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Abstract

This paper investigates the potential of commercial buildings to offer ancillary services to the grid. We consider a tracking
procurement inspired by secondary frequency control, where the resource needs to commit to a nominal consumption
profile ahead of time and then receives a power consumption deviation around this profile. We propose a model-based
predictive scheme which formally assesses the amount of power flexibility that can be offered by the resource and of
attaining the best trade-off between comfort and financial gain during real-time operation by adjusting the nominal
power consumption with a delay, in accordance to the regulations of the Swiss energy market. Extensive simulation
results highlight how the possibility to perform adjustments on the scheduled energy profile is of paramount importance
for both maintaining comfortable operational conditions and offering larger tracking flexibility. Finally, the effectiveness
and robustness of the proposed methodology are demonstrated by means of full-day experiments in an occupied office

space.
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1. Introduction

Power grids are undergoing massive changes to reach
ambitious targets in terms of reduced carbon dioxide emis-
sions, higher energy efficiency, economic competitiveness
and increased security of supply. The increasing share
of intermittent renewable energy sources connected to the

grid challenges the current power grid stabilization paradigms.

The increasing need for reserve power, which is now mostly
provided by hydro-units and fast-ramping generation re-
sources, has brought attention to the provision of regu-
lation services by demand-side resources [1]. The poten-
tial of demand side resources has recently been identified
by authorities in the USA and Europe. For example, the
Pennsylvania-Maryland interconnection (PJM), has incen-
tivized the participation of loads in ancillary services by
adapting their participation rules [2]. Regulation services
to the grid require accurate and fast control, therefore,
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they usually take the form of direct control under the form
of power production/consumption tracking [1], [3].

One challenge of demand side participation is that the
loads have to maintain an appropriate quality of service
while providing frequency regulation to the grid [1], which
may be competing objectives. Nevertheless, numerous types
of loads or pools of loads have been identified as suitable
for providing regulation services, including thermally con-
trollable loads [4], interruptible industrial and domestic
loads [5], and plug-in hybrid electric vehicles [6]. [7] pro-
poses a framework to study which resources are most suit-
able for each type of service. Building Heating, Ventilation
and Air-Conditioning (HVAC) systems are more complex
than most other systems considered since they are com-
posed of numerous interacting subsystems and have many
operational constraints. Numerous works have demon-
strated the operational benefits of using predictive con-
trollers for building systems [8], [9] for energy efficiency
and cost savings. More recent work has concluded that
savings might not always offset the cost of installation
of the controllers [10]. Incorporating demand response
strategies is however made possible by using such con-
trollers and might further increase the savings [11].

The provision of regulation services follows the same
logic and attracts a growing attention. Initial works have
proposed methods to offer power consumption tracking us-
ing the HVAC system of a building [12], [13]. They as-
sumed either a fixed regulation signal or estimated ithe
capacity empirically. Several theoretical works have then
proposed frameworks for computing the tracking capabil-
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ity of such systems. Several model-based methods using
robust programming concepts have been proposed includ-
ing [14], [15], [16], [17]. Other works have proposed analyt-
ical methods to analyze the aggregate flexibility of popu-
lations of loads in order to characterize it as an equivalent
‘virtual battery’ [4], [18], [19], [20]. A detailed descrip-
tion of these contributions is given in [21]. Aggregation
of multiple buildings is considered in [22] and [23]. Ex-
perimental works focus more on the technical feasibility of
simple strategies to implement power tracking in commer-
cial HVAC systems. [2] proposes two methods to modulate
the power consumption of a commercial HVAC system by
either adjusting the fan duct pressure or the zone temper-
ature setpoint (which indirectly influences the consump-
tion of the fan) and tests those methods in simulations.
In [24, 15], authors empirically estimate the power flexibil-
ity of a building. The power consumption of the main ven-
tilation system is varied acting on the supply duct static
pressure setpoint. Experiments were conducted showing
how the resulting fluctuating air mass flow does not affect
occupants’ comfort. In [25], power tracking is provided by
adjusting fan power consumption. The building receives
a filtered version of the tracking signal which is tracked
with respect to the nominal baseline computed by the pre-
existing building controller. Experiments were conducted
on a 40,000 sq. ft. building over a 40 minute duration.
[26] showcases the control of the variable speed compres-
sor of a chiller through manipulation of the cooling wa-
ter setpoint temperature. It is shown that the tracking
quality requirements of PJM are met. [27] presents more
extensive regulation experiments with a formal computa-
tion of the regulation capacity. Experiments are made in
single-zone unoccupied test cells equipped with a standard
cooling system.

