ρ(α) · ∇θ�(X)]2,

θ�(X+ ρ) = θ�(X) + arctan2
[
s(X)ρ(α)·∇θ�(X)
s(X)+ρ(α)·∇s(X)

]
.

(4.33)

4.6 Structure of the polarization matrix

The polarization matrix Lpol (n)
kk′ , equation (4.26), can be seen as a weighted integral of

spline factors

P
(n)
kk′ (s, θ

�, v⊥) = 〈Λ̂kΛ̂
∗
k′〉α − 〈Λ̂k〉α〈Λ̂∗

k′〉α, (4.34)

where the gyroaveraged operation 〈 〉α = 〈 〉α(s, θ�, ρ) is computed with equation (4.32),
the double index k = (i,m) is defined by k = 1 +m− nqs(si) + (1 + 2Δm)(i− 1) with
m ∈ Kn

i , and Λ̂k(s, θ
�) = Λi(s)Λ̂m(θ�).

The matrix Lpol (n)
kk′ is stored in an upper triangular band matrix. Keeping only its upper

part ensures hermicity of the matrix, and storing only a limited number of bands reduces
its size. This matrix is thus composed of the elements for which k ≤ k′ ≤ k + nbands with
nbands an integer.
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Figure 4.3 – Arbitrary wavelength solver matrix of a n = 0 toroidal mode number. Plotted
is the log of the absolute value of its elements, log |L(n=0)

kk′ |. TCV test case, see section 5,
with kinetic electrons (no adiabatic matrix). In this figure, we choose the particular
parameters s ∈ [0, 1], ns = 250, nm = 11, and v⊥,max = 7vth. The lines and columns are
indexed with the 2D index k = m + (1 + 2Δm)(i − 1) where m is the poloidal mode
number and i the radial spline index (nqs = 0 here). White dashed lines delimit the
bands which have non-null elements.

Looking at the spline factor, equation (4.34), its second term 〈Λ̂k〉α〈Λ̂∗
k′〉α might cou-

ple very distant positions, i.e. twice the largest value of the Larmor radius used for
gyroaveraging. This coupling between distant positions is described by elements of the
polarization matrix far from the diagonal. Compared to the long-wavelength solver, the
arbitrary wavelength solver bandwidth is thus, generally, broader. As an illustration, an
arbitrary wavelength matrix Lpol (n=0)

kk′ is plotted in figure 4.3.

This matrix is assembled for conditions relevant to the TCV tokamak with the same
ideal MHD equilibrium than the one used at end of this chapter, and when using the
parameters n = 0, s ∈ [0, 1], ns = 250, Δm = 5, and v⊥,max = 7vth.

For given values of i and i′, the P (n)
kk′ elements are organized in the matrix as blocks of

poloidal Fourier coefficients, as a consequence of the definition of the double index k. The
size of these blocks is determined by the field-aligned filter width 1 + 2Δm. Therefore,
nbands must be a multiple of 1 + 2Δm.

For given values of m and m′, the P (n)
kk′ elements are sparse in the matrix. They are

located on bands identified by the index Δk = k′− k which are associated to radial bands
identified by Δi = i′ − i. The bandwidth of the matrix is nbands = 1 +maxΔk which is
related to the max of Δi by the relation nbands = (1+2Δm)(1+maxΔi). This bandwidth
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depends on the Larmor radius used for gyroaveraging and on the resolution of the s grid.
Indeed, the first term of equation (4.34) couples radial finite elements Λi(s) with their
1 + 2d neighbors, but the second term of this equation couples radial finite elements
distant of each other by a distance which is at maximum equal to 2ρmax = 2 v⊥,max/Ω0,
thus leading to

maxΔi = 1 + 2d+max
s,θ�

[
ceil

2v⊥,max(s, θ
�)

Ω0(s, θ�)Δrs(s, θ�)

]
,

where Δrs = Δs/|∇s| is the local radial resolution of the grid. From this expression one
deduces the matrix bandwidth

nbands = (1 + 2Δm)

{
2 + 2d+max

s,θ�

[
ceil

2v⊥,max(s, θ
�)

Ω0(s, θ�)Δrs(s, θ�)

]}
.

This estimate is not exact because |∇s| is not radially constant and there are positions
for which |∇s(X)| �= |∇s(X+ 2ρmax)|.

The coupling between distant elements is weak because of the presence of a Maxwellian
weight, exp (−ρ2⊥/2ρ2th), in equation (4.26). Indeed, in figure 4.3, one can see that elements
on the diagonal are of bigger amplitude than elements far from it. One could thus be
tempted to further truncate this matrix by keeping a number of matrix bands smaller
than nbands (but still multiple of 1 + 2Δm), because it consists in ignoring terms of small
amplitude. Nonetheless, the importance of keeping all the non-null radial bands of the
matrix is illustrated in a Rosenbluth-Hinton test [Rosenbluth and Hinton, 1998]. For this
verification, a plasma regime is chosen for which the long wavelength approximation is a
good approximation. This choice is made in order to compare the results with one of the
long wavelength solver and to verify the convergence of their solutions, see figure 4.4. In
subplot (a), one shows that the results obtained with the arbitrary wavelength solver are
clearly sensitive to the number of radial bands. Indeed, in case that all the (27 for this
case) radials bands required for representing the arbitrary wavelength matrix are kept,
both the long wavelength solver and the arbitrary wavelength solver are in a very good
agreement. On the contrary, when one truncates the matrix the arbitrary wavelength
solver provides a solution which significantly diverge from the expected solution. In
subplot (b), the relative differences between a theoretical estimate and the simulation
results using the arbitrary wavelength solver is plotted with respect to the parameter
v⊥,max used for assembling the polarization matrix. For v⊥,max ≥ 5vth the simulation
results obtained with both the arbitrary wavelength solver and the long wavelength solver
are in good quantitative agreement. In both cases there are reasonable differences of 3%
and 7% between the numerical results and the theoretical predictions for the residual
res = 1/(1 + 1.6q2s

√
a/R) and frequency ωG = (vth,i/R)

√
1 + 1/2q2s , respectively.
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Figure 4.4 – Rosenbluth-Hinton test in CBC geometry with zero density and temperature
gradients, ρ� = 1/180, ns = 360, np,tot = 16M marker particles, adiabatic electrons,
and the results are taken at radial position r ≈ 0.5. Plotted is the radial electric field
Er in arbitrary units. Subplot (a), comparison between the long wavelength solver
and the arbitrary wavelength solver. The matrix of the arbitrary wavelength solver is
composed of nr = 27 (blue), 10 (orange), and 5 (red) radial bands for representing the
solver matrix. The total number of bands of the matrix is (1 + 2Δm)nr. Subplot (b),
convergence study with respect to v⊥,max used for assembling the arbitrary wavelength
solver. Plotted are the relative differences of the simulation results for the GAM frequency
(Freq.) and residual (Res.) with the theoretical estimates: res = 1/(1 + 1.6q2s

√
a/R)

and ωG = (vth,i/R)
√
1 + 1/2q2s . The dotted lines, in subplot (b), stand for the long

wavelength results.
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4.7 Linear benchmark ORB5 versus GENE

To verify the new solver, a benchmark has been carried out between ORB5 and the
global version of the gyrokinetic code GENE [Jenko et al., 2000, Görler et al., 2011].
The gyrokinetic code GENE already has an arbitrary wavelength solver and therefore
provides appropriate reference in this case. For this benchmarking, two realistic magneto-
hydrodynamic (MHD) equilibria from reference [Burckel et al., 2010] were used: Geometry
V which is the simplest one with nearly circular concentric magnetic surfaces, and
Geometry I, which is the most complicated one with finite Shafranov shift, elongation,
triangularity, and up/down asymmetry. When using Geometry 5, three electron models
(adiabatic, hybrid, and kinetic) were used, as well as the three solver versions: long
wavelength, Padé, and arbitrary wavelength. When using Geometry 1, one used the
adiabatic electron model for both the long wavelength and the arbitrary wavelength
solvers.

The considered plasma is a two-species plasma with hydrogen ions (qi = −qe = e),
heavy electrons (mi/me = 400), and Ti0 = Te0. The background gradient profiles are
chosen to be peaked, such as to radially localize the source of instability and to avoid the
presence of modes with similar growth rates at different radial locations. Both density
and temperature profiles are thus defined by

d lnN,T

dρvol
= −κN,T

2

[
tanh

(
ρvol − ρvol,0 +Δρvol

ΔN,T

)
− tanh

(
ρvol − ρvol,0 −Δρvol

ΔN,T

)]
,

(4.35)

with ρvol =
√
V/Vedge the normalized radial variable, V = V (ψ) the volume contained

within the flux surface ψ, κN,T = a/LN,T , a the minor radius, and LN,T = −∇ ln (N0, T0).
In this benchmark exercise one takes κN = 0.78, κT = 2.47, ΔN = ΔT = 0.02, ρvol,0 = 0.5,
and Δρvol = 0.075 for both ion and electron species. The number of markers, the time
step, and the numerical resolution of the grid are adapted for each toroidal mode number
n in order to converge the results.

In figure 4.5, using the fully shaped MHD equilibrium Geometry 1, the dispersion relations
obtained from simulations carried out with GENE and ORB5 are in good agreement when
using the new arbitrary wavelength solver. This validates the fact that the new arbitrary
wavelength solver handles accurately the complex ideal MHD geometries. This ITG type
mode is unstable in the range 0 < kθρs � 1.2, where kθρs is an average of the normalized
poloidal wave number. Note that at shorter scales, kθρs � 1, the long-wavelength solver
starts to deviates from the arbitrary wavelength solution.

In figure 4.6, using the simplest MHD equilibrium Geometry 5, it is shown that the
long-wavelength solver fails at correctly reproducing the growth rate γ for the the short
wavenumbers, kθρs � 1, of the TEM branch, when using either the hybrid or the fully
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Figure 4.5 – Dispersion relation for the Geometry 1 case. Results have been obtained with
the GENE code (black lines with circle markers), as well as the ORB5 code considering
either the long wavelength solver (green crosses) or arbitrary wavelength solver (blue line
with dot markers). The adiabatic electron model was considered for all cases. Growth rate
γ in full line and real frequency ωr in dashed line. The normalized poloidal wavenumber is
estimated from kθρs = n qsρs/a with qsρs/a estimated at the radial position ρvol,0 where
the gradient profile is peaked.

kinetic electron models. On the contrary, the new arbitrary wavelength solver successfully
solves these short scale modes with both the hybrid and kinetic electron models and is in
very good quantitative agreement with GENE. Finally, the Padé version of the solver
also shows a very good agreement with GENE and thus with the new integral solver.

In figure 4.7 subplots (a) and (b), it is shown that the radial envelopes of the eigenmode
n = 24 (kθρs � 0.37) obtained with the fully-kinetic electron model are in very good
agreement between GENE and ORB5 when using the arbitrary wavelength solver. Note
also agreement in this case with ORB5 results considering the the Padé solver. Moreover,
the systematic presence of fine radial structures due to the non-adiabatic response of
passing electrons near low order MRSs [Dominski et al., 2015] is confirmed, and the
agreement of the radial width of these fine structures obtained with GENE and ORB5
reflects convergence down to these short scales. It should be pointed that the Padé
approximation version of the solver provides a very good approximation for resolving
such short scale. The full width at half maximum (FWHM) of the fine structure of
non-adiabatic passing electron response measure δr ≈ 0.3ρi which corresponds roughly to
krρi ≈ 20. The intermediate range of scales at which the Padé approximation might not
be a good approximation are not present. Note also that there is good agreement between
GENE and ORB5 despite the fact that the former code considers the drift-kinetic model
for electrons while the latter considers the gyrokinetic model for evolving electrons. On
the other hand, it is shown that the long wavelength solver fails at solving these fine
radial structures. Note that fine structures of similar short scales are present on the QNE
source term, δNgy

i − δNgy
e , when using either the long or arbitrary wavelength solver,
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electron models. The ORB5 results obtained with the Padé approximation solver (red
triangles) and kinetic electrons are also presented in subplot (c). Growth-rate in full-line
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see subplots (c) and (d). Therefore, the fact that such fine structures are missing on
the envelope of the potential computed with the long wavelength solver compared to
the envelope of the potential obtained with the arbitrary wavelength solver, see subplots
(a) and (b), is only a consequence of the long wavelength approximation made when
computing the self consistent field.

