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Preface 

In the following pages I present a selecƟon of the work conducted in the development of my doctoral 

thesis. Following a brief general introducƟon there is a review chapter, serving as an addiƟon to the 

general introducƟon. It provides commentary around the complexity inherent in considering the 

interacƟon between stress physiology, developmental Ɵmepoints and the developmental programming of 

psychopathology-like behavior, in that case with specific reference to pathological aggression. ThereaŌer 

follow three research chapters focused on addressing how individual and consƟtuƟve differences in 

physiological reacƟons to adversity influence the neurobehavioral outcome of that adversity.  
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Summary 

The period comprising late childhood and adolescence is a criƟcal window in brain development. It is a 

Ɵme of both neuroendocrine and neuroanatomical lability, a circumstance which renders individuals 

highly sensiƟve to stress. Indeed, experience of adversity early in life increases vulnerability to 

psychopathology, though not all individuals exposed to such stress go on to develop psychopathological 

alteraƟons. The mechanisms via which vulnerability to psychopathology is differenƟally translated 

between individuals are not yet well understood. 

Previous work from our laboratory has shown that exposing Wistar rats to an intermiƩent, unpredictable 

schedule of psychogenic stressors during the period equivalent to late childhood and puberty increases 

the expression of several psychopathology-like behaviors, when assessed at adulthood. In common with 

findings in humans, results have hinted that not all individuals exposed to this stress protocol develop 

along the same trajectory, parƟcularly with regard to aggression. AddiƟonal findings have implicated the 

release and acƟons of glucocorƟcoids, the end product of hypothalamic-pituitary-adrenal (HPA) axis 

acƟvaƟon, as a factor mediaƟng some of the neurobehavioral alteraƟons induced by peripuberty stress. 

This thesis has therefore focused on assessing whether individual differences in glucocorƟcoid 

responsiveness to stress may influence individual differences in neurobehavioral outcome following 

stress.  

In a first study, we exposed outbred, male Wistar rats to peripuberty stress and measured several socio-

affecƟve behaviors at adulthood, as well as examining brain structure by means of ex vivo magneƟc 

resonance and diffusion tensor imaging. By applying a profiling approach we were able to discern two 

disƟnct neurodevelopmental trajectories arising from peripubertal stress. One trajectory lead to the 

development of pathological aggression and reducƟons in mean diffusivity in infralimbic cortex, 

amygdala, hippocampus and subiculum. The other trajectory was associated with increased anxiety-like 

behavior and reduced social moƟvaƟon but no evidence of altered brain structure was observed in the 

regions examined. In addiƟon, we assessed glucocorƟcoid responsiveness to peripuberty stress at various 

Ɵmepoints across the protocol and found the propensity to show impaired habituaƟon to be associated 

with development of a more aggressive profile later in life.  

Human studies have found impairment in habituaƟon of glucocorƟcoid responses to the same stressor, 

shown by approximately 35% of individuals, to be both heritable and associated with increased self-report 

of psychopathology-related indices. Taking this and the findings outlined above into consideraƟon, we 

next asked whether consƟtuƟve differences in the ability to habituate to repeated stress might be 

implicated in vulnerability to develop psychopathology. To answer this quesƟon, we developed a new 

animal model. Using a selecƟve breeding approach in outbred Wistar rats, we generated lines enriched 

for stress habituaƟon and lack of stress habituaƟon, as indexed by glucocorƟcoid responsiveness on the 

last day of a three day stress protocol. Once the lines were successfully established, we assessed the socio
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-affecƟve behavior and neuroendocrine phenotype of rats drawn from the lines, but not exposed to 

stress. We found that rats with consƟtuƟve impairment in stress habituaƟon displayed enhanced 

aggression, anxiety-like, and depression-like behaviors, a paƩern that was stable across generaƟons. We 

addiƟonally observed differenƟal expression of genes implicated in HPA axis acƟvaƟon within both central 

and peripheral nodes of the HPA axis. This was found in the context of a disƟnct neuroendocrine 

phenotype in which rats with consƟtuƟvely impaired HPA axis habituaƟon showed enhanced 

corƟcosterone reacƟvity to acute stress relaƟve to the other line, yet no evidence for general HPA axis 

hyperacƟvity.   

In a final experiment, we studied the interacƟon of two risk factors, early life stress and HPA axis 

dysregulaƟon, in the subsequent development of psychopathology-like behavioral alteraƟons. The rat 

lines, selected either for low or high glucocorƟcoid responsiveness to repeated stress (i.e. strong or 

impaired corƟcosterone habituaƟon, respecƟvely) were exposed to peripuberty stress. Socio-affecƟve 

behaviors and basal acƟvaƟon of several stress-sensiƟve brain regions were assessed at adulthood. 

Results indicated that both factors enhanced levels of anxiety-like and aggressive behavior, as well as 

increasing basal acƟvity in several subregions of the prefrontal cortex in a manner that was associated 

with increased behavioral inhibiƟon. Peripuberty stress had a differenƟal impact on aggression in the two 

rat lines, enhancing aggression in the stress-habituaƟng low-line rats but not in the already high-

aggressive, high-line rats.  

In summary, we have established the incidence of individual differences in neurobehavioral trajectory 

following peripuberty stress, and found these differences to be associated with differenƟal paƩerns of 

glucocorƟcoid responsiveness to the stress. ConsƟtuƟvely impaired stress habituaƟon increased 

psychopathology-like behavior in its own right, a trajectory which did not become more pronounced with 

exposure to peripuberty stress. In contrast, consƟtuƟvely strong habituaƟon enhanced sensiƟvity to the 

programming effects of peripuberty stress.  

Keywords: Stress, early life stress, peripuberty, adolescence, HPA axis, corƟcosterone, stress habituaƟon, 

adaptaƟon, allostaƟc load, individual differences, aggression, anxiety, prefrontal cortex, hippocampus, 

amygdala, MRI, DTI 
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Résumé 

La fin de l’enfance et l’adolescence sont des périodes criƟques dans le développement du cerveau. C’est 

une période de labilité à la fois neuroendocrine et neuroanatomique, une situaƟon qui rend chaque 

individu hautement sensible au stress. En effet, il a été montré que de vivre des adversités tôt dans la vie 

pouvait être un risque important de développer des maladies psychologiques, bien que certains individus 

exposés à de tels stress ne développeraient pas de troubles mentaux. Les mécanismes de ceƩe 

vulnérabilité à l’adversité pouvant différer entre chaque individu ne sont pas encore bien compris. 

D’anciens travaux de notre laboratoire ont montré qu’exposer des rats Wistar à des épisodes de stress 

sporadiques et imprédicƟbles, pendant la période équivalent à la fin de l’enfance et la puberté (appelé 

par la suite peripuberté), mènent à l’état adulte à des altéraƟons du comportement lié à l’humeur. 

Comme chez l’homme, les résultats montrent que tous les individus ne réagissent pas de la même façon, 

surtout pour les comportements agressifs. Des résultats complémentaires ont impliqué la libéraƟon et 

l’acƟon des glucocorƟcoïdes, le produit final de l’acƟvaƟon de l’axe hypothalamo-hypophyso-surrénalien 

(HHS), comme facteurs clés médiant ces altéraƟons du comportement induites par le stress peripuberté. 

CeƩe thèse se concentre donc sur l’évaluaƟon des différences individuelles dans la réacƟvité des 

glucocorƟcoïdes au stress, pouvant expliquer les différences de comportement suivant ce stress. 

Dans une première étude, nous avons exposé des rats mâles Wistar au stress peripuberté et mesuré 

plusieurs comportements sociaux affecƟfs à l’âge adulte. Nous avons aussi évalué la structure du cerveau 

par des techniques ex vivo de résonance magnéƟque et d’imagerie de tenseurs de diffusion. En 

appliquant une approche de profilage, nous avons été capable de discerner deux trajectoires 

neurodéveloppementales disƟnctes suite à ce stress. L’une mène au développement de l’agressivité 

pathologique et à des réducƟons de la diffusivité moyenne dans le cortex infralimbique, l’amygdale, 

l’hippocampe et le subiculum. L’autre est associé à une augmentaƟon des comportements anxieux et à 

une réducƟon de la moƟvaƟon sociale, mais aucune évidence d’altéraƟons du cerveau n’a été trouvé 

dans les régions étudiées. De plus, nous avons évalué la réacƟvité des glucocorƟcoïdes au stress 

peripuberté à différents points pendant le protocole et avons montré une propension à une habituaƟon 

altérée associée au développement du profil plus agressif plus tard dans la vie. 

Des études chez l’homme ont montré que ces troubles de l’habituaƟon de la réponse aux 

glucocorƟcoïdes lié au stress, qui touchent environ 35 % de la populaƟon, sont héréditaires et associés à 

une augmentaƟon du risque de développer des troubles psychologiques. Prenant en considéraƟon ceci 

et les découvertes présentées ci-dessus, nous nous sommes ensuite demandés si les différences 

consƟtuƟves dans la capacité à s’habituer au stress répété pouvaient être impliquées causalement dans 

la vulnérabilité au développement des troubles psychologiques. Pour répondre à ceƩe quesƟon, nous 

avons développé un nouveau modèle animal. En uƟlisant un élevage sélecƟf de rats Wistar, nous avons 

généré des lignées avec une plus grande ou une absence d’habituaƟon au stress, comme indexé par la 
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sécréƟon des glucocorƟcoïdes dans le dernier jour d’un protocole de 3 jours de stress. Une fois le bon 

établissement de ces lignées, nous avons examiné les comportements sociaux-affecƟfs et le phénotype 

neuroendocrinien des rats issus de ces lignées, mais non exposés au stress. Nous avons trouvé que les 

rats présentant un défaut consƟtuƟf dans l’habituaƟon au stress ont une augmentaƟon du comportement 

agressif, ainsi que des comportements de type anxieux et dépressifs, et ces traits se stabilisent le long des 

généraƟons. Nous avons aussi observé une expression différenƟelle des gènes impliqués dans l’acƟvaƟon 

de l’axe HHS, aussi bien centraux que périphériques. Ces différences de phénotype neuroendocrinien ont 

montré que les rats avec des différences d’habituaƟon de l’axe HHS ont aussi une plus grande réacƟvité 

de la corƟcostérone suite à un stress aigu comparé aux autre lignées, mais sans une hyperacƟvité 

générale de l’axe HHS. 

Dans une dernière expérience, nous avons étudié l’interacƟon de deux facteurs de risque : le stress 

pendant l’enfance et la dérégulaƟon de l’axe HHS, et leur implicaƟon dans le développement de troubles 

mentaux. Des lignées de rats, présentant une réacƟvité basse ou haute aux stress répétés (i.e. forte ou 

absence d’habituaƟon de la corƟcostérone, respecƟvement), ont été exposées au stress peripuberté. Les 

comportements sociaux-affecƟfs et l’acƟvaƟon basale de plusieurs régions du cerveau sensibles au stress 

ont été évalués à l’état adulte. Les résultats ont montré que ces deux facteurs augmentent les 

comportements agressifs et anxieux, ainsi que l’acƟvaƟon basale de plusieurs sous-régions du cortex 

préfrontal, dans le sens d’une augmentaƟon de l’inhibiƟon comportemental. Le stress peripuberté a un 

effet différent sur l’agressivité chez les deux lignées, en augmentant l’agressivité chez les rats avec une 

faible habituaƟon (« low line ») mais sans modifié l’agressivité déjà forte des rats avec une haute 

habituaƟon (« high line »). 

En résumé, nous avons établi l’effet des différences individuelles dans les réponses 

neurocomportementales suite au stress pendant la puberté, et avons trouvé que ces différences sont 

associées à différents moƟfs de réacƟvité des glucocorƟcoïdes au stress. Le trouble consƟtuƟf de 

l’habituaƟon à la réacƟvité des glucocorƟcoïdes suite aux stress répétés augmente les comportements 

psychopathologiques. 

Mots clés : stress, stress pendant l’enfance, peripuberté, adolescence, axe HHS, corƟcostérone, 

habituaƟon au stress, adaptaƟon, charge allostaƟque, différences individuelles, agression, anxiété, cortex 

préfrontal, hippocampe, amygdale, IRM, ITD. 
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IntroducƟon 

The concept of stress 

Selye (1936) first described a non-specific, three-stage, organism wide response observed following the 

exposure of rats to diverse noxious sƟmuli.  He referred to the first stage, occurring within 48 hours of any 

such sƟmulus, as the “general alarm reacƟon of the organism”. The reacƟon in its enƟrety, from alarm, to 

resistance, to exhausƟon following longer-term exposures, was termed “general adaptaƟon syndrome”. 

Later he used the term “stress response” to describe the alarm reacƟon, referring to the “non-specific 

neuroendocrine response of the body” (Selye, 1950). 

In recent years, definiƟons of what may consƟtute a stressor (i.e. a sƟmulus causing a stress response) 

have been aƩempted by many, but, owing to the breadth of both the syndrome itself and of the disciplines 

of those studying it, no single, unifying definiƟon exists. However, a broad and generally accepted 

characterizaƟon within the field of neuroscience is that stress equals “an actual or anƟcipated disrupƟon of 

homeostasis or an anƟcipated threat to well-being” (Ulrich-Lai & Herman, 2009).  

Allostasis and mechanisms of allostaƟc load 

In addiƟon to outlining ‘alarm’ and ‘resistance’ phases of the stress response, Selye also described, in 

condiƟons of unrelenƟng exposure to a stressor, a state he called ‘exhausƟon’ whereby many of the 

negaƟve effects of the iniƟal alarm phase reasserted themselves. The appearance of this exhausƟon-like 

state was suggested to show that the adaptability of organisms to changes in their surroundings was finite. 

Moreover, it appeared that the magnitude of individual adaptability appeared to depend largely upon 

geneƟc factors (Selye, 1950). More recently, this has been conceptualized in different terms (McEwen & 

Stellar, 1993). The response to stress is thought to help restore homeostasis and mediate adaptaƟon 

following cessaƟon of a stressor, a process that has been termed allostasis. Such responses, however, have 

a physiological cost. Repeated, prolonged or inadequate stress responses may lead to damage, termed 

allostaƟc load. Much like Selye’s ‘exhausƟon’, over Ɵme allostaƟc load may come to have irrevocable 

effects, being beyond the capacity of the individual to cope, a state called allostaƟc overload. 

AccumulaƟon of allostaƟc load is thought to form the pathological basis of many stress-related disorders 

(McEwen, 2007). Figure 1 illustrates ways in which allostaƟc load may be accumulated via dysregulaƟon of 

‘normal’ stress responses. It is unlikely that these mechanisms act within isolaƟon within the lifeƟme of an 

individual. Conceivably, a period of stress may program the responsiveness of the individual to other 

stressors. 
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Figure 1 The top panel illustrates a ‘normal’ stress response. The panels below represent the four types 

of allostaƟc load - middle leŌ: repeated “hits” from mulƟple stressors; middle right: impaired adaptaƟon; 

boƩom leŌ: prolonged response which leads to enhanced exposure to stress mediators; boƩom right: 

insufficient corƟsol response which fails to buffer the acƟvity of other mediators (i.e. increased levels of 

cytokines). The first three types of allostaƟc load may all give rise to excessive exposure to the catabolic 

effects of glucocorƟcoids. From McEwen (1998) 

The neurobiology of stress 

Upon percepƟon of a stressor, physiological systems are acƟvated which allow an organism to react and 

adapt to the presence of the stressor. This change is orchestrated via complex interacƟon across several 

parts of the central nervous system (Joëls & Baram, 2009). Many factors may influence the nature of the 

stress response; including the type of stress and its duraƟon, prior experience, as well as the individual’s 

geneƟc background (Fig. 2A). The effects of stress on the central nervous system are mediated by a range 

of substances, including neuromodulators, steroid hormones and pepƟdes. The diversity in these 

mediators allows for similar, necessary, diversity in responses (Joëls & Baram, 2009).  
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The autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axes are the principal 

systems whose acƟvaƟon allows for maintenance and reinstatement of homeostasis during, and aŌer, 

exposure to a stressor (Fig. 2B). PercepƟon of a stressor results in acƟvaƟon of sympatheƟc neurons of the 

ANS, which project to the internal organs and the adrenal glands. This acƟvaƟon rapidly increases 

circulaƟng levels of adrenaline and noradrenaline, leading to increased heart rate and contracƟon force, 

vasoconstricƟon, and energy mobilizaƟon, together enabling the classic 'fight or flight' type of stress 

response. These effects are buffered in turn by acƟvaƟon of the parasympatheƟc branch of the ANS, 

whose effects are, in general, opposite to sympatheƟc acƟvaƟon. Exposure to a stressor addiƟonally 

acƟvates the HPA axis, though its mediators mobilize within a somewhat less rapid Ɵmeframe. This 

response is iniƟated by the release of corƟcotropin releasing hormone (CRH) and arginine vasopressin 

(AVP) from the paraventricular nucleus of the hypothalamus (PVN). These pepƟdes synergize to sƟmulate 

the secreƟon of adrenocorƟcotrophic hormone (ACTH) from the pituitary which, in turn, triggers the 

producƟon and release of glucocorƟcoids (primarily corƟsol in humans; corƟcosterone in most rodent 

species) from the adrenal glands into the circulaƟon (Ulrich-Lai & Herman, 2009). GlucocorƟcoids exert 

many effects, including promoƟng the mobilizaƟon of stored energy, suppression of the immune system 

 

Figure 2 Many factors may influence the stress response, including the duraƟon and type of stress, as well as 

the individual’s geneƟc background (A: from Joëls & Baram, 2009). The effects of stress on the central nervous 

system are mediated by a range of substances, including neuromodulators, steroid hormones and pepƟdes. The 

diversity in these mediators in part allows for the diversity in responses to stress. The sympatheƟc branch of the 

autonomic nervous system (ANS; B: leŌ-side) and hypothalamic-pituitary-adrenal (HPA; B: right-side) axes are the 

principle systems involved in reacƟng to stress, as well as maintaining or reinstaƟng homeostasis during and aŌer 

stress. (B: from Ulrich-Lai & Herman, 2009). 

A B 
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and potenƟaƟon of sympatheƟcally mediated effects via their acƟons at mineralocorƟcoid (MR) and 

glucocorƟcoid (GR) receptors (de Kloet, 2014; de Kloet et al., 2008; Joëls et al., 2013). AcƟvaƟon of the 

HPA axis and ANS thus have largely complementary acƟons throughout the body.  

In the brain, glucocorƟcoids have many addiƟonal effects, acƟng as modulators of brain structure and 

funcƟon via genomic and non-genomic acƟons at both MRs and GRs (de Kloet et al., 2008; Groeneweg et 

al., 2011; Sandi, 2004). AcƟvaƟon of MR and GR in diverse brain regions, including the prefrontal cortex, 

hippocampus, and amygdala, influences acƟvity within those regions, thereby influencing the conƟnued 

acƟvity of the HPA axis (see Fig. 3 for indicaƟon of receptor distribuƟon; Shirazi et al., 2015). The 

hippocampus and the prelimbic part of the prefrontal cortex have been implicated in negaƟve feedback 

regulaƟon of the HPA axis, whereas the amygdala and the infralimbic part of the prefrontal cortex are 

thought to have a sƟmulatory role on the HPA axis (Ulrich-Lai & Herman, 2009). In the PVN, as well as in 

the pituitary gland, GR acƟvaƟon acts to inhibit conƟnuaƟon of the stress response by inhibiƟng 

expression of CRH and ACTH, respecƟvely. GR acƟvaƟon thus regulates acƟvity of the HPA axis, and its 

readiness to respond to new challenges. This negaƟve feedback has been found to act via both fast and 

slow mechanisms (Tasker & Herman, 2011). 

Figure 3 β1-adrenoceptors for noradrenaline (b1Rs), CRH receptor 1 (CRHR1), CRHR2 and the mineralo-

corƟcoid and glucocorƟcoid receptors (MRs and GRs, respecƟvely) cluster in the brain. These clusters can be 

found in diverse regions including: the prefrontal cortex, the amygdala, the hippocampus, and the paraventric-

ular nucleus of the hypothalamus (PVN), all regions that have been found to be highly sensiƟve to various 

effects of stress. AbbreviaƟons: BLA, basolateral amygdala; BnST, bed nucleus of the stria terminalis; CeA, cen-

tral amygdala; MA, medial amygdala; NTS, nucleus tractus solitarii (from Joëls & Baram, 2009) 

In accordance with the role of GR acƟvaƟon as a primary mediator of negaƟve feedback inhibiƟon of the 

HPA axis, GR expression appears to be programmed according to circumstances (de Kloet, et al., 2005). 

AddiƟonal factors may act to modulate the sensiƟvity of GR including: posƩranslaƟonal modificaƟon 

(Nicolaides et al., 2010); interacƟons with various co-chaperones in the cytoplasm (Hartmann et al., 2012; 

Touma et al., 2011); and interacƟons with co-regulator proteins once bound to DNA (de Kloet et al., 2009; 

Zalachoras et al., 2016). Factors impacƟng GR sensiƟvity may have a significant impact on regulaƟon of 

HPA axis acƟvity. One such example can be found in GR co-chaperone, FK506 binding protein 5 (FKBP5; 

Fkbp5) which, when associated with GR, reduces the affinity of the receptor for its ligand (Wochnik et al., 
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2005). This has the effect of decreasing nuclear translocaƟon of GR, thereby impacƟng the ability of 

glucocorƟcoid signal to induce transcripƟonal regulaƟon (Binder, 2009). When GR does translocate, it 

leads to an upregulaƟon of FKBP5, thereby leading to further enhancement of GR resistance (Vermeer et 

al., 2003). In humans, polymorphisms in the gene encoding FKBP5 have been associated with greater 

inducƟon of FKBP5 mRNA following GR acƟvaƟon (Klengel et al., 2013), having the funcƟonal effect of 

prolonging stress responses (Ising et al., 2008; Touma et al., 2011). Crucially, polymorphisms within FKBP5 

have been associated with increased risk for stress-related psychiatric disorders, such as depression, 

PTSD, and pathological aggression, when occurring in interacƟon with early life adversity (Appel et al., 

2011; Bevilacqua et al., 2012; Binder et al., 2008; Bryushkova et al., 2016; Xie et al., 2010). 

Early life stress and programming of the HPA axis 

The responsivity of the HPA axis changes throughout the life span, according to the developmental stage 

of the individual (Romeo, 2016). Importantly, evidence indicates that HPA axis responsiveness later in life 

can be programmed by early life experiences (MaƩhews, 2002; Tarullo & Gunnar, 2006). The experience 

of many types of adversity early in life can alter the development of the HPA axis, and appears to 

predispose individuals toward the development of psychopathology (Gunnar, 2015; TrickeƩ et al., 2010). 

Adults maltreated as children exhibit alteraƟons both in circadian HPA axis rhythmicity, as well as stressor

-induced responses, which can vary depending on several factors (Heim & Nemeroff, 2001: Tarullo & 

Gunnar, 2006). Early life maltreatment can influence adult HPA axis funcƟon in both direcƟons, such that 

response to a stressor may be hypoacƟve in one individual and hyperacƟve in another. This variability has 

been associated with the type of maltreatment experienced, the Ɵming of the maltreatment, as well as by 

current psychiatric diagnosis (Tarullo & Gunnar, 2006; Gunnar, 2015). A similar role for early life 

experience in HPA axis programming has been reported across animal models (Aisa et al., 2008; Brunton 

& Russell, 2010; Sanchez, 2006; Weaver et al., 2004), thereby indicaƟng the usefulness of such models in 

dissecƟon of the interacƟon.  

Early life stress and development of psychopathology 

A large body of literature implicates experience of early adversity as represenƟng a vulnerability toward 

the development of psychiatric disorders later in life, including: mood disorders, anxiety disorders, and 

(anƟ)social disorders (Agid et al., 1999; De Bellis & Thomas, 2003; Essex et al., 2011; Famularo et al., 

1992; Green et al., 2010; Heim & Nemeroff, 2001; Pechtel & Pizzagalli, 2011; Viding & McCrory, 2012; 

Weder et al., 2009). Childhood adversity is esƟmated to account for at least 30% of psychiatric disorders, 

which rises to 45% if disorders with childhood onset are also taken into consideraƟon (Green et al., 2010). 

Adversity can take many forms, including: poverty, a lack of stability in parenƟng (e.g. neglect, parental 

substance abuse or mental illness), life-changing events (e.g. a serious accident/illness, family breakdown, 

death of a parent), as well as incidences of explicit abuse, which in itself can take several forms. 

AdversiƟes may be inter-related, and the likelihood of one or more forms of adversity occurring in 
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conjuncƟon is high. Importantly, early adversity does not only impact mental wellbeing but also the 

physical health, with individuals exposed to mulƟple adversiƟes having considerably lower life expectancy 

than unexposed individuals (Brown et al., 2009).  

Childhood and adolescence as a criƟcal period in brain development 

Throughout development there are windows of plasƟcity in the brain, during which brain structure and 

funcƟon are sensiƟve to the programming effects of the environment  (Andersen & Teicher, 2008; Spear, 

2000). Late childhood and adolescence represents such a window. It is a period characterized by 

maturaƟonal changes in brain regions, such as, prefrontal cortex, hippocampus, and amygdala, that are 

jointly implicated in the modulaƟon of HPA axis funcƟon, and in socio-affecƟve behaviors (Andersen & 

Teicher, 2008; Casey et al., 2008; Giedd, 2004; Gogtay et al., 2004; Paus et al., 2008; Spear, 2000). The 

plasƟc changes ongoing during this window include increased myelinaƟon, synapƟc overproducƟon, and 

synapƟc pruning (Liston & Gan, 2011; Paus et al., 2008; Spear, 2000), all of which are sensiƟve to 

disrupƟon by stress hormones (CheƩy et al., 2014; Liston & Gan, 2011; PaƩwell et al., 2016). Moreover, 

the period around puberty is marked by a profound upward shiŌ in the responsiveness of the HPA axis 

(Romeo, 2003).  Taken together, this combinaƟon of factors makes peripuberty a Ɵme parƟcularly 

sensiƟve to the programming effects of stress on brain structure and funcƟon, and therefore on behavior.   

Effects of child and adolescent stress on brain structure 

Studies specifically measuring the impact of adversity in childhood and adolescence on brain structure are 

relaƟvely few but support the view that the course of brain development can be altered by stress during 

this Ɵme. MagneƟc resonance imaging studies have reported reduced regional volumes of orbitofrontal 

and medial prefrontal corƟcal regions following early adversity (Baker et al., 2013; Cohen et al., 2006; 

Holz et al., 2015). In contrast, enlargement of amygdala has been found following stress late in childhood 

(Pechtel et al., 2014). InteresƟngly, the relaƟve magnitude of alteraƟons was found to be associated with 

the reported severity of childhood stress (Baker et al., 2013; Pechtel et al., 2014). 

Regional differences in brain volume found in magneƟc resonance studies are thought to reflect hypo- 

and hypertrophy of neuronal processes in the affected region. ExaminaƟon of neuronal morphology in 

rats aŌer exposure to chronic stress around puberty reported findings that complement findings in 

humans. RelaƟve to a non-stressed control group, hypotrophy of neuronal processes in hippocampus and 

prefrontal cortex (Eiland et al., 2012; Henckens et al., 2015; Isgor et al., 2004), and hypertrophy of the 

amygdala have been reported following stress (Eiland et al., 2012; Henckens et al., 2015). 

An animal model of early life stress induced psychopathology: Overview of findings observed 

using the peripuberty stress model 

As outlined above, in humans the Ɵme around puberty has been recognized as a period where individuals 
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may be parƟcularly vulnerable to the effects of stress. Despite this, relaƟve to other criƟcal windows in 

development, basic research into the effects of stress during puberty and adolescence is limited, and 

animal models few. This has meant that understanding of the mechanisms underlying different 

developmental trajectories following stress during this period has remained relaƟvely poor. Seeking to 

expand the variety and validity of animal models available to address this key area of research, this 

laboratory developed a peripuberty stress model (Toledo-Rodriguez & Sandi, 2011). The stress protocol 

involves exposing rats to unpredictable, psychogenic stress on seven intermiƩent days between postnatal 

(p) day 28 to p42. In rats this two-week period comprises late childhood and early adolescence, and 

culminates with puberty. The stressors used in this protocol are fear-inducing, and include exposure to an 

elevated plaƞorm and, separately, exposure to predator odor, both of which are delivered under bright 

lighƟng condiƟons. For the specific details of the protocol please refer to chapter 2. In the following 

paragraphs we outline the principal behavioral and neurobiological findings obtained from adult male rats 

exposed to peripuberty stress earlier in life. 

That the protocol is an effecƟve stressor has been indicated by three important findings. Firstly, 

assessment of the magnitude of corƟcosterone released on the first and final days of the protocol 

revealed unequivocal increases in plasma corƟcosterone concentraƟon in rats exposed to the stress 

(Marquez et al., 2013). Moreover, peripuberty stress was found to result in reduced weight gain in 

exposed rats (Tzanoulinou et al., 2014a), as well as in a delay of puberty onset (Marquez et al., 2013). At 

the behavioral level, peripuberty stress has been found to result in long-term alteraƟons in social, 

cogniƟve, and affecƟve behaviors when measured in adult male rats, and these findings are outlined in 

Table 1.   

Table 1 Overview of the main behavioral alteraƟons observed following exposure 

to peripuberty stress in male rats.  
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As well as giving rise to decreased social moƟvaƟon (Márquez et al., 2013; Poirier et al., 2014;  Tzanouli-

nou et al., 2014b; Tzanoulinou et al., 2014a; Veenit et al., 2014), peripuberty stress has been found to 

increase the aggressive behavior of rats toward adult conspecifics (Cordero et al., 2012; Cordero et al., 

2016; Marquez et al., 2013; Tzanoulinou et al., 2014b). Peripubertally stressed rats not only exhibit in-

creased levels of aggressive behavior towards opponents of a similar size but have also been found to 

show atypically high levels of aggression toward smaller, larger, or even anaestheƟzed intruders, as well 

as toward females (Cordero et al., 2012; Marquez et al., 2013). The paƩern of indiscriminate highly-

aggressive responding, whereby the rat appears to disregard the level of threat posed by each opponent, 

has led to the characterizaƟon of peripubertally stressed rats as abnormally aggressive. This characteriza-

Ɵon has been supported by the finding that peripuberty stress exposed rats more frequently targeted the 

vulnerable body parts of the intruder when biƟng, and conƟnued to aƩack even when the opponent 

showed signs of submission (Marquez et al., 2013). Exposure of peripubertal rats to the whole protocol 

was necessary to observe behavioral alteraƟons (Tzanoulinou et al., 2014b). 

In the brain, exposure to peripuberty stress has been found to result in elevated amygdala acƟvaƟon un-

der basal condiƟons, as indexed by uptake of radio-labelled 2-deoxyglucose, a modified form of glucose 

that is readily taken up by cells but cannot be metabolized (Marquez et al., 2013). Hints toward increased 

acƟvaƟon of prefrontal cortex under basal condiƟons were also found. Further examinaƟon of the basis 

of changes in acƟvity suggested that alteraƟons potenƟally resulted from a shiŌ in the balance between 

excitaƟon and inhibiƟon in these regions following peripuberty stress, such that excitaƟon comes to pre-

dominate.  ReducƟons in the expression of inhibiƟon-related genes and proteins were found in both 

amygdala (Tzanoulinou et al., 2014a; Tzanoulinou et al., 2014b) and in several subregions of the prefron-

tal cortex (Tzanoulinou et al., 2016) following peripuberty stress. Moreover, behavioral deficits observed 

following peripuberty stress, and found in associaƟon with reduced inhibiƟon in prefrontal cortex, were 

ameliorated by a treatment that enhanced the expression of inhibiƟon-related gene, Nlg2 (Tzanoulinou 

et al., 2016), in prefrontal cortex thereby implying a causal link between altered inhibiƟon and behavioral 

dysfuncƟon following stress.   