Our previous work [28] demonstrated the applicabil-
ity of the methods for calculating regulation participation
described in [29] and [21] by means of laboratory-scale ex-
periments using electric heaters. It differed from other
published works by computing the optimal amount of fre-
quency service offered rather than finding it through trial
and error procedures. Moreover, it provided a methodol-
ogy to compute the baseline ahead of time at the beginning
of the experiments, therefore complying with the require-
ments of the Swiss electricity market.

Notation: Throughout the article, R! denotes the I-
dimensional real space, upper case letters are used for ma-
trices and lower case for vectors. a; represents the value of
vector a at time i whereas, bold letters are used to denote
sequences over time, e.g., p = [pd,pt,...,p% 4|7 .

1.1. Contribution of the paper

This paper demonstrates how to optimally use the ther-
modynamic storage of commercial buildings to offer fre-
quency regulation services to the grid. The contribution
with respect to our previous work [28] is twofold: First,
we provide a method to determine the amount of regula-
tion that can be provided taking into account the possi-

bility to adjust power consumption on the intraday mar-
ket. Second, we show how to optimally trade regulation
commitment and comfort in the building during real-time
operations.

The control methodologies are validated in a series
of experimental tests in a living laboratory. The experi-
mental demonstration extends existing experimental works
presented in the literature in the following ways:

e The method proposed is in full accordance with the
Swiss regulation for secondary frequency control. In
particular, the baseline consumption is determined
a-priori as a result of the day-ahead market trades.
Any modification of the baseline during the day re-
spects current rules for the intraday market.

e Modeling of the influence of outside temperature and
the sun was performed for these offices that are largely
influenced by these factors. Weather forecasts were
incorporated in the optimization to improve the pre-
viously proposed method.

e Experiments have been performed over extended pe-
riods of time (18 to 24h) in occupied offices. Ex-
periments were successful despite large uncertainties
in weather prediction and occupation and, therefore,
demonstrate the robustness of the approach.

2. Problem Statement

2.1. The Swiss Energy market

The case study and the experiments undertaken in this
work have been tailored to the Swiss regulatory framework
of frequency regulation provision and energy dispatch [30].
Note that the guiding principles underlying the structure
of the market are similar in all geographic regions but no-
ticeable differences exist between markets. The main as-
pects of interest of the Swiss market are detailed in this
section.

The energy procurement for Switzerland is done in a
day-ahead market. Bids for energy trading are cleared
at 1lam on the day prior to delivery. Additionally, an
intraday market allows participants to trade energy in 15
minute slots up to 60 minutes before delivery.

Ancillary services procurement are services traded be-
tween the network operator and power consumer or pro-
ducer that aim at ensuring a safe operation of the power
network. Frequency control is one of the categories of an-
cillary services. It is divided into three categories, namely
primary, secondary and tertiary frequency control. The fo-
cus of this manuscript is secondary frequency control. The
basic principle of secondary frequency control is to have
providers change their power consumption in real time
by tracking a signal called the Area Generation Control
(AGQC) signal. This service is rewarded by a payment pro-
portional to the magnitude of the deviations the provider
is willing to support. This maximum magnitude is agreed



Symbol  Description

y Capacity bid

Di|DA Day-ahead baseline purchase

Diji—s Intraday transaction performed at time
1 — ¢ for baseline at time i

Di Total Baseline Power Consumption

§ Minimum lag for intraday transactions

Yi Outputs (Zone Temperatures)

€ Tracking error

i Total Power Consumption

U; Control action

d; Weather disturbance at time ¢

d Weather forecast

a; Normaized AGC signal at time 4

a AGC forecast

Table 1: Control architecture nomenclature.

upon in advance and embodied by a quantity called capac-
ity bid, measured in MW. The main challenge when using
loads for these kinds of services is the requirement to mod-
ify their power consumption around a fixed baseline on a
fast timescale and for extended periods of time.

2.2. Control Structure

We consider a power consumer offering secondary fre-
quency service. According to the Swiss market regulations,
a tailored control architecture is proposed. A schematic of
the controller structure is provided in Figure 1.

Reserve ~
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&y scheduler —d
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- Controller ’
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Tracking a
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Figure 1: Architecture of the control system for tracking service
procurement with participation in the intraday market. See Table 1
for the definitions of symbols.