For the results obtained when using the arbitrary wavelength solver, the fact that the
growth rate is larger when using the fully-kinetic electron model than when using the
hybrid electron model (see figure 4.6 subplots (b) and (c)) shows that the non-adiabatic
passing electron response is not only corrugating the eigenmode radial structure but
further reinforces the destabilization mechanism. For example, for the wave number
kθρs ≈ 1.2 of the TEM branch, the growth rate is γ � 0.38 with the hybrid electron
model and γ ≈ 0.64 with the fully kinetic electron model.

4.8 Conclusion

A new arbitrary wavelength field solver has been implemented in the ORB5 code which
enables the study of quasi-neutral micro-turbulence at arbitrarily short scales in k⊥ρi.
The linearized polarization drift contribution to the quasi-neutrality equation is now
accounted for in its integral form. The new solver implementation has been described in
detail and the particular requirements to converge the electrostatic field solution on axis
and near the edge have been discussed. The behavior of the solution at the boundary has
also been discussed for the integral operator. The option of using the Padé approximation
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for computing the ion polarization drift contribution to the quasi-neutrality equation is
also available when running simulations with the fully kinetic electron model.

A benchmark of the gyrokinetic code ORB5 with this new solver has been carried out
against the global version of the gyrokinetic code GENE, in realistic ideal MHD toroidal
geometry. This benchmark was conducted in the ITG to TEM part of the instability
spectra (0 < kθρs < 1.5). The three different electron models, i.e. adiabatic, hybrid, and
kinetic, have been used to study the short scale physics of the non-adiabatic responses of
either the trapped electrons or the passing electrons. In each case a very good quantitative
agreement has been found between GENE and ORB5 when using the new arbitrary
wavelength solver. A good quantitative agreement has also been found with the Padé
version of the solver which is implemented for the kinetic electron model only. As expected,
the long wavelength version of the solver totally fails at resolving the short scale physics
due to the non-adiabatic response of both trapped electrons and passing electrons. In
this benchmark, it was also shown that the TEM branch is more unstable when using
the fully-kinetic electron model than when using the hybrid model. This increase of the
destabilization is due to the fact that a large fraction of the passing electron population
has a non-adiabatic response to the perturbation. This reduction of the global adiabatic
response of the passing electrons has a destabilizing effect, qualitatively confirming results
obtained in chapter 3 and in reference [Dominski et al., 2015].

Nonlinear simulations using this new arbitrary wavelength solver are carried out in
conditions relevant for the TCV tokamaks, in the next chapter.
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5 The passing electron channel of
turbulent transport in global gy-
rokinetic simulations relevant for
TCV
5.1 Introduction

In this chapter, nonlinear simulations of a two-species plasma, i.e., kinetic ions and
electrons, are carried out in conditions relevant for TCV [Hofmann et al., 1994], shot
number #45353. The magnetic geometry is shaped with elongation, triangularity, small
up-down asymmetry, and Shafranov shift, see figure 5.1. This TCV shot was initially
used in references [Vernay, 2013, de Meijere et al., 2014] where nonlinear simulations were
carried out with ORB5 using a simpler model for the plasma, i.e. the hybrid electron
model, the long-wavelength solver, and a lower radial resolution (ns = 128), thus missing
the physics of non-adiabatic passing-electron dynamics near mode rational surfaces.

In section 5.3, results obtained with the integral solver are compared to the Padé
approximation version, when using the heavy electron mass ratio (mi/me = 400). In
section 5.4, full-torus and half-torus simulations carried out with heavy kinetic electrons
are carried out. In section 5.5, half-torus simulations are carried out with the physical
deuterium to electron mass ratio (mi/me = 3672) and compared to heavy electron
simulations. The differing contributions of sub- and suprathermal particle species to the
fluxes, and the radial organization of these quantities in the vicinity of mode rational
surfaces, are studied in detail; we also consider how the zonal flow structures interact
with the structures near MRSs.

ORB5 moments and fluxes diagnostics are discussed in references [Jolliet, 2010, Vernay, 2013]
and in appendix B. Let us just mention that diffusivities are expressed in gyro-Bohm units
DGB = χGB = ρ2s0cs0/a with cs0 =

√
Te0(speak)/mi, ρs0 = mcs0/qBaxis, and speak = 0.6

in this TCV case.
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Figure 5.1 – Electrostatic field in the poloidal plane, snapshot taken during the turbulent
saturated time window. TCV full-torus simulation test case.

5.2 Test case description

The half-torus case consists of carrying out a simulation assuming periodicity over half
the toroidal domain. Practically, it is obtained by dropping every second toroidal mode
number n, i.e.. We use n ∈ [0, 2, 4, · · ·, 42, 44], with np,tot = 109 marker particles for both
the ion and electron species. The full-torus case is carried out by using the full toroidal
mode spectrum n ∈ [0, 1, 2, · · ·, 43, 44] and keeping the same number of marker particles
per toroidal mode number, i.e. np,tot � 2× 109 for ions and electrons. The number of
gyropoints used for gyroaveraging is nα = 18 for an ion with a thermal Larmor radius
and is scaled linearly with the Larmor radius of each oin.

The configuration space grid resolution is ns×nθ×nϕ = 360×1024×512 with s ∈ [0.35, 1.0]

and ρ� = ρs/a = 1/81 at the position of reference speak = 0.6 (ρvol ≈ 0.48). The
temperature ratio is equal to Ti0/Te0 = 0.267, note that ρi/a ≈ 1/157 at speak and
the chosen radial simulation domain represents more than 100 ion Larmor radii. In
linear simulations, we verified that the chosen radial resolution provides converged values
(within a few percent error) of the growth rates for the most unstable toroidal mode
numbers, and, in nonlinear simulations, we verified that the same level of turbulent fluxes
(� 10% difference) are obtained for a nonlinear simulation carried out with a lower radial
resolution and with less toroidal mode numbers, i.e., ns = 250 and 0 ≤ n ≤ 32.

Two physical aspects have been considered when choosing the radial resolution of these
simulations carried out with the kinetic electron model: the radial width of the fine
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structures of non-adiabatic passing-electron response and the radial distribution of MRSs.
In reference [Dominski et al., 2015] which results have been presented in chapter 3, it
was shown that these fine structures are broadened in nonlinear simulations and that
their width varies with the density of MRSs, see figure 3.11. (The distance between mode
rational surfaces is LMRS = 1/ŝky and ky ≡ nq0/r0.) Choosing a radial grid significantly
denser than the distribution of MRSs appears as a reasonable choice for studying the
non-adiabatic passing electron dynamics in nonlinear simulations. The rational numbers
being dense with respect to the real numbers, an infinity of MRSs are present in a
tokamak. Nonetheless, the turbulence is resolved only for its mode numbers 0 ≤ n ≤ 44,
and the resonant MRSs associated to the mode number n = 44 are located at radial
positions where the safety factor is qs = m/44 with m integer. In order to study the
influence of each MRS on the turbulent flux spectra of particle and heat, we thus choose
a radial grid denser than the distribution of these MRSs over essentially all the radial
domain (s � 0.9). The resolution of the MRSs is addressed in more detail at the end
of the chapter, see figure 5.15 (g,h). Note that in chapter 3, we also showed that the
level of turbulent transport requires the use of a very high radial resolution for reaching
convergence, because this high radial resolution permits to resolve the fine structures on
the profile of ωE×B which furthermore saturate the turbulence.

A typical field-aligned filter [Jolliet et al., 2007, McMillan et al., 2010] is used such that
for a given toroidal mode number n only the poloidal modes contained in the local interval
m ∈ [nqs − 5, nqs + 5] are solved.

A modified Krook operator [McMillan et al., 2008] is used for controlling the noise by
setting the parameter γka/cs = 0.027 (heavy electrons) and 0.024 (Deuterium/electron
mass ratio) which roughly corresponds to a tenth of the respective maximum linear growth
rates. This operator does not introduce sources of particles or parallel momentum and
conserves the residual ZFs phase space structure. On the other hand, its effect is to keep
the species temperature profiles close to their initial values. The associated effective heat
source is a smooth radial function corresponding consistently to a source near the core
and a sink near the edge. The radial density profile can relax during the simulation
and the time-averaged (over the turbulent saturated regime) profile shows a significant
deviation from the initial input, by up to 20%. This loss of density is caused by a strong
burst of particle flux when the system state enters in the nonlinear saturated regime, after
which there is a remaining particle flux of decreasing amplitude during the simulation so
that the density continues to relax. This relaxation of the density profile is currently not
taken into account by the assembly of the solver. This would require implementing the
nonlinear polarization drift contribution to the QNE, which is left for future works. A
shielding of the electric field [Jolliet, 2010] is used at the edge of the simulation domain,
to avoid the presence of non-physical electric field caused by secular accumulation of
charge losses near the boundary.
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Figure 5.2 – Particle flux (a), electron heat flux (b), and electron heat diffusivity (c) with
respect to the time, tcs/a, and radial position, ρvol. Global simulation of TCV #45353
using the arbitrary wavelength solver, the kinetic electrons, the heavy electron mass ratio
mi/me = 400, in a half torus.

5.3 Arbitrary wavelength and Padé solvers in the half-torus
test case with heavy electrons

The time-dependent radial profile of particle flux, Γ(ρvol, t) = Γe(ρvol, t) = Γi(ρvol, t),
electron heat flux, qH,e(ρvol, t), and electron heat diffusivity, χe(ρvol, t), are plotted in
figure 5.2 for heavy electrons (mi/me = 400) in a half-torus. The simulation time window
covers several flux bursts during the turbulent saturated regime, thus ensuring reasonably
good statistics. Subplots (a) and (b) of figure 5.3 show the radial profile of the time-
averaged heat diffusivity of the ions 〈χi〉t(s) and electrons 〈χe〉t(s), respectively. For
simulations carried out with both the Padé solver and the arbitrary wavelength solver,
the ratio of ion to electron diffusivity is higher near the core than in the edge. Each
species heat diffusivity is found to be in good quantitative agreement between simulations
carried out with either the Padé solver or the arbitrary solver. There is only 6% of
relative difference between their time- and radial-averaged amplitudes, see the dotted
lines in figure 5.3. Moreover, 〈χi〉t and 〈χe〉t are of similar level, but having a constant
background temperature ratio Te0/Ti0 = ∇Te0/∇Ti0 � 3.75 the total heat flux, roughly
qh � 〈χi〉tN |∇Ti0|+ 〈χe〉tN |∇Te0|, is essentially dominated by the electron contribution.
This observation will be confirmed in results shown in figure 5.7.