In an effort to understand the role of HPA axis acƟvaƟon induced by peripuberty stress in subsequent 

behavioral alteraƟons a number of experiments have been carried out. Mimicking peripuberty stress in-

duced HPA axis acƟvaƟons via the administraƟon of corƟcosterone according to the same schedule re-

vealed that peripuberty stress effects on (anƟ)social behaviors could be recapitulated by corƟcosterone 

alone (Veenit et al., 2013). InteresƟngly, anxiety-like and depression-like behaviors were unaltered by this 

treatment. Experiments which aƩempted to block the different components of HPA axis following stress 

were able to shed some light on the dissociaƟon. When glucocorƟcoid receptors were blocked with an 

antagonist prior to each exposure to peripuberty stress, then the effects of the stress on adult social, but 

not affecƟve, behaviors could be blocked (Veenit, unpublished observaƟons).  If type 1 CRH receptors 

were blocked with an antagonist in the week following the compleƟon of the peripuberty stress protocol, 

then the effects of the stress on both social and affecƟve behaviors could be blocked (Veenit et al., 2014). 
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Taken together these three studies strongly implicate HPA axis acƟvaƟon induced by stress as playing a 

key role in the development of psychopathology-like behaviors later in life, with corƟcosterone seeming 

to play a parƟcularly important role in the programming of aggressive behavior.  

This thesis conƟnues in chapter 1 to discuss in greater depth the role of developmental aberraƟons in 

HPA axis acƟvity in the development of psychopathology, taking pathological aggression as a case in 

point.  
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Abstract 

Aggressive behavior is not uniform, including proacƟve and reacƟve forms of aggression. Aberrant 

funcƟoning of the hypothalamic-pituitary-adrenal (HPA) axis is frequently associated with abnormal 

aggression. Here, we review the rodent literature in order to assess whether developmental 

abnormaliƟes in the HPA axis can be causally linked with the emergence of abnormal aggression. We 

examine studies that involve geneƟc models and life challenges (e.g., early life stress, drug exposure) 

that course with developmental alteraƟons in the HPA axis. Although the lack of systemaƟc studies 

hinders development of an integrated model, exisƟng evidence supports a U-shaped funcƟon regarding 

differences in HPA axis funcƟoning during development and the emergence of aggressive phenotypes. 

Thus, developmentally low or high HPA axis reacƟvity are typically found to be aligned with the 

emergence of aggressive phenotypes; however, exisƟng informaƟon is insufficient to causally link 

divergent HPA axis aberraƟon with specific types of aggression. Progress in this field is needed to support 

intervenƟons in children aimed at amelioraƟng social dysfuncƟons associated with aberraƟons in HPA 

axis funcƟon. 
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IntroducƟon 

Aggression is a behavioral adaptaƟon ubiquitous throughout the animal kingdom. However, aggression is 

not uniformly expressed and may manifest in several forms. A general and widely accepted disƟncƟon 

discriminates between reacƟve, normally considered emoƟonal-impulsive, and proacƟve, cold, gain-

oriented, aggression (Haller, 2014a). Although the neurobiological mechanisms leading to the expression 

of these different types of aggression are sƟll unclear, progress in this field is currently blooming (Blair, 

2016; Waltes et al., 2015; Yang & Raine, 2009). 

Altered funcƟoning of the hypothalamus-pituitary-adrenal (HPA) axis has been frequently found to be 

associated to pathological forms of aggression. Along with the sympatheƟc nervous system (SNS), the 

acƟvated HPA axis coordinates metabolic, behavioral and physiological responses to stressful challenges. 

Although findings from the human literature are not always consistent, probably due to the difficulƟes in 

systemaƟzing its collecƟon (Ɵming, circadian characterisƟcs, basal vs. reacƟve, etc.), substanƟal evidence 

indicates that individuals characterized by elevated levels of reacƟve aggression show heightened 

acƟvaƟon of the stress systems (Lopez-Duran et al., 2009). Conversely, one of the most consistently 

reported findings is that individuals with elevated affecƟve psychopathic traits display blunted acƟvaƟon 

of the physiological stress systems -including blunted corƟsol- to stressful situaƟons (O’Leary et al., 2007; 

O’Leary et al., 2010 but see Johnson et al., 2015 for evidence in incarcerated male offenders showing that 

some psychopathic individuals show normal corƟsol stress responses). Remarkably, substanƟal evidence 

indicates that similar alteraƟons in the HPA axis are already observable during childhood (Fairchild et al., 

2008; Hawes et al., 2009). Thus, HPA axis hypo-acƟvity is frequently reported for children and adolescents 

with callous-unemoƟonal traits (a large part of those diagnosed with conduct disorders, and those with a 

higher probability to show criminal behaviors at adulthood) (Loney et al., 2005; McBurneƩ et al., 2000; 

van Goozen et al., 2000 but see Gordis et al., 2006). On the other hand, HPA axis hyper-acƟvity is 

observed in cases of child and adolescent anƟsocial behavior in those with low levels of callous-

unemoƟonal traits (Lopez-Duran et al., 2009).  

An important and unresolved issue is whether such alteraƟons in the stress systems, and parƟcularly in 

the funcƟoning of the HPA axis, are a mere correlate of the different types of aggressive behavior or, 

instead, play a causal role in the emergence of the respecƟve aggressive phenotypes. Studies aimed at 

disƟnguishing the causal role of glucocorƟcoids – the final products of the acƟvated HPA axis – in the 

regulaƟon of aggressive behaviors are scarce. Most of the exisƟng evidence, arrogaƟng a key role of 

glucocorƟcoids in aggression, has been obtained by manipulaƟng circulaƟng levels of these hormones at 

adulthood (Kim & Haller, 2007; Haller, 2014b). Whether or not a similar picture would be observed when 

HPA axis alteraƟons occur during development is a quesƟon that has not been systemaƟcally addressed. 

One study using injecƟons of the HPA axis hormone, corƟcosterone, during the peripubertal period in rats 

reported increases in play fighƟng during adolescence and increased aggression at adulthood (Veenit et 

al., 2013), suggesƟng a causal role for enhanced corƟcosterone levels during development in the 
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emergence of aggression. However, conclusions extracted from a single study are insufficient. The 

purpose of this review is to analyze the relevant data from the animal literature that shed light on the 

potenƟal link between deviaƟon in normaƟve HPA axis acƟvity during development and the emergence of 

aggressive behaviors. We place here a parƟcular focus on rodent studies and, as most of the data has 

been gathered in males, we primarily review data obtained from male rodents. We first introduce the HPA 

axis and its developmental characterisƟcs from a translaƟonal perspecƟve in rodents and humans. 

Following on from previous reviews (Neumann et al., 2010; Veenema & Neumann, 2007), we focus on 

evidence obtained via geneƟc approaches, using lines of rodents selected either for HPA axis funcƟon or 

aggressiveness that deviate from normaƟve levels throughout the individuals’ life. We then explore the 

literature in which developmental variaƟon in HPA axis funcƟon and aggression phenotypes are induced 

by manipulaƟons occurring early in life, including stress and exposure to a diversity of drugs. Finally, we 

evaluate the knowledge extracted from the reviewed evidence regarding a potenƟal link between 

developmental variaƟon in HPA axis funcƟon and the emergence of aggressive phenotypes. 

 1. The hypothalamus-pituitary-adrenal axis and its development  

The HPA axis is a key physiological stress system. The acƟvaƟon of the HPA axis involves a cascade of 

responses that starts with the secreƟon of corƟcotropin-releasing hormone (CRH) by the paraventricular 

nucleus (PVN) of the hypothalamus. In the pituitary, CRH sƟmulates the producƟon and release of the 

adrenocorƟcotropic hormone (ACTH) into the bloodstream. When ACTH reaches the adrenal cortex, it 

sƟmulates the secreƟon and producƟon of glucocorƟcoids (primarily corƟsol in humans; corƟcosterone in 

a variety of rodents, including mice and rats). The HPA axis is inhibited by glucocorƟcoids, which exert 

negaƟve feedback through acƟons on the hippocampus, the PVN and the pituitary (Ulrich-Lai & Herman, 

2009).  

GlucocorƟcoids act through two receptors systems, the mineralocorƟcoid receptor (MR) and the 

glucocorƟcoid receptor (GR). The GR is widely distributed in the brain and exhibits lower affinity for 

glucocorƟcoids compared to the MR (de Kloet et al., 2008). Upon glucocorƟcoid binding, MR and GR 

translocate to the nucleus, where they act as transcripƟon factors. Through associaƟon with GR 

responsive elements, or with other transcripƟon factors, these acƟvated receptors induce or repress 

expression of genes criƟcal for the modulaƟon of development, homeostasis, inflammaƟon, metabolism 

and cogniƟon (Biddie et al., 2012; de Kloet, 2013). In addiƟon to these genomic acƟons, membrane-bound 

MR and GR can also exert rapid, non-genomic, membrane-mediated effects (Groeneweg et al., 2011). Non

-genomic glucocorƟcoid effects are thought to help encoding stress-related informaƟon as well as 

facilitaƟng behaviors such as locomoƟon, aggression and other stress-related adapƟve behaviors (de Kloet 

et al., 2008; Groeneweg et al., 2011; Makara & Haller, 2001; Sandi et al., 1996). 

When translaƟng developmental research between studies in humans and preclinical rodent models, it is 

important to note that there are important differences in the Ɵming of the HPA axis development 
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between these species (Lupien et al., 2009). For example, in humans, the HPA axis is highly responsive at 

birth whereas it is sƟll under development during the first week of a rodent’s life (Lupien et al., 2009). In 

rodents, the two weeks following birth are characterized by a “stress hypo-responsive period” (Schapiro, 

1968), during which stress glucocorƟcoid responses are blunted (Levine et al., 1994; Meaney et al., 1985). 

A comparable period of HPA axis hypo-responsivity may also exist in humans during childhood (Gunnar & 

Cheatham, 2003) and end around puberty (Gunnar & Quevedo, 2007). It has been hypothesized that 

maternal care, social contact and parental buffering might be responsible for the maintenance of a hypo-

responsive state both in rodents (Lupien et al., 2009) and humans (Gunnar & Cheatham, 2003). On the 

contrary, in rodents, during adolescence and early adulthood, the HPA axis is hyper-responsive due to an 

underdeveloped negaƟve feedback system (Klein & Romeo, 2013; McCormick & Mathews, 2010).  

 2. GeneƟc models of variaƟon in HPA axis development in rodents:  
  Consequences for aggression 

GeneƟc animal models can help address the key quesƟon discussed in this review. More precisely, they 

allow the comparison of differences in the funcƟoning of the HPA axis due to geneƟc factors with 

corresponding social behavior and aggression phenotypes. So far, exisƟng data have been generated 

through two main approaches: selecƟve breeding of rodents to generate lines differing in the funcƟoning 

of the HPA axis, and, comparison of inbred lines that were generated according to other traits but 

eventually differing in HPA axis funcƟon.  

 2.1 Rodents selecƟvely bred for extremes in HPA axis acƟvity 

The selecƟve breeding strategy starts from an outbred populaƟon. Animals displaying extremes in the 

‘target’ phenotype are bred together for several generaƟons aŌer which the resulƟng lines ought to 

display stable differences in the phenotype of interest.  

Mouse lines selected for extremes in HPA axis responsiveness to stress have been generated recently 

(Touma et al., 2008). Specifically, C57Bl/6 mice were selected and bred according to their plasma 

corƟcosterone response to 15 minutes of restraint stress, producing high-reacƟve (HR), low-reacƟve (LR) 

and intermediate-reacƟve (IR) lines (Touma et al., 2008). Once the lines were established, although they 

did not show differences in corƟcosterone levels at circadian nadir, HR mice had significantly higher 

diurnal corƟcosterone than the IR and LR lines (Touma et al., 2008). Following exposure to a stressor, and 

as compared to LR mice, HR animals were more reacƟve and showed higher acƟvaƟon of the 

paraventricular hypothalamic nucleus. Moreover, HR mice exhibited higher corƟcosterone responses to 

an ACTH injecƟon and impaired negaƟve feedback inhibiƟon following a combined dexamethasone/CRH 

test (Heinzmann et al., 2014; Touma et al., 2008). The IR line displayed intermediate responses in these 

measurements. In one study, mice from these lines were tested for their aggressive behavior in the 

resident-intruder test. In this test, an unfamiliar mouse (‘intruder’) is introduced into the homecage of the 

experimental animal (‘resident’). In this study, analyses were focused on the Ɵme the resident mouse 
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took to aƩack the intruder – i.e., latency to aƩack, used as a proxy of aggressiveness – following the 

placement of the laƩer in the resident’s cage. LR mice were the fastest to aƩack and 92% of them 

performed an aƩack within 300s vs only 42% of HR mice. The IR line behaved at an intermediate level, 

with 70% performing an aƩack within 300s (Touma et al., 2008). Therefore, low HPA axis responsiveness 

was linked to enhanced reacƟvity to aƩack an intruder conspecific and, hence, aggressiveness, in this 

study, while high HPA axis responsiveness had a negaƟve link with aggression. 

In addiƟon to these mouse lines, there are several lines of rats that, although originally bred for extremes 

in behavioral traits relaƟng to exploraƟon or anxiety, show addiƟonal differences in HPA axis funcƟon and 

for which informaƟon about their aggressiveness has been gathered. These lines include: (i) the Roman 

high/low avoidance (RHA/RLA) lines, whose selecƟon criterion was based on their ability to acquire a two-

way acƟve avoidance task (Bignami, 1965); (ii) high/low anxiety-related behavior (HAB/LAB) lines, selected 

based on their behavior in the elevated plus maze and, then, crossbred in an early generaƟon with lines 

selected for high and low acƟve avoidance (Liebsch et al., 1998); and (iii) high/low responder lines (bHR/

bLR), selected according to their locomotor behavior in a novel context (Stead et al., 2006). In each case, 

the line that shows enhanced HPA axis funcƟon, both in terms of diurnal corƟcosterone levels and in 

response to stressors, displayed higher levels of aggression than the counterpart line, or, in the case of 

HAB/LAB lines, in comparison to non-selected controls (Clinton et al., 2008; Kerman et al., 2011; Steimer 

et al., 1997; Steimer & Driscoll, 2003; Coppens et al., 2012; Coppens et al., 2013; Díaz-Morán et al., 2012 ; 

Landgraf et al., 1999; Neumann et al., 2005; Neumann et al., 2010b; Veenema et al., 2007 ; Beiderbeck et 

al., 2012).  Although this is in contrast with the findings from mouse lines selected for divergent HPA axis 

responses described above, it is important to note that these studies did not always analyze the same 

parameters in the aggression test, nor was informaƟon rouƟnely given about qualitaƟve differences in 

aggressive behaviors, which potenƟally indicate presence of pathological reacƟons. For example, no 

informaƟon was provided as to whether aƩacks were delivered to vulnerable body parts or at a Ɵme 

when the intruder showed a submissive posture and, therefore, differences in aggression between the 

lines discussed here should be considered quanƟtaƟve in nature.  

 2.2 Inbred rat strains 

The second approach that we have chosen to discuss in this secƟon is the comparison of phenotypes 

presented by inbred rat strains, which are generated by maƟng siblings across many consecuƟve 

generaƟons. This process results in a strain in which only one version of each gene is present, and all 

animals are therefore geneƟcally idenƟcal, somewhat akin to twins. Specifically, we discuss here strains of 

rats that present differences in the funcƟoning of their HPA axis and that have been tested for their 

aggressive responses. 

Such a comparison can be established, for example, between Fischer 344 (F344) and Lewis inbred rat 

strains, which were both derived from the Sprague Dawley strain. As noted by several studies, although 
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these lines do not differ in basal corƟcosterone levels at diurnal nadir (Jongen-Rêlo et al., 2002), following 

exposure to stressors, such as restraint or tail shock, F344 rats had higher ACTH and corƟcosterone levels 

than Lewis rats (Gómez et al., 1998; Jongen-Rêlo et al., 2002). In agreement with this finding, F344 rats 

were found to have lower hippocampal GR expression, suggesƟve of less effecƟve negaƟve feedback 

regulaƟon of HPA axis (Jongen-Rêlo et al., 2002).  When these lines were compared for juvenile play 

behavior paired with counterparts from either their same strain or Sprague Dawley, the F344 line showed 

less play fighƟng than Lewis juveniles (Siviy et al., 2003). These differences were not altered by cross-

fostering, which indicates a strong geneƟc basis for these differenƟal behaviors (Siviy et al., 2003). In line 

with these findings at juvenility, analysis of social behaviors at adulthood showed similar differences. 

Specifically, when exposed to a same strain partner in a neutral environment following two weeks of 

social isolaƟon, F344 animals engaged in significantly fewer bouts of pinning and fighƟng with their 

opponent and launched fewer biƟng aƩacks than Lewis rats (Berton et al., 1997). In a subsequent 

resident-intruder test, although both F344 and Lewis rats were relaƟvely unaggressive, F344 again were 

the ones that showed less aggressiveness, as they iniƟated fewer fights and spent a greater amount of 

Ɵme engaged in defensive behavior (Berton et al., 1997). Therefore, the strain with lower HPA axis 

responsiveness in this case showed enhanced aggression.  

Another comparison can be drawn between normotensive Wistar-Kyoto (WKY) and spontaneously 

hypertensive (SHR) rat inbred strains, both derived from Wistar rats. These lines do not differ in their HPA 

axis hormone levels under basal condiƟons, but had divergent responses to stress – such as handling or 

restraint – with SHR rats showing higher plasma ACTH and corƟcosterone levels than WKY rats (Dickey et 

al., 2012; Roman et al., 2004). In this instance, the more HPA axis-reacƟve SHR rats are the ones reported 

to be more aggressive, when compared to WKY, across several experimental situaƟons (Berton et al., 

1997). Specifically, SHR were more aggressive: (i) in a colony-housing model, where they performed more 

aƩacks on novel intruders, and subordinates in the colony had significantly higher number of scars (Toot 

et al., 2004); (ii) in muricidal tests; (iii) when challenged with shock-induced fighƟng (Potegal & Myers, 

1989). 

These two examples of inbred rat strains indicate a mixed relaƟonship between differenƟal HPA axis 

funcƟon and the associated level of aggressive behavior that seems to depend on the background strain 

of the parƟcular line. Specifically, in the strains derived from Sprague Dawley rats (i.e. Fischer 344 and 

Lewis strains), higher HPA axis reacƟvity is linked with decreased sociability and decreased 

aggressiveness. Conversely, in the strains derived from Wistar rats (i.e. WKY and SHR), higher HPA axis 

reacƟvity is associated with increased aggressiveness. InteresƟngly, in direct comparisons of Sprague 

Dawley-derived and Wistar-derived inbred strains, Wistar-derived rats have been shown to have higher 

HPA axis response to acute stress, less vulnerability to the effects of chronic social stress on bodyweight 

gain and higher overall aggressiveness (Berton et al., 1997). Although without the direct analyses of these 

different rats within a specific study, it is difficult to cross-compare findings; it is tempƟng to speculate the 

existence of a U-shape effect for the results described above. Specifically, high aggression levels seem to 
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be displayed by the Lewis and SHR strains showing, respecƟvely, the lowest and highest HPA axis 

reacƟvity, while low aggression levels correspond to the strains (i.e., F344 and WKY) showing intermediate 

HPA axis responses. 

 3. GeneƟc models of variaƟon in aggressiveness in rodents:  
  Consequences for HPA axis funcƟon 

A further approach to collect informaƟon about a potenƟal link between developmental differences in 

HPA axis funcƟon and aggression is taking the converse strategy with regard to line selecƟon to the ones 

described above. Here, we discuss data obtained from rodent lines selecƟvely bred for extremes in 

aggressiveness and scruƟnize whether they present significantly different HPA axis funcƟon. We review 

data from three mouse selecƟon lines and one from rats. 

One of the oldest documented lines selected for extremes on aggressiveness are the Turku aggressive (TA) 

and non-aggressive (TNA) mice, which were derived from an original cohort of Swiss albino outbred mice 

in 1959 (Sandnabba, 1985). As compared to TNA, TA mice have proven to be more aggressive in several 

parameters and tesƟng situaƟons. Thus, in a resident-intruder test, they perform more aƩacks, more 

threats and are less social than TNA mice (Caramaschi et al., 2008a). They also display reduced latency to 

aƩack a conspecific whether they are the resident, the intruder, or whether the social interacƟon takes 

place in a neutral cage (Nyberg et al., 2004). Importantly, TA mice are more likely to aƩack females in the 

homecage (Caramaschi et al., 2008a) or in a resident-intruder test (Nyberg et al., 2004), indicaƟng 

presence of an abnormal aggressive phenotype in these mice. Although liƩle is known about HPA axis 

funcƟon in these mice, some evidence indicates that TA mice had blunted diurnal peak corƟcosterone in 

comparison to TNA mice (Caramaschi et al., 2008b).  

Other relevant lines include the low- (NC100) and high-aggressive (NC900) mice established from two sets 

of outbred ICR (InsƟtute for Cancer Research) stock (PeƟƩo et al., 1993). NC900 mice displayed 

significantly shorter aƩack latency, emiƩed more aƩacks, more sustained aƩack bouts, more threats, and 

were less social than NC100 (Caramaschi et al., 2008a). The aggressive phenotype of NC900 mice was not 

ameliorated by cross-fostering (Granger et al., 2001), indicaƟng an intractability to environmental 

influences. Although there is limited informaƟon regarding HPA axis funcƟon in these mice, evidence 

shows that, relaƟve to NC100 mice, NC900 have a lower basal (PeƟƩo et al., 1993) and diurnal peak 

corƟcosterone levels (Granger et al., 1996). Curiously, this was found in conjuncƟon with higher 

hypothalamic CRH content in the same animals (Granger et al., 1996). This may suggest of blunted 

sensiƟvity of the pituitary to CRH tone in NC900 aggressive mice.  

One of the best studied mouse lines in this context are the ones originally selected from wild house mice  

according to their short (SAL) or long (LAL) latency to aƩack a conspecific mouse (van Oortmerssen & 

Bakker, 1981). SAL mice displayed higher number of aƩacks and higher duraƟon of aggressive behavior 

than LAL mice (Caramaschi et al., 2008a). Importantly, SAL mice have been described as abnormally 
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aggressive as they aƩack females and anestheƟzed intruders, and ignore submissive postures of their 

opponents (Caramaschi et al., 2008a). Analysis of their HPA axis funcƟon indicates abnormal reacƟvity in 

SAL mice. Thus, although no differences between SAL and LAL mice were described under basal 

condiƟons (Veenema et al., 2003), SAL mice showed a flaƩer circadian corƟcosterone rhythmicity; the 

typical upshiŌ of corƟcosterone during the dark phase being blunted in comparison to LAL mice (Korte et 

al., 1996). Furthermore, following exposure to novelty, administraƟon of ACTH or forced swim stress, SAL 

mice displayed blunted corƟcosterone response relaƟve to LAL mice (van Riel et al., 2002; Veenema et al., 

2003), and mild psychosocial stress-induced corƟcosterone increases were short, as opposed to longer-

lasƟng responses observed in LAL mice (Veenema et al., 2003).  

Lines of rats derived from wild-caught Norway rats were selected according to their low (‘domesƟcaƟng’) 

or high (maintenance of ‘wild’) aggressiveness toward a glove (Naumenko et al., 1989). DomesƟcated rats 

showed no aggressiveness toward humans by the 10th generaƟon of selecƟon (Plyusnina & Oskina, 

1997). In terms of social behavior, wild rats emiƩed considerably more fighƟng bouts in shock-induced 

fighƟng tests than tame rats, but, at the 19th generaƟon of selecƟon did not display more inter-male 

aggression when not provoked by shock, nor were they more frequently muricidal (Naumenko et al., 

1989). Later generaƟons of the lines showed relaƟvely higher inter-male aggressive behavior and lower 

social interacƟon in wild rats relaƟve to domesƟcated rats (Gulevich et al., 2015). Regarding their HPA 

axis, wild line rats display higher basal corƟcosterone levels than tame rats (Gulevich et al., 2015; 

Naumenko et al., 1989). This finding was sustained when studying fecal maƩer obtained in the absence of 

any human interacƟon, which would presumably consƟtute a stressor, parƟcularly to the wild line (Albert 

et al., 2008). AddiƟonally, wild line rats showed higher corƟcosterone responses to novelty than 

domesƟcated rats, and had higher adrenal weight, indicaƟve of both situaƟonal and general hyperacƟvity 

of the HPA axis (Naumenko et al., 1989; Plyusnina & Oskina, 1997). 

The view depicted by the models discussed above suggests a species-dependent relaƟon between 

aggressiveness and the HPA axis. The global message from mouse models is that selecƟon for aggressive 

behaviors (that in in the case of TA, NC900 and SAL lines has co-segregated with pathological forms of 

aggression) were related with a blunted HPA axis acƟvity and/or reacƟvity. However, the opposite paƩern 

is observed in the rat lines, as the more aggressive line had higher HPA axis reacƟvity. However, an 

important caveat is that direct comparison of these models with other selecƟon models is not possible 

since the definiƟon of aggressive behaviors is relaƟvely different between studies.  

 4. Developmental stress leading to variaƟon in HPA axis funcƟon: Consequences for 

aggression 

In addiƟon to geneƟc selecƟon, early life experiences can also have profound consequences on the 

development of the HPA axis. In parƟcular, exposure to stressful experiences during different stages of 

development are known to have long-term consequences on HPA axis funcƟon and behavior. Early life 
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stress can result in different psychopathologies, such as depression, anxiety, and alteraƟons in social 

behaviors including changes in sociability and aggressiveness (Haller et al., 2014; Sandi & Haller, 2015; 

Veenema, 2009). The brain undergoes important changes during prenatal, postnatal and pubertal periods, 

which renders it highly vulnerable to stress (Lupien et al., 2009). Importantly, adverse experiences during 

early life and adolescence can also divert the development of the HPA axis which, in turn, can affect social 

behaviors (Sandi & Haller, 2015). We review here the relevant literature involving stress applicaƟon at 

different early developmental periods in which an associaƟon between divergent HPA axis funcƟon and 

aggressiveness has been established. 

 4.1 Prenatal stress 

Acute prenatal stress – administered on gestaƟon days 10 and 19 – in an inbred strain of male rats (DA/

Han) was found to result in increased stress-induced HPA axis reacƟvity (PaƟn et al., 2002) as well as 

reduced aggressiveness and increased submissiveness (PaƟn et al., 2005). Using a protocol of chronic 

prenatal stress, from gestaƟon day 11 unƟl delivery, in male Sprague-Dawley rats increased reacƟvity of 

the HPA axis following restraint stress was also observed.  This was accompanied by decreased social play 

behavior (Morley-Fletcher et al., 2003). Conversely, chronic prenatal stress during the last week of 

pregnancy resulted in an increase of aggressive behaviors during a social interacƟon test, without effect 

on social play frequency, in juvenile male Wistar rats. Levels of corƟcosterone were not found to be 

different under basal condiƟons but were enhanced at diurnal peak and following exposure to forced-

swim stress (Koehl et al., 1999; Schroeder et al., 2013). In voles, different types of prenatal stress 

(including exposing pregnant females to either confrontaƟon, immobilizaƟon or crowding on days 13, 14 

and 15 of gestaƟon) led to prolonged stress-induced acƟvaƟon of the HPA axis and increases in 

aggressiveness in male offspring (Marchlewska-Koj et al., 2003). Therefore, the opposite associaƟon 

between HPA axis reacƟvity resulƟng from prenatal stress exposure and aggression levels were found 

between rats and voles. Although it is not possible to conclude about species differences given the many 

addiƟonal differences in the studies discussed here (e.g., different nature, duraƟon and Ɵming of 

gestaƟonal stressors), higher HPA axis reacƟvity was found associated with lower aggression in rats, while 

it was related with higher aggression in voles. 

 4.2 Early postnatal stress 

SeparaƟon of the young from the mother is one of the most used and best-studied models of early life 

adversity, aiming to mimic deficits observed in socially neglected children. We discuss here studies that 

have examined the consequence of this manipulaƟon for HPA axis funcƟon and aggressive behaviors in 

rodents. AddiƟonally, we menƟon relevant studies addressing the same quesƟon and evaluaƟng similar 

parameters in monkeys. 

In Wistar rats, maternal separaƟon during the first two weeks of life led to a paƩern of changes in 

endocrine and behavioral responses differenƟal according to developmental stage (Veenema et al., 2006). 
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Maternally-separated juvenile male rats showed an increase in HPA axis acƟvity at basal level in the early 

dark phase, but no difference with regards to controls following social interacƟon. These juveniles 

exhibited increased play fighƟng and reduced submissive behaviors (Veenema & Neumann, 2009). 

However, when assessed at adulthood, HPA axis responsiveness was similar between stressed and control 

rats, both at baseline and aŌer acute stressor. Maternally separated adult rats showed a faster increase in 

corƟcosterone levels aŌer stress. In common with juvenile rats, adult animals were more aggressive 

during a resident-intruder test (Veenema et al., 2006).  

In C57Bl/6 mice, however, maternal separaƟon during the first two weeks of life is known to lead to 

increased reacƟvity of the HPA axis in response to stress (ParfiƩ et al., 2004),  reduced play fighƟng in 

juvenility  (Tsuda et al., 2011) and reduced intermale aggression at adulthood (Veenema et al., 2007). 

However, increased aggressiveness has been reported when a shorter maternal separaƟon protocol was 

applied in Balb/C mice (Hohmann et al., 2013). To our knowledge, the HPA axis reacƟvity of these mice 

has not been assessed, though behavioral similariƟes with C57Bl/6 mice led the authors to hypothesize 

HPA axis hyperacƟvity in this strain following stress (Hohmann et al., 2013). 

In monkeys, juveniles reared in isolaƟon were found to display elevated baseline corƟsol levels, though 

acute stress-induced corƟsol levels was not different to controls at adulthood (Meyer & Bowman, 1972; 

SackeƩ et al., 1973). Young monkeys, that were maternally-separated at birth, hand-reared for the first 

month and subsequently raised with same-age peers for the next 5 months, displayed higher levels of 

impulsive aggressive behaviors during play-fighƟng (Higley et al., 1996). Monkeys with this early life 

history were toward the boƩom of the social hierarchy when housed with mother-reared peers (Suomi, 

1997) and when challenged by a period of social separaƟon, peer-reared monkeys exhibited extreme 

behaviors and higher HPA axis responses (Higley et al., 1991; Higley & Suomi, 1989). Furthermore, studies 

on monkeys maltreated by the mother during infancy have reported increased plasma corƟsol levels in 

infant monkeys and exaggerated aggressive behaviors during adolescence (Howell et al., 2013). 

Conversely, other studies of peer-reared monkeys found low basal corƟsol and low HPA axis response to 

stress as well as no differences in basal and stress-induced levels of corƟsol (Clarke, 1993; Winslow et al., 

2003; Champoux et al., 1989; Feng et al., 2011). Thus, no clear picture of the effects of peer-rearing stress 

on the HPA axis is evident. Recent studies have focused on explaining some of this variability, determining 

geneƟc factors and emphasizing the importance of gene-environment interacƟons linking stress, HPA axis 

and aggression (Novak et al., 2013). (Novak & Suomi, 2008) applied a rearing model in which monkeys 

were raised with an inanimate surrogate mother and provided daily exposure to playmates. Surrogate/

peer-reared monkeys were more aggressive and displayed abnormal aggressive behaviors, as they did not 

respond to submissive postures of their opponents (Novak & Suomi, 2008). Furthermore, monkeys 

exhibited lower levels of circulaƟng corƟsol and showed blunted HPA axis response to a period of social 

separaƟon (Capitanio et al.,  2005; Davenport et al., 2003; Shannon et al., 2005; Shannon et al., 1998).  

Overall, the picture arising from early stress protocols in different species emphasizes, once more, a 
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complex relaƟonship between variaƟon in developmental HPA axis funcƟon and the emergence of 

aggression. Higher stress-induced HPA axis in rats was related to increased aggression, as previously 

described in several other models using this species. However, in monkeys, the two opposing paƩerns 

have been described, one that fits with the findings in rats and another one that links low HPA axis 

reacƟvity with higher aggression. Globally, all the findings summarized so far may be illustrated by a U-

shaped relaƟon between HPA axis regulaƟon and the development of aggressive behaviors (Figure 1). 

 4.3 Peripubertal and adolescent stress 

In humans, social neglect and bullying are two stressful experiences occurring in adolescence that are 

known to lead to hormonal alteraƟons and behavioral deficits later in life (Tzanoulinou & Sandi, 2016). 

Corresponding rodent models, post-weaning social isolaƟon and social subjugaƟon, aƩempt to model 

alteraƟons observed in humans (Haller et al., 2014). Exposure to fearful situaƟons during peripuberty has 

been modeled with a peripubertal stress model of psychopathology (Márquez et al., 2013). 

