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Résumé

La mesure de pluie est compliquée par la grande variabilité du phénomène, y compris à

l’échelle des gouttes de pluie. Les mesures ponctuelles sont généralement précises, mais

elles ont une représentativité spatiale très restreinte. À l’opposé, les radars météorologiques

peuvent prendre des mesures indirectes sur des grands domaines, mais les propriétés micro-

physiques de la pluie doivent être connues ou déduites pour calculer les quantités de pluie.

La distribution des gouttes de pluie (DSD) décrit statistiquement cette microstructure. Elle

est souvent supposée être uniforme dans l’espace, mais elle a en fait une grande variabilité.

Les nouvelles méthodes et les résultats associés qui composent cette thèse contribuent à la

compréhension de la variabilité de la DSD sur les petites échelles, et son effet sur la mesure de

la pluie.

Les méthodes présentées ont été développées à l’aide de données d’un réseau d’instruments

sur un site de 13 × 7 km2 en Ardèche, en France. Cette région est sujette aux fortes pluies

méditerranéennes. Une technique pour améliorer la précision des mesures de la DSD par

les disdromètres Parsivel est proposée. La méthode utilise un 2D-video-disdrometer comme

instrument de référence. Une méthode géostatistique pour l’interpolation spatiale et la si-

mulation stochastique de la DSD est donnée. Elle permet l’estimation ou la simulation de la

DSD non-paramétrique en un point où il n’y a pas de mesure, en prenant compte des mesures

dans un voisinage. Des essais ont montré que les estimations ont un biais minimal. Ces deux

techniques ont été utilisées pour examiner la variabilité de la DSD sur le domaine étudié.

La variabilité de la DSD a été étudiée sur deux échelles typiques, qui correspondent à la

taille d’un pixel du radar météorologique spatial Global Precipitation Mission (GPM) et à la

taille d’un pixel d’un modèle météorologique opérationnel. Il est montré qu’une erreur se

produit si une mesure ponctuelle est supposée représenter une surface. Cette erreur grandit

avec l’aire et avec la taille des gouttes. Deux algorithmes pour calculer les quantités de pluie,

qui correspondent aux deux échelles considerées, ont été testés. L’intensité de la pluie et la

réflectivité radar étaient bien retrouvées, mais d’autres propriétés de la DSD étaient souvent

peu représentatives du processus à une échelle plus petite que celle du pixel.

La normalisation de deux moments est un moyen de représenter la DSD dans une forme

plus compacte. Pour l’utiliser, il faut supposer que la DSD normalisée est invariante. Cette

supposition a été testée avec des données mesurées en France, en Suisse et aux États Unis. Il

est montré que, pour l’utilisation pratique, la DSD normalisée peut être supposée invariante,

pour les déplacements horizontaux et verticaux. En s’appuyant sur cette supposition, une
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technique pour déduire la DSD d’après les variables polarimetriques est proposée. Elle a une

performance similaire à, voir meilleur que, celle d’une méthode existante de référence. Une

application de l’analyse multifractale à des mesures de neige des Alpes suisses à haute résolu-

tion, est présentée. Des comportements scalants ont été détectés dans des colonnes verticales

reconstruites, pour les échelles entre 35 m et 2 m. Des faibles comportements scalants ont

été trouvés dans des series de temps. Les resultats indiquent que pour les échelles plus pe-

tites que deux mètres ou une minute, la neige semble être distribuée d’une manière homogène.

Mots clefs : distribution des gouttes de pluie (DSD), microstructure de la pluie, variabilité des

précipitations, simulation stochastique
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Abstract

Measurement of rain is made difficult by the high variability of the precipitation process,

down to raindrop scale. Point measurements are generally accurate, but their lack of spatial

representativeness is a significant limitation. Weather radars indirectly measure rainfall over

large regions, but the microphysical properties of the rain being measured must be known or

inferred in order to compute rainfall quantities from radar data. The raindrop size distribution

(DSD) statistically describes the microstructure of rain. While the DSD is often assumed to

be uniform in space, it is in fact highly variable. The work in this thesis contributes to the

understanding of the small-scale variability of the DSD and its effects on the measurement of

rainfall.

The methods shown were developed using data from a network of disdrometers and radars over

a 13 × 7 km2 field site in Ardèche, France. This area experiences heavy Mediterranean rainfall.

A technique to improve the accuracy of DSD measurements made by Parsivel disdrometers

is proposed. The method uses a 2D-video-disdrometer as a reference instrument. A new

geostatistical method for spatial interpolation and stochastic simulation of the experimental

DSD is provided. It can estimate or simulate the non-parametric DSD at an unmeasured

location, conditional on nearby measurements. Leave-one-out testing showed that estimates

were produced with minimal bias. The correction and simulation techniques were used

together to investigate the small-scale variability of the DSD in the study region.

DSD variability was studied in detail over two typical scales, corresponding to the footprint

size of the Global Precipitation Mission (GPM) space-borne weather radar, and a typical size

for an operational numerical weather model pixel. It is shown that the assumption that a

point measurement of the DSD represents an areal estimation introduces error that increases

with areal size and drop size. Satellite and weather model rainfall retrieval algorithms that

correspond to these two typical domains were tested, and while it was found that rain intensity

and radar reflectivity were well retrieved, other DSD properties were often not representative

of the sub-grid process.

Double-moment normalisation provides a compact representation of the DSD, under the

assumption that the normalised version DSD is invariant. This assumption was tested using

instrument network data in France, Switzerland, and the United States. It is shown in this work

that for practical purposes, the double-normalised DSD can be assumed invariant through

horizontal and vertical displacement. Using this assumption, a new method for retrieval of the

DSD from polarimetric radar data is proposed. The new DSD-retrieval technique performs

v



Acknowledgements

as well or better than an existing method. An application of multifractal analysis to high-

resolution snowfall data from the Swiss Alps is presented. Scaling of snowfall was observed in

reconstructed vertical columns, at scales from about 35 metres to two metres, with no scaling

observed at smaller scales. Weak scaling was observed in time series. The results indicate that

at small (sub-metre or sub-minute) scale, snowfall appears homogeneously distributed.

Key words: precipitation microstructure, precipitation variability, drop size distribution (DSD),

stochastic simulation
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1 Introduction

Precipitation is a profoundly important process. As a primary part of the Earth’s hydrological

cycle, it delivers fresh water to the land, dramatically shapes the landscape, and is crucial

to sustaining life. Liquid precipitation is rain, and its extremes have significant impacts:

droughts and floods threaten life and property (e.g. Pielke Jr and Downton, 2000) and have

substantial societal and economic effects (e.g. Ciais et al., 2005). Climate change is likely

to change the frequency, intensity, and duration of rainfall events (Easterling et al., 2000;

Trenberth et al., 2003; Stocker et al., 2013). It is expected that most land areas will experience

an increase in the frequency of heavy rainfall events by the end of this century (Stocker

et al., 2013). Accurate measurement is the key to being able to understand, model, and predict

precipitation, including rain. Precipitation is not an easy process to measure, however, because

it is notoriously variable. This variability exists on large scales (e.g. Koster and Suarez, 1995),

which is why we experience wet and dry summers, or flooding in one region while another

is unscathed. But precipitation is also highly variable at the small scale (e.g. Fabry, 1996),

down to the scale of individual falling water particles. These particles, called hydrometeors,

exist in many different phases, shapes, and sizes. The study of precipitation microphysics,

or the dynamics of precipitation at the particle scale, leads to improved understanding of

related processes across scales. The aim of this thesis is to contribute to the understanding

and characterisation of the small-scale variability of rainfall.

Rainfall, of course, is made up of falling drops of water. When we speak of small-scale vari-

ability of rainfall, what is meant is variability in the number of raindrops there are, and in

their sizes. Because it is unfeasible to count and measure every single raindrop in a storm,

statistics are used to summarise the information into a form that is more convenient to deal

with. The raindrop size distribution (DSD) statistically describes the microstructure of liquid

precipitation. It is defined as the number of falling raindrops of a certain size per unit volume

of air. All rainfall variables of interest can be calculated as weighted statistical moments of

the DSD (e.g. Ulbrich, 1983; Testud et al., 2001). These include the total drop concentration,

the characteristic drop diameter, the liquid water content, and the rain intensity. Information

about the DSD is needed to calculate the interactions of electromagnetic waves with inho-
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Chapter 1. Introduction

mogeneous collections of hydrometeors in the atmosphere, making DSD properties required

knowledge for weather radar applications (Marshall et al., 1947; Bringi and Chandrasekar,

2001). While the DSD describes what is happening at the raindrop scale, it is fundamental

to processes that occur on much larger scales (e.g. Uijlenhoet and Sempere Torres, 2006). It

is used in investigations into rainfall microphysical processes (e.g. Rosenfeld and Ulbrich,

2003); interactions of raindrops with surface soil (e.g. van Dijk et al., 2002), vegetation canopies

(e.g. Calder, 1986), and built environments (e.g. Blocken and Carmeliet, 2004); the cleaning

effect rain has in removing aerosols from the atmosphere (e.g. Andronache, 2004); weather

prediction models (e.g. Baldauf et al., 2011); and the effects of rainfall on telecommunication

links (e.g. Crane, 1971; Schleiss and Berne, 2010).

Since the discovery that the power of electromagnetic radiation reflected off rain relates to

the rain’s intensity (Marshall et al., 1947), weather radar (radio detection and ranging) has

revolutionised the measurement of precipitation. Marshall et al. (1947) foresaw the possibility

of quantitative precipitation estimation (QPE) in the 1940s. In the 1970s, it was recognised that

polarimetric radar, in which the waves are vertically and horizontally polarised, could offer

greater insight into precipitation microstructure (Seliga and Bringi, 1976). Nowadays, radar

has become an essential tool for the study of precipitation (Bringi and Chandrasekar, 2001;

Berne and Krajewski, 2013), and operational networks provide near-real-time precipitation

observations in many countries (e.g. Berne and Krajewski, 2013). Radars do not measure

the rain intensity directly, but rather they make indirect and integrated measurements of

the electromagnetic properties of hydrometeors in a measurement volume (Berne and Kra-

jewski, 2013). The basic problem in QPE is determining the relationship between the radar

measurements and the rain rate in the measured volume.

Conventional radars measure radar reflectivity Z (measured in mm6 m−3 but often expressed

in dBZ), which is non-linearly related to the rain rate R [mm h−1] via the DSD (e.g. Marshall

and Palmer, 1948; Uijlenhoet, 2001). The Z –R relationship is usually modelled as a power law

that is scale dependent (Verrier et al., 2013; Sassi et al., 2014) and affected by DSD variability

(Chapon et al., 2008; Jaffrain and Berne, 2012a). Polarimetric radars measure the reflectivity

and phase change of horizontally and vertically polarised waves, and use this information to

retrieve DSD properties (Krajewski and Smith, 2002). In both cases, determining R from radar

measurements is made complex by sampling issues (e.g. Andrieu et al., 1997), comparisons

of incompatible scales, and instrumental uncertainty (Krajewski and Smith, 2002). With the

advent of satellite-based weather radars (e.g. Kawanishi et al., 2000; Hou et al., 2014) and

passive sensors, precipitation can now be observed on a global scale (e.g. Huffman et al., 2007;

Hou et al., 2008). Algorithms for satellite-based QPE generally use a model of the DSD with

parameters that are either fixed or derived from observations (e.g. Iguchi et al., 2000; Seto et al.,

2013; Liao et al., 2014). The assumption of the DSD from a model was classed as a primary

uncertainty factor for the Tropical Rainfall Measuring Mission (TRMM) satellite weather radar

(Iguchi et al., 2009). Variability in the DSD affects the accuracy of radar observations of rainfall,

whether they are made from the ground or from space.
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1.1. The raindrop size distribution

Improving our understanding of the DSD and its small-scale variability will lead to better

understanding of the physical processes at play in rainfall, reduced uncertainty in precipitation

measurements, and more accurate numerical weather prediction (NWP). In this thesis we

present new techniques for the measurement and stochastic simulation of the DSD, and we

use them to quantify DSD variability and test DSD-retrieval techniques in Mediterranean

rainfall. This introductory chapter sets the scene for the rest of the thesis, by briefly introducing

the main topics and outlining the current state of the art. In Section 1.1 the DSD and its related

bulk variables are introduced in more detail. Measurement and estimation of the DSD are

discussed in Section 1.2. The effects of DSD variability and the change of support problem are

discussed in Section 1.3. The bulk of the data used in this thesis were collected in Ardèche,

France, a region that experiences heavy Mediterranean rainfall. The meteorological processes

of this region are briefly introduced in Section 1.4. In Section 1.5, the outline of the rest of the

thesis is shown.

1.1 The raindrop size distribution

Let us imagine a rainstorm, frozen in time. We take one cubic metre of space within the

storm, and within this space we collect all the raindrops, count them and measure their sizes.

On average, there would be about 103 falling raindrops in this cubic metre (Uijlenhoet and

Sempere Torres, 2006). Most of the drops would be small, between about 0.1 and 1 mm in

diameter, and close to spherical (Pruppacher and Klett, 2000). There would also be some

larger drops, which would be affected by air resistance, and thus not spherical. The bottom of

these drops flattens, giving them an oblate shape that can be predicted as a function of the

drop’s volume (e.g. Beard and Chuang, 1987; Andsager et al., 1999; Pruppacher and Klett, 2000;

Thurai and Bringi, 2005; Thurai et al., 2007). Because not all raindrops are spherical, we speak

of their size in terms of their equivolume diameter: the diameter of a sphere that contains

the same amount of water as the drop. The great majority of raindrops have equivolume

diameters between 0.1 and 6 mm (Uijlenhoet and Sempere Torres, 2006).

Now in our imaginary situation, let us allow the system to fall into motion. Each drop falls

at a velocity that depends on its mass plus atmospheric conditions. The still-air terminal

velocity of raindrops can be accurately predicted (e.g. Atlas et al., 1973; Beard, 1976; Brandes

et al., 2002) and ranges from 0.1 to more than 9 m s−1 (Uijlenhoet and Sempere Torres, 2006;

Roe, 2005). As the rain falls, the number and sizes of the drops in our cubic metre of air are

constantly changing. Evaporation causes the loss of some (mostly small) drops (e.g. Rosenfeld

and Ulbrich, 2003). Drops collide with each other, with smaller drops joining together and

coalescing to form larger drops, and larger drops breaking up (e.g. Pruppacher and Klett, 2000).

Raindrops can only reach a certain size – about 10 mm – before they break up into smaller

drops solely due to aerodynamic forces (Pruppacher and Klett, 2000), and it is for this reason

that there are always more small drops than larger ones.

The DSD is used to statistically summarise the information above. The volumetric DSD,
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written N (D) [mm−1 m−3] , is the number of raindrops with equivolume diameter in the range

[D,D +δ) mm, per unit volume of air (Marshall and Palmer, 1948). The DSD describes the

microstructure of liquid precipitation. Integral parameters of rainfall, also known as bulk

rainfall variables, can be derived as weighted moments of the DSD (e.g. Ulbrich, 1983; Testud

et al., 2001). Any bulk variable P can be expressed as

P = aP

∞∫
0

wP Dp N (D)dD, (1.1)

where p and ap are constants and wp is a weight that may depend on D (Ulbrich, 1985). In

this section the most commonly used bulk variables are briefly defined in increasing moment

order (for a detailed review, see e.g. Bringi and Chandrasekar, 2001).

The zeroth moment of the DSD is the total drop concentration Nt [m−3], defined simply as

Nt =
∞∫

0

N (D)dD. (1.2)

The DSD can be expressed as the total drop concentration multiplied by a probability density

function f (D) [mm−1], such that N (D) = Nt f (D). The liquid water content, W [g m−3] is

related to the third moment of the DSD:

W = π10−3ρω

6

∞∫
0

D3N (D)dD, (1.3)

where ρω [g cm−3] is the density of water. The flux of rainwater at a surface is expressed by the

rain rate R [mm h−1], defined as

R = 6π10−4

∞∫
0

N (D)v(D)D3dD, (1.4)

where v(D) [m s−1] is the still-air fall velocity for a drop with equivolume diameter D . For the

work presented in this thesis, we used the model of Beard (1976) to calculate v(D). R is the

variable that is of most interest to hydrologists.
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1.1. The raindrop size distribution

The median-volume drop diameter, D0 [mm], is the diameter that divides the DSD into two

portions of equal water volume. More commonly used as a characteristic drop diameter,

however, is the mass-weighted mean drop diameter, Dm [mm]. It is defined as the fourth

divided by the third moment of the DSD, such that

Dm =

∞∫
0

D4N (D)dD

∞∫
0

D3N (D)dD

. (1.5)

Weather radars emit electromagnetic radiation and measure what is reflected back off hydrom-

eteors in the atmosphere. Radar reflectivity, the quantity measured by conventional radars,

can be derived from the DSD (Marshall and Palmer, 1948). When the particles scattering the

radiation are much smaller than the radar wavelength, the scattering properties are governed

by the Rayleigh regime, and radar reflectivity Z [dBZ] is equal to the sixth DSD moment

(Marshall and Palmer, 1948; Bringi and Chandrasekar, 2001), such that

Z = 10log10

 Dmax∫
Dmin

N (D)D6dD

 . (1.6)

It is often the case, however, that the particles are similar in size to the wavelength. In this case

the reflectivity occurs in the Mie regime, and it can be calculated from the DSD using

Z = 10log10

 106λ4

π5 |Kω|2
∞∫

0

σb(D)N (D)dD

 , (1.7)

where λ [cm] is the radar wavelength, |Kω|2 [-] is the dielectric factor of water, andσb(D) [cm2]

is the back-scattering cross-section for a drop with equivolume diameter D (e.g. Bringi and

Chandrasekar, 2001). The scattering properties of water droplets can be calculated using the

T-matrix codes of Mishchenko and Travis (1998).

In the case of polarimetric radars, in which the electromagnetic waves are horizontally and

vertically polarised, the horizontal reflectivity ZH [dBZ] is calculated by replacing σb(D) in

Equation 1.7 with σb H (D) [cm2], the back-scattering cross section in horizontal polarisation.

Radar reflectivity in vertical polarisation, ZV [dBZ], is defined in the same way, using σbV (D)
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[cm2], the back-scattering cross-section in vertical polarisation. It is common practice to refer

to radar reflectivity in dBZ as defined above. At times it is also used, however, in its linear units,

in which case we have horizontal reflectivity Zh [mm6 m−3] and vertical reflectivity Zv [mm6

m−3], defined as Zh = 10ZH /10 and Zv = 10ZV /10 respectively. Differential reflectivity, ZDR [dB],

defined as ZH −ZV , is the ratio of horizontal to vertical reflectivity. ZDR is a useful variable in

rain, because with large drops being more oblate it is related to drop size (Seliga and Bringi,

1976).

In this section, all the integrals have been written assuming a continuous DSD function and

drop sizes ranging from zero to infinity. This is idealised, because in reality, not only are drops

finite in size, but they are usually measured in discrete classes of equivolume drop diameter.

When working using measured data, therefore, the integrals in calculations of bulk variables

convert to sums over the drop size classes from Dmin [mm] to Dmax [mm], the smallest and

largest considered class-centre drop sizes. dD becomes the width of each class, and D is the

centre diameter of each class. Studies on DSD truncation and the calculation of bulk variables

have concluded that the effects of truncation are negligible as long as the included range of

diameters is large enough around D0 (Willis, 1984; Ulbrich, 1985; Vivekanandan et al., 2004).

It is common for the DSD to be summarised using a functional form defined by only a few

parameters. The first proposed form was the exponential function of Marshall and Palmer

(1948). The Gamma DSD (Ulbrich, 1983) is an extension of the exponential form that is more

appropriate for instantaneous measurements of the DSD. Other compact forms of the DSD

include the normalised DSD of Willis (1984), and normalisation approaches in which the DSD

is expressed using one or more of its statistical moments and a normalised DSD function that

describes the shape of the distribution (e.g. Sempere-Torres et al., 1994; Testud et al., 2001; Lee

et al., 2004). In this thesis we provide a DSD interpolation method that requires no functional

form (Chapter 3), show results of using it to test areal rainfall retrieval functions that do use

a DSD model (Chapter 4), and study the spatial invariance of a normalised DSD function

(Chapter 5).

1.2 Measurement and estimation of the DSD

Disdrometers are instruments that measure the DSD at ground level, with collection areas

that are small enough that they are usually considered to be point measurements. There are

various types of disdrometers. Impact-type disdrometers (e.g. the Distromet Joss-Waldvogel

disdrometer, Joss and Waldvogel, 1967) measure the impact forces of raindrops that hit a

sensor. Laser optical disdrometers use a sheet of light that is interrupted by falling drops. The

width of the shadow and length of the interruption give the size and fall speed of the observed

particle. The primary data set used in this thesis is from a network of OTT Particle Size and

Velocity (Parsivel, Löffler-Mang and Joss, 2000) laser optical disdrometers. Another type of

disdrometer is the two-dimensional video-disdrometer (2DVD) (Schönhuber et al., 2008) that

uses two orthogonally-facing cameras to take images of individual falling particles and to
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directly measure their velocities. While the 2DVD has limitations (Tokay et al., 2001, 2013),

it provides high-resolution data on individual hydrometeors, and matches rain rates from

collocated rain gauges better than other disdrometers, including Parsivels (Tokay et al., 2001;

Thurai et al., 2011; Tokay et al., 2013). Disdrometer data require careful treatment, because

they can be affected by splashing, wind turbulence, multiple particles, particles that are not

water (insects, spiderwebs), and instrumentation uncertainties (e.g. Kruger and Krajewski,

2002; Thurai and Bringi, 2005; Jaffrain and Berne, 2011; Tokay et al., 2013).

Networks of disdrometers have been the preferred way to study the variability of the DSD

across space and time (e.g. Miriovsky et al., 2004; Lee et al., 2009; Tapiador et al., 2010; Tokay

and Bashor, 2010; Jaffrain et al., 2011; Jameson et al., 2015a). A difficulty is that disdrometers

provide point measurements that may be too sparsely distributed or not numerous enough

to fully capture the variability of the rainfall process. It has been estimated that at least six

disdrometers would be required per square kilometre to properly sample the variability of

the DSD (Tapiador et al., 2010). Interpolation using geostatistics (Matheron, 1971; Chilès and

Delfiner, 1999) offers a possible solution to this problem, through the estimation of the DSD at

unmeasured locations, conditioned on nearby measurements. To date, rainfall interpolation

methods that produce gridded outputs have generally worked with individual bulk variables

such as rain rate (e.g. Creutin and Obled, 1982; Chua and Bras, 1982; Goovaerts, 2000; Tobin

et al., 2011; Masson and Frei, 2014; Haberlandt, 2007; Velasco-Forero et al., 2008; Tobin et al.,

2011). However, the full variability of the DSD can not be captured using only integral variables,

because it is possible for multiple DSDs to produce the same bulk variable values (Jameson

et al., 2015b).

Stochastic simulation can be used within a geostatistical framework to produce many equally

probable realisations of a process. This approach has been used to estimate DSD model

parameters and investigate DSD variability (Jaffrain and Berne, 2012b; Schleiss et al., 2012).

The assumption of either second-order or at least intrinsic stationarity is required for geosta-

tistical approaches (Chilès and Delfiner, 1999). Rainfall, however, is a non-stationary process

(Barancourt et al., 1992; Schleiss et al., 2014a). This non-stationarity is caused largely by the

high intermittency (patchiness) of rainfall fields (Schleiss et al., 2014a). While intermittency

can be modelled through the use of a rainfall occurrence map (Barancourt et al., 1992), this

does not solve the problem of the non-stationarity. Schleiss et al. (2014a) offered a solution

through taking into account the so-called “dry-drift”, or the tendency of rainfall to be heavier at

a point that is further from a dry region (Barancourt et al., 1992; Braud et al., 1994; Emmanuel

et al., 2012).

The techniques mentioned so far in this section have included direct sampling of the DSD with

disdrometers, and interpolation and simulation of DSD parameters in order to investigate

horizontal variability. The DSD varies in the vertical, as well. Vertically profiling radars that

measure the Doppler spectrum are able to infer some properties of the DSD at height, using

measured fall speeds towards the radar. This is the method used by micro rain radars (MRRs,

Peters et al., 2002, 2005; Tridon et al., 2011). A significant limitation of these methods is

7
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that vertical wind and turbulence are ignored (Peters et al., 2002). Schleiss and Smith (2015)

proposed a geostatistical technique that uses disdrometer time series from the ground, and

radar data, to estimate 3D–time variograms for DSD model parameters. Retrieval of the

DSD from (non-Doppler) polarimetric radar data has been a long-standing goal, but has

proven difficult. Some microphysical properties, such as the median drop diameter D0, can be

retrieved from polarimetric information (Seliga and Bringi, 1976). Since this was discovered,

many DSD-retrieval methods have been developed to try to retrieve other properties of the

DSD (e.g. Zhang et al., 2001; Gorgucci et al., 2002; Park et al., 2005b; Anagnostou et al., 2009,

2010; Thurai et al., 2012; Bringi et al., 2015; Kalogiros et al., 2013).

In this thesis we present new ways to correct possibly inaccurate measurements of the DSD

(Chapter 2), and new ways to infer the DSD or its properties from nearby or remote measure-

ments. A new geostatistical interpolation technique and stochastic simulation technique for

the experimental (i.e. non-parametric) DSD is presented (Chapter 3), and we introduce a

new DSD-retrieval technique that uses polarimetric radar data (Chapter 6). These techniques

were developed using measurements of the DSD made with disdrometers and radars. The

disdrometers used were Parsivel laser optical disdrometers and a 2DVD. The main data set,

which is introduced in Chapter 2, was collected by a network of disdrometers collocated with

rain gauges, plus a weather station, MRRs, and an X-band polarimetric weather radar (MXPol,

see Schneebeli et al., 2013). Examples of these instruments deployed in the field are shown in

Figure 1.1.

1.3 DSD variability and the change of support problem

The support of a measurement is the region in space over which is it taken. The change

of support problem refers to the non-equivalence of measurements taken with different

supports. DSD measurements are affected by the change of support problem because of the

high variability of the DSD. DSD variability is known to be at least as great within rainfall events

as between them (Tapiador et al., 2010; Jaffrain and Berne, 2012b), and it has been shown

that the variability of the DSD is greater across larger domains than smaller ones (Jaffrain

and Berne, 2012b; Jameson et al., 2015b), and to be greater for larger (and therefore rarer)

drops than smaller ones (Jameson et al., 2015b). Variability is greater between measurements

taken with short integration times, as compared to longer ones where the integration causes

smoothing of the process (Jaffrain and Berne, 2012b; Tokay and Bashor, 2010). Given this

high variability, an areal measurement of the DSD can therefore not be assumed to equal a

point measurement. Yet, at times, only areal measurements or only point measurements are

available. In this thesis we quantify the error introduced by assuming a point represents an

area, and investigate whether areal rainfall retrieval algorithms properly represent the sub-grid

DSD.

The sub-grid variability of the DSD affects the areal retrieval of rainfall. For example, in radar

QPE, the properties of the link between radar reflectivity and rain intensity varies with the

8



1.3. DSD variability and the change of support problem

Figure 1.1 – Examples of instruments used in this thesis, as deployed in the field. The top panel shows Pradel
Grainage in Ardèche, France, with (L–R) the Vaisala weather station, 2DVD, first-generation Parsivel and Parsivel2.
Below left shows the Montbrun, also in Ardèche, with (L–R) the MRR, first-generation Parsivel, and MXPol. Below
right shows Payerne Station SwissMetNet, in Payerne, Switzerland, with (L–R) the 2DVD and a first-generation
Parsivel disdrometer.

DSD. As well as the scales of the measurements being different, any comparison between Z

aloft and R on the ground is subject to additional uncertainty due to the vertical evolution of

the rainfall (Zawadzki, 1975). The grid size of rainfall products varies. For example, a typical

ground-based weather radar pixel size is 1×1 km2 (Berne and Krajewski, 2013). NWP models

typically use slightly larger pixels; for example the high-resolution Consortium for Small-scale

Modelling (COSMO)1 atmospheric model uses an operational pixel size of 2.8×2.8 km2 (in

Germany, Baldauf et al., 2011). Space-borne weather radars use a larger pixel size; for example

1See http://www.cosmo-model.org.
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the Global Precipitation Measurement (GPM) satellite has a footprint of about 5×5 km2 (Hou

et al., 2014). The rainfall retrieval algorithms used by systems such as GPM and COSMO rely

on first deriving DSD properties such as model parameters, then calculating bulk variables.

The change of support problem means that DSD properties derived at the areal scale may not

always be representative of the sub-grid rainfall process.

1.4 Mediterranean rainfall

The region of Ardèche, in France, was the study region for most of the work in this thesis. The

western Mediterranean, in which Ardèche is located, is plagued by heavy precipitation events

(HPEs) that threaten both life and property (Delrieu et al., 2005; Nuissier et al., 2008). The

broad meteorological conditions that cause these events are well understood at a synoptic

scale (Nuissier et al., 2011), so forecasting of likely HPEs across a large region is relatively

accurate. However, forecasting and modelling the precise location of an HPE and the amount

of rainfall likely to result remain difficult problems (Ricard et al., 2012; Delrieu et al., 2005).

For example, in 2002 an HPE in the Gard region of France cost 24 lives and 1.2 billion euros in

damage, but warnings produced before and during the event significantly underestimated the

expected rainfall amount, and the prediction error in the location of the cell was about 100

km (Delrieu et al., 2005). Improved understanding of the small-scale variability of rainfall is

important for the reduction of these sorts of problems.

The atmospheric conditions that cause heavy precipitation events in the Mediterranean are

well known (e.g. Miniscloux et al., 2001; Lin et al., 2001). They can be divided into three

meteorological ingredients. First, large masses of warm, moist air in the lower atmosphere are

produced by the Mediterranean Sea, particularly during the end of summer and the start of

autumn (Miniscloux et al., 2001). Second, synoptic-scale systems push this air onto the land.

Typically, an upper-level cold trough forms between the Atlantic and the Mediterranean, with

low pressure over the Gulf of Biscay and high pressure over central Europe: this trough-ridge

pattern generates a southerly flow that destabilises the warm air and pushes it northwards

(Miniscloux et al., 2001; Ricard et al., 2012). Third, the mountainous landscape of the Mediter-

ranean coast triggers convective activity and heavy rainfall follows (Delrieu et al., 2005). The

heaviest rainfall is on the south-eastern flanks of mountainous regions which lie perpendicular

to the airflow from the sea (Nuissier et al., 2008). The synoptic pattern is often quasi-stationary

and slowly shifts to the east while maintaining similar conditions, thus leading to high rainfall

totals because events can persist for several hours to days (Ricard et al., 2012).

Mediterranean HPEs can be classified as deep-convective or shallow-convective, or a mixture

of these two types. At the deep-convective end of the classification are quasi-stationary

mesoscale convective systems (MCSs), which form a characteristic V shape with convective

cells continuously generated at the point of the V. A quasi-stationary MCS can generate up to

200-600 mm of rainfall in under 24 hours (Delrieu et al., 2005). At the shallow-convective end

are orographic events, that in stable conditions form orographic rain bands (ORBs). These

10



1.5. Thesis outline

events are associated with stationary flow, and form stable and active bands of precipitation

which are parallel to the direction of the wind and can last for several hours (Miniscloux et al.,

2001; Godart et al., 2011). Typically, deep-convective events are temporally shorter, show

more intermittency (“patchiness”), and have higher rain rates than shallow-convective events

(Godart et al., 2011). Orographic rainfall is a complex process (Houze, 2012) and precipitation

rates in mountainous regions remain poorly known as a result (Roe, 2005).

The Hydrological Cycle in the Mediterranean Experiment2 (HyMeX, Drobinski et al., 2014;

Ducrocq et al., 2014) is a long-term, multi-disciplinary, international project that brings

together teams of scientists with the common goal of providing better understanding of the

complex water cycle of the Mediterranean. It has a particular emphasis on extreme and high-

impact weather events such as HPEs. The main study region for this thesis was in Cévennes,

France, in which an instrument network was deployed as part of HyMeX. The Cévennes region

lies to the southeast of the Massif Central, and forms a large south-easterly facing slope to

the sea, dissected by deep and narrow northwest to southeast valleys (Miniscloux et al., 2001;

Godart et al., 2011). It is one of the five rainiest areas in the region (Nuissier et al., 2008). Rain

occurs particularly during the autumn - there is a well defined precipitation maximum in

October (Frei and Schär, 1998). The region is subject to HPEs (Ricard et al., 2012) and ORBs

(Godart et al., 2011), with an average 7.6 days per year with rainfall over 150 mm (between

1967 and 2006, Ricard et al., 2012). Data from two autumn field campaigns in this region were

used in this work.

1.5 Thesis outline

The work in this thesis follows a logical arc, from collection of accurate DSD data from a

network of disdrometers, to technique development for the study of the variability of the DSD

using spatial interpolation and stochastic simulation, to analysis of DSD variability in the

horizontal and vertical. Here, a brief overview of the following chapters is provided. Each

chapter has been adapted from a published or submitted research article.

Chapter 2 relates to collection of the high-quality and accurate point measurements of the DSD.

Most of the DSD data used in this thesis were collected by a network of Parsivel disdrometers,

which is introduced in this chapter. Like any instrument, disdrometers have collection errors

that must be taken into account when their data are used. In particular, these disdrometers

classify drops into “bins” of drop size, and may misestimate the number of drops in each

class. In Chapter 2 we present a method for the correction of disdrometer data recorded using

Parsivel disdrometers, that uses a 2DVD as a reference. In the first part of the method, drop

velocities are corrected with reference to a theoretical model of raindrop terminal velocity.

Second, raw disdrometer measurements are filtered to remove particles that are unlikely to

be real drops. Third, concentrations per Parsivel diameter class are corrected such that on

average they match those recorded by the 2DVD. The correction method improves the match

2See http://www.hymex.org
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of DSD moments between the Parsivel and the 2DVD, and test results are shown in which, in

the majority of cases, the Parsivel-derived rain rate was closer to that of a collocated rain gauge

after the correction was applied. The corrected Parsivel data were then used for technique

development and analyses of DSD variability.

In Chapter 3, we present a new method for spatial interpolation and stochastic simulation

of experimental DSD spectra. Disdrometers such as Parsivels provide non-parametric ex-

perimental DSD spectra in which concentrations are provided per drop diameter class. In

a network of disdrometers, the DSD is measured at discrete point locations with varying

inter-measurement distance. Our interpolation and simulation approach uses geostatistics to

estimate or simulate the DSD, in the same non-parametric classes, at unmeasured points in

space. Careful processing is required in order to comply with the assumptions of the geosta-

tistical technique. Non-stationarity of the DSD field is taken into account using the dry-drift

(Schleiss et al., 2014a), which we show exists on DSD concentrations. Principal component

analysis is used to find uncorrelated components of the DSD, which are then interpolated or

simulated for the requested points. A back-transformation process produces the estimates of

the DSD. Results of leave-one-out testing show low bias on the estimated DSDs.

In Chapter 4, the data correction and DSD stochastic simulation techniques are brought

together to investigate the small-scale variability of the DSD. In this chapter we report on a

study in which simulated high-resolution grids of DSDs, conditional on measurements, were

used to test the effects of DSD variability on areal rainfall retrieval. DSD variability is studied

over two scales that were chosen for their similarity to areal scales used in rainfall products.

The first scale, 5×5 km2, is the ground footprint size of the Global Precipitation Measurement

(GPM) satellite weather radar. The second scale, 2.8×2.8 km2, is the size of a pixel in the

operational Consortium for Small-scale Modelling (COSMO) numerical weather model. The

error introduced by assuming that a point measurement represents an areal measurement is

quantified by areal size, and the retrieval algorithms for both GPM and COSMO are evaluated

with respect to whether their pixel-scale results are representative of the sub-pixel process.

In Chapter 5 we move to investigation of the double-moment normalisation of the DSD.

Normalisation allows for the compact representation of the DSD and is also useful for the

investigation of DSD variability, but it relies on the idea that the normalised DSD is the same

everywhere. We show that the double-moment normalisation method of Lee et al. (2004)

is effective at collapsing the DSD into a mean shape. We show the results of tests on the

invariance of the double-normalised DSD in three climatic regions, through both horizontal

and vertical displacement of the normalised DSD. This is the first test of the invariance of the

normalised DSD in the vertical and the first over a large horizontal range of up to 100 km in

one region. The normalised DSD trained in one region is shown to be applicable to another

region more than 7000 km away.

In Chapter 6, the assumption that the normalised DSD is invariant is used to develop a

new technique for the retrieval of the DSD from polarimetric radar data. The assumption
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of an invariant normalised DSD means that the goal of the new technique is essentially to

recover two moments of the DSD from radar information, because with these values the whole

DSD can be reconstructed at any point using double-moment normalisation. We show how

moments three and six of the DSD can be recovered from polarimetric variables, and show

results of testing the retrieval technique against a state-of-the-art method. The technique

performs as well or better than the existing technique. Further, we introduce a new method

for the treatment of noisy radar variables that substantially improves the performance of both

techniques when they are applied to real radar data.

In Chapter 7, we turn from the study of small-scale variability of rain to that of snow, and

present an investigation into the multifractal properties of snowfall at high temporal and

spatial resolutions. Universal multifractal (UM) analysis is a method for describing the spatio-

temporal variability of a process over many scales. We applied it to high-resolution snowfall

data collected in the Swiss Alps with a 2DVD and cut into time series, reconstructed vertical

columns, and small-scale snowflake accumulation maps. This is the first application of full

UM to vertical columns of snowfall structure, and to snowfall-only accumulation maps and

time series at such high resolution.

In the final chapter, Chapter 8, conclusions are drawn and perspectives for future research are

explored. The work in the thesis is summarised and put into perspective.
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2 Correction of Parsivel drop size distri-
bution measurements

This chapter is adapted from:

• T. H. Raupach and A. Berne. Correction of raindrop size distributions measured by

Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmo-

spheric Measurement Techniques, 8(1):343–365, 2015. doi: 10.5194/amt-8-343-2015. URL

http://www.atmos-meas-tech.net/8/343/2015/. Distributed under Creative Commons

Attribution 3.0 License.

• T. H. Raupach and A. Berne. Corrigendum to “Correction of raindrop size distributions

measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a

reference” published in Atmospheric Measurement Techniques, 8, 343-365, 2015. Atmos.

Meas. Tech., 2015. doi: 10.5194/ amt-8-343-2015-corrigendum. URL http://www.

atmos-meas-tech.net/8/343/2015/. Distributed under Creative Commons Attribution

3.0 License.

This work was completed by T. Raupach under the supervision of A. Berne. Research, analyses,

and writing are by T. Raupach. For data acknowledgements, see Appendix A.
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Chapter 2. Correction of Parsivel drop size distribution measurements

2.1 Introduction

In order to study rainfall microstructure effectively, we require accurate measurements of

the DSD. Disdrometers are instruments that measure the DSD at a point location. There are

various types, but in this chapter we are concerned with the OTT Hydromet particle size and

velocity (Parsivel) disdrometer, and the two-dimensional video disdrometer (2DVD) from

Joanneum Research. The original Parsivel was by PM Tech Inc. OTT Hydromet purchased the

rights to the instrument and redesigned it in 2005; the result was the first-generation Parsivel.

The second-generation Parsivel2 was introduced in 2011, and provided improvements over

the first-generation model (Tokay et al., 2014). The Parsivel is a laser optical disdrometer that

uses a sheet of light through which drops fall. The diameter and velocity of a drop is then

determined by sensing the shadow it casts and for how long it casts it (Löffler-Mang and Joss,

2000). Parsivels bin drops into classes of velocity and diameter and record the number of

drops measured per class over an integration time. Parsivel disdrometers have been shown

to be susceptible to errors in the recorded drop concentrations, particularly for small and

large drops (Krajewski et al., 2006; Tokay et al., 2013). The Parsivel measurement technique

assumes properties of the precipitation that are far more appropriate for rain than for solid

precipitation; for example, that particles will be spheroidal, have a horizontal orientation

of their major axis, and that only one particle will be in the beam at once (Yuter et al., 2006;

Battaglia et al., 2010). The Parsivel is, however, a low cost, durable, and reliable instrument

that makes it particularly well-suited for deployment in networks to study the small-scale

variability of the DSD (e.g. Tapiador et al., 2010; Jaffrain et al., 2011).

The 2DVD 1 uses two perpendicular high-speed line-scan cameras, each with an opposing

light source, to measure particles from orthogonal angles and thus record their shape (e.g.

Thurai and Bringi, 2005; Thurai et al., 2007) as well as their size and velocity (Kruger and

Krajewski, 2002; Schönhuber et al., 2008). Information on each individual particle that falls

through the measurement area of the 2DVD is recorded. A particle’s fall speed is determined

by the difference in time between its detection in the two camera planes, which are offset

vertically by 6.2–7 mm. Thus, the 2DVD uses no literature-derived estimates for raindrop shape

or velocity; these parameters are measured directly (Schönhuber et al., 2008). Some drawbacks

of the 2DVD have been noted. In particular, drops with diameters smaller than 0.2 mm have

been found to be unreliably measured (Tokay et al., 2001); Tokay et al. (2013) recommend

taking 0.3 mm as a minimum measured diameter in 2DVD data due to underestimation of

drop counts below this diameter. In earlier designs of the instrument, the reliability of mea-

surements decreased with increasing wind speed (Nešpor et al., 2000). This has subsequently

been addressed through design improvements (Schönhuber et al., 2007).

Several comparisons between 2DVD and Parsivel disdrometers have been reported on in the

literature. In experimental trials the 2DVD has been found to produce better matches to rain

1The 2DVD was called the two-dimensional video distrometer by Schönhuber et al. (2008), to emphasise that
the instrument collects information on the distribution of particles. To avoid confusion we use the standard
spelling of disdrometer.
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gauges than Joss and Waldvogel (Tokay et al., 2001) and Parsivel (Thurai et al., 2011; Tokay

et al., 2013) disdrometers. Krajewski et al. (2006) showed that PM Tech Parsivel disdrometers

measured higher numbers of small drops (0.2 to 0.4 mm) than the 2DVD and generally re-

ported higher rain rates. In a study in Alabama, USA, using first-generation Parsivels, Tokay

et al. (2013) found that Parsivel disdrometers were less sensitive to small drops than the 2DVD,

and that they overestimated the numbers of drops over 2.44 mm in diameter, while under-

estimating the numbers of drops under 0.76 mm in diameter. Furthermore, they found that

Parsivels measured fall velocities lower than the expected terminal fall speeds for drops larger

than 2.44 mm in diameter. Tokay et al. (2013) concluded that inhomogeneous laser beams

in first-generation Parsivel disdrometers were the cause of the misestimation of drop counts.

Thurai et al. (2011) found that first-generation Parsivels recorded higher mass-weighted mean

diameter and rain rate than 2DVD, mostly when the rain rate exceeded 20 mm h−1.

Disdrometers can record erroneous measurements due to wind turbulence, splashing, mis-

matching between cameras (in the case of the 2DVD), multiple drops appearing at the same

time, margin-fallers, or external interference from, for example, insects or spiderwebs. Mini-

mal data treatment for disdrometer measurements usually involves removing outlier points by

reference to expected terminal fall velocity (e.g. Tokay et al., 2001; Kruger and Krajewski, 2002;

Thurai and Bringi, 2005). For example, Tokay et al. (2013) removed drops exceeding ±50 % of

the expected terminal fall speed, while Jaffrain and Berne (2011) used a threshold of ±60 % of

the expected fall speed. This existing approach removes particles that are obviously erroneous,

but it has some shortcomings. By only removing measurements, it does not allow for the fact

that the disdrometer may underestimate the number of drops falling. Most importantly, the

treatment is based solely on bulk variables such as rain rate, and does not test whether the

resulting DSDs after the correction are physically viable.

In this chapter, we present a correction method for DSD measurements provided by Parsivel

disdrometers, using a 2DVD as a reference instrument. The correction is designed to ensure

that the DSDs recorded by Parsivel disdrometers are accurate, in terms of both the raw DSD

and its moments. The correction method adjusts two properties of the recorded DSDs. First,

drop velocities per diameter class are shifted such that the mean velocity per diameter class

aligns with the theoretical terminal drop velocity for raindrops of that diameter; these raw

measurements can then be screened for implausible measurements. Second, per-diameter-

class volumetric drop concentrations are scaled such that they match, in a statistical way, the

concentrations measured by a collocated 2DVD.

The rest of this chapter is organised as follows: the data used are described in Section 2.2,

where we introduce the Parsivel network that provided data for most of the work in this

thesis. Measurement of the DSD and the instruments we are concerned with in this work

are discussed in Section 2.3. The correction is introduced in Section 2.4. The results of the

correction applied to the data are shown in Section 2.5 for first-generation Parsivels, and in

Section 2.6 for Parsivel2. The application of the technique to another climatology is addressed

in Section 2.7. Concluding remarks are made in Section 2.8.
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2.2 Data

The Parsivel DSD correction was developed and tested on first-generation Parsivel data col-

lected during two consecutive autumns in Ardèche, France, as part of HyMeX (Drobinski

et al., 2014; Ducrocq et al., 2014). The method was then also tested on second-generation

Parsivel (Parsivel2 hereafter) data collected in the same region in autumn 2013. To test the

method in a different climatology and region, we used data from Payerne, Switzerland, using

a first-generation Parsivel and the same 2DVD used in the HyMeX campaign. In this section

these data sets are briefly described.

2.2.1 HyMeX SOPs 2012 and 2013

Two autumn campaigns in the same region in Ardèche, France, provided the primary data

used in this thesis. The campaigns were special observation periods (SOPs) run between

September and November in both 2012 (SOP2012) and 2013 (SOP2013). The field site was a

roughly 13 × 7 km2 area in the Cévennes region. Cévennes has a Köppen–Geiger Cfa climate

type, which indicates that it has a temperate climate with no dry season and a hot summer

(Peel et al., 2007). The town of Montélimar, about 18 km from the SOP2012 and SOP2013 field

area, records an average annual rainfall of 905 mm, with 77 rainy days per year on average

(MeteoFrance, 2014). Cévennes experiences Mediterranean rainfall and has a well-defined

precipitation maximum in October (Frei and Schär, 1998). It is subject to heavy precipitation

events that can produce large rainfall totals (greater than 150 mm) in a day (Ricard et al., 2012).

The instrument network can be split into two sub-networks that were separately managed. The

first, deployed by EPFL LTE, consisted of seven (nine) first-generation Parsivel disdrometers in

2012 (2013), a transportable, polarimetric X-Band weather radar (MXPol, for instrument details

see Schneebeli et al., 2013), a Vaisalla weather station (2013 only), and the 2DVD. The second

(HPicoNet, see Appendix A) was composed of five (four in 2012) Parsivel2 disdrometers, two

first-generation Parsivel disdrometers, and a network of rain gauges. Collocated rain gauge

measurements were available for all disdrometers across both networks, with the exception

of Montbrun in 2013. In addition, in 2013, two micro rain radars (MRRs, Peters et al., 2002,

2005; Tridon et al., 2011) collected vertical profiles of precipitation. A map of the disdrometer

locations is shown in Figure 2.1, and station information is shown in Table 2.1.