In simulations carried out with either the arbitrary solver or the Padé solver, both the
time-dependent and time-averaged radial profiles of electron heat diffusivity, respec-
tively plotted in figures 5.2(c) and 5.3(b), show the systematic presence of fine radial
structures near low order MRSs which are due to the non-adiabatic response of pass-
ing electrons [Waltz et al., 2006, Chowdhury et al., 2008, Dominski et al., 2015]. These
corrugations are clearly more pronounced at the surfaces of safety factor qs = 3/2, 2,
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Figure 5.3 – Time-averaged radial profile of the heat diffusivity of (a) the ions and (b)
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5/2 compared to other rational surfaces, because these rational surfaces are of low-
est order in the case of a half-torus simulation. The electron heat flux, qh,e, being
smooth in the radial direction, see figure 5.2(b), the presence on χe ∝ qh,e/|∇ψTe|, where
|∇ψTe| = 〈(dTe/dψ) |∇ψ|2〉FS , of these fine radial structures near MRSs is the result of
the presence of similar fine structures on the perturbation of the temperature gradient

δR/LTe =

〈
R

Te

dδTe
dψ

|∇ψ|2
〉

FS

,

with δTe the electron temperature perturbation and Te = Te0 + δTe. In figure 5.3(d),
the E ×B shearing rate associated to the ZFs, defined by (see references [Hahm, 1994,
Villard et al., 2002])

ωE×B =
s

2ψeq

d

ds

(
1

s

d〈δφ〉FS

ds

)
, (5.1)

is zero at lowest order MRSs where the electron temperature gradient perturbation
has a local minimum and the electron diffusivity has a local maximum in agreement
with reference [Dominski et al., 2015] which results are presented in chapter 3. We have
checked, by varying the value of the Krook parameter, that the observed corrugations are
not due to an artifact of the associated heating source.

The time-dependent radial profile of the E ×B shearing rate associated to the ZFs is
plotted in figure 5.4. This field is computed from the finite-element representation of
δφ and thus provide an insight into the numerical resolution which is achieved by the
field solver. The E ×B shearing rate associated to the ZFs being essentially a second
order radial derivative of the electrostatic field, the short scale noise is much more visible
than on the potential δφ. Notice that the low level of noise reached in these simulations
is a result of the use of a high number of particles (np,tot = 109) and of a high number
of gyropoints (18 for thermal ion Larmor radius) for computing the RHS of the QNE
( gyrodensity).

Figure 5.5 shows the time-dependent radially-averaged amplitude of the E ×B shearing
rate associated to ZFs 〈|ωE×B|〉s(t) in subplot (a), and the time-window averaged E ×B

shearing rate, ωeff (tw) = 〈|〈ωE×B〉tw |〉st, in subplot (b), which is given by

ωeff (tw) =

∫ smax

smin

ds

smin − smax

∫ tend

t1

dt

tend − t1

∣∣∣∣∫ t+tw

t

dt′

tw
ωE×B(s, t

′)
∣∣∣∣ , (5.2)

with t1 = 75a/cs identified in our case as the start of the fully saturated turbulent regime,
see reference [Dominski et al., 2015] for more details. It is clearly shown in subplot (b)
of figure 5.5 that the Padé solver and the arbitrary wavelength solver have the same ωeff

at all tw and thus the same temporal spectra for ωE×B.
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5.3. Arbitrary wavelength and Padé solvers in the half-torus test case with
heavy electrons

Figure 5.4 – E ×B shearing rate associated to the ZFs as a function of time and radial
position: (a) arbitrary solver, (b) Padé solver. 〈δφ〉FS as a function of time and radial
position: (c) arbitrary solver, (d) Padé solver. For the parameters of figure 5.3.
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Figure 5.5 – Radially averaged (a) E ×B shearing rate associated to the ZFs versus
time and (b) time-windowed averaged E ×B shearing rate versus size of the window tw,
ωeff (tw) = 〈|〈ωE×B〉tw |〉st, see Eq. (5.2). In subplot (a), the time traces are computed
with a time window averaging essentially equal to the sampling period, i.e. tw � 0.1a/cs.
Color code: blue for the half-torus case with arbitrary wavelength solver and heavy
electrons, red for the half-torus case with Padé solver and heavy electrons, black for the
full-torus with arbitrary wavelength solver and heavy electrons, green for the half-torus
with arbitrary wavelength solver and physical electron mass (mi/me = 3672).

5.4 Full-torus versus half-torus simulations

Figure 5.6 compares results of the previous half-torus simulation with a full-torus sim-
ulation, both carried out with heavy electrons(mi/me = 400). This figure shows the
time-averaged radial profiles of the ion heat diffusivity χi(ρvol), the electron heat diffusiv-
ity χe(ρvol), the electron temperature logarithmic gradient perturbation 〈δ R/LTe〉t(ρvol),
and the E ×B shearing rate associated to the ZFs ωE×B(ρvol). The major difference
between these radial profiles obtained in the half-torus and full-torus cases is the presence,
in the half-torus test case, of fine structures of big amplitude near non-integer rational
surfaces, see figure 5.6 near qs = 3/2 for example. In a full-torus simulation, all the
required toroidal mode numbers n are accounted for, and solely the magnetic surfaces of
integer safety factor, qs = m/1 with m an integer, are of lowest order. As a consequence,
the magnetic surfaces of rational safety factor qs = p + 1/2 with p an integer are, in
reality, not of lowest order. Only the mode of toroidal numbers n = 2p′ (half of the
spectrum) can be exactly field aligned at these surfaces where qs = p + 1/2 = m′/2p′

with p′ and m′ integers and m′ is obviously an odd number. By carrying out a half-torus
simulation, one artificially increases the fraction of simulated modes to which the passing
electron respond non-adiabatically. For example, in figure 5.6 (b), the fine structures at
the magnetic surfaces of safety factor qs = 3/2 and 5/2 have very significantly reduced in
the full-torus simulation results. This is also clearly visible on the electron temperature
gradient perturbation, see subplot (c). We conclude that, in order to properly simulate
the physics of kinetic electrons near MRSs, realistic nonlinear simulations including the
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test cases with heavy electrons (mi/me = 400).
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physics of kinetic electrons must resolve the whole toroidal mode spectrum.

The radially averaged E ×B shearing rate, 〈|ωE×B|〉s, is decreased by 34% in the full-
torus case compared to the half-torus case, see figure 5.5(a). This decrease of the E ×B

shearing occurs over all time scales, see figure 5.5(b). We also observe a 24% and 19%

relative decrease of, respectively, the ion and the electron heat diffusivity in the full-torus
simulation compared to the half-torus case. Remark that not enough statistics is used
for computing the time-averaged E ×B shearing rate associated to the ZFs, so that its
fine structures located near MRSs are almost drown in the fluctuations, see figure 5.6.
In the flux tube simulation of reference [Dominski et al., 2015] these long time-averaged
fine structures were of the same amplitude as the fluctuations, such that less statistics
were necessary for showing their presence. We shall see in Sec. 5.5.6 that this low level of
corrugations on the time-averaged ωE×B is essentially due to the choice of using heavy
electrons for this test case. Indeed, in figure 5.5 one observes a strong increase of the
time-averaged E ×B shearing rate when using mi/me = 3672 (green curve) instead of
mi/me = 400.

5.5 Half-torus simulation with the physical Deuterium to
electron mass ratio

In this section, we present the results of a fully kinetic simulation carried out with the
deuterium to electron mass ratio mi/me = 3672. In this case, the annular width has been
slightly reduced in order to decrease the numerical cost of the simulation. It is a half-torus
simulation with s ∈ [0.5, 1.0] and ns ×nθ × nϕ = 360× 1024× 512, n ∈ [0, 2, 4, · · ·, 42, 44].
The Krook parameter is set to γka/cs = 0.027 corresponding to 10% of the linear growth
rate.

The results of this test case carried out with the physical mass ratio differ significantly
from the previous simulation carried out with the heavy electrons. We thus re-run an
heavy electron simulation using the same narrow torus configuration than the one used
for the mi/me = 3672 simulation, in order to better isolate the electron mass influence.

In figure 5.7, the simulation carried out with mi/me = 400 clearly has higher transport
levels in spite of lower gradient drives, compared to the simulation carried out with
mi/me = 3672. This increase of the transport is due to nonlinear effects as the linear
growth rate are roughly 10% smaller for heavy electron simulations when using the
initial density and temperature profiles. Note that, the linear growth-rates are not
significantly different when using the time-averaged (over the turbulent saturated regime)
relaxed profiles of density and species temperature taken from nonlinear simulations as
backgrounds instead of the initial ones. Before discussing this reduction of the turbulence,
the linear regime is studied in more details.
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Figure 5.7 – Nonlinear simulation results of TCV carried out with heavy electrons (red)
and physical D/e− mass ratio (blue thick line). Radial transport of (a) electron heat, (c)
ion heat, and (e) particles. Radially averaged inverse gradient lengths of (b) the electron
temperature profile, (d) the ion temperature profile, and (f) the particle density. Results
show a higher level of transport associated with a lower gradient when using the heavy
electrons mi/me = 400 instead of the D/e− mass ratio mi/me = 3672. The density
profile continuously relaxes because no particle source is considered in these nonlinear
simulations.
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5.5.1 Linear destabilization

An alternative to estimating the growth rate γ of instabilities in a linear system by simply
evaluating the exponential growth of the electrostatic field is provided by the following
energy based relation (see references [Fivaz et al., 1998, Fivaz, 1997])

γE =
1

2Efield
dEfield
dt

, (5.3)

with

Efield := (qi/2)

∫
dxδNpol(x)δφ(x), (5.4)

and

dEfield
dt

= −
∑
σ

qσ

∫
dXdv δfσ Ẋ · 〈E〉α, (5.5)

where the approximation −∇〈φ〉α � 〈E〉α made in ORB5 has been employed. This
relation allows us to separate the relative contributions to the instability mechanism from
different particle species and particle subgroups (i.e. trapped versus passing particles).
Furthermore, by decomposing Ẋ = v‖b+ v∇B + vcurv into its different velocity terms,
one can identify, thanks to equation (5.5), corresponding contributions to the instability
drive.

In this TCV test case, the plasma is destabilized by a mixed ion temperature gradient
(ITG) and trapped electron mode (TEM) regime. The instability is driven by the electrons
at low n and by the ions at higher n, up to n � 32 which corresponds roughly to kθρi � 0.6

or kθρs � 1.2. The species contributions to the destabilization are split into their different
drift contributions in figure 5.8. In the electron case, the parallel damping is essentially
due to the passing electrons and the grad-B and curvature drift destabilizing influence is
essentially due to the trapped electrons. In the ion case, the passing and trapped particles
are both contributing to the different drift terms in a more complex manner.

Numerical comment: In ORB5, the field is represented with finite elements, and the
particles with markers by using the low noise delta-f PIC representation [Tran et al., 1999,
Jolliet et al., 2007]. These simulations must be carried out with a high enough radial
resolution and a high enough number of particles to properly simulate the particle-
field interactions, due to the fact that fine radial structures are present on both the
electrostatic field and on the perturbation density. To converge the numerical estimate of
γE , in simulations carried out with mi/me = 3672, it appeared that it was necessary to use
a higher radial resolution, when keeping a constant density of markers per radial interval,
than in simulations carried out with mi/me = 400, in order to converge γE . Indeed
in figure 5.9, the contributions to γE from the different groups of particles are plotted
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Figure 5.8 – Species contribution to the linear growth rate γE (black +), Eq. (5.3), is
decomposed into the drift contributions γ‖ (blue ∗), γ∇B (red •), γcurv (green ×). Subplot
(c) recall the ion (red) and electron (blue) contributions to the growth rate as well as
their sum (grey), to highlight the TEM and ITG dominated part of the spectra.

with respect to the radial position s. One can clearly appreciate that the destabilization
drive is finely corrugated near MRSs illustrating that one needs a sufficiently high radial
resolution for converging this local contribution to the instability dynamics.

5.5.2 Non-adiabatic electron responses

The non-adiabatic electron response turns out to be different for the subthermal (Ekin =

mev
2
‖/2 + μB0 < Te(X)) and suprathermal (Ekin < Te(X)) electrons. Characterizing

these non-adiabatic responses permits to predict their respective contributions to the
electron particle flux

Γe �
∫
dS · vE×B δNe. (5.6)

As we will see, the subthermal and suprathermal electrons contribute to the flux in opposite
direction because their non-adiabatic density perturbations, respectively, δNn.a.

e,E>Te
and

δNn.a.
e,E<Te

, are essentially of opposite signs, at each position.