Studies employing post-weaning social isolaƟon in male Wistar rats have reported that isolaƟon from the 

point of weaning, over seven weeks, led to exaggerated corƟcosterone levels aŌer aggressive encounters 

or social stress while not altering basal levels (Toth et al., 2011; Tulogdi et al., 2014). Isolated males also 

exhibited a paƩern of abnormal or pathological aggression, including increased propensity to target their 

counterparts vulnerable body parts, such as throat, belly or head (Toth et al., 2011) and propelling 

unsignaled aƩacks toward their opponents (Toth et al., 2011). Moreover, socially deprived male rats 

showed increased defensive behaviors and iniƟated most of their aƩacks from defensive postures, 

suggesƟng aggression ambiguity. The aggressive behaviors of isolated rats were fragmented, with rapid 

switching from one behavior to another during resident-intruder encounters (Toth et al., 2011). A period 

of resocializaƟon following isolaƟon failed to ameliorate abnormal behaviors exhibited by socially 

deprived animals (Tulogdi et al., 2014). InteresƟngly, a study showed that the exposures to post-weaning 

social isolaƟon shorter than seven weeks are sufficient to lead to alteraƟons in social behaviors (Wall et 

al., 2012). When tested in late adolescence, following just four weeks of isolaƟon, socially deprived 

Sprague Dawley rats showed enhanced play-fighƟng behavior and higher social interacƟon (Wall et al., 

2012). This effect was found in both male and female rats. Chronicity of isolaƟon appears to be a 

mediaƟng factor, however.  In mice, five days of peripubertal isolaƟon did not lead to enhanced 

aggressive behaviour, nor changes in HPA axis funcƟon, later in life (Pietropaolo et al., 2004). In summary, 

increased HPA axis reacƟvity was found to be associated with enhanced and pathological aggression in 

rats. 

Bullying, or social abuse, is modelled in rodents via means of repeated social subjugaƟon. Social 

subjugaƟon of juvenile rats, by daily exposure to an aggressive adult, was shown to lead to enhanced 

basal corƟcosterone levels as well as exaggerated aggressive behaviors aŌer both physical and social 

provocaƟon, including towards larger opponents (Cunningham & McGinnis, 2008). In hamsters, juveniles 
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(P26-38) exposed for 20 minutes daily in the homecage to an aggressive adult male (Delville et al., 1998), 

while not showing alteraƟons in basal corƟcosterone levels, had increased stress-induced corƟcosterone 

responses (Wommack & Delville, 2003). Subjugated hamsters aƩacked less intruders of similar size, but 

exhibited increased aggressive behavior (specifically, more biƟng) towards smaller opponents (Delville et 

al., 1998; Wommack & Delville, 2003; Wommack et al., 2003). Subjugated animals also showed 

premature transiƟon from play-fighƟng behavior to adult-like paƩerns of aƩack, and displayed high levels 

of aggression at adulthood (Wommack et al., 2003). Other studies reported that hamsters subjugated 

during puberty (P26-38) showed high levels of aggression toward intruders and blunted release of corƟsol 

(Ferris et al., 2005).  

The peripubertal stress model of psychopathology developed originally in rats comprises a variable 

sequence of psychogenic, fear-inducing stressors, including exposure to elevated plaƞorm and predator 

odor, on seven scaƩered days across the peripubertal period (Márquez et al., 2013; Toledo-Rodriguez & 

Sandi, 2011). Although no difference in basal corƟcosterone was observed, peripubertal stress-exposed 

males and females had a blunted corƟcosterone response to stress and exhibited exaggerated aggression 

(Cordero et al., 2013; Márquez et al., 2013). In addiƟon to several behavioral disturbances, male rats 

exposed to peripubertal stress showed evidence of pathological aggression at adulthood, as they showed 

increased intermale aggression, even towards juveniles and animals showing subordinate postures, and 

increased aggression towards a cohabitaƟng female partners (Cordero et al., 2012; Márquez et al., 2013; 

Tzanoulinou et al., 2014a; Tzanoulinou et al., 2014b). Although the corƟcosterone response induced by 

the resident-intruder test did not differ, the testosterone to corƟcosterone raƟo was higher in 

peripubertal stress animals, which has been shown to be a marker of aggressive-impulsive behaviors in 

humans (Terburg et al., 2009). 

Given all the findings reported above, we can argue that the relaƟonship between stress and the 

development of alteraƟons in HPA axis funcƟons and aggressive behaviors that emerges from this data is 

complex. Again, rats stressed at peripuberty and/or adolescence tend to develop higher HPA axis 

reacƟvity and increased aggression. An excepƟon seems to be for the peripubertal stress model in which 

lower HPA axis reacƟvity was linked to increased aggression. CriƟcally, the effects seem to be highly 

dependent on the developmental period when stress is given, but also depend on the protocol and 

species used. Given the limited number of studies, further research is needed to disentangle the impact 

of different types of stress over Ɵme and at varying intervals of brain development in relaƟon to 

aggressive behavior.  

 5. Developmental exposure to drugs: Effects on HPA axis funcƟon and aggression  

In addiƟon to geneƟc factors and early life stress, the HPA axis can be affected during developmental 

periods by exposure to a range of substances. We have a special focus here on drugs of abuse and 

anƟdepressants. The raƟonale to review the literature on drugs of abuse rests on the well-known, close 
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and bidirecƟonal interacƟon of the HPA axis and the mesolimbic dopamine system, the laƩer being a 

major site of acƟon for these drugs (Koob & Kreek, 2007; Ungless et al., 2010). Moreover, mesolimbic 

dopamine plays a criƟcal role in moƟvaƟon towards both social and non-social sƟmuli (Salamone & 

Correa, 2012). AnƟdepressants are included in this secƟon as there is documented evidence that they 

can affect neurodevelopmental trajectories of individuals.   

 5.1 Cocaine 

Evidence indicates that prenatal cocaine exposure blunts HPA axis reacƟvity to novel and stress 

inducing sƟmuli in rats (Johns & Noonan, 1995; Johns et al., 1994), whilst also leading to enhanced 

aggressiveness (Johns & Noonan, 1995; Johns et al., 1994; Wood & Spear, 1998). Conversely, chronic 

cocaine exposure during adolescence appeared to give rise to a hyperacƟvity of the HPA axis in 

response to stress exposure (Alves et al., 2014) as well as leading to enhanced aggressiveness in both 

rats (Alves et al., 2014) and hamsters (Harrison et al., 2000; Jackson et al., 2005; Knyshevski et al., 

2005).  

 5.2 Alcohol 

Prenatal exposure to ethanol, via a variety of administraƟon routes, gives rise to a hyperacƟve HPA 

axis responsiveness to a range of stressors (rats: Gabriel et al., 2000; GangiseƩy et al., 2014; Kim et 

al., 1999 ; mice: Wieczorek et al., 2015). No differences in basal HPA axis tone, nor diurnal rhythmicity 

is evident however (rats: Glavas et al., 2007; mice: Wieczorek et al., 2015). Prenatally exposed rats 

demonstrated higher levels of play fighƟng and adult aggression relaƟve to controls (Hamilton et al., 

2010, 2014; Royalty, 1990). 

There is liƩle research exploring the effects of adolescent exposure to ethanol on either HPA axis 

funcƟon, aggression or both. The sole paper published thus far indicates that, in rats, there is 

dissociaƟon in the effects of ethanol exposure between the early and late adolescent period 

(Varlinskaya et al., 2014). Specifically, early adolescent ethanol led to a decrease in social moƟvaƟon, 

without concomitant alteraƟon in HPA axis funcƟon, whereas late adolescent ethanol enhanced both 

fighƟng behavior and corƟcosterone response to this social challenge (Varlinskaya et al., 2014).  

 5.3 Cannabinoids 

Perinatal administraƟon of Δ9-THC or syntheƟc cannabinoid receptor type 1 (CB1R) agonists led to 

decreased HPA axis acƟvity in adult male rats (del Arco et al., 2000; Rubio et al., 1995). Rats exposed 

to similar regimens of perinatal Δ9-THC displayed a reducƟon in play fighƟng at adolescence and in 

aggression at adulthood relaƟve to vehicle-treated controls (Newsom & Kelly, 2008; Trezza et al., 

2008). Exposure to a CB1R agonist at the postnatal Ɵme point only also led to reduced social 

interacƟon duraƟon, including fighƟng behavior, when measured in late adolescence (O’Shea et al., 
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2006). 

Conversely, pubertal exposure to CB1R agonists was associated with hyperacƟvity of the HPA axis in 

response to restraint stress in adult rats (Lee et al., 2014). Animals treated with a similar drug during 

adolescence showed alteraƟons in social behavior in adulthood. Specifically, CB1R agonist exposed rats 

were more likely to behave defensively when aƩacked, as well as emiƫng more aƩacks and more pins 

themselves (Schneider & Koch, 2005). 

 5.4 AnƟdepressants 

Research into the effect of anƟdepressant exposure during development on HPA axis and social funcƟon 

is limited. The exisƟng literature indicates that pre and perinatal exposure to the selecƟve serotonin re-

uptake inhibitor (SSRI) class of anƟdepressant drugs gives rise to hyperacƟvity of the HPA axis in basal 

condiƟons as well as blunted corƟcosterone response to mild stress (Bourke et al., 2013). Mice treated 

prenatally with SSRIs displayed enhanced aggressive behaviors relaƟve to vehicle-treated controls in a 

number of studies (Kiryanova & Dyck, 2014; Svirsky et al., 2015; Coleman et al., 1999). SSRIs have been 

shown to both decrease levels of circulaƟng corƟcosterone and lead to impaired negaƟve feedback 

regulaƟon of corƟcosterone in rats (Gobinath et al., 2016; Pawluski et al., 2012). Route of administraƟon, 

dose and Ɵme of tesƟng influence the outcome. That noted, mice exposed to a similar treatment regimen 

to the one that impaired HPA axis negaƟve feedback regulaƟon (Gobinath et al., 2016), demonstrated 

reducƟon in aggressive behavior at adulthood relaƟve to control (Yu et al., 2014). 

Exposure to addicƟve substances and medicines in utero can lead to both hypo and hyperacƟvity of the 

HPA axis later in life. Whether alteraƟons in HPA axis acƟvity in response to challenge represent general 

hypo- or hyper-funcƟon of the axis remains unknown. Drug-induced alteraƟon of HPA axis funcƟon is 

associated with both increase and decreases in aggressive behavior depending on the drug in quesƟon. 

Effects of drug exposure during adolescence, on the other hand, render a more coherent picture. Across 

drug classes, evidence, though scant, indicates that adolescent exposure leads to enhanced HPA axis 

response to stressors, as well as enhanced aggression.  

 6. Conclusions  

We have reviewed the exisƟng literature to assess the potenƟal presence of a link between aberraƟons in 

the development of the HPA axis in a diversity of animal models and the emergence of aggression 

(summarized in Table 1). The literature described is generated from geneƟcally-selected and inbred 

strains of rodents, as well as on the effects of developmental exposure to stress or drugs of abuse. A 

major drawback in establishing any firm conclusion is the lack of systemaƟc studies including equivalent 

manipulaƟons (e.g., Ɵming and duraƟon of treatments) and common protocols for the measurement of 

the HPA axis and aggressive behaviors.  
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Thus, although a general unifying picture cannot be extracted from the reviewed data, there are certain 

commonaliƟes that ought to be emphasized. We found several examples suggesƟng that aberraƟons 

towards abnormally low or abnormally high HPA axis funcƟonality taking place during development are 

associated to increased aggression, frequently characterized by pathological features. Thus, the reviewed 

literature suggests the existence of a U-shape funcƟon between developmental HPA axis reacƟvity and 

the emergence of aggressive phenotypes (Figure 1).  Other data from the animal literature, not reviewed 

here, show that the direct manipulaƟon of glucocorƟcoids at adulthood, leading to both abnormally low 

(Haller et al., 2004; Haller et al., 2001) or high (Haller et al., 1997; Kruk et al., 2004) glucocorƟcoid levels 

can lead to pathological aggression.  This is found alongside alteraƟons in the acƟvity of brain regions and 

circuits implicated in the control of aggression (Haller, 2014a, 2014b). However, a criƟcal issue is whether 

aberrant HPA axis has a causal implicaƟon in the development of aggressive phenotypes.  

 

 

 

 

 

 

 

 

Research linking both aspects from a developmental perspecƟve is scarce and it is thus difficult to outline 

a comprehensive view that implies any parƟcular link between extremes in HPA axis variaƟon and 

features of pathological aggression. Indeed, the HPA axis is not a single unit and various outcomes may 

arise from a unique modificaƟon in the system. For example, a decrease in corƟcosterone producƟon may 

lead to differenƟal behavioral outcomes whether it is associated with a hypersensiƟvity to a regulator of 

aggression or in a negaƟve feedback of the systems. Discrepancies between studies and outcomes, in 

addiƟon to the already menƟoned differences in protocols and species, may arise from the 

inappropriately focal picture observable using single-point analyses of HPA axis funcƟon employed by 

many studies in the field. TradiƟonally, in line with the ‘hypoarousal theory’ of violence (Raine, 1996), 

blunted acƟvaƟon of the stress systems has been proposed to be parƟcularly associated with symptoms 

of psychopathy. However, enhanced HPA axis reacƟvity was also related to pathological aggression in 

several rodent models (e.g., post-weaning social isolaƟon; lines bred for high anxiety, and lines bred for 

maintenance of wildness), potenƟally mimicking emoƟonal-impulsive types of aggression. Importantly, 

Figure 1. U-shaped relaƟonship between HPA 

axis funcƟoning and aggressive behavior.   

HPA axis acƟvity driven toward either hypo- or 

hyper-funcƟon is linked to exaggerated emis-

sion of aggression, oŌen with abnormal fea-

tures.  Species, substrain and developmental 

stage also influence this relaƟonship.  
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Table 1. Summary of literature describing the link between HPA axis funcƟon and aggressive behavior. ↑: represents 

an increase; ↓: a decrease; = not different; ?: not known; SHR: Spontaneously Hypertensive Rat; WKY: Wistar-Kyoto rat; 

F344: Fischer 344 rat; SD: Sprague-Dawley rat. 
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recent evidence in humans suggests that, even within individuals high in psychopathic traits, there might 

be subtypes presenƟng not only blunted, but also high HPA responses to stress (Johnson et al., 2015).  

In conclusion, the reviewed evidence highlights a complex, but potenƟally criƟcal link between 

developmental HPA axis acƟvity and the development of social disturbances. In order to capture the 

causal link between these two elements in a Ɵme- and dose-controlled manner, future animal 

experiments should aim toward specific manipulaƟon of HPA axis funcƟon using a variety of experimental 

approaches. This research is much needed, given the suggesƟon that children with callous-unemoƟonal 

traits might benefit from intervenƟons capable of normalizing their blunted corƟsol levels (van Goozen et 

al., 2007). Importantly, the data reviewed here indicate that geneƟc differences or other factors might 

criƟcally affect neurodevelopmental trajectories influenced by aberraƟons –either high or low- in HPA axis 

funcƟon. 
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Aims 

As outlined in both the general introducƟon, and in Chapter 1, in common with the perinatal period, the 

period comprising late childhood and adolescence represents an addiƟonal developmental window during 

which individuals are highly sensiƟve to the effects of stress. However, not all individuals exposed to stress 

during this period go on to develop psychopathological problems, suggesƟng that addiƟonal qualiƟes held 

by the individual may determine the outcome of exposure to stress. The factors that determine a path 

leading from early life stress to psychopathology are not well understood. This is doubly true for our 

understanding of factors determining individual differences in response to stress exposure. The sensiƟvity 

and responsiveness of the HPA axis has been posited as one factor, differing between individuals, which 

may mediate the outcome of stress exposure. Achieving beƩer understanding of the role of the HPA axis 

in contribuƟng to differenƟal developmental trajectories in response to the same early life experience 

may allow insights leading to improved development, and targeƟng, of intervenƟon strategies.  

The study of gene x environment interacƟons in the development of psychopathology in humans is oŌen 

complicated, not only by the inherent complexity of mechanisms translaƟng environmental inputs into 

behavioral and neurobiological alteraƟons but also by uncontrollable, extraneous factors. The increased 

controllability afforded by the use of animal models may therefore be employed in the dissecƟon of such 

interacƟons.  The research performed in the context of this thesis aimed to further invesƟgate the long-

term behavioral and neurobiological effects of peripubertal stress. However, rather than delving deeper 

into mechanisƟc processes, the invesƟgaƟons presented here focused on the determinaƟon of the 

involvement of differenƟal HPA axis responsiveness in the development of differenƟal neurobehavioral 

outcomes following the same early life experience. While the invesƟgaƟons presented here were 

interested broadly in socio-affecƟve behaviors, our parƟcular interest focused on aggression. We 

addiƟonally sought to assess neurobiological alteraƟons potenƟally underlying behavioral changes. 

ObjecƟves 

ObjecƟve 1 

Early life stress has been associated with the development of pathological aggression in some, but not all, 

individuals exposed to it. The determinants and correlates of this individual difference are not well 

defined. Studies of the brain structure of individuals diagnosed with aggression-related psychopathologies 

have shown pathological aggression to be associated with variaƟon in brain volume in regions important 

in socio-affecƟve funcƟon. It has been demonstrated that exposure to peripubertal stress in rats leads to 

alteraƟons in aggressive behavior such that it becomes pathological in nature. This enhancement in 

aggression has been found alongside behaviorally-consequent shiŌs in acƟvaƟon in the same brain 

regions. The impact of peripuberty stress upon brain structure has not yet been studied, however. Though 

peripuberty stress has been found to impact later aggressiveness in many studies, some have indicated 
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that, in accordance with findings in humans, there were individual differences in the development of 

this response. Our first objecƟve was therefore to determine whether the appearance of individual 

differences in behavioral outcome following peripuberty stress could be substanƟated. To determine 

aggressive rats, considering both quanƟtaƟve and qualitaƟve measures of aggression, we applied a 

profiling approach. We addiƟonally studied the behavioral phenotype of stress-exposed rats in other, 

non-aggression related behavioral tests. In addiƟon, we used magneƟc resonance imaging, in 

combinaƟon with diffusion tensor imaging, to survey neuroanatomical alteraƟons potenƟally 

associated with altered neurobehavioral outcomes. The findings of this study are presented in 

chapter 2.  

ObjecƟve 2 

The HPA axis is a key mediator of adapƟve physiological responses that enable individuals to cope 

with challenging situaƟons. DysregulaƟon of its acƟvity has been widely implicated in the 

development of stress-related psychopathologies, though whether a dysregulated HPA axis can lead 

to psychopathology in the absence of stress is unclear. HabituaƟon of HPA axis responses across 

repeated exposure to the same stressor is a common adaptaƟon. Impairment in this process, 

expressed only in subset of people, has been suggested to represent a risk factor for development of 

psychopathology. Given the ethical and pracƟcal difficulƟes of exposing individuals to repeated 

stress, study of the mechanisms via which impaired stress habituaƟon might lead to psychopathology 

has been stunted. The addiƟonal lack of an appropriate animal model has exacerbated this problem. 

Our second objecƟve was therefore to develop such a model in rats, thus allowing for the controlled 

assessment of whether this factor truly engenders risk for psychopathology. We applied a selecƟve 

breeding strategy, in order to generate lines enriched for stress habituaƟon and lack of stress 

habituaƟon, as indexed by glucocorƟcoid responsiveness to repeated stressors, as well as a control 

line intermediate for the trait. Once lines were developed we assessed the socio-affecƟve behavioral 

profile, as well as the neuroendocrine profile, of rats drawn from each of the lines but not exposed to 

early life stress. Details of the development of the lines, as well as findings regarding their behavioral 

and neuroendocrine profile are reported in chapter 3. 

ObjecƟve 3 

As previously discussed, experience of adversity early in life and dysregulaƟon of hypothalamus-

pituitary-adrenocorƟcal (HPA) axis acƟvity are risk factors oŌen independently associated with the 

development of psychopathological disorders. Having addressed these risk factors in isolaƟon in the 

previous objecƟves, here we asked whether in combinaƟon these factors would interact to shape the 

development and expression of psychopathology differenƟally. To answer this quesƟon we applied 

peripuberty stress, or control condiƟons, to the newly-developed stress-habituaƟng and stress-non-

habituaƟng rat lines. We assessed the long-term effects of the different early life condiƟons upon 
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socio-affecƟve behavior and brain acƟvity in regions frequently found to be sensiƟve to pathological 

alteraƟons following stress. The findings of this study are presented in chapter 4.  
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Abstract 

 

Experience of early life adversity is implicated in the development of aggressive and anƟ-social behavior 

later in life but how negaƟve early life experiences are translated to produce an aggressive phenotype in 

only a subset of individuals is not well understood. MagneƟc resonance imaging (MRI) studies of 

individuals diagnosed with aggression-related psychopathologies show that pathological aggression is 

associated with variaƟon in brain structure in areas important in socio-emoƟonal funcƟon, and that this 

variaƟon may potenƟally be exacerbated by experience of early life stress.  However, studies such as 

these cannot easily parse the relaƟonship between early life stress, brain structure and the development 

of an aggressive phenotype. Applying a combinaƟon of MRI and diffusion tensor imaging (DTI) to an 

animal model of pathological aggression induced by early-life stress, the peripuberty stress model, we 

asked whether individual differences in the development of an aggressive phenotype following stress 

exposure were associated with individual differences in brain structure in rats. We addiƟonally sought to 

examine whether differences in the magnitude and/or adaptaƟon of the stress-responsive hypothalamic-

pituitary-adrenal axis during peripuberty stress exposure might be associated with the development of 

aggression later in life. We show here that exposure to peripubertal stress in rats leads to changes in 

Ɵssue microstructure, but not macrostructure, within several aggression-related brain regions only in 

those individuals displaying an aggressive phenotype. Peripubertally stressed rats not displaying 

aggressive behavior were affected in terms of other non-aggression related behaviors but this phenotype 

was not associated with any observable neuroanatomical alteraƟons in the brain regions examined. 

Moreover, aƩenuaƟon of adaptaƟon of the glucocorƟcoid response to stress across stress exposure was 

found to be associated with higher levels of aggression and reduced volume of infralimbic cortex in stress-

exposed rats. This study thus establishes a strong link between peripubertal stress exposure and structural 

deviaƟons in brain regions in associaƟon with pathological aggression, and points toward differenƟal 

glucocorƟcoid adaptaƟon to repeated stress as a potenƟal underlying mechanism.  It addiƟonally 

highlights the importance of considering individual differences in behavioral response to stress when 

determining neurobiological correlates. 
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IntroducƟon 

 

The influence of early life experiences on the development of psychopathology has been the subject of 

intense research in recent years. Aggression, a core symptom of many psychiatric disorders, has become 

the focus of growing aƩenƟon, and a burgeoning body of literature implicates experience of early life 

adversity with the development of aggressive and anƟ-social behavior later in life (Beach et al., 2011; Caspi 

et al., 2002; Fanning et al., 2014; Lee et al., 2014; Viding & McCrory, 2012; Weder et al., 2009; Widom & 

Maxfield, 1996). There are clear individual differences in vulnerability to early life stress exposure, with 

only a proporƟon of individuals experiencing adversity going on to develop pathological aggression (Caspi 

et al., 2002; Green et al., 2010; Odgers et al., 2008). How negaƟve early life experiences are translated in 

some individuals to produce an aggressive phenotype is not well understood, and achieving beƩer 

understanding would represent a clear benefit to advancement in the prevenƟon and treatment of 

pathological aggression. 

MagneƟc resonance imaging (MRI) studies of individuals diagnosed with aggression-related 

psychopathologies show that, relaƟve to control groups, pathological aggression is associated with 

variaƟon in regional volume in areas important in socio-emoƟonal funcƟon, including prefrontal cortex, 

hippocampus, and amygdala (Barkataki et al., 2006; Coccaro et al., 2016; Coccaro et al., 2015; Dolan et al., 

2002; Raine et al., 2000; Zetzsche et al., 2007). Whether differences in volume are associated with 

alteraƟons in Ɵssue microstructure has not yet been reported. InteresƟngly, volumetric data obtained 

from non-clinical populaƟons suggest that relaƟve severity of exposure to early life adversity is correlated 

with degree of volume differences in the very same regions (Cohen et al., 2006; Hanson et al., 2015; 

Lupien et al., 2011). Recently, some addiƟonal findings have indicated that differences in volume in 

prefrontal cortex and hippocampus may be greater in aggressive individuals with experience of early life 

stress versus those without, as illustrated for example in paƟents with borderline personality disorder 

(Morandoƫ et al., 2013; Sala et al., 2011). However, studies such as these cannot exclude the contribuƟon 

of addiƟonal factors (e.g., socioeconomic, cultural, nutriƟonal, or other differences) to the relaƟonship 

between early life stress, brain structure and the development of an aggressive phenotype, and addressing 

this quesƟon would largely benefit from the use of controlled animal studies. 

AlteraƟons in regional brain structure are thought to be associated with concomitant alteraƟons in 

regional funcƟonality (Draganski et al., 2004; Maguire et al., 2000). Prefrontal cortex, hippocampus and 

amygdala are part of a corƟco-limbic circuitry not only structurally but funcƟonally implicated in 

aggression, both in humans and in animals (Haller, 2014; Kohl et al., 2015; van der Kooij et al., 2014; White 

et al., 2016). All three regions undergo conƟnuous development early in life, rendering them suscepƟble to 

the impact of stress (Casey et al., 2008; Spear, 2000). Though the consequence of early stress on brain and 

behavior has been well studied using animal models, research has tended to focus on stress applied during 

the prenatal and early-postnatal periods. Increasing appreciaƟon of peri- adolescence as an addiƟonal 
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window during which environmental factors may influence developmental outcome has led to surge in 

experiments studying the effects of stress applied during this Ɵme. Our laboratory has developed a model 

that involves exposing rats to a sub-chronic, variable regimen of fear-inducing stressors across peripuberty, 

encompassing pre-puberty and puberty periods (Marquez et al., 2013). Exposure to peripuberty stress 

gives rise to changes in behavior in mulƟple domains but most notably leads to an increase in aggression 

such that it becomes pathological in nature (Cordero et al., 2013; Marquez et al., 2013; Tzanoulinou et al., 

2014). Alongside differences in aggressive behavior, behaviorally-consequent shiŌs in acƟvaƟon have been 

demonstrated in several brain regions, including prefrontal cortex and amygdala (Marquez et al., 2013). 

The influence of peripubertal stress exposure on brain structure has not yet been studied, though 

applicaƟon of alternaƟve variable stress regimens during adolescence suggest that stress may impact 

neuronal morphology within similar regions (Eiland et al., 2012; Isgor et al., 2004).  

It is noteworthy that although the finding that aggressive behavior is enhanced in rats following exposure 

to peripuberty stress has been replicated a number of Ɵmes (Cordero et al., 2012; Cordero et al., 2016; 

Cordero et al., 2013; Marquez et al., 2013; Tzanoulinou et al., 2014), in accordance with findings in 

humans, there is substanƟal variability in later aggressiveness between individuals exposed to the stress 

(Tzanoulinou et al., 2014; Cordero et al., 2016). This implicates the peripubertal stress model as a 

potenƟally useful one with which to invesƟgate the basis of individual differences in stress-induced 

aggression more generally. The correlates of variability in aggression remain to be determined but the 

literature suggests that individual differences in hypothalamic-pituitary-adrenal (HPA) axis acƟvity in 

response to stress exposure represent a plausible candidate (Veenit et al., 2013).  

Here, using a combinaƟon of MRI and diffusion tensor imaging (DTI), we asked whether individual 

differences in the development of an aggressive phenotype following peripuberty stress exposure were 

associated with individual differences in brain structure. Rather than rely on a single measure of 

aggression, we adopted a profiling approach to allow a more holisƟc assessment of the aggressiveness of 

individual rats, taking into consideraƟon both quanƟtaƟve and qualitaƟve indices.  Previous applicaƟon of 

this approach has enabled the determinaƟon of neurobiologically meaningful subtypes of response to 

trauma (Cohen et al., 2004; Ritov et al., 2016). We focused our invesƟgaƟon on medial prefrontal cortex, 

amygdala, and hippocampal formaƟon, brain regions that are: i) subject to ongoing development during 

adolescence (Spear, 2000; Casey et al., 2008); ii) demonstrated to be affected by peripubertal stress 

(Marquez et al., 2013), as well as other models of unpredictable stress applied during adolescence (Isgor et 

al., 2004; Eiland et al., 2012); iii) of importance in the performance of aggression (Haller, 2014; van der 

Kooij et al., 2014; Köhl et al., 2015). Furthermore, in order to enquire whether differences in the 

magnitude and/or adaptaƟon of the stress-responsive HPA axis during peripuberty stress exposure might 

be associated with the development of aggression later in life, we analyzed the link between the emerging 

phenotype and glucocorƟcoid responsiveness to the stress. This is the first study to apply such an approach 

to the study neuroanatomical correlates of individual differences in the long-term aggressogenic response 

to early life stress. 
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Materials & Methods 

Subjects 

Experimental subjects were male offspring of Wistar Han rats, bought from a commercial supplier 

(Charles River, France) and bred in our animal facility. At weaning on p21, pairs of rats from different 

liƩers were matched according to weight and mixed among home cages. Animals in the same home-cage 

were always assigned to the same experimental group. Juveniles used in the social preference test and 

females used as cohabitants were of the same strain, purchased from the same supplier. Rats were 

maintained on a 12-h light–dark cycle (lights on at 0700h), in a temperature- and humidity-controlled 

environment (21 ± 1 °C; 55% humidity ± 5%), with ad libitum access to laboratory chow and water. 

Experimental subjects remained undisturbed, except for weekly cage changes, unƟl experimental 

procedures began at adulthood (designated as p90). Prior to the first experiment, all rats were handled 

on three occasions, for two minutes per occasion. Experiments were performed between 0800 and 

1200h, except where otherwise stated. All procedures were conducted in accordance with the Swiss 

NaƟonal InsƟtuƟonal Guidelines on Animal ExperimentaƟon and approved by a license from the Swiss 

Cantonal Veterinary Office CommiƩee for Animal ExperimentaƟon. 

Peripuberty Stress protocol 

The stress protocol was performed as previously described (Marquez et al., 2013). Following exposure to 

an open field (50 x 50 x 30cm) for five minutes on p28, the stress protocol consisted of the presentaƟon 

of two different stressors, each one lasƟng 25 minutes (see Fig. 1 for exact schedule). These were either; 

exposure to the syntheƟc fox odor trimethylthiazoline (TMT; Phero Tech Inc., Canada) or to an elevated 

plaƞorm (EP). TMT exposure was administered in a plasƟc box (38 x 27.5 x 31 cm) via a scent-charged 

cloth. The box was placed under bright light (210–250 lx). The elevated plaƞorm (12 x 12cm, elevated 

95cm from the ground) was also under direct bright light (470–500 lx). Following each stress session, 

animals were returned to neutral cages for 15 minutes. A transparent Plexiglas wall perforated with holes 

separated pairs of cagemates during this Ɵme. Following the holding period, animals were returned to 

their home cage. The stressors were applied during peripuberty, on seven intermiƩent days between p28

–p42, following a variable schedule. To assess the effect of exposure to peripuberty stress on HPA axis 

acƟvity we took several blood samples from stressed rats across the course of the protocol. Specifically, 

we obtained tail blood at the offset of stress on the first day (p28), the third day (p30) and the final day 

(p42) of the protocol.  

Behavioral procedures 

As indicated above, this study focuses on the idenƟficaƟon of neurodevelopmental trajectories that lead 

to differenƟal aggression following exposure to peripubertal stress. However, in order to gain a beƩer 

understanding of the behavioral phenotype associated with differences in aggression, animals were 
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addiƟonally characterized in a broader baƩery of behavioral tests. The sequence of behavioral tests was 

chosen with the aim of submiƫng animals to tests inducing low to increasing stress levels. The full baƩery 

included exposure to a novel environment, the elevated plus maze, a test of social preference, the 

resident-intruder test, and forced-swimming (see Fig. 1 for details).  

Novelty stress  

Following 20 minutes of exposure to a dimly-lit (30 lx) novel environment (circular plasƟc container; 35cm 

high, 25cm diameter), blood samples were obtained by tail-nick. A second tail-blood sample was obtained 

from the same tail-nick following 30 minutes in a neutral holding cage. Rats were then returned to their 

homecage. The containers were cleaned with 5% ethanol soluƟon and dried between animals.  