In this chapter, we used data from the LTE network and rain gauge network in 2012 and 2013,

and the HPicoNet disdrometers in 2013 only. Due to data availability, only the HPicoNet sta-

tions shown in Table 2.15 were used in this chapter. Further, because there was no collocated

rain gauge at Montbrun, the disdrometer data from Montbrun was not used in this chapter.

The 2DVD was collocated with a Parsivel and a tipping-bucket rain gauge in 2013. For our

purposes here, the main difference between the setup of the two years is that in SOP2013,

there was a Parsivel, Parsivel2, and rain gauge collocated with the 2DVD at the Pradel Grainage

site. In SOP2012, the closest Parsivel and rain gauge to the 2DVD were at the site of Pradel 1

and Pradel 2, about 480 m away. For some analyses we combined data from the LTE network
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Figure 2.1 – A map of the HyMeX station network, showing Parsivel stations (green) and Parsivel2 stations (dark
blue). The MXPol weather radar was located, with a first-generation Parsivel, at Montbrun (yellow). The MRRs
were at Montbrun and Pradel Grainage. Montbrun and Pradel Grainage disdrometers were deployed only in
2013. Pradel Grainage was the location for the 2DVD, and for both first and second-generation instruments in
2013. The inset map shows the location of the HyMeX network (red, not to scale) and Payerne (light blue, not to
scale). Maps ©Thunderforest (CC BY-SA, http://www.thunderforest.org/), map data ©OpenStreetMap (ODbL,
http://www.openstreetmap.org/copyright).

in SOP2012 and SOP2013 into a single data set, which we refer to as the “combined SOPs” data

set.

Due to a clock error with the 2DVD, a variable clock drift was present in the 2DVD data. During

the campaign, Parsivel clocks were synchronised using inbuilt global positioning system

(GPS) receivers and were thus more reliable than the 2DVD clock. Adjustments were made

to the 2DVD data for SOP2013 in order to synchronise the clocks of the instruments, for

events where it was possible to do so. This synchronisation was done manually, by comparing

time series of the rain rate from the 2DVD and a collocated Parsivel. The 2DVD time series

was shifted forward in time to match the Parsivel time series as closely as possible, at 30 s

temporal resolution. The adjustment was then applied to the series of individual 2DVD drops.

Table 2.2 shows the adjustments made per event in SOP2013, which are between 30 and 60

s. For SOP2012, no adjustments were made because the 2DVD was not collocated with any

instruments.

19

http://www.thunderforest.org/
http://www.openstreetmap.org/copyright


Chapter 2. Correction of Parsivel drop size distribution measurements

Inst Name Lat (◦N) Long (◦E) Alt H12 H13 A12 A13 T

P1 Lavilledieu 44.5772 4.4532 227 108 70 233 193 30
P1 Les Blaches 44.6008 4.4810 429 103 67 233 148 30
P1 Lussas 44.6123 4.4706 289 84 64 202 149 30
P1 Mirabel 44.6069 4.4987 496 108 72 217 193 30
P1 Pradel 1 44.5829 4.4987 278 105 72 233 144 30
P1 Pradel 2 44.5829 4.4987 278 108 64 258 115 30
P1 Pradel Grainage 44.5790 4.5011 271 68 146 30
P1 St-Germain 44.5551 4.4497 204 110 55 263 76 30
P1 Montbrun 44.6141 4.5460 602 44 85 30
2DVD 2DVD 44.5790 4.5011 271 102 66 229 197

P1 Mont-Redon 44.6141 4.5148 636 60 94 97 190 60
P1 Pradel-Vignes 44.5801 4.4950 256 1 37 0 106 60
P2 Pradel Grainage 44.5790 4.5011 271 79 179 60
P2 Villeneuve de Berg 44.5548 4.4953 301 65 71 115 179 60
P2 Villeneuve de Berg 2 44.5547 4.4954 301 68 73 141 188 60
P2 Villeneuve de Berg 3 44.5548 4.4955 301 68 134 60
P2 St Etienne de Fontbellon 44.6000 4.3826 302 73 121 60

Table 2.1 – Disdrometer station information for the HyMeX campaigns, showing the instrument (P1 – first-
generation Parsivel, P2 – Parsivel2, 2DVD – two-dimensional video disdrometer), the WSG84 (World Geodetic
System 1984) coordinates of each station, its altitude [m] above sea level, the number of hours it recorded liquid
precipitation with all quality control flags positive during 2012 (H12) and 2013 (H13), the total amount [mm] it
recorded for those times in 2012 (A12) and in 2013 (A13), and its raw measurement integration time (T) [s]. Note
that hours and amounts shown in this table were calculated using 5-minutes resolution and R > 0.1 mm h−1, after
the correction had been applied. The station at St-Germain had technical problems in 2013. A horizontal line
separates the two networks that were separately maintained and had different integration times.

2.2.2 Payerne

To test the method on data collected in a different region and a different climatology, we used

data collected in Payerne, Switzerland. Payerne has a Köppen–Geiger Cfb climate type, which

indicates that it has a temperate climate, without a dry season, and with a warm summer. It has

an average annual rainfall of 891 mm, with an average of 114 rainy days per year (MeteoSwiss,

2013), meaning that the precipitation in Payerne is more evenly spread across the year than in

Ardèche. In contrast to the drier summers of Ardèche, Payerne’s rainfall is higher during the

summer months (MeteoSwiss, 2013). A first-generation Parsivel disdrometer was collocated

with a 2DVD at Station SwissMetNet in Payerne between April and June 2014 (see Table 5.2

for station coordinates). In this time the Parsivel recorded 263 mm of liquid precipitation

(R > 0.01 mm h−1) in a total of 208 hours of rain, while the 2DVD, which was deployed later,

recorded 84 mm in a total of 130 hours of rain. In this chapter, we describe the development of

the Parsivel correction technique by focusing on data from the HyMeX SOP2012 and SOP2013

campaigns. We then discuss the application of the technique to data from Payerne, to examine

its applicability to a different climatological region.
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2.3. Processing of disdrometer measurements

Event From (UTC) To (UTC) A [s]

24,25 20-10-2013, 00:00:00 24-10-2013, 00:00:00 60
26 27-10-2013, 00:00:00 28-10-2013, 00:00:00 30
27 02-11-2013, 00:00:00 03-11-2013, 00:00:00 60
28 04-11-2013, 00:00:00 05-11-2013, 00:00:00 60
29 05-11-2013, 00:00:00 06-11-2013, 00:00:00 30
30 18-11-2013, 00:00:00 19-11-2013, 00:00:00 30

Table 2.2 – Clock adjustments (A) for 2DVD events in HyMeX SOP2013.

2.3 Processing of disdrometer measurements

Disdrometer measurements must be processed to convert raw measurements into more useful

forms. In this section we describe the processing of data from the Parsivel disdrometer and

2DVD.

2.3.1 Parsivel

Parsivel disdrometers bin measured particles into particle counts per velocity and diameter

class. There are 32 velocity classes and 32 diameter classes, with varying widths. Parsivels also

determine the rainfall intensity (or rain rate), and two status flags: one provides an indication

of the type of precipitation being observed (liquid or solid, for example), and another provides

information on the quality of the measurement. For example, if the glass in front of the

Parsivel’s laser beam is dirty and reliable measurements are no longer possible, that will be

indicated by a quality flag with value of 2. Value 0 indicates normal operation, while value 1

indicates dirty glass but that measurements are still possible. Value 3 indicates that the laser is

damaged. We make use of these flags to restrict our analysis to high-quality measurements.

The effective sampling area of the Parsivel disdrometer is about 54 cm2, but is different for

different diameter classes, due to the fact that the whole drop diameter must be included in

the sampling area for the drop to be counted. So-called “margin-fallers” are automatically

removed, which reduces the effective sampling area. For the i th class, the sampling area is

(Löffler-Mang and Joss, 2000; Battaglia et al., 2010)

SPars
i = 10−6 ×Pl

(
Pw − Di

2

)
, (2.1)

where SPars
i [m2] is the effective sampling area, Di [mm] is the class-centre equivolume drop

diameter for the i th diameter class, Pl [mm] is the length of the Parsivel beam (180 mm), and

Pw [mm] is the width of the beam (30 mm).

Let Cv,i [–] be the raw number of particles recorded by the Parsivel for the vth velocity class

and the i th equivolume drop diameter class. Let ∆t [s] be the measurement integration time,
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Chapter 2. Correction of Parsivel drop size distribution measurements

Vv [m s−1] the class-centre velocity of the vth velocity class, and δi [mm] the width of the i th

diameter class. Then we can convert the raw number of particles into a per-diameter-class

volumetric drop concentration N Pars
i [m−3 mm−1] using

N Pars
i = 1

SPars
i δi∆t

32∑
v=1

Cv,i

Vv
. (2.2)

It is worth noting that the Parsivel instrument itself calculates and provides an estimate of

the rain intensity. In this chapter we always refer to the estimate of rain rate provided by

the Parsivel as the “Parsivel-derived intensity”, to avoid confusion with the DSD-derived rain

rate R, which is defined by Equation 1.4. The values of these two variables are usually very

similar, but they are not exactly the same; differences are possibly due to peculiarities of the

implemented Parsivel processing algorithm that is not public.

2.3.2 Two-dimensional video disdrometer

The 2DVD records details of individual drops, including the diameter and velocity of each and

the effective sampling area of the instrument at the moment the drop was recorded. For our

purposes it is practical to bin the drops into diameter classes. Let M be the number of drops

that were recorded within one integration time of length ∆t , and let S2DVD
j [m2] and V j [m

s−1] be respectively the effective sampling area and fall velocity for the j th recorded particle.

Then the i th equivolume diameter class, where the class width is δi [mm], will have a drop

concentration N 2DVD
i [m−3 mm−1] of

N 2DVD
i = 1

δi∆t

M∑
j=1

1

S2DVD
j V j

. (2.3)

While most 2DVD-derived bulk rainfall variables are calculated using this N 2DVD
i , the rainfall

rate R [m h−1] for a given time step can be calculated directly from the individual drop

measurements without binning the drops into classes. The rain rate is given by

R2DVD = 6π×10−4

∆t

M∑
j=1

D3
j

S2DVD
j

, (2.4)

where D j [mm] is the equivolume diameter of the j th recorded drop. The difference between

the drop-wise rain rate and the rain rate calculated from a binned DSD is very small; in the

2DVD data used in this chapter, the mean relative difference between DSD-derived rain rate
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2.3. Processing of disdrometer measurements

and rain rate calculated drop-wise was less than 0.5%.

While the classes for the Parsivel disdrometer are predefined, we can choose any class defi-

nition for the 2DVD data. For comparisons of drop concentrations and DSD moments with

the Parsivel records, we used Parsivel diameter classes for the 2DVD. For computation of

the rain rate R from 2DVD data we used diameter classes with a constant width of 0.2 mm,

corresponding to the resolution of the 2DVD.

2.3.3 Criteria for suspicious particles

Before converting our raw drop counts into per-diameter-class volumetric drop counts, we

perform some data processing, the aim of which is to filter out particles recorded by the

Parsivels and the 2DVD that are very unlikely to be raindrops. These measurements are

assumed to be caused by external interferences such as insects, or droplets of water caught

in spiderwebs inside the measurement area. We use simple thresholds to exclude classes of

velocity and diameter which are unfeasible. To decide on the values for the thresholds, the

2DVD was used as the reference because it is not as easily affected by these external factors as

Parsivel disdrometers.
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Figure 2.2 – Distribution of drop diameters recorded by the 2DVD in SOP2012 and SOP2013 events, with the y axis
on a log scale.

Drops can only reach a certain size (about 10 mm) before they break up into smaller drops

due to aerodynamic forces (Pruppacher and Klett, 2000). Figure 2.2 shows the distribution of

drop sizes recorded in rain events from HyMeX (2012 and 2013) by the 2DVD. Table 2.4 shows

the number of drops per diameter class for larger drops. Based on this information, and by

looking at the velocity/diameter combinations that the 2DVD hardly ever recorded, we chose a

filter that removes a drop with diameter D [mm] and velocity V [m s−1] if any of the following

conditions are true:

D > 7.5, (2.5)

V > v(D)+4, (2.6)

V < v(D)−3, (2.7)

where v(D) is the terminal velocity for a drop of equivolume diameter D as defined by Beard
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Chapter 2. Correction of Parsivel drop size distribution measurements

(1976). Figure 2.3 shows the occurrence of velocity/diameter combinations recorded by the

2DVD during the combined SOPs. Figure 2.5 shows similar plots for sums of drop counts per

Parsivel diameter and velocity class, for both the 2DVD and Parsivel. In these figures, the grey

area is the region in which drops will be removed. Over the combined SOPs data set, the filter

removed 0.2% of the drops recorded by the 2DVD. This filtering of suspicious records was

applied to both Parsivel and 2DVD data before resampling to any different time resolutions.

To resample Parsivel records, the mean DSD was found over each new time period and bulk

rainfall variables were then calculated from each mean DSD. The Parsivel precipitation type

flag was resampled to give an indication of the proportion of the time period for which solid

precipitation was recorded. Note that here, solid precipitation refers to any precipitation that

does not fit into the Parsivel instrument’s criteria for liquid precipitation, which is based on

the velocity and size of the particle (see Löffler-Mang and Joss, 2000). The worst quality flag

was kept for each resampled time step, to give an indication of whether any low-quality flags

were raised during the resampled integration time. Drop size classes that contained drops

after the filter was applied are shown in Table 2.3. First-generation Parsivels do not record

drops in the first two diameter classes (up to 0.2495 mm); we also considered these classes

unreliable in Parsivel2 records and did not use them.

Dclass min [mm] Dclass max [mm] D [mm] δ [mm]

0.2495 0.3745 0.31 0.1250
0.3745 0.4995 0.44 0.1250
0.4995 0.6245 0.56 0.1250
0.6245 0.7495 0.69 0.1250
0.7495 0.8745 0.81 0.1250
0.8745 0.9995 0.94 0.1250
0.9995 1.1245 1.06 0.1250
1.1245 1.2500 1.19 0.1255
1.2500 1.5000 1.38 0.2500
1.5000 1.7500 1.62 0.2500
1.7500 2.0000 1.88 0.2500
2.0000 2.2500 2.12 0.2500
2.2500 2.5000 2.38 0.2500
2.5000 3.0000 2.75 0.5000
3.0000 3.5000 3.25 0.5000
3.5000 4.0000 3.75 0.5000
4.0000 4.5000 4.25 0.5000
4.5000 5.0000 4.75 0.5000
5.0000 6.0000 5.50 1.0000
6.0000 7.0000 6.50 1.0000

Table 2.3 – Parsivel equivolume drop diameter classes for which drops were recorded. D is the centre of each class
to two decimal places, while δ is the width of each class. Class definitions are from the OTT Parsivel operating
instructions. This table was originally included in Raupach and Berne (2016) (Chapter 4 of this thesis).

2.3.4 2DVD as reference instrument

Given that the 2DVD has previously been shown to produce better matches to independent

rain rate measurements than Parsivel (e.g. Tokay et al., 2001; Krajewski et al., 2006), and that

24



2.3. Processing of disdrometer measurements

Diameter Number of % total
class [mm] drops drops

(5,5.5] 273 0.00531
(5.5,6] 97 0.00189
(6,6.5] 36 0.00070
(6.5,7] 10 0.00019
(7,7.5] 3 0.00006
(7.5,8] 1 0.00002

Table 2.4 – Numbers of large drops recorded by the 2DVD during the combined SOP event times.
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Figure 2.3 – Occurrence of velocity/diameter combinations recorded by 2DVD during the HyMeX campaigns in
the autumns of 2012 and 2013. The physical-drop filter is overlaid in grey. The black line indicates the expected
terminal drop velocity of Beard (1976).

it provides higher-resolution DSD measurements than Parsivel, both temporally and in the

drop sizes it can discern, we used the 2DVD as the reference instrument for this work. To test

the reliability of the 2DVD we compared the 2DVD measurements to collocated rain gauges

for the HyMeX SOP2013 campaign. Two separate instruments were collocated with the 2DVD

during SOP2013: a Vaisala weather station equipped with a rain cap, and a tipping-bucket

rain gauge. We compared the rain rate derived from the 2DVD drop data (Equation 2.4) to

rain gauge records. To remove solid particles we considered only time steps for which the

collocated Parsivel recorded at least 90% liquid precipitation, and for which the 2DVD and

rain gauge both recorded a rain rate greater than or equal to 0.1 mm h−1. One outlier time

step, for which the 2DVD was only partially working (4 October 2013, 18:00 UTC – Coordinated

Universal Time), was removed. The comparisons are shown in Figure 2.6.

It is worth noting here the performance statistics we use. In all scatter plots in this chapter,

the one-to-one line is shown in red dashes, while the blue line indicates the line of best fit

found using linear least squares regression, with standard error shaded in grey. The reference

instrument is always on the x axis. The regression slope (reg. slope) is the slope of the
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regression line. For a given time t , let the reference value be Rt and the observed value be

Ot . Let the total number of time steps be T . The mean ratio is defined as the reference mean

divided by the observed mean. Let Et be the difference for the t th time step, defined as

Et =Ot −Rt . RMSE is the root mean squared error,

RMSE =

√√√√√ T∑
t=1

E 2
t

T
. (2.8)

r 2 is the squared Pearson correlation coefficient between reference and observed data sets.

Bias is the mean of the differences, 〈E〉. Relative bias (RB) is the median of the relative errors, a

percentage defined as

RB = median{(Ot −Rt )/Rt ×100} . (2.9)

We are only concerned with liquid precipitation in this chapter, so we subset time steps to

those in which the Parsivel recorded no solid precipitation (for five-minute resolution) or at

most 10% solid precipitation (for one-hour resolution), and for which the Parsivels recorded

no non-zero quality status flags. Furthermore, we only compared time steps for which both

instruments being compared recorded non-zero rain amounts. We take 0.01 mm h−1 as the

minimum rain rate the Parsivel can record in one 30 s integration time. Thus, we use a non-

zero rain rate threshold of 0.001 mm h−1 at five-minute resolution and of 8.3×10−5 mm h−1

at one-hour resolution. Because each tip of the tipping-bucket rain gauges indicates 0.1 mm

of accumulated precipitation, the minimum rain rate that a rain gauge can measure in five

minutes is 1.2 mm h−1, and in one hour the minimum is 0.1 mm h−1. When comparing to

rain gauges, the non-zero rain rate threshold therefore becomes 1.2 mm h−1 for five-minute

resolution and 0.1 mm h−1 for one-hour resolution. Because our correction affects the DSD-

derived rain rates from the Parsivels, we use the Parsivel-derived intensity when applying the

non-zero threshold to Parsivel data. We refer to time steps that satisfy these criteria as those

with non-zero liquid DSDs.

The 2DVD showed excellent agreement with the tipping-bucket rain gauge and Vaisala weather

station, with high correlation coefficients (r 2 at least 0.98) and low bias amounts for both

comparisons (absolute bias less than or equal to 0.2 mm h−1). In both cases the 2DVD tended

to slightly underestimate the rain amount given by the other gauge. We conclude, however,

that the 2DVD provided reliable measurements of the rain rate. Note that the relative bias

between 2DVD and gauge was −14%, and between 2DVD and Vaisala it was 9%. The difference

in these relative biases can be explained largely by differences in measurements of very small

rain rates. This is equivalent to the relative bias we observed between two collocated Parsivels
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(Pradel 1 and Pradel 2) using the same constraints to choose comparison time steps, also at

one-hour resolution, after filtering for unfeasible records (but before any other correction was

applied). Using Pradel 1 as reference, the relative bias was −6% (16%) in 2013 (2012). Using

Pradel 2 as reference, the relative bias was 7% (−14%) in 2013 (2012). This means that when

we compare Parsivel rain rates to rain gauges or to the 2DVD, we cannot distinguish the level

of agreement when the relative bias is less than about 10%, due to instrumental uncertainty.

2.4 Correction of Parsivel DSDs

The correction of Parsivel DSDs is made in two steps. The two steps were chosen so that

both the velocity and diameter measurements made by Parsivel disdrometers are addressed.

First, the raw Parsivel data is corrected so that per-diameter-class mean velocities match

the expected terminal velocity for each class. At this point the raw data can be screened

for unfeasible measurements as described in Section 2.3.3. Second, a per-diameter-class

adjustment factor is applied to Parsivel classes, in order to make the drop size distribution

match, in a statistical way, that recorded by a 2DVD. This adjustment of drop concentrations

in effect changes the drop equivolume diameters measured by the Parsivel. In this section we

address each correction in turn.

2.4.1 Correction of per-diameter-class drop velocities
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Figure 2.4 – Velocity IQR possible ranges, by Parsivel diameter and velocity class, for mean drop counts for 2DVD
and the collocated Parsivel in HyMeX 2013. Only time steps for which both instruments recorded a value and the
Parsivel-recorded liquid rain were included. The grey vertical bars indicate the Parsivel diameter class boundaries.
Above the 21st diameter class (drops larger than 6 mm), there were not enough drops to meaningfully calculate a
velocity range; for this reason the plot is truncated to 6 mm.

Figures 2.3 and 2.5 show the density of particles recorded at each diameter/velocity combina-

tion, by the 2DVD and Parsivel disdrometers. Both the 2DVD and Parsivel record drops at a

range of velocities for a given equivolume diameter or diameter class. In these plots, the black

line is the expected terminal velocity per drop diameter, calculated using the method of Beard

(1976). The 2DVD recorded the highest concentrations of drops on and very near the expected
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Figure 2.5 – Sum of raw drop occurrences per Parsivel class, for the 2012 and 2013 campaigns. Parsivel counts are
summed at stations Pradel 1 (for 2012) and Pradel Grainage (for 2013). The filtered areas are overlaid in grey. The
black line is the expected terminal drop velocity calculated by Beard (1976).

terminal velocities. Indeed in SOP2013, for time steps for which the nearest Parsivel recorded

liquid precipitation, the bias between expected terminal velocity and velocity recorded by the

2DVD was 0.05 m s−1 and the relative bias was 2% (over the combined SOPs the bias was 0.2

m s−1 and relative bias was 6.5%). We hence consider the terminal fall velocity from Beard

(1976) as the reference value for fall velocity. The Parsivel tends to overestimate the velocities

of small drops.

To correct the velocities in the Parsivel data, we take the set of recorded velocities for each

drop diameter class, and shift the values such that the mean velocity is equal to the expected

terminal velocity as calculated by the algorithm of Beard (1976). Because the velocity classes

do not have constant width, the classes are first sub-sampled into classes of width 0.1 m

s−1, then shifted and regrouped into the original class sizes. Except when some drops were

counted in very low-velocity classes and are shifted out of the valid velocity range, the number

of drops per diameter class remains the same before and after the velocity shift. An example

plot of drop counts per velocity and diameter class before and after the velocity shift is shown

in Figure 2.7. The velocity shift is equivalent to shifting each column up or down such that

the mean velocity for each column (which is usually close to the brightest point) aligns with

the line that indicates the expected terminal velocity. As an example, for the average drop

counts per velocity and diameter class for SOP2013, using the Parsivel at Pradel Grainage, the

mean shift required per diameter class from 0 to 5 mm was −0.34 m s−1. Once the velocities

are corrected in the raw Parsivel data, any suspicious particles are removed using the criteria

shown in Section 2.3.3, and the volumetric drop concentrations per diameter class are found

using Equation (2.2). This correction and filtering was applied before resampling to any lower

time resolutions.
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Figure 2.6 – Scatter plots showing the comparison between the 2DVD and (a) a collocated tipping-bucket rain
gauge (Pluvio), and (b) a collocated Vaisala weather station. Time steps compared are at one-hour resolution from
HyMeX SOP2013, and include only those times for which the collocated Parsivel recorded a Parsivel-derived rain
rate ≥ 0.1 mm h−1, ≤ 10% of the time step was marked as solid precipitation, and for which both the 2DVD and
gauge recorded a rain rate ≥ 0.1 mm h−1.

Figure 2.4 shows a comparison between the interquartile ranges (IQRs) of the recorded ve-

locities, by diameter class. We calculated the mean drop counts per Parsivel velocity and

diameter class for SOP2013, for 2DVD and Parsivel. We then applied the velocity correction

to the Parsivel drop counts, and calculated the velocity class quantiles, weighted by the drop

counts per diameter class, for each set. Given that the velocity classes can be quite large, it is

possible that the quantiles both fall within one velocity class; in this case, the IQR could be

between 0 and the width of the velocity class. We calculated the minimum and maximum

possible IQR range for each diameter class. The plot shows that when binned into the Parsivel

velocity classes, the spread of velocities was of the same order of magnitude between the two

instruments. We conclude that to correct the velocities measured by Parsivel, it is sufficient

to shift the mean velocity closer to the expected terminal velocity as described above, then

remove suspicious particles (see Equations 2.5, 2.6, and 2.7).

2.4.2 Correction of diameter-class concentrations

We now turn to correcting the drop concentrations per diameter class with reference to the

2DVD. Let P (i ) be the ratio of 2DVD drop concentration to Parsivel drop concentration, defined

such that for the i th equivolume diameter class with centre-diameter Di [mm], at any given
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Figure 2.7 – An example of the velocity correction. Average drop counts for liquid rain from the Parsivel at Pradel
Grainage for SOP2013, shown (a) before the velocity correction and (b) afterwards.

time step,

P (i ) = N 2DVD
i

N Pars
i

. (2.10)

P (i ) is thus the correction factor for that time step: when the Parsivel drop concentration for

class i is multiplied by P (i ) it will match the 2DVD drop concentration for class i . To “train”

the correction for a given data set, we find median values of P (i ) per class of Parsivel-derived

rain intensity. Parsivel-derived intensity is used as it is a measurement of the rain intensity that

is always available with Parsivel disdrometers, and is independent of our DSD correction. It is

hence easily accessible to all potential users. The result is a collection of correction factors for

each Parsivel-derived intensity class. When Parsivel records are multiplied by these correction

factors, the per-diameter-class drop counts are scaled to match the corresponding 2DVD drop

counts.

To explain the correction in more detail, we take as an example the HyMeX 2012 and 2013

SOPs and show each step of the correction calibration. We used data from SOP2013 to train the

correction, because there was a Parsivel collocated with the 2DVD at Pradel Grainage in that

campaign. We used a time resolution of one hour, in order to increase the chance of a time

step sampling large drops, and in order to smooth outliers. Assuming the obtained correction

is not dependent on the temporal resolution, it will be applied at resolutions higher than

one hour in order to have reliable Parsivel DSD measurements for studies of small-scale DSD

variability. A strict set of criteria was used to choose which time steps the comparison should
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Class (i ) Di [mm] [0, 0.5) [0.5, 1) [1, 2) [2, 200)

3 0.31 0.04 0.06 0.08 0.11
4 0.44 0.11 0.14 0.21 0.26
5 0.56 0.36 0.41 0.57 0.60
6 0.69 0.44 0.50 0.66 0.78
7 0.81 0.64 0.71 0.86 1.04
8 0.94 0.68 0.68 0.89 1.00
9 1.06 0.78 0.77 0.95 1.16
10 1.19 0.82 0.77 0.95 1.16
11 1.38 0.78 0.74 0.91 1.11
12 1.62 0.68 0.65 0.80 0.94
13 1.88 0.67 0.53 0.70 0.87
14 2.12 0.60 0.50 0.65 0.80
15 2.38 0.44 0.50 0.56 0.74
16 2.75 0.41 0.40 0.43 0.69
17 3.25 0.39 0.42 0.35 0.65
18 3.75 0.42 0.43 0.49
19 4.25 0.39
20 4.75 0.17
21 5.50 0.34

Table 2.5 – Calibrated first-generation Parsivel correction factors for Parsivel-derived intensity classes for the
SOP2013 campaign. Each row contains the class number, the centre equivolume diameter for the class (Di ), and
the calibrated factors P (i ) for each class of Parsivel-derived intensity. Intensity class boundaries are provided in
millimetres per hour [mm h−1].

be performed on. We used time steps for which the 2DVD and the collocated Parsivel recorded

a non-zero liquid DSD. For all of SOP2013 there were 234 such time steps, corresponding to

234 h of rainfall over which we trained the correction factors. For each valid time step, we

compared the mean DSD recorded by the 2DVD and collocated Parsivel.

Values of P (i ) were calculated for each time step in the training set, by comparing the Parsivel

DSD to the 2DVD DSD. The result is a distribution of P values for each drop diameter class.

To investigate the effect of rain intensity on the values of P (i ), we divided the time steps into

classes of intensity, using the Parsivel-derived intensity modelled by the sensor. The median

P (i ) values of each intensity and diameter class are shown in Figure 2.8. There is clearly a

dependency between the values in the P (i ) curve and the rain intensity.

The most notable feature of Figure 2.8 is that the numbers of small drops (under about 0.7 mm)

were overestimated by the Parsivel. For these classes, the values of P (i ) are low, indicating

that the Parsivel drop counts need to be scaled down to match the corresponding 2DVD drop

counts. For low rain rates, below 1 mm h−1, the Parsivel overestimated drop counts in all

classes up to 4 mm. Note that large drops are very rare in these rain rate classes and, as we

will see, the values of P (i ) are more reliable for smaller drop sizes. We identified groups of

behaviour of P (i ) by ranges of Parsivel-derived intensity, and thus divided the intensities into

four classes for ranges [0,0.5), [0.5,1), [1,2) and [2,200) mm h−1. Using these ranges as the class

definitions for Parsivel-derived intensity, we obtained distributions of P (i ) per drop diameter

and Parsivel-derived intensity class that are shown in Figure 2.9. The distributions are over
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Chapter 2. Correction of Parsivel drop size distribution measurements

Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 130.57 10.65 161.72 15.70 221.35 43.02 0.57 0.91
1 62.37 9.35 103.95 18.08 102.07 36.31 0.78 0.93
2 40.65 9.47 81.94 21.19 64.28 40.68 0.93 0.95
3 46.55 12.33 77.70 25.93 93.29 62.36 0.96 0.95
4 96.61 23.15 82.40 32.51 284.39 131.71 0.95 0.95
5 286.19 66.03 97.28 40.65 1053.62 384.56 0.93 0.93
6 1022.93 261.95 117.29 49.89 4266.92 1532.92 0.89 0.88
7 4137.77 1268.72 144.14 60.91 18732.09 7692.04 0.84 0.80

Table 2.6 – Time series statistics per moment, comparing Parsivel data (at Pradel Grainage) before (bef.) and after
(aft.) the correction is applied, to the 2DVD (the reference), at five-minute resolution, for event times. Units of bias
and RMSE are m−3 mmp , where p is the moment order.
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Figure 2.8 – Median P (i ) values classed by Parsivel-derived intensity.

all time steps and they get larger as the drop diameter increases, which shows that there was

much more uncertainty in the correction factors for large diameters than for small diameters.

Across these rain rate classes there was a tendency for the Parsivel to overestimate the numbers

of drops smaller than 0.81 mm in diameter and greater than 1.62 mm in diameter, with the

best performance occurring in the 1–2 mm drop diameter range. For rain rates above 2 mm

h−1, the Parsivel more closely matched the 2DVD and indeed underestimates the numbers of

drops between about 0.8 and 1.38 mm in diameter.

To train the correction factors, we randomly selected sets of 80% of the valid training time

steps. To determine the impact of sampling effect, we reran the calibration 100 times with

different randomly chosen calibration time steps, taking the median of the per-class P (i )

distribution each time, and recording the range of resulting values. These ranges are shown

per Parsivel-derived intensity class in Figure 2.10. We see that the sampling effect for small

drops was very small, but that it was larger for larger drop size classes. To ensure a more

robust correction, we want to only apply the correction to drop diameter classes for which the

training sampling effect (the spread) on P (i ) is small. However, in order for the correction to
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2.4. Correction of Parsivel DSDs
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affect all moments of the DSD it is important that it is applied to larger drops as well as smaller

ones. We decided to apply a threshold on the spread of the sampling effect. The correction

was kept for increasing drop diameters until the sampling effect first surpassed this threshold.

There are hence two threshold values that must be chosen to train correction factors. The first

is the minimum-allowed volumetric drop concentration for which 2DVD and Parsivel classes

will be compared; let this threshold be Q [mm−1 m−3]. The second threshold is the maximum-

allowed spread in values of P (i ) over 100 training iterations of the filter; let this threshold be A.

Q was set to 1×10−5 and acted simply to stop diminishingly small drop concentrations from

adversely affecting the correction calibration. A was set to 0.7. The spread was also required

to be larger than 1×10−6, to ensure enough samples were available to give a representative

calibration for each diameter class. A sensitivity analysis showed that the values of Q and A

did not affect greatly the outcome of the calibration, so long as Q was low enough and A was

large enough to allow for sampling and therefore correction of larger drops sizes.

To derive the final correction factors we iterated over 100 sets of training time steps, selecting

randomly 80% of the available times for each iteration. The per-diameter and per-intensity

class correction factor is the mean value of P (i ) medians for each class over all iterations. The

calibrated correction factors for SOP2013 are shown in Table 2.5. The largest drop diameter

class affected by the correction was the 21st Parsivel class, with a centre size of 5.5 mm. Drops

up to the 17th class (class-centre diameter 3.25 mm) are corrected no matter the Parsivel-

derived intensity. To apply the correction, each time step was taken separately and, depending

on the Parsivel-derived intensity of the time step, the appropriate scaling factors were applied

to each equivolume drop diameter amount.

33
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Figure 2.10 – Sampling effect per diameter class, for different classes of Parsivel-derived intensity. The coloured
regions represent the minimum and maximum median P (i ) per equivolume drop diameter class observed over
100 iterations. The y axis is cut at 2.0.

The correction ensures that the corrected DSD more closely matches the DSD recorded by

the 2DVD. For example, for the HyMeX SOP2013 data, Figure 2.11 shows the distributions of

P (i ) after the correction, for one example validation set of 20% of the one hour time steps

in SOP2013. After the correction the DSD much more closely matched that of the 2DVD,

especially for small drop diameter classes. For larger drops of greater than about 3 mm the

match was not as close, but note this is 20% of the data and sampling effect changes large drop

comparisons much more than small ones. The fact that the large drops differed from the 1 : 1

line reflects the difficulty in training a correction for classes in which there are not many drops

to use as a training set, and demonstrates why we chose to train on one hour time steps and to

use the mean P (i ) values over many iterations.

2.5 Drop concentration correction results

In this section we explore the effect of the correction on the moments of the DSD, including the

derived rain rate. Our goal in this work is to have reliable DSD measurements from networks

of Parsivel disdrometers, in order to be able to study the small-scale variability of the DSD

in space and time. We are therefore interested in higher time resolutions than the one hour

resolution we used to train the correction factors. Recall that the choice of one hour resolution

for the training set was made to increase the numbers of sampled large drops, but that we aim

to have a correction that is independent of the time resolution. We thus applied the trained

correction to five-minute time resolution data to evaluate its effects, for all first-generation

Parsivels in the SOP2013 campaign. We also applied the correction to data from SOP2012, as

an independent validation data set, and to the combined SOPs. Recall that because we are

34



2.5. Drop concentration correction results

only interested in liquid precipitation, we subset the available time steps for each Parsivel

station to those that contained no Parsivel warning flags regarding data quality, and no solid

precipitation markers, and we only compared time steps for which both instruments being

compared measured non-zero rain rates.

0

1

2

3

0.3 0.4 0.6 0.7 0.8 0.9 1.1 1.2 1.4 1.6 1.9 2.1 2.4 2.8 3.2 3.8 4.2 4.8
Drop diameter [mm]

D
is

tr
ib

ut
io

n 
of

 P
(i)

Figure 2.11 – The distributions of P (i ) values for the corrected DSD, on an example set of validation time steps
from SOP2013, and for all classes of Parsivel-derived intensity, for the Parsivel collocated with the 2DVD. The y axis
is cut at 3.

2.5.1 DSD moments

To demonstrate the effect of the Parsivel DSD correction on the moments of the DSD, we

compare the first seven moments of the DSD recorded by the 2DVD, to the same moments

derived from Parsivel DSDs before and after the correction is applied. For these comparisons

we used HyMeX SOP2013 event time steps at five-minute resolution, and the Parsivel col-

located with the 2DVD at Pradel Grainage. Comparisons of moments of orders 0, 1, 4, and

6 are displayed in Figure 2.12, Q–Q plots for these moments are shown in Figure 2.13, and

time series statistics are shown in Table 2.6. We see from the densities and Q–Q plots that

the correction shifted the distributions of all the moments towards those of the 2DVD. The

statistics show an improvement in the relative bias of all moments, by a maximum of 146% for

moment zero and a minimum of 49% for moment four. RMSE was improved for all moments.

r 2 was improved for moments of orders 3, 4, 6, and 7, and remained very similar for the other

moments. These results demonstrate that the correction improves Parsivel DSDs at high

temporal resolution even when it is trained from one-hour DSD spectra.
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of the Parsivel-derived DSD moments before and after the correction was applied, and the 2DVD moments, for
HyMeX SOP2013 event time steps at Pradel Grainage.

2.5.2 Effect on rain rates

Having confirmed that the correction shifts the densities of the DSD moments towards those of

the 2DVD, we used independent instruments – collocated tipping-bucket rain gauges – to test

the effect of the correction on the rain rates produced by Parsivel DSDs. Two of the rain gauges

provided measurements that we considered to be suspicious. The station at Mirabel-Pradel-

Ferme-2, which is physically closest to our Parsivels Pradel 1 and Pradel 2, produced a marked

overestimate of the rain amounts compared to those Parsivels, the 2DVD, and the rain gauge

at Mirabel-Pradel-Ferme-1. For this reason we used Mirabel-Pradel-Ferme-1 as the reference

gauge at this location. Mirabel-Pradel-Ferme-1 was located approximately 12 m away from

Mirabel-Pradel-Ferme-2. Similarly, the rain gauge at Lavilledieu-Ecole-2 was physically closest

to our Parsivel at Lavilledieu but, for a period of 1.5 h on 18 September 2012, this rain gauge

produced rain rates that were markedly smaller than the rain rates produced by our Parsivel

and the nearby rain gauge Lavilledieu-Ecole-1. This gauge, which was approximately 12 m

away, provided measurements that more closely matched the Parsivel during this time. We

thus used Lavilledieu-Ecole-1 as the reference rain gauge for this station.
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Figure 2.13 – Quantile-to-quantile plots showing the effect of the correction on Parsivel DSD moments (a) 0, (b) 1,
(c) 4, and (d) 6, by comparing to the 2DVD moments, for HyMeX SOP2013 event time steps at Pradel Grainage.

We compiled performance statistics for each of the first-generation Parsivel stations, before

and after the correction was applied, for a five-minute time resolution. As an example, Figure

2.14 shows a scatter plot of rain rates compared to a collocated rain gauge for Pradel 1, the

Parsivel that was closest to the 2DVD and deployed in both 2013 and 2012, for five-minute

time resolution across both campaigns. The statistics for this station show that the correction

produced a clear improvement in the rain rate; the relative bias was reduced by 13%, the mean

ratio and regression slope were both closer to 1 and the RMSE was reduced.

Given that the correction was trained only on SOP2013 data, it makes sense to look at the

results from SOP2012 and SOP2013 separately as well as together. For SOP2012 only, the

performance effects per statistic are shown in Table 2.7. For SOP2013 only, the performance

effects are shown in Table 2.8. The differences shown are between the performance statistics

after the corrections (velocity and concentration) had both been made, minus the statistics

when no correction had been made. The before and after sets were both screened to remove

implausible measurements. For SOP2012, the correction improved the RMSE, bias, and relative
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Chapter 2. Correction of Parsivel drop size distribution measurements

Parsivel Pluvio ∆RMSE ∆|bias| ∆|RB| ∆r 2 N

Mirabel Mirabel-Mairie 0.712 0.574 1.384 0.003 271
Lussas Lussas-Salle-Polyvalente 0.365 0.472 10.447 −0.002 290
St-Germain Saint-Germain-Ecole −0.114 −0.239 −6.898 −0.010 655
Lavilledieu Lavilledieu-Ecole-2 0.320 0.382 5.576 −0.005 638
Les Blaches Mirabel-Les-Blaches −0.213 −0.474 −11.221 −0.006 299
Pradel 1 Mirabel-Pradel-Ferme-1 −0.162 −0.215 −2.319 −0.010 301
Pradel 2 Mirabel-Pradel-Ferme-1 −0.790 −0.556 −12.484 −0.007 326

Table 2.7 – Performance effects of the proposed correction on Parsivel data, and stations on which comparisons
were performed, for SOP2012 only at five-minute time resolution. N is the number of time steps on which
comparison was possible (high quality, liquid precipitation only). ∆RMSE and ∆|bias| are in mm h−1, while ∆|RB|
is in percentage points.

Figure 2.14 – Scatter plots showing the effect of the proposed correction, for the combined SOPs, with liquid
precipitation only and rain rates over 1.2 mm h−1, for Pradel 1, the closest station to the 2DVD that was present in
both 2012 and 2013.

bias at four of the seven stations. At Mirabel the relative bias performance was hardly affected

by the DSD correction. At the remaining two stations (Lussas and Lavilledieu) the relative bias

was degraded, leaving the final relative bias at these stations as −11 and −9% respectively;

both these relative biases are close to the instrumental variability we observed in Section

2.3.4. Recall that the 2DVD slightly underestimated the rain rate with respect to collocated

gauges. For SOP2013, the RMSE and bias were improved at six of eight stations, relative bias

was improved at seven of eight stations, and r 2 was hardly changed. The remaining station

(Mirabel) showed a degradation of relative bias to an after-correction relative bias of −21%. At

Mirabel, the Parsivel was placed on the edge of a retaining wall, which may have introduced

turbulence and affected the Parsivel measurements.

For the combined SOPs data set, the Parsivel performance statistics before any correction are
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2.5. Drop concentration correction results

Parsivel Pluvio ∆RMSE ∆|bias| ∆|RB| ∆r 2 N

Mirabel Mirabel-Mairie 2.075 1.497 9.078 0.000 133
Lussas Lussas-Salle-Polyvalente −0.881 −0.724 −12.553 −0.006 374
St-Germain Saint-Germain-Ecole 0.550 0.105 −3.676 −0.017 204
Lavilledieu Lavilledieu-Ecole-2 −0.599 −0.629 −13.442 −0.006 387
Pradel Grainage Pradel Grainage −0.948 −0.783 −15.543 −0.009 376
Les Blaches Mirabel-Les-Blaches −0.319 −0.216 −3.133 −0.006 194
Pradel 1 Mirabel-Pradel-Ferme-1 −0.895 −0.725 −16.393 −0.004 218
Pradel 2 Mirabel-Pradel-Ferme-1 −0.956 −0.724 −17.183 −0.004 166

Table 2.8 – Performance effects of the proposed correction on Parsivel data, and stations on which comparisons
were performed, for SOP2013 only at five-minute time resolution. N is the number of time steps on which
comparison was possible (high quality, liquid precipitation only). ∆RMSE and ∆|bias| are in mm h−1, while ∆|RB|
is in percentage points.

Parsivel station Rain gauge ∆RMSE ∆|bias| ∆|RB| ∆r 2 N

Mirabel Mirabel-Mairie 1.271 0.884 5.540 0.003 404
Lussas Lussas-Salle-Polyvalente −0.411 −0.389 −11.578 −0.005 664
St-Germain Saint-Germain-Ecole 0.034 −0.159 −6.758 −0.024 859
Lavilledieu Lavilledieu-Ecole-2 −0.135 0.208 2.834 −0.001 1025
Pradel Grainage Pradel Grainage −0.948 −0.783 −15.543 −0.018 376
Les Blaches Mirabel-Les-Blaches −0.257 −0.370 −9.545 −0.011 493
Pradel 1 Mirabel-Pradel-Ferme-1 −0.474 −0.621 −12.590 −0.018 519
Pradel 2 Mirabel-Pradel-Ferme-1 −0.845 −0.614 −13.897 −0.012 492

Table 2.9 – Performance effects of the proposed correction on Parsivel data, and stations on which comparisons
were performed, for combined SOPs at five-minute time resolution. N is the number of time steps on which
comparison was possible. ∆RMSE and ∆|bias| are in mm h−1, while ∆|RB| is in percentage points.

shown in Table 2.10, after both velocity and concentration corrections in Table 2.11, and the

changes made to the performance by the DSD correction are shown in Table 2.9. Again, all

data sets were screened for implausible particles. From these data we can see that RMSE, bias,

and relative bias were improved at six of the eight stations. At two stations (Lavilledieu and

Mirabel) there was a degradation of performance in terms of rain rate, by a maximum of about

5% in terms of relative bias. The relative bias at Lavilledieu after the correction was applied was

−6%, which is within the instrumental error limits. Mirabel may have suffered from turbulence

effects; its relative bias across the combined SOPs was already −15% before any correction

was performed. Despite degradations in R bias that were limited to two disdrometers, this

analysis of the influence of the correction on the combined SOPs data set confirms its overall

benefit to the DSD recorded by Parsivel disdrometers, even at high temporal resolution.

2.5.3 Results at lower temporal resolution

To further test the effects of the correction on Parsivel DSD-derived rain rates compared to

collocated rain gauges, and to test the applicability of the filter to different time resolutions, we

performed the same analysis as in the previous section but for one-hour temporal resolution

on the combined SOPs data set. The differences made by the correction to the DSD moments at
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Figure 2.15 – Comparison between correction factors for different generations of Parsivel disdrometers in SOP2013.

Station RMSE Bias r 2 RB [%] Fit slope Mean ratio

Mirabel 1.51 −0.64 0.98 −15.32 1.04 0.90
Lussas 1.55 0.51 0.94 11.68 1.18 1.12
St-Germain 1.08 0.35 0.96 7.56 1.12 1.08
Lavilledieu 1.25 0.21 0.96 3.59 1.14 1.05
Pradel Grainage 2.04 1.12 0.97 25.88 1.29 1.28
Les Blaches 1.35 0.50 0.95 10.25 1.16 1.13
Pradel 1 1.55 0.71 0.95 15.88 1.21 1.17
Pradel 2 1.69 0.88 0.97 20.26 1.29 1.22

Table 2.10 – Performance statistics for rain rate per Parsivel station for the combined SOPs at five-minute resolution,
before the DSD correction is applied. RMSE and bias are in mm h−1.