Table 1 reports the nomenclature of the paper. The
reserve scheduler decides on the capacity bid ~ and the
baseline purchased on the day-ahead market p; p 4 for each
time slot ¢ of the following day. Subsequently it can read-
just its power baseline up to one hour in advance on the
intraday market by placing an order p;|;_s at time i —¢ for
each time slot ¢. For simplicity, we assume that all intra-
day adjustments are made at time i — ¢, the closing time

for intraday transaction for time slot ¢. The final baseline
is p; = DiipA + Piji—s- During the operation, a normalized
AGC signal a; is scaled by the bid v and dispatched at a
rate of one second for tracking to the building, which has
to adapt its power consumption such that

lei| = |pi — Di — vai| < oy (1)

where €; is the tracking error. Note that the tracking er-
ror is allowed to scale in proportion to the capacity bid,
in accordance with tracking regulations requirements as
per [31]. It is readily seen that the problem has mul-
tiple timescales interacting: when deciding the capacity
bid and day-ahead purchase, a prediction over a minimum
of one day is required, while during operation, fast rate
tracking is required. Similarly to [27] and [28], the control
architecture proposed is therefore hierarchical with three
interacting layers as depicted in Figure 1:

e The reserve scheduler commits the capacity bid for
the next time period (one day) and buys energy on
the day-ahead market. At the start of each day, it
computes a capacity bid using the current estimate
of the state of the system and up-to-date weather
forecasts. As a result of this computation, the bid ~
and day-ahead purchases p pa are committed. It is
important to notice that the scheduler already takes
into account the possibility to adjust the baseline
later on on the intraday market, as will be detailed
in section 4.

e A closed-loop Model Predictive Controller (MPC)
operates at a fifteen minute timestep: its purpose is
two-fold: compute adjustments to the baseline using
the intraday market, and recompute optimal inputs
for the heating systems based on updated forecasts
and the current value of the AGC signal. As a result,
an intraday trade is placed to adjust the baseline
one hour ahead for a value p;;5;. The inputs to
the system for the upcoming time slot u; are passed
down to the fast controller.

e A fast controller modulates the power consumption
of the HVAC at a fast rate to provide the tracking
service. Based on the current received value of the
AGC a; and the committed baseline p;, the power
input of the HVAC is controlled to meet the tracking
requirement.

Remark 1. The fact that the baseline is decided one day
in advance is a major difference with existing experimen-
tal works: in [25], the signal to track is filtered to keep
only fast frequencies (spectral content below 10 minutes).
Therefore, they propose to reconstruct the baseline from
the final power consumption by filtering it with a low pass
filter. Since this high-frequency deviation does not dis-
turb the operation of other parts of the system, no re-
bound effect should be observed on the baseline. A similar
idea is proposed in [32] where the baseline is determined
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Figure 2: Floor map of the offices used as experimental testbed. The
offices shaded in grey have been equipped with sensors and actuation
and used for experiments. Red squares show the potion of the heating
units.

a-posteriori. Although that scheme solves a number of
practical issues, it is currently not in full accordance with
regulations, in contrast to our approach.

Assumption 1. The intraday markets are assumed to be
liquid, meaning that it is always possible to sell or purchase
energy according to the market clearing regulations.

In addition to experiments carried out during the day
in occupied offices and for extended periods of time, the

main difference in the formulation with our previous work [28]

is the possibility to readjust the baseline in the intraday
market. We will see that this feature is paramount to the
robustness of the scheme. As was outlined in the introduc-
tion, demand-side resources are subject to sustained pre-
diction errors that hinder the ability to predict accurately
their power consumption on long time horizons. There-
fore, the possibility to partly reschedule baseline is funda-
mental. We will see that the intraday market allows us
to successfully meet the combined competing objectives
of maintaining comfort and providing accurate frequency
regulation. Clearly, this statement depends on the predic-
tive power of our models, but the experiments demonstrate
that for our system, which is affected by large uncertain-
ties, the statement holds, which is a significant improve-
ment over our preliminary work, where the level of uncer-
tainty was smaller since experiments were conducted at
nighttime.

3. System Modelling

3.1. Testbed Description

The experiments were conducted in five office rooms
accounting for a total area of 115 sq. meters (~ 1200 sq.

ft.). As depicted in Figure 2, each office is directly exposed
to the outside and has varying exposure to the sun. Offices
are labeled according to their exposure to the sun. Rooms
NW, N, SW and S are individual offices. Room SE is a
shared office occupied by six PhD students. During the
experimental phase, all offices were occupied except for of-
fice SW. Each room is equipped with a commercial electric
heater. The electric heaters were chosen for the following
reasons: 1) Modelling electric heaters is simple 2) It is pos-
sible to measure their power consumption directly 3) They
are highly responsive elements which permits the variation
of their power consumption very quickly. This is a key
element to offer frequency regulation services as fast con-
tinuous control is required. 4) Electric heating represents
a significant share of the heating provision in Switzerland.
Recent federal statistics indicate the presence of a quar-
ter million electric-based heating units accounting for 4%
of the total Swiss electricity consumption [33]. For mea-
surements, wireless temperature sensors were used. Tem-
perature sensors send measurements asynchronously to a
server with a maximum frequency of six minutes. Weather
data were collected from a nearby weather station every 30
seconds, including measurements for outside temperature,
horizontal global solar radiation and weather observation.
All the data are uploaded into a database on the local
network.