Elevated Plus Maze 

Anxiety-like behavior was evaluated using the EPM test (Pellow & File, 1986). The apparatus consists of 

two opposing open arms (50 x 10cm) perpendicular to two enclosed arms (50 x 10 x 50cm) that extend 

from a central plaƞorm (10 x 10cm), elevated 65 cm above the floor. Light levels were maintained at 14-16 

lx on the open arms and 5-7 lx on the closed arms. At the start of the test, the rat was placed on the 

central plaƞorm facing a closed arm and allowed to explore the maze for five minutes. In between 

animals, the apparatus was cleaned with 5% ethanol soluƟon and dried. Behavior was monitored using a 

ceiling-mounted video camera and analyzed with a computerized tracking system (Ethovision 9; Noldus IT, 

Netherlands). The Ɵme spent and entries in the open and closed arms, and distance moved, were 

automaƟcally recorded.  

Figure 1 Experimental design. Animals were weaned at p21 and assigned to Control or Peripuberty Stress 

(PPS) groups. The stress protocol consisted of exposure to an open field (OF) on p28, followed by an elevated 

plaƞorm (EP), with predator odor (trimethylthiazoline; TMT) also used as a stressor. Stressors were presented in 

an intermiƩent and variable fashion, as depicted in the schema. Control animals were handled briefly on the days 

on which their experimental counterparts were exposed to stress. Behavioral tesƟng started at p90, with a delay 

of one week imposed between each test in the series of tests.  
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Social Preference test 

The social preference test was performed as described by Tzanoulinou and colleagues (2014). Briefly, the 

test was performed in a rectangular, three-chambered box that included a central compartment and two 

side compartments. AŌer five minutes of habituaƟon to the central chamber, retractable doors were 

removed and the rat was allowed to explore the whole apparatus for 10 minutes. Side compartments 

were each equipped with a central, floor-fixed, transparent, perforated cylinder that contained either an 

unfamiliar male juvenile rat or an unfamiliar object. The apparatus was cleaned with 5% ethanol soluƟon 

and dried between each trial. Each trial was video-recorded (MediaCruise, Canopus Co. Ltd, Japan) and 

manually scored offline by an experimenter blind to experimental group. The percentage of Ɵme spent 

exploring (snout <2cm from the cylinder) either the juvenile or the novel object was recorded, and a social 

preference raƟo calculated according to the formula: Ɵme spent exploring the juvenile/Ɵme spent 

exploring the juvenile + object. 

Resident-intruder test 

Prior to the night of the resident-intruder (RI) test, experimental rats cohabited with a female partner for 

10 days in order to encourage territoriality. The female was removed 30 minutes before the onset of the 

test, and replaced aŌerwards. The test was performed during the beginning of the dark cycle (between 

1900 and 2200h). The resident was exposed in its home cage to a smaller (5-10% lighter), unfamiliar male 

intruder of the same strain for 30 minutes. Each intruder was used only once. Encounters were video-

recorded and scored offline by an experimenter blind to the experimental group, assisted by Observer 

soŌware (Noldus IT, Netherlands). The following parameters were quanƟfied in terms of frequency and 

duraƟon: aƩack, offensive upright, lateral threat, keeping down, biƟng, social invesƟgaƟon, non-social 

invesƟgaƟon and auto-grooming. The cumulaƟve duraƟon of the first four behaviors were summed to 

provide a measure of total offensive behavior. Latency to the first offensive event iniƟated by the resident 

was also recorded.  

Further detailed video analysis was performed to idenƟfy the signaling, targeƟng, and intensity of biƟng 

aƩacks, as described by Toth and colleagues (2012). Specifically, a bite was considered to be signaled 

when it occurred in the context of an ongoing bout of offensive behavior. Bites were scored as targeted 

toward vulnerable (head, throat and belly) or non-vulnerable (back or flanks) parts of the opponent. Bites 

were also scored as hard or soŌ, depending on the response elicited by the bite. A hard bite was scored 

when the bite evoked a strong startle response from the opponent. SoŌ bites elicited liƩle or no response 

from the opponent. The proporƟon of each of the following was calculated for all bites performed by one 

rat: i) unsignalled versus signaled bites; ii) bites targeted to vulnerable versus non-vulnerable areas; iii) 

hard versus soŌ bites. For bite-related measurements the number of rats in the control group reduced to 

eight, since three control rats did not perform any bites and to include them in the analysis with scores of 

zero would have biased results. 
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Forced swimming test 

Whilst sƟll cohabitaƟng with females, rats were submiƩed to a forced-swimming test (FST) to evaluate 

depression-like behavior (Porsolt et al., 1978). Animals were placed in a plasƟc beaker (25 cm diameter x 

46 cm) containing 30 cm of water (25°C) for 15 minutes. A second session was performed 24h later for 5 

minutes. Both sessions were recorded using a ceiling mounted video camera, and the Ɵme spent 

immobile (making only those movements necessary to keep the snout above the water), swimming or 

climbing was quanƟfied manually with the aid of in-house soŌware (Clicker; EPFL, Switzerland) by an 

experimenter who was blind to the experimental condiƟon.  

Profiling for aggression 

There are many behaviors exhibited during a social encounter which are considered to engender 

aggression. These can be both ‘normal’ (i.e. within species-typical norms) and ‘abnormal’ in nature 

(Haller, 2014). In order to measure holisƟcally the development of an aggressive phenotype following 

stress exposure, an individual profiling approach was applied (Cohen et al., 2004; Ritov et al., 2015). Here, 

several indices of behavior observed during the resident-intruder encounter, including those considered 

to reflect both normal and abnormal aggression, were profiled. ClassificaƟon criteria were defined 

according to the extremes (20th or 80th percenƟle, depending on index) of the control group’s distribuƟon 

for each measure, including: total duraƟon of offensive behavior, frequency of offensive behaviors, 

latency to first offence, frequency of abnormal bites (either unsignalled or to a vulnerable body part), 

proporƟon of all biƟng aƩacks that were unsignalled, proporƟon of all biƟng aƩacks targeted toward 

vulnerable parts, and proporƟon of all biƟng aƩacks that elicited a strong response. Every rat that scored 

above (or below in the case of the sole 20th percenƟle measure; latency to first offence) the cutoff for a 

parƟcular measure was scored as being ‘aggressive’ in that measure. When a rat accrued five such scores, 

out of a possible seven, it was considered as an ‘aggressive’ rat overall.  

Aggression z scores were calculated from the seven variables described above. The z scores were 

integrated to derive a single aggression score, subsequently used as a conƟnuous variable against which 

Ɵssue volume and mean diffusivity (MD) values for each region of interest were correlated (see 

Supplementary informaƟon for further details).  

Perfusion 

Two weeks aŌer the last behavioral test, rats were anestheƟzed with a lethal dose of pentobarbital 

(Esconarkon, Streuli Pharma, Switzerland, 150 mg/kg body weight) and transcardially perfused according 

to the opƟmal method described by Cahill and colleagues (2012). Heads were stored in 4% PFA overnight, 

aŌer which they were rehydrated for a minimum of one week prior to scanning in phosphate-buffered 

saline (PBS) containing 0.05% sodium azide.  
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Ex vivo DTI-MRI 

Prior to scanning, the jaw and skin of each head was removed to allow placement into a 39 mm diameter 

birdcage radiofrequency coil (Rapid GmbH). Samples were immersed in fluorinated liquid (Galden, Solvay) 

to reduce suscepƟbility arƟfacts. MagneƟc resonance (MR) images were then acquired with a 7-Tesla pre-

clinical scanner (Agilent Technologies) in a single overnight session. Two sets of MR images were 

acquired: a high-resoluƟon T2-weighted 3D Fast Spin-Echo (3DFSE) image for structural analysis and a 

Diffusion Tensor Imaging (DTI) protocol. The MR parameters were as follows: 

3DFSE: EffecƟve TE 60ms, TR 2000ms, matrix 192x128x192, isotropic 0.15mm voxels, 1 average, 

acquisiƟon Ɵme 1h 44 min. 

DTI: R 5000ms, TE 35ms, 10 averages, matrix 128x96x96, voxel 0.2x0.2x0.5mm, 40 conƟnuous slices, 30 

diffusion direcƟons with b=2000 s/mm2 and 4 b=0 images, acquisiƟon Ɵme 3h 54 min. 

Image processing and staƟsƟcal analysis 

Volumetric and relaxometry analyses within Regions of Interest (ROIs) 

The MR images were first converted to NIFTI format from the manufacturer’s proprietary format using in 

house soŌware. Structural brain images were analyzed by a region of interest (ROI) method that allowed 

automated comparison of the grey and white maƩer changes between peripuberty stress subgroups and 

control rats in predefined areas. The selected ROIs fulfilled the following criteria: i) subject to ongoing 

development during adolescence (Spear, 2000; Casey et al., 2008); ii) previously demonstrated to be 

affected by peripubertal stress (Marquez et al., 2013), as well as other models of unpredictable stress 

applied during adolescence (Isgor et al., 2004; Eiland et al., 2012); iii) of demonstrable importance in the 

performance of aggression (Haller, 2014; van der Kooij et al., 2014; Köhl et al., 2015). Medial prefrontal 

cortex, hippocampal formaƟon, and amygdala all met these criteria. We addiƟonally selected a 

subcorƟcal control region, sƟll developing during adolescence but not implicated in aggressive behavior, 

globus pallidus. FSEMS anatomical images from each rat were iniƟally registered to a structural template 

using a rigid body registraƟon and then subjected to unified segmentaƟon tool in SPM8 (Ashburner & 

Friston, 2005), which corrects the intensity uniformity and then performs image segmentaƟon by 

classifying different Ɵssues [i.e. grey maƩer (GM), white maƩer (WM) and cerebrospinal fluid (CSF)] 

according to a set of Ɵssue probability templates (Valdés-Hernández et al., 2011). Following 

segmentaƟon, the Ɵssue class images (GM, WM and CSF) were used to create a populaƟon-specific 

template (PST) by running the diffeomorphic anatomical registraƟon using exponenƟated lie algebra 

(DARTEL) template-creaƟon tool in SPM8 (Ashburner, 2007). Next, only the segmented grey and white 

maƩer Ɵssue class images were used and spaƟally and nonlinearly normalized (warped) using the outputs 

from the previous DARTEL step. The DTI parameter maps were calculated using FSL (dƟfit) and consisted 

of Mean Diffusivity (MD) and FracƟonal Anisotropy (FA). Template rat brain was manually parcelated into 
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regions of interest (ROIs) using J-IM soŌware (Xinapse Systems, UK). The ROI’s were then converted into 

binary image masks and the quanƟtaƟve data (FA and MD) extracted from each ROI from each (template-

registered) image using MARSbar tool box in SPM8 (BreƩ et al., 2002). 

Immunofluorescence 

AŌer scanning, brains were removed from the skull and re-fixed in 4% PFA overnight, before being 

cryoprotected in 30% sucrose soluƟon and frozen at -80°C. Subseries of coronal secƟons (30 μm thick), 

including medial prefrontal cortex, were cut on a cryostat and subsequently processed for 

immunofluorescence. Free-floaƟng secƟons were triple labeled for myelin basic protein (MBP), NeuN, 

and DAPI. The floaƟng secƟons were rinsed briefly with PBS then blocked for 1h in PBS containing 0.1% 

Triton X-100 (Sigma-Aldrich) and 5% normal donkey serum (Jackson ImmunoResearch) and then 

incubated overnight at 4°C with rabbit anƟ-MBP (Abcam, AB40390, 1:200) and mouse anƟ-NeuN 

(Millipore, MAB377, 1:100). The secƟons were washed in PBS and incubated for 2h at room temperature 

with the secondary anƟbodies: donkey-anƟ-rabbit IgG Alexa 568 conjugate (Lifetechnologies, A10042, 

1:1000) and goat-anƟ-mouse IgG Alexa 488 conjugate (Lifetechnologies, A11029, 1:800). AŌer washing in 

PBS the secƟons were incubated 10 minutes in DAPI (Sigma, 1:10000), rinsed and mounted with 

Fluoromount-G (Southern Biotech).  

Images were captured with a Zeiss LSM700 confocal microscope using a 20X/0.8 objecƟve. Sample images 

were captured at the same coordinates for each animal on each coronal slice. A mosaic of 16 images was 

captured for one hemisphere per slice, covering 750μm of the infralimbic cortex, starƟng from the medial 

hemispheric boundary. LSM images were sƟtched together using the Grid-CollecƟon SƟtching plug-in for 

FIJI (Preibisch et al., 2009). MBP fibers were delineated using Moments thresholding (Tsai, 1985) followed 

by a median filter of 2px on the binary mask. PosiƟve pixels of the fiber mask were summed verƟcally 

through the width of the image. This summed pixel value was normalized by the image height. The 

resulƟng counts were then binned into 6 equal bins (layers) represenƟng absolute distance from the 

medial edge of the cortex. Neuronal cells were delineated by scaling the original images by 0.2, applying a 

grayscale closing operaƟon followed by a Laplacian of Gaussian filter of sigma= 4. Local minima within the 

Laplacian image were detected with a tolerance of 0.05. These maxima were filtered in order to keep only 

the ones whose average intensity was 1.3 Ɵmes higher than their local background on the original NeuN 

image. Similarly to MBP, the number of NeuN posiƟve cells detected following filtering was counted 

according to layer. In both cases, values from all secƟons from one animal were averaged to provide a 

single value per animal. 

CorƟcosterone measurement  

Measurements of free corƟcosterone were obtained from all blood plasma samples, via use of an 

enzymaƟc immunoassay kit performed according to manufacturer’s instrucƟons (Enzo Life Sciences, 
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Switzerland). Levels were calculated using a standard curve method. 

StaƟsƟcs 

Data were analyzed using SPSS 17.0 (Chicago, USA). One rat was excluded from the control group in all 

measures as it was a staƟsƟcal outlier (defined as more than three standard deviaƟons from the mean) in 

the key measure of several behavioral tests. Results are presented as the mean ± SEM. Variables derived 

from the resident-intruder test were analyzed using two-tailed Mann-Whitney tests. StaƟsƟcal tesƟng of 

other behavior tests, MRI-DTI data and immunofluorescence were performed using Kruskal-Wallis tests. 

Bonferroni-corrected, Mann-Whitney post-hoc tests were used to explore significant results, with 

comparisons performed between the control group and each of the two peripuberty stress groups. A 2-

way repeated measures ANOVA was used to analyze measurements of corƟcosterone concentraƟon 

obtained from plasma taken across the stress protocol, with peripuberty stress subgroup as the between-

subjects factor and postnatal day as the within-subjects factor. Similarly, a 2-way repeated measures 

ANOVA was used to analyze measurements of MBP and NeuN immunostaining, with peripuberty stress 

subgroup as the between-subjects factor and layer of infralimbic cortex as the within-subjects factor. 

CorrelaƟons of corƟcosterone measures against bite frequency and regional volume, and aggression 

score against mean diffusivity, were performed using Spearman’s method. StaƟsƟcal significance level 

was set at p<0.05. A p-value was considered as tending toward significance when 0.05 ≤ p ≤ 0.1. 

Results 

Exposure to peripuberty stress gave rise to an aggressive phenotype 

We first evaluated whether rats exposed to peripuberty stress showed differences in aggression relaƟve 

to the non-stressed control group, and independent of an individual differences approach. In accordance 

with previously published data from our lab (Cordero et al., 2013; Marquez et al., 2013; Tzanoulinou et 

al., 2014), peripubertally stressed rats displayed an aggressive phenotype (Aggression z score: U=13, 

p<0.01). Breaking down the cumulaƟve z score into individual variables, group differences in total 

percentage of Ɵme engaged in offensive behavior (Fig. 2A: U=49, n.s.) and frequency of offensive 

behaviors (Fig. 2B: U=59.5, n.s.) were not evident. However, peripubertally stressed rats engaged in 

offensive behavior more readily (Fig 2C: U=32, p<0.05), and the biƟng aƩacks they performed were of 

proporƟonately greater intensity (Fig 2G: U=16, p<0.05). Peripubertally stressed rats also displayed non-

significant trends toward higher proporƟon of biƟng aƩacks targeted to vulnerable body parts of the 

opponent (Fig 2F: U=24, p<0.1), as well as higher frequency of aƩacks characterized as abnormal in terms 

of targeƟng or signaling (Fig 2E: U=28, p<0.1). BiƟng aƩacks were equally well signaled to the opponent 

(Fig 2H: U=43, n.s.). 

Individual differences in development of an aggressive phenotype suggest two subtypes of 

behavioral response to peripuberty stress 
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Figure 2 There were individual differences in the development of an aggressive phenotype following exposure 

to peripuberty stress (PPS). When exposed to an unfamiliar intruder, adult PPS rats did not differ at the group level 

from the control group in terms of the total amount of Ɵme spent engaged in offensive behavior (A), nor in the 

frequency of offensive behaviors (B). However, PPS rats did offend more readily (C). Compared to control rats, the 

aƩacks of PPS rats tended to be more frequently abnormal in nature (E), with a non-significant trend to target 

vulnerable body parts more readily (F). A higher proporƟon of biƟng aƩacks performed by PPS rats were ‘hard’, 

eliciƟng a strong startle response from the opponent (G). Control and PPS rats showed similar signaling of their 

intent to aƩack (H). Significant differences between groups are indicated by asterisks (Mann-Whitney tests; + = 

p<0.1; * = p<0.05; see text for further details). Large inter-individual variability was evident in all aspects of 

aggressive behavior. Profiling was conducted using the values of the control group as a reference. Dashed lines 

indicate the 80th (A, B, E, F, G, H) or 20th (C) percenƟle for each variable considered within the profile. A rat was 

considered to be aggressive overall when it exceeded the cutoff in a minimum of five of these indices. This yielded 

two subgroups amongst PPS-exposed rats, the non-aggressive (n=7) and aggressive (n=5) individuals (D). 
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As predicted and as previously observed (Tzanoulinou et al., 2014; Cordero et al., 2016), we observed 

variability in performance of aggression between individuals exposed to peripuberty stress. In order to 

discern individuals more affected in terms of aggression following stress, we applied a profiling approach 

according to the distribuƟon of scores from the control group following previous contribuƟons to the 

literature (Cohen et al., 2004; Ritov et al., 2015). ClassificaƟon was made according to the upper 80th 

percenƟle of the control distribuƟon for the variables; specifically: total duraƟon of offensive behavior 

(>10.92%), frequency of offensive behaviors (>130), latency to first offence (<78.8s), frequency of 

abnormal bites (>1), proporƟon of all biƟng aƩacks that were unsignalled (>0.17), proporƟon of all biƟng 

aƩacks targeted toward vulnerable parts (>0.11), and proporƟon of all biƟng aƩacks that were 

‘hard’ (>0.5). Rats were classified for each variable (Fig. 2A-C, ‘normal’ aggression; Fig. 2E-H, ‘abnormal’ 

aggression). Every rat achieving an aggressive score in five of the seven variables was classified as an 

aggressive rat overall. This delineated two subpopulaƟons within the peripubertal stress group, depicted 

in Fig. 2D, one defined as ‘aggressive’ (n=5) and the other as ‘non-aggressive’ (n=7).  

Non-aggressive peripubertally stressed rats were affected by stress in other non-aggression 

related behavioral domains 

Behavioral responses of the two idenƟfied behavior profiles were compared to control, non-stressed 

animals in a variety of behavioral tests. When exposed to the elevated plus maze, a test of anxiety-like 

behavior, a difference between the three groups with regard to the percentage of Ɵme spent on the 

open, unprotected arms of the maze was found (Fig. 3B: H(2)=6.447, p<0.05). Post-hoc tests revealed 

that control and aggressive groups did not differ in this respect (U=27, n.s.), rather, the non-aggressive 

group showed a reducƟon in Ɵme spent on the open arm relaƟve to control (U=13, p<0.025). No 

difference in general locomoƟon was found on the plus maze, with each group travelling a similar 

distance within five minutes (H(2)=2.01, n.s.). A similar difference between subgroups was observed in 

the social preference test (Fig 3C: H(2)=8.658, p<0.05). Specifically, non-aggressive rats showed a 

reducƟon in social preference compared to the control group (U=5, p<0.005), whereas the aggressive 

group did not (U=17, n.s.). The decrease in the preference raƟo observed in non-aggressive rats was 

driven by increased exploraƟon of the object (U=8, p<0.025), as well as a tendency towards differenƟal 

exploraƟon of the juvenile between groups (H(2)=5.162, p<0.1). In contrast, experience of peripuberty 

stress did not lead to any difference in corƟcosterone responsiveness to novel environment, a mild form 

of stressor (Fig. 3A: H(2)=1.528, n.s.). AddiƟonally, we found no difference between groups in the Ɵme 

spent immobile during the first exposure to forced swimming (H(2)=1.02, n.s.), nor the second (Fig. 3D: 

H(2)=0.287, n.s.). See Table 1 for further details of parameters from each behavioral test. 
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Table 1  Results obtained for Control, PPS non-aggressive, PPS aggressive rats in behavioral tests 

assessing anxiety-related behavior, social preference, and depression-like behavior. (Kruskal-Wallis tests: T = 

p<0.1; * = p<0.05; ** = p<0.01, n.s. = not significant) 
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Figure 3 Individual differences in the behavior of following exposure to peripuberty stress (PPS) were found in 

other measures of emoƟonality. Non-aggressive PPS rats spent less Ɵme on the open arm of an elevated plus maze 

(B) and showed reduced preference for a social target in a test of sociability (C) relaƟve to the control group. These 

differences were not evident in PPS rats classified as aggressive. No differences were found between either of the 

peripubertal stress groups and the control rats in corƟcosterone response to novelty stress (A), or in immobility 

during the second exposure to forced swimming (D). Significant differences between groups are indicated by 

asterisks (Mann-Whitney post-hoc tests: ns = non-significant; * = p<0.025; ** = p<0.005; see text for further details). 

Individual differences in aggression following peripuberty stress were not associated with 

differences in brain macrostructure in stress-sensiƟve brain regions 

Ex vivo structural MRI revealed no difference between the groups in total brain volume (H(2)=1.71, n.s.), 

nor in corƟcal thickness (H(2)=1.615, n.s.). Analyses indicated that volumes did not differ between 

subgroups within any of the ROIs measured (prelimbic cortex: H(2)=0.875, n.s.; infralimbic cortex: H(2)

=1.068, n.s.; amygdala: H(2)=0.16, n.s.; hippocampus: H(2)=1.168, n.s.; subiculum: H(2)=0.454, n.s. & 

GP: H(2)=0.125, n.s.). 

Individual differences in aggression following peripuberty stress were associated with 

differences in brain microstructure in stress-sensiƟve brain regions  

In addiƟon to assessing volumes with structural MRI, we obtained measures of Ɵssue microstructure 

using diffusion tensor imaging in the same ROIs.  We found a, largely, bilateral reducƟon of mean 

diffusivity in medial prefrontal cortex, hippocampal formaƟon and amygdala, but not in the globus 

pallidus, of aggressive rats (Fig. 4A, B). In medial prefrontal cortex, group differences were found in 

infralimbic cortex (LeŌ: H(2)=7.963, p<0.05; Right: H(2)=7.963, p<0.05), but only tended to differ in 

prelimbic cortex (LeŌ: H(2)=4.673, p<0.1; Right: H(2)=5.98, p<0.1). Post-hoc comparisons revealed that 

the differences in infralimbic cortex were related to a reducƟon of mean diffusivity in the aggressive 

group relaƟve to the control group (LeŌ: U=6, p<0.025; Right: U=7, p<0.025). The non-aggressive group 

did not differ from the control group (LeŌ: U=29, n.s.; Right: U=35, n.s). The same paƩern of differences 

was evident in hippocampus (LeŌ: H(2)=9.248, p<0.01; ctrl/aggr: U=3.5, p<0.005; ctrl/non-aggr U=28, 

n.s.; Right: H(2)=6.243, p<0.05; ctrl/aggr: U=5, p<0.025; ctrl/non-aggr: U=31, n.s) and subiculum (LeŌ: H

(2)=9.801, p<0.01; ctrl/aggr: U=0, p<0.0005; ctrl/non-aggr U=37, n.s.; Right: H(2)=7.89, p<0.05; ctrl/aggr: 

U=3, p<0.025; ctrl/non-aggr: U=27, n.s), but only unilaterally in amygdala (LeŌ: H(2)=7.815, p<0.05; ctrl/

aggr: U=8, p<0.025; ctrl/non-aggr U=30, n.s.). No significant group differences were observed in globus 

pallidus (LeŌ: H(2)=0.765, n.s.; Right: H(2)=0.153, n.s.). 

As indicated above, we also derived an integrated aggression z score for each rat from measures 

obtained during the resident-intruder test. These z scores were found to correlate with mean diffusivity 

(MD) values obtained for each region. See supplementary figures 1 & 2 for further details.  
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The reducƟon in the mean diffusivity in infralimbic cortex of the aggressive subgroup was not 

related to abundance of myelin, nor to the number of neurons, within the region.  

Differences in mean diffusivity detected during diffusion-tensor imaging may derive from a number of 

alteraƟons in Ɵssue microstructure. In order to start addressing whether there was any disƟnct 

histological basis for the differences we had observed, we applied immunostaining for myelin basic 

protein, a major component of mature oligodendrocytes, and for NeuN, a neuronal nuclear anƟgen, to 

several secƟons of infralimbic cortex taken from each rat (Fig. 5). In analyzing the immunofluorescent 

images, we further split secƟons into equally sized zones, starƟng from the medial edge of the 

hemisphere and working toward the corpus callosum. Analysis revealed that though abundance of each 

protein varied across layers of cortex in an expected fashion (m.e. of layer: MBP: F(5, 95)=116.9, p<0.0001; 

NeuN: F(2,19)=285.32, p<0.0001), this did not differ as a funcƟon of experimental group (layer*group: 

MBP: F(10,95)=1.30, n.s.; NeuN: F(10,95)=0.911, n.s.). No effect of experimental group was found in the case 

of either protein when considering the region as a whole (m.e. group: MBP: F(2,19)=2.004, n.s.; NeuN: F

(2,19)=0.547, n.s.).  

 

Figure 4 Development of an aggressive phenotype following peripuberty stress exposure was associated 

with reducƟons in mean diffusivity in subcorƟcal brain regions oŌen associated with aggression but not in a 

control region not associated with aggression. Several of these differences were common between the leŌ (A) 

and right (B) hemispheres of the brain. Significant differences between groups are indicated by asterisks (Kruskal

-Wallis tests (uppermost line): + = p<0.1; * = p<0.05; ** = p<0.01; Mann-Whitney post-hoc tests: ns = non-

significant; + = p<0.05; * = p<0.025; ** = p<0.005; *** = p<0.0005; see text for further details). AbbreviaƟons: 

PLCx = prelimbic cortex; ILCx = infralimbic cortex; Amyg = amygdala; Hippo = hippocampus; Sub = subiculum; GP 

= globus pallidus.  
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Differences in the paƩern of corƟcosterone responsiveness to peripuberty stress are associated 

with aggression phenotype, and also with volume of infralimbic cortex 

Analysis of the corƟcosterone concentraƟon within the blood plasma obtained at several Ɵmepoints 

during the peripuberty stress exposure revealed a difference in the paƩern of glucocorƟcoid 

responsiveness to stress across the different days (Fig 6A: day*subgroup interacƟon: F(2,20)=6.378, 

p<0.01). The non-aggressive group had higher corƟcosterone levels than the aggressive on both p28 and 

p42 (p28: t(10)=3.834, p<0.01; p42: t(10)=3.108, p<0.05), though when days were collapsed, the groups did 

not differ in levels of corƟcosterone (F(1,10)=3.193, n.s.). IrrespecƟve of subgroup, corƟcosterone levels 

declined across exposure to stress (F(2,20)=13.946, p<0.001).  

Though the corƟcosterone response to stress of the aggressive rats was lower on first exposure to stress, 

levels in this parameter did not show significant correlaƟon with bite frequency during the resident-

intruder test (Fig 6B: ρ=-0.49, n.s.). We found that when the corƟcosterone response to the third stress 

(p30) was considered in relaƟon to the first response (p28, i.e. a measure of response adaptaƟon over 

repeated stress exposures), there was significant correlaƟon with bite frequency in the resident-intruder 

test (Fig 6C: ρ=0.7, p<0.05). This indicated that rats whose HPA axis response to repeated stress 

habituated in a more dramaƟc fashion were less aggressive at adulthood.  CorƟcosterone adaptaƟon 

values were also found to correlate with volume of infralimbic cortex (Fig 6D: ρ=-0.58, p<0.05), such that 

Figure 5 Differences in mean diffusivity found in infralimbic cortex are not related to changes in the abundance 

of myelin basic protein (B), nor in number of cells posiƟve for NeuN, a neuron-specific nuclear marker (C). PosiƟon 

relaƟve to bregma at which infralimbic cortex was sampled from each rat, alongside a representaƟve staining (A).  

 



62 

greater adaptaƟon was associated with larger infralimbic cortex volume.  AdaptaƟon of HPA axis response 

to stress did not correlate with any further measures relaƟng to brain structure (data not shown). 

 

 

Figure 6 Development of an aggressive phenotype following peripuberty stress (PPS) exposure is 
associated with differenƟal corƟcosterone responsiveness to repeated stress exposure. Rats from the PPS 
aggressive subgroup had lower corƟcosterone at the offset of stressors on p28 and p42 than those from the 
PPS non-aggressive subgroup, and this paƩern was reversed at the p30 Ɵmepoint. Significant group by 
postnatal day interacƟon is indicated by asterisks (Repeated measures ANOVA: ** = p<0.01; see text for 
further details). CorƟcosterone response at the offset of stressors on p28 was not significantly correlated with 
bite frequency in the resident-intruder test, an index of aggression (B). However, habituaƟon of corƟcosterone 
response to stress between p28 and p30 was associated with aggression (C).  It was also associated with 
volume of infralimbic cortex (D).  The habituaƟon percentage was calculated with the formula (p30 CORT/p28 
CORT)*100 and a score of 100 therefore represents a total lack of habituaƟon in the corƟcosterone response 
to stress on p30.   Spearman’s correlaƟons and associated p-values are shown on graphs (ρ = rho). 
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Discussion 

We show here that exposure to peripubertal stress in rats leads to reducƟons in mean diffusivity within 

several aggression-related brain regions only in those individuals displaying an aggressive phenotype. We 

also show that peripubertally stressed rats not displaying aggressive behavior were affected in terms of 

other non-aggression related behaviors, specifically showing increased anxiety-like behavior and reduced 

sociability. However, this phenotype was not associated with any observable neuroanatomical 

alteraƟons in the brain regions examined.  

It is important to note that, when considered at the group level, the behavioral findings resulƟng from 

peripubertal stress, in terms of increased aggression and anxiety, and reduced sociability, are in line with 

previous findings from our laboratory (Cordero et al., 2012; Marquez et al., 2013; Tzanoulinou et al., 

2014). Importantly, by applying an aggression profiling approach, we show criƟcal individual differences 

in the long-term response to peripubertal stress. This approach supports earlier contribuƟons to the 

literature that have emphasized the importance of examining individual differences when asking 

quesƟons regarding neurobiology associated to a behavioral outcome (Cohen et al., 2004; Anacker et al., 

2016; Ritov et al., 2016). In this instance, we shy away from use of the terms ‘resilience’ and 

‘suscepƟbility’, given that both groups show increases in psychopathology-like behavior. Instead, we 

suggest that stress-exposed individuals may develop along different neuroanatomical trajectories, 

trajectories potenƟally determined by pre-exisƟng individual factors. 

We focused our MRI and DTI analyses on a number of candidate brain regions, including different 

subdivisions from the medial prefrontal cortex (mPFC), amygdala, and hippocampus; all of them brain 

regions known to be subject to ongoing development during adolescence, funcƟonally affected by 

peripubertal stress, and of demonstrable importance in the performance of aggression in both humans 

and animals (Spear, 2000; Gregg & Siegel, 2001; Casey et al., 2008; Andersen & Teicher, 2008; Marquez 

et al., 2013; Haller, 2014; van der Kooij et al., 2014; Köhl et al., 2015; White et al., 2016). InteresƟngly, 

we did not find differences in the volume of any of these regions relaƟve to the control group in either 

subgroup of peripuberty stress exposed rats. This is in contrast to volumetric studies of humans dealing 

with aggression-related psychopathologies, as several studies have indicated reducƟons in the volume of 

prefrontal cortex (Raine et al., 2000; Sala et al., 2011), hippocampus (Dolan et al., 2002; Barkataki et al., 

2006; Zetzsche et al., 2007; Sala et al., 2011; Morandoƫ et al., 2013; Coccaro et al., 2015) and amygdala 

(Coccaro et al., 2015). It could be argued that the origins of stress-related changes in brain structure are 

unlikely to be the same as those in individuals with aggression-related psychopathologies. However, at 

least in the case of prefrontal cortex, volume decrements in aggressive, borderline personality 

disordered individuals appeared to be exacerbated by a history of early adversity (Sala et al., 2011; 

Morandoƫ et al., 2013), suggesƟve of a synergisƟc effect.  