In figure 5.10 subplots (a-d), the electron density perturbation is split into the four follow-
ing subgroups: subthermal passing electrons, suprathermal passing electrons, subthermal
trapped electrons , and suprathermal trapped electrons.

In this figure, the density perturbation contribution of passing electrons shown in subplot
(a) for Ekin < T and (b) for Ekin > T are both composed of adiabatic and non-adiabatic
components. The adiabatic component corresponds to the large structures comparable to
the ones observed on δφ in subplot (f). The non-adiabatic passing-electron component
is radially localized on the different MRSs of this n = 16 eigenmode. The MRSs can
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Figure 5.9 – Linear simulation, TCV test case, n = 16 mode, mi/me = 3672. Radial
contribution from the different species and subgroups to the growth rate γE . Subplot (a)
sum of all species contribution, subplot (b) the contribution of the ions, passing electrons,
and trapped electrons are decomposed. Note that the effective mode growth-rate γE is
obtained by integrating radially the curve of subplot (a).

be easily localized by identifying the layer of parallel current δu‖,e in subplot (e). It is
noticeable that the poloidal shift of the non-adiabatic passing-electron contribution to
δNe with respect to the adiabatic contribution is counter-clockwise for Ekin < Te(X),
(a), and clockwise for Ekin > Te(X), (b). In turn, the total passing electron density
perturbation, which is the sum of these subthermal and suprathermal contributions, is
almost vanishing at MRSs.

In comparison, the trapped electron population is also split into the same subthermal
and suprathermal subgroups. It clearly appears in subplots (c) and (d) that the density
perturbation related to these two subgroups of trapped electrons are out of phase by π,
and presenting a de-phase of approx ±π/2 with respect to δφ. Moreover, the trapped
electron subthermal group density perturbation is localized at a more inward radial
position than the density perturbation of the suprathermal group kinetic response.

It is of interest to look at the cause for having different phase-shift signs, i.e.,

sign

[
arg

(
δNnon−adiab.

e,Ekin<T

δφ

)]
= −sign

[
arg

(
δNnon−adiab.

e,Ekin>T

δφ

)]
,

for this particular case, because it predicts that the respective subthermal and suprather-
mal electron contributions to the particle flux will be in opposite directions, as we will
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Figure 5.10 – Linear TCV simulation physical mass ratio mi/me = 3672, and n = 16.
Electron density perturbation split into four subgroups: (a) passing electrons with
Ekin < Te, (b) passing electrons with Ekin > Te, (c) trapped electrons with Ekin < Te, (d)
trapped electrons with Ekin > Te. Subplot (e) electron parallel current δu‖. Subplot (f)
δφ. These results provide insight into the “smoothness” of each subgroup contributions to
the charge assignment when computing the self consistent electrostatic field δφ (f).
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confirm later in nonlinear simulations.

5.5.3 Local flux estimate

We are now interested to look at the rationale explaining why the subthermal and
suprathermal electrons respond differently to the electrostatic perturbation. This study
is conducted when considering the local estimate of the particle flux

Γ̂loc � �
(
ı kθ
B
δφ̂∗δN̂

)
= −kθ|δφ̂|

2

B
�
(
δN̂

δφ̂

)
, (5.7)

where � stands for the real part and � for the imaginary part of complex number, and
the Fourier representation of the fields, i.e., δN̂ and δφ̂, have been employed. Note that
when 0 < arg(δN̂/δφ̂) < π the radial flux is inward and when −π < arg(δN̂/δφ̂) < 0 the
radial flux is outward. The normalized density perturbation δN̂/δφ̂ is computed with the
local dispersion relation already introduced in subsection 3.3.3 and which equation (3.9)
is recalled here

0 =
ZTe0
Ti0

+ 1− ZTe0
Ti0

∫
d3v J2

0 (k⊥ρi)
ω − ω�

i

ω − k‖v‖ − ωDi

fi0
Ni0

+

(
1− ω�

e

ω

)[
αtz

2
beW (zbe)

]
+

(
1− ω�

e

ω

)[
−1 + αt +W (ze)− αtW

(
ze
αt

)]
, (5.8)

in its form which includes fully kinetic species responses. In this equation αt is the fraction
of trapped electrons, ωDi = −k⊥(v2‖ + v2⊥/2)/Ω0R is the drift frequency of ions related to
curvature and gradient of the magnetic field, zbe = sgn(ωϕe)

√
2ω/ωϕe, ωϕe � ωNeLN/R,

ze = ω/k‖vthe, and W (z) is the dispersion function. The non-adiabatic response of the
passing electrons, i.e. the term on the third line of equation. (5.8), was obtained from the
non-adiabatic electron distribution response

δĝe(�v,R/LTe) = −Ne0
eδφ̂

Te0

ω − ω�
e

ω − k‖v‖
fe0
Ne0

, (5.9)

where the explicit electron temperature gradient dependency is contained in the diamag-
netic drift

ω�
e = ωNe[1 + ηe(Ẽ − 3/2)],

ωNe = Te0k⊥/eB0LN , ηe = LN/LTe , Ẽ = mv2/2T , and v =
√
v2⊥ + v2‖ . At MRSs, where

k‖ = 0, we observe that this local non-adiabatic response does not depend on the pitch
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Figure 5.11 – Amplitude (a,c) and phase (b,d) of the non-adiabatic electron response
of passing electrons δNe,pas/δφ (a,b) and trapped electrons δNe,trp/δφ (c,d). Results
obtained with a local dispersion relation analysis at the radial position qs = 1.5 where
k‖Rqs = 0. The horizontal line indicates the value of the TCV electron temperature
gradient taken at qs = 3/2 from CHEASE input file. The vertical line indicates the position
at which v =

√
2T/m which is the boundary we have chosen for further dissociating

the subthermal and suprathermal subgroups of electrons. Parameters: R/LN = 5.0,
R/LTe = 11.7, R/LTi = 11.7, Te/Ti = 3.75, mi/me = 3672, r/R = 0.2, ŝ = 1.1, k‖ = 0,
kyρi = 0.5.
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angle so that one defines the quantity

δN̂e,pas(v,R/LTe)

δφ̂
= −(1− αt)

e

Te0
4πv2

ω − ω�
e

ω
fe0(v). (5.10)

The non-adiabatic response of the trapped electrons, i.e. the second line of Eq. (3.9), was
obtained from the non-adiabatic bounce-averaged trapped electron response which is here
taken in its form independent of the pitch angle

δN̂e,trp(v,R/LTe)

δφ̂
= −αt

e

Te0
4πv2

ω − ω�
e

ω − n〈ϕ̇〉fe0(v), (5.11)

see reference [Dominski et al., 2015] and references therein for details. From these velocity-
dependent contributions to the electron density perturbation, one can recover the local
electron density perturbation with the equation δN̂e = (eNe0δφ̂/Te0) +

∫
dv δN̂e,trp +∫

dv δN̂e,pas.

For simplicity, we conduct the local study with this local dispersion relation at the outer
mid-plane on the magnetic surface qs = 3/2, for a resonant mode (k‖ = 0) such that
both the trapped and passing electrons contribute to the turbulent flux. According to
equation (5.7), a value of the velocity for which the imaginary part of δN̂e/δφ̂ is non zero,
i.e., arg(δN̂e/δφ̂) �= 0 or π, will contribute to the radial transport. In figure 5.11, the
velocity-dependent responses δN̂e,trp and δN̂e,pas are plotted with respect to the gradient
R/LTe , for physical parameters taken at low order MRS qs = 3/2. For each electron
temperature gradient value, the complex frequency ω is first solved using equations (5.8)
and then injected in equation (5.10) and (5.11) for obtaining the non-adiabatic responses
of the passing and trapped electrons with respect to v. Represented are the absolute
value |δN̂e/δφ̂| and the phase shift arg(δN̂e/δφ̂|) of these non-adiabatic responses. The
choice for representing this non-adiabatic response with respect to v and R/LTe is made
for showing that the non-adiabatic responses of subthermal and suprathermal electrons
are differing for certain value of R/LTe . A transition occurs near the critical gradient
R/LTe,c � 6. For the temperature gradient of reference R/LTe = 11.7 (horizontal dotted
line) which value is bigger than the critical one, there are two local maxima of |δN̂e/δφ̂|:
one located in the subthermal part and one in the suprathermal part of the direction v.
Moreover, these two subgroups have phase shifts arg(δN̂e/δφ̂) of opposite signs. From
this observation these two subgroups might contribute to the flux in opposite directions
thus potentially canceling each other. For values of the gradient smaller than R/LTe � 6,
the non-adiabatic electron response is essentially homogeneous in the v direction: there is
only one maximum on |δN̂e/δφ̂| and the phase shift arg(δN̂e/δφ̂) is nearly constant. The
rationale for the presence of two energetic subgroups which contribute to the quasi-linear
flux in opposite directions for big values of R/LTe is due to the physics described by
the diamagnetic drift which is velocity- and gradient-dependent. Indeed, in our TCV
test case, R/LTe = 11.7 and ηe � 2 so that ω∗

e � 2ωNe(Ẽ − 1) is of opposite sign for
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suprathermal and subthermal electrons.

5.5.4 Particle electron flux in the linear growing phase of the nonlinear
simulation

For electrons, the turbulent particle flux, equation. (B.4) with A = 1, can be approximated
by Γe � 〈δNe (−∇φ×B/B2) ·∇s/|∇s|〉S with 〈·〉S the surface average, see equation (B.5),
and using the approximations B�

‖ � B and 〈φ〉α � φ. The electron turbulent fluxes are
then decomposed into their subthermal and suprathermal subgroup contributions.

The predictions made in the previous quasi-linear analysis, that subthermal and suprather-
mal subgroups of electrons contribute to the particle flux in opposite directions, are con-
firmed in global ORB5 nonlinear simulations when looking at the instantaneous turbulent
flux, taken at tcs/a � 17, i.e. during the regime of “linear growth”, see figure 5.12 (a).
The subthermal particles have an inward flux and the suprathermal ones have an outward
flux. This is true for both trapped and passing electrons. For passing electrons, these
thermal subgroup contributions to the particle flux essentially cancel each other, so that
the total passing electron particle flux is negligible. For trapped electrons, the particle
flux is dominated by the suprathermal trapped electron contribution, which is outward.

These subgroup contributions to the particle flux are also split in their toroidal-spectral
components, in figure 5.12 subplots (b-e). Each subplot is a mixed representation: direct
in the radial direction and discrete Fourier in the toroidal direction. This spectral-radial
representation, Γ̃e(s, n), is computed from equation

Γe(s) =
1

S
∮
dθ�dϕJ δN(s, θ�, ϕ)

−∇δφ(s, θ�, ϕ)×B

B2
· ∇s =

∑
n

Γ̃e(s, n)︸ ︷︷ ︸
Parseval

,

with

Γ̃e(s, n) =
1

S
∮
dθ�J δN̂∗(s, θ�, n)

−∇δφ̂(s, θ�, n)×B

B2
· ∇s,

where Parseval theorem has been employed to replace the integral over the toroidal
direction with the sum over the toroidal mode number n. Note that Γ̃e(s, n) is a discrete
spectral representation computed over the regular toroidal grid1.