Station RMSE Bias r 2 RB [%] Fit slope Mean ratio

Mirabel 2.78 −1.52 0.98 −20.86 0.75 0.78
Lussas 1.14 −0.12 0.94 0.10 0.90 0.97
St-Germain 1.11 −0.19 0.94 −0.80 0.85 0.96
Lavilledieu 1.11 −0.42 0.96 −6.42 0.88 0.92
Pradel Grainage 1.09 0.34 0.96 10.33 0.94 1.08
Les Blaches 1.09 −0.13 0.94 −0.70 0.86 0.97
Pradel 1 1.07 0.08 0.93 3.29 0.92 1.02
Pradel 2 0.85 0.26 0.96 6.36 0.97 1.06

Table 2.11 – Performance statistics for rain rate per Parsivel station for the combined SOPs at five-minute resolution,
after the DSD correction is applied. RMSE and bias are in mm h−1.

one-hour time resolution are shown in Table 2.12. At one-hour time resolution, the correction

improved the bias, relative bias, and RMSE on all moment orders. r 2 between moment orders

before and after the correction was improved for moments of order 1–3, and maintained

at the same level for the other moments. The differences made to the rain rate to gauge

comparisons at one-hour resolution are shown in Table 2.13. RMSE was improved at five of

the eight stations, and bias at three of the eight. Relative bias was degraded in all but two
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Figure 2.16 – Comparison between correction factors for different campaigns, Payerne and SOP2013. Both sets
were trained on data at one-hour time resolution.

cases. This degradation is attributable to very small rain rates; indeed, when we selected time

steps for which the rain rate was greater than or equal to 1.2 mm h−1, the relative bias was

improved at five of the eight stations, and only the station at Mirabel had an after-correction

relative bias that was greater than the instrumental variability. For rain rates between 0.1 and

1.2 mm h−1, the after-correction bias was negative at all stations and the per-station mean

bias was −0.12 mm h−1. This bias is similar to the bias of the 2DVD compared to the gauge

for the same rain rates (−0.08 mm h−1). We conclude that our correction procedures result in

Parsivel measurements that better match those of the 2DVD, which itself underestimated rain

rate for low rain rates when compared to a collocated gauge. We recommend that care is taken

with the application of this correction to rain rates below 1.2 mm h−1.

2.6 Application to Parsivel2

We applied our method to second-generation Parsivels (Parsivel2) that were also deployed in

the HyMeX 2013 campaign. To train the correction for Parsivel2 we followed the same method

of comparing Parsivel records for the station at Pradel Grainage to the collocated 2DVD to

train the correction factors per Parsivel-derived rain intensity class. The only difference was

that, due to changes between the first- and second-generation Parsivels, the curves of P (i ) per

Parsivel-derived intensity class showed different and more complex behaviour to those of the

first-generation Parsivel. The classes we used were [0,0.1), [0.1,0.25), [0.25,0.5), [0.5,1), [1,2)

and [2,200) mm h−1.

41



Chapter 2. Correction of Parsivel drop size distribution measurements

Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 82.85 −0.37 124.17 −1.19 147.85 43.96 0.45 0.77
1 38.51 0.52 76.19 0.06 73.19 37.89 0.67 0.82
2 24.19 −0.22 54.63 1.16 57.30 46.37 0.82 0.83
3 27.53 −3.08 51.47 6.94 89.83 79.95 0.84 0.82
4 59.27 −11.86 62.99 10.56 229.91 189.98 0.80 0.78
5 183.42 −37.16 79.02 20.14 751.41 579.54 0.72 0.71
6 684.13 −95.17 100.05 25.21 2836.62 2098.63 0.61 0.62
7 2892.55 −98.86 121.78 42.33 11915.72 8589.15 0.50 0.52

Table 2.12 – Time series statistics per moment, comparing Parsivel data (at Pradel Grainage) before (bef.) and after
(aft.) the correction is applied, to 2DVD data, at one-hour resolution, for event times in SOP2013. The 2DVD is
taken as the reference. Units of bias and RMSE are m−3 mmp where p is the moment order.

Parsivel station Rain gauge ∆RMSE ∆|bias| ∆|RB| ∆r 2 N

Mirabel Mirabel-Mairie 0.519 0.351 16.345 0.004 122
Lussas Lussas-Salle-Polyvalente −0.086 0.141 14.954 0.006 183
St-Germain Saint-Germain-Ecole 0.019 0.064 15.162 −0.011 223
Lavilledieu Lavilledieu-Ecole-2 0.149 0.291 23.399 −0.005 277
Pradel Grainage Pradel Grainage −0.110 −0.094 −13.390 −0.019 131
Les Blaches Mirabel-Les-Blaches −0.096 0.043 13.500 −0.003 117
Pradel 1 Mirabel-Pradel-Ferme-1 −0.138 −0.028 12.987 −0.011 130
Pradel 2 Mirabel-Pradel-Ferme-1 −0.223 −0.152 −4.520 −0.013 118

Table 2.13 – Performance effects of the proposed correction on Parsivel data, and stations on which comparisons
were performed, at one-hour time resolution, for the combined SOPs. N is the number of time steps on which
comparison was possible. ∆RMSE and ∆|bias| are in mm h−1, while ∆|RB| is in percentage points.

Apart from the different Parsivel-derived rain intensity class definitions, the training process

was identical to that shown in Section 2.4. The resulting correction factors are shown for the

HyMeX Parsivel2 data set in Table 2.14. A comparison of the corrections for first- and second-

generation Parsivel is shown in Figure 2.15 and shows significant differences. Differences

are expected, given that at a minimum the laser is different between the two instruments.

Both filters were similar for drops up to about 1 mm in diameter, in that they both show the

Parsivel overestimating drops in comparison to the 2DVD. Parsivel2 is shown to underestimate

the numbers of drops between 1.38 and 3.25 mm diameter. Drops larger than 3.5 mm were

overestimated by both generations of Parsivel, but less so by Parsivel2. After training the

correction factors we applied them to Parsivel2 data for all available stations. Due to small

differences in clock times between the rain gauges and Parsivel2 stations we used one-hour

time resolution. We first compared the moments to the 2DVD moments for event time steps

only; these results are shown in Table 2.16. The bias, relative bias, RMSE, and r 2 were improved

for all moment orders.

We compared the rain rates after the correction of Parsivel2 to those recorded by collocated

rain gauges, for all available time steps. Due to timing errors with the Parsivel2 network, we

applied the correction to one-hour time steps. The results are shown in Table 2.15. Absolute

and relative bias were improved at one Parsivel2 station, but degraded at the two others. Again,

there appears to be an effect of low rain rate on these performance statistics. When we counted
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Class (i ) Di [mm] [0,0.1) [0.1,0.25) [0.25,0.5) [0.5,1) [1,2) [2,200)

3 0.31 0.02 0.03 0.03 0.04 0.05 0.07
4 0.44 0.03 0.04 0.05 0.06 0.10 0.14
5 0.56 0.10 0.14 0.17 0.20 0.28 0.35
6 0.69 0.19 0.24 0.27 0.33 0.42 0.50
7 0.81 0.34 0.43 0.48 0.49 0.65 0.72
8 0.94 0.50 0.51 0.61 0.61 0.73 0.78
9 1.06 0.80 0.80 0.86 0.82 0.95 0.95
10 1.19 0.67 0.76 0.97 0.80 1.07 0.93
11 1.38 0.95 1.03 1.11 1.02 1.24 1.02
12 1.62 1.00 1.09 1.23 1.08 1.26 1.01
13 1.88 1.04 0.89 1.23 1.07 1.29 0.95
14 2.12 1.15 1.07 1.11 0.88
15 2.38 1.15 1.05 1.28 0.94
16 2.75 1.23 0.96
17 3.25 1.20 0.93
18 3.75 1.25 0.87
19 4.25 0.63 0.66
20 4.75 0.50 0.52
21 5.50 0.33 0.40
22 6.50 0.29

Table 2.14 – Calibrated Parsivel2 correction factors for Parsivel-derived intensity classes for the HyMeX 2013
campaigns. Each row contains the class number, the centre equivolume diameter for the class (Di ), and the
calibrated factors P(i) for each class of Parsivel-derived intensity. Intensity class boundaries are provided in
millimetres per hour.

only time steps with rain rates at or above 1.2 mm h−1, the worst degradation in relative bias

dropped from 17 to 15%. There were many outliers in these data sets, and work is ongoing to

further refine the correction on these Parsivel2 data. Despite this degradation, the correction

improved the DSD moments compared to the 2DVD. We hypothesise that training the Parsivel2

correction factors using more data and therefore a lower time resolution, plus fixing potential

clock issues in this data set, would improve the performance of the correction on Parsivel2

data.

2.7 Application to another climatology

Finally, we applied our technique to data collected in a different region and climatology (see

Section 2.2.2). In the Payerne 2014 campaign, a 2DVD and first-generation Parsivel were

collocated. When compared to a collocated rain gauge at one-hour resolution, the 2DVD

recorded rain rates with a performance very similar to that shown in the SOP2013 campaign

(see Section 2.3.4), with a mean ratio of 0.84, an RMSE of 0.24 mm h−1, an r 2 of 0.98, bias of

−0.15 mm h−1, and a relative bias of −19%.

We used the same technique as described in Section 2.4, using data with one-hour temporal

resolution for training, and 10-minute resolution (the resolution of the reference rain gauge)

for testing. We used the same Parsivel-derived intensity classes as for SOP2013. The resulting

correction factors are shown in Table 2.17. The correction is compared to the correction found
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Parsivel Pluvio ∆RMSE ∆|bias| ∆|RB| ∆r 2 N [ht]

Villeneuve de Berg Villeneuve de Berg-1 −0.06 −0.18 −12.76 −0.01 129
Pradel Grainage Pradel Grainage 0.30 0.33 8.21 −0.01 154
Villeneuve de Berg 2 Villeneuve de Berg-2 0.17 0.33 17.25 −0.00 132

Mont-Redon Mirabel-Mont-Redon -0.00 -0.28 -39.68 0.00 128
Pradel-Vignes Mirabel-Pradel-Vignes 0.11 0.41 18.73 0.02 58

Table 2.15 – Performance effects of the proposed correction on Parsivel2 network data, and stations on which
comparisons were performed. N is the number of time steps on which comparison was possible. ∆RMSE and
∆|bias| are in mm h−1, while ∆|RB| is a percentage. Mont-Redon and Pradel-Vignes were first-generation Parsivels
to which the first-generation correction was applied, and are included for interest. They are listed in this table with
the Parsivel2 network because they were maintained as a group as part of the HPicoNet network.

Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 187.29 −3.11 304.64 −0.35 279.82 44.28 0.40 0.79
1 86.54 −1.20 205.58 0.70 127.77 38.11 0.56 0.82
2 43.95 −1.48 107.63 0.81 73.55 45.19 0.77 0.85
3 25.43 −3.76 62.01 −0.02 75.55 70.85 0.87 0.88
4 23.61 −11.15 41.71 −0.07 146.80 144.76 0.89 0.90
5 67.11 −36.19 24.58 −1.17 445.86 380.29 0.89 0.91
6 341.81 −129.11 14.87 −3.99 1889.86 1250.60 0.88 0.92
7 1892.72 −502.11 8.02 −6.96 9514.94 4912.23 0.87 0.92

Table 2.16 – Time series statistics per moment, comparing Parsivel2 data (at Pradel Grainage) before (bef.) and
after (aft.) the correction is applied, to the 2DVD, at one-hour resolution, for event times. The 2DVD is taken as the
reference. Units of bias and RMSE are m−3 mmp , where p is the moment order.

in SOP2013, per Parsivel-derived rain rate class, in Figure 2.16. These plots show that the

trained correction factors were very similar across climatologies, for classes of low rain rates

(0–1 mm h−1). For larger rain rates, there were some differences between the correction factors,

but the general shape remained the same. It should be noted that in the Payerne 2014 data

set, the precipitation sampled had much lower intensity than that found in SOP2013, and we

hypothesise that the differences are due to these sampling effects. We tested the results using

both one hour and 10-minute resolution data sets.

For consistency, we kept the threshold for the maximum-allowed spread in P (i ) at 0.7. In the

Payerne 2014 data set, there appears to be greater sensitivity to this threshold, indicating that

the sample size available for training was smaller than in SOP2013. For this reason we also

tested the results when the correction trained using SOP2013 was applied to the Payerne 2014

data set. The effect on Parsivel rain rate performances are summarised in Table 2.18. The

comparisons of moments with those of the 2DVD are included in the appendix, in Tables 2.19,

2.20, and 2.21.

The results show that when the Payerne data set was used to train the correction factors, there

was a slight improvement in the Parsivel’s rain rate estimation at 10-minute resolution. At

one-hour resolution, the absolute bias was maintained but the relative bias was degraded.

Correlations were maintained by the correction. When the HyMeX-trained correction was
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Class (i ) Di [mm] [0,0.5) [0.5,1) [1,2) [2,200)

3 0.31 0.04 0.04 0.07 0.08
4 0.44 0.08 0.12 0.20 0.21
5 0.56 0.26 0.31 0.40 0.48
6 0.69 0.41 0.39 0.48 0.61
7 0.81 0.54 0.56 0.64 0.77
8 0.94 0.61 0.60 0.64 0.76
9 1.06 0.73 0.71 0.69 0.87
10 1.19 0.68 0.70 0.70 0.87
11 1.38 0.69 0.70 0.68 0.84
12 1.62 0.69 0.61 0.62 0.87
13 1.88 0.63 0.47 0.60 0.83
14 2.12 0.48 0.43 0.52 0.79
15 2.38 0.47 0.38 0.39 0.75
16 2.75 0.38 0.43 0.42 0.64
17 3.25 0.47 0.45 0.27 0.64
18 3.75 0.44 0.49
19 4.25 0.48
20 4.75 0.27
21 5.50 0.37

Table 2.17 – Calibrated Parsivel correction factors for Parsivel-derived intensity classes for the Payerne campaign.
Each row contains the class number, the centre equivolume diameter for the class (Di ), and the calibrated factors
P (i ) for each class of Parsivel-derived intensity. Intensity class boundaries are provided in millimetres per hour.

Set Res. ∆RMSE ∆|bias| ∆|RB| ∆r 2 N

Payerne 10 min −0.126 −0.061 −5.465 −0.000 435
Payerne 1 hour −0.030 −0.015 1.927 −0.002 164
HyMeX SOP2013 10 min −0.142 −0.152 −10.712 −0.003 435

Table 2.18 – Summary of performance effects of the Parsivel correction, for Payerne. Set indicates which data
set was used to train the correction factors using one resolution, Res. is the temporal resolution to which the
corrections were applied, and N is the number of time steps to which the correction was applied. ∆RMSE and
∆|bias| are in mm h−1, while ∆|RB| (relative bias) is in percentage points.

applied to the Payerne data set, the performance was improved again. This indicates again that

the sample size of the Payerne data set may have been smaller than required for a representa-

tive set of correction factors to be trained. Whether the Payerne-trained or HyMeX-trained

correction factors were used, there was an improvement in the match between Parsivel and

the 2DVD at Payerne for all moments. This suggests that the correction is robust and can be

applied as such in different climatic regions.

2.8 Conclusions

We have developed a method to correct raindrop size distributions recorded by Parsivel

disdrometers, using a two-dimensional video disdrometer as a reference instrument. The

correction is made in two steps. First, raw Parsivel drop counts binned by velocity and

diameter are shifted so that per-diameter-class mean velocities align with expected terminal

velocities. The raw data can then be screened for particles that are unlikely to be raindrops,
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Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 149.20 2.21 253.21 4.19 219.53 24.34 0.67 0.94
1 74.29 2.29 173.22 5.50 107.87 17.41 0.79 0.96
2 45.37 2.20 125.64 7.78 66.06 16.11 0.90 0.97
3 36.28 2.25 103.45 10.36 56.31 20.04 0.96 0.97
4 41.13 2.74 93.07 14.23 80.52 35.23 0.98 0.97
5 70.68 5.59 95.20 19.66 203.91 91.82 0.97 0.95
6 181.65 23.49 103.58 26.42 729.63 345.07 0.95 0.90
7 632.93 137.31 120.77 35.22 3161.40 1705.47 0.91 0.77

Table 2.19 – Time series statistics per moment, comparing Parsivel data for Payerne 2014 before (bef.) and after
(aft.) the correction is applied, to the 2DVD, at 10-minute resolution. The 2DVD is taken as the reference. Units of
bias and RMSE are m−3 mmp , where p is the moment order.

Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 90.65 0.76 293.95 0.10 144.30 11.71 0.77 0.97
1 45.00 0.90 194.23 3.19 71.92 8.52 0.85 0.97
2 27.23 0.84 138.27 4.62 44.23 7.61 0.91 0.98
3 21.20 0.79 95.80 5.06 35.99 8.67 0.95 0.98
4 22.62 0.93 79.72 6.86 43.83 13.12 0.98 0.98
5 35.32 2.50 82.12 9.79 91.51 27.24 0.99 0.98
6 82.91 13.68 90.01 15.39 291.96 91.10 0.99 0.96
7 276.01 85.50 102.78 23.30 1173.24 478.91 0.97 0.89

Table 2.20 – Time series statistics per moment, comparing Parsivel data for Payerne 2014 before (bef.) and after
(aft.) the correction is applied, to the 2DVD, at one-hour resolution. The 2DVD is taken as the reference. Units of
bias and RMSE are m−3 mmp , where p is the moment order.

and per-diameter-class volumetric drop concentrations can then be calculated. Second, these

volumetric drop concentrations are adjusted by factors trained by reference to the 2DVD. The

adjustment causes the drop concentrations to match those of the 2DVD in a statistical way.

The correction was applied to Parsivel and Parsivel2 data from two autumn field campaigns

in Ardèche, France. The results showed an improvement in the accuracy of moments of the

DSD, when compared to the 2DVD as the reference instrument. Comparison of rain rate with

collocated rain gauges showed changes that are acceptable, given the overall improvement in

the accuracy of the DSD afforded by the correction. It must be noted that because the 2DVD

is used as the reference instrument, the adjusted Parsivel drop size distributions will be, at

best, as accurate as the measurements obtained by the 2DVD. If a better reference becomes

available, exactly the same approach could be applied to correct the Parsivel (or indeed any

other disdrometer) and to improve the agreement with the reference.

The correction was shown to be timescale-independent through application to both five-

minute and one-hour Parsivel records. While in this case the correction was trained on

data sets containing mainly light to intermediate rain rates (mostly below 20 mm h−1), the

method is flexible because it is conditioned on the Parsivel-derived rain intensity, and could

be trained for higher rain rate classes as required. The method does not involve changing

the hardware or software of the instrument, and it can be applied retrospectively to existing
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Moment Bias bef. Bias aft. RB bef. [%] RB aft. [%] RMSE bef. RMSE aft. r 2 bef. r 2 aft.

0 149.20 21.67 253.21 30.02 219.53 41.87 0.67 0.94
1 74.29 17.60 173.22 31.27 107.87 34.62 0.79 0.95
2 45.37 15.68 125.64 32.75 66.06 33.03 0.90 0.96
3 36.28 15.41 103.45 33.43 56.31 36.59 0.96 0.95
4 41.13 16.82 93.07 35.20 80.52 50.80 0.98 0.95
5 70.68 21.75 95.20 38.35 203.91 107.89 0.97 0.93
6 181.65 41.73 103.58 44.27 729.63 374.43 0.95 0.88
7 632.93 149.21 120.77 52.35 3161.40 1782.65 0.91 0.75

Table 2.21 – Time series statistics per moment, comparing Parsivel data for Payerne 2014 before (bef.) and after
(aft.) the correction is applied, to the 2DVD, at 10-minute resolution. In this case the SOP2013 correction is applied
to the Payerne 2014 data set. The 2DVD is taken as the reference. Units of bias and RMSE are m−3 mmp , where p
is the moment order.

data sets. The correction offers the ability to improve the accuracy of the DSDs recorded by

Parsivel disdrometers, which are instruments that are especially suitable for deployment in

networks. High-quality DSD measurements from networks of Parsivel disdrometers can be

used in valuable work on topics such as the small-scale variability of the drop size distribution.

The correction has been demonstrated to work across two different climatologies in Europe.
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3 Spatial interpolation of experimental
raindrop size distribution spectra

This chapter is adapted from:

• T. H. Raupach and Alexis Berne. Spatial interpolation of experimental raindrop size

distribution spectra. Quarterly Journal of the Royal Meteorological Society, 2016. doi:

10.1002/qj.2801. © 2016 Royal Meteorological Society. Used with permission.

This work was completed by T. Raupach under the supervision of A. Berne. Research, analyses,

and writing are by T. Raupach. J. Grazioli provided information on the MXPol radar, including

calculations of radar reflectivity per signal-to-noise threshold. For data acknowledgements,

see Appendix A.
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Chapter 3. Spatial interpolation of experimental raindrop size distribution spectra

3.1 Introduction

The DSD is sometimes assumed to be uniform in space, for example across the measurement

volume of a radar system or the pixel of a numerical weather model. In reality the DSD is

highly variable, even at small scales (Jameson and Kostinski, 2001; Uijlenhoet et al., 2003b;

Jaffrain and Berne, 2012b). To investigate the small-scale variability of the DSD and thus

the error the assumption of a uniform DSD introduces, networks of disdrometers are often

used to measure the DSD at point locations across the domain of interest (e.g. Tapiador

et al., 2010; Jaffrain et al., 2011). These measurements sample the precipitation process at

discrete points that may be sparsely and unevenly distributed. In this chapter we present a

geostatistical interpolation and stochastic simulation method that can estimate or simulate

the experimental DSD unmeasured locations, conditioned on nearby measurements.

Geostatistics provides spatial interpolation methods that can be used to estimate the value

of a continuous process at unmeasured locations, given measurements at nearby points

(Matheron, 1971). Geostatistics requires that the process being studied is second-order or at

least intrinsically stationary (Chilès and Delfiner, 1999). Geostatistics methods have long been

used to produce gridded precipitation fields, most often from networks of rain gauges (e.g.

Creutin and Obled, 1982; Chua and Bras, 1982). The use of kriging with external drift (KED) is

especially common. In KED, an external “drift” variable is used to find the expected values

of the process, and kriging is used to estimate the residuals around these expected values

(Chilès and Delfiner, 1999). For precipitation, altitude above sea level has been of particular

importance as an external drift variable (e.g. Goovaerts, 2000; Tobin et al., 2011; Masson and

Frei, 2014). Other studies have used radar data (Haberlandt, 2007; Velasco-Forero et al., 2008)

and numerical weather model outputs (Tobin et al., 2011) to provide external drift information.

These previous uses of kriging have focused on single variables such as the rainfall intensity.

Here we present a new technique that, instead of focusing on bulk variables, can interpolate

measured DSD spectra in a statistically robust way.

A problem with the use of geostatistics on precipitation fields is that rainfall is a non-stationary

process (Barancourt et al., 1992; Schleiss et al., 2014a). Schleiss et al. (2014a) showed that at

small spatial and temporal scales (their study used a 100×80 km2 region and five-minute tem-

poral resolution) the non-stationarity is caused largely by rainfall intermittency. Intermittency

is the patchiness of the rain process, which leads to the existence of distinct wet and dry areas

that have to be modelled to accurately represent the precipitation field (Kundu and Siddani,

2011; Schleiss et al., 2011). To deal with intermittency, Barancourt et al. (1992) suggested the

use of a binary occurrence (rain/dry) process which can itself be sampled and interpolated to

produce an expected occurrence map. Interpolation outputs for the rain field are then found

and set to zero in the expected dry regions. This technique has been frequently employed

(e.g. Syed et al., 2003; De Oliveira, 2004; Berrocal et al., 2008). Using this method, both the

occurrence process and rainfall process must still be assumed to be either second-order or

intrinsically stationary.
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In previous studies, precipitation amounts or intensities have been interpolated using geo-

statistics. It is also possible to apply the same geostatistical techniques to other bulk rainfall

variables individually. However, all integral variables are linked via the DSD and are related to

each other in complex ways (Sempere-Torres et al., 1994). Analysis of multiple bulk variables

in isolation from each other fails to take into account these relationships. One way to solve this

problem would be to perform multivariate geostatistics, and to interpolate several bulk vari-

ables at once, specifically taking into account the relationships between the chosen variables.

We go further, and present a more general approach in which we interpolate non-parametric

measured DSD spectra. Our approach avoids the problem of having to choose which bulk

variables to interpolate, avoids the choice of DSD model and any associated uncertainty, keeps

all available information, and preserves the relationships between the bulk variables.

It has been observed in multiple studies that rain intensity tends to be lower towards the edges

of rainy areas (Barancourt et al., 1992; Braud et al., 1994; Emmanuel et al., 2012). Schleiss et al.

(2014a) called this phenomenon the “dry drift”. They posited that by modelling this effect

and subtracting it from the rain field, one is left with a detrended field that contains only the

random fluctuations of the precipitation around the dry drift. This detrended field has an

expectation of zero everywhere and is assumed to be second-order stationary. Their study

showed that intermittency is a significant source of non-stationarity in precipitation. The

dry drift concept has been extended to the DSD. Schleiss et al. (2014a) noted that the total

drop concentration and the probability distribution of drop sizes were affected by different

dry drifts, implying that bulk DSD variables all have different dry drifts (Schleiss et al., 2014a).

Schleiss et al. (2012) investigated the drift on parameters of a DSD represented by a gamma

distribution. In this paper we investigate the dry drift on measured drop concentrations per

equivolume diameter class, from measured DSD spectra, thus avoiding the parameter-fitting

step and associated uncertainty.

Our new method for spatial interpolation of DSD spectra uses geostatistical techniques to

estimate the DSD at unobserved locations. The method is novel because it works on the (non-

parametric) measured DSD spectra, and thus estimates the DSD without any assumption of

its functional form. This way we maintain all possible information, and avoid any potential

errors and assumptions involved in modelling or normalisation of the DSD. Further, it is useful

that the interpolation results are estimations of measured DSDs, in that they can be used to

investigate DSD model fit, spatial effects on DSD functional forms, or to study the spatial

variability of particular drop size classes. In the new technique, the dry drifts of DSD drop

concentrations, not model parameters, are taken into account to deal with non-stationarity

and intermittency. Principal components analysis (PCA) is used to describe the detrended

DSD in terms of uncorrelated components, for which the use of univariate geostatistics is

appropriate. PCA also allows for noise removal if required. The use of the dry drift and PCA is

required to transform the data into a form that can be assumed to honour the requirements of

univariate geostatistics. The method ensures that all measured microstructure information is

kept and relationships between the bulk variables are preserved.
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As a demonstration of the utility of this technique, we show results from its application to

HyMeX disdrometer network data. The accuracy of the technique was analysed through

leave-one-out testing. The rest of this chapter is organised as follows: in Section 3.2 our new

interpolation technique is presented, and its assumptions are carefully addressed. In Section

3.3 we show how the technique was tested through application to HyMeX campaign data.

Results of the testing are shown in Section 3.4. In Section 3.5 we show how the technique can

easily be modified to perform stochastic simulation of the non-parametric DSD. Conclusions

are drawn in Section 3.6.

3.2 Spatial interpolation of experimental DSD spectra

In this section the new method for spatial interpolation of the DSD is explained. We describe

it in broad terms before delving into the details. As input data, we have measured DSD

spectra, with concentrations binned by drop equivolume diameter, recorded by a number of

disdrometers arranged in a known spatial configuration. The output of the process will be a

prediction of the DSD at any given point(s). The steps of the method are as follows:

1. Data for each equivolume diameter class are treated to remove the non-stationarity

introduced by the effect of rainfall intermittency; the so-called “dry drift” introduced by

Schleiss et al. (2014a). The resulting fields are assumed to be second-order stationary.

2. Principal component analysis is used to transform the stationary drop concentration

fields into uncorrelated principal components, on which univariate geostatistics can be

applied.

3. Variograms are found for each principal component to characterise its spatial structure.

4. Ordinary kriging, informed by the variograms, is performed in order to predict the values

and estimation variance of each component at the prediction point(s).

5. The predicted components are back-transformed to recover the DSD spectrum at the

prediction point(s).

We will now address each of these points in order, carefully examining the assumptions of

each processing step. At this stage, the interpolation process will be described mathematically.

Application to real data is shown in Section 3.3. Let us start by writing the volumetric drop

concentration for a diameter class Dk at a spatial location z as N (Dk , z). N (Dk , z) [mm−1 m−3]

is then the concentration, at z, of drops with equivolume diameters in the half-closed interval

[Dk ,Dk +δk ) [mm]. There is no requirement for the class widths δk to be constant.
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3.2. Spatial interpolation of experimental DSD spectra

3.2.1 Subtraction of the dry drift

The concept of the “dry drift”, introduced by Schleiss et al. (2014a), is used to deal with inter-

mittency and non-stationarity of the rain field. We apply the dry-drift concept presented in

Schleiss et al. (2014a) to measured drop concentrations. Our aim is to characterise the rela-

tionship between the value of per-diameter-bin drop concentration at a point, and that point’s

distance to the closest dry region. Once this relationship is characterised, the dry drift can

be subtracted, thus removing its influence on the non-stationarity of the drop concentration

field. The dry drift gives the expected value of the drop concentration at a point, around which

random fluctuations may occur. The result of the subtraction will thus be a detrended drop

concentration field, containing only the fluctuations. This field has an expectation of zero

everywhere.

Like rain rates, drop concentrations have highly skewed distributions with many more small

than large values. A possible approach to deal with this is to use a log transformation. We use

a modified log transformation, such that

Ñ (Dk , z) = ln[N (Dk , z)+1] . (3.1)

Note that one is added to the drop concentrations before taking the log; this means that

zeros, an important part of the DSD spectrum, are kept. The (log) DSD concentration field is

assumed to be a non-stationary random function in space and time, and we decompose the

transformed DSD concentrations into:

1. The dry drift per diameter class, and

2. The detrended drop concentration fields.

External to the DSD is a rain occurrence field I (z) that informs the dry drift by defining the dry

regions (see Section 3.3.1 for an example in which a radar field is used). The rainfall occurrence

is a binary field indicating whether rain is measured at a point z:

I (z) =
1 ifR(z) > 0

0 ifR = 0,
(3.2)

where R(z) [mm h−1] is the instantaneous rain rate at point z. Let d(z) be a function that

returns the Euclidean distance between a point z and the nearest dry region defined by I

(Schleiss et al., 2014a). The dry drift is then a function of d(z), and describes the functional
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relationship between the distance of a point from the nearest dry region and the expected

log-transformed drop concentration at that point.

To decompose each drop concentration, we assume that the expected transformed drop

concentration value at a point is a function of the point’s distance to a dry region in space or

time. Thus

E[Ñ (Dk , z)] = fk [d(z)], (3.3)

where fk is the deterministic dry drift function for diameter class Dk . With fk defined, we

subtract the dry drift from the observed drop concentration field to obtain the detrended drop

concentrations N †:

N †(Dk , z) = Ñ (Dk , z)− fk [d(z)]. (3.4)

The detrended process N † has several useful properties (Schleiss et al., 2014a). It represents

random fluctuations of the drop concentration fields around the expected drop concentra-

tions given by the dry drift. By definition from Equations 3.3 and 3.4 its expectation is zero

everywhere. The log-transformation on the input data helps to stabilise its variances (see

Section 3.3.1). The assumption made here is that the dry drift is the only reason that the drop

concentration fields are non-stationary. Although there can be other contributions to their

non-stationarity, such as orographic or coastal effects, Schleiss et al. (2014a) showed that

intermittency is a major factor in the non-stationarity of rainfall intensity fields at high tem-

poral resolutions. We assume that the resulting detrended fields are second-order stationary.

Experimental determination of the functional form of the dry drift fk [d(z)] is addressed in

Section 3.3.1.

3.2.2 Principal component analysis

We now have a set of detrended drop concentration fields N †(Dk , z), with one field per diame-

ter class Dk . The different drop concentration fields are not independent or uncorrelated. In

order to transform them into a set of orthogonal components that are uncorrelated, principal

component analysis (PCA) (e.g. Jolliffe, 2002) is used. Until now only drop concentrations at

a single time have been considered. To perform PCA we consider all available observations,

across all locations in the event or time period for which we want to interpolate the DSD. There

is no particular number of samples or time steps required in order to perform PCA, because the

components are always guaranteed to be uncorrelated. However, the geostatistics that follow

require consistency in the PCA transform used, in that the same orthogonal components must
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be used for all analysed time steps. Both PCA and geostatistics are performed on a per-event

basis.

PCA is a widely used statistical method, so in this chapter our description of it will remain

informal. For a more complete description, the reader is invited to refer to, for example, Jolliffe

(2002). Let there be U drop diameter classes available across L spatial locations for T separate

observation times, and let N †(Dk , z, t) be the log-transformed and detrended volumetric

drop concentration of the kth class at location z and time t . Let us construct a matrix of

measurements M in which each row corresponds to one observation, while each column

corresponds to one class of drop diameters:

M =



N †(D1, z1,1) · · · N †(DU , z1,1)
...

. . .
...

N †(D1, zL ,1) · · · N †(DU , zL ,1)
...

. . .
...

N †(D1, zL ,T ) · · · N †(DU , zL ,T )


. (3.5)

To ensure that each diameter class is treated equally by the PCA algorithm, the class values are

scaled and shifted so that the diameter class mean is zero and its standard deviation is one.

This process is to normalise the different variabilities and different widths of the input classes.

Each class is a column in M, and we have for the kth class:

M̃k = Mk −Mk

σ(Mk )
, (3.6)

where Mk represents the mean and σ(Mk ) represents the standard deviation of Mk . To un-

derstand PCA, view the matrix M̃ as a collection of T L points in U -dimensional space. PCA

reprojects the points in M̃ into a new coordinate system, in which each successive dimension

explains the largest possible variance in the data set. The first dimension, then, is the longest

axis through the U -dimensional point cloud. The second is the longest that is orthogonal to

the first, and so on until all variability in the points is explained. The result of the PCA is a U ×S

matrix W, with S ≤U . The matrix W transforms the original data set into a T L×S components

matrix C, such that C = M̃W. Each component has a corresponding contribution to the total

variance, Qs for the sth component.

C has one row per observation and one column per component. To determine how many

components are returned, a threshold can be applied so that only components that explain

a certain amount of the variance (those with Qs above some threshold) are kept. Because

the least important components are essentially noise, we could use this tolerance to perform
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dimensionality reduction and remove noise to a chosen level. In this work, however, we keep

all PCA components in order to perfectly reconstruct measured DSD spectra.

PCA outputs are orthogonal (Jolliffe, 2002). If the inputs happen to be multivariate normal,

then the outputs will be both orthogonal and independent. In our case, our inputs are the

detrended drop concentrations, which are the random fluctuations of the process around

the dry drift. Although the concentration distributions are unimodal and almost symmetric,

their tails are generally heavier than normal distribution tails. The components are therefore

not strictly multivariate normal. As a result, we cannot assume that the PCA outputs are

independent, but they are guaranteed to be orthogonal and uncorrelated.

PCA has two main advantages for this work. First, the S components in C are uncorrelated, so

univariate geostatistics can be used on each one independently. Second, PCA offers precise

control over how much noise is kept in the interpolation, through optional removal of less

important components.

3.2.3 Variograms of components

Having translated the measured DSD spectra into assumed second-order stationary, uncor-

related variables, our task is now to use geostatistics to predict the component values at

unmeasured locations. We view each PCA component as a sample of a stochastic process

Xs , where the values in Xs are found in the sth column of the matrix C. The variogram of a

random process is used to characterise its spatial structure (Matheron, 1971). The variogram

is a measure of the (dis)similarity of the process at points separated by a certain distance l ,

and is defined for an intrinsically stationary process Z as (Cressie, 1993)

γZ (l ) = 1

2
Var[Z (z + l )−Z (z)] . (3.7)

We have a finite number of samples, so we must use the sample variogram, in which the

expectation is approximated using the sample mean. The mean is easily affected by outliers,

so by using the sample variogram we are assuming that the input distributions are close to

symmetric. This is generally the case with our component distributions (see Section 3.3.2),

but we use the Cressie robust variogram (Cressie, 1993) instead of the standard variogram to

ensure that any outliers are well handled.

If there are Nl sampled pairs of points for a distance lag l , then the Cressie sample variogram
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for each component is (Cressie, 1993)

2γ̃s(l ) =

{
1

|Nl |
Nl∑

r=1
|Xs(zr + l )−Xs(zr )| 1

2

}4

(
0.457+ 0.494

|Nl |
) . (3.8)

For interpolation, we need to be able to know the variogram at any given distance lag. To allow

this, a variogram model is fitted to each sample variogram (Chilès and Delfiner, 1999).

3.2.4 Kriging of components

Kriging estimates the value of a process at an unmeasured point. The new value is a weighted

combination of the measured values; the task of the kriging process is to determine the optimal

weights, informed by the variogram that defines the spatial structure of the process (Chilès

and Delfiner, 1999). We use ordinary kriging, in which the mean of the studied process is

assumed to be constant but unknown. Our processes are Xs , the principal components of the

DSD.

Estimations are made for a single time step. The estimated value of the sth PCA component at

an unmeasured location z0 at time t is

X ∗
s (z0, t ) =

L∑
r=1

wr Xs(zr , t ), (3.9)

where the weights w are determined by the ordinary kriging algorithm and there are L obser-

vation locations at time t . We use the ∗ symbol to indicate estimated, rather than observed,

values. The kriging process uses a Lagrange multiplier to find the weights, under the con-

straints that the bias of X ∗
s is zero and the estimation variance is minimised. Kriging is an

exact interpolator, meaning that the estimation at a measured location is the measurement

itself, and for Gaussian random functions kriging is an optimal solution (Chilès and Delfiner,

1999).

3.2.5 Back-transformation of the components

Back-transformation of the estimated component values to an estimated DSD spectrum is

simply a matter of reversing the transformations that were applied to the measured DSDs,

in reverse order. Starting with the kriged value for the sth component, X ∗
s , we first back-

transform the estimated components into detrended DSD concentrations, by placing the
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estimations for time t into a vector C∗(z0, t ):

C∗(z0, t ) = [
X ∗

1 (z0, t ), . . . , X ∗
S (z0, t )

]
, (3.10)

which can be rotated to return to DSD diameter classes:

M̃∗(z0, t ) = C∗(z0, t )WT . (3.11)

To obtain the estimated detrended DSD, we must rescale and recentre M̃∗:

M∗(z0, t )k = M̃∗(z0, t )k ·σ(Mk )+Mk . (3.12)

The components of M∗(z0, t ) are the estimated detrended per-diameter-class drop concentra-

tions for location z0 at time t , such that

M∗(z0, t ) =
[

N †∗(D1, z0, t ), . . . , N †∗(DU , z0, t )
]

. (3.13)

It remains to re-add the dry drift using

Ñ∗(Dk , z0, t ) = N †∗(Dk , z0, t )+ fk [d(z0)], (3.14)

and finally to back-transform the original logarithmic transformation:

N∗(Dk , z0, t ) = exp[Ñ∗(Dk , z0, t )]−1. (3.15)

N∗(Dk , z0, t), k ∈ {1,U } is the desired result: the estimated drop size distribution spectrum,

across K classes, for time t at a location z0.
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3.2.6 Estimation uncertainty

One of the advantages of using geostatistics for interpolation is that as well as an estimation

of the required value at a given point, it provides an estimate of the associated error, called

the estimation variance. Thus for each kriged value for the sth component, X ∗
s , the estima-

tion variance Vs is provided. The estimated value and estimation variance can be seen as

respectively the mean and variance of a normal distribution that represents the distribution

of possible values. Because each estimate of per-class drop concentration is a weighted lin-

ear combination of the uncorrelated PCA components, the estimation variances can easily

be analytically back-transformed into variances for each individual log-transformed drop

concentration class.

However, analytically computing the estimation variance on bulk variables would involve mix-

ing the variances of the non-independent drop classes. Another possible way to quantify the

estimation uncertainty on bulk variables is a probabilistic approach. In this case, realisations

of possible values can be drawn from the estimation distributions for each PCA component.

Back-transformation of these realisations provides sets of possible DSDs from which sets

of bulk variables can be computed. Statistics can then be performed on these sets of bulk

variable realisations, to find, for example, their inter-quartile ranges. Through this process, the

kriging estimation variance of each component can be used to derive a measure of the uncer-

tainty in the estimated bulk variable outputs. A note of caution: kriging estimation variances

must be handled with care when dealing with non-Gaussian random functions, and as we

mentioned in Section 3.2.2, our component distributions are close to but not strictly Gaussian.

We consider that the computed estimation variances, if not exact, provide a reasonable order

of magnitude of the true error of each component.

3.3 Application to HyMeX data

We tested the DSD interpolation technique by applying it to Parsivel (both first-generation

and Parsivel2) data collected by the HyMeX instrument network introduced in Section 2.2. The

Parsivel data were all corrected using the technique described in the previous chapter. The

resulting processed data take the form of drop concentrations [mm−1 m−3] in 32 unevenly-

sized classes of equivolume drop diameter per time step. The radar (MXPol, see Schneebeli

et al., 2013 for the full instrument description) was a dual-polarimetric X-Band Doppler

weather radar, scanning at preset elevation angles above the disdrometer network about every

five minutes.

For these analyses, we resampled the Parsivel data into lower temporal resolutions of one

minute, five minutes, and 10 minutes. Resampling was performed for each Parsivel station, by

finding the mean DSD over each new time period. Parsivels record a precipitation type flag

which indicates whether the measured precipitation was solid or liquid (see Löffler-Mang and

Joss, 2000, Fig. 9), and a quality-control flag that indicates if there were any problems with

the laser beam. These flags were used to select time steps that could be assumed to represent
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good-quality measurements of liquid precipitation. For each time resolution, we subset the

resampled time steps for each station to those in which none of the input high-resolution

measurements registered solid precipitation, no problems with the laser were detected, the

resulting derived rain rate was greater than 0.1 mm h−1, and a radar scan was available.

There were three sets of collocated stations in the network, at Pradel, Pradel Grainage, and

Villeneuve-de-Berg. We made the assumption that collocated instruments sampled the same

precipitation volume over integration time. Any differences between the stations were there-

fore assumed to be due to measurement error and not due to spatial effects. Although the

collocated Parsivels performed similarly, there were of course measurement differences. To

avoid such measurement errors being falsely classified as spatial effects we used only the

best-performing station from each group, judged by comparison with collocated rain gauges

at five-minute resolution. Thus of the collocated stations we used Pradel 1, Pradel Grainage

(first-generation), and Villeneuve-de-Berg as interpolation input. Pradel 2 data was included

until variogram models were fitted, so it could be used to determine nugget values (see Section

3.3.3), after which it was not included as interpolation input.

Events were defined using disdrometer data at one-minute temporal resolution, while the rest

of the testing and analyses were performed using five-minute temporal resolution. An event

was defined as a period in which no more than one hour of completely dry time was observed,

and for which sample variograms could be found (at five-minute resolution; see section 3.3.3).

Defined events are shown in Table 3.1. Using these criteria, 15 events were defined, all with

at least five disdrometer stations reporting. The shortest event was 1.8 hours long, while the

longest lasted for 23.7 hours. Each event was analysed separately. Per-station quantities of

rainfall recorded within these events are shown in Table 3.2. In the following sections, examples

are shown from event 13. This event lasted for 5.2 hours, during which the maximum per-

station five-minute amount was 2.1 mm and the maximum five-minute rain rate was 25.1 mm

h−1. We chose event 13 because it was a good example case containing moderate rain rate and

frequent intermittency. Note that this event is used purely for illustrative purposes and results

from all events are shown in Section 3.4.

3.3.1 The dry drifts of drop concentrations

The calculation of the dry drift for drop concentrations depends upon an occurrence field

(Equation 3.2). We used radar data to determine this occurrence process for our field area. In

the specific case of our radar, a (horizontal polarisation) signal to noise ratio (SNR) of greater

than or equal to 5 dB meant that the radar was measuring a signal of sufficiently good quality

to use. To ensure this signal was indeed rainfall, we set a threshold for radar reflectivity at 10
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Start H Peak R Stns 1 min 5 min 10 min

1 2012-09-18 19:56:00 6.1 30.9 9 58 52 27
2 2012-09-25 05:55:00 8.6 65.1 9 56 51 28
3 2012-10-25 22:14:00 15.5 15.2 9 129 130 66
4 2012-10-26 15:09:00 11.8 40.8 9 118 115 67
5 2012-10-31 10:23:00 6.8 6.6 10 53 55 28
6 2012-11-03 16:30:00 3.9 15.9 9 32 32 20
7 2012-11-09 19:09:00 22.4 30.4 6 152 150 79
8 2012-11-26 04:54:00 23.7 24.7 5 195 190 101
9 2013-09-28 17:05:00 1.8 39.1 10 13

10 2013-10-04 15:33:00 4.8 33.4 9 30 29
11 2013-10-12 15:39:00 7.5 6.6 10 65 64 37
12 2013-10-15 03:44:00 7.5 25.0 10 68 68 39
13 2013-10-20 02:32:00 5.2 56.8 10 43 43 26
14 2013-10-27 03:22:00 5.5 60.1 10 46 46 28
15 2013-11-02 19:11:00 4.3 12.1 10 28 29 17

Table 3.1 – HyMeX event times, showing the start time (UTC, end of first time step), the event length in hours (H),
the peak one-minute rain rate [mm h−1], the number of stations that measured DSDs during the event, and the
number of within-event time steps suitable for geostatistical analysis per time resolution. For each time resolution,
events were included if it was possible to estimate variograms with at least 30 pairs of observations per distance
lag class (Note: this table was first published in Raupach and Berne (2016) (Chapter 4 of this thesis). It contains the
same event definitions as the table of events originally published with the rest of this chapter. It also contains the
number of available time steps, and lists one-minute instead of five-minute peak R.

dBZ. We defined the occurrence process as

IR (z) =
1 ifSNR(z)>5and ZH > 10

0 otherwise.
(3.16)

Calculations assuming typical noise levels showed that over the region of our network, the 5

dB cut-off occurred at a radar reflectivity of between -11 and +12 dBZ. The dry/rain threshold

could therefore appear at values of between 10 dBZ and 12 dBZ, which, using the Z -R relation-

ship of Marshall et al. (1955), translate to an approximate rain rate of 0.2 mm h−1. Note that it

was possible for the SNR and ZH values in the radar fields to be undefined, and there were

areas that were not observed by the radar. The distance between a point and the closest dry

region was calculated using the Euclidean distance, such that

d(z) = min
y∈Ω

‖z − y‖, (3.17)

whereΩ= {y | IR (y) = 0} is the set of dry points defined by the occurrence map. Occurrence

maps were calculated for each considered five-minute time step, using plan position indicator
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Station Hours [H] Amount [mm]

Mirabel 93 240
Lussas 75 220
Lavilledieu 92 256
Les Blaches 90 249
St-Germain 90 252
Pradel 1 92 254
Pradel 2 91 253
Montbrun 19 52
Pradel Grainage (first-generation) 24 81
Saint Etienne de Fontbellon 26 82
Villeneuve de Berg 55 129
Pradel-Vignes 3 7
Mont-Redon 47 112

Table 3.2 – Station information, showing the station name, the number of hours, and the total amount the station
recorded during event times (calculated using one-minute resolution data and including all within-event time
steps). This information was originally published in Raupach and Berne (2016) (Chapter 4 of this thesis).