Volume differences in human MRI studies are thought to reflect hypo- and hypertrophy of neuronal 

processes in the affected region. Studies of neuronal morphology changes following chronic stress in 
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animal models support this concept   (Cook & Wellman, 2004; McEwen & Magarinos, 1997; Vyas et al., 

2002; Isgor et al., 2004; Eiland et al., 2012). However, in animal studies where both morphology and 

volume were measured in the same individual, changes in morphology were not reflected by concomitant 

changes in regional volume, suggesƟng that these parameters are not simply interchangeable (Henckens 

et al., 2015). 

Importantly, we found reducƟons of mean diffusivity in infralimbic cortex, amygdala, hippocampus and 

subiculum, but not in globus pallidus, of aggressive rats. In invesƟgaƟng the histological basis of diffusivity 

reducƟons observed, we performed immunofluorescence in one of the affected brain regions, infralimbic 

cortex. We assessed the number of neuronal cells, as well as myelinaƟon using MBP, the major 

consƟtuent of mature oligodendrocytes. Though the immunostaining was successful in both cases, and we 

detected expected variaƟon across depths of the infralimbic cortex, no differences were found between 

experimental groups. Though this would seem to indicate a lack of relaƟonship between diffusivity and 

these measures, we should note that measuring myelinaƟon as we have here does not allow for the 

determinaƟon of thickness of myelin sheaths. Since this property can affect diffusion, we cannot rule out 

myelinaƟon-related diffusivity changes enƟrely. ReducƟons in mean diffusivity are therefore likely to be 

derived from other changes to Ɵssue microstructure. Studies in which Ɵssue properƟes were assessed 

jointly with DTI and with histology indicated that mean diffusivity measures, as well as deriving from 

myelinaƟon and neuronal density, may also derive from general cellularity, as well as density of neurites 

(Khan et al., 2016; Tu et al., 2016). Our reducƟons in mean diffusivity might therefore reflect decreased 

alignment of neurites, increased complexity of neuronal processes or an increase in the number of glial 

cells (Beaulieu, 2002; Delgado y Palacios et al., 2011; Evans, 2013; Hemanth Kumar et al., 2014; Khan et 

al., 2016). Moreover, more than one alteraƟon may occur in conjuncƟon, complicaƟng determinaƟon of 

the source of fluctuaƟon in diffusivity (Tu et al., 2016).  

We addiƟonally asked whether individual differences in glucocorƟcoid responsivity to stress during 

peripuberty might be associated with the development of an aggressive phenotype. We found that the 

paƩern of corƟcosterone released across repeated episodes of peripuberty stress differed between the 

aggressive and non-aggressive stress-exposed rats, and that this paƩern was associated with their later 

aggressiveness. Specifically, rats showing greater iniƟal adaptaƟon of corƟcosterone response across 

stressors were less aggressive at adulthood. AssociaƟon of HPA axis adaptaƟon to stress with structural 

measures addiƟonally revealed that individuals with stronger iniƟal corƟcosterone adaptaƟon to stress 

had larger volumes of infralimbic cortex.  This is broadly in accordance with other studies, which have 

found that repeated stress exposure had lesser impact on brain structure in a stress-habituaƟng versus a 

non-stress-habituaƟng rat strain (Bourgin et al., 2015), amygdala in that case. This suggests that the 

degree of changes to brain structure induced by stress may depend on absolute exposure to 

glucocorƟcoids.  

The brain regions we studied here are parƟcularly responsive to the programming effects of stress and are 
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sƟll in the process of maturaƟon during the peripubertal period (Spear, 2000; Andersen & Teicher, 2008; 

Romeo et al., 2013). GlucocorƟcoids are potent modulators of many biological processes, including 

neuroanatomical plasƟcity (de Kloet et al., 2005; Eiland & Romeo, 2013; McEwen, 2016), and could 

conceivably play a role in inducing changes in brain structure that are associated with an aggressive 

phenotype. InteresƟngly, experiments using DTI to determine the impact of the Ɵming of stress exposure 

on brain microstructure have implicated the pre-puberty window as being a Ɵme of heightened 

vulnerability to alteraƟons relaƟve to later Ɵmepoints (Zalsman et al., 2015). Many developments are 

ongoing during this narrow window. SynapƟc overproducƟon, synapƟc pruning, and myelinaƟon are 

parƟcularly prominent (Andersen & Teicher, 2008; Liston & Gan, 2011) and are all sensiƟve to disrupƟon 

by stress exposure (Liston & Gan, 2011; PaƩwell et al., 2016).  

A limitaƟon of the study at hand is that we cannot determine the causal relaƟonships between aggressive 

behavioral phenotype, responsiveness to stress, and brain structure. Indeed, a longitudinal study of mice, 

in which MRI scans were performed before and aŌer exposure to chronic social defeat stress, indicated 

that pre-exisƟng differences in hippocampal structure, as well as magnitude of stress-induced volume 

change, predicted suscepƟbility to the behavioral effects of stress (Tse et al., 2014). However, the results 

of this study and their similarity to paƩerns observed in humans with pathological aggression (Sala et al., 

2011; Morandoƫ et al., 2013) strongly support the usefulness of this approach to model these 

interacƟons. 

In summary, we present evidence here of two disƟnct neurodevelopmental trajectories arising from 

peripubertal stress in rats, one of them leading to the development of pathological aggression and 

reducƟons in mean diffusivity in infralimbic cortex, amygdala, hippocampus and subiculum. InteresƟngly, 

these brain regions have been highlighted in structural and funcƟonal human studies as altered in 

individuals showing abnormal levels of aggression. Our study establishes a causal link between 

peripubertal stress exposure and structural deviaƟons in these brain regions in associaƟon with 

pathological aggression, and points toward differenƟal glucocorƟcoid adaptaƟon to repeated stress as a 

potenƟal underlying mechanism. Future studies addressing the reversibility of the structural and 

behavioral phenotypes following manipulaƟon of stress adaptaƟon during early life are warranted to 

invesƟgate causality between the different parameters.  
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Supplementary informaƟon 

Methods 

Integrated aggression z score 

To assess aggressive behavior, z scores were calculated from the seven variables by which rats were ini-

Ɵally profiled.  These variables included: total duraƟon of offensive behavior, frequency of offensive beha-

viors, latency to first offence, frequency of abnormal bites, proporƟon of all biƟng aƩacks that were unsi-

gnalled, proporƟon of all biƟng aƩacks targeted toward vulnerable parts, and proporƟon of all biƟng 

aƩacks that elicited a strong response.  The values for each individual variable were converted to z scores 

using the formula: ((score – mean of all scores) / standard deviaƟon of all scores).  These z scores were 

integrated to derive a single aggression score, subsequently used as a conƟnuous variable against which 

mean diffusivity values for each region of interest were correlated.  

Results 

 

Supplmentary Figure 1  Individual level of aggression in the resident-intruder test is associated with 

mean  diffusivity in subregions of the medial prefrontal cortex. PosiƟve correlaƟons between aggression z score 

and mean     diffusivity were found in leŌ (Fig. S1A) but not right (Fig. S1B) prelimbic cortex, and bilaterally in infra-

limbic cortex (Figs. S1 C & D). Spearman’s correlaƟons and associated p-values are shown on graphs (ρ = rho). 
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Supplementary Figure 2 Individual level of aggression in the resident-intruder test is associated with mean  

diffusivity in subcorƟcal regions of the limbic forebrain. PosiƟve correlaƟons between aggression z score and mean 

diffusivity were found bilaterally in amygdala (Figs. S2 A & B), hippocampus (Figs. S2 C & D), and in subiculum (Figs. 

S2 E & F). Spearman’s correlaƟons and associated p-values are shown on graphs (ρ = rho). 
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Abstract 

The hypothalamus-pituitary-adrenal (HPA) axis coordinates responses that enable an individual to cope 

with stressful challenges. Its end products, glucocorƟcoids, addiƟonally mediate adaptaƟon following 

cessaƟon of a stressor. DysregulaƟon of this process is thought to play a key role in stress-related 

psychopathology, such as depression and post-traumaƟc stress disorder.  ReducƟon of glucocorƟcoid 

responses across repeated exposure to the same stressor is a common, though not universally 

expressed, adaptaƟon. Human studies have found impairment in adaptaƟon of this kind to be both 

heritable and associated with increased self-report of several depression-related indices, suggesƟng that 

it may represent a risk factor for development of psychopathology.  However, whether individual 

differences in stress habituaƟon are causally implicated in vulnerability to psychopathology is not easily 

studied, owing to the lack of appropriate animal models. In light of this, using a selecƟve breeding 

program in rats, we generated lines enriched for stress habituaƟon and lack of stress habituaƟon as 

indexed by glucocorƟcoid responsiveness, as well as a control line intermediate for the trait. Here we 

present findings indicaƟng the high level of variaƟon in glucocorƟcoid responsiveness to repeated stress 

in an outbred Wistar rat populaƟon, as well as the response to selecƟon for extremes in this trait.  Under 

stress free condiƟons, rats with consƟtuƟve impairment in stress habituaƟon displayed enhanced 

aggression, anxiety-like, and depression-like behaviors, as well as alteraƟons in the expression of genes 

within both central and peripheral nodes of the HPA axis and enhanced reacƟvity to acute stress 

exposure.  Together, these findings strongly link consƟtuƟve differences in stress adaptability with 

vulnerability to develop psychopathology-like alteraƟons. The developed rat lines therefore represent a 

promising model with which to further examine the relaƟonship between stress adaptability and stress-

related pathophysiology more generally, especially with respect to underlying mechanisms. Finally, this 

model could be used to assess the therapeuƟc potenƟal of treatments enhancing stress habituaƟon in 

psychopathology. 
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IntroducƟon 

The hypothalamus-pituitary-adrenal (HPA) axis coordinates metabolic, behavioral and physiological 

responses that enable an individual to cope with stressful challenges (Shirazi et al., 2015).  AcƟvaƟon of 

the HPA axis involves a cascade of responses that starts with the secreƟon of corƟcotropin-releasing 

hormone (CRH) and arginine vasopressin (AVP) by the paraventricular nucleus of the hypothalamus 

(PVN). The release of CRH and AVP acƟvates adrenocorƟcotrophic hormone (ACTH) secreƟon from the 

pituitary which, in turn, triggers the producƟon and release of glucocorƟcoids (primarily corƟsol in 

humans; corƟcosterone in most rodents) from the adrenal glands into the circulaƟon (Ulrich-Lai & 

Herman, 2009). CirculaƟng glucocorƟcoids exert a plethora of effects, both genomic and non-genomic, via 

their acƟons through mineralocorƟcoid (MR) and glucocorƟcoid (GR) receptors (de Kloet, 2014; de Kloet 

et al., 2008; Joëls et al., 2013).  AcƟvaƟon of GR in different brain areas, notably including the PVN, 

addiƟonally acts to inhibit conƟnuaƟon of the stress response, with this negaƟve feedback acƟng via both 

fast and slow mechanisms (Tasker & Herman, 2011).   

GlucocorƟcoid acƟons are thought to help restore homeostasis and mediate adaptaƟon following 

cessaƟon of a stressor, a process that has been termed allostasis.  Such responses, however, come at a 

cost, and repeated, prolonged or inadequate stress responses may lead to physiological damage, termed 

allostaƟc load, thought to be the pathological basis of many stress-related disorders (McEwen, 2007). In 

addiƟon to its implicaƟon in numerous physiological disorders, dysregulaƟon of HPA axis acƟvity is 

associated with several psychopathologies (Ehlert et al., 2001; McEwen, 1998; Tarullo & Gunnar, 2006; 

Walker et al., 2008; Yehuda et al., 2009). Indeed, impaired ability to shut off HPA axis responses to stress 

has been causally implicated in depression (see de Kloet et al., 2005 for review), whereas over-efficacious 

negaƟve feedback inhibiƟon, leading to insufficient HPA axis stress responses, has been implicated as a 

risk factor in development of post-traumaƟc stress disorder (Yehuda & LeDoux, 2007).   

There is important individual variability in both sensiƟvity to stress and in vulnerability to develop stress-

related psychopathologies which may relate to disrupƟon of allostaƟc processes. In healthy adult 

humans, a common adaptaƟon to repeated exposure to the same stressor (homotypic stress) is reducƟon 

of the HPA axis response across stress exposures (Deinzer et al., 1997; Federenko et al., 2004; Gerra et al., 

2001; Pruessner et al., 1997). AdaptaƟon of this kind minimizes the impact of frequently experienced 

stressors, whilst leaving the HPA axis able to respond to novel, heterotypic stressors, and impairment in 

this process could leave an individual open to the accumulaƟon of allostaƟc load (McEwen, 1998).  It is 

noteworthy that habituaƟon to homotypic stress is not uniformly expressed, with approximately 35% of 

individuals showing no decrement in corƟsol response following repeated psychosocial stressors (Gerra et 

al., 2001; Kirschbaum et al., 1995; Wüst et al., 2005), a propensity that is highly heritable (Federenko et 

al., 2004). InteresƟngly, correlaƟon of physical and psychological indices with corƟsol response to 

repeated stressors indicated that those individuals who habituated to a lesser extent (i.e. those who 

failed to adapt) reported increased values in indices which, when taken together, could be considered to 
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engender a depression-like phenotype (Kirschbaum et al., 1995; Preussner et al., 1997; Kudielka et al., 

2006).  These findings support a potenƟal role for impaired stress habituaƟon in the accumulaƟon of 

allostaƟc load, and suggest that it may represent one mechanism via which differenƟal vulnerability to 

develop stress-induced psychopathology is translated. CriƟcally, causality cannot be inferred from such 

studies, nor can the contribuƟon of addiƟonal factors (e.g., prior stress history, socioeconomic status, or 

other variables) be excluded. The use of controlled animal studies could therefore be of benefit in 

addressing whether reduced adaptability to stress is indeed causally related to psychopathology-like 

phenotypes, as well as in the invesƟgaƟon of underlying neurobiological mechanisms. 

Rats represent a useful model system for this purpose since evidence suggests that they habituate to 

repeated stress in a similar fashion to humans (for review see Grissom & Bhatnagar, 2009, though see also 

Rabasa et al., 2015). Moreover, in a parallel to human findings, rats exposed to stress regimens giving rise 

to HPA axis habituaƟon appear to suffer less extreme physiological and behavioral consequences when 

compared to those exposed to stress regimens not leading to habituaƟon (Flak et al., 2012; Jankord et al., 

2011).  At present, however, there is a lack of a specific and reliable animal model of individual variaƟon in 

HPA axis adaptaƟon with which to invesƟgate the influence of stress adaptability in vulnerability to 

psychopathology.  Indeed, comparisons of behavior between congenic stress-habituaƟng (Lewis) and stress

-non-habituaƟng (Fischer 344) inbred rat strains have demonstrated equivocal results, with an equal 

number of studies finding differences in psychopathology-like behavior as not (Berton et al., 1997; Cadoni 

et al., 2015; Chaouloff et al., 1995; Cohen et al., 2006; Dhabhar et al., 1997; Ramos et al., 1997; Rex et al., 

1996; Wu & Wang, 2010).  The lack of stability in differences between these strains renders molecular-

geneƟc comparisons potenƟally unreliable.   

A more suitable approach may be the use of selecƟve breeding, to produce lines that differ for the specific 

trait of interest, in this case stress habituaƟon, followed by examinaƟon of phenotypes pertaining to risk 

for psychopathology.  This approach has been successfully established in rats with regard to several 

psychopathology-like behavioral traits (anxiety-like: Liebsch et al., 1998; depression-like: Bignami, 1965; 

aggression: Naumenko et al., 1989). Moreover, since human studies show that HPA axis adaptability is 

highly heritable (Federenko et al., 2004) and selecƟon for aspects of HPA axis acƟvity has already been 

successful in several species (Edens & Siegel, 1975; Poƫnger & Carrick, 1999; SaƩerlee & Marin, 2006; 

Touma et al., 2008), it suggests that a similar approach could prove fruiƞul if applied to stress habituaƟon.   

Taking these factors into consideraƟon, we embarked on a selecƟve breeding program, with the aim to 

generate lines enriched for stress-habituaƟng and stress-non-habituaƟng individuals. Our goal in the 

development of this resource was to allow invesƟgaƟon of the relaƟonship between stress adaptability and 

psychopathology-like behavioral phenotypes, as well as underlying neurobiological mechanisms. Here we 

present findings indicaƟng, first, a high level of variaƟon in corƟcosterone response to repeated stress 

encountered in the outbred Wistar rat strain, as well as the response to selecƟon for extremes in this trait.  
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We addiƟonally present results from a characterizaƟon of the behavioral and endocrine phenotype of rats 

drawn from these selecƟon lines.  

Materials & Methods 

Animals 

SelecƟve breeding procedure 

Wistar Han rats were obtained from a commercial breeder (Charles River, France: 30 male & 30 female; 

parental generaƟon; PG) and bred in our animal facility. The enƟre offspring of these pairings (F0) was 

subject to a ‘stress adaptaƟon test’ (SAT). The SAT is a truncated version of the peripubertal stress 

protocol developed in our laboratory (Toledo-Rodriguez & Sandi, 2011) which, though clearly stressful, 

has been shown to be insufficient in begeƫng behavioral alteraƟons associated with the longer protocol 

(Toledo-Rodriguez & Sandi, 2007; Tzanoulinou et al., 2014). Tail blood samples were taken at two 

Ɵmepoints on two separate days of the protocol; immediately aŌer, and 30 minutes aŌer, cessaƟon of 

exposure to the stressors. Three breeding lines were established according to the outcome of the SAT. 

Rats with extremely low (<100ng/ml) or extremely high (>200ng/ml) secreƟon of corƟcosterone on the 

final day of the SAT, i.e. animals expressing habituaƟon or non-habituaƟon of the HPA axis response to 

repeated stress, were selected for the ‘low’ and the ‘high’ breeding line, respecƟvely. A third breeding 

line, ‘inter’, was established consisƟng of animals with intermediate corƟcosterone values in the SAT.  

Ten males and ten females from F0 were selected as founder pairs for each breeding line. Their offspring 

(F1) and the majority of animals from each subsequent generaƟon were also tested in the SAT and 

selected for breeding based on their corƟcosterone response on post-natal day (p) 30. SelecƟon was 

strictly within line, i.e. an animal from the low-line could only ever be selected to be a breeder within the 

low-line. To minimize effects of geneƟc driŌ, animals were mated within a system that strictly excluded 

sibling maƟngs. Moreover, in order to balance the potenƟal contribuƟon of each liƩer to the next 

generaƟon, liƩer size was reduced to a maximum of 12 pups at p2.  Care was taken to ensure as much 

variability in pairings as possible; for example, if two animals from the same liƩer went forward to breed 

the next generaƟon then they were not paired with animals coming from a single, alternate liƩer.  

Stress AdaptaƟon Test (SAT) 

The protocol was based on mulƟple exposures to fear-inducƟon procedures. Measures of acute stress 

reacƟvity, stress recovery (within session), and stress adaptaƟon (across sessions) could be obtained 

whilst minimizing the stress exposure required to do so. Following exposure to an open field (50 x 50 x 

30cm) for five minutes on p28, the stress protocol consisted of the presentaƟon of two different 

stressors, each one lasƟng 25 minutes. These were either; exposure to the syntheƟc fox odor 

trimethylthiazoline (TMT) or to an elevated plaƞorm (EP). TMT exposure was administered in a plasƟc box 
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(38 x 27.5 x 31 cm) via a scent-charged cloth. The box was placed under a bright light (210–250 lx). 

The elevated plaƞorm (12 x 12cm, elevated 95cm from the ground) was also under direct bright light 

(470–500 lx). Following each stress session, animals were returned to neutral cages for 15 minutes. A 

transparent Plexiglas wall perforated with holes separated pairs of cagemates during this Ɵme. 

Following the holding period, animals were returned to their home cage. The stressors were applied 

during juvenility, on three consecuƟve days across p28–p30, during the light phase and following an 

unpredictable schedule. Tail blood samples were taken on p28 and p30, once at the offset of stress 

and again 30 minutes later.  

Subjects  

Experimental subjects were male offspring taken from the first breeding of pairs from the lines 

described above, not exposed to any stressors. Female Wistar Han rats (used as cohabiƟng partners) 

and male Wistar Han rats (used as intruders) were purchased from a commercial breeder (Charles 

River, France). Experimental cohorts were obtained from F4 for iniƟal behavioral experiments (n=12/

line), from F6 for replicaƟon of behavior (low- and high-line, n=12/line; intermediate-line, n=8), and 

from F8 for examinaƟon of endocrine factors (n=12/line). Between 10 and 12 breeding pairs were 

established per line to produce each generaƟon of animals. In each generaƟon, animals from 8–10 

liƩers were used as, typically, 1–2 females per cohort did not become pregnant during cohabitaƟon 

with the male. At weaning on p21, pairs of male rats from different liƩers were matched according to 

weight and mixed among home cages. Rats were maintained on a 12-h light–dark cycle (lights on at 

0700h), in a temperature- and humidity-controlled environment (21±1 °C; 55% humidity ±5%), with 

ad libitum access to laboratory chow and water. They remained undisturbed, except for weekly cage 

changes, unƟl experimental procedures began at adulthood (designated as p90). Experiments were 

performed between 0800 and 1200h, the circadian trough in corƟcosterone producƟon, except 

where otherwise stated. All procedures were conducted in accordance with the Swiss NaƟonal 

InsƟtuƟonal Guidelines on Animal ExperimentaƟon and approved by a license from the Swiss 

Cantonal Veterinary Office CommiƩee for Animal ExperimentaƟon. 

Assessment of behavioral consequences of line selecƟon 

Elevated Plus Maze 

Anxiety-like behavior was evaluated using the EPM test (Pellow & File, 1986). The apparatus consists 

of two opposing open arms (50 x 10cm) perpendicular to two enclosed arms (50 x 10 x 50cm) that 

extend from a central plaƞorm (10 x 10cm), elevated 65 cm above the floor. Light levels were 

maintained at 14-16 lx on the open arms and 5-7 lx on the closed arms. At the start of the test, the 

rat was placed on the central plaƞorm facing a closed arm and allowed to explore the maze for five 

minutes. In between animals, the apparatus was cleaned with 5% ethanol soluƟon. Behavior was 

monitored using a ceiling-mounted video camera and analyzed with a computerized tracking system 
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(Ethovision 9; Noldus IT, Netherlands). The Ɵme spent in the open and closed arms, and distance moved, 

were recorded. Two animals (one intermediate & one high line rat) were removed from the analysis of 

the F6 experiment because they fell from the maze before five minutes had elapsed. 

Resident-intruder test 

Prior to the night of the resident-intruder (RI) test, experimental rats cohabited with a female partner 

for 10 days in order to encourage territoriality. The female was removed 30 minutes before the onset of 

the test, and replaced aŌerwards. The test was performed during the beginning of the dark cycle 

(between 1900 and 2200h). The resident was exposed in its home cage to a smaller (5-10% lighter), 

unfamiliar male intruder of the same strain for 30 minutes. Each intruder was used only once. 

Encounters were video-recorded and scored offline by an experimenter blind to the experimental group, 

assisted by Observer soŌware (Noldus IT, Netherlands). The following parameters were quanƟfied in 

terms of frequency and duraƟon: aƩack, offensive upright, lateral threat, keeping down, biƟng, social 

invesƟgaƟon, non-social invesƟgaƟon and auto-grooming. The cumulaƟve duraƟon of the first four 

behaviors were summed to provide a measure of total offensive behavior. Latency to first offensive act 

iniƟated by the resident was also recorded. 

Forced-swimming test 

Whilst sƟll cohabitaƟng with females, rats were submiƩed to a forced-swimming test (FST) to evaluate 

depression-like behavior (Porsolt et al., 1978). Animals were placed in a plasƟc beaker (25 cm diameter x 

46 cm) containing 30 cm of water (25°C) for 15 minutes. A second session was performed 24h later for 5 

minutes. Both sessions were recorded using a ceiling mounted video camera, and the Ɵme spent 

immobile (making only those movements necessary to keep the snout above the water), swimming or 

climbing was quanƟfied manually with the aid of in-house soŌware (Clicker; EPFL, Switzerland) by an 

experimenter who was blind to the experimental condiƟon of the animals. One rat from the 

intermediate group was removed from the analysis because of a technical issue with the video 

recording. 

Maternal behavior 

Analyses of maternal behavior were made between p1 and p5 in dams from F7, the offspring of which 

were used in endocrinology experiments described below. See supplementary informaƟon for further 

details. 

Assessment of endocrine consequences of line selecƟon 

Sampling of HPA axis acƟvity 

At adulthood, animals from the F8 generaƟon were exposed to restraint stress. Rats were first wrapped 
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in a cloth and then restrained in wire mesh restrainers (26 × 26 cm2) for 30 minutes. Restrained rats were 

kept in a clean cage, in a quiet, low-lit room during this period. Blood samples were taken via tail-nick at 

the onset of restraint (basal), and from the same nick at 15, 30, 60, and 90 minutes aŌer the onset of 

restraint. The iniƟal sample gave a measure of corƟcosterone level at circadian nadir. One week later, to 

obtain a measure of corƟcosterone at circadian peak, the same rats’ blood was sampled via a new tail 

nick at lights off (1900h ± 10 minutes). All blood samples were chilled, centrifuged and the plasma stored 

at -20⁰C for subsequent analysis. One week later, rats were sacrificed by decapitaƟon and brain, pituitary 

gland, and adrenal glands were collected. Adrenal glands were cleaned of fat and weighed. Brains were 

flash frozen in isopentane chilled to -45°C. Pituitary gland and adrenals were placed in separate RNAse-

free tubes and flash frozen using liquid nitrogen. All Ɵssue samples were subsequently frozen at -80⁰C 

unƟl further analysis. To obtain Ɵssue from central nucleus of the amygdala (CeA) and paraventricular 

nucleus of hypothalamus (PVN), brains were secƟoned using a cryostat. 200μm slices were mounted on 

Superfrost lides, and the region of interest sampled via bilateral 1mm punches or a single, medial 1mm 

punch, respecƟvely. This Ɵssue was collected into separate RNAse-free tubes and stored at -80⁰C unƟl 

RNA extracƟon. 

CorƟcosterone measurement  

Measurements of free corƟcosterone were obtained from all blood plasma samples, via use of an 

enzymaƟc immunoassay kit performed according to manufacturer’s instrucƟons (Enzo Life Sciences, 

Switzerland). Levels were calculated using a standard curve method.  

Gene expression analysis 

Total RNA from the CeA, PVN, pituitary and adrenal glands was isolated using RNAqueous Micro kits 

(Ambion, USA), and complementary DNA was synthesized using the Superscript VILO kit (Invitrogen, 

USA) according to the manufacturer’s instrucƟons. For quanƟtaƟve polymerase chain reacƟon (qPCR), 

PCR reacƟons were performed in triplicate using SYBR Green PCR Master Mix (Applied Biosystems, USA) 

in an ABI Prism 7900 Sequence DetecƟon system (Applied Biosystems, Singapore). Two genes were used 

as internal controls: TATA box binding protein (Tbp), and eukaryoƟc elongaƟon factor-1 (Eef1a1). Primers 

for the genes of interest were designed using the Assay Design Center soŌware from Roche Applied 

Science. A list of genes invesƟgated, and their respecƟve primer sequences, are detailed in 

Supplementary table 1. Gene expression was analyzed with the qBase 1.3.5 soŌware using the 

comparaƟve cycle threshold method (SchmiƩgen & Livak, 2008).  

StaƟsƟcs 

Data were analyzed using SPSS 17.0 (Chicago, USA). Results are presented as the mean ± SEM. Group 

comparisons were performed using ANOVA, with further analyses of main effects performed via 

Bonferroni post-tests. In general, corƟcosterone measurements and latencies violated the assumpƟons 
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required to perform analysis using ANOVA. Such analyses were therefore performed using Kruskal-Wallis 

tests, with Mann-Whitney post-hoc tests used to explore significant results. StaƟsƟcal significance level 

was set at p < 0.05. A p-value was considered as tending toward significance when 0.05 ≤ p ≤ 0.1. 

Results 

Individual differences in corƟcosterone response to repeated juvenile stress in the Wistar rat 

strain and characterizaƟon of the response to selecƟon for the trait in the geneƟcally-selected 

lines 

Figure 1 Degree of habituaƟon to repeated stress is heritable and diverges across selecƟon. 

Plasma corƟcosterone measures obtained at offset of stress on the final day (p30) of the stress 

adaptaƟon test (SAT) in male (A) and female (B) Wistar rats in F0, and following generaƟons, of the 

differenƟal habituaƟon selecƟon lines. Data are shown as individual values for the rats selected as 

breeders from the F0 generaƟon, as well as the mean of the enƟre F0 populaƟon (not shown in its 

enƟrety). Measuring corƟcosterone in all samples obtained following the SAT in rats from F7, we 

observed that the selecƟon is specific to habituaƟon to stress. CorƟcosterone response does not differ 

between the lines upon first exposure to stress (C) but is highly different following the final exposure 

(D). This is reflected in the relaƟve habituaƟon between first and third stress exposures (E). Significant 

differences between lines are indicated by asterisks (Kruskal-Wallis tests; *** = p<0.001; n.s. = non-

significant; see text for details of post-hoc differences). 
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The corƟcosterone response at offset of stress on the final day (p30) of the three day stress exposure pro-

tocol varied widely between individuals of the F0, parental generaƟon. Values from F0 males ranged from 

7.1-316.3 ng/ml (n=98; mean: 124.7 ng/ml ± 7.11) and females from 6.3-312.9 ng/ml (n=102; mean: 

112.3 ng/ml ± 7.75). Only those F0 individuals selected to breed the next generaƟon, that is, the indivi-

duals with the most extreme values, are represented in Figs. 1A and 1B. Though male and female p30 

corƟcosterone levels did not differ, selecƟon response data for each sex are represented separately. 

Figure 1 shows the response to selecƟon over the first seven generaƟons of breeding. From the first ge-

neraƟon, the lines differed in p30 corƟcosterone response to stress (F1 males: H(2) = 45.4, p<0.001; F1 

females: H(2) = 14.2, p<0.001). However, though low- and intermediate-lines differed from the high-line 

from F1 (F1 males: U=287, p<0.001; U=269, p<0.001; F1 females: U=373, p<0.001; U=446.5, p<0.001), 

they did not significantly differ from one another at the origin of the selecƟon procedure (F1 males: 

U=864, n.s; F1 females: U=643.5, n.s). In subsequent generaƟons, in both male and female rats, lines di-

verged further (F3, F5, F7 males: H(2) = 56.2, 60.8, 86.1, all p<0.001; F3, F5, F7 females: H(2) = 43.6, 67.9, 

75.9, all p<0.001). The values of each line differed from the other, with the low-line having the lowest 

corƟcosterone values and the high-line the highest (F3, F5, F7 males: U=19-565, all p<0.001; F3, F5, F7 

females: U=5-832, all p<0.001). Divergence occurred across generaƟons in both direcƟons, with low-line 

values geƫng lower (F1 vs. F7 – male: -57%; female: -60%) and high-line values geƫng higher (F1 vs. F7 – 

male: +43%; female: +63%). EsƟmaƟons of narrow-sense heritability (h2), using the formula: R (response 

to selecƟon) / S (strength of selecƟon), were in agreement with the divergence data; an h2 of 0.29 was 

found for the selecƟon trait. 