1Going from the DFT of the finite-element coefficients, δφ̂n(s, θ
�), toward the DFT of the field

represented on a grid, δφ̂(s, θ�, n), is trivially carried out by doing

δφ̂(s, θ�, n) = Λ̂∗
n(ϕ = 0) δφ̂n(s, θ

�),

which is valid because the toroidal grid is regular and the finite-element are translational invariant.
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Figure 5.12 – Turbulent particle transport during the linear regime, tcs/a � 17, of the
nonlinear simulation of TCV carried out with the D/e− mass ratio. Subplot (a) is
the time-averaged turbulent particle flux contributions from the different subgroup of
electrons: passing with Ekin ≤ Te, passing with Ekin > Te, trapped with Ekin ≤ Te, and
trapped with Ekin > Te. The time-averaged toroidal spectra are plotted at each radial
position for these same subgroups in subplot (b), (c), (d), and (e), respectively. Color
code: blue for inward flux, yellow for outward flux, and green for zero flux. The amplitude
(colorbar) has been chosen such as to reveal the radial structures.
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It is remarkable that the passing electron contribution to the particle flux is solely localized
near the MRSs of each toroidal mode number n. This obviously results from the fact
that only the non-adiabatic response can contribute to the fluxes, which for a given
toroidal mode number n is non-zero only in the vicinity of corresponding MRSs. As a
result, for bigger n there are more surfaces for which the passing electrons contribute to
the turbulent transport. This flux of passing electrons is thus organized in a structured
manner strongly linked to the safety factor profile qs. Note that the radial width of the
fine structures near MRSs are thinner in the case of suprathermal particles because these
fast particles are more akin to respond adiabatically.

An important remark is that the passing electron flux is sustained by radially localized
contributions coming from the different mode numbers n, but that the sum of these
“discrete” contributions has a remarkably smooth radial profile, see figure 5.12 subplot
(a). This smoothness of the overall passing electron profile of turbulent flux indicates
the existence of a strong interplay between the different toroidal modes composing the
spectra. This interplay reflects the fact that this early phase of the simulation which
we refer to as the regime of linear growth of the modes is actually not strictly a linear
regime. It could be interesting to compare the evolution of each mode during this early
phase of the simulation, with their respective evolution computed from purely linear
simulations. The trapped electron contribution to the turbulent flux is not showing such
a clear organization near the lowest order MRSs.
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5.5.5 Particle and heat electron fluxes in the turbulent saturated regime

The particle flux spectra in the turbulent saturated regime (figure 5.13) are following the
same organization as in the linear regime (figure 5.12). The subthermal electrons carry an
inward flux and the suprathermal electrons carry an outward flux. The subthermal and
suprathermal passing electron contributions to the particle flux further cancel each other,
and the trapped suprathermal electron contribution dominates the particle transport
with a resulting outward flux. The radial spectra show that the passing electron channel
of transport has the same organization: both thermal subgroups of passing electrons have
a radially smooth profile of turbulent transport Γe(s), but at each radial position s only
the locally resonant toroidal mode numbers n contribute to this transport. For example,
in this half torus simulation all the toroidal modes n can carry a turbulent flux at the
lowest order MRSs qs = 3/2, 2, 5/2, 3, and 7/2, the contributions from each mode are
consequently relatively low, but at the second order MRSs, for example qs = 3/4, only
half of the spectra can carry a turbulent transport, so that the contributions from the
modes which are resonant at this point is relatively large.

The influence on turbulence of the value of the electron mass is studied in some details,
by comparing results of a simulation carried out with the deuterium/electron mass ratio
(mi/me = 3672) with the ones of a simulation carried out with the heavy electron mass
ratio (mi/me = 400). In figure 5.14, it is shown that when increasing the electron
mass, the electron subgroup contributions to the particle flux are significantly increased:
subthermal passing electron +300%, suprathermal passing electron +350%, subthermal
trapped electron +190%, and suprathermal trapped electron +25% (at s � 0.84). This
increase of the transport seems to be due to an increase of the non-adiabatic response of
the electrons. For the passing electrons, the increase of the non-adiabatic response due
to the use of heavy electron mass is clearly visible through the enlargement of the fine
structures near MRSs, in subplots (b) and (c) of figure 5.14. For the trapped electrons,
there is no similar direct observation of the electron mass influence. Nonetheless, in their
rapid motion along the field line, these trapped electrons are essentially similar to the
passing electrons. They might thus be influenced by MRSs, but in a weaker manner.
Indeed, in nonlinear GENE flux tube simulations of chapter 3, there were fine structures
near MRSs even when using the hybrid electron model. The main difference is that for
the hybrid electron model, these fine structures are of very little amplitude.

Coming back to the passing electron channel of turbulent transport, heavy electrons being
� 9 times heavier than real ones, their thermal speed is � 3 times slower and the radial
width of the fine structures of non-adiabatic passing electron response are � 3 times
larger. As a consequence, one can roughly estimate that a given toroidal mode number
n will be “turbulence conducting” over a radial region roughly � 3 times larger when
using the heavy electrons. This local influence of the mass ratio over the radial profile
of passing electron turbulence transport is illustrated in figure 5.14 subplot (b) and (c),
where the radial profile of turbulent particle flux is plotted for each mode n composing the
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Figure 5.13 – Turbulent particle transport time-averaged over the turbulent saturated
regime, 0 < tcs/a > 220 from the same simulation as in figure 5.12 and same subplots
and color codes: Subplot (a) is the time-averaged turbulent particle flux contributions
from the different subgroups of electrons: passing with Ekin ≤ Te, passing with Ekin > Te,
trapped with Ekin ≤ Te, and trapped with Ekin > Te. The time-averaged toroidal spectra
are plotted at each radial position for these same subgroups in subplot (b), (c), (d), and
(e), respectively. Color code: blue for inward flux, yellow for outward flux, and green for
zero flux. The amplitude (colorbar) has been chosen such as to reveal the radial structures.
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Figure 5.14 – Comparison of the turbulent electron particle flux between nonlinear
simulations carried out with heavy electrons mi/me = 400 (thick line in subplot (a)) and
the Deuterium/electron mass ratio mi/me = 3672 (thin lines in subplot (a)). Same color
code in subplot (a) than in subplot (a) of figure 5.12. The radial profile of each toroidal
mode number n contribution to the suprathermal passing electron, i.e. Γ̃pas,e−,E>T (s, n)
is plotted in subplot (b) for the D/e- physical mass ratio and in subplot (c) for the heavy
electron mass ratio. In subplot (b) and (c) the colors are not labeled, except for the
toroidal mode number n = 12 which contribution is represented with a red thick line.
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ratio

simulation spectra. It appears, in particular for the mode number n = 12 highlighted with
red thick lines, that the turbulent flux contribution of each mode number n composing
the turbulence spectra are localized near the lowest order MRSs proper to each mode
number. A significant difference when using the heavy electrons is that the radial width
of these “fine” structures of non-adiabatic passing electron response are larger than the
distance between their respective lowest order MRSs. In comparison, for the real electron
mass, the fine structures present on the simulated modes (n ≤ 44) are always thinner
than the distance between consecutive MRSs (except for biggest values of n in the region
of high shear). When summing these mode number contributions to the passing-electron
turbulent flux, the resulting particle flux is radially smooth (a) despite the fact that the
density of modes to which the passing electrons respond non-adiabatically is varying
radially. Finally, one can assume that the local turbulence diffusivity Dturb is proportional
to the density of resonant mode number n which can carry turbulence. As a consequence
this turbulence diffusivity is radially more corrugated in case of D/e- mass ratio because
in this case the non-adiabatic structures are thinner and thus radially more sparse, see
figure 5.15 (a). If the flux, Γ, is radially smooth but the turbulence diffusivity, Dturb,
is radially corrugated, then the radial profile of gradient, d lnN/ds, compensates these
corrugations so that Γ = Dturb(−d lnN/ds) is smooth. A direct observation of such a
property of the gradients can be made when looking at the density and temperature
gradients in figure 5.15 subplots (c) and (d).

For the considered physical scenario, the total passing electron contribution to the
turbulent particle flux is essentially negligible, see figure 5.16 (a). The subthermal and
suprathermal passing-electron contributions to the particle flux cancel each other. The
turbulent flux is thus dominated by the trapped electron contribution. This trapped
electron contribution is weakly affected by the mass ratio, as the increase of the subthermal
and suprathermal trapped electron contributions essentially cancel each other.

The passing electron heat flux, on the other hand, is non negligible. The suprather-
mal passing electron flux being systematically outward and the subthermal one being
systematically inward, their sum will result in an outward heat flux. The passing elec-
trons contribute to � 11% (resp. 27%) of the total electron turbulence heat flux for
mi/me = 3672 (resp. 400), see figure 5.16 (b). In absolute value the passing electron heat
flux is � 3 times bigger with the heavy electrons than with physical electrons, and the
trapped electron contribution is only � 10% bigger. The passing electrons thus contribute
significantly to the overestimate of the turbulence heat flux measured in simulation
carried out with heavy electrons. This increase of the turbulence transport in spite of
equivalent linear drive (� 10% lower linear growth rates in case of heavy electrons) is
obviously due to a nonlinear effect. Regarding the radial spectra in subplot (c) and (d), it
appears than there is a strong interplay between the modes for ensuring continuity of the
passing-electron heat flux. With physical electrons ( mi/me = 3672), the fine structures
are much finer and the interplay between the n modes involve a broader band of modes
compared to the spectra obtained with heavy electrons. The fact that the spectrum is
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Figure 5.15 – Nonlinear simulation of half-torus with physical D/e− mass ratio (blue)
and heavy electrons (red). Subplots time-averaged of the (a) electron particle diffusivity,
(b) electron heat diffusivity, (c) perturbed particle density gradient (green: contribution
of the ion polarization and magenta: contribution from the ion gyrodensity for simulation
with mi/me = 3672), (d) perturbed electron temperature gradient, (e) E ×B shearing
rate associated to the ZFs. Subplot (f) safety factor. Subplot (g) the number of MRSs per
radial interval [s, s+Δs] divided by the number of simulated toroidal mode numbers. In
subplot (h), plotted is the contribution from each simulated mode number n decomposition
to the subplot (g), color code: white 0, black for 1, and red for 2 and more. Half torus
simulations. Subplots (i), (j), and (k) are zooms on the qs = 3/2 surface of the subplots
(c), (d), and (e), respectively.
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Figure 5.16 – Turbulent electron fluxes in simulations carried out with heavy electrons
mi/me = 400 and physical electrons mi/me = 3672. Subplot (a,b): radial profile of
turbulent electron flux of (a) particles and (b) heat. Color code: total fluxes (black),
trapped electrons (blue), passing electrons (red). Mass ratio mi/me = 3672 (full line)
and mi/me = 400 (dashed line). Subplot (c,d): radial spectra of the passing electron
contribution to the heat flux for (c) mi/me = 400 and (d) mi/me = 3672.
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broader for mi/me = 3672 means that the weakly unstable modes contribute to the flux
at a similar level than the most unstable modes. It might thus explain why the level
of transport is thus smaller when mi/me = 3672. As observed for the particle flux, a
steepening of the gradients appears to be necessary for ensuring continuity of the flow in
radial regions where only a few weakly unstable modes can carry transport.

5.5.6 Organization of zonal flows

It has been observed that particle and heat flux spectra of the passing electrons are not
radially homogenous. This radial variation of the turbulent flux spectra reflects the radial
variation of the associated turbulence diffusivity. Consequently, radial corrugations of the
density and species temperature gradients are thus necessary for ensuring smooth radial
profiles of turbulent fluxes.

In figure 5.15, the time-averaged radial profiles of the electron particle diffusivity (a),
the electron heat diffusivity (b), the density gradient perturbation (c), the electron
temperature gradient perturbation (d), the E ×B shearing rate associated to the ZFs
(e), the safety factor (f), the MRSs density (g), and the MRSs density per mode number
(h) are plotted. Two simulations with physical electron mass (blue curves) and heavy
electron mass (red curves) are presented.

It is remarkable in subplots (c,d,e) of this figure, that the time-averaged radial profiles of
the electron temperature gradient perturbation, 〈δR/LTe〉t, density gradient perturbation,
〈δR/LN 〉t, and E ×B zonal flow (ZF) shearing rate, 〈ωE×B〉t, show the same organization
near lowest order MRSs, qs = 5/4, 3/2, and 2, as already shown in flux-tube geome-
try [Dominski et al., 2012, Dominski et al., 2015]: a steepening-flattening-steepening of
the gradients and the E ×B shearing rate which is zero at MRS and extremum just
before and after. See the zooms in subplots (i), (j), and (k). The presence of these fine
structures highlights the importance of using the new arbitrary wavelength solver. For
example, the fine structure on the radial profile of the ion polarization density δR/LN,pol

(green curve), which is located near the qs = 3/2 surface is of about � 2ρi. This estimate
is made by measuring the distance between the local maxima which are located just
before and after the qs = 3/2 surface.