(PPI) radar scans, in which the elevation is fixed while the radar changes azimuth. We used the

lowest available elevation angle that did not produce significant clutter and beam-blocking,

which was four degrees above horizontal. The range resolution was 75 m and the inner angular

resolution (antenna beam-width) was 1.45◦, with data collected with an angular spacing

of about 1◦. The occurrence maps covered a region extending 10 km from all sides of the

disdrometer network. For time steps in which more than one radar scan was present, only

points at which no rain was observed in any radar scan were taken to be dry. The radar value for

a grid point was taken to be the mean value of the radar observations that, when their coverage

areas were projected to the horizontal plane, overlapped the grid point. The occurrence maps

were found at grids of 25 m resolution that captured fine detail, then aggregated to 100 m

resolution. Points which were outside the radar coverage area, or for which SNR or ZH were

undefined, were considered to have an undefined occurrence value. When determining the

dry distance d(z) for a given point, if the occurrence map border or a point with undefined

occurrence was closer than the nearest dry region, then the dry distance was also undefined.

Points with undefined dry distance could not be used to train dry drift models.

Similar to results of previous studies on rain rate and DSD model parameters (Schleiss et al.,

2012, 2014a), our results show that there is a relationship between drop concentrations and

the dry distance. Figure 3.1 shows drop concentration versus distance to dry region for within-

event five-minute time steps, for the first equivolume drop diameter class that contained

drops. The distributions of drop concentrations are shown both before and after the log trans-

formation (Equation 3.1). Schleiss et al. (2014a) showed that an ordinary log transformation

results in stabilised distributions of values per dry distance class. After the transformation, the

variability was more uniform across dry distance classes. There was a similar stabilising effect

in our results, even though the resulting drop concentration distributions were not normal

due to the fact that we keep zeros in the DSDs (see Section 3.2.1).
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Figure 3.1 – Experimental dry drifts across all events, for disdrometer class 3 ([0.2495, 0.3745) mm). Shown are
drop concentration distributions (a) with no log transformation, and (b) with log transformation. Distance class
width is 1 km. Boxes show class inter-quartile range, whiskers show 10th to 90th percentile range, bold horizontal
lines indicate medians, means are indicated by dots. The log transformation stabilised the variances of the drop
concentrations by distance class.

The effect of the dry drift is most apparent for small drops, and becomes less important for

large drops, which occur less frequently. Figure 3.2 shows the dry drift over all available time

steps for the 17th Parsivel drop size class (3 to 3.5 mm). The drop concentrations were low both

close to and far from a dry region. Close to dry regions (under about 3 km), these large drops

were so rare that the inter-quartile ranges of concentrations were zero. The log transformation

had only a small stabilising effect.

A functional form was fitted to the dry drift for each drop concentration class. The shape of

the functional form was well fitted by one of two models. The first model was a spherical plus

nugget model, like the type that is often fitted to variograms. This model has three parameters:

1. The range a [m] represents the distance after which the drop concentration is no longer

expected to change.

2. The nugget c0 [–] represents the expected transformed drop concentration at the bound-

ary of the wet/dry regions.

3. The partial sill cd [–] defines the expected transformed drop concentration (c0 +cd ) at

the range distance (when d = a).
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Figure 3.2 – Experimental dry drifts across all events, for disdrometer class 17 ([3, 3.5) mm). Shown are drop
concentration distributions (a) with no log transformation, and (b) with log transformation. Distance class width
is 1 km. Boxes show class inter-quartile range, whiskers show 10th to 90th percentile range, bold horizontal lines
indicate medians, means are indicated by dots.

This spherical model is defined as (Chilès and Delfiner, 1999)

fS(d) =

c0 + cd

[
3d
2a − 1

2

(
d
a

)3
]

if d ≤ a

c0 + cd if d > a.
(3.18)

The second model allows for the drop concentration to remain zero for a distance from the dry

region, before it slowly increases. This is useful for concentrations of larger drop sizes, which

tend to appear only at some distance from the dry region. The second model is a modified

Gaussian model, with three parameters:

1. A scale parameter a [m]; the drop concentration is not expected to change after the

pseudorange, when d ≥∼ 1.73a +d0 (Chilès and Delfiner, 1999).

2. The sill cd [–] represents the maximum expected transformed drop concentration.

3. The zero distance d0 [–] represents the distance below which the expected transformed

drop concentration is zero.
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This Gaussian model is defined as

fG (d) =

cd

[
1−e−

(d−d0)2

a2

]
if d ≥ d0

0 if d < d0.
(3.19)

For each drop diameter class, the model fS or fG that best fitted all the data points (using

non-linear weighted least squares) was used. Most drop concentration classes were fitted

best by the spherical plus nugget model fS . The Gaussian model fG was the best fit for some

classes for larger drops. Large drops are rare and therefore it makes sense that when rainfall

is lighter, as it is expected to be near dry regions, the expected drop concentration for large

drops may be zero. These spherical and Gaussian models are used for the dry drift functions

simply because they fit the data, not because of their mathematical resemblance to variogram

model functions. In fact, any model, however simple, that satisfactorily fits the dry drift data

can be used.

It is expected that different rainfall events will have different dry drift properties. For each

event, we found sample values by dry distance and fitted functional forms. Means and

standard deviations of model parameters over the 15 events are shown in Table 3.3. It is clear

from the large standard deviations for the range parameter a that it is advisable to fit the

dry drift models to data per event, and that for events in which an abrupt change occurs (for

example a convective front to stratiform pattern) it would be better to split the event into the

two phases and fit dry drift models to each phase separately. Figure 3.3 shows examples of the

dry drift relationships between distance to dry region and drop concentration, for two drop

diameter classes in event 13, and Figure 3.4 shows the fitted models for these same classes,

including the use of a Gaussian model for the larger drop class.

During interpolation, the dry distance for every grid point was calculated, and the dry drift

models were used to determine the expected value of each PCA component at that point. Since

the dry drift models have a range after which the expected value is constant, this range could

be used for some points for which the dry distance was undefined. Specifically, for points

with undefined dry distance that were further from a border or undefined occurrence value

than the largest dry drift model (pseudo)range, that maximum range was used as the point’s

dry distance during interpolation. No interpolation was performed at points for which the

occurrence was undefined. For each drop diameter class, the concentrations Ñ (Dk , z) were

adjusted to remove the effect of the dry drift (Equation 3.4), leaving the detrended process

N †(Dk , z).
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Class (k) Dk δk Model Events cd σ(cd ) c0 σ(c0) d0 σ(d0) a σ(a)

3 0.25 0.12 Spherical 14 1.21 0.69 2.54 0.59 5.96 6.23
4 0.37 0.12 Spherical 14 1.13 0.77 3.42 0.63 5.47 5.28
5 0.50 0.13 Spherical 14 0.89 0.70 4.48 0.73 5.88 6.78
6 0.62 0.12 Spherical 14 1.01 0.69 4.48 0.63 4.68 5.15
7 0.75 0.12 Spherical 15 1.12 0.56 4.48 0.48 4.50 4.58
8 0.87 0.12 Spherical 15 1.51 0.61 4.00 0.31 4.25 4.66
9 1.00 0.12 Spherical 15 1.93 0.69 3.34 0.41 4.65 4.08

10 1.12 0.13 Spherical 15 2.24 0.66 2.60 0.47 4.32 3.33
11 1.25 0.25 Spherical 15 2.52 0.71 1.77 0.52 4.53 3.53
12 1.50 0.25 Spherical 15 2.60 0.83 0.93 0.47 5.52 4.61
13 1.75 0.25 Spherical 15 2.31 0.77 0.48 0.37 6.60 5.07
14 2.00 0.25 Spherical 15 1.94 0.78 0.26 0.27 7.93 5.54
15 2.25 0.25 Spherical 12 1.45 0.60 0.17 0.20 6.87 5.47
16 2.50 0.50 Spherical 12 0.97 0.54 0.08 0.11 8.04 7.06
17 3.00 0.50 Spherical 10 0.36 0.27 0.03 0.07 7.80 7.21
18 3.50 0.50 Spherical 9 0.28 0.50 0.02 0.04 8.25 7.57
19 4.00 0.50 Spherical 7 0.06 0.09 0.00 0.00 2.16 1.27
20 4.50 0.50 Gaussian 9 0.01 0.03 0.12 0.20 4.41 6.69
21 5.00 1.00 Gaussian 9 0.01 0.02 0.15 0.15 2.95 4.88
22 6.00 1.00 Gaussian 8 0.02 0.03 0.10 0.11 6.01 6.61

Table 3.3 – Mean (overline) and standard deviation (σ) of dry drift model parameters for the example events. The
model shown is the one that was the best fit greater than 50% of the time (spherical model parameters are shown if
there was a tie). k is the class number. D is the class centre diameter, and δk is the class width; both are in mm.
Parameters are sill (cd ), nugget (c0), distance lag (d0) and range (a). Events shows the number of events included
in the calculation. Note that larger drop classes were not present in all events.
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Figure 3.3 – Experimental dry drifts for event 13 for (a) class 3 ([0.2495, 0.3745) mm) and (b) class 17 ([3, 3.5) mm).
Distance class width is 500 m. Boxes show class inter-quartile range, whiskers show 10th to 90th percentile range,
horizontal lines indicate medians, means are indicated by dots.
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Figure 3.4 – Fitted dry drift models for event 13 for (a) class 3 ([0.2495, 0.3745) mm) and (b) class 17 ([3, 3.5) mm).
The spherical model was the best fit for class 3, while the Gaussian model was the best fit for class 17. The models
(lines) were fitted to all data, but to improve readability only the mean concentration values per 500 m distance
class (dots) are shown.

3.3.2 Principal components

PCA was performed to find the principal components of the detrended drop concentrations

N †(Dk , z). Parsivel drop diameter classes 3 to 22 recorded drops during event 13, and PCA

produced 20 orthogonal principal components. The properties of the first eight components

are shown in Table 3.4. In this example, these first eight components explained 97% of the

variance in the input data, with the first two components explaining more than two thirds

of the variance. The least important components affect the accuracy of the higher-order

moments of the reconstructed DSDs. Preliminary tests showed that in the majority of cases,

good reconstructions of DSDs were possible with as few as ten components. In this work,

however, we kept all principal components to preserve all available information.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Std. dev. 3.07 2.04 1.57 1.12 0.97 0.75 0.58 0.45
Prop. var. 0.47 0.21 0.12 0.06 0.05 0.03 0.02 0.01

Cumu. prop. 0.47 0.68 0.80 0.86 0.91 0.94 0.96 0.97

Table 3.4 – Properties of the first eight PCA components for the example event. Std. dev. is standard deviation,
Prop. var. is proportion of variance, Cumu. prop. is cumulative proportion of variance.

In general, the resulting component distributions were close to symmetrical. Figure 3.5

shows the distributions of relative difference between mean and median of each component

distribution. In this plot the difference between mean and median is relative to the 10th

to 90th percentile range of each component distribution. The relative differences were low,
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with no difference between median and mean exceeding 9%. Our use of Cressie’s robust

estimator (Equation 3.8) ensures that possible outlier influence is minimised in the variogram

calculations.
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Figure 3.5 – Distributions of mean to median difference as a percentage of the 10th to 90th percentile range, for
each PCA component, across all events. Boxes show inter-quartile range, dots indicate means, bold bars show
medians, whiskers display 10th to 90th percentile range of mean to median differences.

3.3.3 Fitting variograms

After calculating principal component values, the next step is to characterise their spatial

structures by finding component variograms. The sample semivariances for each of our

components were found at various distance lags, and a variogram model was fitted to each

sample variogram. Variogram estimation, model fitting, and kriging were performed using the

R Gstat package (Pebesma, 2004).

To accurately estimate the variogram of a process, a minimum of about 30 pairs of samples of

the process is recommended (Cressie, 1993). In most studies involving networks of disdrome-

ters, limitations on the number of instruments mean that this is not possible, and our study is

no exception. To increase the number of samples available for the variogram, we assumed that

measurements at different time steps represented realisations of the same event-scale process.

For each event, we grouped together all measurements, such that in Equation 3.8, Nl was

the total number of unique data pairs for distance lag l , across the whole event. Only points

measured during the same time step could be paired. The distance class size was set to 100 m,

then distance classes were dynamically joined so that at least 30 pairs of points appeared per

distance class. The events analysed (and shown in Table 3.1) were those in which there were at

least six distance classes containing at least 30 point pairs.

Per-component sample variograms were fitted with a spherical model (Equation 3.18). For

the component variograms, the range a represents the decorrelation distance of the process,

the sill cd represents the approximate variance of the process, and the nugget c0 represents

the variogram at a distance lag of zero, which is made up of measurement error and pro-

cess microstructure (Chilès and Delfiner, 1999). In this case, we used collocated Parsivel

stations (Pradel 1 and Pradel 2) to estimate the variogram nugget by calculating the mean
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per-component variogram with pairs taken from the collocated station data. For the rest of the

analyses, only DSD values at Pradel 1 were used for that location. If the fitted range converged

to a value less than the mean distance of pairs in the second distance class, the model had

only one sample variogram point to fit to and the fit could not be properly determined. In

this case, we forced the range to be equal to the mean distance of pairs in the second distance

class, and the variogram model represented noise after this range.

In our network of disdrometers, there were not enough data to determine whether the compo-

nent processes were iso- or anisotropic. We therefore assumed isotropy. If more data points

were available, this assumption could be tested, and if anisotropy was present it could be taken

into account through the geostatistical framework. Figure 3.6 shows the sample variograms

and fitted variogram models for the first eight transformed PCA components for the example

event. Even though the least important components had little spatial structure, we kept all

components so that measured values could be perfectly reconstructed.

3.3.4 Kriging

Using the variograms trained for the example event, we were able to reproduce the DSD

spectrum at any given point near the measurement stations. To demonstrate the technique,

we created a grid at 100 × 100 m2 resolution, with a buffer of 1 km added around the locations

that provided observations, and estimated the DSD spectrum at each point for which the

occurrence mask indicated there was rain. The minimum allowed value for any DSD bin was

the smallest non-zero observed concentration, and smaller estimated concentrations were

set to zero. For each DSD in the grid, we calculated bulk variables: the rain rate R, total drop

concentration Nt , mass-weighted mean drop diameter Dm , and radar reflectivity ZH . We

used the model of Andsager et al. (1999) for drop axis ratios, and T-matrix code (Mishchenko

and Travis, 1998) to calculate back-scattering cross sections. Inter-quartile ranges (IQRs) of

estimations were were calculated as described in Section 3.2.6, using 1000 samples drawn

from each component estimation distribution. As expected, the estimation variances were

lower close to observation locations.

3.3.5 Example gridded interpolations

Here we show examples for a single five-minute time step during event 13, ending at 2013-10-

20 03:00 UTC. In Figures 3.7, 3.8, 3.9, 3.13 and 3.14, disdrometer stations are marked as black

triangles. Example interpolations and IQRs are shown in Figures 3.7, 3.8, and 3.9 for rain rate

R , mass-weighted mean drop diameter Dm , and radar reflectivity ZH respectively. Dry regions

according to the occurrence mask are shown in white. These plots show some interesting

properties of the DSD interpolation technique. The effect of the dry drift calculations can

be seen as structure related to the occurrence process. Note that the different bulk variables

show different dry drift properties. Also note that since the dry drift models provide expected

values, and fluctuations around these are modelled by the geostatistics, it is possible, but
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Figure 3.6 – Example variograms for the first eight PCA components in event 13. Sample variograms are shown as
dots, while the lines are the fitted variogram models. The PCA components are ordered by importance. The less
important components have less spatial structure; indeed the least important components contain essentially
only noise.

less likely, for large values to appear close to dry regions. These interpolation results show

realistic rainfall structure due to the fact that the dry drift was taken into account. Kriging has

a smoothing effect which is evident in these results. The interpolated field of radar reflectivity

(Figure 3.9 (a)) compares well with the measured radar reflectivity (Figure 3.14 (a)) in terms of

broad rainfall pattern.

3.4 Leave-one-out testing

Leave-one-out testing was conducted for all events individually. For each event, we performed

the DSD interpolation process. Dry drift estimation, principal components, and variograms

were calculated using all non-collocated stations in the event. Then, within each event, each
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Figure 3.7 – Example interpolation results, for (a) rain rate R, and (b) the estimation inter-quartile range for R, for
an example time step (2013-10-20 03:00 UTC) during event 13.

station was left out in turn, and the interpolation method was used to estimate the DSD spectra

and through it bulk variables at the left-out station. The bulk variables were the total drop

concentration Nt , rain rate R, mass-weighted mean drop diameter Dm , and radar reflectivity

ZH . Performance statistics were calculated per DSD equivolume drop diameter class, and per

bulk variable, on every time step and station combination in all events. There were 4795 such

combinations. The error was calculated as interpolated value minus measured value. The

statistics used were bias (mean error) and relative error. Relative error for the bulk variables

was calculated by taking error as a percentage of absolute measured value, then taking the

median of these relative errors. The drop concentrations per drop size class often had a

measured value of zero, so standard relative error (undefined for measured values of zero) was

inappropriate. We therefore used a relative error in which the difference was calculated as a

proportion of the event 10th to 90th percentile range, for a given drop concentration class.

This relative error is undefined when the 10th to 90th percentile range is zero. Median relative

error was used to reduce the impact of outliers in the distributions of relative error.

Figures 3.10 and 3.11 show bias distributions and relative error distributions for drop con-

centrations per equivolume diameter class. For drop concentrations, the bias and relative

error distribution inter-quartile ranges were roughly centred around zero, indicating that

much of the time the interpolation technique was able to reproduce the DSD at the left-out

station in an unbiased way. While spreads of absolute errors were higher for drop classes with

the highest proportion of concentrations (0.4 to 1.1 mm), spreads of relative errors on these

classes were similar. The absolute value of the median relative error was less than 0.5% for all

drop diameter classes, showing that the error is only a small fraction of the range of possible

values of drop concentration in a given class.
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Figure 3.8 – Example interpolation results: (a) mass-weighted mean drop diameter Dm , and (b) the estimation
inter-quartile range for Dm , for an example time step (2013-10-20 03:00 UTC) during event 13.

Results for bulk variables are shown in terms of distributions of relative error in Figure 3.12.

The inter-quartile ranges fell around zero and were positively skewed. The error ranges were

similar for Nt and R, and considerably lower for Dm and ZH . Dm is the ratio of the 4th to

the 3rd moments, which we have observed display similar variability to other DSD moments.

We hypothesise that the fact that Dm is a ratio has a stabilising effect and reduces the range

of its errors. Similarly, the fact that we use ZH in dBZ instead of linear units (mm6 m−3) has

the effect of reducing the influence of very large outliers and thus the spread of error. We

chose to use dBZ because it is the most common unit in which to express radar reflectivity.

The absolute values of median relative errors were low (less than 2.5%) for all bulk variables.

Overall, rain rate R had the worst performance and mass-weighted mean drop diameter Dm

was reproduced best. Leave-one-out performance results per bulk variable are shown in Table

3.5.

Nt [%] R [%] Dm [%] ZH [%]

Mean 34.52 39.13 2.46 4.35
10th -52.58 -61.55 -15.28 -21.60
25th -30.73 -35.01 -7.40 -10.63
Median -2.30 -1.11 0.31 0.32
75th 39.54 51.14 9.27 13.31
90th 124.27 159.48 21.28 34.61

Table 3.5 – Leave-one-out errors per bulk variable, showing mean, 10th, 25th, 50th (Median), 75th and 90th
percentiles of errors.
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Figure 3.9 – Example interpolation results: (a) radar reflectivity ZH , and (b) the estimation inter-quartile range for
ZH for an example time step (2013-10-20 03:00 UTC) during event 13.
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Figure 3.10 – Distributions of bias per DSD equivolume diameter class (centres shown) from leave-one-out testing.
Boxes show inter-quartile range, whiskers show 10th to 90th percentile range, dots show means, bold horizontal
bars show medians.

3.4.1 Effect of neglecting the dry drift

Taking the dry drift into account is important to satisfy the stationarity requirements of the

geostatistics techniques we use. However, rainfall occurrence maps are not always available

or easy to estimate. When only point rainfall measurements are available, it is possible to

estimate the dry drift in space from temporal dry drifts, using time series information and an

estimate of storm advection, as shown in Schleiss et al. (2014a). For those who may want to use

our technique without a rain occurrence map, it is worth mentioning that the technique can

operate without the dry drift steps if the fields are (incorrectly) assumed to be second-order

stationary. Testing using the same leave-one-out station/time combinations showed that

not taking the dry drift into account affected the median relative leave-one-out errors by less

than five percentage points, and did not greatly affect the 10th to 90th percentile spread of

relative errors. Leave-one-out testing on only station points within 0.5 km of a dry region,
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Figure 3.11 – Distributions of leave-one-out relative error (error proportional to per-event 10th to 90th percentile
range) per DSD equivolume diameter class (centres shown). Boxes show inter-quartile range, whiskers show 10th
to 90th percentile range, dots show means, bold horizontal bars show medians.
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Figure 3.12 – Distributions of leave-one-out relative error (error proportional to non-zero measured value) per
bulk variable. Boxes show inter-quartile range, whiskers show 10th to 50th percentile range, dots show means,
bold horizontal bars show medians.

however, showed that extreme errors were worse without the dry drift steps, with the 10th to

90th percentile range of relative errors on these points significantly larger for Nt and R when

dry drift was neglected. Hence, not taking the dry drift into account will not lead to significant

overall bias, but to larger possible errors (and therefore uncertainty) on estimations at points

close to dry regions.

3.5 Stochastic simulation of the DSD

While this chapter is primarily about interpolation of the measured DSD spectrum, it is worth

mentioning that the concepts presented here can equally be applied to perform stochastic

simulation of DSD spectra. By replacing the kriging process with a sequential conditional

Gaussian simulation approach (see e.g. Pebesma, 2004; Schleiss et al., 2014b), multiple similar

realisations of the DSD can be simulated. In contrast to interpolation, in which the most likely

value is found for each point, stochastic simulation produces many equally-likely realisations

of the field, all of which have identical spatial properties (variograms). The mean of the

stochastic fields approaches the kriging result as the number of realisations increases. While

kriging has a smoothing effect, individual stochastic realisations are more realistic fields

that are not as smooth as kriging outputs. When stochastic simulation is used with our
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DSD estimation technique, the principal components of the detrended DSD processes are

simulated at points that are indicated by the occurrence process to contain precipitation.

Once values for each realisation are obtained, the same process outlined in Section 3.2.5 is

used to back-transform the components into simulated DSDs.

We used conditional sequential Gaussian simulation from the R Gstat package (Pebesma,

2004) to calculate 100 simulated realisations of the DSD for the same grid, region, and example

time step used in Section 3.3. For computational efficiency, the simulation algorithm was

restricted to using at most 500 nearest neighbours at each iteration. The same occurrence

field was used for all simulations. Figure 3.13 shows two rain intensity fields derived from

DSDs simulated using this technique, while Figure 3.14 shows measured and simulated radar

reflectivity. The radar reflectivities are derived from the same simulated DSDs as the rain rate

in Figure 3.13 (a). These simulation results are equally-likely realisations for the same time

step. The realisations each have the same spatial properties and the same intermittency, but

the values of individual points are different. The per-location mean of the simulated DSDs

across all realisations would converge to the same values given by the kriging method, as

the number of realisations increased. These individual simulated fields are obviously less

smooth than the kriged results and may contain extreme values. Stochastic simulation offers a

useful probabilistic approach to generate ensembles of realistic DSD fields, and to examine

the variability of the DSD while taking into account possible extreme values that would be

“smoothed out” by the interpolation technique.

(a) Simulation one (b) Simulation two
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Figure 3.13 – Two example simulated fields for rain rate R , for an example time step (2013-10-20 03:00 UTC) during
event 13. Note that the fields differ and are not smooth.

3.6 Conclusions

We have presented a new approach for the interpolation of experimental raindrop size distri-

bution spectra. Using the technique, non-parametric drop size distribution spectra can be

estimated at unmeasured locations. We showed that raindrop concentrations per diameter
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(a) Measured ZH (b) Simulated ZH
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Figure 3.14 – Comparison to measured values for an example time step (2013-10-20 03:00 UTC) during event 13:
(a) the measured radar reflectivity (attenuation corrected horizontal polarisation ZH [dBZ] at 100 m resolution,
SNR > 5 dB and ZH > 10), and (b) an example simulated field for ZH . The simulated field is less smooth and more
realistic than the interpolated field shown in Figure 3.9.

class are subject to a dry drift. Given a rainfall occurrence field, the dry drift can be subtracted

from the DSD concentration fields to obtain detrended fields that are not affected by this

source of non-stationarity. The DSD interpolation technique works on these detrended fields,

and uses geostatistical methods to characterise and interpolate principal components of the

detrended DSD. We applied the technique to disdrometer network data from HyMeX cam-

paigns in Ardèche, France. The method is equally applicable to data from other sensors. We

used radar data to determine occurrence fields which were used to calculate the dry drifts. If

dedicated radar data were not available, the occurrence field could be calculated from other

sources such as numerical weather prediction models or operational weather radar products,

or indeed estimated from disdrometer time series (Schleiss et al., 2014a). The presented

technique will also operate effectively, although not as accurately, without any consideration

of the dry drift.

Leave-one-out testing using HyMeX data demonstrated that the new technique is able to

estimate the DSD spectrum with low bias at unmeasured locations. Since the method is geo-

statistical, an associated measure of estimation uncertainty is provided for every estimation.

Stochastic simulation of the DSD is possible through simple modification of the technique,

and could be used to estimate the probability densities of DSD values at points in space, or to

examine possible extreme values of the DSD. All bulk rainfall variables can be calculated from

the DSD, so the DSD interpolation method is effectively able to interpolate or simulate all bulk

variables simultaneously. However, its main utility comes from the fact that it interpolates or

simulates the non-parametric DSD spectrum assuming no prescribed functional form. The

method is useful for studies that use networks of disdrometers to investigate the small-scale

variability of the drop size distribution and its associated precipitation variables. Possible

extensions to the technique include the use of kriging with external drift to take topographical
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effects into account and the use of climatic dry drifts for specific regions.
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4 Small-scale variability of the raindrop
size distribution and its effect on
areal rainfall retrieval

This chapter is adapted from:

• T. H. Raupach and A. Berne. Small-scale variability of the raindrop size distribution

and its effect on areal rainfall retrieval. Journal of Hydrometeorology, 17:2077–2104, July

2016. doi: 10.1175/JHM-D-15-0214.1. © American Meteorological Society. Used with

permission.

This work was completed by T. Raupach under the supervision of A. Berne. Research, analyses,

and writing are by T. Raupach. For data acknowledgements, see Appendix A.
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4.1 Introduction

An inherent difficulty in measurement of precipitation is that of change of support. The

support of a measurement may be a point or an areal region, and at small scales it may be

tempting to assume the two are equivalent. In this chapter we study the small-scale sub-grid

variability of the DSD in order to answer two questions. First, what error is introduced by

assuming that a point measurement of precipitation represents an areal region? Second, if an

estimate of the DSD is derived from areal precipitation measurements, how representative is

it of the underlying sub-grid precipitation process?

Sub-grid variability of the DSD and non-linearities between rainfall variables imply that any

assumption of equivalence between areal and point precipitation measurements introduces

error. Take for example a weather radar that measures electromagnetic radiation reflected

off hydrometeors within a particular volume of air. This radar reflectivity Z [mm6 m−3] is

related to rain intensity R [mm h−1] via the DSD (e.g. Marshall and Palmer, 1948; Uijlenhoet,

2001), and this relationship is known to be scale dependent (Verrier et al., 2013; Sassi et al.,

2014). To calculate R from Z , one of two assumptions regarding scale is usually made. The

first assumption is that a point measurement can represent a pixel. For example, a point

measurement of the DSD is used to relate R to Z , or a point measurement of R is related to

an areal measurement of Z . In the second assumption, an areal measurement is assumed

to be representative of the sub-grid process. For example, the radar measurements are used

to infer properties of a DSD model that is assumed to describe the areal DSD from which

R can be calculated. This approach makes the assumption that the retrieved DSD model is

representative at the pixel scale. None of these approaches takes sub-grid variability of the

DSD into account.

Previous studies of DSD variability have involved the use of single disdrometers and inves-

tigation of DSD variability over time-series measurements (e.g. Uijlenhoet et al., 2003b; Lee

and Zawadzki, 2005; Chapon et al., 2008). Jameson (2015) provided a technique for up-scaling

single disdrometer measurements, which produces gridded simulations of non-parametric

point DSDs that honour the statistical properties of the observations. The resulting gridded

fields are useful for statistical characterisation of the rainfall field, but are not appropriate for

direct comparison to fields of observations. Lee et al. (2007) derived the spatial and temporal

distributions the DSD, using radar data, a time series of point DSD measurements, and a

double-moment normalised DSD model. They found that with two DSD moments (measured

Z and simulated R) they were able to capture the bulk but not all of the variability in the DSD.

Other studies have used networks of disdrometers to examine DSD variability in space. Miri-

ovsky et al. (2004) used a network of four disdrometers of different types within a 1 km2 region

in Iowa, United States (US), and reported that radar reflectivity was highly variable within

this area. However, large instrumental differences meant they were unable to determine

quantitative variability, and the study was focused on the Z -R relationship. Lee et al. (2009)

used four disdrometers with inter-spacings up to about 33 km, combined with radar data,
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to study four stratiform rain events in Montreal, Canada. Variability in DSD moments and

bulk variables was found even over small distance lags, and lower order DSD moments were

found to be slightly more correlated than moments of higher order, indicating that large drops

play a larger role than small drops in the variability of the DSD. This study was limited by the

network that was not specifically designed for DSD variability research. Tokay and Bashor

(2010) used a network of three disdrometers to quantify variability in DSD model parameters

and bulk variables along a 1.7 km linear transect on Wallops Island, US, with the goal of

studying DSD variability within a typical ground-based radar pixel (2×2 km2). This network

was limited by the small number of instruments. Tapiador et al. (2010) set up a network of 16

disdrometers at eight locations over a 4×4 km2 area near Ciudad Real, Spain. They found large

spatial variability at kilometre scale, but the analysis focused on bulk variables and not the

DSD itself. Jaffrain and Berne (2012b) used a network of 16 disdrometers over a 1 km2 region

(described in Jaffrain et al., 2011) to observe the DSD over the area of a typical operational

weather radar pixel in Lausanne, Switzerland. Using stochastic simulation of characteristic

drop diameter, total drop concentration, and rain rate, they found that the assumption that a

point measurement represents an areal estimate introduced close to Gaussian errors with zero

mean and significant standard deviations. For example, at 60-seconds resolution and over the

whole network, the error standard deviation was up to 25% for rain rate in convective cases.

Noise in the data overtook natural DSD variability for time steps longer than 30 minutes. Using

the same network of disdrometers, Jaffrain and Berne (2012a) studied the sub-grid variability

of the power laws used for rain-rate estimation from radar. When the power laws were trained

using point measurements, then applied at 1 km2 scale, an error in rain rate estimation of

between −2% and +15% was observed. More recently, Jameson et al. (2015a) and Jameson et al.

(2015b) studied DSD variability using a network of 21 logarithmically-spaced disdrometers

over a very small area (distance lags of 1 to 100 m) in South Carolina, US. Jameson et al. (2015a)

found that spatial and temporal clustering structures of the DSD were significantly different

from each other and that they differed across drop size classes.

Capturing the full variability of the DSD is non-trivial. In an instrument network, it is a chal-

lenge to place enough instruments to measure the full DSD variability. For example, Tapiador

et al. (2010) found that at least six disdrometers would be required to accurately capture the

full spatial variability of the DSD at kilometre scale. Efforts to address this issue have in-

cluded stochastic simulation techniques to estimate areal DSD gamma model parameters (e.g.

Schleiss et al., 2012). Stochastic simulation was used by Jaffrain and Berne (2012b) to quantify

DSD model parameter variability. Jameson et al. (2015b) highlighted that it is inadequate to

evaluate DSD variability using only integral variables, because different DSDs can produce the

same integral variable values. Studies using disdrometer networks have drawn some broad

conclusions: that DSD variability within an event can be larger than that between events

(Tapiador et al., 2010; Jaffrain and Berne, 2012b), and that variability increases with greater

domain size (Jaffrain and Berne, 2012b; Jameson et al., 2015b) and greater drop size (Jameson

et al., 2015b) and decreases with temporal integration (Jaffrain and Berne, 2012b; Tokay and

Bashor, 2010).
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In this chapter, we focus on DSD volumetric drop concentrations in their measured drop

size classes, without assuming any functional form of the DSD. This is in contrast to previous

studies that have, for the most part, focused on bulk variables or parameters of a DSD model.

Jameson (2015) also simulated non-parametric DSDs; their approach differed from ours in that

they used a Bayesian up-sizing approach and only a single disdrometer. We present results

that used the geostatistical approach shown in Chapter 3 to perform stochastic simulation of

measured DSDs on a regular, high-resolution grid of points. Simulations were constrained

by measured experimental DSDs from a network of instruments. These gridded simulations

allowed us to estimate the DSD at both grid and sub-grid scales, and thus make comparisons

between these scales.

We considered the variability of the DSD over a range of scales from 500×500 m2 to 7.5×7.5

km2. Special focus was put on two scales specifically chosen to correspond to real-world

DSD applications. The first was 5×5 km2, about the size of the ground footprint of the Global

Precipitation Measurement (GPM) space-borne weather radar (Hou et al., 2014). The second

was 2.8×2.8 km2, the operational pixel size of the COSMO atmospheric model as used in

Germany (Baldauf et al., 2011). Simulated grids of DSDs allowed us to quantify the error

introduced by assuming that a point measurement of the DSD represents an areal region at

various scales. The results were generalised by normalising the scale by the decorrelation

distance of rainfall intensity. The errors found should be taken into account, for example,

in ground-validation of radar and model outputs using point measurements. Further, using

the stochastic simulation gridded output, we simulated the way in which GPM and COSMO

would observe pixel-scale DSD processes, and tested how representative these areal estimates

were of the underlying sub-grid processes. The use of fitted model parameters allowed us to

determine the primary sources of errors in the areal DSD retrievals.

The rest of this chapter is structured as follows. In Section 4.2 we outline two DSD models and

their parameters. In Section 4.3 the data used in this study are described. In Section 4.4 we

explain the stochastic simulation approach, the methods used to calculate variabilities and

errors, and the GPM-style and COSMO-style retrievals of the DSD at pixel scale. Results

are presented in Section 4.5, with subsections provided for results concerning raw DSD

concentrations (4.5.1), bulk variables (4.5.2), GPM-style retrieval of rain rates (4.5.4) and

COSMO-style retrieval of rain rates (4.5.5). A brief discussion in Section 4.6 puts the results

into perspective. Conclusions are drawn in Section 4.7.

4.2 Models of the DSD

This chapter presents an investigation into the variability of the DSD and the resulting vari-

ability of some commonly used bulk variables. These are defined from the weighted moments

of the DSD, as explained in Chapter 1. In this section it is explained how the DSD is often

modelled, and how parameters for a DSD model are found by GPM and COSMO. Because in

this chapter we deal with more than one wavelength, bulk variables that rely on wavelength
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are written with the wavelength λ specified.

It is often convenient, although not necessarily always correct, to model the DSD using a

functional form. The first proposed model was the exponential DSD model of Marshall and

Palmer (1948). While this model provides a good estimation of DSDs integrated over time, a

model that performs better for instantaneous DSDs is the more general gamma DSD model

(Ulbrich, 1983), written

N (D) = N0Dµ exp(−ΛD). (4.1)

The gamma DSD model has three parameters: the shape parameter µ [–], the slope parameter

Λ [mm−1], and the intercept N0 [m−3 mm−1−µ]. When µ= 0 the model reduces to the Marshall

and Palmer exponential form. For the rest of this section, we assume integration over drop

sizes from 0 to ∞. While measured DSD data are necessarily truncated at some minimum and

maximum observable Dmin and Dmax, the effects of DSD truncation have been investigated

and found to be negligible when the range of diameters is sufficiently large around the median

volume drop diameter (e.g. Willis, 1984; Ulbrich, 1985; Vivekanandan et al., 2004). Assuming

integration over all drop sizes,Λ and µ are related via Dm :

ΛDm = 4+µ. (4.2)

This relationship is used in another common DSD model that is based on the normalised

DSD of Willis (1984). In this chapter we refer to this model as the “normalised DSD model”. In

contrast to the gamma DSD model in which the unit of N0 depends on µ, all variables in the

normalised DSD model have conventional units. It is formulated (using Dm as in Seto et al.,

2013)

N (D) = Nw fN (µ)

(
D

Dm

)µ
exp

[
−(4+µ)

D

Dm

]
, (4.3)

where Nw [mm−1 m−3] is a scaling factor, and fN (µ) is defined using the gamma function Γ:

fN (µ) = 6

(4)4

(4+µ)µ+4

Γ(µ+4)
. (4.4)

Following the derivation for Nw in Bringi and Chandrasekar (2001), but replacing median vol-

83



Chapter 4. Small-scale DSD variability and its effect on areal rainfall retrieval

ume diameter with mass-weighted mean diameter Dm and using the relationship in Equation

4.2, Nw is related to the liquid water content W by

Nw = (4)4

πρω

(
103W

D4
m

)
. (4.5)

When DSD measurements are available, DSD model parameters can be fitted to the observed

data. However, it is often the case that the DSD itself is not measured, and the DSD model

parameters for an areal region must be estimated from observations of other rainfall variables.

In this section we outline how DSD model parameters are retrieved in two separate systems

that correspond to the two scales we focus on in this chapter. First, we describe algorithms

proposed for use by the Dual-Frequency Precipitation Radar (DPR) on board the GPM Core

Observatory satellite (Hou et al., 2014). These algorithms infer the DSD from radar reflectivities.

Second, we show how the COSMO atmospheric model (e.g. Baldauf et al., 2011) infers DSD

parameters from the modelled total mass fraction of liquid water.

GPM-style DSD retrieval

The GPM DPR measures radar reflectivity at Ku- (13.6 GHz) and Ka-band (35.55 GHz) (Hou

et al., 2014). For each pixel, a measurement is made in either single-frequency (Ku- or Ka-

band) or dual-frequency (Ku- and Ka-band) mode. From the returned radar reflectivities,

the parameters of a DSD model are estimated. Here we briefly review the single- and dual-

frequency methods described in Seto et al. (2013) and Liao et al. (2014), in which the DSD

model used is the normalised DSD model shown in Equation 4.3. In this chapter, we assume

an idealised system in which radar reflectivities are known perfectly, which is to say that

attenuation is assumed to have been estimated and corrected (for discussion of an attenuation-

correction algorithm used with this DSD retrieval method, see Seto et al., 2013). Further, we

assume a uniform distribution of energy within the radar beam. The specific attenuation,

k [dB km−1], is the amount of radar signal attenuated by the precipitation per kilometre of

distance travelled, and is calculated from the DSD as

k(λ) = 1

ln(10)
×

Dmax∫
Dmin

σe (D,λ)N (D)dD, (4.6)

where σe (D,λ) [cm2] is the extinction cross-section for a drop with equivolume diameter D

mm at wavelength λ cm.

It is convenient to use the Nw -normalised reflectivity Ib [dB] and specific attenuation Ie [dB
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km−1 mm m3], in which Nw is assumed to equal 1 mm−1 m−3 (Liao et al., 2014). Using this

assumption, and substituting the DSD model defined in Equation 4.3 into Equations 1.7 and

4.6, the normalised reflectivity and normalised specific attenuation are obtained (Liao et al.,

2014). Normalised reflectivity Ib is given by

Ib(λ,Dm) = 10log10

 106λ4

π5 |Kω|2
∞∫

0

fN (µ)

(
D

Dm

)µ
exp(−ΛD)σb(D,λ)dD

 , (4.7)

and normalised specific attenuation Ie is given by

Ie (λ,Dm) = 1

ln(10)
×

∞∫
0

fN (µ)

(
D

Dm

)µ
exp(−ΛD)σe (D,λ)dD. (4.8)

In dual-frequency mode, the dual-frequency ratio (DFR) is used to determine DSD model

parameters (Seto et al., 2013; Liao et al., 2014). DFR [dB] is defined as

DFR = Z (λKu)−Z (λKa), (4.9)

where λKu and λKa are the wavelengths for Ku- and Ka-band respectively, and measured

reflectivities Z are in dBZ. DFR is independent of Nw , since Z = 10log10(Nw )+Ib , and therefore

DFR = Ib(λKu,Dm)− Ib(λKa,Dm). (4.10)

In the single-frequency case, the ratio between specific attenuation k and radar reflectivity in

linear units Zl = 10(Z /10) [mm6 m−3] is used to determine DSD model parameters (Seto et al.,

2013). Dividing k = Nw Ie by Zl = Nw 10(Ib /10), we have

k

Zl
= Ie

10(Ib /10)
, (4.11)

where k/Zl is in units of dB km−1 mm−6 m3. By assuming a constant value of µ, look-up
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tables can be pre-calculated to determine the values of DFR and k/Zl for a range of values

of Dm . These look-up tables are then used to determine Dm given the measured DFR (in the

dual-frequency case) or k/Zl (in the single-frequency case) (Seto et al., 2013; Liao et al., 2014).

With µ assumed and Dm estimated from a look-up table, Nw is then calculated using (Liao

et al., 2014)

10log10(Nw ) = Z (λ)− Ib(λ,Dm). (4.12)

The retrieved values of the parameters Nw and Dm and assumed value of the parameter µ can

then be used with the normalised DSD model (Equation 4.3). The model can be substituted

for N (D) in bulk variable equations to calculate other variables of interest.

COSMO-style DSD retrieval

The COSMO atmospheric model uses the gamma DSD model (Equation 4.1), with fixed values

of shape parameter µ and intercept N0. The remaining parameterΛ, for slope, is determined

from the modelled total mass fraction of water, q [–] (Doms et al., 2011). The total mass

fraction of water is defined from the DSD as

q = π10−9ρω

6ρ

Dmax∫
Dmin

D3N (D)dD, (4.13)

where ρ = ρω+ρa [g cm−3] is the total density of the air/water mixture and ρa [g cm−3] is the

air density. Note that the liquid water content W = 106 ×ρq (see Equation 1.3). Using the

gamma DSD model and assuming integration over drop sizes from 0 to ∞, the slope parameter

Λ is found using

Λ=
(
π10−3ρωN0Γ(4+µ)

6W

) 1
4+µ

. (4.14)

Before version 4.21 of the COSMO model (released 2011), the exponential DSD model was

used, with parameters µ= 0 and N0 = 8×106 m−4 = 8000 m−3 mm−1 for rain. Since version

4.21 the gamma model has been in use, and N0 has been made to vary depending on the

assumed µ (Seifert et al., 2011). The current operational code uses a modified Ulbrich (1983)
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N0 and µ relationship, such that for N0 in m−4−µ,

N0 = 8×106 exp(3.2µ). (4.15)

The value of µ in the current operational code is 0.5 and thus N0 = 1253 m−3 mm−3/2. Once

parameters µ and N0 have been assumed and Λ has been found, the gamma DSD model

(Equation 4.1) can be substituted for N (D) in bulk variable equations to calculate other

variables of interest. This is a one-moment microphysical scheme, because a single moment

(W ) of the DSD is used to describe the DSD. Two-moment microphysical schemes, in which,

for example, particle concentration is also predicted and used, have been considered (e.g.

Baldauf et al., 2011; Van Weverberg et al., 2014), however Baldauf et al. (2011) found that in

the specific case of current COSMO operational use, the benefits of a two-moment scheme

did not outweigh the increased computational cost. As a result, the one-moment scheme is

currently in operational use, and in this chapter we focus on that scheme.

4.3 Data

The DSD data used in this chapter were measured during the autumns of 2012 and 2013, using

the HyMeX network of Parsivel disdrometers in Ardèche, France. The instrument network

is described in Section 2.2, and the meteorological properties of the region are introduced

in Section 1.4. The data used here were measured by eleven (nine in 2012) first-generation

Parsivels and two Parsivel2 disdrometers. Figure 2.1 shows a map of the network; station

locations are shown in 2.1, and Table 3.2 shows quantities of recorded data. Stations were

deployed over both autumn campaigns, with the exceptions of Montbrun and Pradel Grainage

(2013 only). Collocated stations must be handled with care for geostatistical analysis, because

measurement differences should not be interpreted as spatial effects. To avoid these problems,

we used the best-performing Parsivel at each collocated station, judged by comparison of rain

rates with collocated tipping bucket rain gauges at five-minute resolution. Thus three more

collocated Parsivel2 stations (two at Villeneuve and one at Pradel Grainage) were excluded

from this analysis. The collocated stations Pradel 1 and Pradel 2 were nevertheless used to

determine variogram nuggets (see Chapter 3), but of these stations, only data from Pradel 1

were used in the generation of stochastic simulations. The maximum difference in disdrometer

to rain gauge relative error between two collocated disdrometers was 13%. DSDs recorded

by each disdrometer were corrected using the technique presented in Chapter 2. Up to 100

nearest neighbours were used for each point. The equivolume diameter classes in which drops

appeared in the corrected Parsivel data are shown in Table 2.3.

In both campaigns, a transportable dual-polarimetric X-band Doppler weather radar called

MXPol (for full instrument details see Schneebeli et al., 2013) was located to the north-east of

the disdrometer network. Among other scans, the radar performed horizontal plan position
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Figure 4.1 – The studied regions of interest, on a subset of the station map (Figure 2.1). The radar was positioned to
the north-east at Montbrun. Squares indicate the approximate placement of the chosen regions of interest, in
blue for the 5×5 km2 area and in red for the 2.8×2.8 km2 area. The top left corner in the 5×5 km2 region is at UTM
zone 31 coordinates 614524.8 m, 4938550 m, while the top-left corner in the 2.8×2.8 km2 region is at UTM zone
31 coordinates 616724.8 m, 4938550 m. Maps ©Thunderforest (CC BY-SA, http://www.thunderforest.org/),
map data ©OpenStreetMap (ODbL, http://www.openstreetmap.org/copyright).

indicator (PPI) scans at various elevations above the disdrometer network. We used the lowest

reliable scan elevation, which was four degrees above horizontal. These scans were made

about every five minutes.

Raw Parsivel measurements were made using an integration time of either 30 s or 60 s. These

measurements were resampled to one, five, and 10-minute resolution, by averaging the drop

concentrations per equivolume diameter bin for each time step. Time steps at each resolution

were only considered if no solid precipitation was observed, the Parsivel indicated no error

condition, the rain intensity observed was greater than 0.1 mm h−1, and there was at least

one radar scan made within the Parsivel integration time. Events were defined using one-

minute resolution DSD data, as periods of rain in which there was no more than one hour

of completely dry time across the network, and for which at least one station recorded an

amount greater than 1 mm. The use of geostatistical analysis restricted the events that could

be used to those with a sufficient number of observation pairs (see Chapter 3). Definitions of

the analysed events are shown in Table 3.1.

The equations in Section 4.2 require the assumption of integration over drop sizes from 0 to ∞.