Importantly, differences in corƟcosterone response to stress between the lines are specific to adaptaƟon 

to repeated stress exposure. For example, as represented in Fig. 1C, in rats from the F7 generaƟon, mea-

surements of corƟcosterone responsiveness to a first stress episode (i.e. following stressors on p28), did 

not differ between the lines (Figure 1C. H(2) = 5.85, n.s). In contrast, p30 corƟcosterone measures for the 

three lines differed greatly (Figure 1D. H(2) = 163.37, p<0.001; post hoc comparisons: U=38-665.5, all 

p<0.001; Fig. 1E). Furthermore, when p30 corƟcosterone level was normalized to p28 corƟcosterone level 

for each individual, counteracƟng the potenƟal influence of within-group individual variaƟon, the strong 

disƟncƟon between each of the lines held (Figure 1E. H(2) = 158.66, p<0.001; post hoc comparisons: U=86

-737, all p<0.001). Put in other terms, within F7 generaƟon, 93% of low-line rats and 95% of high-line rats 

had p30 corƟcosterone concentraƟons concordant with the original selecƟon criteria (<100ng/ml corƟ-

costerone for low-line, >200ng/ml for high-line). 

Behavioral phenotype of the selected lines 

We examined the socio-affecƟve behavior of animals from generaƟon F4. Male rats of F4 generaƟon, 

born from F3 parents but not themselves exposed to the stress adaptaƟon test, underwent a series of 

behavioral tests at adulthood (Figure 2: EPM, RI, FST).  
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Figure 2 ConsƟtuƟvely different habituaƟon to repeated stress gives rise to differences in 

psychopathology-like behavior in the absence of any stress experience. High-line rats from the F4 

generaƟon displayed a tendency to spend more Ɵme in the protected arms of the elevated plus 

maze (A), an effect not related to differences in locomoƟon (B). When exposed to a smaller intruder 

rat, high-line rats emiƩed significantly more aggression (C) and were quicker to aggress (D) than rats 

from the low- and intermediate-line. This paƩern was repeated following exposure to forced-

swimming, to which high-line rats responded by floaƟng more, and swimming less, than rats from 

the low- and intermediate-line (E). No difference in latency to float was evident (F). Significant 

differences between lines are indicated by asterisks (ANOVA & Kruskal-Wallis (latency to offend) 

tests; + = p<0.1; * = p<0.05; ** = p<0.01; *** = p<0.001; see text for further details). 

No significant effects of line selecƟon were found in anxiety-like behavior, nor in locomoƟon. Specifically, 

when exposed to the elevated plus maze, rats from the lines did not differ in the proporƟon of Ɵme 

spent in any zone of the maze (Figure 2A - Closed arm: F(2,33) = 2.53, n.s.; Centre square: F(2,33) = 1.604, 

n.s.; Open arm: F(2,33) = 1.918, n.s.). There was a non-significant trend for high-line rats to spend more 

Ɵme in the protected, closed arms of the maze than the other lines (Closed arm %: F(2,33) = 2.53, p<0.1). 

In addiƟon, lines did not differ in distance travelled whilst on the maze, indicaƟng no decrement in loco-

motor acƟvity in any parƟcular line (Figure 2B - Distance: F(2,33) = 0.063, n.s.). 
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Exposure to a resident-intruder test revealed large differences in territorial aggression between rats of 

different lines. In the first instance, lines differed in the Ɵme taken to iniƟate offensive behavior towards 

the intruder (Figure 2D - H(2) = 8.402, p<0.05). Specifically, high-line rats were faster than low- and in-

termediate-line rats to offend; low and intermediate lines did not differ in this respect (L vs I: U=69, n.s.; L 

vs H: U=33, p<0.05; I vs H: U=25, p<0.01). The propensity to differ in aggression was also observable in 

percentage of Ɵme spent performing offensive behavior (Figure 2C - F(2,33) = 6.608, p<0.01). Again, high-

line rats were more aggressive than low- and intermediate-line rats (L vs I: t(22)=0.925, n.s.; L vs H: t(22)=-

2.707, p<0.05; I vs H: t(22)=-3.014, p<0.01 – Bonferroni corrected). No differences in social exploraƟon 

were evident between the lines (F(2,33) = 0.95, n.s.). 

Upon being challenged by a first session of forced-swimming, lines spent equal Ɵme floaƟng, swimming 

and climbing during 15 minutes (Float: (F(2,32) = 0.252, n.s; Swim: F(2,32) = 0.187, n.s.; Climb: F(2,32) = 0.194, 

n.s.). When exposed to a second session 24 hours later, lines did differ in percentage of Ɵme spent floa-

Ɵng and swimming (Figure 2E - Float: F(2,32) = 3.413, p<0.05; Swim: F(2,32) = 3.528, p<0.05). The significance 

of the differences between lines did not survive mulƟple post hoc comparisons. However, the high-line 

displayed a strong tendency to float more and swim less than other lines (Float: L vs H: t(22)=-2.657, p<0.1; 

Swim: t(22)=2.89, p<0.1). 

Next, in order to check the stability of behavioral traits observed in F4, a sample of male rats from the F6 

generaƟon were subjected to tesƟng in EPM and RI experiments. In contrast to rats from F4 generaƟon, 

rats from F6 did differ in anxiety-like behavior (Figure 3). Differences were evident both in terms of Ɵme 

spent in the closed arms (Figure 3A: F(2,27) = 4.544, p<0.05) and Ɵme spent in the open arms (F(2,27) = 

5.675, p<0.01). Specifically, high-line rats spent more Ɵme in the closed arms and less Ɵme exploring the 

open arms of the maze than low-line counterparts (Closed: t(21)=-2.821, p<0.05; Open: t(21)=2.767, 

p<0.05). This was not accompanied by differences in distance travelled on the maze between the lines 

(Figure 3B: F(2,27) = 1.08, n.s.). 

The paƩern of aggressive behavior observed in F4 generaƟon rats was recapitulated in rats from F6 gene-

raƟon. Again, lines differed in Ɵme taken to iniƟate offensive behavior towards the intruder (Figure 3D - H

(2) = 6.659, p<0.05), with high-line rats being faster than low-line rats to offend (L vs H: U=24, p<0.05). 

Lines also differed in percentage of Ɵme spent performing offensive behavior (Figure 3C - F(2,29) = 5.456, 

p<0.01), with high-line rats more aggressive than low-line rats (L vs H: t(22)=-3.211, p<0.05). No differences 

in overall social exploraƟon were evident between the lines (F(2,29) = 2.005, n.s.). 

In addiƟon to behavioral measurements described above, we also performed observaƟons of maternal 

behavior of dams as they cared for the pups used in endocrine invesƟgaƟons.  Assessment of several as-

pects of maternal behavior revealed a lack of difference between the lines in terms of caregiving (see 

supplementary informaƟon for full results).  
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Figure 3 Phenotypic differences between low- and high-line rats in anxiety-like and aggressive behavior 

were stable across generaƟons. In common with the F4 generaƟon, high-line rats from the F6 generaƟon 

displayed increased anxiety-like behavior, spending more Ɵme in the protected arms, and less Ɵme in the open 

arms, of the elevated plus maze than low-line rats (A). This effect was not related to gross differences in 

locomoƟon (B). When exposed to a smaller intruder rat, high-line rats emiƩed significantly more aggression (C) 

and were quicker to aggress (D) than rats from the low-line. Significant differences between lines are indicated 

by asterisks (ANOVA & Kruskal-Wallis tests; * = p<0.05; ** = p<0.01; *** = p<0.001; see text for further details). 

Endocrine phenotype of the selected lines 

Several measures of HPA axis acƟvity were obtained from adult rats of the F8 generaƟon of the lines 

(Figure 4). InteresƟngly, no differences were observed between the lines in corƟcosterone level at circa-

dian nadir (Figure 4C: H(2) = 1.602, n.s.), nor at circadian peak (Figure 4D: H(2) = 1.628, n.s.). Lack of evi-

dence for differenƟal basal HPA axis funcƟon in any parƟcular line was supported by the finding of similar 

bodyweight-adjusted adrenal gland measurements (Figure 4E: F(2,31) = 1.69, n.s.).  
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As expected, lines differed in their corƟcosterone responses to restraint stress (Figures 4A and 4B). 

Though starƟng from an equal baseline, aŌer 15 minutes of exposure to restraint stress, the rise in corƟ-

costerone levels in plasma differed between groups (Timepoint 2: H(2) = 12.801, p<0.01), with high-line 

rats having higher corƟcosterone levels than low and intermediate lines (L vs I: U=68, n.s.; L vs H: U=23, 

p<0.001; I vs H: U=27, p<0.01). The difference between lines was sustained at 30 and 60 minutes aŌer the 

onset of restraint (Timepoint 3: H(2) = 10.825, p<0.01); Timepoint 4: H(2) = 9.263, p<0.01) with high-line 

rats again having higher corƟcosterone values than low-line rats (Timepoint 3: L vs I: U=37.5, n.s.; L vs H: 

U=24, p<0.001; I vs H: U=53, n.s.; Timepoint 4: L vs I: U=35, n.s.; L vs H: U=27, p<0.01; I vs H: U=69.5, n.s.). 

At 90 minutes aŌer the onset of stress, i.e. 60 minutes aŌer the offset of stress, corƟcosterone levels had 

recovered and no longer differed between the lines (Timepoint 5: H(2) = 2.001, n.s.). These differences 

are further reflected by the difference in area under the curve (AUC) between lines (Figure 4B: H(2) = 

9.882, p<0.01), with the high-line having a significantly greater response across the whole experiment 

than the low-line, and the intermediate-line not differing from either (L vs I: U=38, n.s.; L vs H: U=27, 

p<0.01; I vs H: U=55, n.s.). 

Figure 4 ConsƟtuƟve differences in stress habituaƟon are associated with altered physiological stress-

reacƟvity in adulthood, though basal HPA axis acƟvity did not differ, in rats from F8 generaƟon. In the iniƟal 

stages of restraint stress exposure, low and intermediate lines had a lower corƟcosterone response 
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Expression of genes involved in regulaƟon of the HPA axis 

Gene expression analyses were performed upon Ɵssue sampled from mulƟple nodes of the HPA axis.  

The results are summarized and detailed in Figure 5 and Table 1, respecƟvely. 

At the level of the brain, in the central nucleus of the amygdala, we tested the expression of genes 

related to excitability as well as genes more typically implicated in HPA axis funcƟon.  In this region we 

found differences between the lines with regard to the expression of Gad67. Gad67 encodes the 67kDA 

isoform of glutamic acid decarboxylase, an enzyme criƟcally implicated in the synthesis of GABA.  Higher 

expression of Gad67 was evident in intermediate- and high-line rats as compared to low-line rats. In the 

PVN, a region considered to be the effector of a stress response, differences between lines were 

observed in the expression of several genes. Specifically, lines differed in expression of Crhr1, the gene 

encoding subtype 1 receptor of corƟcotropin-releasing hormone (CRH), such that the low-line displayed 

lower expression of the gene relaƟve to the intermediate line. Lines also expressed variable levels of 

Fkbp5 mRNA. Both intermediate- and high-line rats expressed higher levels of Fkbp5 than low-line rats, 

though post hoc tesƟng revealed this increase to be only marginally significant with regard to the low- 

versus high-line group comparison. Low-line rats addiƟonally expressed higher levels of Avp, encoding 

arginine vasopressin, relaƟve to both other lines. In contrast, high-line rats expressed higher levels of the 

gene encoding subtype 1a receptor of AVP, Avpr1a, than the low-line group. 

In peripheral Ɵssues further differences in gene expression were found. In the pituitary, high-line rats 

expressed higher levels of Avpr1b in comparison to both low- and intermediate-lines. A U-shaped 

funcƟon was observed in terms of expression of Pomc. Post hoc comparison revealed that high-line rats 

expressed significantly higher levels of the gene compared to intermediate-line rats, whereas the 

comparison between low- and intermediate-lines revealed only a trend towards a difference. AddiƟonally, 

within adrenal Ɵssue high-line rats expressed significantly lower levels of Mrap, which encodes melanocorƟn 2 

receptor accessory protein, when compared to low-line rats.  No further significant differences were found. 

compared to high-line rats (A). At the end of exposure, and 30 minutes into recovery, the difference in 

response between low- and high-line was maintained. These differences in corƟcosterone across the Ɵme-

course are reflected in differences in area under the curve (AUC) between low and high lines (B). Lines did 

not differ in basal corƟcosterone level at diurnal nadir (C), nor at diurnal peak (D). Weight of adrenal glands, 

normalized to body weight, was similar between lines (E). Significant differences between lines are indicated 

by asterisks (Kruskal-Wallis tests; ** = p<0.01; see text for further details). 
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Table 1  Candidate gene expression under basal condiƟons in the central nucleus of the 

amygdala (CeA), paraventricular nucleus of hypothalamus (PVN), pituitary gland, and adrenals of low-, 

intermediate-, and high-line rats. Expression given is relaƟve to two housekeeping genes (Eef1a1 & Tbp). 

For further details regarding each of the genes, see supplementary table 1. Where a significant difference 

was found between lines, gene names are shown in bold (ANOVA, followed by post hoc comparisons; + = 

p<0.1; * = p<0.05; ** = p<0.01). 
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Figure 5 ConsƟtuƟve differences in stress habituaƟon are associated with variaƟon in gene 

expression under basal condiƟons. Differences between the lines were found at mulƟple levels of 

the HPA axis (A), both centrally (B; C) and peripherally (D; E). Expression given is relaƟve to two 

housekeeping genes (Eef1a1 & Tbp). Bonferroni-corrected post hoc comparisons between lines are 

shown (+ = p<0.1; * = p<0.05; ** = p<0.01; see text and Table 1 for addiƟonal details). 
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Discussion 

Converging lines of evidence have suggested that impairment in adaptaƟon of HPA axis acƟvity in the 

face of repeated exposures to stress may increase the propensity to accumulate allostaƟc load, thereby 

leading to an increased vulnerability to psychopathology (de Kloet et al., 2005; Flak et al., 2012; 

Kirschbaum et al., 1995; Kudielka et al., 2006; McEwen, 1998; Preussner et al., 1997).  The mechanisms 

underlying this suscepƟbility are not easily studied and progress in this field has been hampered by the 

lack of a reliable and specific animal model within which to test hypotheses.  Here, we report the 

development of two selecƟvely bred rat lines that show habituaƟon and non-habituaƟon of the 

corƟcosterone response to repeated stress exposure, as well as a control line intermediate for this trait.  

In the absence of the applicaƟon of stress, consƟtuƟve differences in stress habituaƟon alone gave rise 

to phenotypic variaƟon in psychopathology-like behaviors, specifically anxiety-like, depression-like, and 

aggressive behavior.  Differences in stress habituaƟon were observed alongside a disƟnct 

neuroendocrine phenotype.  The different lines displayed altered corƟcosterone reacƟvity to restraint 

stress but parity in measures of basal HPA axis acƟvaƟon.    VariaƟon in the expression of several HPA 

axis related genes was found at mulƟple levels of the axis in these same animals.  

SelecƟve breeding has proved a useful approach in behavioral geneƟcs research (Scharf & Schmidt, 

2012). To date, researchers applying this approach in rats in relaƟon to affecƟve disorders have primarily 

selected for variaƟon in behavioral traits, thought to reflect specific symptomaƟc aspects of 

psychopathology (anxiety-like: Liebsch et al., 1998; depression-like: Bignami, 1965; aggression: 

Naumenko et al., 1989).  To our knowledge, despite frequent associaƟon of HPA axis dysregulaƟon with 

psychopathological disorders (Ehlert et al., 2001; McEwen, 1998; Tarullo & Gunnar, 2006; Walker et al., 

2008; Yehuda et al., 2009), only one other group has used an aspect of HPA axis acƟvity to selecƟvely 

breed rodents (Touma et al., 2008).  Our study is the first to use stress habituaƟon as a selecƟon 

criterion, and also the first to do so in rats. 

The response to geneƟc selecƟon for low and high corƟcosterone responses to repeated stress (i.e. the 

propensity to habituate or not) was strong, specific, and equally evident in both sexes. By the third 

generaƟon of selecƟon each line’s p30 corƟcosterone response had diverged from the others’, and these 

differences increased further across generaƟons of selecƟon.  In common with findings in humans, and 

taken together with our narrow sense heritability esƟmate (h2 of 0.29), this indicates a robust geneƟc 

basis for the phenotype (Federenko et al., 2004). As we have used repeated stress in phenotyping for our 

trait of interest, the purely geneƟc basis for inheritance of the trait cannot be assumed. There are 

examples from both the human and rodent literature that have provided evidence for epigeneƟc 

inheritance of HPA axis dysregulaƟon, notably in cases where the parents were exposed to traumaƟc 

stress (Bierer et al., 2014; Cordero et al., 2012; Franklin et al., 2010; Gapp et al., 2014; Yehuda et al., 

2014, 2016). The epigeneƟc transmission of traits may occur through a number of routes, one of which is 

via changes in the quality of caregiving delivered by the mother (Champagne et al., 2003). Here, 
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however, we observed no differences between the lines across several aspects of maternal behavior, 

making this an unlikely source of phenotypic variaƟon.  In studies where this factor was controlled for 

(Cordero et al., 2012) or where there was no contact between trauma-exposed individuals and the dams, 

nor the offspring (Franklin et al., 2010; Gapp et al., 2014), intergeneraƟonal transmission of traits has sƟll 

been observed.  In the laƩer cases, however, the stress exposure giving rise to these effects, chronic 

unpredictable maternal separaƟon combined with unpredictable maternal stress, could be considered 

somewhat extreme in nature.  In contrast, the three day stress protocol used to select breeders in our 

study failed to elicit marked differences, neither in behavior nor in gene expression, in rats exposed to the 

same protocol in another study (Tzanoulinou et al., 2014) and may be therefore less likely to induce 

epigeneƟc alteraƟons that would be passed on to the subsequent generaƟon.   

We examined the behavioral phenotype of the lines in the F4 generaƟon, and despite the early point in 

selecƟon, we observed several differences in psychopathology-like behavior. Specifically, rats from the 

high-line displayed higher levels of anxiety-like, depression-like and aggressive behaviors when compared 

to the low-line. These phenotypic differences between low- and high-line groups, in parƟcular with regard 

to anxiety-like behavior and aggression, were recapitulated, or enhanced, when measured in a later 

generaƟon (F6), underlining the stability of these aspects of the phenotype. Curiously, the behavioral 

phenotype of the intermediate-line vacillated between appearing ‘low-line-like’ in F4 generaƟon and 

‘high-line-like’ in F6. Whether this indicates the lack of a true intermediate phenotype in terms of stress 

habituaƟon is unclear but suggests that future experiments could benefit from the addiƟon of an extra 

non-selected group for comparaƟve purposes.  

In terms of aggression, we found that rats derived from the high-line, who also demonstrated 

consƟtuƟvely high corƟcosterone reacƟvity to stress, were both quicker to iniƟate hosƟliƟes and 

performed more offensive behavior overall.  This is contrast to findings reported from the differenƟal 

stress reacƟvity mouse lines developed by Touma and colleagues (2008), where the line selected for low 

corƟcosterone reacƟvity to stress was found to be the more aggressive.  There are several possible 

explanaƟons for this disparity. One such explanaƟon is that differences could be reflecƟve of the strong 

deviaƟon in several other aspects of neuroendocrine profile between our rat lines and the differenƟal 

stress-reacƟvity mouse lines, most notably in terms of HPA axis rhythmicity and negaƟve feedback 

capacity (Touma et al., 2008; Heinzmann et al., 2014). AddiƟonally, it could be that the disparity reflects a 

more general species difference in the link between HPA axis funcƟon and aggression in rat and mouse 

selecƟon lines.  Support for this asserƟon comes from findings showing that in other mouse lines, in these 

cases selected for aggression, aggressiveness was found alongside corƟcosterone hypo-reacƟvity to stress 

(Caramaschi et al., 2008; Sandnabba, 1985; van Oortmerssen & Bakker, 1981; Veenema et al., 2003).  Our 

findings are more closely in line with those from rat models showing that in lines selected for various 

psychopathology-like behavioral indices, but eventually differing in both stress reacƟvity and aggression, 

the line displaying enhanced reacƟvity to stress was also the more aggressive (Albert et al., 2008; 
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Bignami, 1965; Coppens et al., 2012; Díaz-Morán et al., 2012; Landgraf et al., 1999; Liebsch et al., 1998; 

Naumenko et al., 1989; Neumann et al., 2010; Steimer & Driscoll, 2003; Veenema et al., 2007). The 

finding of enhanced aggression in conjuncƟon with enhanced anxiety-like behavior in the high-line does 

not fit well with the idea that animals tend to show a passive or acƟve coping style when faced with a 

variety of challenges (Koolhaas, 2008).  It does however course with findings in the human literature 

indicaƟng that individual differences in stress habituaƟon are associated with variaƟon in affecƟve 

indices such that individuals habituaƟng to a lesser extent report suffering lower self-esteem, being 

more depressed of mood, and being more defensive (Kirschbaum et al., 1995; Preussner et al., 1997; 

Kudielka et al., 2006).  

We did not observe differences in basal acƟvity of the HPA axis at circadian trough, nor at circadian 

peak, poinƟng toward the absence of general dysregulaƟon of HPA axis funcƟon in the lines.  Enhanced 

corƟcosterone levels at circadian peak (i.e. awakening level) have been reported several Ɵmes as a 

common endocrine disrupƟon occurring in depressed individuals (de Kloet et al., 2005). Though our 

findings appear reliable, it would be interesƟng to apply a more comprehensive study of HPA axis 

rhythmicity, using a method allowing for more frequent sampling (Landgraf et al., 1999; Touma et al., 

2008; Waite et al., 2012).  However, methods that allow for frequent sampling of HPA axis acƟvity (e.g. 

in-dwelling jugular vein catheters or regular collecƟon of fecal boli from single-housed animals) may 

impart stress upon the animal that we wished to avoid in this case. In spite of the limited number of 

data points gathered, a lack of variaƟon in adrenal weight between the lines supports our conclusion. 

InteresƟngly, we found differences between the lines in corƟcosterone responsiveness to restraint 

stress, with high-line rats showing the strongest response and low-line rats the weakest. Lines displayed 

equal recovery in corƟcosterone levels 60 minutes aŌer cessaƟon of the stressor, indicaƟve of equally 

efficacious negaƟve feedback mechanisms. VariaƟon in corƟcosterone levels between lines appeared 

most evident in the iniƟal stages of the stress exposure. MulƟple factors might underlie this variability 

including: differenƟal percepƟon with regard to the absolute stressfulness of the experience; differenƟal 

capacity of fast feedback mechanisms; more funcƟonal variability in the release of and recepƟveness to 

corƟcotrophs (Tasker & Herman, 2011).  Recent findings from the differenƟal stress reacƟvity selecƟon 

lines indicate that differenƟal corƟcosterone responses to stress, and associated behavioral phenotypes, 

are associated with alteraƟons in funcƟonality at mulƟple levels of the HPA axis (Heinzmann et al., 

2014). 

In addressing potenƟal molecular-geneƟc correlates of the phenotypic differences between the lines we 

indeed found variaƟon in gene expression within several nodes of the HPA axis. Unexpectedly, given 

differences in corƟcosterone responsiveness to stress between the lines, we did not find any differences 

in the expression of the gene encoding corƟcotropin-releasing hormone (Crh) in the PVN. CRH release is 

considered to be at the apex of HPA axis acƟvaƟon (Ulrich-Lai & Herman, 2009),  regulaƟng the 

expression of Pomc, which encodes proopiomelanocorƟn (POMC), the polypepƟde pre-cursor of ACTH, 
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in the pituitary (Bale & Vale, 2004). AddiƟonally, we found differenƟal expression of Avp, the gene coding 

for vasopressin.  Vasopressin is a corƟcotropic pepƟde co-released from the PVN along with CRH, and 

known to potenƟate the acƟons of CRH (DeBold et al., 1984).  InteresƟngly, the difference found did not 

go in the expected direcƟon, with low-line rats showing higher expression relaƟve to intermediate- and 

high-line rats.  The opposite paƩern of results was found with reference to Avpr1b expression in the 

pituitary gland. AcƟvaƟon of vasopressin receptors of subtype 1b, coded for by Avpr1b, sƟmulates the 

producƟon of POMC, which is then converted in part to ACTH. In conjuncƟon, these two results clarify the 

finding of increased expression of Pomc in both low- and high-lines relaƟve to the intermediate-line, 

suggesƟng that both low- and high-lines have similar capacity to mount a strong ACTH response to stress. 

Taken together with a lack of evidence of differenƟal expression of genes determining adrenal sensiƟvity 

to ACTH (Mc2r) or involved in synthesis of glucocorƟcoids and adrenaline (Cyp11a1, Star, Th, Pnmt), it 

would appear that differences between the lines are potenƟally more likely to be centrally mediated 

(Ulrich-Lai & Herman, 2009). This raises an interesƟng possibility since it is generally considered that it is 

limbic brain regions, and not the HPA axis itself, that mediate habituaƟon in the face of repeated stress 

(Herman, 2013). 

In central nucleus of the amygdala (CeA), a brain region implicated in both anxiety (Phelps & LeDoux, 

2005) and aggression (Halász et al., 2002; Márquez et al., 2013; Tulogdi et al., 2010), we found increased 

expression of Gad67 in intermediate- and high-line rats relaƟve to low-line rats.  Gad67 encodes the 

67kDa isoform of glutamic acid decarboxylase, an enzyme key in the acƟvity-dependent producƟon of 

GABA from glutamate.  The CeA is thought to have an excitatory impact upon HPA axis acƟvity via its 

output to the bed nucleus of the stria terminalis (BNST) (Ulrich-Lai & Herman, 2009).  The BNST acts as a 

hub where stress-related signals from several limbic brain regions are integrated, determining its HPA axis 

inhibiƟng output to the PVN (Johnson et al., 2016). The projecƟon from CeA to BNST is GABAergic and an 

increase in GABA acƟvity derived from CeA could conceivably give rise to more ready acƟvaƟon of HPA 

axis via enhanced disinhibiƟon of PVN (Ulrich-Lai & Herman, 2009).  In this vein, evaluaƟon of potenƟal 

changes in gene expression in the BNST is warranted. Moreover, independent of its excitatory influence 

on the HPA axis, the CeA is implicated in percepƟon of and response to threat (Fox et al., 2015; Johnson et 

al., 2016). Enhanced inhibitory acƟvity from this region could potenƟally explain the stronger reacƟon of 

high-line rats to the threat of exposure experienced in the EPM and to a normally non-threatening 

intruder in the resident-intruder test. 

A limitaƟon of the current study is that we have not yet confirmed that variaƟons in the expression of 

genes reported here are translated at the level of the respecƟve proteins, and doing so represents an 

important next step. It is further necessary to establish whether any parƟcular variaƟon has a causal 

implicaƟon in the neuroendocrine and behavioral phenotypes reported herein, since there is the potenƟal 

that some alteraƟons may be compensatory rather than acƟvely involved in phenotypic variaƟon.  Given 

the frequent associaƟon of Fkbp5 and Avpr1b acƟvity in modulaƟng affecƟve, aggressive, and endocrine 
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phenotypes in both human and animal models (Binder et al., 2004; Dempster et al., 2007; Holz et al., 

2015; Luppino et al., 2014; Minelli et al., 2013; Pagani et al., 2015; Touma et al., 2011; van West et al., 

2004; Wersinger et al., 2008), variaƟon in these two genes represent parƟcularly promising candidates.  

In summary, we report the successful development of two selecƟvely bred lines differing in propensity to 

habituate in terms of corƟcosterone response to repeated stress, as well as a control line intermediate for 

this trait. ConsƟtuƟve stress-non-habituaƟng rats displayed enhanced aggression, anxiety-like, and 

depression-like behaviors, enhanced reacƟvity to acute stress, and a number of alteraƟons in the 

expression of genes within mulƟple nodes of the HPA axis.  Together, these findings add weight to the link 

between consƟtuƟve differences in stress adaptability and vulnerability to develop psychopathology-like 

alteraƟons. The lines represent a promising model with which to further examine the relaƟonship 

between stress adaptability and stress-related pathophysiology more generally, especially with respect to 

underlying mechanisms. Moreover, the potenƟal of treatments enhancing stress habituaƟon to enhance 

resilience to psychopathology could be assessed using this model. 
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Supplementary informaƟon 

Supplementary Table 1  List of candidate genes including full name of protein product, in addi-

Ɵon to forward and reverse primer sequences. The iniƟals ‘hk’ denote the two housekeeping genes used. 

Materials & Methods 

Subjects 

Measures of maternal behavior were determined in F7 dams (n=9-12), who bred the animals used in 

endocrinology experiments. 

Maternal behavior observaƟons 

Prior to the first birth, and in line with previous breedings, dams were provided with three 3-ply Ɵssues as 

nest material, in addiƟon to normal housing condiƟons. Maternal care was observed using a protocol 

adapted from Cordero and colleagues (2012). For the first five whole days postpartum (i.e. p1-p5) each 

dam was observed daily for a minimum of five seconds every three minutes, during 60 minute 

observaƟon periods (20 observaƟons/period x four periods per day = 80 observaƟons/dam/day). 

ObservaƟons occurred at regular Ɵmes (0800, 1200, 1700, 2000h). Dams were observed in their 

homecage and minimum disturbance was ensured during the five-day observaƟon period. Briefly, 

behaviors scored were: i) Dam nursing pups, including the posiƟons a) arched-back nursing, b) ‘blanket’ 

posture (mother lays over the pups), and c) passive posture (mother lays either on her back or side while 

the pups nurse; ii) mother licking/grooming any pup, in either a) arched-back posture, and b) any other 
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posture; iii) mother off pups (dam away from the pups, e.g., while resƟng or exploring, eaƟng or 

drinking). As faithful recording of the behavior of the dam under red light condiƟons was difficult, the 

coding scheme was simplified for dark cycle observaƟons. If the dam was on the nest they were 

considered to be nursing, and if off nest then not nursing. The percentage of all samples during which 

the dam was engaged in nursing was calculated per session and per day. Results are presented as 

percentage per day. Owing to the well-described importance of individual differences in arched-back 

nursing, and licking and grooming behavior, in pups’ behavior and HPA axis reacƟvity (for review see 

Weaver, 2007), the relaƟve representaƟon of these behaviors within the dams’ repertoire was also 

determined. 

As described, pups were counted and, if necessary, liƩers reduced to a maximum of 12 pups on p2. In 

doing this, dams were removed from the cage, as were pups. Dams and pups were returned 

simultaneously to the homecage, off nest. The latencies for the dam to approach the first pup, pick it 

up, place it back in the nest, as well as the latency to return six pups, were recorded (respecƟvely 

termed: contact; take; return; finish in Figure S1D). To cause minimum disturbance to other 

measurements, this test took place aŌer the second maternal behavior measurement of the day 

(1200h). 

StaƟsƟcs 

Maternal behavior measurements were taken over mulƟple Ɵme points and thus analyzed using 2-way 

repeated measures ANOVA, with selecƟon line as the between-subjects factor and day as the within-

subjects factor. For within-subjects ANOVA, where sphericity assumpƟons were violated, the 

Greenhouse-Geisser correcƟon was applied. Latencies to reach certain milestones in the pup retrieval 

test were non-normally distributed and therefore these data were analyzed using Kruskal-Wallis tests 

for each milestone. StaƟsƟcal significance level was set at p < 0.05. 

Results 

ExaminaƟon of maternal behavior over the first five full days of life indicated that though the intensity 

of pup-directed behavior declined across days (proporƟon of Ɵme spent nursing, main effect of day: F

(4,116) = 8.884, p<0.001, ε = 0.72; proporƟon of all nursing delivered in arched-back posture: F(4,116) = 

31.438, p<0.001; proporƟon of all pup-directed behavior consisƟng of licking and grooming: F(4,116) = 

3.228, p<0.05, ε = 0.70), each of the lines demonstrated these declines equally (day*line interacƟon: 

nursing, F(8,116) = 1.385, n.s.; arched-back nursing, F(8,116) = 1.438, n.s.; licking and grooming, F(8,116) = 

0.324, n.s.).  

When the nest was disturbed in order to count the pups on p2, and pups were returned to the 

homecage off nest, dams from each line were equally reacƟve in retrieving them. The Ɵme taken for the 

dam to make the first contact aŌer being replaced to the cage, pick up the first pup, place that first pup 
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Supplementary Figure 1 ConsƟtuƟve differences in stress adaptaƟon are not associated with differences in 

maternal behavior. ExaminaƟon of maternal behavior over the first five days of life indicated that though the 

intensity of pup-directed behavior (proporƟon of Ɵme spent nursing (A); proporƟon of all nursing delivered in 

arched-back posture (B); proporƟon of all pup-directed behavior consisƟng of licking and grooming (C) declined 

across days, each of the lines demonstrated these declines equally. Lines performed equally in the pup retrieval 

test performed on p2 (D). 

back in the nest, and go on to retrieve a further five pups, did not differ between groups (contact: H(2) = 

0.664, n.s.; take: H(2) = 2.275, n.s.; return one: H(2) = 0.228, n.s.; return six: H(2) = 3.041, n.s.). 
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Abstract  

Experience of adversity early in life and dysregulaƟon of hypothalamus-pituitary-adrenocorƟcal (HPA) 

axis acƟvity are risk factors oŌen independently associated with the development of 

psychopathological disorders, including depression, PTSD and pathological aggression. AddiƟonal 

evidence suggests that in combinaƟon these factors may interact to shape the development and 

expression of psychopathology differenƟally, though liƩle is known about underlying mechanisms. 