When analyzing the passing electron turbulent particle flux, in the previous section,
we did not use the ZF saturation mechanism argument for explaining the reduction of
turbulent transport. We rather showed that this reduction of passing electron turbulent
transport is related to a rarefaction of the radial region of non-adiabatic passing electron
response, i.e., the regions where the different spectral modes can sustain a turbulent
transport. It turns out that fine zonal flow structures are present near low order MRSs.
The reduction of passing electron turbulence diffusivity causes a local steepening of the
plasma kinetic profiles on either side of the low order MRSs, which can be sustained
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thanks to a reinforced ZF shearing rate there. This can be seen as a nonlinear feedback
potentially reducing the turbulence transport. In an opposite manner, at the low order
MRSs, heat diffusivity is enhanced, which causes a flattening of the profiles, noting that
the ZF shearing rate is vanishing there, see figure 5.15(k).

Comparing the simulation results obtained with the two different mass ratios, it appears
that these ZFs and gradient structures located near low order MRSs have a � 3 times
bigger amplitude when using the real electron mass, see figure 5.15 (c,d,e) in particular
near qs = 3/2 and 5/4. In this simulation carried out with the real electron mass compared
to the one carried out with heavy electrons, the time- and radial-averaged E ×B zonal
flow amplitude 〈〈|ωE×B|〉s〉t is increased by � 25%, and the radial averaged amplitude of
the long-time-averaged E ×B zonal flow 〈|〈ωE×B〉t|〉s is increased by a factor � 2.

Despite the fact that these fine ZFs structures have a different amplitude when modifying
the electron mass, their radial width remains essentially the same, see the black arrows in
figure 5.15 subplot (e). Moreover, in the region of low shear, these ZFs radial widths are
typically larger in nonlinear simulations than in linear simulations, as already observed
in reference [Dominski et al., 2015]. It is rather interesting to point out that these fine
structure widths seem to be related to the topology of the magnetic field and in particular
to the local density of MRSs. It appears that these ZFs structures fit in a radial gap
surrounding the low order MRS where no other MRS is simulated. The gap associated
with the MRS qs = 3/2 is identified with red arrows in subplot (g). A similar observation
can be made for surfaces qs = 5/4, 2, 5/2, in simulations carried out with either the
physical mass ratio or heavy electrons. This gap between MRSs is also clearly illustrated
in subplot (h) for each toroidal mode number n. When such a gap exists, the destabilizing
influence of the low order MRS on the passing electron dynamics seems more significant.

5.6 Conclusion

Nonlinear electrostatic simulations for conditions relevant to TCV have been carried out
with the heavy electrons, mi/me = 400, the new solver, and the kinetic model for both
ions and electrons. It was shown that using the Padé solver is essentially equivalent to
using the arbitrary wavelength solver for the considered test case, and that to correctly
simulate the physics of passing electrons near mode-rational surfaces, one must account
for the whole set of mode numbers composing the toroidal spectra. The rationale is that
the density of mode rational surfaces is different in a full torus than in a half torus. As a
consequence, in a half torus simulation, the non-adiabatic passing electron response is
not properly modeled, in particular for comparison with experiments.

Physical deuterium to electron mass ratio (mi/me = 3672) simulations of this TCV
relevant test case have been carried out with the fully kinetic model and the arbitrary
wavelength solver. The particular radial organization of the passing electron turbulent
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flux spectrum and its strong ties with the radial profile of safety factor are revealed. Each
toroidal mode number n contributes to the passing electron turbulent flux only near its
associated lowest order MRSs, i.e. where the passing electron respond non-adiabatically.
The whole turbulent flux spectrum is organized in such a way as to ensure a radially
smooth profile of passing electron turbulent flux, despite the radial sparsity of each
mode contribution to the flux. At lowest order MRSs the turbulence diffusivity, Dturb,
is maximum because all the modes composing the spectrum can be non-adiabatic and
thus “conduct” turbulence, whereas at highest order MRSs (for example just before and
after the lowest order MRSs) the turbulence diffusivity is minimum because only a few
toroidal mode numbers can be non-adiabatic and thus “conduct” turbulence. To ensure a
smooth radial profile of turbulent transport, the gradients which drive this turbulent flux
are corrugated so that Γ = −(δR/LN )Dturb is smooth. The organization is actually a bit
more complex because the turbulence diffusivity will be locally increased or decreased,
by the local steepening or flattening of the gradient, respectively. The fine zonal flows
structures due to the non-adiabatic passing electron response near MRSs are strongly
amplified in nonlinear simulation carried out with the realistic mass ratio compared to
simulations carried out with heavy electrons. A decrease of the level of turbulence is also
observed in these physical mass ratio simulations: the level of electron turbulent heat flux
is decreased by a factor � 2, and, even if the time-averaged turbulent particle flux 〈Γ〉t is
not significantly increased (� 10%), its associated turbulent diffusivity is, by � 30− 40%,
as a consequence of profile relaxation. It is thus necessary to use the physical mass ratio
for correctly simulating the turbulence and its associated transport level.

The differing contributions of subthermal and suprathermal particles to the turbulent
transport has been shown, by means of quasi-linear flux estimates, which predictions are
qualitatively confirmed in nonlinear global ORB5 simulations. In the considered conditions
relevant for TCV, the passing and trapped electrons are organized in two subgroups: the
subthermal and the suprathermal electrons. The particularity of this organization is that
the two subgroups contribute to the flux in opposite directions, potentially canceling
each other. This feature is common to the trapped and passing electrons and appears
to be a consequence of the diamagnetic drift which differs significantly for these two
subgroups, in the considered plasma. In nonlinear global simulations carried out with
ORB5, the passing electron turbulent flux was found to be essentially zero. Nonetheless,
the particle flux contributions from the subthermal and suprathermal passing electrons
represent each a significant fraction of the total turbulent transport. These fluxes, of
opposite directions, trigger radial corrugations near low order MRSs in order to ensure
a smooth radial profile of particle flux. If the particle fluxes of both these subgroups
was zero, no radial corrugations on the profiles would have been necessary for ensuring a
smooth radial flux, thus potentially canceling the existence of the ZFs structures. Finally
it was shown that the passing electron contribution to the turbulence heat flux represents
up to 30% of the total electron heat flux.
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6 Conclusion and outlook

This thesis work has dealt with the study of electrostatic microturbulence and more
particularly the non-adiabatic response of passing electrons near mode rational surfaces
and its effects on turbulent transport. This study has been carried out with the flux-tube
version of the gyrokinetic code GENE and with the global gyrokinetic code ORB5. The
physical plasma models which are implemented by these codes have been introduced in
chapter 2.

The physical study has thus been initiated with the gyrokinetic Eulerian code GENE in
its flux-tube version using the circular ad-hoc geometry, see chapter 3. The non-adiabatic
response of passing electrons has been thoroughly studied in linear simulations of ITG
and TEM instablities, showing the systematic presence near mode rational surfaces of
fine radial structures on the perturbation fields. In nonlinear simulations, it was shown
that this non-adiabatic response strongly influences the level of turbulent transport of
particles and heat. For example, in the ITG regime, up to 75% of the turbulent particle
transport is due to the passing electron channel. Moreover, the passing electron dynamics
strongly affects the zonal flow organization of turbulence, as well as the E ×B saturation
of turbulence, because of the presence of these fine radial layers of non-adiabatic response
near mode rational surfaces.

Chapter 4 and 5 address the follow-up of this study of the non-adiabatic response of
passing electrons near mode rational surfaces with the global gyrokinetic Particle-In-Cell
code ORB5.

This study carried out with the gyrokinetic code ORB5 has necessitated the development
of a new field solver in order to overcome the former long-wavelenth approximation
made for self-consistently solving the electrostatic field, see chapter 4. The new arbitrary
wavelength solver, implemented in the frame of this thesis work, is thus able to account
for the ion polarization drift contribution to the quasi-neutrality equation to arbitrary
order in k⊥ρi. In this new solver, the ion polarization-drift contribution is accounted
for in its integral form as described by gyrokinetic theory. Compared to the differential
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form implemented for the long wavelength approximation version of the solver, the
integral form of the generalized field equation has required significant numerical efforts.
Note that a Padé approximation version of the solver has also been implemented. Both
the integral form and the Padé solver implementation have been succesfully confronted
to the global version of the GENE code in a benchmark effort. Indeed, the Eulerian
gyrokinetic code already provides an arbitrary wavelength version of the field equation.
This benchmark has been carried out using realistic magnetic configurations obtained
from an ideal MHD equilibrium code (CHEASE), because the new integral solver is
valid for arbitrary geometries. In the frame of the study of the electron dynamics, this
benchmark has been conducted for the three different electron models: adiabatic, hybrid
(trapped are kinetic and passing are adiabatic), and kinetic.

The study of the non-adiabatic response of passing electrons has thus been pursued with
the global ORB5 code in global ideal MHD equilibrium geometry for a case relevant to
the TCV tokamak, see chapter 5. This study has been carried out with the physical
deuterium to electron mass ratio mi/me, which was a numerical challenge because of
the wide time scale separation of the light electrons and heavy ions. The physics of
passing and trapped particles, as well as the physics of sub- and suprathermal populations,
has been studied. The radial organization of the passing-electron channel of turbulent
transport has been studied. In particular, it was shown that the passing electron channel
of transport is radially homogeneous despite the fact that the non-adiatic response of
passing electrons is located near low-order mode rational surfaces essentially. It was also
shown that subthermal and suprathermal particles can contribute to the particle turbulent
flux in opposite directions thus partly cancelling each other. The formation of fine ZFs
structures near MRSs has been observed, thus confirming nonlinear flux-tube results of
chapter 3. The presence of these fine structures is shown to be a cause of the interplay
between modes for ensuring a smooth radial profile of passing-electron turbulent flux.
The strong coupling between the safety factor profile and the passing electron turbulent
fluxes was also shown.

Outlook

Ongoing solver implementation

The Padé version of the field solver has been implemented for the kinetic electron model
only and has to be extended to the adiabatic and hybrid electron models. The main
advantage of this version of the solver compared to the arbitrary wavelength solver
is that its matrix is smaller (necessitates less bands) and is much faster to assemble.
The implementation of this minor upgrade consists in adding a correction term to the
adiabatic electron contribution to the quasi-neutrality equation. A collaboration with
Emmanuel Lanti has been initiated and first results have been presented at the Varenna
2016 conference.
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Implementation of higher order terms in the QNE

Near mode rational surfaces, fine structures develop on various perturbation fields such as
the species density, species temperature, and the electrostatic potential. Their respective
gradients might thus become big enough so that the gyrokinetic term

δNX
σ =

∫
dZ δ(X+ ρ− x)

mσ

qσB2
0

∇Φ̃× b · ∇fσ

cannot be neglected from the quasi-neutrality equation, see equation (4.1). Note that if
one considers adding the nonlinear contribution

∫
dZ δ(X+ ρ− x)∇Φ̃× b · ∇δfσ, one

should also consider adding the nonlinear term

δNμ (NL)
σ =

∫
dZ δ(X+ ρ− x)

qσ
B0
δ̃φ
∂δfσ
∂μ

.

The amplitudes of ∇δfσ and ∂δfσ/∂μ should be compared, in particular near mode
rational surfaces, to see if there is an evidence that one of these nonlinear terms dominates.