The heaters are rated at 1900 Watts at 230 Volts, sum-
ming up to a total maximum power capacity of 7400 Watts.
The heaters are normally equipped with a thermostat and
a switch to adjust the level of heating between three dis-
tinct levels. In order to be able to modulate their power
consumption continuously, the heaters were customized
with additional hardware that allows pulse-width modu-
lation (PWM) at 4 Hz. The control input to the system
is the pulse-width modulation ratios denoted u. Therefore
u € [0,1]. A pulse-width ratio directly results in an elec-
tric power consumption p = uPy.x. Finally, the heaters
being resistive elements, the power consumption directly
translates into a thermal power input to the room ¢, so
that ¢ = p = uPpax-

Power modulation and communication at the heaters

are managed by custom micro-computers (BeagleBone Black).

The heaters receive setpoints from a server running on a
regular desktop computer, and executing the MPC. The
server collects temperature measurements from the web
database, decides on the allocation of the AGC signal
among heaters and communicates the power reference to
the microcomputers, through Ethernet. More details re-
garding the experimental setup can be found in [28].

3.2. Identification

In [28], models for the experimental testbed had been
identified using standard black-box linear system identifi-
cation. The modelwas describing the effect of the heater
power input on the temperature of each room. It did
not include the influence of the outside weather but fea-
tured a good predicting capability for nighttime experi-



ments. Since, we extended these first experiments to per-
form day-time experiment, the first step was to build a
model that includes the influence of external perturbations
from weather. The previously identified model was implic-
itly valid for specific average nightly outdoor conditions.
Therefore the identification procedure was started from
scratch again taking all factors into account.

For each zone, new experiments were conducted with
open-loop input signals to excite the system. A mix of step
tests and pseudo-random binary signals (PRBS) have been
used in order to excite a wide range of frequencies in the
system [34]. Of course, weather cannot be controlled but
over the total duration of the identification experiments
(about a week), a reasonably varying patterns of weather
has been observed. Notice that weather is mostly slowly
varying so we mainly hope to identify the static gain be-
tween the outside temperature, the solar gains and the
indoor temperature. Each room was identified separately
since the thermal coupling between them is weak.

For each room, the acquired data includes temperature
measurements, power consumption of the heater, outside
temperature, horizontal solar radiation, and cloud cover-
age. A model was identified for each zone with three in-
puts and one output, the room temperature. The inputs
are power consumption of the heater, outside temperature
and one input capturing the effect of the sun. The sun
inputs for each zone are different. They are computed as
the resulting total solar radiation on a surface facing one
of the cardinal directions in kW /m? (for example a west
facing surface for room NW). Global horizontal radiation
rate and weather description are collected, from which ra-
diation rates on different surfaces are reconstructed. The
reader is referred to [35], [36] for detailed information on
solar radiation reconstruction.

Each zone was modeled with a second order Auto Re-
gressive model with exogenous inputs (ARX) [34]: the
inputs of the model are ¢, the thermal power input and
d = [T,, qsun), the vector of disturbance affecting the sys-
tem, namely the outside temperature and the solar radia-
tion input and the output the room temperature y.

A(r)y(t) = Bu(r)g + Ba(r)d(t — 1) +e(t)  (2)

where A(r), Bi(r) and Bs(r) are polynomials of the
delay operator r and e(t) a white noise disturbance. The
coeflicients of A, By and By are found by solving a least
square estimation problem using the input and output
data recorded during the experiments [34].

Figure 3 reports the prediction of the model against the
measured output for room NW for one of the identification
experiment. The normalized root mean square prediction
error for the models ranges between 70 and 90 % depending
on the room. In particular, room N has a good model since
it is not directly exposed to the sun while room SW has the
model with lowest fit because it is difficult to capture the
impact of the sun accurately since the room has a facade
facing South and one facing West.
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Figure 3: Validation of the model for room NW. The prediction error
over this one day period is typically below 1°C. Upper: Actual mea-
sured indoor temperature vs. temperature predicted by the identified
model. Outside temperature during the experiment is also displayed.
Lower: Remaining inputs driving the system, namely solar radiation
(right) and heater input (left). The heater input in this experiment
was an open loop PRBS profile

Finally , the individuals models (2) have been trans-
formed from input-output form to state-space form and
combined as:

Tip1 = Az; + Byu; + Bad;

o (3)

where = denotes the state of the system. We recall that
u= Pgax'