Here, we studied the long-term consequences of early life stress exposure on individuals with 

differenƟal consƟtuƟve adaptability to repeated stress, assessing both socio-affecƟve behaviors and 

brain acƟvity in regions frequently found to be sensiƟve to pathological alteraƟons following stress. 

Two rat lines, geneƟcally selected for either low or high glucocorƟcoid responsiveness to repeated 

stress (i.e. strong or impaired corƟcosterone habituaƟon, respecƟvely) were exposed to a series of 

unpredictable, fear-inducing stressors on intermiƩent days during the peripuberty period. Results 

indicated that being both consƟtuƟvely impaired in terms of stress habituaƟon and having experience 

of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as 

increasing basal acƟvity in several subregions of the prefrontal cortex in a manner that was associated 

with increased behavioral inhibiƟon. InteresƟngly, peripuberty stress had a differenƟal impact on 

aggression in the two rat lines, enhancing aggression in the stress-habituaƟng low-line rats but not in 

the already high-aggressive, high-line rats. Taken together, these findings indicate that aberrant HPA 

axis acƟvity around puberty, a key developmental period in the social repertoire of both rats and 

humans, may alter behavior such that it becomes anƟ-social in nature. 
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IntroducƟon 

Experience of adversity in childhood and adolescence is recognized as a major risk factor in the 

development of psychopathological disorders later in life (Caspi & MoffiƩ, 2006; Heim & Binder, 2012; 

Nugent et al., 2011; Widom & Maxfield, 1996). However, not all individuals experiencing early adversity 

go on to develop psychopathology and increased understanding of the factors underlying this variability 

would assist in the idenƟficaƟon and treatment of vulnerable individuals. A growing number of findings 

indicate that having a consƟtuƟon conferring differenƟal physiological sensiƟvity to stress may be a factor 

that modulates the outcome of early life stress exposure (Bevilacqua et al., 2012; Binder et al., 2004; 

Binder et al., 2008; Luppino et al., 2014; Szczepankiewicz et al., 2013; van West et al., 2004), implicaƟng 

this as a key arena within which to focus research.  

Exposure of an individual to a stressful challenge is characterized by a response that includes metabolic, 

behavioral and physiological components, and involves the acƟvaƟon and interacƟon of several neuro-

physiological systems (McEwen, 2001). The consequences of the stress response are generally adapƟve in 

the short term, restoring homeostasis and mediaƟng adaptaƟon following cessaƟon of the stressor, a 

process termed allostasis. However, repeated, prolonged or inadequate stress responses may eventually 

lead to physiological damage, termed allostaƟc load, as well as leading to addiƟonal dysregulaƟon of the 

systems mediaƟng stress responses (McEwen, 1998). AccumulaƟon of allostaƟc load is thought to form 

the pathological basis of stress-related disorders (McEwen, 2007).  

Following acƟvaƟon of the sympatheƟc nervous system (SNS) in response to challenge, the hypothalamus

-pituitary-adrenal (HPA) axis coordinates acƟons that enable an individual to cope with the challenge 

(Shirazi et al., 2015).  AcƟvaƟon of the HPA axis involves a cascade of responses that starts with the 

secreƟon of corƟcotropin-releasing hormone (CRH) and arginine vasopressin (AVP) by the paraventricular 

nucleus of the hypothalamus (PVN). The release of CRH and AVP acƟvates adrenocorƟcotrophic hormone 

(ACTH) secreƟon from the pituitary which, in turn, triggers the producƟon and release of glucocorƟcoids 

(primarily corƟsol in humans; corƟcosterone in most rodents) from the adrenal glands into the circulaƟon 

(Ulrich-Lai & Herman, 2009). CirculaƟng glucocorƟcoids exert a mulƟtude of effects, both genomic and 

non-genomic, via their acƟons upon mineralocorƟcoid (MR) and glucocorƟcoid (GR) receptors (de Kloet, 

2014; de Kloet et al., 2008; Joëls et al., 2013).  AcƟvaƟon of GR in several brain areas, notably including 

the PVN, acts to inhibit conƟnuaƟon of the stress response, with this negaƟve feedback acƟng via both 

fast and slow mechanisms (Tasker & Herman, 2011). A common allostaƟc adaptaƟon of the HPA axis in 

response to repeated exposure to the same stressor is reducƟon of the glucocorƟcoid response across 

stress exposures (Deinzer et al., 1997; Federenko et al., 2004; Gerra et al., 2001; Pruessner et al., 1997). 

AdaptaƟon of this kind minimizes the impact of frequently experienced stressors, and both under- or over

-efficacious engagement of this process could leave an individual open to the accumulaƟon of allostaƟc 

load (McEwen, 1998).  
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Here we aimed to assess in rats the influence of consƟtuƟve differences in capacity to the habituate the 

glucocorƟcoid response to repeated stress on the neurobehavioral outcome following exposure to stress 

during the peripuberty period. In outbred rats, previous studies have found peripuberty stress to increase 

the expression of anxiety-like, depression-like and aggressive behaviors, in concert with behaviorally-

consequent shiŌs in acƟvaƟon of brain regions important in socio-emoƟonal funcƟon (Márquez et al., 

2013; Tzanoulinou et al., 2014a; Tzanoulinou et al., 2014b). AŌer exposing geneƟcally-selected stress-

habituaƟng and non-stress-habituaƟng rats to peripuberty stress, or control condiƟons, we measured the 

impact of both factors upon the development of psychopathology-like behaviors (specifically, anxiety-like, 

depression-like, and aggressive behaviors) in the long-term. We addiƟonally sought to examine whether 

basal acƟvity of the brain differed between the lines, and in funcƟon of peripuberty stress exposure. We 

focused our invesƟgaƟon on subregions of prefrontal cortex, amygdala, and hippocampus, brain regions 

that are: i) subject to ongoing development during adolescence (Spear, 2000; Casey et al., 2008); ii) 

previously shown to be affected by peripubertal stress (Marquez et al., 2013; iii) found to show altered 

acƟvaƟon at rest in stress-related psychopathologies (New et al., 2009; Koch et al., 2016; Sripada et al., 

2012; Wang et al., 2016). 

Materials & Methods  

Subjects 

Experimental animals were male offspring of rats from the F6 generaƟon of differenƟal stress-habituaƟon 

selecƟon lines recently developed by our laboratory (see Chapter 3 of this thesis).  A full descripƟon of the 

procedure used to generate these lines can be found in the supplementary materials. Male and female 

Wistar Han rats, acƟng as intruders and as cohabitaƟng partners, respecƟvely, were purchased from a 

commercial breeder (Janvier, France). 

Experimental animals were derived from 10-12 liƩers. At weaning on postnatal day (p) 21, pairs of male 

rats from different liƩers were matched according to weight and mixed among home cages. AddiƟonal 

care was taken to ensure that weight was well matched between treatment groups within each line.  

Animals assigned to the same experimental group were housed together. Peripuberty stress was applied 

over seven, intermiƩent days between p28 and p42.  Control rats were handled briefly on the days that 

stress took place.  AŌer this point rats remained undisturbed, except for weekly cage changes, unƟl 

experimental procedures began at adulthood (designated as p90).  Before the first behavioral test, all rats 

were handled on three occasions for two minutes per occasion.   

Rats were maintained on a 12-h light–dark cycle (lights on at 0700h), in a temperature- and humidity-

controlled environment (21±1 °C; 55% humidity ±5%), with ad libitum access to laboratory chow and 

water.  Experiments were performed between 0800 and 1200, except where otherwise stated, with at 

least one week between each test. All procedures were conducted in accordance with the Swiss NaƟonal 
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InsƟtuƟonal Guidelines on Animal ExperimentaƟon and approved by a license from the Swiss Cantonal 

Veterinary Office CommiƩee for Animal ExperimentaƟon. 

Experimental design 

A 2 x 2 factorial design was used: two geneƟcally-selected breeding lines (low and high corƟcosterone in 

response to repeated stress, i.e. stress habituaƟng and stress non-habituaƟng, respecƟvely) were exposed 

to one of two treatment condiƟons (peripuberty stress (PPS) or control-handling (control)), resulƟng in 

four experimental groups.  StarƟng from n=22 rats in each group, following assessment of anxiety-like 

behavior on the elevated plus maze (EPM), n=8/group went forward for measurement of depression-like 

behavior, followed by measurement of brain energy metabolism using 2-deoxyglucose autoradiography. 

An addiƟonal n=12/group were assessed for aggression in the resident-intruder test.   

Peripuberty Stress protocol 

The stress protocol was performed as previously described (Marquez et al., 2013).  Following exposure to 

an open field (50 x 50 x 30cm) for five minutes on p28, the stress protocol consisted of the presentaƟon of 

two different stressors, each one lasƟng 25 minutes (see Figure 1 for stress schema). These were either; 

exposure to the syntheƟc fox odor trimethylthiazoline (TMT; Phero Tech Inc., Canada) or to an elevated 

plaƞorm (EP). TMT exposure was administered in a plasƟc box (38 x 27.5 x 31 cm) via a scent-charged 

cloth. The box was placed under bright light (210–250 lx).  The elevated plaƞorm (12 x 12cm, elevated 

95cm from the ground) was also under direct bright light (470–500 lx).  Following each stress session, 

animals were returned to neutral cages for 15 minutes. A transparent Plexiglas wall perforated with holes 

separated pairs of cagemates during this Ɵme. Following the holding period, animals were returned to 

their home cage. The stressors were applied during peripuberty, on seven intermiƩent days between p28–

p42, following a variable schedule. Tail blood samples were taken on p28, p30 and p42, once at the offset 

of stress and again 30 minutes later.  All blood samples were chilled, centrifuged and the plasma stored at 

-20⁰C unƟl subsequent analysis.  

Figure 1 Experimental design. Animals were weaned at p21 and assigned to Control or Peripuberty Stress (PPS) 

groups. The stress protocol consisted of exposure to an open field (OF) on p28, followed by intermiƩent, variable 

exposure to an elevated plaƞorm (EP) and predator odor (trimethylthiazoline; TMT). Control animals were handled 

briefly on the days on which their experimental counterparts were exposed to stress. Behavioral tesƟng started at 

p90, with a minimum delay of one week imposed between tests. 
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Behavioral procedures 

Elevated Plus Maze 

Anxiety-like behavior was evaluated using the EPM test (Pellow & File, 1986). The apparatus consists of 

two opposing open arms (50 x 10cm) perpendicular to two enclosed arms (50 x 10 x 50cm) that extend 

from a central plaƞorm (10 x 10cm), elevated 65 cm above the floor. Light levels were maintained at 14-

16 lx on the open arms and 5-7 lx on the closed arms. At the start of the test, the rat was placed on the 

central plaƞorm facing a closed arm and allowed to explore the maze for five minutes. In between 

animals, the apparatus was cleaned with 5% ethanol soluƟon and dried.  Behavior was monitored using a 

ceiling-mounted video camera and analyzed with a computerized tracking system (Ethovision 9; Noldus 

IT, Netherlands).  The Ɵme spent in the open and closed arms, and distance moved, were recorded. Two 

rats were excluded from the analysis as they fell from the maze before the end of the five minute test 

period (one each from the ‘Low PPS’ and ‘High Control’ groups). 

Forced swimming test 

Rats were submiƩed to a forced-swimming test (FST) to evaluate depression-like behavior (Porsolt et al., 

1978).  Animals were placed in a plasƟc beaker (25 cm diameter x 46 cm) containing 30 cm of water (25°

C) for 15 minutes. A second session was performed 24h later for 5 minutes.  Both sessions were recorded 

using a ceiling mounted video camera, and the Ɵme spent immobile (making only those movements 

necessary to keep the snout above the water), swimming or climbing was quanƟfied manually with the 

aid of in-house soŌware (Clicker; EPFL, Switzerland) by an experimenter blind to the experimental 

condiƟon.  

Resident-intruder test 

Prior to the night of the resident-intruder (RI) test, experimental rats cohabited with a female partner for 

10 days in order to encourage territoriality.  The female was removed 30 minutes before the onset of the 

test, and replaced aŌerwards.  The test was performed during the beginning of the dark cycle (between 

1900 and 2200h).  The resident was exposed in its home cage to a smaller (5-10% lighter), unfamiliar 

male intruder of the same strain for 30 minutes.  Each intruder was used only once.  Encounters were 

video-recorded and scored offline by an experimenter blind to the experimental group, assisted by 

Observer soŌware (Noldus IT, Netherlands).  The following parameters were quanƟfied in terms of 

frequency and duraƟon: offensive upright, lateral threat, keeping down, aƩack, biƟng, social 

invesƟgaƟon, non-social invesƟgaƟon and auto-grooming.  The cumulaƟve duraƟon of the first four 

behaviors were summed to provide a measure of total offensive behavior.  Latency to the first offensive 

event iniƟated by the resident was also recorded. To determine holisƟcally the aggressiveness of each rat 

aggression z scores were calculated from raw scores of variables described above. Specifically, total 

offensive behavior, frequency of aƩacks, and latency to offend were taken into account. The z scores for 
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these variables were integrated to derive a single aggression score. 

Rats are a highly social species and, as such, have developed stereotyped paƩerns of social interacƟon, 

such as intenƟon signaling and submissive posturing, that allow for the resoluƟon of territorial and 

hierarchical conflicts with minimal injury to both parƟes (Koolhaas et al., 2013).  Here, forms of aƩack 

performed by the resident which fell outside of species-specific norms of interacƟon were noted and 

collated. Specifically, the targeƟng of bites to vulnerable body parts (i.e. the head, genitals or underbelly), 

absence of signaling of intent to aƩack, and persistence of an aƩack in the face of submission by the 

intruder were all considered to engender “abnormal” forms of aggression (Haller, 2013).  

Brain energy metabolism 

One week aŌer tesƟng in the forced swimming test animals were injected intraperitoneally with 14C-2-

deoxy-D-glucose (165μCi/kg; Hartmann AnalyƟc, Germany) 45 min before being sacrificed via decapitaƟon 

in order to evaluate brain glucose metabolism under basal condiƟons.  Brains were removed and flash 

frozen in isopentane chilled to -45°C, and subsequently stored at −80 °C unƟl further processing. 

Coronal secƟons (20μm thick) were cut on a cryostat.  One out of six secƟons within several pre-

determined regions of interest were collected on Superfrost slides. The selected ROIs fulfilled the 

following criteria: i) subject to ongoing development during adolescence (Spear, 2000; Casey et al., 2008); 

ii) previously demonstrated to be affected by peripubertal stress (Marquez et al., 2013); iii) found to show 

altered acƟvaƟon in stress-related psychopathologies such as PTSD (New et al., 2009; Koch et al, 2016; 

Sripada et al., 2012; Wang et al., 2016). Prefrontal cortex, hippocampus, and amygdala all met these 

criteria. Collected slides were processed for autoradiography along with a calibrated 14C-microscale on 

XAR-5 Kodak Biomax MR autoradiography film (Sigma-Aldrich, Switzerland) for 3 days.    AŌer developing 

the films, the slides were counterstained with 0.2% cresyl violet acetate (Sigma-Aldrich, Switzerland), 

dehydrated through increasing concentraƟons of ethanol, cleared in xylene, and coverslipped with DPX 

(Sigma, Switzerland) to provide a histological control. 

Images from the 2-DG XAR films were obtained with a digital camera and aligned with the corresponding 

Nissl-stained images to allow for structure idenƟficaƟon using MCID Core TM 7.0 soŌware (MCID, UK). 14C

-2-deoxy-glucose uptake was measured by densitometric analysis of the XAR films. Briefly, the images 

were calibrated with 14C standard curves, the regions of interest were delineated manually by an 

experimenter blind to the experimental group and the opƟcal densiƟes were obtained for these regions. 

The 2-DG uptake was normalized to that of the whole slice, which did not vary among the experimental 

groups, in order to control for any differences in film exposure.  Data shown are averaged from three 

secƟons, including both hemispheres, per region of interest.  Analyses of 2-DG expression in the various 

regions of interest were conducted by another researcher, also blind to the experimental condiƟon. 

CorƟcosterone measurement  
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Measurements of free corƟcosterone were obtained from all blood plasma samples, via use of an 

enzymaƟc immunoassay kit performed according to manufacturer’s instrucƟons (Enzo Life Sciences, 

Switzerland). Levels were calculated using a standard curve method. 

StaƟsƟcs 

Data were analyzed using SPSS 17.0 (Chicago, USA). Results are presented as the mean ± SEM. A mixed 3-

way repeated measures ANOVA was used to analyze measurements of corƟcosterone concentraƟon 

obtained from plasma taken across the stress protocol, with selecƟon line as the between-subjects factor 

and postnatal day and sample Ɵmepoint as the within-subjects factors. For within-subjects ANOVA, where 

sphericity assumpƟons were violated, the Greenhouse-Geisser correcƟon was applied.  All other variables 

were analyzed using 2-way ANOVA, with selecƟon line and treatment as between-subjects factors. To 

permit this data transformaƟon, shown in brackets, was performed on the following behavioral 

parameters to produce a normal distribuƟon of data: offensive behavior % (arcsine); aƩack frequency and 

latency to offend (log10). Significant interacƟons were broken down by line and explored using 

independent samples t-tests, with treatment group as the between-subjects factor. Behavioral variables 

were correlated with basal brain acƟvity using Pearson’s correlaƟon. StaƟsƟcal significance level was set 

at p<0.05. A p-value was considered as tending toward significance when 0.05 ≤ p ≤ 0.1. 

Results 

ConsƟtuƟve differences in stress habituaƟon are reflected by differenƟal corƟcosterone 

response across repeated exposures to stress during the peripubertal period  

Analysis of plasma corƟcosterone concentraƟon from samples obtained at various Ɵmepoints across the 

peripubertal stress protocol revealed a significant interacƟon between selecƟon line, postnatal day and 

sampling Ɵmepoint (3-way RM ANOVA: F(2,82) = 22.38, p<0.001). When broken down by sampling 

Ɵmepoint, analysis revealed that corƟcosterone response to stress differed between lines across the 

duraƟon of the protocol not only in the response sample (Fig 2A: 2-way RM ANOVA: F(2,84) = 17.61, 

p<0.001) but also in the recovery sample (Fig 2B: 2-way RM ANOVA: F(2, 82) = 3.76, p<0.05, ε = 0.83). As 

expected, and in line with previous findings (see chapter 3), low- and high-line rats did not differ in 

corƟcosterone response to stress upon first exposure (p28: t(42) = -1.58, ns) but did differ when sampled 

at the offset of stress on the third (p30: t(42) = -9.31, p<0.001) and final days of the protocol (p42: t(42) = -

5.35, p<0.001). Low-line rats demonstrated significantly lower corƟcosterone levels than high-line rats in 

response to both of these later stress exposures. Similar differences between lines were observed in the 

recovery plasma sample, though in this case low-line rats also had significantly lower corƟcosterone levels 

(i.e. quicker recovery) at this Ɵmepoint on the first day of stress exposure (p28: t(41) = -5.31, p<0.001), as 

well as on the other days sampled (p30: t(42) = -3.78, p<0.01; p42: t(42) = -4.11, p<0.001).  
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Exposure to peripuberty stress gave rise to dissociable alteraƟons in psychopathology-like 

behaviors between the differenƟal stress habituaƟon lines 

Elevated plus maze 

We first evaluated whether rats exposed to peripuberty stress demonstrated differenƟal behavioral 

responses to the elevated plus maze when compared with their respecƟve control groups. In chapter 3 

of this thesis, we reported enhanced anxiety-like behavior in the high-line relaƟve to the low-line in the 

absence of stress exposure, and that finding was recapitulated here. Specifically, irrespecƟve of stress 

experience, high-line rats spent more Ɵme in the protected, closed arm of the maze than low-line rats 

(Figure 3A: m.e. of line, closed arm: F(1,82) = 11.83, p<0.001). Accordingly, they also spent less Ɵme on 

the open arm (m.e. of line: F(1,82) = 9.48, p<0.01) and less Ɵme in the centre square (m.e. of line, centre: 

F(1,82) = 3.96, p<0.01) when compared to low-line rats. Exposure to peripuberty stress acted to enhance 

anxiety-like behavior, irrespecƟve of line. Specifically stressed rats spent more Ɵme in the closed arm 

(m.e. of treatment: F(1,82) = 4.88, p<0.05), and less Ɵme on the open arm of the maze (m.e. of 

treatment: F(1,82) = 4.52, p<0.01). The interacƟon between line and peripuberty stress exposure did not 

reach staƟsƟcal siginificance (line*treatment: F(1,82) = 2.71, n.s.), prevenƟng further examinaƟon of the 

relaƟve prominence of differences between lines.  In addiƟon to influence on the Ɵme spent exploring 

certain zones of the maze, peripubertally stressed rats showed a reducƟon in distance travelled on the 

maze (m.e. of treatment: F(1,82) = 7.66, p<0.01). 

Figure 2 CorƟcosterone response to repeated peripuberty stress (PPS) differed in accordance with selecƟon 

line. Low- and high-line rats did not differ in their response to a first exposure to stress. ThereaŌer, low-line rats 

showed marked habituaƟon of the corƟcosterone response to following stressors which was aƩenuated in high-line 

rats (A). These differences were reflected by corƟcosterone concentraƟon in a second plasma sample, taken 30 

minutes aŌer the offset of stress (B). In addiƟon to strong habituaƟon across stressors, low-line rats showed 

accelerated recovery of the HPA axis following the first stress session on postnatal (p) day 28 (Independent sample t-

tests: *** = p<0.001; see text for further details).    
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Forced-swimming test 

To assess animals’ depression-like behavior, we exposed a subset of the group (n=8/group) to a two-day 

forced-swimming procedure. In chapter 3 of this thesis we reported enhanced depression-like behavior in 

the high-line relaƟve to the low-line rats in the absence of peripuberty stress exposure, and that finding is 

also recapitulated here. Specifically, irrespecƟve of stress experience, high-line rats spent more Ɵme 

floaƟng on the second exposure to the water than low-line rats (Fig 4B: m.e. of line: F(1,28) = 4.27, p<0.05), 

a finding which the animal behavior literature would typically take to engender an increase in behavioral 

despair. No corresponding differences between lines were found in amount of Ɵme swimming or 

struggling (m.e. of line, swimming: F(1,28) = 1.60, n.s.; m.e. of line, struggling: F(1,28) = 0.51, n.s.). Lines did 

not differ in behavioral response to the first episode of forced swimming (Fig 4A). Moreover, exposure to 

peripuberty stress did not influence any aspect of behavioral response, neither on first exposure, nor on 

second exposure to forced swimming. 

Figure 3 Anxiety-like behavior on the elevated plus maze. Low-line rats spent less Ɵme in the 

closed arm of the maze, and more Ɵme on the open arm when compared to high-line rats (A). 

Following exposure to peripuberty stress (PPS), rats spent more Ɵme in the closed arm and less Ɵme in 

the open arm of the maze.  AddiƟonally stressed rats showed a decrement in locomoƟon in terms of 

distance covered on the maze (B) in comparison to non-stressed controls. (2-way ANOVA: main effect 

of treatment is represented by the uppermost capped line, main effect line is represented by the lower 

line; * = p<0.05; ** = p<0.01; *** = p<0.001; see text for further details). 
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Resident-intruder test 

In a second subset of animals (n=12/group) we evaluated the influence of line and peripuberty stress on 

aggression in the resident-intruder test. In terms of total duraƟon of the test spent engaged in offensive 

behavior, we found higher levels of aggression in high-line rats relaƟve to low-line rats (Fig 5A: m.e. of line: 

F(1,44) = 8.90, p<0.01). A similar effect was found in the relaƟve frequency of aƩacks, whereby high-line rats 

aƩacked the intruder more Ɵmes than low-line rats (Fig 5C: m.e. of line: F(1,44) = 4.98, p<0.05). In terms of 

readiness to perform a first offensive acƟon, we found a variable influence of selecƟon line and stress 

exposure on behavior (Fig 5B: line*treatment: F(1,44) = 4.39, p<0.05). Experience of peripuberty stress did 

not alter the already short latency of high-line rats to iniƟate hosƟliƟes (t-test: t(22) = -1.00, n.s.), whereas it 

tended to shorten the Ɵme taken for low-line rats to do so (t-test: t(22) = 1.84, p<0.1).  

In order to take a more holisƟc view of the aggressiveness of each rat, we derived a composite z score 

from the variables outlined above. This approach has previously proved useful in other studies aimed at 

the differenƟaƟon of individual differences in the response to traumaƟc stress exposure (Anacker et al., 

2016). In accordance with our previous findings (see chapter 3), analysis of the aggression score showed 

that, irrespecƟve of early life experience, high-line rats were more aggressive than low-line rats (Fig 5D: 

m.e. of line: F(1,44) = 9.13, p<0.01). InteresƟngly, exposure to peripuberty stress had differenƟal effects on 

the aggressiveness of the different selecƟon lines (line*treatment: F(1,44) = 4.10, p<0.05). Peripuberty stress 

Figure 4 Depression-like behavior in the forced-swimming test. Neither selecƟon line, nor prior 

exposure to peripuberty stress (PPS), influenced behavioral coping response to the first exposure to forced

-swimming (A). When re-exposed to this stressor on the following day, compared with low-line rats, high-

line rats spent significantly more Ɵme engaged in passive coping, as indexed by Ɵme spent floaƟng (B).  (2-

way ANOVA: main effect of line; * = p<0.05; see text for further details). 
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did not alter the already pronounced levels of aggression in high-line rats (t-test: t(22) = 0.14, n.s.) 

but significantly enhanced the aggressiveness of the typically non-aggressive low-line rats (t-test: t

(22) = -2.57, p<0.05).  

AddiƟonally, we assessed the propensity of animals from each experimental group to perform 

abnormal forms of aggression including: targeƟng of bites to vulnerable body parts, failure to signal 

intent to aƩack, and conƟnued aƩack despite clear signaling of submission by the intruder. Taking 

into account only rats that performed at least one aƩack (Low control: n=7; Low PPS: n=9; High 

control: n=10; High PPS: n=10), the percentage of rats from each group performing aberrant forms 

of aƩack were as follows: Low control, 14%; Low PPS, 56%; High control, 10%; High PPS, 0%. It thus 

appeared that low-line rats exposed to peripuberty stress were much more likely to engage in this 

atypical form of behavior than animals from any other experimental group. 
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Figure 5 Aggression in the resident-intruder test. Compared to low-line rats, high-line rats spent 

a greater duraƟon of the test engaged in offensive behaviors (A) and aƩacked more frequently (C). 

There was an interacƟon between selecƟon line and experience of peripuberty stress (PPS) in terms of 

readiness to engage in offensive behavior (C), with low-line PPS rats tending to be quicker to aƩack 

than low-line controls. When these three measures were combined (D), an interacƟon between 

selecƟon line and treatment revealed that PPS exposure increased the overall aggressiveness of low-

line rats, whilst not altering relaƟve aggressiveness of high-line rats. (2-way ANOVA: interacƟon is 

represented by a wide, uncapped line; main effect of line is represented by a line with feet; post hoc t-

tests by a narrow, uncapped line; + = p<0.1; * = p<0.05; ** = p<0.01; see text for further details). 

SelecƟon line and peripuberty stress exposure are associated with differences in brain meta-

bolism under basal condiƟons 

To interrogate potenƟal neurobiological correlates of variaƟon in psychopathology-like behaviors relaƟng 

to both consƟtuƟve stress habituaƟon and peripuberty stress exposure, basal brain energy metabolism 

was studied via 14C 2-deoxy-glucose (2-DG) autoradiography (Figure 6). We focused our analyses on seve-

ral predefined regions of interest, specifically: prefrontal cortex, dorsal hippocampus and amygdala. 

In the ventral subdivision of orbitofrontal cortex analyses revealed both an effect of selecƟon line and of 

stress experience in brain acƟvity under basal condiƟons.  Specifically, in comparison to low-line rats, 

high-line rats showed greater uptake of 2-DG (Fig 6A: m.e. of line: F(1,28) = 5.36, p<0.05). AddiƟonally, 

groups exposed to stress during peripuberty showed increased uptake of 2-DG relaƟve to control groups 

(m.e. of treatment: F(1,28) = 4.86, p<0.05).  A similar paƩern of findings was observed in the medial subdi-

vision of orbitofrontal cortex (m.e. of line: F(1,28) = 2.93, p<0.1; m.e. of treatment: F(1,28) = 5.76, p<0.05) 

but not in the lateral subdivision. Caudally, in medial prefrontal subregions, the same paƩern of differen-

Ɵal 2-DG uptake was repeated in the prelimbic cortex (Fig 6B: m.e. of line: F(1,28) = 6.64, p<0.05; m.e. of 

treatment: F(1,28) = 6.83, p<0.05). No addiƟonal effects were found either dorsally, in anterior cingulate 

cortex, or ventrally, in infralimbic cortex. 

In subcorƟcal regions (Fig 6C), analyses revealed addiƟonal variaƟon in basal energy metabolism accor-

ding to selecƟon line in dorsal hippocampus. Specifically, relaƟve to low-line rats, high-line rats had en-

hanced 2-DG uptake in dorsal hippocampus (m.e. of line: F(1,27) = 15.82, p<0.001). InteresƟngly, there 

was evidence indicaƟng differenƟal modulaƟon of basal metabolism in dorsal hippocampus in the lines 

following experience of peripuberty stress (line*treatment: F(1,27) = 5.46, p<0.05). However, further ana-

lyses revealed the differences between control and stress groups to be non-significant (t-test: low-line: t

(14) = 1.52, n.s.; high-line: t(13) = -1.76, n.s). Somewhat surprisingly, no differences were evident in basola-

teral amygdala or in central nucleus of the amygdala. However, a non-significant trend towards reduced 

2-DG uptake in medial amygdala of high-line rats relaƟve to low-line rats was found (m.e. of line: F(1,27) = 
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5.36, p<0.05). 

Basal acƟvity within stress-sensiƟve brain regions was associated with prior psychopathology-

like behavioral tendencies. 

In brain regions where both consƟtuƟve differences in habituaƟon and stress experience were found to 

influence resƟng acƟvity, as indexed by 2-DG uptake, we performed correlaƟons with the primary out-

come measures derived from the elevated plus maze and forced-swimming tests. We found floaƟng beha-

vior upon second exposure to forced-swimming, typically thought to reflect behavioral despair in the face 

of an uncontrollable challenge, correlated posiƟvely with basal acƟvity in the ventral subdivision of the 

orbitofrontal cortex (Fig 6D: r=0.42, p<0.05). Similarly, Ɵme spent in the closed arm of the elevated plus 

maze, oŌen conceptualized as anxiety-like behavior, correlated posiƟvely with basal acƟvity in the medial 

subdivision of the orbitofrontal cortex (Fig 6E: r=0.40, p<0.05). In contrast, basal acƟvaƟon of the pre-

limbic porƟon of the medial prefrontal cortex was in strong negaƟve correlaƟon with distance travelled on 

the elevated plus maze (Fig 6F: r=-0.51, p<0.01). We note that these findings are not corrected for mul-

Ɵple comparisons, and that results may not retain staƟsƟcal significance if correcƟons were performed. 