Disdrometers necessarily have minimum and maximum drop sizes that they measure. The

processed DSD data used in this chapter were truncated at minimum and maximum drop sizes

of 0.2495 mm and 7 mm respectively. Willis (1984) showed that for the gamma DSD model, as

long as the maximum drop diameter Dmax is greater than 2.5 times the median drop diameter

D0 [mm], the error introduced by truncation of the DSD at Dmax is negligible. This was case

for 99.8% of the measured one-minute DSDs on which we based our analyses. Vivekanandan

et al. (2004) determined that if Dmin < D0/2 and Dmax > 4D0, truncation causes less than 5%

error on resulting bulk variables. The one-minute measured DSDs used here satisfied this

constraint 93.7% of the time. The measured DSDs that did not satisfy this constraint were

for moderate to heavy rain, with a mean (median) intensity of 8.2 (4.2) mm h−1. The effect of

truncation on the measured and simulated DSDs was hence assumed to be negligible.
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4.4 Methods

In this section we describe the methods that were used. First, the two typical pixel areas on

which most analyses were performed are introduced. Second, the method for generation of

gridded DSD estimates from measured DSD data is explained. Third, we show the method

used to compare point- to pixel-scale DSDs and bulk variables. Fourth, the steps involved

in estimating and comparing GPM- and COSMO-style pixel-scale outputs to sub-grid values

are outlined. Finally, we briefly describe how we calculated accumulated rain amounts per

method.

4.4.1 Regions of interest for typical scales

DSD stochastic simulation was used to estimate DSDs on regular grids. There were two main

regions of interest (ROIs). The ROI areas were 5×5 km2 and 2.8×2.8 km2, so as to represent

respectively the typical size of a space-borne weather radar footprint, and the horizontal pixel

size of a high-resolution NWP model. The locations of the ROIs were judiciously chosen so

as to have a reasonable trade-off between maximising the number of disdrometer stations

within each one, and the ROIs being as far as possible from the edge of the radar coverage area.

In this way the DSD fields simulated in the chosen areas were able to be well constrained by

ground and radar measurements. The resulting ROIs are shown in Figure 4.1. The smaller

ROI is contained entirely within the larger ROI. Grids were made at 100 m resolution using

coordinates in the Universal Transverse Mercator (UTM) zone 31 projection, including ROI

edge points.

4.4.2 Estimation of gridded DSDs

The DSD simulation method presented in Chapter 3 was used to estimate the DSD at a

regularly spaced grid of locations covering the area of the disdrometer network. Each estimate

in the grid represents the DSD at the point scale at a given location, and the grid as a whole is

conditioned by the measurements from the network of disdrometers.

DSD simulation was performed for integration times of one, five, and 10 minutes. One-minute

resolution was the highest temporal resolution available at all stations, and therefore provided

the closest possible approximation of DSD variability within an instantaneous radar scan. We

produced 100 stochastic realisations for every available time step. Each time step was treated

independently, with the simulations conditional on the disdrometer measurements for each.

Bulk variables were calculated from the estimated DSDs. Rain rate calculations require the

use of a drop velocity model, which in turn requires the altitude and latitude of the point in

question. The altitude was taken as the mean station altitude within the ROI, which was 275

m. Digital elevation data (Jarvis et al., 2008) showed that the large ROI has a mean elevation of

260 m with a standard deviation of 44 m. The mean latitude of grid points in the large ROI,

44.56826◦N, was used as the latitude. Raindrop terminal fall velocities were found using the
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technique of Beard (1976), assuming a sea-level temperature of 15◦ C and relative humidity of

0.95. This assumed sea-level temperature led to a temperature for the large region of about

13◦ C, based on a standard atmospheric temperature lapse rate of −6.5◦km−1 (Wallace and

Hobbs, 2006). Radar reflectivities were calculated using vertical incidence. Drop shapes were

calculated using the model of Andsager et al. (1999), and back-scattering coefficients were

found using the T-matrix code of Mishchenko and Travis (1998).

Because the stochastic simulation method we use assumes normally distributed variables,

unrealistically large drop concentrations were occasionally predicted by the stochastic simula-

tion algorithm. To remove these values, we set a threshold on rain rate: any simulated DSDs

for which the corresponding rain rate was greater than 200 mm h−1 were removed and not

counted. This threshold removed less than 0.05% of simulated DSDs. The largest measured

one-minute rain rate from the disdrometer network was 73 mm h−1.

Example grids of simulated fields of radar reflectivity are shown in Figure 4.2, where it can

be seen that the stochastic simulation results for Z are consistent with radar observations.

The stochastic simulation results are less smooth than interpolated fields (using kriging).

This is because the result of interpolation by kriging is equivalent to the mean of all possible

stochastic outputs. An interpolated output would present the single most likely grid of point

values. In contrast, the 100 stochastically simulated realisations per time step are different but

equally likely sets of values, each of which honours the spatial properties and values of the

measured inputs. We used simulation instead of interpolation for two reasons. First, it allows

for inclusion of more extreme values that would be “smoothed out” by interpolation using

kriging. Second, stochastic simulation generates many realisations of the same process and

thus creates a larger sample set to analyse.

Figure 4.2 – Example gridded output for horizontal radar reflectivity Zh (λX ) [dBZ] at X-band (9.4 GHz) and four
degrees elevation, for a one-minute time step at 2012-09-18 21:28 UTC. Shown is the radar reflectivity recorded by
the X-Band radar MXPol (a), and two example stochastic simulation realisations (b) and (c). Triangles show station
locations (that reported during that time step), and the black lines trace the outermost points in the two regions of
interest.

4.4.3 Comparison of point to areal estimates

Areal DSDs were calculated by taking the mean drop concentration per equivolume drop

diameter class for every point in each available grid. Areal bulk variables were then calculated
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from the mean DSD. These areal DSDs could then be compared to point DSDs. To ensure that

any DSD estimation error resulting from the simulation technique was not mis-classified as

error resulting from assuming a point measurement to be areal, we compared simulated areal

estimates to individual simulated point estimates. Comparisons were made for those points

that were within 250 m of the centre of each region of interest and that had rain intensity

greater than or equal to 0.1 mm h−1. Points with rain intensity less than 0.1 mm h−1 were

considered to contain zero rain.

The error introduced when a point measurement of the DSD is assumed to be an areal mea-

surement, for the kth drop equivolume diameter class Dk , is

E A(Dk ) = NP (Dk )−NA(Dk ) (4.16)

where NP (Dk ) [mm−1 m−3] and NA(Dk ) [mm−1 m−3] are point and areal simulated estimates

of drop concentration for the kth drop diameter class, which contains drops with equivolume

diameter in the range [Dk ,Dk +δk ) mm. The relative error is given as a percentage by

ER (Dk ) = E A(Dk )

|NA(Dk )| ×100 (4.17)

which is only defined when the areal drop concentration is non-zero. For bulk variables and

model parameters, we used relative difference EB , defined as

EB = BP −B A

|B A|
×100 (4.18)

where BP is a bulk variable defined on the point scale, and B A is the bulk variable calculated

from the areal mean DSD. EB is a percentage of the areal value. Again, this relative difference is

only defined when the areal value B A is non-zero. To make the relative difference calculation

fair, we calculated them only for times when both the point and areal values were non-zero.

Due to rainfall intermittency, sampled point values were not always non-zero. We noted

when a point measurement was zero and therefore missed rain on the areal scale, but we

performed detailed comparisons only for points at which the estimated drop concentrations

were non-zero.
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4.4.4 Simulation of GPM- and COSMO-style DSD retrieval

For each 5×5 km2 stochastic realisation, the way in which a satellite-based system such as

GPM might estimate the DSD for the region was simulated. To do so, radar reflectivities Z (λKu)

and Z (λKa) and specific attenuation k(λKu) were calculated using the simulated areal DSD for

each realisation. We assumed that µ= 3 (as in Seto et al., 2013), and calculated a look-up table

for Dm in terms of both DFR and k/Zl , using Equations 4.10 and 4.11 and values of Dm from

0.001 mm to 7 mm in intervals of 0.001 mm. All calculations were performed using Parsivel

drop size classes. The resulting relationships closely match those shown in Seto et al. (2013)

and Liao et al. (2014), and are shown in Figure 4.3.

(a) Dm to DFR relationship (b) Dm to k Zl relationship
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Figure 4.3 – Look-up table results for determining Dm . In (a), Dual-frequency ratio (DFR) [dB] and corresponding
mass-weighted mean drop diameter Dm [mm] is shown. In (b), the relationship between specific attenuation
k(λKu) and radar reflectivity Zl (λKu) is shown with the corresponding value of Dm .

As is well-known (e.g. Seto et al., 2013), in the dual-frequency case, low values of DFR cor-

respond to two values of Dm . In the computed look-up table, the minimum value of DFR

occurred when Dm was equal to 1.02 mm. To reduce the error introduced by the retrieval of

Dm using DFR, we followed the approach of Liao et al. (2014) and only considered areal DSDs

for which Dm was greater than or equal to 1.02 mm. The range of DFR (Dm) values in the look-

up table was -1.4 dB (1.02 mm) to 18 dB (7 mm). Using the look-up table and the DSD-derived

values of Z (λKu), Z (λKa), and k(λKu), we simulated the way that a GPM-style algorithm would

retrieve Dm and Nw in both the single- and dual-frequency cases. It is important to note that

the specific attenuation k was calculated directly from the DSD and was thus assumed to be

perfectly known. In reality, k must be estimated (e.g. Seto et al., 2013). In this work, in which

the GPM algorithm is simulated, no beam effects were taken into account. To more accurately

simulate GPM-like results, only records for which the radar reflectivities were greater than or

equal to the DPR sensitivities of 18 dBZ for Ku-band and 12 dBZ for Ka-band (Hou et al., 2014)

were analysed. Records for which the DFR value was outside the range of DFR values in the

look-up table were not analysed.

In a similar approach, for each 2.8×2.8 km2 stochastic realisation of gridded DSDs, the way

that a NWP model such as COSMO might estimate the DSD was simulated. The liquid water

content W for the mean DSD for each realisation was calculated, and using these values of W

the value ofΛwas found using Equation 4.14. These simulations were performed for both the

exponential model constants quoted in Doms et al. (2011) (µ= 0, N0 = 8000 m−3 mm−1) and
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the newer gamma model constants quoted in Baldauf et al. (2011) (µ= 0.5, N0 = 1253 m−3

mm−3/2). For both GPM-style and COSMO-style DSD model retrieval, the retrieved parameters

were used in the corresponding DSD models to find drop concentrations for each Parsivel

drop size class. To make comparisons fair, the resulting modelled DSDs were truncated to the

same range of drop sizes (0.2495 to 7 mm) as the measured and simulated DSDs. Areal bulk

variables were then calculated for the retrieved modelled DSDs.

4.4.5 Total rain amount

The accumulated rain amount is of primary interest to hydrologists. To see how accumulated

rain amount is affected by the scale on which the measurement is taken, we calculated the

sum of all one-minute rain amounts, for time steps on which all methods estimated a DSD.

Simulation realisations were grouped together, so each method provided 100 accumulated

rain amounts. The point simulations used were chosen randomly, one per realisation, from the

sampled 2.8×2.8 km2 region’s previously sampled points. Note that these rain accumulations

include only one-minute time steps for which radar data was available, which at their most

frequent occurred about every five minutes.

4.5 Results

In this section, the results are shown. The error introduced by the assumption that a point

measurement represents an areal measurement is addressed, for both DSD concentrations

and bulk variables. We then show how precipitation variables simulated using GPM-style and

COSMO-style retrieval of the DSD relate to the sub-grid distributions of corresponding values.

4.5.1 Drop diameter class concentrations

The difference E(Dk ) was calculated for each diameter class Dk , comparing simulated point

measurements to corresponding simulated areal measurements. Per realisation, 21 grid points

were within 250 m of the centre. At one-minute temporal resolution, of points that were

sampled, 76% contained rainfall greater than 0.1 mm h−1, so intermittency caused point

estimates to miss areal rainfall about one-quarter of the time. Again for one-minute resolution,

2785674 non-zero point estimations of rainfall were compared to areal estimations. Errors

introduced by the assumption that a point measurement represents an areal measurement are

shown in absolute and relative terms for a 2.8×2.8 km2 area in Tables 4.1 and 4.2 respectively,

and for a 5×5 km2 area in Tables 4.3 and 4.4 respectively. Figure 4.4 shows absolute error

by equivolume drop diameter class, by time resolution and estimation type. In these tables

and plots, we show only those drop classes for which the 10th and 90th percentile absolute

differences were not both zero at one-minute resolution. At one-minute resolution, the median

errors show negative bias. Median relative error increased for larger drop classes (greater than

2 mm), due to the fact that large drops occur infrequently and thus their areal concentrations
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were often small. The greatest range of errors occurred for drops with equivolume diameters

between about 0.3 and 2 mm.

1 min 5 min 10 min

D q25 q50 q75 q25 q50 q75 q25 q50 q75

0.31 −13.1 −1.7 8.3 −8.2 −0.6 8.8 −6.8 −0.4 7.0
0.44 −24.0 −2.7 19.0 −16.5 −0.8 18.4 −12.9 −0.4 15.9
0.56 −61.5 −7.3 44.1 −30.0 0.4 48.6 −35.0 −1.8 35.9
0.69 −48.9 −3.4 54.5 −29.3 1.4 50.4 −20.6 2.4 41.3
0.81 −48.6 −2.4 61.1 −27.3 3.3 54.1 −21.1 3.3 43.3
0.94 −41.1 −2.7 43.4 −23.0 1.9 39.3 −16.8 1.9 31.0
1.06 −36.1 −4.3 25.0 −18.6 0.0 24.1 −12.8 0.6 19.3
1.19 −24.3 −3.5 12.4 −12.7 −0.5 13.5 −8.8 0.0 11.0
1.38 −10.9 −1.5 5.5 −6.7 −0.4 6.2 −4.6 −0.1 5.1
1.62 −3.5 −0.5 1.9 −2.3 −0.2 2.2 −1.6 −0.1 1.7
1.88 −1.2 −0.2 0.9 −0.8 −0.1 0.9 −0.6 0.0 0.7
2.12 −0.5 −0.1 0.4 −0.3 0.0 0.5 −0.3 0.0 0.4
2.38 −0.2 0.0 0.1 −0.2 0.0 0.3 −0.1 0.0 0.2
2.75 −0.1 0.0 0.0 −0.1 0.0 0.1 −0.1 0.0 0.1
3.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.1 – Absolute error statistics comparing mean DSDs at 2.8×2.8 km2 pixel scale to point scale. D [mm] is the
centre of each class to two decimal places. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of
the differences, expressed in mm−1 m−3.

Figure 4.5 shows the interquartile range (IQR) of relative error by drop diameter, temporal

resolution, and scale. The spread of relative error was always larger in the larger area than the

smaller area. Error spreads in five and 10-minute temporal resolution results were similar,

but the results for one-minute temporal resolution show a larger spread of relative errors for

drops up to about 2.5 mm in equivolume diameter. The spread of relative errors decreased

from the minimum drop size to about 0.75 mm, then increased with drop size. One-minute

resolution error spread decreased for drops larger than about 2.25 mm. We conclude that in

general terms, the variability of the drop concentration per diameter class increases with drop

size and areal scale, and decreases with temporal resolution. This conclusion agrees with that

of Jameson et al. (2015b), who gave a physical explanation: as the network size increases, the

probability of sampling rarer parts of the DSD spectrum increases, and the variability of the

DSD increases. This effect is greater for larger (and rarer) drop sizes.

For larger drops, areal concentrations become smaller with greater integration time, which

leads to outlier values of relative error and increased IQRs. To decrease the effect of outlier

relative errors, we divided the drops as evenly as possible into three diameter classes: the small

third of drops in the range [0.2495, 0.6245) mm (Parsivel classes 3 to 5), the medium third of

drops in the range [0.6245, 0.8745) mm (classes 6 and 7), and the large third of drops in the

range [0.8745, 7) mm (classes 8 to 22). In the measured Parsivel data from all stations, at one-

minute resolution, these classes contained 29%, 32%, and 39% of the drops respectively. Figure

4.6 shows, for these classes, the distributions of relative errors introduced by the assumption

that a point measurement represents an areal region, by temporal resolution and spatial scale.
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1 min 5 min 10 min

D q25 q50 q75 q25 q50 q75 q25 q50 q75

0.31 −47.9 −12.6 42.7 −35.0 −4.1 38.8 −32.2 −3.4 35.6
0.44 −42.7 −9.5 39.6 −31.5 −2.8 36.4 −28.7 −1.6 35.1
0.56 −43.7 −10.2 37.7 −25.1 0.8 36.4 −29.8 −2.6 32.3
0.69 −35.3 −4.4 40.2 −23.5 1.7 36.1 −19.5 3.2 35.2
0.81 −32.9 −2.7 41.5 −20.6 3.3 36.4 −18.0 3.9 34.4
0.94 −34.7 −4.0 40.6 −21.7 2.5 35.9 −18.9 3.1 33.8
1.06 −43.4 −10.3 39.9 −25.8 0.2 35.6 −21.8 1.8 34.1
1.19 −50.1 −15.6 38.4 −30.0 −2.2 35.7 −25.6 0.2 35.2
1.38 −48.5 −13.6 41.4 −33.1 −3.9 36.4 −29.1 −0.9 36.8
1.62 −44.8 −6.4 55.8 −34.0 −2.1 42.6 −31.6 −0.3 42.4
1.88 −36.0 5.5 73.2 −30.6 3.3 51.5 −29.9 3.9 51.1
2.12 −25.4 18.8 90.8 −24.8 10.5 62.5 −25.3 10.3 61.8
2.38 −18.7 25.5 98.8 −19.3 16.9 72.3 −19.6 17.8 74.5
2.75 −9.6 32.6 103.1 −11.8 24.4 85.1 −12.0 27.1 91.8
3.25 −4.0 34.2 101.8 −5.5 31.3 98.7 −3.7 38.8 116.4
3.75 −0.9 37.7 120.9 −2.3 32.3 107.0 −1.5 37.2 110.4

Table 4.2 – Relative error statistics comparing mean DSDs at 2.8×2.8 km2 pixel scale to point scale. D [mm] is the
centre of each class to two decimal places. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of
the relative differences, expressed as percentages of areal concentrations.

The quantile statistics for these errors are shown in Table 4.5.

The range of relative error was largest for the class of small drops. Error range decreased and

median error became more positive with decreasing temporal resolution. For high-resolution

one-minute data, the median error was always negative, meaning that more than half of

the time the point measurement underestimated the areal measurement. At its largest (one-

minute, large area) this median error was -10%. The distributions were positively skewed. This

means that the largest errors occurred when the point value overestimated the areal value.

These results make intuitive sense. Light rainfall is more common than heavy rainfall, so given

an areal region that contains both light and heavy rain, a point measurement is more likely

to sample the light rain and thus underestimate the areal amount. In the rarer cases when

the point does sample heavy rain, however, the error is likely to be a large overestimation: a

point measurement inside a storm will overestimate an areal measurement in which there

are many dry or light rain regions. As the integration time increases, severe underestimation

becomes less likely. We note that the IQR of relative errors did not increase with increasing

drop size when the classes contained similar numbers of drops. This observation supports the

physical explanation mentioned above, that increased variability of large drops is due to their

appearance in a rarer part of the DSD spectrum.

The resulting error distributions were grouped by rain rate estimated at each simulated point

measurement. The classes of rain rate were chosen to each contain roughly one third of the

rain rates at compared points for one-minute resolution, and were (0.1, 0.5] mm h−1, (0.5,

2] mm h−1, and (2, 200] mm h−1. This grouping highlights how common light rainfall was,

with almost two-thirds of the estimated rain rates being below 2 mm h−1. The results of the
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1 min 5 min 10 min

D q25 q50 q75 q25 q50 q75 q25 q50 q75

0.31 −17.9 −2.4 9.8 −11.0 −1.0 10.0 −7.8 −0.2 9.9
0.44 −34.9 −4.0 22.7 −22.9 −1.4 22.0 −15.6 0.2 23.1
0.56 −84.6 −10.6 55.3 −38.2 0.3 60.4 −38.6 0.7 54.0
0.69 −63.3 −4.7 69.7 −37.5 1.5 62.7 −23.0 5.8 57.5
0.81 −63.5 −4.0 74.2 −36.0 3.8 65.6 −22.7 7.7 61.3
0.94 −54.8 −4.7 52.5 −30.5 2.2 49.8 −18.4 5.2 45.6
1.06 −47.9 −6.3 31.2 −25.3 −0.1 32.1 −15.0 1.8 29.0
1.19 −33.3 −5.3 16.2 −17.8 −0.9 18.9 −10.7 0.3 16.6
1.38 −15.7 −2.2 7.1 −9.6 −0.7 8.6 −5.7 −0.1 8.1
1.62 −5.3 −0.7 2.3 −3.4 −0.3 2.8 −2.1 −0.1 2.8
1.88 −1.7 −0.3 1.0 −1.2 −0.1 1.1 −0.7 0.0 1.1
2.12 −0.6 −0.1 0.5 −0.5 −0.1 0.6 −0.3 0.0 0.5
2.38 −0.3 0.0 0.0 −0.2 0.0 0.3 −0.2 0.0 0.3
2.75 −0.1 0.0 0.0 −0.1 0.0 0.1 −0.1 0.0 0.1
3.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.3 – Absolute error statistics comparing mean DSDs at 5×5 km5 pixel scale to point scale. D [mm] is the
centre of each class to two decimal places. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of
the differences, expressed in mm−1 m−3.

grouped analyses are shown in Figure 4.7, and show that there is a strong influence of the rain

intensity on the observed difference between point and areal DSDs. For very light rain, the

median errors were always negative, while for heavier rain there were often positive median

errors, and the distributions were more strongly positively skewed. These results confirm the

intuitive reasoning given for the overall differences observed.

The results in this section show that the assumption that a point measurement of the DSD

represents an areal measurement can introduce significant error. The distributions of relative

errors for the chosen drop size classes had median values that showed bias between -10%

and +8%. The distributions had large IQRs and were positively skewed. Very light rainfall

produced negatively biased point DSD estimates, while simulated point measurements of

heavier rainfall produced generally positive bias and some large over-estimations of the areal

value.

4.5.2 Bulk variables

Variability in the DSD implies, of course, variability in precipitation bulk variables. We quanti-

fied the error introduced by assuming that a point measurement represents an areal region,

for total drop concentration Nt [m−3], rain rate R [mm h−1], liquid water content W [g m−3],

mass-weighted mean drop diameter Dm [mm], and radar reflectivity in Ka-band Z (λKa) [dBZ]

and Ku-band Z (λKu) [dBZ]. Relative error distributions are shown in Figure 4.8, and quantile

statistics are given in Table 4.6 (4.7) for absolute (relative) errors.

The results show trends that are similar to those of the drop concentration relative errors. In
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1 min 5 min 10 min

D q25 q50 q75 q25 q50 q75 q25 q50 q75

0.31 −54.6 −16.3 47.8 −42.0 −7.0 44.7 −36.1 −1.6 46.2
0.44 −49.6 −12.9 45.1 −37.6 −4.6 42.8 −31.8 0.7 45.7
0.56 −50.1 −13.2 43.9 −29.4 0.8 43.8 −30.8 1.3 44.3
0.69 −40.3 −5.6 47.3 −27.4 2.1 43.7 −21.0 6.9 45.9
0.81 −38.6 −4.4 47.9 −24.8 3.8 44.0 −19.0 8.0 45.6
0.94 −41.0 −6.3 46.5 −26.3 2.9 44.3 −20.1 7.4 45.2
1.06 −50.2 −13.4 45.6 −31.6 −0.1 44.3 −24.8 4.6 44.8
1.19 −56.9 −19.4 43.9 −37.0 −3.4 44.6 −29.8 1.8 45.0
1.38 −55.5 −17.1 47.6 −40.8 −5.5 45.8 −33.8 −0.2 46.8
1.62 −51.6 −10.0 62.5 −41.2 −3.5 52.4 −35.7 1.6 54.4
1.88 −42.3 3.5 83.4 −36.2 3.6 64.3 −32.3 7.8 66.2
2.12 −32.2 17.3 104.9 −29.6 11.8 77.5 −26.3 15.8 78.7
2.38 −25.9 22.9 111.6 −23.4 19.2 90.3 −20.2 24.0 94.0
2.75 −16.0 30.9 115.4 −14.2 28.9 108.8 −10.9 35.6 117.3
3.25 −9.6 32.8 116.0 −5.4 39.1 130.3 −1.5 48.9 156.1
3.75 −6.2 41.5 138.6 0.7 45.5 135.5 0.5 45.3 161.1

Table 4.4 – Relative error statistics comparing mean DSDs at 5×5 km2 pixel scale to point scale. D [mm] is the
centre of each class to two decimal places. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of
the relative differences, expressed as percentages of areal concentrations.

1 min 5 min 10 min

Class SL q25 q50 q75 q25 q50 q75 q25 q50 q75

Small 2.8 −38.8 −7.2 36.8 −26.1 −0.2 35.1 −28.2 −1.9 32.1
5 −45.8 −9.9 43.8 −31.2 −0.8 42.5 −30.0 1.5 43.9

Medium 2.8 −30.1 −1.4 39.3 −20.7 2.9 35.2 −17.6 4.0 34.2
5 −35.6 −2.4 47.0 −24.8 3.5 43.1 −18.7 8.0 45.3

Large 2.8 −30.9 −2.4 38.0 −21.1 2.3 34.1 −18.8 2.9 33.0
5 −37.9 −4.3 45.4 −26.6 2.7 43.4 −21.1 6.6 44.1

Table 4.5 – Relative error statistics by drop class (Small = [0.2495,0.6245) mm, Medium = [0.6245,0.8745) mm,
Large = [0.8745,7) mm), and scale side length (SL [km]), comparing DSDs at pixel scale to point scale. q25, q50,
and q75 are respectively the 25th, 50th, and 75th percentile of the relative differences, expressed as percentages of
areal concentrations.

both small and large areas, the spread of relative errors for all variables decreased when the

temporal resolution was decreased from one to five minutes. IQRs were larger for the larger

areal scale. Using the IQR as an indication of how much a variable could be affected by an

assumption that a point measurement is areal, the least affected variable was Dm , followed

by Z (λKa), Z (λKu), Nt , W , and R. We hypothesise that the fact that the radar reflectivities are

expressed in logarithmic units (dBZ), and the fact that Dm is a ratio of two DSD moments,

leads to stabilised error distributions and reduced error ranges for these variables (this effect

was also seen in Chapter 3). The distributions of errors were positively skewed for lower-order

DSD moments Nt , W , R, and Dm , which were most likely to be overestimated. The errors

were negatively skewed for the higher-order DSD moments, with the two radar reflectivities

more likely to be underestimated.

97



Chapter 4. Small-scale DSD variability and its effect on areal rainfall retrieval

1 min

5 min

10 min

−200

0

200

−100

0

100

200

−100

0

100

200

1 2 3 4

1 2 3 4

1 2 3 4
Equivolume drop diameter [mm]

D
ro

p 
co

nc
en

tr
at

io
n 

di
ff.

 [m
m

−1
 m

−3
]

Scale 2.8x2.8 5x5

Figure 4.4 – Box-and-whisker plots showing absolute error distributions per time resolution and areal size, for
simulated DSDs. The horizontal black bar indicates the median error, boxes show the interquartile range, and
whiskers show the 10th to 90th percentile range.

The same analysis as for drop concentrations, of splitting the differences into classes of

simulated point measurement rain rate, was performed. These results are shown in Figure

4.9. Again there was a strong influence of the rain rate at the point compared: median errors

were negative for all variables for very light rain, and were all positive for rain with intensities

greater than 2 mm h−1. For Nt , W , and R , the error distributions were more positively skewed

for the heaviest class of precipitation than for the other classes.

4.5.3 Generalised comparisons

This study focuses on areal regions that correspond in size to real-world areal sizes used by

the COSMO model and GPM satellite. The results of the point to areal comparisons can be

generalised somewhat by normalising the areal size (side length of the square area) by some

characteristic distance or scale, here taken to be the decorrelation distance of the rainfall

process. We found the decorrelation distance for each event using experimental variograms

on rain rate from the disdrometer network. Each time step was taken as a separate realisation

of the process, a log-transform and Cressie’s robust variogram estimator (Cressie, 1993) were

used, and experimental variograms were fitted with a spherical model (spherical variogram

models have previously been successfully used in rainfall studies, e.g. Schuurmans et al.,

2007; van de Beek et al., 2011). Across events for which the variogram model range was

within the observation distance, the mean decorrelation distance was 5.5 km. We used this

98



4.5. Results

50

75

100

125

150

1 2 3
Equivolume drop diameter [mm]

D
iff

er
en

ce
s 

IQ
R

 [%
] Scale

2.8x2.8
5x5

Resolution
1 min
5 min
10 min

Figure 4.5 – Interquartile ranges (IQRs) of relative errors in drop concentrations introduced by the assumption that
a point represents an area. The IQRs are displayed by drop diameter, time resolution, and scale.
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Figure 4.6 – Distributions of relative errors per class of drop size. The horizontal black bar indicates the median
relative error, boxes show the interquartile range, and whiskers show the 10th to 90th percentile range. Drops are
classed by equivolume diameter into the small ([0.2495, 0.6245) mm), medium ([0.6245, 0.8745) mm), and large
([0.8745, 7) mm) third of drops.

as a climatological value for the studied region. Note that this also means that even in the

GPM-size pixel, the full variability of the rainfall process was not always sampled.

The same areal to point value comparisons as described above were performed for areal

regions around the centre of a region formed by adding 2500 m to the north and west sides

of the large ROI. The regions were square with side lengths from 500 m to 7500 m in 500 m

increments. The interquartile range of relative errors was used as an indication of the error

spread for each areal size. Figures 4.10 and 4.11 show the interquartile range of relative errors

for drop concentration classes and bulk variables respectively, by normalised areal size. The

spread of error increases almost linearly with the size of the areal region, and again the error

spread is largest for the smaller third of drops and decreases with temporal integration. We

expect that the rate of increase in error range would slow towards some finite limit as the ratio

of areal side length to decorrelation distance becomes larger than one, but our network size did

not allow us to simulate such large areal measurements. Linear model intercepts and slopes

are given for normalised areal sizes less than one in Table 4.8. These results provide an estimate

of expected error spread that can be applied to other regions with similar climatologies, if the

decorrelation distance of rain rate is known.
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Figure 4.7 – Relative error distributions on classes of drop sizes grouped by estimated R at the point location. The
horizontal black bar indicates the median error, boxes show the interquartile range, and whiskers show the 10th to
90th percentile range. Drops are classed by equivolume diameter into the small ([0.2495, 0.6245) mm), medium
([0.6245, 0.8745) mm), and large ([0.8745, 7) mm) third of drops.

4.5.4 GPM-style retrieval of bulk variables

The previous sections showed that if a point DSD is assumed to represent an area, an error is

introduced. This error, in general, increases with the size of the area and with drop size. We

now turn to the inverse case in which a retrieved areal DSD is assumed to be representative of

the sub-grid process. We first address GPM-style DSD retrieval. The GPM DPR makes areal

measurements of Ku- and/or Ka-band radar reflectivity at a resolution of about 5×5 km2. In

this section we show how simulated GPM-inferred bulk variables compared to sub-grid values

in the observed area.

Recall from Section 4.4.4 that using the mean-DSD-derived Z (λKu) and Z (λKa) for each

stochastic realisation, we simulated single- and dual-frequency GPM-derived Dm values

using look-up tables. We used these values of Dm to retrieve DSD model parameters and thus

to calculate the GPM-derived values for areal total drop concentration Nt [m−3], rain rate R

[mm h−1], and sixth-moment radar reflectivity for each realisation. A total of about 38% of the

areal DSDs were excluded from these analyses: 27% for having Dm less than 1.02 mm and a

further 11% for having radar reflectivity values below the GPM DPR detectable range. These

values were excluded in order to reduce the impact of errors in the prediction of Dm from DFR.

Some DSDs had DFR values outside the look-up table range, at most 2.2 (0.9) dB above (below)

the look-up table extents, and are hypothesised to reflect the influence of temperature on the

values in the look-up table. These values were assigned the closest value of Dm in the look-up
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Figure 4.8 – Relative error distributions for bulk variables. The horizontal black bar indicates the median error,
boxes show the interquartile range, and whiskers show the 10th to 90th percentile range.

1 min 5 min 10 min

Var SL q25 q50 q75 q25 q50 q75 q25 q50 q75

Nt 2.8 −30.60 0.05 42.54 −19.41 2.50 37.90 −16.06 1.84 29.28
5 −42.09 0.08 57.03 −25.08 4.06 49.87 −17.11 5.52 44.85

W 2.8 −0.01 0.00 0.02 −0.01 0.00 0.02 −0.01 0.00 0.01
5 −0.02 0.00 0.02 −0.01 0.00 0.02 −0.01 0.00 0.02

R 2.8 −0.24 0.00 0.30 −0.16 0.01 0.29 −0.12 0.01 0.22
5 −0.36 −0.01 0.40 −0.23 0.02 0.38 −0.15 0.03 0.35

Dm 2.8 −0.07 −0.01 0.05 −0.06 −0.01 0.04 −0.06 −0.01 0.04
5 −0.09 −0.02 0.06 −0.08 −0.01 0.05 −0.08 −0.01 0.06

Z (λKa) 2.8 −1.92 −0.19 1.43 −1.41 −0.01 1.35 −1.40 0.01 1.39
5 −2.43 −0.30 1.67 −1.78 0.00 1.66 −1.57 0.15 1.74

Z (λKu) 2.8 −2.09 −0.25 1.43 −1.79 −0.12 1.39 −1.96 −0.17 1.44
5 −2.53 −0.33 1.66 −2.05 −0.07 1.71 −2.04 0.02 1.83

Table 4.6 – Absolute error statistics by bulk variable and scale side length (SL [km]), comparing DSDs at pixel scale
to point scale. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of the relative differences.
Units are m−3 for Nt , g m−3 for W , mm h−1 for R, mm for Dm , and dBZ for Z (λKa) and Z (λKu).

table. 66477 areal DSDs were analysed for the results in this section.

Figure 4.12 shows GPM-derived rain rates compared to DSD-derived rain rates for the dual-

and single-frequency cases. The results show that assuming an accurate estimation of the

specific attenuation k, both dual and single-frequency methods for estimation of rain rate

produced good matches to DSD-derived rain rates. We note again that these are idealised

results that ignore any beam effects or error in the estimation of specific attenuation. To

test whether the resulting areal values were representative of the sub-grid values, we found

the percentile of each GPM-simulated variable within the respective sub-grid distribution of

values, in order to look at where within the distribution of sub-grid values each GPM-simulated

value appeared. Densities of percentiles across all realisations are shown for Nt , Nw , Dm , R,

and Z in Figure 4.13, for the two GPM-style retrieval methods, as well as for values obtained

using the mean areal DSD. These plots show, graphically, where each areal value appeared

most often within the sub-grid distributions of values.
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1 min 5 min 10 min

Var SL q25 q50 q75 q25 q50 q75 q25 q50 q75

Nt 2.8 −25.5 0.1 35.5 −18.5 3.2 33.0 −17.7 2.8 31.2
5 −30.8 0.1 44.6 −22.0 4.8 42.2 −18.5 7.4 43.2

W 2.8 −26.5 −0.2 36.8 −19.3 3.1 33.6 −18.1 3.2 32.9
5 −32.6 −0.7 45.6 −23.8 4.4 43.3 −19.6 7.3 43.9

R 2.8 −28.0 −0.8 37.4 −20.6 2.6 34.3 −19.6 2.8 34.0
5 −34.3 −1.6 45.9 −25.4 3.8 44.0 −21.3 6.7 45.0

Dm 2.8 −6.1 −0.9 4.2 −5.3 −0.8 3.5 −5.4 −0.9 3.5
5 −7.6 −1.4 4.8 −6.5 −1.1 4.3 −6.4 −1.0 4.4

Z (λKa) 2.8 −7.8 −0.7 5.6 −5.6 0.0 5.2 −5.8 0.0 5.6
5 −9.5 −1.1 6.4 −6.9 0.0 6.4 −6.4 0.6 7.0

Z (λKu) 2.8 −9.0 −1.0 5.7 −7.4 −0.4 5.3 −8.4 −0.6 5.5
5 −10.4 −1.3 6.5 −8.2 −0.2 6.5 −8.4 0.1 7.1

Table 4.7 – Relative error statistics by bulk variable and scale side length (SL [km]), comparing DSDs at pixel scale
to point scale. q25, q50, and q75 are respectively the 25th, 50th, and 75th percentile of the relative differences
expressed as percentages of areal amounts.

The mean DSD provided a good approximation of all values for the area. From these results it

is clear that extreme values affected the mean DSD, and therefore the mean-derived values

were usually larger than the median sub-grid values. The small sampling size of the simulated

point measurements implies that the sub-grid median values are underestimates of the real

population values, with this effect increasing with the moment order of the bulk variable

(Uijlenhoet et al., 2006). The GPM-style methods were able to produce values of R and Z that

were generally as representative of the sub-grid values as the mean DSD for the area. However,

they both produced values of lower-order moments Nt , Nw and Dm that indicated that the

retrieved DSD models were not always representative of the sub-grid DSDs.

In the case of dual-frequency retrieval, GPM-simulated values of low DSD moments Nt and

Nw were most likely to be above the median of sub-grid values, with 8% of Nt and 4% of

Nw values above the sub-grid range. Dm tended to be overestimated or underestimated, but

was only above (below) the range of sub-grid values 2% (5%) of the time. R and Z were well

estimated, although like the results for the mean DSDs they produced density peaks above the

median sub-grid value. For single-frequency retrieval, GPM-simulated variables were always

within the sub-grid range, but lower-order moments tended to be overestimated, with density

peaks greater than the median sub-grid value.

Error in GPM-style retrieval of the DSD is a combination of error caused by inexact estimation

of Dm , and error in the fit to the DSD of the normalised gamma model with fixed µ. We

fitted µ to each observed DSD using the technique of Johnson et al. (2014), (modified such

thatΛ= (µ+4)/Dm). This maximum likelihood technique is appropriate for truncated DSDs

recorded in binned drop size classes. Of our areal DSDs, 4% could not be fitted by this

algorithm. Figure 4.14 shows how the assumed value of µ used by the GPM algorithms

compared to the fitted gamma model parameters for the areal DSDs. The fixed value of µ= 3

used by the GPM models was the 4th percentile of the distribution of µ fitted to experimental
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Figure 4.9 – Relative error distributions for bulk variables, classed by the simulated point estimation of rain rate.
The horizontal black bar indicates the median error, boxes show the interquartile range, and whiskers show the
10th to 90th percentile range.

DSDs.

We tested the GPM DSD retrieval using (a) DSD-derived values of Dm and the original fixed

value of µ, thus eliminating the retrieval of Dm from radar reflectivities, (b) DSD-derived Dm

and fitted values of µ, and (c) GPM-derived Dm (look-up table with µ= 3) and fitted values of

µ. The performance was improved for (a), with lower-order moments more representative of

the sub-grid values, but Nt still showing a probability peak above the median sub-grid value.

In (b), the performance of Nt was better, but Nw , R , and Z were slightly degraded with respect

to their proximity to the median sub-grid values, though they were still representative of the

sub-grid distributions. In (c) the performance was similar to the performance when µ = 3,

with Z and R slightly degraded. We conclude that in GPM-style retrieval, Nt and Nw represent

the sub-grid processes more poorly than the other tested variables primarily because of error

in the estimation of Dm from radar reflectivities.

4.5.5 COSMO-style retrieval of bulk variables

A numerical weather model such as COSMO must also infer the parameters of a DSD model. In

the case of COSMO, the parameters are inferred from an areal estimation of total mass fraction

of water q . Recall from Section 4.4.4 that the COSMO areal DSD retrieval was simulated for

each stochastic realisation on the 2.8×2.8 km2 scale region. COSMO retrievals were simulated

using both the exponential DSD model and updated gamma DSD model parameters. COSMO-
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Figure 4.10 – Interquartile ranges (IQRs) of relative errors on drop concentration by classes containing roughly
one-third of drops (small [0.2495, 0.6245) mm, medium [0.6245, 0.8745) mm, and large [0.8745, 7) mm) introduced
by using a point as an areal value, by the areal side length’s proportion of the climatological decorrelation distance.
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Figure 4.11 – Interquartile ranges (IQRs) of relative errors on bulk variables introduced by using a point as an areal
value, by the areal side length’s proportion of the climatological decorrelation distance.

inferred values of Nt , Dm , R , and sixth-moment Zl (in linear units) were compared to sub-grid

simulated values to see whether they were representative of the underlying processes.

A comparison between the COSMO-simulated rain rates and the mean-DSD rain rates for the

2.8×2.8 km2 region is shown in Figure 4.15 for the gamma and exponential models. The gamma

DSD model reproduced R slightly more accurately than the exponential DSD model. Just as for

the GPM-style retrieval analysis presented above, the percentiles of the bulk variables within

the corresponding sub-grid distributions were determined for each realisation. Density plots

for these percentiles are shown in Figure 4.16. The two DSD models both had a tendency to

overestimate Nt and Z , and to produce values of Dm outside the sub-grid range. R values were

always within the range of sub-grid values. The exponential model had Nt values above the

sub-grid range 53% of the time and Dm values outside the range 67% of the time (61% below,

6% above), but performed well for R and Z . The gamma model had Dm values above (below)

the sub-grid range 39% (14%) of the time and Z above the sub-grid range 21% of the time.

Although they returned reasonable values of R the DSDs found using the COSMO-derived

exponential and gamma models were often unrealistic in terms of Nt and Dm and tended to

overestimate Z .

The accuracy of COSMO-style retrieval is affected by the choice of DSD model parameters µ
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Res. Var. Intercept Slope r 2

1 min Nt 33 41 0.99
1 min R 35 46 1.00
1 min W 34 44 1.00
1 min Dm 6 8 1.00
1 min Z (λKa) 7 11 1.00
1 min Z (λKu) 7 12 1.00
5 min Nt 24 40 0.99
5 min R 27 43 1.00
5 min W 25 42 1.00
5 min Dm 4 7 1.00
5 min Z (λKa) 5 9 1.00
5 min Z (λKu) 6 11 0.99
10 min Nt 21 42 1.00
10 min R 24 45 1.00
10 min W 22 44 1.00
10 min Dm 4 7 0.99
10 min Z (λKa) 5 9 1.00
10 min Z (λKu) 7 11 0.99

Table 4.8 – Linear model intercepts and slopes, to provide IQR by areal side length proportion of decorrelation
distance of R. Linear models are fitted to proportions less than one. Results are organised by temporal resolution
(Res.) and bulk variable (Var.), and the r 2 value is provided for each linear model fit.

and N0. Recall that in COSMO-style one-moment retrieval, µ and N0 remain static at all times,

while Λ varies as a function of liquid water content. To investigate whether the parameter

values used by COSMO were appropriate for the simulated areal DSDs, we used the technique

of Johnson et al. (2014) to fit gamma model parameters to the areal DSDs. Less than 1% of

areal DSDs could not have parameters fitted. Figure 4.17 shows how the COSMO DSD model

parameters compared to the fitted parameters for simulated areal DSDs; in all cases, the

COSMO parameters were at the low end of the fitted parameter distributions. The fixed values

of µ were both at the 0th percentile of fitted values. The fixed value of N0 with the gamma

(exponential) model was the 4th (8th) percentile of fitted values, and the mean COSMO Λ

value for the gamma (exponential) model was the 3rd (12th) percentile. The large ranges of

the fitted parameters speak to the variability of the parameters over time.

We reran the COSMO retrievals, using the fitted values for µ and N0. The fitted values of Λ

were close to the values determined from fitted µ and N0 using Equation 4.14, with a median

relative difference of less than 1.5%. The fitted parameters produced a marked improvement

in the performance of the COSMO DSD retrieval, especially for Nt . R, and Z were always

within the sub-grid range. Some over-estimation of Dm remained. We conclude that error in

COSMO-style DSD retrieval is largely affected by the fixed values of DSD model parameters µ

and N0.
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Figure 4.12 – Scatter plots showing the match between GPM-derived rain rate and DSD-derived rain rate, for mean
stochastic realisation DSDs, using (a) dual-frequency DFR-based retrieval and (b) single-frequency k/Zl -based
retrieval of R. Red lines are 1:1 lines, while blue lines show the line of best fit. Note that the GPM-derived rain
rates benefit from idealised assumptions, including that attenuation is perfectly known. We also assume an equal
distribution of energy within the beam.
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Figure 4.13 – Densities of percentiles of simulated areal (a) Nt , (b) Nw , (c) Dm , (d) R, and (e) sixth-moment Z
(linear units) within sub-grid realisation values of each variable. Areal values are for dual-frequency DFR-based
retrieval (DFR), single-frequency k/Zl -based retrieval (k/Z ), and for the mean DSD (Avg). These plots show where
areal values most often fell within the distributions of sub-grid values. “Dry” sub-grid values are counted as zeros,
except for Dm for which they are not included.

4.5.6 Total rain amount

Figure 4.18 shows the distributions of total rain amounts by method. Rain amounts were cal-

culated per simulation number, so there are 100 values in each distribution shown in this plot.

The difference between the accumulations calculated using point estimates and those calcu-

lated using an area are clear. Recall that we use the areal mean DSD as the reference amount.

Simulated point measurements typically overestimated the total rain amount. COSMO with

the gamma model also shows an overestimation, which agrees with earlier results. The ac-

cumulation amounts for the larger areal region were often smaller than those for the small

area, which we hypothesise is due to the larger region containing more low or zero values. The

density of values of R inside the 5×5 km2 region is shown in Figure 4.19; it is clear from this

plot that the distributions of R in the sub-grid regions are indeed highly skewed. Also shown
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Figure 4.14 – The density of gamma model parameter µ, fitted to areal DSDs for the 5×5 km2 region (black line).
The parameter distribution has a long tail and for display purposes it has been truncated at its 90th percentile.
This density is compared to the fixed GPM parameter value (vertical line).
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Figure 4.15 – Scatter plots showing the match between rain rates derived using COSMO-style retrieval to mean-DSD
rain rates, using (a) the exponential DSD model, and (b) the gamma DSD model. Red lines are 1:1 lines, while blue
lines show the line of best fit.

are the range of accumulated amounts for the idealised GPM case in which Dm was calculated

directly from the DSD but the fixed value of µ was used, and for the COSMO cases in which

fitted DSD model parameters were used. In both cases, the idealised versions are closer to the

areal reference values, which supports our previous hypotheses that the sources of error are

primarily the estimation of Dm for GPM and the fixed model parameters for COSMO.