The i1dentified model reveals the main characteristics of
the building: the impact of the sun on the rooms is signif-
icant: static gains from solar inputs to temperature range
from 3 to 11°C/(kW/m?) depending on the rooms, while
the effect of outdoor temperature is milder with static
gains ranging from 0.1 to 0.2°C/°C(outside). Two time
constants were identified for each room: one fast time con-
stants ranging between 5 and 10 minutes and one slow time
constant ranging between 1 and 2.5 hours. This can be in-
terpreted as follows: the faster time constant corresponds
to the air thermal mass that can be heated directly with
our heating system. The fastest variation of temperature
in Figure 3 are associated with this part of the dynamics.
The slower time constant corresponds to heavier thermal
mass of the building. This second mode is the one that the
controller will try to utilize to store energy in the system
over few hours. Finally, rapid steady state calculations
suggests that the equivalent average U-value of the enve-
lope of the building is between 1 and 1.5W/m2/K. This
value is not particularly high, especially considering that
the construction is 40 years old and it is also not very low,
meaning that the insulation is not extremely performant.
Therefore, this building can be considered as representa-
tive of an average office building in Switzerland. Note that
the dynamics of the building has a direct influence on the




regulation capacity it can offer. In particular, it should
be expected that very efficient buildings will not be able
to offer considerable capacity due to very low energy con-
sumption related to heating, cooling and ventilation.

4. Reserve scheduling

The reserve scheduler computes two quantities: a base-
line energy consumption for the next day p pa, and a ca-
pacity bid, . Conceptually, the computed capacity bid
should be chosen considering the following:

e For a given capacity bid, the controller needs to
schedule the baseline consumption in such a way that
regardless of the AGC signal it receives, it can shift
its power consumption by that amount and still sat-
isfy operational constraints.

e The building operator receives a payment for the
“flexibility” he offers which is proportional to the
bid. On the other hand, it also pays for baseline
power. Intuitively, a higher bid also requires a higher
baseline (since the building needs to be able to de-
crease its consumption by larger amounts). There-
fore, there is a financial trade-off between bid and
baseline. Our previous work [37] has shown that this
trade-off depends on the ratio between the price of
energy and the reward for flexibility. If the reward
for flexibility is high enough, maximizing the bid we
can offer will be optimal. For the sake of demon-
stration, we assume that it is the case. We refer the
reader to [37] for a detailed discussion of the financial
reward associated with AGC tracking.

We discuss next how to compute the capacity bid. A
planning problem is solved at the reserve scheduler level
every day for the next regulation period. Two methods to
approximate and solve this problem have been discussed in
our previous work [28]. This section discusses the main in-
gredients of the problem formulation and how it is adapted
to include the participation in the intraday market. We
refer the reader to [28] for a more detailed discussion of
the solution methods.

4.1. Building feasible set

We utilize the model of the system as described in
Equation (3) to compute the capacity bid. Knowing the
model of the system and the operational constraints, we
can formulate the set of all feasible input trajectories that
the building can follow while respecting constraints. It
takes the following form:

Tit1 = Ax; + Byu; + Bad;
yi = Cux;
- 3\ _ |yszrcf‘§6
Z/l(a;,d) - u u; € U= [0’ 1]nu (4)
xro =12,
Vi=0,...,N; — 1,

where N7 is the horizon covering the participation period,
Tier the optimal temperature and § a parameter control-
ling the allowed comfort level deviation from optimum. U/
captures the dynamics of the buildings through the first
two equations, starting from the current estimated initial
condition Z. Equation |y; — Tyet] < B stipulates that the
zone temperatures should not be deviate from the refer-
ence temperature by more than 3, a design parameter that
we will vary to control the level of comfort. The constraint
u; € U captures the constraint on maximum and minimum
PWM ratio to control the power of the heaters.

Notice that this set depends on the initial condition Z
and a forecast for the disturbance d. Finally an expres-
sion of the power consumption as a function of the control
inputs is required. In our case it takes the simple form
p = h(u) = uPpax, due to the purely resistive nature of
the heaters.

4.2. Modelling of the AGC signal

One of the objective of our controller is to ensure that
tracking can be achieved for a wide range of potential AGC

realizations. To that effect, we build a set Z based on
previously observed realizations of the AGC as:
N,
== Z/\(J) @) | Z)\(J) =1,\9 >0 (5)
Jj=1 J

where the al)’s are previously observed realizations of the
uncertainty.

[28] proposes another alternative for the choice of = and
discusses the implications of the choice of = in detail. The
key idea is that if the controller is able to handle values
of the AGC that have been observed in the past it should
perform well for new realizations due to the consistency of
the AGC over time.