Interplay between short ion scales and fine structure of non-adiabatic passing
electron response

During this thesis work, the formation of fine structures due to the non-adiabatic response
of passing electrons near mode rational surfaces has been studied. It has been shown,
in chapter 3, that these fine structures shape is influenced by many parameters, such
as the magnetic shear, the temperature ratio, the mass ratio, the safety factor, and the
wavenumber in the binormal direction ky. It was also shown that these fine structures
survive in nonlinear simulations somewhat broadened, and influence the level of turbulent
transport. In global nonlinear simulations, chapter 5, it was also shown that the formation
of these fine structures is associated to ion polarization effects, in particular near low
order mode rational surfaces where fine zonal flow structures are present.

The interplay between the fine structures of non-adiabatic passing electron response and
the short-scale ion polarization effects should be studied in more details. Modifying Ti
influences the ion thermal Larmor radius and potentially the ion polarization effects.
Modifying Te influences the radial width of the fine structures of non-adiabatic passing
electron response (at least in linear simulations). Modifying these temperatures and
thus the temperature ratio might affect the nonlinear dynamics and in particular the
influence of passing electrons on the zonal flow and E ×B shearing rate organization.
This influence of the temperature ratio could be furthermore studied. For example, in
chapter 3, we did not study in details why, for the TEM test case, the turbulence is
saturated by E ×B shearing rate when choosing a temperature ratio Te/Ti = 1 but not
for Te/Ti = 3, as already observed in [Lang et al., 2008].
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Influence of the magnetic shear on the turbulence organization

In chapter 5, it was shown that the radial organization of the passing electron contribution
to the turbulent particle flux is strongly influenced by the safety factor profile and
associated distribution of mode rational surfaces. It is thus of interest to study the
influence of the magnetic shear on the turbulent organization in nonlinear simulations.
In appendix C, preliminary results of nonlinear simulations carried out with the flux-
tube version of GENE show an influence of the shear on the radial organization of the
passing-electron turbulent spectra. Further studies, including reversed shear cases, could
be carried out in the future with global gyrokinetic simulations.

Non-adiabatic response of passing electrons in high-β electromagnetic simu-
lations

In the present thesis, the non-adiabatic response of passing electrons near mode ra-
tional surfaces has been studied in the electrostatic limit. It is of interest to pur-
sue this study in the electromagnetic cas for increasing values of β. For example,
in reference [Falchetto et al., 2003], the presence of fine corrugations near low order
mode rational surfaces on the perturbation potential δφ has been observed in electro-
magnetic gyrokinetic simulations with the code GLOGYSTO, which code has been
introduced in [Brunner, 1997, Brunner et al., 1998]. The importance of the electromag-
netic turbulence on the level of turbulent transport has been, for example, discussed
in [Guttenfelder et al., 2011]. In this reference, the necessity to finely resolve the radial
distribution of mode rational surfaces is also discussed in the context of electromagnetic
micro-turbulence.

Current sheet layer and discontinuity of magnetic field safety factor near low
order mode rational surfaces

In recent publications [Loizu et al., 2015, Loizu et al., 2016], a new class of ideal MHD
equilibria is introduced. The particularity of these equilibria is that singular layers of
currents cause jumps of the safety factor profile. Consequently, these new ideal MHD
equilibria do not have lowest order mode rational surfaces. It could be interesting to see
if the non-adiabatic response of passing electrons could be involved in the generation of
these layers of current leading to jumps in the safety factor. In turn, the jumps of safety
factor could result in a reduced non-adiabatic passing electron response.
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A Matrix assembly in discrete Fourier
representation

Adiabatic electron matrix

The adiabatic response matrix, Eq. (4.16), is decomposed into two sub matrices, such
that Lad

kk′ = LnoFS
kk′ + LFS

kk′ where k = (i,m, n) is the triplet index. The matrices are

LnoFS
kk′ = nθM

(n)
∑

σ∈{ad}
q2σ

ns∑
I=1

∑
Q

wQΛi(sI + sQ)Λi′(sI + sQ)

×
∑
q

wqΛ̂m(θ�q)Λ̂
∗
m′(θ�q)Ĉσ,m−m′(sI + sQ, θ

�
q), (A.1)

and

LFS
kk′ = −nθM (n)

∑
σ∈{ad}

q2σ

ns∑
I=1

∑
Q

wQ
Λi(sI + sQ)Λi′(sI + sQ)

2π〈J 〉θ�(sI + sQ)

×
∑
q

wqΛ̂m(θ�q)Ĉσ,m(sI + sQ, θ
�
q)

×
∑
q′
wq′Λ̂

∗
m′(θ�q)Ĵ ∗

m′(sI + sQ, θ
�
q′), (A.2)

where θ�J = 2πJ/nθ, θ�q = 2πq/(nθ nq), I indexes the grid intervals associated with the reg-
ular knot sequence sI = (I−1)/ns, sQ are quadrature points over the interval [0, 1/ns], wQ

the associated quadrature weights, Ĉσ,m(s, θ�) =
∑nθ

J=1Cσ(s, θ
� + θ�J) exp (−ımθ�J) with

Cσ(s, θ
�) = J (s, θ�)Nσ0(s, θ

�)/Tσ0(s, θ
�), Ĵm(s, θ�) =

∑nθ
J=1 J (s, θ� + θ�J) exp (−imθ�J),

and 2π〈J 〉θ�(s) = 2π
∮
dθ�J (s, θ�). For this matrix Δϕ = 0 so that C(n)(Δϕ = 0) =M (n)

without approximation.
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Appendix A. Matrix assembly in discrete Fourier representation

Ion polarization drift matrix and Padé correction matrix

The long-wavelength polarization matrix, Eq. (4.18), as well as the Padé correction matrix,
Eq. (4.20), are assembled with

Lkk′ = nθM
(n)

∑
σ∈{kin}

∑
{αβ}

ns∑
I=1

∑
Q,q

wQwq

× ∂α[Λi(sI + sQ)Λ̂m(θ�q)]

× ∂β [Λi′(sI + sQ)Λ̂
∗
m′(θ�q)] Ĝ

αβ
σ,m−m′(sI + sQ, θ

�
q), (A.3)

where Ĝαβ
σ,m(s, θ�) =

∑nθ
J=1G

αβ
σ (s, θ�J + θ�)e−ımθ�J with Gαβ

σ = mσg
αβJNσ0/B

2
0 for the

long-wavelength polarization matrix and Gαβ
σ = (mσ/q

2
σ)g

αβJ Tσ0/B2
0 for the Padé

correction matrix. In Eq. (A.3), one used the approximation ∇⊥ � ∇pol = ∇s∂s +
∇θ�∂θ� , the sum over {αβ} is done for αβ ∈ {ss, sθ, θs, θθ} with gαβ = ∇α · ∇β. The
approximations Δϕ � 0 and C(n) �M (n) are made.

Arbitrary-wavelength polarization drift matrix

The arbitrary-wavelength polarization drift matrix, Eq. (4.17), is assembled by assuming
a local Maxwellian for the background distribution function

fσ0(x) =
Nσ,eq(x)

[2πTσ0(x)/mσ]3/2
exp

[
−
mσv

2
‖/2 + μB0(x)

Tσ0(x)

]
. (A.4)

The polarization-drift matrix then reads

L̂pol
kk′ = nθ

∑
σ∈kin

q2σ
∑

I,Q,J,q

wQwqJ (sI + sQ, θ
�
J + θ�q)

Nσ,eq(sI + sQ, θ
�
J + θ�q)

Tσ0(sI + sQ, θ�J + θ�q)

×
nw−1∑
w=0

Δṽ⊥ ṽ⊥,w exp
(−ṽ2⊥,w/2

)
×

[
1

na

na∑
a=1

M (n)Λi(sa)Λ̂m(θ�a)Λi′(sa)Λ̂
∗
m′(θ�a)

− 1

n2a

na∑
a=1

Λi(sa)Λ̂
∗
m(θ�a)

na∑
a′=1

C(n)(ϕa − ϕa′)Λi′(sa′)Λ̂
∗
m′(θ�a′)

]
, (A.5)

with a and a′ the gyroaveraging quadrature points, na the number of these quadrature
points which varies proportionally to ṽ⊥,w, ṽ⊥,w = wΔṽ⊥, nw = ṽ⊥,max/Δṽ⊥ an input
parameter of the simulation, and ṽ⊥ = v⊥/vth(sI + sQ, θ

�
J + θ�q). The quadrature over
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the perpendicular velocity is thus carried-out over a velocity grid which is systematically
adapted to the local thermal velocity. To lighten the notation, the gyropoints coordinates
have been noted (sa, θ

�
a, ϕa) when in fact they are functions of other guiding-centre

coordinates: sa = s(sI + sQ, θ
�
J + θ�q , ṽ⊥,w, αa), θ�a = θ�(sI + sQ, θ

�
J + θ�q , ṽ⊥,w, αa), and in

case of the toroidal angle only the difference ϕa−ϕa′ = Δϕ(sI + sQ, θ
�
J + θ

�
q , ṽ⊥,w, αa, αa′)

is necessary for computing the integral. This difference is actually zero in our case, because
we assemble the matrix in the approximation ρ ·∇ϕ = 0. The term C(n)(ϕa−ϕa′) is thus
approximated by C(n)(ϕa − ϕa′) � C(n)(0) =M (n), where the function C(n)(Δϕ) reads

C(n)(Δϕ) = n−1
ϕ

∑
l,l′

e−ı2πnl/nϕ

∮
dϕΛl(ϕ)Λl′(ϕ+Δϕ)eı2πn

′l′/nϕ

= n−1
ϕ

∑
l,l′

e−ı2π(nl−n′l′)/nϕ

∮
dϕΛl(ϕ)Λl′(ϕ+Δϕ)

= n−1
ϕ

nϕ−1∑
L=0

∫ 2π/nϕ

0
dϕ Λ̂n(ϕ+ ϕL)Λ̂

∗
n′(ϕ+ ϕL +Δϕ)

= n−1
ϕ

nϕ−1∑
L=0

∫ 2π/nϕ

0
dϕ eı2πL(n−n′)/nϕΛ̂n(ϕ)Λ̂

∗
n′(ϕ+Δϕ)

=

∫ 2π/nϕ

0
dϕ Λ̂n(ϕ)Λ̂

∗
n(ϕ+Δϕ).

(A.6)

Finally, the computation of the gyropoints coordinates, in this approximation ρ · ∇ϕ = 0,
is described in Eq. (4.33).
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B ORB5 moments and fluxes diagnos-
tics

A new 3D diagnostic feature is implemented in the ORB5 code. The aim is to compute
moments of the perturbed species distribution function using a finite-element representa-
tion. For example, one obtains the coefficients (δN)k for the density which perturbed
field is computed with

δN(s, θ, ϕ) =
∑
k

(δN)k Λ̂k(s, θ
�, ϕ).

In these new diagnostics, the moments of the particle perturbation distribution function,
δf , are computed by doing a Galerkin projection of the marker weights, which are
furthermore weighted by 1 for density and mv2/2 for kinetic energy, on the same DFT-
finite-element representation as the one used for the perturbed electrostatic potential
δφ. In addition, this projected quantity is multiplied by the inverse mass matrix such
as to obtain the DFT-finite-element coefficients of the expected physical quantity. The
computation of these moments is comparable to the coefficients of the source term
in Eq. (4.21). For example, the DFT finite-element coefficients of the perturbation
gyrodensity are computed from

(δNσ)k′ =
ˆ̂M−1
kk′

∑
p

wp 1 〈Λ̂k〉α(Xp, μp), (B.1)

with the mass matrix ˆ̂Mkk′ defined by

ˆ̂Mkk′ = n−1
θ

nθ−1∑
j=0

nθ−1∑
j′=0

e−ı2π(mj−m′j′)/nθ M̂(n)
(ij)(i′j′)

= n−1
θ

nθ−1∑
j=0

nθ−1∑
j′=0

e−ı2π(mj−m′j′)/nθ

⎛⎝n−1
ϕ

nϕ−1∑
Δl=0

M(Δl)
(ij)(i′j′)e

−ı2πnΔl/nϕ

⎞⎠ ,(B.2)
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Appendix B. ORB5 moments and fluxes diagnostics

where Δl = l − l′, M(l−l′)
(ij)(i′j′) = M(ijl)(i′j′l′) and

M(ijl)(i′j′l′) =

∫
dsdθ�dϕΛi(s)Λj(θ

�)Λl(ϕ)Λi′(s)Λj′(θ
�)Λl′(ϕ).