4.6 Discussion

The results in this chapter are primarily symptomatic of the large variability that exists in

DSDs, even over relatively small regions such as those studied here. In this section we put the

results into perspective by discussing their meaning in a broader context. While the use of a

point measurement to represent an areal region is common practice, our results show that

even if the bias is low, the error introduced by such an assumption has wide variability, both for

drop concentrations and bulk variables. Especially at high temporal resolution, great caution

should be used if a point measurement of the DSD or a related variable is assumed to represent

an area. As shown also by other studies (e.g. Jameson et al., 2015b), variability on the DSD

increases with areal size and drop size and decreases with temporal integration. The variability

of the mass-weighted mean drop diameter Dm is notably lower than the variability in other
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Figure 4.16 – Densities of percentiles within sub-grid realisation values for simulated areal (a) Nt , (b) Dm , (c)
R, and (d) Z . Areal values were calculated using the COSMO-style algorithm and either an exponential (exp) or
gamma DSD model. To better show differences between the densities, all densities have been scaled so as to have
a peak of one, and there is a square-root scale on the y-axis. “Dry” sub-grid values are counted as zeros, except for
Dm for which they are not included.

bulk variables; this may be explained by Jameson and Kostinski (1999), who showed that in

clustered rain the variability of rain rate is due more to variability in drop concentrations than

in drop sizes. This would lead to moment ratios having less variability since concentration

factors would “cancel out” (Thurai et al., 2012). The results can be generalised by normalising

the areal size by the decorrelation distance of the rain rate process. These results, shown in

Section 4.5.3, could be applied to similar climatological regions for which the decorrelation

distance of rain rate is known.

The variability in the DSD poses challenges for the estimation of areal DSDs. Due to the

skewed nature of drop concentration distributions, even simply taking the mean DSD over

dense measurements within the area produces an areal DSD that is likely to represent the

higher-valued portion of the sub-grid distribution. Algorithms that attempt to derive an areal

DSD from other areal measurements have a harder task. Our results show that, at least in the

case of idealised GPM and COSMO algorithms, rainfall rate and radar reflectivity are estimated

more reliably than lower order moments of the DSD. Low order moments from estimated areal

DSDs should therefore be treated with more caution than higher order moments.

It is normal to use a DSD model to represent an areal (or point) DSD. These models generally

do an excellent job of capturing the DSD and its bulk variables. That being said, our results

have shown large variability in the DSD parameters that are appropriate for DSDs measured

at high temporal resolution. In the case of the COSMO algorithm, errors in the bulk variable

outputs were largely due to the fixed DSD model shape and slope parameters, which we

showed were often different to values fitted to the areal DSDs. On the other hand, errors in

the GPM-style algorithm were largely due to error in the estimation of the characteristic drop

diameter Dm from radar reflectivities.

Our results are based on stochastic simulation of the rainfall process over typical areas that
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Figure 4.17 – Densities of gamma model parameters (a) µ, (b) N0, and (c)Λ, fitted to areal DSDs for the 2.8×2.8
km2 region (black lines). The parameter distributions have long tails and for display purposes they have been
truncated at their 90th percentile. These densities are compared to COSMO parameter values (colour).

correspond to pixel sizes in real rainfall products (e.g. GPM and COSMO). Simple experimental

variograms on R recorded by the Parsivel network can give an approximation of the decorre-

lation distances in the rain process in time and space for each event. In our case, the large

region was large enough to cover the decorrelation distance for 80% of the events. The small

areal region, however, was never large enough to observe the full variability of the rainfall

process. In time, the decorrelation distance was larger than any integration time we used for

all but one event. It should not be assumed, therefore, that our simulated domains captured

the full variability of the rainfall process.

Finally, it should be noted that these results are for a specific area in Ardèche, France. This is a

mid-latitude region subject to Mediterranean rainfall, and we studied events that occurred

during the autumn months, when rainfall is known to be higher in these regions (see Section

4.3). The results shown here are specific to this region. It is our hypothesis, however, that

because these results depend primarily on the variability in the DSD, the broad conclusions

just outlined are valid wherever there is large DSD variability present.
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Figure 4.18 – The sum of all available one-minute rain amounts, with distributions over 100 realisations per method.
Point amounts are randomly sampled from near the centre of simulated grids. Only those time steps for which all
methods produced a DSD were included. “GPM ideal” refers to the case in which Dm was derived from the DSD,
but a fixed value of µ was used. COSMO “fitted” cases refer to those in which fitted values of the model parameters
were used.
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Figure 4.19 – The histogram of rain rate R, calculated for a sample. We used R values from one realisation of the
large ROI from each time step, then randomly sampled 10% of these collected values, to give a total sample size of
279087 points. The x-axis is truncated at 20 mm h−1 and the bin width is 0.5 mm h−1.

4.7 Conclusions

In this chapter we have shown results of analyses designed to quantify the effects of DSD

variability on areal measurements of precipitation. We focused on two typical scales: 5×5

km2, corresponding to the footprint of the GPM satellite-borne weather radar, and 2.8×2.8

km2, a high-resolution horizontal pixel size of the COSMO NWP model. The analyses were

based on high resolution grids of simulated experimental DSDs that were found using the

DSD interpolation and simulation technique presented in Chapter 3, constrained using radar

and disdrometer network data from the HyMeX 2012 and 2013 autumn campaigns in Ardèche,

France. The mean DSD over the simulated grid was taken as the areal DSD. These areal DSD

estimations were then compared to simulated DSDs on the point scale, and used to investigate

whether GPM- and COSMO-style areal DSD retrievals were representative of sub-grid values.

The effect of assuming that a point measurement of the DSD represents an areal measurement

was tested first. The results showed that this assumption introduces an error that, in general,

is greater for larger drop sizes, increases with the size of the areal measurement, and decreases

when measurements are integrated in time. Although these errors are most often small to

moderate, with median errors on equally distributed drop size classes between −10% and
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8%, the distributions of errors on both DSD concentrations and resulting bulk variables had

wide interquartile ranges. Thus for any one application of this assumption it is possible for a

large error to occur. While point estimates generally underestimated areal estimates for very

light rainfall, they overestimated areal values for heavier rainfall, and the error distributions

were mostly positively skewed. Generally, bias was more positive and the error distributions

had larger spread for rainfall of greater than 2 mm h−1. Bulk variables also exhibited large

interquartile ranges of errors. Of the bulk variables, rain rate, liquid water content and drop

concentration were all more affected than radar reflectivities and mass-weighted median drop

diameter. To generalise the results, we provided linear relationships between the expected

interquartile range of point-to-areal error, and areal side-length normalised by a reference

distance, which we took to be the climatological decorrelation distance of rain intensity. For a

similar region in which this climatological information is known, these relationships could be

used to give an estimate of the point-to-areal error range for common bulk rainfall variables.

Secondly, the case in which retrieved areal DSDs are assumed to represent underlying sub-

grid processes was investigated. We simulated GPM-style retrieval of the DSD on the pixel

scale with specific attenuation assumed perfectly known, and COSMO-style retrieval on a

smaller pixel scale. Both single- and dual-frequency GPM-style retrieval methods were able

to reproduce rain rate and radar reflectivity in a representative way, but the retrieved lower-

order moment values were not always properly representative of the sub-grid DSDs. Similarly,

COSMO-style retrieval performed well for rain rate and radar reflectivity retrieval but produced

values of drop concentration and characteristic drop diameter that were often unrealistic in

comparison to sub-grid ranges. Assumed and derived DSD model parameters used by GPM-

and COSMO-style retrieval were compared to parameters fitted to the simulated areal DSDs.

The results showed the large variability in appropriate DSD model parameters. The GPM-style

retrieval error was largely due to error in estimation of the characteristic drop size from radar

reflectivities. In contrast, error in COSMO-style estimation of lower-order DSD moments was

largely due to the use of fixed DSD model parameters. In this chapter we focused only on

horizontal variability of the DSD. Future work will turn towards investigating vertical variability

of the DSD and associated precipitation variables.
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5 Invariance of the double-normalised
raindrop size distribution through 3D
spatial displacement

This chapter is adapted from:

• T. H. Raupach and Alexis Berne. Invariance of the double-normalised raindrop size dis-

tribution through 3D spatial displacement. Submitted to Journal of Applied Meteorology

and Climatology.

This work was completed by T. Raupach under the supervision of A. Berne. Research, analyses,

and writing are by T. Raupach. For data acknowledgements, see Appendix A.

113



Chapter 5. Invariance of the double-normalised DSD through 3D spatial displacement

5.1 Introduction

DSD normalisation, in which the DSD is represented as a combination of its statistical mo-

ment(s) and a “generic” normalised DSD, allows the DSD to be summarised in a compact

form. Normalisation can also be used to study DSD variability, with the idea being that the

normalised DSD is constant and any variability is described by variation of the chosen mo-

ment(s) alone. Sempere-Torres et al. (1994) presented a single-moment DSD normalisation

approach that describes the DSD in terms of one DSD moment of arbitrary order and an arbi-

trary normalised DSD function. This approach unified previous normalisation approaches

that used specific scaling functions and moment orders (e.g. Sekhon and Srivastava, 1971;

Willis, 1984), and has been experimentally verified (Sempere-Torres et al., 1998). The method

has been used to study DSD variability (Uijlenhoet et al., 2003b; Chapon et al., 2008) and the

microstructure of extreme precipitation (Uijlenhoet et al., 2003a). Testud et al. (2001) proposed

a two-moment normalisation approach that uses the third- and fourth-order moments of the

DSD. The techniques of Testud et al. (2001) and Sempere-Torres et al. (1994) were unified by

Lee et al. (2004), who proposed a double-moment scaling normalisation that does not require

any assumption on the functional form of the normalised DSD. In this chapter we present

an analysis of the invariance of the double-moment DSD normalisation of Lee et al. (2004)

through horizontal and vertical displacement in space.

Whereas the single-moment normalised DSD function has been shown to vary by rainfall type

(e.g. Sempere-Torres et al., 2000), the double-moment normalised DSD was found to be similar

across different rainfall types (Lee et al., 2004). The double-moment technique is therefore

more effective at capturing the variability of precipitation and provides a convenient and

compact representation of the DSD. Double-moment normalisation has been used to study

precipitation microstructure (Moumouni et al., 2008) and DSD variability (Lee et al., 2007,

2009). Berne et al. (2012) compared single- and double-moment normalisation of the DSD

at typical operational radar pixel scale (1×1 km2). They showed that two moments captured

more variability than one, and that with double-moment normalisation, point measurements

of the DSD could be used to provide pixel-scale estimates of DSD moments up to order six. At

temporal resolutions finer than 10 minutes, neither technique captured all the variability in

the DSD.

When double-moment normalisation of the DSD is used, the normalised DSD is usually

estimated from observations and then assumed to be the same at unsampled locations or

times. Lee et al. (2007) showed low scatter around the average two-moment normalised DSD

for time series measurements of the DSD at one location. However, it has not yet been tested

whether there are significant changes to the normalised DSD in the vertical, nor in horizontal

domains larger than the 1×1 km2 region used by Berne et al. (2012). In this study we present

an analysis of the consistency of the double-moment normalisation of Lee et al. (2004), across

vertical displacement of up to 2 km and horizontal displacement of up to 100 km, and between

climatic regions. If the assumption of an invariant double-normalised DSD can be made, then

double-moment normalisation not only provides a compact DSD representation but could be
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useful in a wide range of applications, including DSD retrieval.

The rest of this chapter is organised as follows: in Section 5.2 the double-moment DSD

normalisation technique of Lee et al. (2004) is described. We describe the data used in Section

5.3. The invariance of the double-moment normalised DSD is examined in Section 5.4. The

effect of using a normalised DSD model trained in one location on data from another location

is shown in Section 5.5. The performance of normalised DSD models, by combination of input

moment orders, is shown in Section 5.6. The significance of the invariance of the double-

moment normalised DSD is discussed in Section 5.7, and conclusions are made in Section

5.8.

5.2 Double-moment normalisation of the DSD

The nth-order moment of the DSD, Mn [mmn m−3], is written

Mn =
∞∫

0

N (D)DndD. (5.1)

In the double-moment normalisation method of Lee et al. (2004), a DSD moment is written as

a combination of two others as

Mn =Cn M (n−i )/( j−i )
j M ( j−n)/( j−i )

i , (5.2)

where Cn [-] is the nth-order moment of the normalised DSD h [-], which appears in the

double-normalised expression for the DSD (Lee et al., 2004):

N (D) = M ( j+1)/( j−i )
i M (i+1)/(i− j )

j h(x). (5.3)

x = DM 1/( j−i )
i M−1/( j−i )

j [–] is the second-normalised diameter (Lee et al., 2004). Setting n = i

and n = j , self-consistency constraints are found:
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Ci = 1 =
∞∫

0

h(x)xi d x, and

C j = 1 =
∞∫

0

h(x)x j d x. (5.4)

While h can be any function, Lee et al. (2004) suggest the use of the generalised gamma

function for its ability to describe all observed DSD shapes. This function is used in this study.

The double-normalised form of the DSD used here can be summarised as follows (Lee et al.,

2004):

N̂ (D) = M ( j+1)/( j−i )
i M (i+1)/(i− j )

j ĥ(x), (5.5)

ĥ(x) = cΓ( j+cµ)/(i− j )
i Γ

(−i−cµ)/(i− j )
j xcµ−1 ×exp

[
−

(
Γi

Γ j

)c/(i− j )

xc

]
, (5.6)

where Γi = Γ(µ+i /c) and Γ j = Γ(µ+ j /c), Γ is the gamma function, and c [–] and µ [–] are fitted

parameters. Any DSD can then be described by Equation 5.6 with moment orders i and j .

While the integral properties defined here use drop diameters from zero to infinity, raindrops

have finite size, and measurement limits mean that the distributions of drop sizes are neces-

sarily truncated. As noted in Section 1.1, in this case become sums over classes of D . Likewise,

integrals over x become definite integrals over the available classes of x. Several studies have

considered the effect of DSD truncation on the calculation of bulk rain variables (e.g. Willis,

1984; Ulbrich, 1985; Vivekanandan et al., 2004). In this study the truncation limits depended

on the instrument used. We ensured that any DSDs compared were truncated to the same

limits, and statistical moments calculated from truncated DSDs were used qualitatively.

5.3 Data

Data from three instrument networks were used in this work. The first data set, which we

refer to as the HyMeX data set, was from the disdrometer network deployed in Ardèche,

France, during the autumns of 2012 and 2013, described in Section 2.2.1. Data used were from

OTT Parsivel (Löffler-Mang and Joss, 2000) disdrometers, a 2D-video-disdrometer (2DVD,

Schönhuber et al., 2008), two vertically-pointing METEK GmbH micro rain radars (MRRs,
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Peters et al., 2002, 2005; Tridon et al., 2011), a mobile, dual-polarisation Doppler weather radar

(MXPol, for instrument details see Schneebeli et al., 2013), and a Vaisala WXT520 weather

station. Some Parsivels were collocated, and we used only the best-performing Parsivel station

at each site, judged by comparison with collocated tipping bucket rain gauges. The two MRRs

collected profiles with a vertical resolution of 100 m and an integration time of 10 seconds.

MXPol made vertical measurements every 3-5 minutes with a vertical resolution of 75 m and

an integration time of 21-27 seconds.

The vertical profiles in the HyMeX data set often sampled solid precipitation. For this reason

we identified rainfall events in the HyMeX data set and estimated the freezing level for each

one. Rainfall events were identified as time periods containing no more than an hour of dry

time in the Parsivel data, and including measurements from MXPol and at least one of the

MRRs. Freezing levels were estimated per time step using temperature data from the weather

station (at Pradel Grainage), and an atmospheric lapse rate of −6.5◦ km−1 (Wallace and Hobbs,

2006). Per event, the cutoff height was the minimum estimated freezing level minus 300 m.

Visual inspection of radar scans showed that when a bright band was present, it was above the

cutoff height. MRR and MXPol vertical profile data were subset to data from these event times,

and altitudes greater than the cutoff height per event were excluded from this study. All valid

Parsivel and 2DVD data from HyMeX in 2012 and 2013 were used. The six defined events and

their estimated freezing levels are shown in Table 5.1.

Event Date Start End Freezing level [m]

1 09/28 17:05 18:56 2586
2 10/12 15:39 23:11 1171
3 10/15 03:44 11:16 1956
4 10/20 02:32 07:47 2156
5 10/27 03:22 08:49 2463
6 11/02 19:11 23:27 2063

Table 5.1 – Details of HyMeX campaign rain events, with their associated freezing level height cutoffs used to avoid
the freezing level.

The second data set, which we call the Payerne data set, was collected in Payerne, Switzerland,

by five first-generation Parsivel disdrometers with 30-second integration time, from February

to July 2014. The third data set, referred to here as the Iowa data set, was collected as part

of the National Aeronautics and Space Administration (NASA) Iowa Flood Studies (IFloodS)

GPM ground validation campaign, from April to June 2013 in Iowa, United States. Data used

were from 14 Parsivel2 disdrometers (Petersen et al., 2014) with one-minute measurement

integration time. A brief comparison of the climates of the HyMeX, Payerne and Iowa data set

regions is given in Wolfensberger et al. (2015). Instrument station coordinates, and the number

of rainy hours recorded by each station, are shown in Table 5.2. No events were defined for the

Payerne and Iowa datasets, since only Parsivel data were used.

All integrated measurements were resampled to one-minute resolution. Parsivel data for

HyMeX and Payerne were corrected using the technique explained in Chapter 2 (correction
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Network Station Lat. ◦N Lon. ◦E Alt. [m] Hrs

Payerne HARAS Avenches 46.8872 7.0141 435 169.2
Military Airport Payerne 46.8425 6.9184 451 197.1
Morat Airport 46.9783 7.1300 433 210.5
Payerne MCH Roof 46.8133 6.9428 489 215.0
Station SwissMetNet Payerne 46.8115 6.9424 489 163.7

HyMeX Lavilledieu 44.5772 4.4532 227 201.2
Les Blaches 44.6008 4.4810 429 194.8
Lussas 44.6123 4.4706 289 168.0
Mirabel 44.6069 4.4987 496 213.6
Mont-Redon 44.6141 4.5148 636 163.2
Montbrun 44.6141 4.5461 602 56.8
Pradel 1 44.5829 4.4987 278 200.7
Pradel Grainage 44.5790 4.5011 271 79.0
Pradel-Vignes 44.5801 4.4950 256 40.0
Saint-Etienne-de-Fontbellon 44.6000 4.3826 302 58.1
St-Germain 44.5551 4.4497 204 179.6
Villeneuve-de-Berg 44.5548 4.4953 301 136.8

Iowa apu01 42.2388 -92.4637 284 125.5
apu02 42.1823 -92.3654 293 147.9
apu03 42.1260 -92.2817 283 123.7
apu04 42.1224 -92.2806 280 101.2
apu05 41.9927 -92.0602 286 137.3
apu06 41.9782 -92.0757 274 142.1
apu07 41.9926 -92.0914 272 167.4
apu08 41.9927 -92.0708 282 100.1
apu09 41.8614 -91.8853 240 97.3
apu10 41.8605 -91.8737 255 93.4
apu11 41.8471 -91.8603 259 92.4
apu12 41.8474 -91.8458 258 81.3
apu13 41.6406 -91.5418 197 123.5
apu14 41.6406 -91.5416 197 98.2

Table 5.2 – Station locations and information. Shown are the network, the station name, its WGS84 coordinates
and altitude, and the number of precipitation hours recorded by Parsivel that were included in this study (Hrs).
For HyMeX, the 2DVD was at Pradel Grainage, the MRRs were at Montbrun and Pradel Grainage, and MXPol was at
Montbrun.

factors used for both were those trained using HyMeX data) and subset to time steps for which

no solid precipitation and no instrument errors were detected. Parsivel data from Iowa were

already quality-controlled and were used as provided. The 2DVD data were also processed as

in Chapter 2 and subset to liquid rain steps indicated by the collocated Parsivel (available in

2013 only). Attenuation correction was performed for the MXPol vertical profile data using

the Hitschfeld and Bordan method (Hitschfeld and Bordan, 1954). The vertical range of the

profiles was limited to a few kilometres, and since at these ranges attenuation was in the order

of a few dB at most, the Hitschfeld and Bordan method could be considered stable (Delrieu

et al., 1999). MRR data were provided with attenuation correction performed (METEK, 2010)

using the method of Peters et al. (2010). For the vertically-pointing radars, DSDs for each

altitude were retrieved using the Doppler spectrum and the MRR retrieval method (Strauch,

1976; Peters et al., 2002), in which vertical wind and turbulence are ignored (Peters et al., 2002).
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5.4. Invariance of the double-normalised DSD

Negative drop concentrations returned by the MRR (METEK, 2013) were set to zero.

All DSD data were truncated. For Parsivel and 2DVD data the truncation was from 0.2495

mm to 7 mm (see Chapter 2) and classes were defined as in Table 2.3. For MRR- and MXPol-

derived DSDs class widths were variable. The maximum drop size considered for MRR and

MXPol-derived DSDs was 5.8 mm, corresponding to the maximum possible drop size in the

fall velocity to drop diameter relationship of Atlas et al. (1973), which is used by the Doppler

DSD retrieval algorithm (Peters et al., 2005). This retrieval algorithm suffers from instabilities

as the drop size D approaches zero (Peters et al., 2005). Peters et al. (2005) used a minimum

drop size of 0.246 mm. In our MRR data sets, however, very large numbers of small drops were

returned for drop sizes larger than this minimum. To choose the minimum drop diameter

to use for Doppler-profile-derived DSDs, we compared DSDs retrieved for the third range

gate of MXPol and MRR radars at Montbrun, resampled into Parsivel drop diameter classes,

to those measured by the Parsivel on the ground at Montbrun. To account for the fall time

of the sampled volumes, the comparisons were made at 10-minute resolution. The results

showed overestimation in comparison with Parsivel of drop concentrations returned by the

DSD retrieval algorithm for classes of drops with diameters below 0.5 mm. Comparison to

Parsivel-derived total drop concentration Nt [m−3], liquid water content W [g m−3], and rain

rate R [mm h−1] with the truncated DSDs showed the best overall agreement occurred using

a minimum drop size of 0.6 mm for MRR and 0.5 mm for MXPol. The DSDs retrieved from

Doppler information were truncated using these limits.

DSD records were subset to those records for which the rain intensity was greater than 0.1 mm

h−1. Despite the DSD truncation applied, the DSD retrieval algorithm used for the MRR and

MXPol data sometimes returned unrealistic concentrations of small drops, which lead to very

large values of rain rate and liquid water content. We excluded these records by excluding any

DSD from the vertical profiles which had an associated rain rate greater than 150 mm h−1 (in

contrast, the largest corresponding intensity for HyMeX was 62 mm h−1 for Parsivel and 94

mm h−1 for the weather station). This constraint led to the exclusion of 0.5% of MRR DSDs

and 0.7% of MXPol DSDs. Finally, to avoid sampling effects, only Parsivel stations and profiler

altitudes for which more than 100 within-event records were available were included; this led

to the exclusion of altitudes greater than 2470 m for MRR, and altitudes greater than 2080 m

for the MXPol vertical scans. The maximum altitude was lower for MXPol because this radar

measured vertical profiles less often than the MRRs and therefore sampled less data.

5.4 Invariance of the double-normalised DSD

In this section we present a study on the invariance of the double-normalised DSD through

horizontal and vertical displacement in space. If the assumption that the normalised DSD is

invariant is acceptable, double-moment normalisation of the DSD is a powerful tool for the

investigation of three-dimensional variability of the DSD. To test the invariance we compared

normalised DSDs at each location to those at other locations from the same region and for the
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Chapter 5. Invariance of the double-normalised DSD through 3D spatial displacement

same one-minute time step. Differences in moments of the normalised DSD were quantified

by displacement distance. Horizontal displacement was tested via comparisons between

Parsivel stations in each disdrometer network. The maximum altitude difference between two

stations was 432 m (in the HyMeX network) and the maximum horizontal distance between

stations was about 100 km (in the Iowa network). Vertical displacement was tested using

the three vertically-pointing radars in the HyMeX network. Performance statistics used were

median and interquartile range of relative bias (difference divided by measured value, shown

as a percentage), and squared Pearson correlation coefficient (r 2). Examples are shown for

moment orders three and four, a combination that is commonly used to represent the DSD

(e.g. Testud et al., 2001).

The double-normalised DSD was estimated for every individual time step at each individual

station and altitude, for all combinations of input moment orders between zero and seven. For

each location and each one-minute time step, values of h(x) were calculated using Equation

5.3. To quantify the similarity of the normalised DSDs at different points, we compared

integral moments of h(x), of orders zero to seven. For a pair of locations, the moments of the

two normalised DSDs were compared through calculations of the absolute values of relative

differences. Examples of such differences are shown in Figures 5.1 and 5.2 for horizontal and

vertical displacement respectively. For comparison, these figures also show differences in

the moments of N (D), the un-normalised, measured DSD for the same distance lags. The

pattern of difference in the DSD by distance is similar for all moments, and the median values

of relative bias are always much larger than those for the normalised DSD. For readability, the

figures do not include the interquartile ranges; the IQRs on moments of h(x) were relatively

constant with distance, while those for the DSD moments were much larger and increased

in magnitude with displacement distance. These results confirm previous findings that the

double-moment normalised DSD is highly effective at collapsing the DSD into a generic

shape (Lee et al., 2004, 2007). The slope of the regression line on median relative bias by

displacement distance is a useful indication of the invariance of the normalised DSD through

displacement. An effect of distance on the similarity of the empirical normalised DSDs at one

time step is visible in both horizontal and vertical cases, and it is clear that the effect is more

pronounced for moment orders zero and seven, which are far from the input moment orders

in this example. On the other hand, the self-consistency constraints (Equations 5.4) guarantee

that moment orders i and j of h(x) are always 1, and thus there is no change by displacement

distance for these moments of h(x).

The displacement effect is shown more strongly in the vertical results than the horizontal. Over

all tested input moment combinations, the maximum slope on the best-fit lines to median

relative differences in normalised DSD moments through horizontal displacement was 1.9

percentage points per kilometer (% pts km −1), for input moments zero and one, producing

change in normalized DSD moment seven, in the HyMeX data set. The median change in

normalised DSD moment through horizontal displacement was 0.07 % pts km−1 with an IQR

of 0.19 % pts km−1. The maximum slope of change in any normalised DSD moment through

vertical displacement was 45.8 % pts km−1, for the MRR at Montbrun, with input moments zero
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5.5. Displacement effect with normalised DSD model

and one, producing change in normalised DSD moment seven. Through vertical displacement

the median slope of the change was 4.84 % pts km−1 with an IQR of 10.27 % pts km−1. While

moderate changes are shown for specific moments of the normalised DSD that are of orders

far from the chosen input moment orders, the normalised DSD shows only minor changes

with horizontal and vertical displacement on average.
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Figure 5.1 – Absolute values of median relative bias between integral moments of normalised DSDs (h(x)) by
horizontal displacement, for i = 3 and j = 4, with regression lines. Also shown are median points of difference
distributions between measured, un-normalised DSDs by displacement distance. Coloured lines show the regres-
sion lines on medians for moments of h(x). The slopes of these lines were used to quantify the change in h(x) by
displacement distance. For readability the y-axis is cut at 120%.

5.5 Displacement effect with normalised DSD model

It has been shown that the empirical normalised DSD is effective at collapsing the variability

in the DSD into a mean shape that is similar between spatial locations at the same time. When

the normalised DSD is used in practice it is often modelled using a functional form such

as the generalised gamma distribution shown in Equation 5.6. This DSD model was fitted

to the measured normalised DSDs, using all data at each location, and its performance in

reconstructing each one-minute DSD at other locations was tested.

To model the normalised DSDs, parameters µ and c of the generalised gamma model were

found by using least squares fitting to minimise differences between log(h(x)) and log(ĥ(x))
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Figure 5.2 – Absolute values of median relative bias between integral moments of normalised DSDs (h(x)) by
vertical displacement, for i = 3 and j = 4, with regression lines. Also shown are median points of difference
distributions between measured, un-normalised DSDs by displacement distance. The different instrument
altitudes and requirement for at least 100 DSDs per height account for the different vertical distances sampled.
Symbols as for Figure 5.1. “Mont.” stands for Montbrun, “Prad.” stands for Pradel Grainage. For readability the
y-axis is cut at 120%.

(Lee et al., 2004). The fit was performed only on non-zero values of h(x), and to reduce

the influence of outliers it was performed in each case only for values of x between the

10th and 90th percentiles of observed x, inclusive. This constraint meant that values of x

near the edges of its observed range, for which there were often fewer data points, were not

counted. Minimum allowed parameter values were zero for µ and 0.5 for c ; this value of c was

chosen to stop the fitted model from producing unreasonably high small-drop concentrations.

Examples of generalised gamma models fitted to normalised DSDs are shown in Figure 5.3 for

disdrometers and Figure 5.4 for MXPol. Differences in normalised DSD shape between the

disdrometers and Doppler-based instrument types are hypothesised to be due to the different

DSD truncations and significant differences in measurement principles.

The performance of the model trained at one location was tested by reconstructing the DSD

using Equation 5.6 and moment data at another location; the reconstructed DSDs were

then compared to measured DSDs. For disdrometer data, the DSDs were reconstructed in

the same truncated Parsivel diameter classes. For radar data, the DSDs were reconstructed

in the same truncated diameter classes as the DSDs used to calculate the input moments.
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5.5. Displacement effect with normalised DSD model
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Figure 5.3 – Normalised DSDs (i = 3, j = 4) for disdrometer data for a subset of disdrometer stations. Black lines
show the generalised gamma model fitted to data for each station. In red is the model fitted to data from the
station at Montbrun. For visual comparison, only points with h(x) ≥ 10−3 are shown.
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Figure 5.4 – Normalised DSDs (i = 3, j = 4) for MXPol vertical data for a subset of altitudes. Black lines show the
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Chapter 5. Invariance of the double-normalised DSD through 3D spatial displacement

Measured and reconstructed DSD moments were compared per instrument. Figures 5.5 and

5.6 show examples of relative bias as a function of displacement distance in the horizontal

and vertical, respectively. Compared to Figures 5.1 and 5.2, in which one-minute measured

normalised DSDs were compared, these figures show comparisons of DSDs reconstructed

using location-specific climatological normalised DSD models, at displaced locations. In these

examples, the regression lines on median relative bias show no obvious trend on performance

across horizontal displacement, while in the vertical, performance decreased with distance

for moment orders six and seven, and was stable for the other DSD moment orders. IQRs of

relative bias are similar across displacement distances.

Tests with all moment combinations showed that the reproduced moments with the greatest

slope, and therefore greatest change with distance, were those moments orders far from the

input orders, meaning that often the greatest slope was for moment zero or seven. For Parsivel

data, the slopes ranged from -1.15 to 0.01 percentage points change in median relative bias per

kilometer. These slopes were usually small negative values, but since performance is unlikely

to increase with distance, and there were less data available with large distances, we consider

the negative slopes to represent negligable changes affected by sampling effects. Bias values

were larger for the Iowa network than for Payerne and HyMeX, which may be partly due to the

fact that these data were not provided in raw form, and were therefore processed differently to

the other two sets. For vertical displacement with MXPol, all moment combinations showed

change of under 2.1 % pts km−1. In the MRR data, the change was less than 6.2 % pts km−1 for

all moment combinations. The fact that results from MXPol show little performance change

through vertical displacement means that the small performance changes seen at times in

the MRR data may be due to instrument effects rather than variance of the normalised DSD.

The overall mean slope for horizontal displacement was -0.04 % pts km−1 and for vertical it

was 0.57 % pts km−1. This analysis shows that climatological normalised DSDs modelled at

one location using a generalised gamma function can feasibly be applied to other locations,

with almost no change in DSD-reconstruction performance with horizontal displacement,

and acceptable loss of performance with vertical displacement.

5.6 Performance of normalised DSD models

All HyMeX data were used to fit normalised DSD models per instrument type and combination

of moment orders. The model parameters found are shown in Table 5.3; these parameters are

those used in the rest of this chapter. We turn now to the evaluation of the performance of

these models in the different regions studied. For each combination of moment orders, all

DSDs were reconstructed using the model appropriate for the instrument, fitted using HyMeX

data. Figure 5.7 shows the median relative bias with the largest magnitude per input moment

combination and region. The best performance is shown when the two moment orders are not

close to each other; for example moments one and six make a good combination. Importantly,

the Parsivel model trained in France is able to be applied to measurements from Switzerland

and the USA, without large performance loss. The figure shows a performance loss for the
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Figure 5.5 – Absolute values of relative bias on DSD moments for the generalised gamma model trained at one
location and used at another, by horizontal displacement, for input moment orders i = 3 and j = 4. Lines and
points as for Figure 5.1.
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Figure 5.6 – Absolute values of relative bias on DSD moments for the generalised gamma model trained at one
location and used at another, by vertical displacement, for input moment orders i = 3 and j = 4. Lines and points
as for 5.1, abbreviations as for Figure 5.2.

Iowa data set, and worse performance for the vertically pointing radars, but we note that

those shown in the figure are the worst-case outcomes which usually occurred for moments

far from the input moments (for example, the worst relative bias for the Iowa data set was

-22% for reconstruction of moment seven with input moments zero and one, but over all

tested reconstructions in the Iowa data set the average absolute value of median relative bias

was -3%). For the vertically-pointing radars, the worst bias ranged from −28% to 43%, and

was usually for moment zero (and the other few times for moment seven), while the average
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Chapter 5. Invariance of the double-normalised DSD through 3D spatial displacement

value of median relative bias over all tested combinations was −5% for the MRRs and −6% for

MXPol.

Orders 2DVD MRR MXPol Parsivel (HyMeX)

µ c RSE µ c RSE µ c RSE µ c RSE

0, 1 22.15 0.63 0.60 21.81 0.66 1.68 22.02 0.64 1.55 22.27 0.62 0.60
0, 2 30.10 0.55 0.58 31.06 0.52 1.64 30.28 0.55 1.44 30.42 0.55 0.59
0, 3 11.59 0.88 0.58 36.19 0.52 1.43 36.31 0.51 1.33 36.45 0.51 0.59
0, 4 7.33 1.09 0.59 38.82 0.50 1.30 38.81 0.50 1.22 16.78 0.74 0.61
0, 5 6.09 1.17 0.61 39.06 0.50 1.19 39.73 0.50 1.11 11.44 0.88 0.64
0, 6 4.62 1.32 0.63 42.54 0.50 1.11 22.50 0.65 1.02 9.33 0.96 0.67
0, 7 3.49 1.49 0.65 43.40 0.50 1.04 9.73 0.92 0.94 7.18 1.07 0.71
1, 2 10.74 0.92 0.58 20.24 0.66 1.47 20.30 0.66 1.36 20.07 0.68 0.60
1, 3 5.63 1.25 0.59 28.18 0.57 1.35 28.16 0.57 1.26 14.37 0.80 0.61
1, 4 4.65 1.35 0.60 34.02 0.53 1.23 33.90 0.53 1.15 8.18 1.05 0.64
1, 5 3.95 1.44 0.62 38.67 0.50 1.12 38.44 0.51 1.05 6.31 1.17 0.67
1, 6 3.51 1.51 0.64 39.33 0.50 1.03 16.62 0.74 0.96 5.40 1.25 0.71
1, 7 2.95 1.63 0.67 40.01 0.50 0.96 7.61 1.01 0.88 4.53 1.34 0.75
2, 3 3.74 1.51 0.61 18.61 0.68 1.26 18.54 0.69 1.18 7.14 1.12 0.65
2, 4 3.08 1.63 0.63 26.21 0.59 1.15 26.03 0.60 1.08 4.85 1.33 0.69
2, 5 2.73 1.70 0.66 31.87 0.54 1.05 25.18 0.62 0.98 3.91 1.45 0.73
2, 6 2.39 1.80 0.68 36.31 0.52 0.96 11.25 0.87 0.90 3.33 1.54 0.77
2, 7 2.02 1.92 0.71 40.09 0.50 0.89 5.60 1.13 0.82 2.81 1.64 0.81
3, 4 2.39 1.81 0.67 17.00 0.70 1.07 16.86 0.73 1.00 3.39 1.55 0.75
3, 5 2.01 1.94 0.70 24.26 0.61 0.97 13.12 0.82 0.91 2.76 1.67 0.80
3, 6 1.66 2.08 0.74 29.64 0.57 0.89 6.49 1.07 0.83 2.28 1.80 0.85
3, 7 1.35 2.25 0.77 34.00 0.54 0.82 3.46 1.33 0.77 1.90 1.92 0.89
4, 5 1.47 2.19 0.76 15.46 0.74 0.90 6.43 1.08 0.84 2.06 1.87 0.87
4, 6 1.15 2.40 0.80 22.42 0.64 0.83 22.81 0.59 0.86 1.67 2.01 0.92
4, 7 0.98 2.54 0.83 15.23 0.75 0.77 1.92 1.57 0.72 1.38 2.15 0.97
5, 6 0.90 2.60 0.85 14.04 0.77 0.78 1.84 1.59 0.72 1.29 2.19 1.00
5, 7 0.76 2.75 0.89 6.39 1.02 0.73 1.08 1.79 0.67 1.06 2.33 1.05
6, 7 0.61 2.94 0.94 3.15 1.25 0.71 0.60 1.96 0.64 0.85 2.49 1.13

Table 5.3 – Generalised gamma model parameters µ and c per moment combination and instrument type, and
showing residual standard error (RSE) of the model fit.

Figure 5.8 shows the maximum percentage of variance unexplained (PVU = (1− r 2)×100)

for each combination of input moments. Again, we see that models fitted on data in France

can be applied to the other data sets without significant performance loss. The moment

with the most unexplained variance was most often either moment zero or seven. Using

the best-performing input moment combination, it was possible that more than 85% of the

variance was explained for every reconstructed moment order. The best-performing moment

pair differed by instrument type. For example, for the Parsivel data, the best-performing

combination was moments one and five, which produced a maximum PVU of 12% across

all three regions. For the vertical radars, the best combination was moments three and five,

which produced a maximum PVU of 6% over the three instruments. The worst values of PVU

were lower for MXPol than the two MRRs. Over all locations, moment combinations, and

instruments, the mean PVU was 8%.

As a further check, we tested the rain rate calculated using the reconstructed DSDs against rain
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5.6. Performance of normalised DSD models

rates calculated from measured DSDs. For reconstructed DSDs in the HyMeX and Payerne

Parsivel data sets, the median relative bias was always within five percentage points of zero. In

Iowa it was always within nine percentage points of zero and usually within five percentage

points of zero. For the vertical radars, median relative bias was usually within five percentage

points of zero, and was within 10 percentage points of zero in all cases except for the MRR

at Montbrun with moments zero and one, which produced a median relative bias of 12%.

IQRs on the median relative bias were often low: for example for input moments three or four

combined with orders four, five or six, the IQR was never larger than ten percentage points for

any instrument in any region. The IQR rose to a maximum of 48% (for Iowa with M0 and M1).
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Figure 5.7 – The “worst” median relative bias [%] of all reconstructed versus measured moments, by combination
of input DSD moments i and j . The top row shows the Parsivel data sets in the three tested regions, “Mont.”
indicates Montbrun, “Prad.” indicates Pradel Grainage.
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Chapter 5. Invariance of the double-normalised DSD through 3D spatial displacement

The results shown in this section speak to both the best choice of input DSD moments and

the invariance of the normalised DSD. The input moments used have a clear effect on the

performance of reconstructed moments, with moment orders far from the input moments

reconstructed the worst. Input moment orders should thus be chosen to be close to the

moment order requiring the best accuracy. The results show that with horizontal displacement,

the performance of the double-moment normalised DSD is close to invariant with any choice

of input moments, with almost no change in bias on reconstructed DSD moments, even over

100 km horizontal displacement. With vertical displacement, the results show differences

in the normalised DSD by altitude for MRR but not MXPol data. When the normalised DSD

is used to reconstruct the DSD, however, the performance loss for reconstruction of DSD

moments per km of height displacement is usually only a few percentage points. The relative

invariance of the normalised DSD is such that it is possible to fit a generalised gamma model to

data from France, and use it with data from a different climatic region more than 7000 km away

in the USA, with comparable performance. We conclude that for practical use, when input

moments are well-chosen, the double-moment normalisation technique is stable enough that

the normalised DSD can be considered invariant.

5.7 Discussion

The main conclusion of this work is that the double-moment normalised DSD of Lee et al.

(2004) is close to invariant through spatial displacement. We have shown that using a gen-

eralised gamma model and the assumption of a normalised DSD, a model trained in one

location can be applied in another without significant performance loss. Further, the choice of

input moment affects the amount of variability captured, and we quantified this effect through

presentation of the worst-case bias and percentage of variance unexplained per moment com-

bination. These results have implications for applications of the double-moment normalised

DSD, which include DSD variability studies, DSD-retrieval algorithms, and DSD models used

in rainfall retrieval. In this section we provide a short discussion of these implications.

A close to invariant normalised DSD implies that most of the variability of the DSD can be

captured by the double-moment normalisation technique. While previous studies have shown

that most but not all variability is captured (e.g. Berne et al., 2012; Lee et al., 2007), we have

quantified the amount of variability captured by combination of input moments, and have

shown that it is possible to explain more than 85% of DSD variability with the double-moment

technique, with more than 90% explained on average. This is true even when the normalised

DSD model has been trained in one location and applied in another. It is possible to envision,

then, a functional mapping between variability in two bulk variables of rainfall and whole-DSD

variability. Such a system would allow for studies of DSD variability in areas in which limited

data are available.

The assumption that the normalised DSD is invariant could be used in any application in

which the DSD must be reconstructed from limited information, such as in DSD retrieval.
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5.8. Conclusions

Retrieval of the DSD from polarimetric data has been a long-standing research goal. Since it

was shown that radar reflectivity corresponds to the sixth moment of the DSD (Marshall and

Palmer, 1948), the advent of polarimetric radar has allowed other microphysical properties to

be linked to radar measurements (Seliga and Bringi, 1976; Jameson, 1983, 1985; Bringi and

Chandrasekar, 2001). As suggested by Lee et al. (2004), radar measurements could be related

to moments of the DSD to apply the double-moment normalisation to radar remote sensing.

We have shown that this idea is indeed feasible, because the normalised DSD can be assumed

invariant for practical purposes. Radar variables correspond to higher moments of the DSD

Bringi and Chandrasekar (2001), and the work in this chapter shows that it should be expected,

then, that the largest errors in such an application would be for the zeroth DSD moment.

In areal rainfall retrieval, it is already common for two moments of the DSD to be used, but

DSD models in use may be less flexible and able to capture less DSD variability than the

double-normalised DSD. For example, the operational one-moment DSD scheme in the

consortium for small-scale modelling (COSMO) numerical weather prediction model uses

a gamma DSD (Ulbrich, 1983) with two fixed parameters (Baldauf et al., 2011). It has been

shown, in Chapter 4 of this thesis, that this algorithm is susceptible to errors in estimation

of DSD properties, which are caused primarily by the fixed values of DSD model shape and

intercept parameters. While a sophisticated two-moment scheme is available for COSMO

(Seifert and Beheng, 2006), it has been found to have limited performance benefit, and higher

computation cost than the one-moment scheme (Baldauf et al., 2011). The assumption of an

invariant normalised DSD allows for further research to test whether the scheme is of use to

such numerical weather models, as well as areal rainfall retrieval algorithms similar to those

used by the global precipitation measurement (GPM) mission (Hou et al., 2014).

Establishing links between microphysical processes in precipitation and changes in the shape

of the double-normalised DSD remains an open research topic (Lee et al., 2004). While

our work has shown that changes in h(x) due to spatial displacement are small and can be

quantified, it is likely that some of the observed changes in h(x) in the vertical are due to

microphysical processes that occur as the rain falls. Further studies on rainfall classified

by the dominant microphysical process are required to further analyse the causes of these

differences.

5.8 Conclusions

The double-moment normalisation of Lee et al. (2004) provides a convenient way to sum-

marise the DSD in a compact form. The assumption made is that the normalised DSD is the

same everywhere; if this is the case then the variability of the DSD can be explained through

variability of only two of its moments. In this work we tested this assumption. Data from

networks of disdrometers and radars in three different climatic regions – Ardèche in France,

Payerne in Switzerland, and Iowa in the USA – were used. The disdrometer networks were used

to test the invariance of the normalised DSD through (close to) horizontal displacement, and
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vertically profiling radars in one data set were used to test its invariance in the vertical. The

normalised DSD was tested with all combinations of moment orders between one and seven.

The normalised DSD was found to be almost invariant through horizontal displacement, and

to show moderate changes through vertical displacement.

Normalised DSDs found at each location were tested against data at other locations. Testing

of reconstructed DSDs using displaced normalised DSDs showed little or no performance

loss across horizontal displacement, and performance loss of only a few percentage points

per kilometre across vertical displacement. We conclude that for practical use, when the

input moments are well chosen, the double-moment normalised DSD can be considered

invariant. Double-moment normalisation of the DSD is a technique with wide applicability.

The results we have shown demonstrate the relative invariance of the normalisation of Lee

et al. (2004), across horizontal and vertical displacement. Normalised DSD models trained in

France were able to be applied in Switzerland and the USA with relatively good performance.

The normalisation is thus well suited for use in studies of DSD variability, DSD retrieval, and

areal rainfall estimation. Future work should investigate the small amount of remaining

variability in the double-moment normalised DSD and its links to the microphysical processes

of precipitation.
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6 Retrieval of the raindrop size distri-
bution from polarimetric radar data
using double-moment normalisation

This chapter is adapted from:

• T. H. Raupach and Alexis Berne. Retrieval of the raindrop size distribution from po-

larimetric radar data using double-moment normalisation. Submitted to Atmospheric

Measurement Techniques.

This work was completed by T. Raupach under the supervision of A. Berne. Research, analyses,

and writing are by T. Raupach. For data acknowledgements, see Appendix A.
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6.1 Introduction

For applications such as numerical weather prediction (e.g. Baldauf et al., 2011) or radar

remote sensing (e.g. Bringi and Chandrasekar, 2001) it is often necessary to know the areal

DSD at the pixel scale. In other cases, such as studies of the microphysics of precipitation

(Pruppacher and Klett, 2000), it would be useful to be able to remotely infer the DSD aloft

or in remote locations. For these reasons, retrieval of the DSD from radar data has been a

long-standing goal. Polarimetric weather radars are particularly useful for remote retrieval of

the DSD, because differences between vertically and horizontally polarised electromagnetic

waves reflected off hydrometeors in the atmosphere provide information on the particles’

concentration, size, and shape. In rainfall, radar reflectivity in horizontal (ZH [dBZ]) or

vertical (ZV [dBZ]) polarisation primarily relates to drop concentration and size. Differential

reflectivity (ZDR [dB]) reflects drop shape, and specific differential phase shift (Kdp [◦ km−1])

relates to both the concentration and shape of the drops (Bringi and Chandrasekar, 2001). In

this chapter we present a new technique for DSD retrieval from polarimetric radar data, which

is based on the double-moment normalisation technique of Lee et al. (2004).