4.83. Computation of the bid

We introduce the following robust optimization prob-
lem:

Problem 1 (Reserve Scheduling Problem).

maximize y

s.t.
(Recourse policies) u(a) = m(a) VaeZ (6)
p|-s(a)=r(a) VacZ (7)
(Building Contraints) u(a) € U(zg,d) VaeZ (8)
(Power Consumption) p(a)= h(u ( ) VYaeZ (9)
(Power tracking) |l€(a)]lc < oy Va € E (10)

The decision variables are the capacity bid «, the day-
ahead baseline consumption p |p 4, and the control policies
m and k. xg and d are data of the problem and represent
the initial condition of the system and the prediction for



the disturbances affecting the system, namely the weather
and internal gains.

Equation (8) captures the operational constraint of the
building and Equation (9) the relationship between con-
trol inputs to the system and power consumption, both
described in Section 4.1. Equation (10) is the power con-
sumption tracking constraint as discussed in Equation 1.

In this problem, we know that the uncertain tracking
request a will be revealed progressively over time. There-
fore, u and p do not need to be decided at the bidding
stage, but can be functions of the uncertain parameter
a as expressed in Equations (6) and (7) where 7 and &
are functions and need to respect some causality require-
ments. The decision variables have to be chosen so that
constraints are satisfied for every value of the AGC in Z=.
Therefore this problem is a robust optimization problem.

In this work, the goal is to demonstrate that we can
evaluate successfully the regulation capacity that the sys-
tem can offer. Therefore we choose to maximize the simple
cost function 7 so as to maximize the capacity offered. In
an economic optimization, we would need to include the
cost of the energy purchased. If the payment for capacity
is large compared to the cost for energy, the result will
be virtually identical while the regulation capacity offered
will decrease as the cost of energy increases. The previ-
ous work [37] analyzes the economics of frequency control
participation in Switzerland and has identified that it is
most of the time worthwhile to offer large capacities when
possible.

Remark 2. The actual disturbance d is not known ex-
actly at the time the problem is solved, only a forecast is
available. Conceptually, it could be treated exactly like
a and the solution of the problem could be robustified
against forecast error, for which data is readily available
(at least for weather). The control decision would then
become a function of the disturbance, i.e. uw = w(a,d). In
the optimization, we assume the disturbance will take its
nominal value. The reason for this are: 1) the variability in
the AGC is larger than in the disturbance and is the main
focus of this work, 2) forecast are good enough on short
timespan (one day), so the gain in explicitly modelling the
disturbance uncertainty does not necessarily justify the in-
creased computational cost and modelling effort.

4.4. Constraints on the policies

As such, Problem 1 is infinite dimensional due to the
presence of the policies m and x. It is customary [38] to
parametrize these policies as affine policies due to their
nice trade-off between performance and computational prop-
erties. It results in u = Ma + v and p|_s = Na + w.
In order to ensure that the policies are causal, appropriate
constraint on M and N are imposed so that u; can de-
pend on a; up to time i and p;;_s on a; up to time i — 4.

Namely, we impose that:

Mi’j:OfOI‘j>7;
Ni,j:OfOI'j>’L'—]€

where k denotes the number of time steps per hour in
the optimization model, so that the intraday trade cannot
depend on observations later than an hour before delivery
as per the market rules.

5. Closed loop control

This section details the two lower-level layers of the
control architecture. Once the capacity bid has been com-
puted together with the baseline, the task of the controller
is to satisfy the tracking constraint while making sure that
operational constraints are simultaneously met.

5.1. MPC controller

We propose to use a predictive controller to maintain
comfort satisfactorily. The controller relies on the assump-
tion that being at maximum comfort also maximizes the
flexibility. It is the case if the maximum comfort tem-
perature is chosen as the center of the comfort constraint
range and uncertainty is symmetric (that is positive and
negative AGC are equally likely). The steps of the MPC
controller algorithm are:

1. Collect most updated current forecast for weather
d. This forecast is recovered from different web ser-
vices. See section 7.1 for more details on the weather
prediction.

2. Form a forecast a for the average of the AGC over
the next few hours sampled at 15 minutes. It has
been shown in [29] that the AGC is a time-correlated
signal, at least up to two hours ahead. A predictor
for the AGC over the prediction horizon is used: it
exploits the time-correlation properties of the AGC
over short timescales to predict ahead.

3. Solve the following MPC problem

ly — Teet)?
Vi=t,...,t+Ny—1

Tit1 = Ax; + Byu; + dei

minimize
s.t.

Yy, = Cx; (11)
u e U(z,d),
[€]loc < ay

with & = p; — p; —va;

where the decision variables in this problem are u,
and pj;—s for i >t +46. v, p and Py for i <t +9
are fixed in that problem, and come respectively
from the reserve scheduling problem and previous
iterations of the MPC controller. The controller
aims at maintaining the temperature in the middle
of the comfort range for the nominal predictions of



the AGC and the disturbance acting on the system.
Note that the controller is free to adjust the base-
line after a delay of § conformly to the rules of the
market.