 

Figure 6 QuanƟficaƟon of brain acƟvity under basal condiƟons, as indexed by uptake of 2-

deoxyglucose (2-DG), in stress-sensiƟve limbic brain regions. In ventral and medial subdivisions of the 

orbitofrontal cortex (A), relaƟve to low-line rats, high-line rats had enhanced 2-DG uptake. Moreover, PPS 

exposed rats showed enhanced 2-DG uptake relaƟve to controls in those same regions.  This paƩern was 

mirrored in the prelimbic division of the medial prefrontal cortex (B) but not in other subregions. In 

subcorƟcal brain areas (C), high-line rats again had higher 2-DG uptake than low-line rats. There was a 

tendency toward the opposite paƩern in medial amygdala. Levels of brain acƟvity under basal condiƟons 

were associated with several key indices of behavioral performance in tests of psychopathology-like 

behavior. (2-way ANOVA: main effect of treatment is represented by the uppermost capped line, main 

effect line is represented by the lower line; + = p<0.1; * = p<0.05; *** = p<0.001; see text for further 

details). AbbreviaƟons: FST = forced-swimming test; EPM = elevated plus maze; vOFC = ventral 

orbitofrontal cortex; mOFC = medial orbitofrontal cortex; PLCx = prelimbic cortex; BLA = basolateral 

amygdala; CeA = central nucleus of the amygdala; MeA = medial nucleus of the amygdala.  
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Discussion 

Here we explored the interacƟon of two key risk factors for psychiatric disorders, consƟtuƟve stress 

sensiƟvity and early life stress exposure, in the development and expression of psychopathology-like 

behaviors in adult rats. Confirming previous findings, both risk factors were found to influence the 

expression of psychopathology-like behavior. Specifically, in the absence of early stress exposure, high-

line rats (i.e. consƟtuƟve non-habituaters) demonstrated increased anxiety-like, depression-like and 

aggressive behaviors relaƟve to low-line rats (see chapter 3). Moreover, in accordance with earlier 

studies, exposure to peripuberty stress enhanced anxiety-like and aggressive behavior in its own right 

(Marquez et al., 2013; Tzanoulinou et al., 2014a; Tzanoulinou et al., 2014b; Cordero et al., 2016).  

Surprisingly, we did not observe an unequivocal synergy between the two factors, as might have been 

expected from the findings of studies which employed a similar approach (Clinton et al., 2014; McIlwrick 

et al., 2016; Stedenfeld et al., 2011). In the case of aggression, and to a lesser extent anxiety-like behavior, 

exposure to peripuberty stress did enhance psychopathology-like behavior. However, for the most part, 

these stress-induced alteraƟons were expressed by the stress-habituaƟng low-line, in accordance with 

similar studies (Cohen et al., 2006).  Whether this indicates that the high-line were truly insensiƟve to 

peripuberty stress cannot be clarified without further invesƟgaƟon. However, it appears that a ceiling may 

have been reached in the high-line in terms of aggressive and anxiety-like behavior, such that it could not 

be further enhanced by peripuberty stress exposure. InteresƟngly, a similar lack of enhancement in 

psychopathology-like outcomes was found following applicaƟon of adolescent stress to the high-anxious, 

stress-sensiƟve, “low-responder” rat line (Rana et al., 2016), adding weight to this speculaƟon. 

ObservaƟon of the corƟcosterone response to stress at several Ɵmepoints across the peripuberty stress 

protocol indicated that the rats used in this experiment responded in accordance with their selecƟon line. 

From a similar iniƟal corƟcosterone response, low-line rats showed marked habituaƟon of the response 

over stress sessions, an effect strongly aƩenuated in high-line rats, in line with previous findings (see 

chapter 3). In addiƟon, we found that low-line rats demonstrated robust negaƟve feedback inhibiƟon of 

the corƟcosterone response, as indexed by the recovery sample taken 30 minutes aŌer the cessaƟon of 

stress, an effect parƟcularly prominent following the first stress exposure. Enhanced negaƟve feedback of 

the HPA axis, via increased glucocorƟcoid sensiƟvity, is one of the key neuroendocrine alteraƟons found in 

individuals with PTSD (Yehuda et al., 1993; Yehuda et al., 1995). InteresƟngly, in addiƟon to trauma 

specific symptoms, PTSD sufferers frequently present with other comorbidiƟes including affecƟve 

perturbaƟons and enhanced anger (Contractor et al., 2015; Durham et al., 2016). Previous studies (see 

chapter 3) found a lack of difference in the expression of the gene coding glucocorƟcoid receptors, Nr3c1, 

in the PVN and pituitary gland of the low- and high-line rats, indicaƟng that this factor is unlikely to be 

responsible for the differenƟal negaƟve feedback. However, reduced expression of Fkbp5 was found in 

the PVN of low-line rats. FKBP5 regulates the sensiƟvity of the glucocorƟcoid receptor to its ligand by 
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altering its binding affinity (Binder, 2009), and a reducƟon in its expression in the low-line could 

conceivably lead to an enhancement of negaƟve feedback efficacy in the group relaƟve to others. Indeed, 

the impact of early life adversity on development of psychopathology has been found to be modulated by 

variaƟon in the expression of FKBP5 in a number of studies (Bevilacqua et al., 2012; Binder et al., 2008; 

Bryushkova et al., 2016; Klengel et al., 2013; Kohrt et al., 2015). 

Low stress reacƟvity, potenƟally occurring as a result of high glucocorƟcoid sensiƟvity, has been 

described in psychopathological disorders characterized by pathological aggression including conduct 

disorder, anƟ-social personality disorder, and psychopathy (O’Leary et al., 2007; O’Leary et al., 2010; 

Loney et al., 2005; McBurneƩ et al., 2000; Raine, 1996). Moreover, early life stress has also been 

implicated as a risk factor for the development of pathological aggression (Caspi et al., 2002; Weder et al., 

2009; Beach et al., 2010; Viding & McCrory, 2012; Fanning et al., 2014; Lee et al., 2014; Widom & 

Maxfield, 1996). Our finding here that peripuberty stress selecƟvely enhances aggression in the low-line, 

especially in light of increased incidence of abnormal forms of aggression in this group, suggests that the 

low-line may provide a useful animal model within which to explore the mechanisms underlying 

development of pathological aggression following adverse early life experience. 

We addiƟonally sought to invesƟgate the interacƟon between consƟtuƟve stress-sensiƟvity and 

peripuberty stress experience on the acƟvity of brain regions regularly found to show altered funcƟon in 

psychopathological condiƟons (New et al., 2009; Koch et al., 2016; Sripada et al., 2012; Wang et al., 

2016). We found enhanced basal acƟvity in several subregions of the prefrontal cortex in high-line rats 

relaƟve to low-line. Moreover, peripuberty stress experience was found to increase acƟvity in the same 

regions. Similar to the behavioral measures described previously, no synergy between the two factors 

was found in any brain region. In relaƟng brain acƟvity measures to behavioral findings, we found that 

basal acƟvity in ventral and medial subdivisions of orbitofrontal cortex were posiƟvely associated with 

floaƟng behavior in the FST and Ɵme spent in the closed arms of the EPM, respecƟvely. We addiƟonally 

found acƟvity in the prelimbic cortex to be negaƟvely associated with locomoƟon on the EPM. Taken 

together, these findings suggest that propensity toward higher acƟvity in the prefrontal cortex at rest is 

associated with the strength of behavioral inhibiƟon under test condiƟons. 

A limitaƟon of the study relates to the quality of the informaƟon provided by the 2-deoxyglucose method 

itself. The method provides an index of the metabolic demand for glucose within the cells of each region 

but does not provide any informaƟon regarding the nature of those cells, nor the signals they propagate 

(Ackermann et al., 1984; Nudo & Masterton, 1986). Previous studies that employed the same peripuberty 

stress protocol reported reducƟons of GAD protein, an enzyme involved in the acƟvity-dependent 

synthesis of GABA, in the same regions that we report enhanced 2-deoxyglucose uptake, namely: ventral 

and medial orbitofrontal cortex; and medial prefrontal cortex (Tzanoulinou et al., 2016). This leads us to 

speculate that the alteraƟons in 2-DG uptake found here under resƟng condiƟons may reflect enhanced 

excitatory drive via reduced inhibiƟon. In agreement with this idea, increases in anxiety-like behavior and 
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alteraƟons in affecƟve and social moƟvaƟon have been found under condiƟons of tonically-increased 

acƟvaƟon of prefrontal cortex (Ferenczi et al., 2016; Yizhar et al., 2011).  

In summary, in contrast to expectaƟons, we report a general lack of synergism between the two 

psychopathology-related risk factors studied here, consƟtuƟve stress sensiƟvity and early life stress 

exposure. Rats with aƩenuated ability to habituate their glucocorƟcoid response to repeated stressors 

had enhanced levels of psychopathology-like behaviors which were unaltered by experience of 

peripuberty stress. In contrast, rats with consƟtuƟvely strong habituaƟon of HPA axis responses to stress 

appeared more vulnerable to the effects of peripuberty stress, parƟcularly with regard to aggression. The 

behavioral findings reported here, considered in conjuncƟon with neuroendocrine alteraƟons, implicate 

the stress-habituaƟng low-line as a potenƟally useful model with which to further explore mechanisms 

related to the development of disorders of pathological aggression. 
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Supplementary informaƟon 

SelecƟve breeding procedure 

Wistar Han rats were obtained from a commercial breeder (Charles River, France: 30 male & 30 female; 

parental generaƟon; PG) and bred in our animal facility. The enƟre offspring of these pairings (F0) was 

subject to a ‘stress adaptaƟon test’ (SAT). The SAT is a truncated version of the peripubertal stress 

protocol developed in our laboratory (Toledo-Rodriguez & Sandi, 2011) which, though clearly stressful, 

has been shown to be insufficient in begeƫng behavioral alteraƟons associated with the longer protocol 

(Toledo-Rodriguez & Sandi, 2007; Tzanoulinou et al., 2014). Tail blood samples were taken at two 

Ɵmepoints on two separate days of the protocol; immediately aŌer, and 30 minutes aŌer, cessaƟon of 

exposure to the stressors. Three breeding lines were established according to the outcome of the SAT. 

Rats with extremely low or extremely high secreƟon of corƟcosterone on the final day of the SAT, i.e. 

animals expressing habituaƟon or non-habituaƟon of the HPA axis response to repeated stress, were 

selected for the ‘low’ and the ‘high’ breeding line, respecƟvely. A third breeding line, ‘inter’, was 

established consisƟng of animals with intermediate corƟcosterone values in the SAT.  

Ten males and ten females from F0 were selected as founder pairs for each breeding line. Their offspring 

(F1) and the majority of animals from each subsequent generaƟon were also tested in the SAT and 

selected for breeding based on their corƟcosterone response on post-natal day (p) 30. SelecƟon was 

strictly within line, i.e. an animal from the low-line could only ever be selected to be a breeder within the 

low-line. To minimize effects of geneƟc driŌ, animals were mated within a system that strictly excluded 

sibling maƟngs. Moreover, in order to balance the potenƟal contribuƟon of each liƩer to the next 

generaƟon, liƩer size was reduced to a maximum of 12 pups at p2.  Care was taken to ensure as much 

variability in pairings as possible; for example, if two animals from the same liƩer went forward to breed 

the next generaƟon then they were not paired with animals coming from a single, alternate liƩer.  

Stress AdaptaƟon Test (SAT)  

The protocol was based on mulƟple exposures to fear-inducƟon procedures. Measures of acute stress 

reacƟvity, stress recovery (within session), and stress adaptaƟon (across sessions) could be obtained 

whilst minimizing the stress exposure required to do so. Following exposure to an open field (50 x 50 x 

30cm) for five minutes on p28, the stress protocol consisted of the presentaƟon of two different stressors, 

each one lasƟng 25 minutes. These were either; exposure to the syntheƟc fox odor trimethylthiazoline 

(TMT) or to an elevated plaƞorm (EP). TMT exposure was administered in a plasƟc box (38 x 27.5 x 31 cm) 

via a scent-charged cloth. The box was placed under a bright light (210–250 lx). The elevated plaƞorm (12 

x 12cm, elevated 95cm from the ground) was also under direct bright light (470–500 lx). Following each 

stress session, animals were returned to neutral cages for 15 minutes. A transparent Plexiglas wall 

perforated with holes separated pairs of cagemates during this Ɵme. Following the holding period, 
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animals were returned to their home cage. The stressors were applied during juvenility, on three 

consecuƟve days across p28–p30, during the light phase and following an unpredictable schedule. Tail 

blood samples were taken on p28 and p30, once at the offset of stress and again 30 minutes later.  
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General discussion and future perspecƟves 

Experience of adversity early in life may have lifelong consequences for the individual. Understanding the 

mechanisms that lead from adversity to psychopathology is therefore important but so too is an 

appreciaƟon of how stress effects are translated differently from individual to individual. Gaining such an 

understanding would represent a clear benefit in the development of intervenƟon strategies that could be 

applied, appropriately and with greater chance of being successful, to an increased number of individuals. 

We hope that the work presented in this thesis will add to the already growing number of voices calling 

for explicit consideraƟon of this addiƟonal complexity in research using animal models. 

Here, using rats as a model system, we aimed to address the role of individual differences in hypothalamic

-pituitary-adrenal (HPA) axis responsiveness to repeated stress in the programming of differenƟal 

neurobehavioral outcomes both in response to peripuberty stress, and in its absence. These pages 

summarize our findings, as well as discussing outstanding quesƟons and the future research direcƟons 

that might arise from those quesƟons. 

Peripuberty stress gives rise to an aggressive profile, in associaƟon with neuroanatomical 

alteraƟons in stress-sensiƟve limbic regions, but only in some individuals 

Peripubertal stress has been found to lead to alteraƟons in several forms of psychopathology-like 

behavior in adulthood including increased anxiety- and depression-like behavior, increased aggression and 

reduced sociability (Cordero et al. 2012; Márquez et al., 2013; Poirier et al., 2014; Tzanoulinou et al.,  

2014a; Tzanoulinou et al., 2014b; Veenit et al., 2014; Cordero et al., 2016). In addiƟon, behaviorally-

consequent shiŌs in acƟvaƟon in brain regions important in socio-affecƟve funcƟons have been found 

using this model (Marquez et al., 2013). Intriguingly, there have been hints in some of these findings that, 

even though at the group level peripubertally stressed rats differed from control rats, there may be 

individual differences in response to peripuberty stress, parƟcularly with regard to aggressive behavior 

(Tzanoulinou et al., 2014b; Cordero et al., 2016). 

Thus, using a behavioral profiling approach, in combinaƟon with ex vivo structural neuroimaging, we 

sought to examine explicitly the existence of individual differences in neurodevelopmental trajectory 

following exposure to peripuberty stress. In so doing we found that exposure to peripuberty stress led to 

reducƟons in mean diffusivity in infralimbic cortex, amygdala, hippocampus, and subiculum only in those 

individuals that developed an aggressive phenotype. Peripubertally stressed rats that did not display 

aggressive behavior were affected in terms of other non-aggression related behaviors, specifically they 

demonstrated increased anxiety-like behavior and reduced sociability. This phenotype was not associated 

with any observable neuroanatomical alteraƟons in the brain regions examined, however. If considered at 

the group level, the behavioral alteraƟons found here in terms of increased aggression and anxiety, and 

reduced sociability, were well aligned to previous findings from our laboratory (Cordero et al., 2012; 

Marquez et al., 2013; Tzanoulinou et al., 2014b). However, the use of the profiling approach allowed us to 
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show criƟcal individual differences in the long-term response to peripubertal stress in terms of both 

behavior, and associated neuroanatomy. 

Though we found alteraƟons in brain Ɵssue microstructure in the majority of regions we examined, we did 

not find any differences in regional volume.  This is in contrast to studies in humans affected by aggression

-related psychopathologies, which have demonstrated reducƟons in the volume of prefrontal cortex 

(Raine et al., 2000; Sala et al., 2011), hippocampus (Barkataki et al., 2006; Coccaro et al., 2015; Dolan et 

al., 2002; Morandoƫ et al., 2013; Sala et al., 2011; Zetzsche et al., 2007) and amygdala (Coccaro et al., 

2015) relaƟve to controls. Findings in rats regarding the effects of stress on neuronal morphology in the 

abovemenƟoned structures have indicated heterogeneity in structural alteraƟons between subregions 

within the same region (amygdala: Padival et al., 2015; hippocampus: Pinto et al., 2015). This could 

potenƟally account for the lack of volume differences found within these regions in the present study, 

since the regions were only considered as a whole.  Moreover, rats exposed to chronic stress leading to 

alteraƟons in neuronal morphology in prefrontal cortex, hippocampus, and amygdala did not show 

concomitant changes in regional volume, indicaƟng that changes in Ɵssue microstructure are not always 

reflected in macrostructural properƟes (Henckens et al., 2015).  

A criƟcal quesƟon that we were unable to address here was whether differences in neurodevelopment 

associated with aggression were indeed caused by peripubertal stress or whether the individuals who 

demonstrated aggressive phenotypes were developing along a different trajectory irrespecƟve of stress 

exposure. A study of mice, in which MRI scans were performed before and aŌer exposure to chronic social 

defeat stress, indicated that pre-exisƟng differences in hippocampal structure, as well as magnitude of 

stress-induced volume change, predicted suscepƟbility to the behavioral effects of the stress (Tse et al., 

2014). In order to draw stronger conclusions regarding the causal implicaƟon of peripuberty stress in 

aggression-associated alteraƟons in brain development, a similar, longitudinal study ought to be 

performed. 

Individual differences in responsiveness to repeated stress are implicated in different 

developmental trajectories, even in the absence of adverse experiences early in life 

Converging lines of evidence have suggested that impairment in adaptaƟon of HPA axis acƟvity in the face 

of repeated exposures to stress may increase the propensity to accumulate allostaƟc load, thereby leading 

to an increased vulnerability to develop psychopathology (de Kloet et al, 2005; Flak et al., 2012; 

Kirschbaum et al., 1995; Kudielka et al., 2006; McEwen, 1998; Pruessner et al., 1997). Though this concept 

is well-accepted, the complexity of performing such experiments, especially using human parƟcipants, has 

meant that it is not parƟcularly well-supported experimentally. In the study reported in chapter 2, we 

therefore addiƟonally asked whether individual differences in glucocorƟcoid responsivity to stress during 

peripuberty might have been associated with the development of an aggressive phenotype, and indeed 

we found that to be the case. Specifically, rats showing impaired iniƟal adaptaƟon of corƟcosterone 
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response across stressors were those found to be more aggressive at adulthood. Whether impairment in 

habituaƟon to corƟcosterone responses to peripuberty stress is causally implicated in the development of 

structural and behavioral phenotypes could be addressed by studies directly manipulaƟng capacity for 

corƟcosterone release on the laƩer days of the stress protocol. ArƟficially blocking the synthesis of 

corƟcosterone with metyrapone, or imposing an arƟficial clamp on HPA axis reacƟvity with 

dexamethasone, could represent useful strategies in this aim. 

It is likely that individual differences in corƟcosterone habituaƟon across peripuberty stress reflect 

consƟtuƟve differences between rats. Indeed, in studies of HPA axis habituaƟon to repeated stress in 

humans, roughly 35% of individuals presented a reduced propensity to habituate (Kirschbaum et al., 

1995; Wüst et al., 2005), and, via twin studies, this quality was found to be highly heritable (Federenko et 

al., 2004). In order to further examine the specific influence of consƟtuƟve differences in HPA axis 

responsiveness upon vulnerability to develop psychopathology, we were obliged to first generate a 

model. We have reported here the development of two selecƟvely bred rat lines that came to show ready 

and impaired habituaƟon of the corƟcosterone response to repeated stress exposure (named the “low-” 

and “high-line”, respecƟvely), as well as a control line intermediate for this trait. In so doing we found 

that the response to selecƟon for propensity to habituate was strong, specific, and equally evident in both 

sexes, indicaƟve of a firm geneƟc basis for this trait. In rats drawn from the F4 and F6 generaƟons of 

these lines, in the absence of any stress exposure, consƟtuƟve differences in stress habituaƟon alone 

gave rise to phenotypic variaƟon in psychopathology-like behaviors, specifically anxiety-like, depression-

like, and aggressive behavior. High-line rats showed higher levels of psychopathology-like behavior across 

all behaviors measured.  

In the selected lines, consƟtuƟve differences in stress habituaƟon were observed alongside a disƟnct 

neuroendocrine phenotype.  The high-line rats displayed elevated corƟcosterone reacƟvity to restraint 

stress but parity in measures of basal HPA axis acƟvity, measured at diurnal peak and trough. Considered 

together, the aggressive behavior and neuroendocrine phenotypes observed were in contrast to those 

reported from the differenƟal stress reacƟvity mouse lines developed by Touma and colleagues (2008), 

the only other rodent model of geneƟc selecƟon for an HPA axis acƟvity trait. In that case, the line 

selected for low corƟcosterone reacƟvity to stress was found to be the more aggressive.  The behavioral 

differences found in Touma’s mouse lines were observed in the context of a highly different, broad effect 

neuroendocrine phenotype to that observed in the rat lines described in this thesis, with comparaƟve 

differences most notable in terms of HPA axis rhythmicity and negaƟve feedback capacity (Heinzmann et 

al., 2014; Touma et al., 2008). This contrast may be taken as an indicaƟon that habituaƟon to stress is 

regulated such that there is but limited overlap with the regulaƟon of general stress reacƟvity, which is in 

line with the generally adapƟve nature of stress habituaƟon (Herman, 2013). 

In addressing potenƟal molecular-geneƟc correlates of phenotypic differences between the lines we 

found variaƟon in gene expression within several nodes of the HPA axis. The most notable findings were 
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that high-line rats had increased expression of Avpr1b in pituitary and Fkbp5 in PVN. Given the role of 

the products of these genes in acƟvaƟon, and negaƟve feedback regulaƟon of the HPA axis, respecƟvely, 

differences in both may parƟally explain the heightened corƟcosterone responsiveness to acute stress 

that was observed. We addiƟonally found high-line rats to have higher expression of inhibiƟon-related 

gene, Gad67, in the central nucleus of the amygdala (CeA). Inhibitory output from the CeA is thought to 

have a disinhibitory effect on HPA axis acƟvity via its acƟons upon the limbic system-HPA axis relay, the 

bed nucleus of the stria terminalis (Johnson et al., 2016; Ulrich-Lai & Herman, 2009). Enhanced CeA 

inhibitory drive in the high-line could therefore also be associated with their high HPA axis 

responsiveness to stress. InteresƟngly, no significant differences between the lines in Crh expression, nor 

in the genes encoding its receptors, Crhr1 and Crhr2, were found.  This finding was surprising since CRH 

release is considered to be at the apex of HPA axis acƟvaƟon (Ulrich-Lai & Herman, 2009), and 

alteraƟons in this pepƟde and its receptors have been reported alongside psychopathology-like behavior 

in several model systems (Coplan et al., 1996; Holsboer, 2001; Labermaier et al., 2014; Lu et al., 2008; 

Reul & Holsboer, 2002; Veenit et al., 2014). There was also a lack of evidence for differenƟal regulaƟon 

of genes involved in adrenal sensiƟvity to ACTH and synthesis of glucocorƟcoids, and thus it would 

appear that differences in HPA axis acƟvity between the lines may be centrally mediated (Ulrich-Lai & 

Herman, 2009). This raises an interesƟng possibility since it is generally considered that it is limbic brain 

regions, and not the HPA axis itself, that mediate habituaƟon in the face of repeated stress (Herman, 

2013).  

An important next step would be to confirm whether variaƟons in the expression of genes we found 

translate to similarly altered levels of the respecƟve proteins. It would then be necessary to establish 

whether variaƟon in the level of a parƟcular protein might be causally implicated in the neuroendocrine 

and behavioral phenotypes reported herein.  Given the frequent associaƟon of Fkbp5 and Avpr1b acƟvity 

in modulaƟng affecƟve, aggressive, and endocrine phenotypes in both human and animal models (Binder 

et al., 2004; Dempster et al., 2007; Holz et al., 2015; Luppino et al., 2014; Minelli et al., 2013; Pagani et 

al., 2015; Touma et al., 2011; van West et al., 2004; Wersinger et al., 2008), these two genes represent 

promising candidates. In addiƟon, gaining an appreciaƟon of the neural basis of differenƟal 

neuroendocrine and behavioral phenotypes observed between the lines could lead to important insights, 

as well as poinƟng toward parƟcular regions within which to focus further invesƟgaƟons. Studies probing 

the neural basis of HPA axis habituaƟon to stress have suggested that the proper funcƟoning of medial 

prefrontal cortex, basolateral amygdala, and the posterior part of the paraventricular thalamus, is key in 

allowing habituaƟon to repeated stress (Bhatnagar et al., 2002; Grissom & Bhatnagar, 2011; Jaferi & 

Bhatnagar, 2006; Jaferi et al., 2003; Weinberg et al., 2010). Moreover, evidence suggests that these 

regions are funcƟonally interconnected (Li & Kirouac, 2012; Vertes et al., 2015) and all are considered to 

addiƟonally play a role in socio-affecƟve funcƟoning (Blair, 2010; Coccaro et al., 2007; Davidson, 2002; 

Koenigs & Grafman, 2009; Price & Drevets, 2012). 

It is important to note that all experiments using the differenƟal stress habituaƟon lines were carried out 
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in relaƟvely young rats, between three and five months of age.  Though we did not observe differences 

between the lines in terms of the diurnal rhythmicity of HPA axis funcƟon or general health, this does not 

mean that such differences would not express themselves over Ɵme. Given the well-documented role of 

HPA axis funcƟon in determining physical health across the lifespan (de Kloet et al., 2005; Lupien et al., 

2009; McEwen, 2007), it would be important to determine whether having a consƟtuƟon potenƟally 

causing differenƟal exposure to glucocorƟcoids over the lifespan leads to altered trajectories of aging.  

ConsƟtuƟve differences in responsiveness to repeated stress hold differenƟal risks for the 

development of psychopathology following peripuberty stress 

As a final step we combined both approaches to ask whether peripuberty stress would have the same 

impact on individuals differing in their propensity to habituate to that stress. In line with previous findings 

from this laboratory, we found peripuberty stress to increase the expression of anxiety-like behavior and 

aggression (Marquez et al., 2013; Tzanoulinou et al., 2014a; Tzanoulinou et al., 2014b; Cordero et al., 

2016). However, vulnerability to the programming effects of stress were differenƟally expressed between 

low- and high-line rats. Specifically, increases in anxiety-like and aggressive behavior were shown primarily 

by the stress-habituaƟng low-line. The high-anxious, high-aggressive phenotype of the high-line rats was 

not further altered. These findings are in accordance with similar studies (Cohen et al., 2007; Rana et al., 

2016). Our findings, and those of Rana and colleagues (2016), would appear to suggest that there may be 

a limit upon how much influence consƟtuƟve HPA axis responsivity can have over behavioral outcomes, at 

least in instances when stress is applied during adolescence.  Future studies could focus on assessing the 

impact of stress applied at other points in development on the neurobehavioral trajectory of the lines.  In 

general, findings from other laboratories suggest that stress exposure in early postnatal life, or in 

adulthood, may have increased impact in selecƟvely bred lines (Clinton et al., 2014; McIlwrick et al., 

2016).  Should it be found that the lines were more sensiƟve to stress outside of the peri-adolescent 

period, this would be an interesƟng finding in its own right.  This is because such a finding would suggest 

that there is some unique factor at play during adolescence that somehow limits the impact of exposure 

to high levels of glucocorƟcoids.  

We addiƟonally sought to invesƟgate the interacƟon between consƟtuƟve stress-sensiƟvity and 

peripuberty stress experience on the acƟvity of brain regions oŌen found to show altered funcƟon in 

psychopathological condiƟons (Koch et al., 2016; New et al., 2009; Sripada et al., 2012; Wang et al., 2016). 

We found enhanced basal acƟvity in several subregions of the prefrontal cortex in high-line rats relaƟve to 

low-line. Moreover, peripuberty stress experience was found to increase acƟvity in the same regions. 

Similar to our behavioral findings, no synergisƟc effect was found between the two factors in any brain 

region studied. In associaƟng brain acƟvity measures to behavioral findings, we found a propensity toward 

higher acƟvity in the prefrontal cortex at rest to be associated with the strength of behavioral inhibiƟon 

under challenge. Taken into consideraƟon with findings from chapter 1, and the abovemenƟoned 

importance of prefrontal cortex in stress habituaƟon, these findings implicate prefrontal cortex as a region 
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of parƟcular interest in the interacƟon between HPA axis responsiveness and the development of 

psychopathology-like behavioral alteraƟons, in common with a growing number of studies (Kim & Haller, 

2007; Kumar et al., 2014; Larrieu et al., 2014; McCreary et al., 2016; McKlveen et al., 2013; Tzanoulinou et 

al., 2016; Yuen et al., 2012). 

Evidently, there is some level of incongruence between the behavioral findings reported in each of the 

studies presented in this thesis.  In outbred rats exposed to peripuberty stress, we reported that 

development of an aggressive phenotype following stress was associated with impaired habituaƟon of 

the corƟcosterone response to that stress, whereas development of an anxious phenotype was 

associated with stronger habituaƟon.  This is in contrast to behavioral observaƟons made from rats 

selecƟvely bred to have either consƟtuƟvely impaired or strong corƟcosterone habituaƟon to repeated 

stress.  Indeed, in these selecƟon lines enhanced levels of anxiety-like behavior and aggression were 

found exclusively in the high-line, bred for impaired stress habituaƟon.  Why this should be the case is not 

clear.  Indeed, whether we should expect congruence between such different models is quesƟonable. 

When the lines were exposed to peripuberty stress, only the stress-habituaƟng low-line rats showed 

alteraƟon of their behavioral phenotype.  InvesƟgaƟons of whether there were differenƟal trajectories 

following stress independently in each line did not uncover any clear impact of variaƟon in habituaƟon 

greater than that already observed between lines. 

One important outstanding quesƟon relates to what may mediate the specific sensiƟvity of low-line rats 

to the programming effects of peripuberty stress. Given that these rats responded in accordance with 

their line and showed strong habituaƟon of corƟcosterone across peripuberty stress it is unlikely to have 

resulted from the acƟons of glucocorƟcoids. The finding of relaƟvely low Fkbp5 expression in the PVN of 

low-line rats may potenƟally provide a mechanisƟc explanaƟon for the apparent enhancement in 

glucocorƟcoid receptor sensiƟvity of low-line rats. GlucocorƟcoids ordinarily have an immunosuppressive 

acƟon but in absence of a sufficient response to stress, as may be the case in low-line rats, corƟcosterone 

might fail to buffer the harmful effects of released cytokines (Elenkov & Chrousos, 2002; McEwen et al., 

1997). Examining the immune funcƟon of the lines therefore represents a potenƟal future line of 

invesƟgaƟon. Indeed, enhanced inflammaƟon associated with early life stress has been linked to the 

subsequent development of pathological aggression (Fanning et al., 2015), making this possibility 

important to consider. Moreover, low reacƟvity of the HPA axis is associated with a range of disorders in 

humans, including: PTSD, conduct disorder, anƟ-social personality disorder, and psychopathy (Loney et 

al., 2005; McBurneƩ et al., 2000; O’Leary et al., 2007; O’Leary et al., 2010; Raine, 1996; Yehuda & LeDoux, 

2007). InteresƟngly the low HPA axis reacƟvity found in those diagnosed with PTSD is oŌen found in the 

context of heightened sympatheƟc nervous system (SNS) acƟvity (Mason et al., 1986; Yehuda et al., 2006; 

Yehuda et al., 1998), whereas in disorders of anƟ-sociality evidence suggests low HPA axis acƟvity is found 

alongside blunted SNS acƟvity (El-Sheikh et al., 2008; Lorber, 2004). Determining the combinaƟon of SNS 

and HPA axis acƟvity within the low-line may help to determine next steps. 
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General conclusion 

We have established the incidence of individual differences in behavioral trajectory following peripuberty 

stress, and found development of an aggressive phenotype to be associated with alteraƟons in brain 

structure in regions commonly associated with both regulaƟon of the HPA axis and in socio-affecƟve 

funcƟoning. Development of an aggressive phenotype was associated addiƟonally with differenƟal 

paƩerns of glucocorƟcoid responsiveness to the stress, such that impairment in habituaƟon of 

corƟcosterone responses across stress exposure was associated with aggression. Upon development and 

tesƟng of geneƟcally-selected lines differing in propensity to habituate to repeated stress, we again found 

that consƟtuƟve impairment in stress habituaƟon was associated with increased psychopathology-like 

behavior in its own right, a trajectory which did not become more pronounced with exposure to 

peripuberty stress. In contrast, consƟtuƟvely strong habituaƟon of HPA axis response to stress led to 

enhanced sensiƟvity to the programming effects of peripuberty stress.  These findings were most 

pronounced with regard to aggressive behavior.  In conclusion, we suggest that our findings support the 

implicaƟon of aberrant HPA axis acƟvity during development in producing an aggressive phenotype later 

in life. 
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