Seliga and Bringi (1976) showed that ZDR can be linked to the median volume drop diameter,

a microphysical property of rain. Since then, many methods for DSD retrieval from radar vari-

ables have been proposed. Zhang et al. (2001) introduced the “constrained gamma” method,

in which the shape and slope parameters of a gamma DSD model (Ulbrich, 1983) are assumed

dependent. This assumption is subject to debate (e.g. Zhang et al., 2003; Atlas and Ulbrich,

2006; Moisseev and Chandrasekar, 2007; Cao and Zhang, 2009). The technique, modified by

Brandes et al. (2003), can provide useful DSD information (Brandes et al., 2004b). In the “beta”

method (Gorgucci et al., 2002), the effective slope of the drop axis ratio to diameter relation-

ship is retrieved. The slope is used to find parameter values for the normalised gamma model

of Willis (1984), which has advantages for use with polarimetric observations (Illingworth

and Blackman, 2002). Retrieval of the gamma model shape parameter with the beta method

is subject to high uncertainty (Gorgucci et al., 2002; Anagnostou et al., 2008). To deal with

noisy ZDR and Kdp data at low rain rates, Bringi et al. (2002, 2003) used the beta method for

heavy rain and disdrometer-based regressions on ZH and ZDR for light rain. Brandes et al.

(2004a) found that the constrained gamma method was in better agreement with disdrometer

data than the beta method, while Anagnostou et al. (2008) reported similar performance from

the two techniques, and both studies noted that the beta method is sensitive to errors in

Kdp. Vulpiani et al. (2006) developed a neural-network DSD-retrieval technique, and spatial

correlations of DSD model parameters have been retrieved from radar data (Thurai et al., 2012;

Bringi et al., 2015).

X-band polarimetric weather radars are popular due to their portability, small size, and high

resolution and sensitivity, but measurements at X-band suffer from attenuation by heavy

rain (Kalogiros et al., 2013; Anagnostou et al., 2013) and must be corrected (Matrosov et al.,

2005; Park et al., 2005a). Several DSD-retrieval algorithms have been developed for X-band

(e.g. Park et al., 2005b; Gorgucci et al., 2008; Kalogiros et al., 2013; Anagnostou et al., 2013),
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including some with integrated attenuation correction (e.g. Testud et al., 2000; Yoshikawa

et al., 2014). The self-consistent with optional parameterization attenuation correction and

microphysics estimation (SCOP-ME) algorithm, developed through studies by Anagnostou

et al. (2009, 2010) and Kalogiros et al. (2013), uses relationships calculated for the Rayleigh

limit, corrected for Mie scattering at X-band. It performs well compared to contemporary

algorithms and disdrometer observations (Anagnostou et al., 2013). In this chapter we present

a new method for DSD retrieval that uses the double-moment DSD normalisation of Lee et al.

(2004), and compare it to SCOP-ME.

The rest of this manuscript is organised as follows: two polarimetric variables used in this

chapter are introduced in Section 6.2. Data used are presented in Section 6.3. In Section 6.4

we propose a new DSD-retrieval method that uses double-moment normalisation to retrieve

the DSD from polarimetric radar data. Its performance is compared to that of SCOP-ME using

radar variables simulated from DSD measurements in Section 6.5. In Section 6.6 we introduce

a new method to reduce the effects of noise in radar measurements. Using this method, the

DSD-retrieval algorithms are compared using radar data in Section 6.7. Conclusions are made

in Section 6.8.

6.2 Polarimetric variables

Recall from Chapter 1 that all bulk variables of rainfall can be derived from the DSD. These

include polarimetric radar variables such as the radar reflectivity (Equation 1.7). In this section

some more useful polarimetric variables are introduced (a detailed review is provided by Bringi

and Chandrasekar, 2001). Differential reflectivity in linear units, ξdr [–], defined as Zh/Zv , has

been shown to relate to the reflectivity-weighted mean drop axis ratio rz (Jameson, 1983). rz is

defined as

rz =

∞∫
0

r (D)D6N (D)dD

∞∫
0

D6N (D)dD

, (6.1)

where r (D) is the vertical to horizontal axis ratio of a drop of equivolume diameter D. The

relationship found by Jameson (1983) is

rz ∼ (ξdr)−
3
7 , (6.2)

133



Chapter 6. DSD-retrieval from radar using double-moment normalisation

which is valid for narrow distributions of raindrop axis ratio (Bringi and Chandrasekar, 2001).

Dual-polarisation radars measure specific differential phase shift (on propagation), Kdp

[◦ km−1], which is the difference in phase change between horizontally and vertically polarised

waves that pass through one kilometre of rain. It is defined as (Bringi and Chandrasekar, 2001)

Kdp = 180λ

π
10−1

∞∫
0

Re
[

fhh(D)− fv v (D)
]

N (D)dD, (6.3)

where Re represents the real part of a complex number and Re( fhh) [cm] and Re( fv v ) [cm]

are the real parts of the forward scattering amplitudes for horizontal and vertical polarisation

respectively. Kdp can also be defined from the DSD as (Jameson, 1985)

Kdp =
(

180

λ

)
10−1CW (1− rm), (6.4)

where the dimensionless value C ∼ 3.75 (Bringi and Chandrasekar, 2001). rm is the mass-

weighted mean raindrop axis ratio, defined as (Jameson, 1985)

rm =

∞∫
0

r (D)D3N (D)dD

∞∫
0

D3N (D)dD

. (6.5)

Various axis ratio functions are available (e.g. Pruppacher and Beard, 1970; Andsager et al.,

1999; Brandes et al., 2002; Thurai and Bringi, 2005). Where unspecified, the ratio function

used in this chapter was that of Thurai and Bringi (2005). We return to the question of axis

ratios and Kdp in Section 6.4. Just as previously in Sections 1.1 and 5.2, the integrals in this

section are idealised because the range of drop sizes is written from zero to infinity, and in

practice a sum over discrete classes of D or x is used. We used the same truncation limits for

compared quantities. When polarimetric variables were calculated from DSDs, the T-matrix

codes of Mishchenko and Travis (1998) were used. Unless specified otherwise, the codes were

used with an assumed temperature of 12.5◦ C, a Gaussian distribution of raindrop canting

angles with zero mean and a standard deviation of 6◦ (stated as reasonable by Bringi and

Chandrasekar, 2001), and a radar frequency of 9.4 GHz.
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6.3 Data

To test the new method, data from the three networks of OTT Parsivel (Löffler-Mang and Joss,

2000) disdrometers introduced in Section 5.3 were used. Each network had a nearby X-band

weather radar that scanned above the disdrometers. From the HyMeX network (introduced in

Section 2.2.1), the test data included measurements from 11 of the disdrometers, the MRR at

Pradel Grainage, and MXPol. The MRR provided vertical profiles of DSD estimations recorded

with 100 m vertical resolution and 10 s integration time. MXPol was located to the north-east

of the disdrometer network (Figure 2.1). In 2013, MXPol recorded “stacked” plan position

indicator (PPI) scans above the Parsivel network at elevations of four, five, six, eight, 10, 12, 14,

16, and 20 degrees above horizontal, with a return time of about six minutes. For the MRR test

data we used the events identified in Section 5.3 and shown in Table 5.1. As before, only those

MRR data below the estimated freezing level were used for each event.

The second network used was the Payerne data set, and included the MXPol radar as well as

Parsivel disdrometers. We used the MXPol PPI scan at five degrees above horizontal, which had

a return time of about five minutes. The third data set used was from ten Parsivel2 disdrometers

(Petersen et al., 2014) in Iowa data set. Overlooking this network was the University of Iowa’s

X-band radar XPOL5 (Mishra et al., 2016). We used PPI data recorded at three degrees above

horizontal, with a return time of about eight minutes, for three days of heavy rainfall, the 25th,

26th, and 27th May 2013. The three networks were in regions with different climatologies (as

described in Wolfensberger et al., 2015). Table 6.1 shows the instrument stations used here,

the distance of each station to the PPI radar volumes used, and the number of radar scans

that overlapped with one-minute observations. Table 5.2 shows the spatial coordinates for the

stations used here.

Disdrometer and MRR DSD data were truncated and treated as shown in Section 5.3. All avail-

able disdrometer and PPI data were used, while MRR data were subset to HyMeX event times

so that likely solid precipitation was not considered. PPI radar reflectivities were compared to

measurements from disdrometers (and the MRR in HyMeX), and bias in ZH was corrected for

each of the three locations. Two days of radar data from Payerne (2014-03-22 and 2014-04-08)

exhibited higher radar bias and were not included in this study. Attenuation correction for the

PPI data was performed using the ZPHI algorithm (Testud et al., 2000), and Kdp was estimated

using the method of Schneebeli et al. (2014). PPI scan data were sampled by taking the mean

values for radar volumes that overlapped horizontally the latitude and longitude of the point in

question within the instrument’s corresponding one-minute integration period. To discount

noise, PPI values were subset to those for which ZH was greater than or equal to 10 dBZ and

the signal to noise ratio in horizontal polarisation was greater than or equal to 5 dB.
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Network Station S H (ground) H (a.s.l) D MI

Payerne HARAS Avenches 481 910 1350 9.8 15.2
Military Airport Payerne 406 370 820 3.7 16.3
Morat Airport 326 2090 2520 23.2 16.6

HyMeX Lavilledieu 1159 970 1190 8.4 53.4
Les Blaches 1218 550 980 5.4 60.1
Lussas 1234 730 1020 6.0 65.1
Mirabel 1222 370 870 3.8 56.8
Mont-Redon 1226 140 780 2.5 15.9
Pradel 1 1202 680 960 5.1 39.1
Pradel Grainage 1179 700 970 5.3 42.8
Pradel-Vignes 1185 730 990 5.5 22.0
Saint-Etienne-de-Fontbellon 1008 1210 1520 13.1 40.7
St-Germain 1089 1100 1310 10.1 73.4
Villeneuve-de-Berg 1108 840 1140 7.7 62.0

Iowa apu05 85 1520 1810 29.5 44.5
apu06 84 1570 1840 30.1 52.0
apu07 80 1660 1930 31.9 38.1
apu08 87 1570 1850 30.3 59.7
apu09 158 700 940 12.9 40.0
apu10 164 640 890 12.0 22.9
apu11 155 600 860 11.4 20.8
apu12 154 540 801 10.3 27.8
apu13 96 1730 1920 31.7 60.1
apu14 95 1730 1920 31.7 65.2

Table 6.1 – Instrument stations with corresponding PPI volumes, with the number of scans for that volume (S),
and the volume centre’s height above the ground (H (ground) [m], to nearest 10 m), the volume centre’s height
above sea level (H (a.s.l) [m], to nearest 10 m), and its horizontal range from the radar (D [km]). Also shown is the
maximum one-minute rain intensity (MI [mm h−1]) recorded by each Parsivel at a radar scan time. The radar
locations were 44.6141◦ N, 4.5461◦ E, 602 m altitude for HyMeX, 46.8133◦ N, 6.9428◦ E, 489 m altitude for Payerne,
and 41.8870◦ N, 91.7341◦ W, 263 m altitude for Iowa. The MRR was at Pradel Grainage. Military Airport is short for
Military Airport Payerne.

6.4 DSD retrieval from polarimetric radar data

In Chapter 5 it was shown that for practical purposes, the double-normalised DSD can be

assumed to be invariant across spatial displacement. Lee et al. (2007) showed that h(x) derived

from time series measurements at one location had low scatter around the average normalised

DSD. In this chapter, we make the assumption that the double-moment normalised DSD

function ĥ(x) is invariant in space and time over the typical domain of interest. Once again

we use the generalised gamma DSD model and the double-moment normalised DSD shown

in Equation 5.6. Using this assumption, the DSD can be reconstructed at a point in space

using polarimetric radar data. Given a known normalised DSD, the task of DSD reconstruction

becomes that of determining from radar information the values of two DSD moments. In this

section we present a new DSD-retrieval method that uses this idea. The aim of the proposed

DSD-retrieval technique is to retrieve two DSD moments, using only polarimetric radar data.

We used disdrometer data to simulate radar variables and estimate their relationships to DSD

moments. The disdrometer data used were the Parsivel data from the HyMeX network (101494
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one-minute DSDs). ZH , Kdp and ZDR were calculated for these DSDs for the MXPol stacked

PPI incidence angles, temperatures of five, ten, and 15◦ C, and each of four drop axis ratio

functions: those of Andsager et al. (1999), Brandes et al. (2002), Thurai and Bringi (2005), and

that of Beard and Chuang (1987) in the form shown in Kalogiros et al. (2013).

Figure 6.1 – A sample of 20,000 points from the training set of Parsivel data, showing the relationship between
radar reflectivity in linear units and moment six of the DSD. Each black point represents a one-minute DSD
measurement. The one-to-one line is shown in black, and the red dashed line shows the fitted relationship of
Equation 6.6. The low-high Zh threshold of 35 dBZ is shown with a red point.

Radar reflectivity in linear units, Zh [mm6 m−3], is the sixth moment of the DSD in the Rayleigh

scattering regime (Bringi and Chandrasekar, 2001). At X-band frequencies, larger drops enter

into the Mie scattering regime and differences appear between M6 and Zh . We use the

observation that Zh departs from M6 for heavier rain, and assume that this departure occurs

when ZH is greater than some value. This threshold was determined through comparison

of M6 and Zh for DSDs with ZH in classes of width 1 dBZ between 30 dBZ and 40 dBZ, and

was set to 35 dBZ. For larger reflectivity values, a power law relationship was found using

least-squares. The resulting relationship is

M̂6 =
Zh if 10log10(Zh) ≤ 35

3.2 Z 0.85
h if 10log10(Zh) > 35.

(6.6)

On the training set, relative bias between M̂6 and M6 was −2.7%, the interquartile range (IQR)

of relative bias was 2.9 percentage points, and the r 2 value was 0.98. The fitted relationship

is shown on samples of training data in Figure 6.1. Retrieving a second, lower-order DSD

moment is more difficult than estimating M6, because radar variables are more closely linked

to the higher-order moments of the DSD. Using theoretical relationships as much as possible,

we present here a method to retrieve the third moment of the DSD from polarimetric data.

As shown in Equation 6.2, the reflectivity-weighted mean drop axis ratio, rz , is related to a

negative power of the differential reflectivity in linear units, ξdr. In Kalogiros et al. (2013), the
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reflectivity-weighted and mass-weighted drop axis ratios were assumed to be the same and

differences were dealt with through least-squares fitting of qualitative relationships between

radar variables. A similar approach is taken here. Since rz and the mass-weighted mean

drop axis ratio rm are both weighted mean drop axis ratios, we assume that rm can also be

approximated through a negative power of ξdr, such that rm ∼ ξ
−βM

dr . Recall from Equation

1.3 that W is the third moment of the DSD multiplied by a constant. Replacing W , rm , and

constants in Equation 6.4 with M3 (to be estimated), ξ−βM

dr , and a constant αM respectively, we

arrive at the expression

M̂3 =
αM Kdp

(1−ξ−βM

dr )
, (6.7)

where αM and βM are parameters to be found. Kdp is sensitive to the raindrop axis ratio (e.g.

Bringi and Chandrasekar, 2001), so this relationship was found per axis ratio function using

least-squares fitting. The same ZH threshold was used to divide the data into “Rayleigh-like”

and “Mie-like” sets. The results and their performance statistics are shown in Table 6.2.

Low ZH High ZH
Ratio αM βM αM βM RB IQR r 2

Thurai 1524 6.8 730 2.5 2.5 13 0.97
Brandes 1332 4.3 684 2.0 1.4 23 0.96
Andsager 1623 6.1 803 2.5 0.6 20 0.96
Beard 1131 3.9 672 2.1 0.7 21 0.97

Table 6.2 – Fitted values of αM and βM for DSDs with ZH ≤ 35 dBZ (Low ZH ) and those with ZH > 35 dBZ (High
ZH ), by drop axis ratio function (Ratio). Also shown are the resulting median relative bias (RB [%]), IQR of relative
bias (IQR [% pts]), and r 2 on the training data.

The proposed DSD retrieval technique can be summarised as follows: the double-normalised

DSD ĥ(x) and its parameters c and µ are assumed trained from data and known. Then, given

Kdp, ξdr and Zh , (1) DSD moment six is estimated using Equation 6.6; (2) DSD moment three is

estimated using Equation 6.7 and parameter values from Table 6.2. The DSD is then retrieved

using Equation 5.6 with i = 3 and j = 6.

6.5 Comparison to an existing DSD-retrieval method

The new DSD retrieval method was compared to the DSD-retrieval method SCOP-ME (Anag-

nostou et al., 2009, 2010; Kalogiros et al., 2013). We implemented SCOP-ME using its de-

scription in Anagnostou et al. (2013). SCOP-ME was developed for X-band using T-matrix

simulations, and in Anagnostou et al. (2013) it is shown to outperform the algorithms of

Anagnostou et al. (2008) and Park et al. (2005a). The DSD model used by SCOP-ME is based

on the normalised DSD of Willis (1984) (see also Bringi and Chandrasekar, 2001). Kalogiros
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et al. (2013) provided an explicit expression for rain rate using polarimetric variables, but since

we are interested in the whole DSD, in the following sections we compare R computed from

reconstructed DSDs. The comparison of the two methods is first shown using Parsivel data in

which the radar values were simulated using T-matrix codes and were therefore free of radar

measurement noise.

Comparisons of the two techniques (both in this section and Section 6.7) were made using the

three Parsivel data sets from HyMeX, Payerne, and Iowa. Comparison statistics were computed

with difference defined as retrieved minus measured value, for DSD moments zero to seven,

Dm , and R . For each one-minute DSD record, Zh , Kdp and ZDR were calculated using T-matrix

codes, for an elevation angle of 4◦ above horizontal, and using each of the four drop axis

ratio functions. SCOP-ME and the double-moment method were used to retrieve the DSD

concentrations N (D) for D in the class centres of the truncated Parsivel diameter classes. For

the double-moment technique, the generalised gamma model parameters for the normalised

DSD ĥ(x) (Equation 5.6) for Parsivel data with i = 3 and j = 6 were used. As found in Chapter

5, these values were c = 1.8 and µ= 2.28. The HyMeX data set is used as an example: measured

and retrieved rain rates are shown for one event in Figure 6.2, for the drop axis ratio model of

Beard and Chuang (1987), with which SCOP-ME was trained. Scatter plots of measured and

reconstructed values for the Beard axis ratio model are shown in Figure 6.3. Comparisons of

distributions of relative errors are shown in Figure 6.4.
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Figure 6.2 – A time series plot showing retrieved versus measured rain rate for double-moment (DM) and SCOP-ME
(SM) methods, on for the fourth tested HyMeX event, using the axis ratio function of Beard and Chuang (1987).
Measured rain rates by Parsivel are shown as a black line, retrieved values as coloured points.

Performance results are shown in detail for the HyMeX region in Table 6.3. Differences in

performance statistic are shown by ratio function, variable, and region in Table 6.4. These

differences are shown visually in Figure 6.5. In over half of the tested region and variable

combinations (moments one to seven, R, and Dm), the double-moment technique produced

a better median relative bias than the SCOP-ME technique; on average the double-moment

technique produced a median relative bias that was 2 percentage points better. IQR of relative

bias was usually slightly higher for the double-moment technique, with a mean difference of

2.4 percentage points. Correlation coefficients and scatter plot slopes were usually very similar

between the two techniques. On average, the double-moment results produced an r 2 value

and slope that were respectively 0.02 and 0.03 further from one than the SCOP-ME values.

The average differences across the three tested regions and four tested raindrop axis ratio
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Figure 6.3 – Scatter plots showing retrieved versus measured moments Mn [mmn m−3], R [mm h−1], and Dm
[mm], for double-moment (DM) and SCOP-ME (SM) methods, on HyMeX data only, using the axis ratio function
of Beard and Chuang (1987). One-to-one lines are shown in black, lines of best fit in colour.
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Figure 6.4 – Relative bias distributions from the double-moment and SCOP-ME DSD-retrieval methods, by drop
axis ratio function, for HyMeX data. Variables are moment order n [mmn m−3], Dm [mm], and R [mm h−1]. Bold
bars show medians, boxes show IQRs, whiskers show 10th to 90th percentile ranges.
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6.5. Comparison to an existing DSD-retrieval method

Double-moment SCOP-ME Difference

Ratio Var RB IQR r 2 S RB IQR r 2 S RB IQR r 2 S

Ands. Dm −1 10 0.85 1.05 −2 9 0.87 0.82 −0 1 0.02 −0.13
M0 5 77 0.67 0.80 11 69 0.65 0.89 −5 8 −0.01 0.08
M1 3 52 0.77 0.81 9 50 0.79 1.01 −6 2 0.02 0.18
M2 1 33 0.89 0.88 7 34 0.90 1.07 −6 −1 0.01 0.05
M3 0 20 0.96 0.98 6 21 0.96 1.05 −6 −1 0.00 −0.03
M4 −1 11 0.98 1.07 4 11 0.99 0.98 −3 0 0.01 0.05
M5 −3 5 0.98 1.09 3 4 0.99 0.93 0 0 0.02 0.02
M6 −4 3 0.98 1.02 2 3 0.97 0.87 2 0 −0.01 −0.11
M7 −5 12 0.98 0.86 2 3 0.93 0.79 3 9 −0.05 −0.07
R −1 12 0.98 1.05 5 12 0.98 1.01 −4 1 0.01 0.04

Thur. Dm −3 9 0.88 1.07 −5 7 0.89 0.84 −3 1 0.01 −0.10
M0 16 80 0.70 0.97 36 66 0.74 1.15 −20 14 0.04 −0.11
M1 12 49 0.80 0.89 32 46 0.84 1.21 −20 3 0.04 −0.10
M2 8 27 0.91 0.91 26 30 0.92 1.22 −18 −4 0.01 −0.14
M3 5 12 0.98 1.00 20 18 0.97 1.17 −15 −6 0.00 −0.17
M4 1 5 0.99 1.07 14 9 0.99 1.08 −13 −3 0.01 −0.01
M5 −1 3 0.98 1.07 7 4 0.99 0.99 −5 −1 0.01 0.06
M6 −3 3 0.99 0.98 2 2 0.97 0.90 1 1 −0.01 −0.08
M7 −5 12 0.98 0.82 −4 5 0.93 0.79 2 7 −0.05 −0.03
R 1 6 0.99 1.05 15 9 0.99 1.12 −14 −3 0.00 −0.06

Bran. Dm −1 12 0.83 1.06 1 11 0.86 0.81 1 1 0.02 −0.13
M0 6 87 0.63 0.79 −1 68 0.59 0.80 5 19 −0.03 0.00
M1 3 59 0.74 0.79 −2 50 0.75 0.93 2 9 0.01 0.14
M2 2 38 0.87 0.86 −2 35 0.87 1.02 0 3 0.00 0.11
M3 1 23 0.96 0.97 −1 22 0.95 1.03 −1 0 0.00 0.00
M4 −1 13 0.98 1.07 −1 12 0.99 0.98 0 1 0.01 0.05
M5 −2 6 0.98 1.11 −0 5 0.99 0.92 2 1 0.01 0.03
M6 −4 3 0.98 1.05 2 3 0.97 0.87 1 −0 −0.01 −0.08
M7 −5 11 0.98 0.91 5 5 0.92 0.78 −0 7 −0.06 −0.13
R −1 14 0.98 1.04 −1 13 0.98 1.00 0 1 0.00 0.04

Beard Dm −1 11 0.85 1.06 −1 10 0.87 0.79 0 1 0.02 −0.15
M0 4 80 0.66 0.80 6 70 0.61 0.87 −2 10 −0.05 0.07
M1 1 54 0.77 0.81 4 50 0.76 1.01 −3 3 −0.01 0.17
M2 1 34 0.89 0.89 4 35 0.89 1.11 −3 −0 0.00 0.00
M3 0 20 0.97 0.99 3 21 0.96 1.11 −3 −1 0.00 −0.10
M4 −1 11 0.98 1.08 2 11 0.99 1.04 −2 0 0.01 0.04
M5 −2 5 0.98 1.10 2 4 0.99 0.97 1 2 0.01 0.06
M6 −3 2 0.98 1.02 2 3 0.97 0.89 1 −0 −0.01 −0.08
M7 −4 11 0.98 0.87 3 5 0.93 0.79 0 7 −0.05 −0.07
R −1 13 0.98 1.06 2 12 0.99 1.07 −2 0 0.00 −0.01

Table 6.3 – Comparison of double-moment method to SCOP-ME results on Parsivel data from five rainfall events
in the HyMeX data set by axis ratio function (Ratio). Med. RB is median relative bias [%], RB IQR is interquartile
range of relative bias [% points], r 2 is squared correlation coefficient. Slope is slope of best fit line on measured vs.
reconstructed plot. Difference is difference in absolute values for RB and IQR, and difference in distance from 1 for
r 2 and slope. A negative difference shows that the double-moment method improved on SCOP-ME’s performance.
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Payerne Iowa

Ratio order RB IQR r 2 S RB IQR r 2 S

Ands. Dm 0 1 0.02 0.08 1 2 0.04 −0.03
M0 1 18 0.16 0.14 13 0 −0.04 0.12
M1 −0 6 0.08 0.16 10 −0 0.05 0.33
M2 −1 1 0.01 0.12 8 −1 0.03 0.06
M3 −2 −1 0.00 0.00 4 −0 0.04 0.07
M4 −2 0 0.02 0.09 0 2 0.03 0.18
M5 −0 1 0.01 −0.01 1 2 0.01 0.06
M6 1 0 0.01 −0.16 2 0 −0.01 −0.14
M7 3 8 0.03 −0.01 2 12 −0.02 0.01
R −2 0 0.02 0.08 0 2 0.04 0.21

Thur. Dm −2 1 0.02 0.11 −3 2 0.03 0.04
M0 −11 15 0.19 0.25 −5 9 0.07 −0.26
M1 −15 3 0.09 0.19 −12 3 0.11 −0.06
M2 −15 −3 0.01 0.04 −17 −3 0.03 −0.10
M3 −14 −5 0.00 −0.09 −15 −6 0.03 −0.08
M4 −11 −4 0.01 0.08 −10 −3 0.02 0.12
M5 −4 −2 0.00 0.02 −4 0 0.00 0.07
M6 1 1 0.01 −0.06 1 1 −0.01 −0.07
M7 1 5 0.03 0.06 −0 6 −0.02 0.04
R −12 −5 0.02 0.01 −12 −3 0.03 0.08

Bran. Dm −3 2 0.02 0.09 −1 2 0.03 0.01
M0 −13 26 0.17 0.10 4 13 −0.02 0.02
M1 −8 13 0.10 0.11 2 8 0.07 0.29
M2 −5 5 0.02 0.08 0 3 0.03 0.09
M3 −2 1 0.00 −0.02 −1 0 0.04 0.06
M4 −0 0 0.02 0.07 −0 2 0.03 0.19
M5 3 1 0.01 0.02 2 3 0.01 0.10
M6 1 −0 0.01 −0.20 2 −1 −0.01 −0.12
M7 −2 5 0.03 −0.06 −2 7 −0.02 −0.03
R −0 −0 0.03 0.04 −0 2 0.04 0.21

Beard Dm −1 1 0.02 0.07 1 1 0.03 −0.04
M0 −5 16 0.16 0.16 10 1 −0.07 0.10
M1 −2 7 0.08 0.17 8 −1 0.03 0.32
M2 1 2 0.01 0.14 6 −2 0.02 −0.01
M3 2 −0 0.00 0.03 4 −2 0.03 −0.02
M4 3 1 0.02 0.09 1 2 0.02 0.18
M5 4 1 0.00 0.00 1 3 0.01 0.09
M6 0 −0 0.01 −0.14 1 −0 −0.01 −0.12
M7 −3 5 0.02 −0.02 −1 8 −0.02 0.00
R 3 0 0.02 0.08 1 1 0.03 0.13

Table 6.4 – Differences in performance by variable and region, for DSDs retrieved from Parsivel data using the
double-moment technique and SCOP-ME. Differences are defined as for Table 6.3, so a negative difference shows
that the double-moment method improved on SCOP-ME’s performance. Note that differences for HyMeX are
shown in Table 6.3.
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functions are shown in Table 6.5. On average, the double-moment technique produced better

median relative bias than SCOP-ME on Dm , R , and moments zero to five. IQRs were similar on

average with the exception of moments zero and seven for which SCOP-ME produced smaller

IQRs. The double-moment technique produced better scatter plot slope on Dm and moments

three, six and seven. As is shown in tables 6.3 and 6.4, the results were different for different

drop axis ratio functions. For example, when the Thurai function was used, the double-

moment technique performed better overall. In contrast, the performances of the two methods

were more similar when the Brandes function was used, and SCOP-ME outperformed the

double-moment technique for moments zero and one in the Iowa data set with the Andsager

and Beard axis ratio functions. The double-moment technique’s performance changes by axis

ratio function relate to the accuracy of the prediction of DSD moment three from Kdp and

ZDR. As shown in Table 6.2, moment three is recovered most precisely when the Thurai axis

ratio function is used. While differences exist between the results for the different regions, the

inter-region differences in comparative performance of the two techniques were generally

small. We now move to testing the two techniques on measured radar data, in which noise is a

problem that must be dealt with.

Variable RB IQR r 2 Slope

Dm -0.75 1.34 0.02 -0.01
M0 -2.31 12.32 0.05 0.06
M1 -3.71 4.78 0.06 0.16
M2 -4.22 -0.08 0.01 0.04
M3 -4.05 -1.76 0.01 -0.03
M4 -3.03 -0.14 0.02 0.09
M5 -0.02 0.96 0.01 0.04
M6 1.22 0.09 -0.00 -0.11
M7 0.27 7.07 -0.02 -0.03
R -3.35 -0.25 0.02 0.07

Table 6.5 – Average differences between double-moment and SCOP-ME techniques, on Parsivel data, over three
regions and four raindrop axis ratios.

6.6 Reducing the effects of noise

Radar data is noisy at light rain rates, particularly for Kdp and ZDR (e.g. Bringi et al., 2002;

Schneebeli et al., 2014). We propose here a method to deal with this noise for the current

application of DSD retrieval. Regressions on ZH and ξdr are used to determine “expected”

values for these variables, which can be used when the measured values are likely to be noisy.

We found that ZDR can be reasonably predicted from Zh using

ẐDR ∼αZ ZβZ

h , (6.8)
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and Kdp can be predicted from Zh and ξdr using

K̂dp ∼αK ZβK 1

h ξ
βK 2

dr . (6.9)

with parameters αZ , βZ , αK , βK 1 and βK 2. Least-squares fitting in log-log space, using the

training data set described in Section 6.4, was used to find best-fitting parameter values per

raindrop axis ratio function. The resulting values and performance statistics are shown in

Table 6.6.

ZDR performance Kdp performance
Ratio αZ βZ RB [%] IQR [% pts] αK βK 1 βK 2 RB [%] IQR [% pts]

Thurai 0.10 0.27 0 45 0.0004 0.90 -3.78 4 31
Brandes 0.03 0.41 -3 74 0.0001 1.02 -2.50 -1 12
Andsager 0.05 0.35 -2 59 0.0002 0.97 -3.13 -0 15
Beard 0.06 0.35 -2 63 0.0002 1.00 -3.14 -2 12

Table 6.6 – Fitted coefficients and the performance of the fits on disdrometer data with simulated polarimetric
variables, for Equations 6.8 and 6.9. Performance is shown in terms of median relative bias (RB) and the IQR of
relative bias (IQR).

We use threshold values based on those of Bringi et al. (2002) to determine when Kdp and ZDR

may be noisy. To reduce the effects of noise, then, if ZH ≤ 35 dBZ or ZDR≤ 0.2 dB, measured

ZDR is replaced by the the expected value ẐDR and ξdr is replaced by 10(ẐDR/10). Likewise, if

ZH ≤ 35 dBZ or Kdp≤ 0.3 ◦ km−1, Kdp is replaced by K̂dp (calculated with ˆξdr if ξdr was replaced).

This method for treating radar data allows radar data with negative values of Kdp or ZDR to be

used. The data treatment improved DSD-retrieval performance for both the double-moment

and SCOP-ME techniques. For example, when retrieved DSDs were matched to measured MRR

data, the median relative bias was reduced by an average (across variables) of ∼10 percentage

points for SCOP-ME and by ∼18 percentage points for the double-moment technique, while

IQRs were reduced more; for example on the MRR data the IQRs were reduced by ∼92 (95)

percentage points for the SCOP-ME (double-moment) method. When retrieved DSDs were

compared to Parsivel data, the noise in the radar data contributed to errors to such an amount

that for both techniques the proposed method for dealing with Kdp and ZDR reduced both

relative bias and IQR on relative bias on moments of orders three and lower by hundreds of

percentage points. PPI data used in the following section were treated using this technique.

We note that because most values of ZH recorded in the PPIs analysed here were lower than 35

dBZ, the majority of radar records were corrected this way.

6.7 Comparison using radar data

The DSD-retrieval techniques were applied to noise-corrected PPI radar data from the three

locations, so the retrieval techniques were evaluated independently of the noise-correction
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method. We used the elevation angles of the stacked PPIs for HyMeX, 5◦ for Payerne, and 3◦ for

Iowa. Measured radar variables ZH , Kdp and ZDR were recovered for volumes corresponding

to instrument locations. DSD retrieval was applied using these values, and the resulting

DSDs compared to those that were measured by other instruments. Because the axis ratio of

Thurai and Bringi (2005) produced the best results for the double-moment technique on the

Parsivel data, the double-moment technique was used with parameters for the Thurai axis

ratio function. Note that the assumption of axis ratio function affects only parameters of the

double-moment technique, because the radar data used in this section are measured, not

simulated, and the SCOP-ME technique is used as provided in Anagnostou et al. (2013). In the

HyMeX campaign, the lowest available PPI elevation angle (4◦) was used to compare results to

Parsivels, but there was also an MRR at Pradel Grainage which retrieved estimates of the DSD

aloft. MRR-derived DSDs were compared at multiple altitudes using the MXPol stacked PPIs

above the HyMeX instrument network. All comparisons using PPI data involved a difference

in measurement volume – a change-of-support problem that we expect will lead to greater

error spread (see Chapter 4). We first address the comparisons with MRR for HyMeX, then

move to the comparisons with the Parsivel networks in all three regions.

MXPol volume centre altitudes were projected into MRR altitude classes for comparison. The

double-moment DSD-retrieval algorithm was used with the generalised gamma model ĥ

parameters (Equation 5.6) for MRR data and i = 3 and j = 6 found in Chapter 5, of c = 0.57

and µ = 29.6. The reconstructed DSDs were made using classes of drop diameter from 0.6

to 5.8 mm with a class width of 0.1 mm, so that the truncation matched that of the MRR

data. PPI values from eight 100 m altitude classes between about 900 and 2100 m above

sea level, from 496 PPI scans, were compared to MRR estimates of the DSD aloft. Results of

comparisons between MRR- and PPI-derived DSDs are shown for three example altitudes in

Figure 6.6. There was good agreement between the recorded radar reflectivity recorded by

both instruments, with a median relative bias of −2%, an IQR on relative bias of 15 percentage

points, and a value of r 2 of 0.66. Both techniques overestimated DSD moment orders zero to

four and underestimated orders six and seven. Rain rate was recovered with a median relative

bias of 6% (IQR 92 % pts) by the double-moment technique and 21% (IQR 106 % pts) by

SCOP-ME. The double-moment technique showed lower median relative bias than SCOP-ME

on all variables except moments five and six, and smaller IQRs on all variables except Dm .

Correlation coefficients were low for both techniques (the maximum r 2 was 0.32, by SCOP-ME

for Dm), but the double-moment technique had a slightly higher value of r 2 in the majority of

cases. High best-fit slopes (values from 1.6 to 4.6) were observed for moments five, six, and

seven, and show the effect of a few outlier points in these cases, which appeared in results for

both techniques. Performance differences between the two techniques are shown in Table 6.7.

Overall, the double-moment technique for DSD-retrieval out-performed SCOP-ME for the

retrieval of DSD parameters and rain rate measured aloft by the MRR.

DSDs retrieved from polarimetric radar data were also compared to those recorded by ground-

based Parsivels in the three climatic regions we studied. It should be noted that there were,

at times, significant vertical distances between the radar volume and the instruments used
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Variable RB IQR r 2 S

Dm MRR −2 1 0.03 −0.09
HyMeX −3 2 0.03 −0.12
Payerne −2 0 0.00 −0.04
Iowa −5 2 0.06 −0.17

M0 MRR −19 −39 0.00 0.00
HyMeX 13 −13 0.03 0.08
Payerne −3 −5 0.02 −0.02
Iowa −0 −25 0.11 0.18

M1 MRR −20 −35 0.00 0.01
HyMeX 17 −19 0.04 0.10
Payerne −11 −20 0.02 0.02
Iowa −1 −21 0.12 0.11

M2 MRR −22 −19 −0.01 0.01
HyMeX 16 −18 0.03 0.10
Payerne −9 −17 0.02 0.04
Iowa 9 −16 0.12 0.06

M3 MRR −18 −17 −0.01 0.02
HyMeX 12 −13 0.00 0.07
Payerne 5 −15 0.00 0.06
Iowa 11 −10 0.06 0.03

M4 MRR −14 −9 0.00 −0.01
HyMeX 8 −9 0.01 0.04
Payerne 12 −12 −0.01 0.07
Iowa 4 −10 0.02 0.02

M5 MRR 1 −8 −0.03 0.35
HyMeX 5 −6 0.09 0.02
Payerne 7 −10 −0.02 0.06
Iowa 2 −5 0.06 0.02

M6 MRR 5 −3 −0.08 1.12
HyMeX 3 −5 0.11 0.01
Payerne 3 −5 −0.02 0.02
Iowa 2 −5 0.12 0.02

M7 MRR −1 −1 −0.10 1.56
HyMeX 2 −3 0.09 0.01
Payerne −0 −6 −0.01 0.00
Iowa 1 −4 0.13 0.02

R MRR −16 −13 −0.01 0.02
HyMeX 9 −10 0.00 0.05
Payerne 10 −13 −0.01 0.07
Iowa 6 −8 0.01 0.02

Table 6.7 – Differences in performance by variable and region, for DSDs retrieved from PPI data using the double-
moment technique and SCOP-ME, compared to the MRR at Pradel Grainage (MRR) and Parsivels by region (HyMeX,
Payerne, and Iowa). Differences are defined as for Table 6.4.
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Figure 6.5 – Differences in performance between the double-moment technique and SCOP-ME, using radar
variables simulated from Parsivel data, by region and drop axis ratio function (differences in Tables 6.3 and 6.4).
Reds indicate negative differences, where the double-moment technique outperformed SCOP-ME. Variables are
moment order n [mmn m−3], Dm [mm], and R [mm h−1]. Differences are shown for median relative bias (RB [%
pts]), IQR of relative bias (IQR [% pts]), squared correlation coefficient (r 2, difference from one multiplied by 100
for display on the same scale), and scatter plot slope (S, difference from one multiplied by 100).

in these comparisons (see Table 6.1). The DSDs were retrieved in truncated Parsivel drop

diameter classes, using the Parsivel generalised gamma model parameters quoted in Section

6.5. Figure 6.7 shows distributions of DSD-retrieval relative error for each region.

In the majority of the tested cases, the double-moment technique produced smaller ranges of

relative bias than SCOP-ME, for all variables except Dm . Where the double-moment technique

produced better median relative bias, the mean per-case difference was −4 percentage points,

while in cases where SCOP-ME performed better, the mean per-case difference was 8 per-

centage points. Values of r 2 and scatter plot slope were similar between the two techniques,

with the majority of cases showing differences less than 0.05 for both variables. Differences in

performance between the two techniques are shown in Figure 6.8 and Table 6.7.
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Figure 6.6 – Distributions of relative bias on DSD moments orders between zero and seven, comparing DSDs
retrieved using PPI data, and those measured by MRR at Pradel Grainage. The results are classed by altitude for a
selection of three altitudes across the compared range. Symbols as for Figure 6.4.
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Figure 6.7 – Distributions of relative bias on DSD moments orders between zero and seven, comparing DSDs
retrieved using PPI data, and those measured by the Parsivel networks. Symbols as for Figure 6.4.

The performance of the double-moment DSD-retrieval technique is reliant on how accurately

two DSD moments can be extracted from radar data, and in turn on how accurate the radar

data are. Both retrieval techniques appear to be similarly affected by radar inaccuracies such

as bias in ZH , and experiments with different bias corrections showed similar patterns of

results. It is worth noting again that these comparisons were performed using data for which

the noisy values of Kdp and ZDR had been treated using the method proposed in Section

6.6, which significantly improved the performance of both techniques with real radar data.

The proposed DSD-retrieval technique was applied using the normalised DSD fitted to data

in Ardèche, France, to the regions of Payerne in Switzerland and Iowa in the USA, without

significant performance loss. This supports our finding in Chapter 5 that for practical use, the

double-normalised DSD can be considered invariant.
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Figure 6.8 – Differences in performance between the double-moment technique and SCOP-ME using noise-
corrected radar data, for MRR and for Parsivels by region (differences in Table 6.7). Variables and performance
statistics as for Figure 6.5. For display, difference in r 2 and slope are multiplied by 100. Red indicates that the
double-moment technique outperformed SCOP-ME. Grey indicates an r 2 difference greater than 100 on this scale;
these points were affected by scatter plot outliers.

6.8 Conclusions

Given the assumption of an invariant normalised DSD, and an estimate of that function, the

DSD can be predicted using only two of its moments. Two DSD moments are available from

polarimetric radar data. At X-band, radar reflectivity can be used to accurately predict the sixth

moment of the DSD, and moment three can be retrieved relatively accurately using Kdp and

ξdr. We showed that by estimating these two moments from radar data, the DSD for a radar

volume can be predicted using the double-moment technique. Tests on disdrometer data

from three networks in different climatic regions showed that DSD-retrieval using this new

technique produced similar or slightly better performance than the SCOP-ME DSD-retrieval

technique of Kalogiros et al. (2013). The proposed method is also more flexible, because there

is no prescribed functional form for the double-normalised DSD, and even a non-parametric

ĥ(x) could be used. Nor is there a prescribed method of DSD moment extraction, which

means that the moments used could be tailored to the intended purpose.

A new method for treatment of radar data with possibly noisy values of Kdp and ZDR was

proposed. The method is based on predicting the expected values of these variables from radar

reflectivity, and considerably improved the performance of both the DSD-retrieval techniques.

Using noise-corrected radar data, DSDs were predicted from polarimetric variables in PPI

scans measured by X-band radars in each of the three regions. A test of the retrieved DSDs

against MRR data for DSDs aloft in the HyMeX region in France, and comparisons of radar-

retrieved DSDs against disdrometer data from the three regions, showed reasonable agreement

but large error spread for both methods. The double-moment technique predicted DSD

moments measured by ground-based disdrometers with lower error spread than SCOP-ME.
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Compared to DSDs measured aloft by the MRR, the DSDs retrieved by the double-moment

technique outperformed those of SCOP-ME. This study provides a proof-of-concept for DSD-

retrieval using noise-corrected radar data, the double-moment normalisation method of (Lee

et al., 2004), and a generalised gamma model for the normalised DSD. Future work will address

more precise prediction of low-order DSD moments from polarimetric radar data.
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7 Multifractal analysis of snow-
fall recorded using a 2D-video-
disdrometer

This chapter is adapted from:

• T. H. Raupach, A. Gires, I. Tchiguirinskaia, D. Schertzer, and A. Berne. Multifractal

analysis of snowfall recorded using a 2D-video-disdrometer, submitted to Journal of

Hydrometeorology.

This work was completed by T. Raupach under the supervision of A. Gires and A. Berne. I.

Tchiguirinskaia and D. Schertzer provided expert advice on multifractal techniques. Research,

analyses, and writing are by T. Raupach, using Python code for universal multifractals writ-

ten by A. Gires. For data acknowledgements, see Appendix A. This collaboration was made

possible by financial support from the Partenariat Hubert Curien – Germaine de Staël (Projet

32709UK), which allowed for T. Raupach to travel to Paris, and A. Gires to travel to Lausanne,

to collaborate.

Some symbols in common use in the universal multifractal literature also appear in the

radar and precipitation microphysics literature. To avoid introducing confusion by using

these symbols multiple times in this thesis, the following commonly used symbols have been

replaced by different symbols in this chapter:

• The resolution, normally λ, has been replaced with κ.

• A singularity, normally γ, has been replaced with ψ.

• The fractal co-dimension function, normally c, has been replaced with cD .

• A moment order, normally written q , has been written as e.

• The wave number, normally k, has been replaced with w .
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7.1 Introduction

Multifractal analysis is a useful way to study the properties of precipitation fields. It can

provide insights into their intermittency and extremes, and whether they are invariant to scale

or exhibit one or more different scaling regimes in time or space. The framework of Universal

Multifractals (UM) (Schertzer and Lovejoy, 1987a, 1997) has been used to analyse rainfall over

a wide variety of scales (see e.g. reviews by Lovejoy and Schertzer, 1995; Schertzer et al., 2010).

Few studies have examined the multifractal properties of snowfall. In this chapter we report

on multifractal analyses of snowfall recorded using a 2D-video-disdrometer (2DVD, Kruger

and Krajewski, 2002; Schönhuber et al., 2008) situated in the Swiss Alps.

A wide variety of data sources have been used to study the multifractal properties of precipita-

tion. At the large and medium scales, courser than a few kilometres in space or a few minutes

in time, satellite products (Tessier et al., 1993; Lovejoy et al., 2008), climate simulations (Royer

et al., 2008), weather model outputs (Gires et al., 2011), weather radars (Nykanen and Harris,

2003; Verrier et al., 2010; Gires et al., 2011), and rain gauge data (e.g. Fraedrich and Larnder,

1993; Olsson, 1995; Tessier et al., 1996; De Lima and Grasman, 1999; Molnar and Burlando,

2008; De Lima and De Lima, 2009) have been used. At smaller scales, studies have used lidar

(Mandapaka et al., 2009), and disdrometer measurements (De Montera et al., 2009; Gires et al.,

2014, 2016).

Previous multifractal work has mostly focused on liquid precipitation. Molnar and Burlando

(2008) studied gauged precipitation in Switzerland, and found stronger multifractality in

summer precipitation than winter precipitation, which was close to monofractal. They posited

that intra-season variability in scaling parameters could be caused by mixed rain and snow

at some locations, and recommended a study of snow-only scaling parameters. Shook and

Pomeroy (2010) studied time series of daily snowfall on the Canadian prairies, and found weak

multifractality for scales shorter than one month. Spatial distributions of snow accumulations

have been shown to demonstrate fractal behaviour (e.g. Shook and Gray, 1996, 1997; Granger

et al., 2002; Iggy Litaor et al., 2002; Deems et al., 2006). Fabry (1996) used spectral analysis to

study high resolution time series (down to 0.1 s) of precipitation, including snow, captured

using a sonic gauge. They performed spectral analysis and observed scaling in the snowfall

time series with a break at about 20 s, after which little scaling was observed. They attributed

the difference in scaling regimes to mixing-like processes caused by the differing fall speeds of

the hydrometeors.

In this study we used similar methodology to analyses that were previously made on liquid

precipitation by Gires et al. (2015), applied to measurements of solid precipitation. Gires et al.