4. Place an order on the intraday market to buy py, st
the intraday market trade computed in Problem 11.
This effectively adjusts the baseline for timeslot ¢ +
0. Pass down the computed control input u} to the
tracking controller. Go back to step 1) at the next
iteration.

5.2. Tracking controller

The tracking controller receives the AGC signal a; at
a fast rate and chooses the control input to the radiators.
The tracking constraint reads ||p; — p; — va;|| < ay. Upon
reception of the optimal control action u* from the MPC
controller, the lower level controller computes the power
input share going to zone j as 1/ = ”1;—1]”, where v’ denotes
the input to zone j. Using the current value of the AGC,
the control input u? = v7(p+7a)/Puax is computed. This
value is capped between 0 and 1 to give the actual input
to the heater, which is applied. It is easily seen that this
strategy ensure exact tracking as long as the value of w/ is
between 0 and 1. The optimal dispatch v* was computed
using a forecast for the AGC: as long as the forecast is not
widely different from the actual realization, the value of
w’ is close to the optimal value u* computed at the upper
level. Note that if the forecast of the AGC over the each
15 minutes period was correct at the MPC level, then the
temperature prediction was also correct. This is due to the
fact that the thermal system is essentially a low-pass filter
and fast variation of the AGC will not affect the output
of the system. They can therefore be disregarded in the
MPC problem without consequence.

6. Uncertainty mitigation through intraday trades

A load providing secondary frequency control is subject
to large uncertainties of different origin: tracking request

of an a priori unknown AGC signal, weather/occupancy /power

consumption forecasting errors, unmodeled disturbances
(window openings, ...). The goal of the controller is to
reject these disturbances. During the bidding problem,
the provider decides the magnitude of the AGC signal it
will track, and therefore the amount of uncertainty coming
from the tracking request it will support. This is explicitly
modeled in the bidding problem as described in Section 4.
To illustrate the benefit of intraday trades, we study here
how they can be used to mitigate the uncertainty in the
AGC tracking request. Thanks to the availability of his-
toric data and the simple nature of the AGC, a quantita-
tive study has been carried out.

A secondary frequency control provider needs to in-
crease or decrease its energy consumption in response to
an a priori unknown AGC signal. It may happen that

over a period of one day, the AGC is consistently posi-
tively or negatively biased, so that the system is required
to release or absorb a significant amount of energy. We
refer to the integral of the AGC over time as its energy
request. AGC signals with the highest energy requests
are the most problematic to handle since they require the
system to store or release significant amounts of energy.
This can cause two types of issues: 1) the limited energy
storage capacity of the system might not support such a
request, 2) the system operates away from its optimal op-
erating point which might degrade the performance of the
equipment. Through the use of intraday trades, it is pos-
sible to reset the energy request close to zero by applying
an appropriate filtering strategy, as discussed in [29]. The
filtering strategy consists in measuring the current energy
request of the sum of the AGC and previous trades on
the intraday market, then purchase the negative of that
quantity on the intraday market for time slot ¢ + §. This
strategy attempts to reset the energy request of the AGC
to zero at every timestep, but is affected by the delay of
one hour caused by the clearing of the market. A ‘filtered’
AGC signal is obtained that way as the sum of the actual
AGC and the intraday trades. Figure 4 shows how the
energy request histogram is transformed by applying this
filtering strategy. This filtering strategy is compared to
the one where the state of charge is reset only once per
day, as would be the case if the provider only uses the
day-ahead market to buy and sell energy. This shows that
the energy storage capacity of the physical system needed
is greatly reduced if we resort to the intraday market to
offset its ‘state of charge’. It is noticeable that the use of
the intraday market reduces the variance of the energy re-
quest and brings the storage requirement typically around
one kWh per kW of capacity offered against three to four
times more when doing only day-ahead purchases.

Remark 3. Compensating large energy request by trad-
ing on the intraday market incurs a cost associated with
the intraday transactions. It is shown in [37] that if the
intraday market is only used to compensate for large en-
ergy requests, the cost incurred is: 1) most of the time
small in magnitude compared to the payment for capac-
ity, 2) on average over the year close to zero, 3) compen-
sated in part by the reward for tracking (the deviation in
power consumption is paid at a discounted rate if it is posi-
tive, reimbursed at a preferential rate if negative). Finally,
in closed-loop the system does not systematically have to
compensate for deviation, it will only do it so as to bring
the operational comfort to acceptable values. That means
that the filtering strategy is not explicitly used by the con-
troller, but illustrates the effect the intraday market alone
can have in order to mitigate the variability of the AGC.