We can also define a partition of velocity phase space and split each moments in subgroups
of particle of the same species. For example, the DFT finite-element coefficients of the
perturbation gyrodensity subgroups, g, are computed from

(δNσ,g)k′ = M−1
kk′

∑
p

wp 1
(
|Ẽg ≤ Ẽp < Ẽg+1| × |λg ≤ λp < λg+1|

)
〈Λ̂k〉α(Xp, μp),

(B.3)

where the value of an inequality is one or zero. These subgroups are flexibly determined
by any 2D grid over the normalized kinetic energy Ẽ = mv2/Tσ(X) and the signed pitch
angle λ̃ = sign(v‖)λ/λc with λ = | arctan (v⊥/v‖)| and λc = arccosαtrap(X).

In ORB5, the gyrocenter fluxes are computed from equation [Vernay, 2013]

F̄σ[A] =

〈
∇ψ
|∇ψ| · 2π

∫ +∞

0
dμ

∫ +∞

−∞
dv‖

B�
0‖

mσ
A fσẊ

〉
S
, (B.4)

where Ẋ is the guiding-center drift and A is a function of position and velocity A =

A(X, μ, v‖) such that the particle, kinetic energy, potential energy, and heat fluxes
are then, respectively, given by Γ̄σ = F̄σ[1], Q̄kin,σ = F̄σ[mv

2/2], Q̄pot,σ = F̄σ[qφ],
q̄h,σ = F̄σ[m(v2 − 5v2th,σ)/2 + qφ] = Q̄kin,σ + Q̄pot,σ − (5/2)TσΓσ. In Eq. (B.4), the
brackets 〈 〉S denote the surface average

〈A〉S(ψ, t) = 1

S
∫
S(ψ)

dS A, (B.5)

with S =
∫
dS the surface, dS = dϕdθ�J |∇ψ| the surface element and∫

S(ψ)
dS A =

∮
dϕ

∮
dθ�J (ψ, θ)|∇ψ(ψ, θ�)| A(ψ, θ�).

In terms of the flux-surface average operation, the surface average reads 〈A〉S =

〈|∇ψ|A〉FS/〈|∇ψ|〉FS . Numerically the flux-surface averaged fluxes are computed from
the volume averaged operation

〈A〉ΔV =
1

ΔV

∫
Δv
d3VA,

with ΔV the small volume delimited by the surfaces ψ and ψ +Δψ.
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For electrons, the particle fluxes can be approximated by the corresponding gyrocenter
fluxes as a result of the small electron mass. For ions, ρi �= 0 and one needs to account
for the polarization and magnetization correction terms [Brizard, 2008, Brizard, 2009].
The relation between the particle current Γσ and the gyro-center current Γ̄σ for a given
species σ is

Γσ = Γ̄σ + ∂Pσ/∂t+∇×Mσ,

where ∂Pσ/∂t is a polarization current contribution to the particle flux and ∇×Mσ is a
magnetization current contribution to the particle flux [Brizard, 2008, Brizard, 2009]. In
a quasi-steady state, the surface- and time-averaged fluxes of particle, denoted Γσ, and
gyrocenters are essentially equivalent Γσ(s) = 〈〈Γσ〉S〉t �

〈〈Γ̄σ〉S
〉
t
, indeed 〈∇×Mσ〉S = 0

and 〈∂Pσ/∂t〉S = 0. The magnetization current contribution goes to zero when averaging
over a closed toroidal surface. From now on, no more distinction will therefore be made
between the gyrocenter fluxes and the particle fluxes.

The particle diffusivity and the heat diffusivity are defined by

Dσ = Γσ/

〈
− ∇ψ
|∇ψ| · ∇Nσ

〉
S
� Γσ 〈|∇ψ|〉FS

(−dNσ/dψ) 〈|∇ψ|2〉FS
, (B.6)

and

χσ = qσ,H/

〈
− ∇ψ
|∇ψ| ·Nσ∇Tσ

〉
S
� qh,σ 〈|∇ψ|〉FS

Nσ(−dTσ/dψ) 〈|∇ψ|2〉FS
, (B.7)

where one assumes that the effective profiles of Nσ = Nσ(ψ) and Tσ = Tσ(ψ) are flux-
surface functions. These quantities are expressed in gyro-Bohm units DGB = χGB =

ρ2s0cs0/a with cs0 =
√
Te0(speak)/mi and ρs0 = mcs0/qBaxis.
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C Influence of the magnetic shear on
the turbulence organization

In chapter 5, it was shown that the radial organization of the passing electron contribution
to the turbulent particle flux is strongly influenced by the safety factor profile and
associated distribution of mode rational surfaces. It is thus of interest to study the
influence of the magnetic shear on the turbulent organization.

In figure C.1, preliminary results of nonlinear simulations carried out with the flux-tube
version of GENE show the influence of the shear on the radial organization of the passing-
electron turbulent spectra. The fact that the radial organization of the passing-electron
turbulent particle flux spectra is coupled to the distribution of mode rational surfaces is
in qualitative agreement with TCV simulation results shown in chapter 5. One difference
between the TCV turbulent regime and this ITG turbulent regime is that in this ITG test
case, the electron temperature gradient is such that there is no distinction in the behavior
of sub- and supra-thermal electrons. Coming back to the radial organization of this spectra,
it is clearly shown that each ky mode contributes to the flux where the passing electron
response to this ky mode is non-adiabatic. The turbulent particle flux contribution of
a given ky mode exhibits peaks of transport localized near associated low order mode
rational surfaces. For example, the mode of wave number kyρi = ky,min contributes to
〈Γe,pas〉zt near all mode rational surfaces of lowest order, i.e., x = pLMRS with p integer;
and the mode number of wave number kyρi = 2ky,min contributes to 〈Γe,pas〉zt near all
mode rational surfaces of lowest order and of second order, i.e., x = (p/2)LMRS with p
integer. Comparing the results obtained with the two values of the shear, one observes
that, as expected, a decrease of the magnetic shear results in a decrease of the density
of low order mode rational surfaces and thus in a decrease of the number of these fine
structures. It also appears in these simulation results that the fine structures near the
mode rational surfaces are larger in simulations carried out with ŝ = 0.4 than with ŝ = 0.8.
Note that, as discussed in chapter 5 for TCV simulations, the overall passing-electron
contribution to the turbulent particle flux, 〈Γe,pas〉zt(x) =

∑
ky
〈Γ̂e,pas〉zt(x, ky) is radially

homogeneous. It is of interest to study in more details the mechanisms which permit the
turbulent flux spectra to adapt radially and thus ensure continuity of the turbulent flux.
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Appendix C. Influence of the magnetic shear on the turbulence organization
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Figure C.1 – Time-averaged passing-electron contribution to the turbulent particle
flux in the same ITG flux-tube case as in chapter 3 except for the magnetic shear
equal to (a) ŝ = 0.8 and (b) ŝ = 0.4. The simulation boxes have the same size,
Lbox = nx,box/ŝky,min = nx,boxLLMRS , which is kept constant by adapting nx,box to the
value of the magnetic shear. Only a fraction of the ky spectra is shown. Parameters:
ky,minρi = 0.07, nky = 64, and nx = 512.

In linear simulations of chapter 3 it was shown how the variation of the shear influences
the non-adiabatic response of passing electrons and thus the width the fine structures.
But, in nonlinear simulations, the same explanation does not hold because these structures
are much broader than predicted. It could thus be interesting to study in more details
the physics which determine the width of the fine structures in nonlinear simulations. In
the nonlinear simulation preliminary results shown here, the fine structures present near
mode rational surfaces on the time-averaged density and species temperature perturbation
gradient profiles and the E ×B zonal structures have a radial width which varies with
the value of the magnetic shear: their width increases when the magnetic shear decreases,
see figure C.2 and datatips on subplots (d,e,f). A case with ŝ = 1.4 has been added in
this latter figure to enforce the claim. Now regarding these fine structures amplitude, the
perturbation of the electron temperature gradient is 45% bigger at lowest order mode
rational surfaces when ŝ = 0.4 than when ŝ = 0.8. This increase of the gradient could be
necessary for compensating the lower density of mode rational surfaces when ŝ = 0.4 than
when ŝ = 0.8, thus ensuring a constant turbulent flux Γe,pas � De,pas∇Te. In chapter 5,
where a similar comment was made, the passing electron turbulent diffusivity De,pas was
found to be in relation with the density of mode rational surfaces. It could be of interest
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Figure C.2 – Subplots (a-c) Radial gradient ∇x〈δA〉yzt of the time- and flux-surface- aver-
aged fluctuations for different field quantities A normalized with respect to corresponding
background gradients |∇xA0| = A0/LA: density A = N (green), electron temperature
A = Te0 (blue), and ion temperature A = Ti0 (red). Profile sections of length LLMRS have
been superimposed (with lowest order MRSs at x = 0). Subplots (d-f) Time-averaged
shearing rate 〈ωE×B〉t estimated with E = −∇x〈φ〉yz (green) and effective shearing rate
〈ωi,e

E×B〉t felt by the ions and electrons estimated with gyroaveraged E = −∇x〈φ〉yz (red
and blue respectively). Same simulations than in figure C.1.

to study in more details the correlation between the amplitude and width of these fine
structures with the radial distribution of mode rational surfaces.

The time-averaged particle flux, including contributions from trapped and passing particles,
decreases by 30% for ŝ = 0.4 instead of ŝ = 0.8. This decrease is only due to a 50%

decrease of the passing electron contribution to this turbulent flux. The spectra of the
trapped and passing electron contributions to the particle flux are plotted in figure C.3
for ŝ = 0.4 (blue) and 0.8 (red). In these plots, the trapped-electron turbulent particle
flux spectra does not depend on the value of the magnetic shear. On the other hand,
both kx and ky spectra of passing-electron turbulent particle flux vary with the magnetic
shear. Regarding the ky-spectrum in subplot (b), it clearly appears that solely the long
wavelength part of the ky-spectra, 0 < kyρi ≤ 0.28, is affected by the change of magnetic
shear. It is interesting to point that the radial organization of this same long-wavelength
part of the ky-spectra is significantly affected by the radial distribution of mode rational
surfaces shown in figure C.1. Regarding the kx-spectra in subplot (a), these passing-
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Figure C.3 – Time-averaged spectra of the passing-electron contribution to the turbulent
particle flux in the same ITG flux-tube simulation as in chapter 3. Magnetic shear equal
to ŝ = 0.4 (blue) and ŝ = 0.8 (red). Left column: fluxes spectra as a function of radial
mode number. Right column: fluxes spectra as a function of binormal mode number.
Same simulations than as figure C.1.

electron spectra carried out with ŝ = 0.8 and 0.4 are shown to be significantly different at
long wavelengths. Moreover, the kx-spectra obtained from the ŝ = 0.8 simulation shows
the presence of peaks near kxρi � 1. These peaks were already observed in chapter 3 and
are due to the magnetic shear: after a poloidal turn a kx mode is sheared and couples to
the mode kx +2πŝky. For the smaller values of the magnetic shear the spectral spreading
Δkx = 2πŝky is smaller and its small amplitude peaked contributions near kxρi � 0.5 are
drawn in the spectra. It could be interesting to study this magnetic shear influence in
more detail.
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