(2015) used data collected using a 2DVD to analyse raindrop distributions at high resolution

in space and time. During the heaviest portions of their studied rainfall events, they found

scaling behaviour in vertical rainfall structure at ranges from 0.5 to 36 m, and homogeneously

distributed raindrops at smaller scales. In this study we used the same instrument and

performed the same analyses on data recorded in the Swiss Alps in winter, to test whether
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multifractality is evident in snowfall at high spatial and temporal resolutions. This study

is a first application of multifractal analysis to snow data for horizontal accumulations of

individual snowflakes and reconstructed vertical columns of snowflake concentration and

mass, and to the best of our knowledge this is the first time that full universal multifractal

analysis has been used on snowfall-only data at temporal resolutions finer than one day.

The rest of this chapter is organised as follows. A brief review of universal multifractal analysis

is given in Section 7.2. The data used are presented in Section 7.3. In Section 7.4 the methods

used to treat the data are shown. Results are shown in Section 7.5 and conclusions are drawn

in Section 7.6.

7.2 Universal multifractal analysis

In this section we briefly explain multifractal analysis with the aim of showing the meaning

behind the variables we analyse in the following sections. For more detail, the reader is

encouraged to refer to the review of Schertzer and Lovejoy (2011). Let εκ be a field at resolution

κ. This field has a spatial dimension dε. An example of a one-dimensional field is a time

series of rain rate measurements, and an example of a two-dimensional field is the positions

of snowflakes on a plane. The resolution of the field is κ= Lε/lε, where Lε is the outer scale –

the length of the time series, or the size of the whole plane – and lε is the observation scale.

The field contains a process which is assumed to have a mean of one over its outer scale. In

practice, data are normalised by dividing all measured values by the overall ensemble mean.

Let A be the set of points where the process is active. In a fractal process, the number of

non-overlapping dε-dimensional boxes with side length lε required to cover all the process

points in the field, Nκ,A , is related to the resolution via the fractal dimension DF :

Nκ,A ≈ κDF . (7.1)

A sparse set will be covered by fewer boxes, so the fractal dimension is a measure of sparseness

of the process within its outer scale. Given any single one of these boxes, the probability that it

intersects with the process set A is

Pr(εκ) = Nκ,A

Nκ
≈ κDF

κdε
= κ−cF , (7.2)

where Nκ is the number of boxes required to cover the entire field, and cF = dε−DF is called

the fractal co-dimension of the process.
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The sparseness of the process and the fractal dimension will change if the process is thresh-

olded by a value (e.g. Lovejoy et al., 1987). To characterise not just the process occurrence but

also its values, then, a scale-dependent threshold κψ can be used. The probability that a single

box intercepts the thresholded field is then

Pr(εκ ≥ κψ) ≈ κ−cD (ψ), (7.3)

whereψ is a called a singularity and cD (ψ) is called the fractal co-dimension function (Schertzer

and Lovejoy, 1987a). It can be shown (Schertzer and Lovejoy, 1987a) that Equation 7.3 is equiv-

alent to a relationship between the statistical moments of the field and its resolution, such

that

〈εκe〉 ≈ κK (e), (7.4)

where e is a moment order and K (e) is called the moment scaling function. K (e) is related to

cD (ψ) via the Legendre transform, and for any moment e there is an associated singularity

ψ. Knowledge of K (e) thus allows for the field to be characterised at any resolution. In the

UM framework, K (e) can be written as an expression depending on only three parameters

(Schertzer and Lovejoy, 1987a, 1997):

K (e) = C1

α−1
(eα−e)+He. (7.5)

The parameters are as follows:

1. H , the degree of non-conservation. H measures the scale-dependence of the mean (of

the field), such that 〈εκ〉 ≈ κ−H . H = 0 for a conservative field in which 〈εκ〉 = 1 at all

resolutions. H is also the order of fractional integration (if H is negative) or derivation (if

H is positive) required to transform the observed field into a conservative field (Schertzer

and Lovejoy, 1991; Tessier et al., 1993).

2. C1, the mean intermittency. C1 is the fractal co-dimension of the mean field. The mean

field is the field thresholded by the singularity associated with e = 1. This singularity is

also equal to C1 if the field is conservative (Schertzer and Lovejoy, 2011). If C1 = 0 then

the mean field is homogeneous. A larger C1 indicates a sparser mean field. For non-null

fields, 0 ≤C1 ≤ dε.

3. α, the multifractality index. α indicates how quickly the intermittency of the field
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changes as the considered singularity moves away from that associated with e = 1, the

singularity of the mean field. It thus measures where the process sits on a scale between

monofractality (for which α= 0 and the intermittency is the same for all thresholds) and

log-normality (α= 2).

Spectral analysis is used to find H and provides a first estimate of the scaling behaviour of the

field. If the field is multifractal then its power spectra E can be written

E(w) ≈ w−β (7.6)

where w is the wave number and β is called the spectral slope. H is then estimated as (Tessier

et al., 1993)

β= 1+2H −K (2). (7.7)

with H taken as zero in Equation 7.5 (i.e. considering only the conservative part). For a given

value of e, trace moment (TM) analysis (e.g. Schertzer and Lovejoy, 1987b) can be used to find

K (q): on a log-log plot of κ on the x-axis vs. 〈εκe〉 on the y-axis, the slope of the line of best fit

is K (e).

The values of C1 and α for a given field can be found directly using double trace moment

(DTM) analysis, in which the normalised η-power of the field is used (Lavallée et al., 1993).

The normalised η-power is written

ε
(η)
κ = ε

η
κ

〈εηκ〉
. (7.8)

The eth statistical moment of the η-power field also scales with resolution as described by a

moment scaling function, K (e,η), such that

〈εκ(η)e〉 ≈ κK (e,η), (7.9)
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and in the case of the UM framework,

K (e,η) = ηαK (e). (7.10)

DTM analysis uses a log-log plot of η on the x-axis vs. K (e,η) on the y-axis; on the linear part

of the plot, the slope is equal to α and the intercept equal to C1.

TM and DTM analysis rely on the assumption that the field is conservative. When H 6= 0, the

field is considered non-conservative and an additional fractional integration is required before

TM and DTM analyses are used to estimate α and C1 (Schertzer and Lovejoy, 1991; Tessier

et al., 1993; De Montera et al., 2009). In this work we used a fractional integration in which

each one-dimensional realisation was transformed individually (see Schertzer and Lovejoy,

1991, appendix B2). For a one-dimensional field ε, let I = ε−〈ε〉, and let F (I ) be the Fourier

transform of I , i the complex unit, and w the wave number. The fractionally integrated field ε̂

was calculated as

F (ε̃) = i w H F (I ) (7.11)

ε̂ = ε̃−min(ε̃)

〈ε̃−min(ε̃)〉 〈ε〉 . (7.12)

Note that an inverse Fourier transform is used to convert F (ε̃) to ε̃, and that as well as sub-

tracting the mean of ε, the zeroth Fourier component was set to zero to force the mean of

each field to be zero (e.g. Tessier et al., 1993). This fractional transformation corresponds to

integration when H < 0 and derivation when H > 0.

Finite sample sizes mean that there is a maximum singularity ψs for which reliable estimates

of the co-dimension and moment scaling functions are possible (e.g. Hubert et al., 1993). ψs

has an associated maximum moment order es . To calculate the field at a given resolution, the

measured data (at high resolution) are up-scaled through an iterative process, in which at

each step the observation scale lε is doubled to create a lower-resolution field by averaging

adjacent pixels. For this reason, the outer scale of the field must be a power of two.

7.3 Data

The data used in this study were collected using a 2DVD (of low-profile type) located at

Weissfluhjoch Versuchsfeld (9.8096◦ E, 46.8301◦ N) near Davos, Switzerland. The site is in

an alpine environment 2540 m above sea level. The 2DVD was placed on a platform about
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two metres above the ground, between the two fences of a Double Fence Intercomparison

Reference (DFIR, e.g. Goodison et al., 1998) structure. Data used in this study were collected

during the northern winter of 2014/2015. Figure 7.1 shows the installed instrument.

Figure 7.1 – The Double Fence Intercomparison Reference (DFIR) structure (left) and the 2DVD instrument
installed on a platform between the two fences (right) at 2545 m near Davos, Switzerland.

The 2DVD contains two perpendicularly-facing line-scan cameras, each with an opposing

light source, which detect the shadow, from two angles, of any particle that falls through

its collection area. The imaging resolution is finer than 0.2 mm. The nominal collection

area is 10 × 10 cm2. The two camera planes are vertically offset so that particle velocity is

measured directly, through the difference in particle detection time in each camera. The

shape of each particle can be reconstructed using the two views (Schönhuber et al., 2008). The

2DVD can not be considered an absolute reference for snow measurements (Battaglia et al.,

2010), and for liquid precipitation it has been shown to underestimate raindrops under 0.3

mm in equivolume diameter (Tokay et al., 2013). This being said, it is able to provide data on

individual snowflakes at high resolutions, so it remains useful for this study.

There were collocated meteorological instruments at the 2DVD location, and we used data

from these instruments to select three one-hour periods during which there was snowfall

and calm wind conditions. Wind speed was measured outside the DFIR by a Young 05103

Wind Monitor, temperature was measured outside the DFIR by a Thygan VTP 6 instrument,

and precipitation was measured inside the DFIR by a Thies Laser Precipitation Monitor

disdrometer (see Roulet et al., 2014, for information on the meteorological instruments). We

found, using the meteorological data, one-hour periods in which there was solid precipitation

without hail, zero mean wind speed, and a temperature of less than -10◦ C. Of these, the

hour-long time periods with maximum solid precipitation for each of the months of December

2014, January 2015, and February 2015 were analysed. The resulting time periods (henceforth

referred to by event number) are summarised in Table 7.1.

The 2DVD data contained, for each particle, the time stamp, velocity [m s−1], the particle
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E End of hour Int [mm h−1] Temp [◦ C] Num

1 2014-12-28 02:00:00 2.36 -13.2 7000
2 2015-01-27 18:00:00 4.16 -13.5 13131
3 2015-02-24 08:00:00 2.56 -10.7 17378

Table 7.1 – Information on the studied hours of precipitation by event number (E), showing the studied time,
mean solid precipitation intensity measured by Thies laser disdrometer (Int), mean temperature (Temp), and the
number of particles measured by the 2DVD and included in this study from the event (Num).

width and height recorded by each camera [mm], and the pixel number of the centre of the

particle in lines from each camera. These pixel numbers were converted to x and y positions

inside the 2DVD’s measurement window, in millimetres, by multiplying the pixel numbers by

the pixel width which depends on the particle’s distance from the camera. During the three

selected one-hour periods, 49117 particles were recorded. One particle had a velocity of zero

and was excluded. The 2DVD appeared to capture fewer particles on two particular edges of

the measurement area, which we hypothesise was due to edge effects and the positioning of

the instrument. To deal with this we subset the particles to those that appeared within 100

mm of the least-affected side of both camera lines. With this constraint, 3779 particles (7.7%

of the total number) were removed. To ensure we sampled snowfall only, particles were only

kept if their velocities were between 0.2 and 8 m s−1; this constraint removed only one particle.

7.4 Data treatment

In this section, the ways that the 2DVD snow particle data were treated before applying

multifractal analysis are presented. The mass of each solid precipitation particle was estimated.

These masses were then formed into reconstructed ballistic columns (Section 7.4.2) and time

series (Section 7.4.3). Two-dimensional particle accumulation maps (Section 7.4.4) were also

calculated.

7.4.1 Estimation of particle masses

The method of Huang et al. (2015) was used to estimate the mass of each recorded particle

from the 2DVD data. In their method, the mass m [g] of a particle is calculated as

m = πη2
airX

8gρa

(
Ae

Ac

)1/4

. (7.13)

where ηair [kg m−1 s−1] is the air viscosity, g [m s−2] is acceleration due to gravity, Ae [m2] is

the area of pixels covered by the particle in one camera view, and Ac [m2] is the area of the

minimum ellipse or circle that covers the particle in the same camera view. In this equation

the units of the air density ρa are g cm−3. We have added the multiplier of 103 to convert the
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mass to grams. X [–] is the Davies number, calculated as

X =


[( Re

8.5

)(1/2) +1
]2 −1

0.1519


2

, (7.14)

and Re [–] is the Reynold’s number, which depends on the particle velocity V f [m s−1]:

Re = 2×103ρaV f

ηair

(
Ac

π

)1/2

. (7.15)

The viscosity and air density were calculated per-event, based on the altitude and temperature

at the 2DVD site. The average viscosity was 1.662 × 10−5 kg m−1 s−1 and the average air

density was 0.979 kg m−1. Particle areas were calculated using data from one of the 2DVD’s

two cameras (camera A). For a given particle, Ae was calculated as the area of the ellipse with

major and minor axes equal to the major and minor axes of the bounding rectangle of the

particle. Following Huang et al. (2015), if Ae /Ac was greater than one, Ac was replaced by the

area of the smallest circle containing the bounding rectangle. Densities of estimated mass are

shown by event in Figure 7.2.
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Figure 7.2 – Densities of estimated particle mass by event. The x-axis has a log scale.

7.4.2 Reconstruction of vertical columns

Just as in Gires et al. (2015), we reconstructed vertical columns above the 2DVD. Each recon-

structed column had dimensions of 0.1 × 0.1 × 35 m, and we reconstructed one column per

second of the studied precipitation. For each second, the height above the instrument for

every particle was calculated using the particle’s velocity (as measured at the ground), and its

centre point, and those within 35 m of the instrument were kept. Each column was divided

vertically into 512 boxes, so that each box had a height of about 68 mm. This reconstruction of

vertical columns relies on the assumptions that there was no wind, that particles fell vertically

at constant velocity, and that there were no microphysical processes such as aggregation or
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breakup of snowflakes. The grouping of particles into vertical boxes goes some way towards

reducing the effect of ignoring horizontal movement of the snowflakes, but these remain very

coarse assumptions. Our aim in this study is to gain some preliminary insights into the vertical

structure of falling snow, in the absence of measurements of the true vertical snow column, so

we continue in spite of these obvious limitations.
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Figure 7.3 – Examples of two of the reconstructed columns. “Col 1” and “col 4” correspond to respectively the first
and fourth second of the studied hour of precipitation on the 27th January 2015. “A” and “B” correspond to the
two 2DVD cameras. Points show particle locations in the column, point size shows recorded particle (maximum)
width, colour shows velocity.

The quantity analysed was calculated per time and per box as

Xp =
P∑
n

mn
p , (7.16)

where the sum was taken over all P particles in the box. By varying p, different quantities are

recovered; X0 provides the number of particles per box, while X1 equals the total estimated

snow mass per box. Each set of 512 values for one second of precipitation was assumed

to represent one realisation of the solid precipitation process in the vertical column, and

multifractal analysis was performed on these realisations. As a control data set, we also

randomly redistributed the particle centre points uniformly in the vertical, and performed

the same multifractal analysis on these homogeneously distributed fields. Figure 7.4 shows

the difference between the reconstructed columns and the homogeneously distributed ones.

Before analyses were performed, all values were normalised by the mean of all data across all

realisations.
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7.4. Data treatment

Figure 7.4 – Snow mass per box and per column, per event, and showing the difference between reconstructed and
homogeneously distributed particles. In the reconstructed fields, the particles falling towards the 2DVD over time
are visible as oblique patterns.

7.4.3 Time series

Because the 2DVD provides information about individual particles, we could construct time

series at a chosen time resolution. We used the following formula to estimate precipitation

intensity:

R̃p =
P∑
n

(
103 mn

Sn(∆t/3600)

)p

(7.17)

where Sn [mm2] is the sampling area, ∆t [s] is the temporal resolution, P is the total number

of particles over which the sum is taken (i.e. the number of particles that fell through the

collection area during ∆t), and we assume that 1 g represents exactly 1000 mm3 of water.

The sampling area Sn is calculated for each particle’s diameter D [mm] as Sn = (100−Dn)2,

because particles that were not fully inside the sampling area were removed, thus reducing

the effective sampling area (e.g. Schönhuber et al., 2008; Battaglia et al., 2010). p is again a

power, such that when p = 0, the quantity produced is the number of particles observed per

time step, and when p = 1 the intensity is given in mm h−1 so that it is equivalent to rain rate if

the precipitation was liquid.

For each event, we calculated a time series for a temporal resolution of 0.1 s, and cut the

time series so that it contained a power-of-two number of time steps. The subset chosen
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Chapter 7. Multifractal analysis of snowfall recorded using a 2D-video-disdrometer

contained the largest sum of R̃p values. Figure 7.5 shows the time series, with the analysed

portions shown in red. Individual data points were normalised by the overall ensemble mean

before analyses were made. For comparison with the recorded time series, homogeneous time

series were created by randomly sampling without replacement from the measured values to

randomise their order.

Figure 7.5 – Time series at 100 ms, showing estimated solid precipitation liquid water intensity R̃p [(mm h−1)p ]
per event and by power p.

7.4.4 Particle accumulations

Particle accumulation maps were calculated using particle positions and widths in mm from

each camera, projected onto a grid of pixels with a pixel side length of 0.1 mm. The sampling

area was cropped so that it had a power-of-two number of pixels per side; the resulting maps

are at a resolution of 512 × 512 pixels. The area in the centre of the sampling area was used,

to reduce any potential edge effects. Accumulation maps were calculated by number of

accumulated particles per map, for 10, 50, and 100 particles, up to a maximum of 200 maps

that were each separate in time. For each map, each pixel contained the number of snowflakes

that covered that pixel when they landed. Figure 7.6 shows examples of particle maps. The

rectangular shapes of the particles are due to the fact that the particle is assumed to completely

cover the area defined by the widths from each camera. These maps were considered to contain

realisations of a two-dimensional field. The number of maps of snowflake accumulations

calculated for each event are shown in Table 7.2. Just as with the other “cuts” we used, these

data were processed in sets (by number of accumulated particles) and for each set the data

were normalised by the ensemble mean of the set data.
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7.4. Data treatment

Figure 7.6 – Examples of accumulation maps in the studied hour from 2015-01-27, showing the first time steps of
particle accumulation series for 10, 50, and 100 particles.

Event Particles No. maps

1 10 200
1 50 53
1 100 26

2 10 200
2 50 97
2 100 48

3 10 200
3 50 130
3 100 65

Table 7.2 – The number of maps found per number of particles per event.

7.4.5 Multifractal analysis

For each type of data analysed (vertical columns, time series, and accumulation maps), we

performed multifractal analysis for values of p of 0 (particle concentration), 0.5, and 1 (particle

mass). First, spectral analysis and TM analysis were used together to identify scaling regimes;

the scaling regimes were manually identified, with the criteria being to a) observe scaling in

the spectral analysis (the mean of the field, represented by resolution at w = 1, was ignored),

and b) to ensure that the TM correlation coefficient r 2 was maximised. DTM analysis was

performed for e = 1.5. Spectral analysis was used to determine whether any additional frac-

tional integration was required before TM and DTM were used. As a first guess of H for the

fractional integration, we used H̃ = (β−1)/2. If H̃ was less than zero, fractional integration

of order H̃ was used before TM and DTM analyses were applied. Informed by the identified

scaling regimes, DTM analysis was used to estimate values of α, C1,ψs , es , and H . To calculate

α and C1, the slope of the DTM line on a neighbourhood of six points on the log10(η) axis was

used (in linear space, this axis comprises a sequence of 34 evenly-spaced values of η between

-2 and 1). This line was centred on log(η) = 0 if fractional integration was performed, and on

log(η) = 0.15 otherwise.
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7.5 Results

In this section we show results and interpretations of universal multifractal analysis of the

three spatio-temporal “cuts” in turn.

7.5.1 Vertical columns

Exactly the same analyses were performed on both reconstructed vertical columns and on the

columns in which the particles were distributed randomly. This was to ensure that potential

scaling results found on the reconstructed columns were not artefacts of the analysis methods.

The first step in all our multifractal analyses is to look at spectral analyses of the fields, to see

whether scaling exists and if so which ranges of scales display multifractal properties. Example

plots for a single hour of precipitation (event three) are shown in Figure 7.7. Here we compare

the spectral analysis of reconstructed vertical column data, and of vertical columns in which

the particles were randomly distributed in a uniform way.

The spectral analysis of fields with homogeneous particle distributions shows, as expected, a

slope of zero. On the other hand, the reconstructed columns show a section in which scaling is

observed, over scales down to about two metres. All but one of these fields had negative values

of H , and thus on those fields, a single fractional integration of order H̃ was performed before

conducting the TM and DTM analyses. TM and DTM analyses were carried out for resolutions

of 1 to 16, corresponding to observational scales of 35 to 2.19 m. The scaling regimes shown in

the TM analyses often extended more towards the small scale, as can be seen in Figure 7.8,

in which the scaling regime seems to extend to κ= 64 or about 0.5 m. For consistency with

the spectral analysis results, however, we analysed the same scale for all fields. Results for

the analyses of vertical columns are shown in Table 7.3. TM and DTM analysis plots for the

vertical columns in the example hour are shown in Figure 7.8.

Event p β r 2 (spec) r 2 (TM) α C1 ψs es H

1 0.0 0.41 0.80 1.00 1.63 0.02 0.22 10.12 -0.27
1 0.5 0.34 0.75 1.00 1.77 0.02 0.25 8.10 -0.31
1 1.0 0.13 0.66 1.00 1.99 0.03 0.29 6.32 -0.41

2 0.0 1.09 0.99 1.00 2.02 0.07 0.47 3.67 0.12
2 0.5 0.60 0.88 1.00 1.90 0.03 0.28 6.82 -0.17
2 1.0 0.10 0.62 1.00 1.98 0.03 0.30 6.13 -0.42

3 0.0 0.76 0.94 1.00 1.84 0.02 0.25 7.95 -0.10
3 0.5 0.39 0.78 1.00 1.82 0.02 0.23 8.60 -0.28
3 1.0 0.10 0.53 1.00 2.16 0.02 0.31 5.61 -0.43

Table 7.3 – UM results for the reconstructed vertical columns, by event E, for scales from 35 m to 2.19 m (β
calculated for 17.5 m to 2.19 m). r 2 (spec) is squared correlation coefficient for the spectral slope excluding
the largest scale, and r 2 (TM) is the squared correlation coefficient for the TM analysis over the selected scales.
The correlation scores for the TM analyses are only 1 after the use of fractional integration, which introduces
correlation.

The spectral analyses for vertical columns show scaling for particle concentrations (p = 0)
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7.5. Results

Figure 7.7 – Spectral analyses for vertical columns, for the analysed hour of precipitation on the 24th February
2015. Shown are results for p = 0, p = 0.5 and p = 1 for both reconstructed particle positions (“Recon”, first row)
and homogeneously assigned (“Homog”, second row) particle positions.

Figure 7.8 – TM and DTM analyses for vertical columns in the analysed hour of precipitation on the 24th February
2015, for values of p of 0 and 1. In this plot, T Mκ = 〈εκe 〉 for a given moment order e, and η is the power to which
the field is raised then normalised.

165



Chapter 7. Multifractal analysis of snowfall recorded using a 2D-video-disdrometer

Event p β r 2 (spec) r 2 (TM) α C1 ψs es H

1 0.0 -0.00 0.01 0.96 1.62 0.01 0.17 13.45 -0.28
1 0.5 0.01 0.19 0.97 1.87 0.02 0.22 9.02 -0.32
1 1.0 0.01 0.06 1.00 2.09 0.02 0.28 6.37 -0.46

2 0.0 -0.00 0.00 0.85 2.15 0.00 0.13 14.53 0.05
2 0.5 -0.01 0.06 0.94 1.97 0.01 0.20 9.35 -0.19
2 1.0 0.01 0.01 0.99 2.07 0.02 0.27 6.80 -0.45

3 0.0 -0.01 0.11 0.91 1.38 0.01 0.10 30.65 -0.10
3 0.5 -0.02 0.63 0.96 1.87 0.01 0.19 10.56 -0.28
3 1.0 -0.01 0.19 0.99 2.21 0.02 0.27 6.34 -0.43

Table 7.4 – UM results for vertical columns with homogeneous particle positions, fractionally integrated using
values of β in Table 7.3. Results are shown by event E, for scales from 35 m to 2.19 m (β calculated for 17.5 m to
2.19 m). r 2 (spec) and r 2 (TM) defined as for Table 7.3.

for scales down to about two metres. As the power p increases, however, the quality of the

scaling, as measured by β and its associated correlation coefficient, reduces. This is visible in

Figure 7.7, and is likely due to the fact that increased power implies a larger impact of heavier

snowflakes. Heavier flakes are more rare, and therefore do not show scaling over the 35 m

column that we studied. We hypothesise that larger (and thus heavier) snowflakes decorrelate

from atmospheric turbulence at larger scale; but the studied scales were not large enough to

confirm this. We focus on the case where good scaling was observed, i.e p = 0 corresponding

to columns containing the vertical distribution of particle concentrations.

TM and DTM analysis were also performed for the homogeneously distributed particle fields,

after fractional integration using the values of β for the reconstructed fields. These results

are shown in Table 7.4. They show that with homogeneously distributed particle positions,

β was close to zero. Where less or no scaling is observed, for example for event three and

when p = 1, the DTM results (α and C1) are similar between the two sets, indicating that the

reconstructed columns contained no clustering and little scaling, and that in those cases the

results of the DTM analysis were rather an artefact of the fractional integration that was applied.

When scaling is evident, however, there are differences shown between the homogeneous

and reconstructed results, which shows that the obtained values are representative of the

underlying physical process and not an artefact of the analysis technique. For example,

in events two and three with p = 0, there are clear differences in the results between the

homogeneous and reconstructed cases. The differences are particularly clear for the maximum

singularity ψs in these cases.

The TM and DTM analyses show values of α that are outside normal limits (i.e. greater than

2) in cases where no or little scaling was observed, and in Event 2 in which we hypothesize

that estimation error has pushed α just over 2. In all cases, analyses were carried out on

scales ranging from 35 m to ∼2 m, meaning that the results are valid only on this range.

Further investigations with would be needed to extend these results to larger scales. For

the analyzed scales of 35 m to about 2 m and p = 0, the DTM analysis shows a fractal co-

dimension C1 of 0.02 for two events and 0.07 for the other, indicating that the mean field
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shows low intermittency at these scales. The multifractality index α is high, which means that

the field is highly multifractal, and that its intermittency changes rapidly as it is thresholded at

higher singularities.

These results confirm that indeed the reconstructed distributions of particle numbers show

scaling properties in the vertical columns. The UM parameters obtained for scales between 35

m and two metres open the possibility of numerical simulations of vertical snowfall fields on

this range of scales, using UM. However, noise in the data, the small data set, and associated

estimation errors mean that complete simulations would require further investigation to

precisely determine UM parameters on larger scales and for values of p not equal to zero. The

differences between reconstructed and homogeneously distributed particle concentrations

offers evidence that scaling is, at times, present in vertical snowflake concentrations for scales

between about 35 m and two metres, and possibly down to 0.5 m.

7.5.2 Time series

An example of spectral analysis results for the time series is shown in Figure 7.9. The spectral

analyses results were noisy and had low correlation coefficients for spectral slope, indicating

that the quality of the scaling is limited. This is common behaviour when only one field

realisation is available, as was the case for each time series. It was not possible to distinguish

different scaling regimes from these analyses alone. The spectral slope was found for scales

from 27 minutes to 100 ms. The values of β produced by spectral analysis of the time series

data showed a small spectral slope and therefore some scaling, which was confirmed by

comparisons with time series in which the data order was randomised. In these randomised

cases, no scaling was observed. The values of H returned by the spectral analyses were negative,

so a fractional integration of order H̃ was performed on each time series. TM analyses on the

resulting fields further confirm that scaling exists, at least on the larger scaling regimes from 54

minutes to ∼3.4 or ∼1.7 minutes. Examples of TM and DTM plots for the time series analysis

are shown in Figure 7.10. UM analysis results for the time series are shown in Table 7.5.

Just as for the vertical columns, we compared the results to those using exactly the same

fractional integration and processing on randomised fields. In the case of the time series, ψs

was significantly different for every event and value of p, so we consider that the scaling shown

by these results is not introduced by the data processing. While the low amount of data means

that we should not put too much emphasis on individual results, we conclude that scaling

does exist in the time series of snowfall from the tested outer scale of about 54 minutes down

to about two minutes. We note that at the average particle fall velocity (1.1 m s−1), the lower

limit of the scaling regime observed in vertical columns (∼ 2 m) equates to a time series scale

of about 2 s. While in some cases, the TM analysis showed a second scaling regime at higher

resolutions, given the available data and the poor quality of the time series scaling results

on this range of scales, we are not able to state definitively whether scaling exists in the time

series for scaling regimes from about two minutes to two seconds.
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Figure 7.9 – Spectral analyses for the analysed time series of precipitation on the 24th February 2015, for recorded
and homogeneous time series.

Figure 7.10 – TM analyses for the analysed time series of precipitation on the 24th February 2015.

7.5.3 Particle accumulations

Results of spectral analysis for accumulation maps with 100 particles, for measured and

randomly distributed particle fields, are shown as an example in Figure 7.11. The results of

spectral analysis using uniformly randomly distributed particles are very similar to those for

the measured distributions in space, as is shown in Table 7.6. This is evidence that no scaling

is shown in the measured distributions. For all values of p, the values of β were significantly

lower than two, the dimension of the field. We conclude that at the analysed scale of 5.12×5.12

cm2, the snow particles exhibit the same behaviour as if they were distributed homogeneously

– that is, as if their positions were drawn from a uniform distribution. This conclusion agrees

with the analysis of the vertical columns, which showed no scaling for particle concentrations

at scales below ∼0.5-2 m.

The exceedance probabilities of the time required to observe 10, 50, and 100 snowflakes were

calculated (as shown for liquid precipitation in Gires et al., 2015). These results are shown
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Event p β r 2 (spec) r 2 (TM) α C1 ψs es H

1 0.0 0.38 0.08 0.99 1.47 0.04 0.25 9.61 -0.28
1 0.5 0.27 0.04 0.99 1.50 0.04 0.28 8.28 -0.33
1 1.0 0.09 0.01 0.96 1.87 0.02 0.22 8.98 -0.44

2 0.0 0.91 0.33 0.96 3.36 0.01 0.31 4.48 -0.03
2 0.5 0.63 0.19 0.95 1.93 0.01 0.22 8.83 -0.17
2 1.0 0.15 0.01 0.84 1.88 0.01 0.21 9.62 -0.41

3 0.0 0.67 0.21 0.92 1.64 0.03 0.24 9.10 -0.14
3 0.5 0.43 0.10 0.93 1.47 0.03 0.21 11.40 -0.26
3 1.0 0.13 0.01 0.96 1.62 0.02 0.21 10.90 -0.42

Table 7.5 – UM analysis results for recorded snowfall time series, for scales from ∼ 54 min to ∼ 1.7 min (β calculated
for scales from 27 min to 100 ms). r 2 (spec) and r 2 (TM) defined as for Table 7.3.

Figure 7.11 – Spectral analyses for the analysed snow accumulation maps on the 24th February 2015.

in Figure 7.12. There is power-law behaviour (a straight line in the log-log plot) shown for

some temporal scales, for example for accumulations of 100 snow particles between time

periods of about 15 to 100 seconds. At the mean observed snowflake velocity in our three

events (1.1 m s−1), this range of times corresponds to spatial scales of about 16 to 110 m. The

power-law behaviour thus supports the idea that there is some scaling behaviour in snow

particle distributions over scales in the order of metres to tens of metres in this context, as we

showed in Section 7.5.1.

7.6 Conclusions

In this chapter we have shown the results of a universal multifractal analyses of snowfall

at high spatial and temporal resolutions. Methodologies similar to Gires et al. (2015) were

used to analyse snowfall data. Three one-hour-long periods of snowfall in calm conditions

were studied. The data were collected by a 2DVD in the Swiss Alps in the northern winter

of 2014/2015. Multifractal analyses were performed on ballistically reconstructed vertical

columns and high resolution time series of quantities derived from particle concentration and
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E Num P β (meas) r 2 (meas) β (hom) r 2 (hom)

1 10 1.76 0.96 1.81 0.95
1 50 1.78 0.97 1.75 0.97
1 100 1.78 0.97 1.76 0.97

2 10 1.58 0.95 1.46 0.89
2 50 1.75 0.97 1.64 0.95
2 100 1.78 0.97 1.73 0.96

3 10 1.79 0.97 1.65 0.95
3 50 1.75 0.98 1.65 0.95
3 100 1.74 0.97 1.60 0.94

Table 7.6 – Results of spectral analysis on accumulated particle maps, for the number of particles “Num P”, for
measured (meas) and homogeneously (hom) distributed particle maps, per event (E).
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Figure 7.12 – Exceedance probabilities for the time t required to observe n snowflakes, where n is equal to 10, 50,
100 and 500.
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mass, and two-dimensional snowfall accumulation maps within the sampling window of the

2DVD.

There were some difficulties in estimation of the multifractal parameters, due to the small

range of scales it was possible to investigate, and the scaling observed was generally of poor

quality. With the available data, scaling was observed in the vertical columns of particle

concentrations between scales of about 35 m to 2 m (and sometimes down to 0.5 m). At smaller

scales it was found that the vertical fields behaved as if they were uniformly distributed. The

results suggested that scaling was present in the snowfall intensity time series, for scales of

almost one hour to just over one minute. Analysis of two-dimensional snowflake accumulation

maps over the small sampling window of the 2DVD showed no scaling, which agreed with

the other results that showed little or no scaling at the scale of the 2DVD’s sampling area.

Further investigations on larger data sets are needed to extend the results to a wider range of

scales, and to obtain more robust UM parameter estimates that could be used to fully simulate

snowfall fields.
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8 Conclusions and perspectives

8.1 Summary

Rainfall is a vital process on Earth, but its extremes such as droughts and floods put life and

property at risk and have large societal and environmental impacts. Accurate measurements

of rainfall are required in order to better understand its physical processes, and through this

understanding to improve our ability to model and predict rain. Point measurements of rainfall

using rain gauges are generally accurate, but suffer from a lack of spatial representativity.

Weather radars offer the ability to observe rainfall over large regions, but their measurements

are indirect and must be interpreted together with knowledge of the microstructure of the

water particles in the atmosphere. The microstructure of rain, summarised statistically by

the raindrop size distribution (DSD), is highly variable in time and space. This variability

complicates measurement of rain both on the point and areal scale. All bulk variables of

rain can be calculated from the DSD, and although the DSD describes the rainfall process

at the scale of individual drops, it is fundamental to many larger-scale rainfall processes.

Perhaps most importantly for the measurement of rainfall, the DSD describes the interactions

of the electromagnetic waves emitted by radars with the raindrops in the atmosphere. The

work presented in this thesis forms a contribution towards the better understanding and

characterisation of the variability of the DSD across scales.

The techniques developed and results drawn were made using, for the most part, a network of

disdrometers and radars that was located in Ardèche, France. This region experiences heavy

Mediterranean precipitation. While the broad meteorological ingredients and processes that

cause these precipitation events are well understood, forecasting of precise storm locations

and expected rainfall amounts remains difficult. In this thesis, we presented new methods for

the investigation of DSD variability, and applied them to data collected in this Mediterranean

region. The work followed a logical arc, from collection of accurate measurements of the DSD,

to methods for their study and interpretation, to the effects of DSD variability on algorithms

used not only in the Mediterranean but world-wide.

In Chapter 2, a new correction method for DSDs measured using Parsivel disdrometers was
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presented. The method uses the high-resolution 2DVD as a reference instrument, and corrects

measured drop velocities and concentrations so that they match those of the 2DVD on average.

After correction, DSD moments closely matched those measured by the 2DVD, and in the

majority of cases the rain rate measured by a disdrometer was closer to that measured by

a collocated rain gauge. In Chapter 3, a new geostatistical method for spatial interpolation

and stochastic simulation of DSDs was proposed. The technique deals explicitly with the

statistical requirements of kriging, and is able to interpolate or simulate the experimental, non-

parametric DSD, meaning that it is a useful way to investigate the effects of DSD variability on

different functional forms of the DSD. Leave-one-out testing showed that DSD interpolations

were made with little bias.

In Chapter 4 the two proposed techniques were brought together, and corrected DSDs from

the Parsivel network in the Mediterranean were used to produce many stochastically simulated

gridded DSD fields. These fields were used to quantify the sub-grid variability of the DSD in

two typically-sized regions that corresponded to real-world areal rainfall retrieval pixel sizes.

The error introduced by assuming a point measurement of rainfall represents an area was

quantified. The rainfall retrieval methods of the GPM space-borne radar and the COSMO

numerical weather prediction model were tested, and it was shown that while they usually

provide good estimates of rain intensity and radar reflectivity, other DSD properties such as

the characteristic drop diameter were often not representative of the sub-grid DSDs.

Double-moment normalisation of the DSD is used to present the DSD in a compact form,

using the assumption that two DSD moments can describe most DSD variability around

an invariant normalised DSD function. In Chapter 5 the invariance of the double-moment

normalised DSD of Lee et al. (2004) was tested using instrument networks in three regions.

It was the first test of the invariance of this normalised DSD over large horizontal distances

(up to 100 km), in the vertical rainfall profile, and between different climatic regions. It was

shown that for practical purposes the double-moment normalised DSD can be assumed

to be invariant. This assumption was used in Chapter 6, in which a new method for the

retrieval of the DSD from polarimetric radar data was proposed. The new technique uses

the double-moment normalisation of Lee et al. (2004) on two DSD moments retrieved from

polarimetric data. A new method for treating noisy radar data was proposed and shown

to improve DSD-retrieval performance with real radar data. The proposed technique was

tested against a state-of-the-art DSD-retrieval method and was found to perform as well as

or better than the existing technique for retrieving DSDs measured on the ground. The new

technique outperformed the existing technique when its results were compared to DSDs

indirectly measured aloft by an MRR.

In Chapter 7, an application of universal multifractal analysis on high-resolution snowfall data

was shown. The snowfall was measured by a 2DVD in the Swiss Alps, and UM analyses were

made on ballistically reconstructed columns and high-resolution (0.1 s) time series of snowfall

concentration and mass, as well as on high-resolution snowfall accumulation maps. This was

the first application of multifractal analysis to reconstructed vertical columns of snowflake
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concentration and mass, the also to horizontal accumulations of individual snowflakes. It

was the first application of full universal multifractal analysis to snowfall-only time series at

such high temporal resolution. The results showed no scaling at very small scales (under one

minute or two metres), indicating that at sub-metre and sub-minute scales snowfall appears

to be distributed homogeneously. Scaling was observed in the vertical columns between about

35 m and 2 m, and weak scaling was observed in the time series measurements for scales of

almost one hour to just over one minute.

8.2 Contributions

The main contributions of this thesis are as follows:

1. A method for the correction of classed disdrometer measurements of the DSD, in which

a higher-resolution instrument such as the 2DVD is used as a reference, was proposed.

2. We developed a new geostatistical method for spatial interpolation and stochastic

simulation of experimental DSD spectra, in which no functional form of the DSD is

required. The method can be used to produce grids of full non-parametric DSDs, which

are useful for testing DSD variability and algorithms that use different DSD models.

3. The stochastic simulation method was used to investigate the small-scale variability of

the DSD in Mediterranean rainfall, and the change of support problem for rainfall esti-

mation. We showed that assuming that a point represents an area introduces significant

error on rainfall measurements, and quantified this error for typical domains. It was

also shown that algorithms used by GPM and COSMO for areal rainfall retrieval provide

microphysical values that are sometimes not representative of the sub-grid process. The

primary reasons for these errors were identified.

4. The double-moment DSD normalisation technique of Lee et al. (2004) was shown to

produce a normalised DSD that can, for practical use, be considered invariant through

horizontal and vertical displacement. This means that double-moment DSD normalisa-

tion is a powerful tool for the investigation of the three-dimensional variability of the

DSD.

5. We introduced a new DSD-retrieval technique that can estimate the DSD from polari-

metric radar data using double-moment normalisation. The technique performs as well

as or better than a contemporary DSD-retrieval technique, and is flexible because no

specific model of the double-normalised DSD is prescribed.

6. Using universal multifractal analysis on high-resolution snowfall data, scaling properties

were observed in reconstructed vertical columns of snowfall from two to 35 metres,

and on high-resolution time series between one-minute and almost one hour. It was

shown that snowfall at sub-metre or sub-minute scale displays properties implying

homogeneous distribution of snowflakes.
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8.3 Perspectives

The work presented in this thesis contributes to the understanding of small-scale variability

of the DSD, and its effects on the measurement of precipitation. There are many avenues for

future research to build upon what has been presented here, and many research questions

pertinent to this field remain. First, the correction method for DSDs measured by Parsivel

disdrometers, presented in Chapter 2, was trained and tested on disdrometer data from

Ardèche in France and Payerne in Switzerland. It would be useful to test this method on data

from collocated Parsivels and 2DVDs in other climatic regions and more distant locations.

Second, this thesis focused on the variability of the DSD more in the horizontal than in the

vertical. Indeed, in this research field there is a tendency to look at precipitation processes

using “slices” in space, whether they be horizontal or vertical. This is simply because it is

easier to observe rainfall processes this way, for example with scanning radars. Interpolation

and simulation offer ways to characterise the process between measured points. We have

shown in this thesis the utility of simulating the non-parametric DSD without assumption

of a functional form; namely that any fitting errors are avoided, and (more importantly) that

it is then possible to test functional DSD models and the algorithms that use them. While

some work on 3D simulation of DSD model parameters has been published (e.g. Schleiss

and Smith, 2015), more work is required on full 3D interpolation and simulation of the non-

parametric DSD. Such methods could be used to quantify DSD variability in three dimensions,

and thus extend the kind of tests we made on horizontal domains into 3D volumes that more

closely resemble actual radar volumes or 3D NWP model outputs. Such research would be of

particular use for precipitation estimation with satellite-based radars such as GPM.

Third, to simulate or interpolate the DSD in the vertical, the vertical variability of the DSD

would need to be characterised. In our horizontal simulation framework, the DSD is treated

so as to remove most of the non-stationarity in the rainfall process. This is not as simple in the

vertical, in which the process is likely to be highly non-stationary. More research is required

into the vertical evolution of the DSD and ways that it could be modelled or characterised. The

vertical variability of the DSD is heavily influenced by the microphysical processes that occur

as rain falls (e.g. Pruppacher and Klett, 2000; Rosenfeld and Ulbrich, 2003), so any research into

the characterisation of vertical DSD variability should explicitly take microphysical processes

into account.

Fourth, the relative invariance of the double-moment normalised DSD is useful for a range of

applications (see Section 5.7). It would be of research interest to determine the reasons – apart

from instrument error – for the small amount of variability that does exist in the normalised

DSD. It is expected that different microphysical processes would produce changes in the

shape of the single- or double-normalised DSD (Lee et al., 2004), and further work using

rainfall classified by dominant microphysical process is required to find and characterise

links between normalised DSDs and physical processes. Finally, the performance of the DSD-

retrieval method proposed in Chapter 6 is tied directly to how accurately DSD moments can be
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retrieved from radar data. Further work is required to improve the performance of prediction

of low-order DSD moments from polarimetric variables that may be noisy.
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A Data acknowledgements

Data used in this thesis were collected from networks of disdrometers and radars. In addition to

the papers cited when datasets are introduced, we make the following data acknowledgements:

HyMeX LTE Parsivels/2DVD, SOP2012: deployed by J. Grazioli, J. Jaffrain, M. Schleiss, D. Sci-

pion, S. Studzinski, A. Berne, maintained by T. Raupach, M. Schleiss, J. Grazioli, S.

Studzinski (EPFL LTE). Data from HyMeX program sponsored by grants MISTRAL-

S/HyMeX, ANR-2011-BS56-027, FLOODSCALE project, EPFL LTE. 2DVD and Parsivel

data processed by T. Raupach.

HyMeX LTE Parsivels/2DVD/weather station, SOP2013: deployed/maintained by J. Grazi-

oli, T. Raupach, D. Wolfensberger, S. Studzinski, A. Berne (EPFL LTE). Sponsors as for

SOP2012. Data processed by T. Raupach.

HyMeX HPicoNet Parsivels/rain gauges: deployed/maintained by B. Boudevillain, S. Gérard,

G. Molinié (Laboratoire d’étude des Transferts en Hydrologie et Environnement, Greno-

ble University). Data from HyMeX program sponsored by grants MISTRALS/HyMeX,

ANR-2011-BS56-027 FLOODSCALE project and OHMCV (Cevennes-Vivarais Mediter-

ranean Hydrometeorological Observatory). Parsivel data processed by T. Raupach.

HyMeX Parsivel2 at Pradel Grainage: deployed/maintained by Y. Pointin, J. Van Baelen, and

colleages (Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal de

Clermont-Ferrand). Data from HyMeX program sponsored by grants MISTRALS/HyMeX,

ANR-2011-BS56-027 FLOODSCALE project, Laboratoire de Meteorologie Physique, Do-

maine Olivier de Serres, CERMOSEM and OHMCV (Cevennes-Vivarais Mediterranean

Hydrometeorological Observatory). Parsivel data processed by T. Raupach.

HyMeX MXPol: Deployed by J. Grazioli, S. Studzinski, A. Berne (EPFL LTE). Maintained by the

above and T. Raupach. Project sponsors as for SOP2012. Data processed by J. Grazioli.

Payerne: Parsivels deployed by J. Jaffrain (Meteosuisse), maintained by J. Jaffrain, T. Raupach.

2DVD deployed/maintained by T. Raupach. MXPol deployed/maintained by J. Grazioli,

A. Berne, S. Studzinski (EPFL LTE). MXPol data processed by J. Grazioli, Parsivel and

2DVD data processed by T. Raupach.
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HyMeX MRRs: Pradel-Grainage, deployed/maintained by Y. Pointin, J. Van Baelen, and col-

leages (Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal de

Clermont-Ferrand). Montbrun deployed/maintained by J. Grazioli, A. Berne (EPFL

LTE). MRR data processed by J. Grazioli.

Iowa IFloodS: NASA Iowa Flood Studies (IFloodS) Global Precipitation Mission (GPM) ground

validation campaign, University of Iowa’s X-band radar XPOL5 (Mishra et al., 2016),

Parsivel2 disdrometers (Petersen et al., 2014). Radar data processing to subtract bias by

J. Grazioli (EPFL LTE).

Davos Versuchsfeld: 2DVD deployed/maintained by T. Raupach, D. Wolfensberger, L. Habeg-

ger, J. Grazioli, C. Praz (EPFL LTE), and M. Ruesch (WSL Institute for Snow and Avalanche

Research SLF). We thank SLF for hosting the instrument. The meteorological data (tem-

perature, wind speed, and laser disdrometer solid precipitation intensity) were obtained

from the Solid Precipiation Intercomparison Experiment (SPICE) and MeteoSwiss (see

Roulet et al., 2014). Regarding only Chapter 7 in which SPICE data was used: results

presented in this work were obtained as part of the Solid Precipitation InterComparison

Experiment (SPICE), conducted on behalf of the World Meteorological Organization

(WMO) Commission for Instruments and Methods of Observation (CIMO). The analysis

and views described herein are those of the author(s) at this time, and do not necessarily

represent the official outcome of WMO SPICE. Mention of commercial companies or

products is solely for the purposes of information and assessment within the scope of

the present work, and does not constitute an endorsement by the author(s) or WMO.
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