Similarly, other uncertainty are also mitigated through
the use of intraday trades and the opportunity to resched-
ule the baseline power consumption, limiting the need for
very accurate predictions in our approach, as will be dis-
cussed in the next section.
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7. Simulation and Experimental study

7.1. Ezxperiments

In this section, we report a series of experiments that
has been performed in the period from December 2015 to
April 2016.

Each experiment extends over a period comprised be-
tween 18 and 24 hours. Experiments differ in two ways:

e Half of the experiment is performed as described in
Sections 5 and 4, simulating the building partici-
pating in the Swiss regulation market: Proposing
a bid for tracking and purchasing energy in the day-
ahead and intraday market. In the other half, it
is assumed that the building cannot trade energy
on the intraday market: therefore its baseline is en-
tirely purchased day ahead and it has no opportunity
to reschedule it. The aim is to highlight the effect
of the intraday market in the ability of the build-
ing to successfully provide regulation. In practice,
no intraday trades can be enforced by simply set-
ting variables p |.1s in the bidding problem to zero
a priori.

e Across the experiments, the magnitude of the tem-
perature comfort range is varied with values of £0.5,
+1, 1.5 and +2°C respectively around the comfort
temperature Tof = 23°C. This variation allows to
explore the trade-off between comfort and the ability
of the building to provide regulation services, which
translates to a financial reward. Varying the temper-
ature comfort range is a simple way to control the
comfort level.

Table 2 compiles the values of the parameters used in
the simulation and experiments. The sampling time of the
model in Problem 1 and the controller (11) is 15 minutes.

Parameter Values

o 0.05

Tret 23 °C

I5) 0.5; 1; 1.5; 2°C
N 96 (1 day)

N, 24 (6 hours)
N, 200

Table 2: Parameters of the simulation and experiments

A selection of representative previously observed AGC
signals has been used in the different experiments. Real-
izations of the AGC with large energy requests have been
included since they should illustrate best the influence of
the intraday market.

Figure 5 illustrates how the use of the intraday can be
beneficial. In Figure 5(a), the baseline was fixed at the
beginning of the experiment. At around 7 am, due to er-
rors in forecast and a request for reducing power consump-
tion (negative AGC), the controller ends up in a situation
where it has to violate lower temperature constraints for
at least one room since its “budget” for power consump-
tion is too low. The controller then takes a few hours
to completely recover. Experiment 5(b) was performed
in similar conditions but with the possibility to resort to
the intraday market trades. Notice that the initial base-
line schedule (purple line) is very close to the one for the
first experiment, and the AGC test signal is the same in
both experiments. It can be seen that from the moment
the temperature starts to drop around 6AM the controller
anticipates the risk of constraint violation and purchases
extra baseline for the upcoming hours, which eventually
avoids constraints violation around 10AM, when all tem-
peratures reach the lower value of the constraints. Besides,
by explicitly modelling the fact that the baseline could be
readjusted, the optimal capacity computed in that case
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Figure 5: Two experiments of AGC tracking. The AGC signal is extracted from historical data of 2014. Upper: Power distribution across
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was larger by about 20%.

We will next support the claim that what is observed
in that particular experiment should be observable on av-
erage across all experiments and is characteristic of the
difference between the two control schemes. Figure 6 aims
at quantifying the trade-off, between capacity offered and
comfort. The capacity is reported as the percentage of
the total power installed that could be offered as up/down
regulation. Comfort is computed using the ASHRAF like-
lihood of dissatisfaction (ALD) (see [39] for more details).
Experiments have been grouped in pairs for readability
where each pair was performed in similar conditions (close
weather, same AGC signal, and comfort constraints). In
each pair, the round marker represents the result of the
experiment when using intraday trades and the square
marker the one without having intraday transactions. The
first observation is that, in similar conditions, experiments
using the intraday market always resulted in higher capac-
ity bids and higher comfort.

Ultimately, each colour of experiment correspond to a
different level of constraint tightening S from +0.5°C in
red to +2°C' in green. As expected, as the constraints
are relaxed, higher bids for regulation can be offered, and
result on average in lower comfort.

A series of simulations were also performed to compare
with the experiments. The weather recorded for 60 differ-
ent days during winter 2015 was used for simulations. For
each weather scenario, the optimal bid is computed for 5
different levels of comfort tightening (the same as in the
experiment plus +0.25°C, depicted in dark blue). The
optimal computed controller was applied for 9 representa-
tive scenarios of the AGC. The resulting level of comfort
was computed and reported in Figure 6. The conclusion
derived from the experiments are confirmed and can be
summarized as follows:

e Trading energy on the intraday market to readjust
the baseline allows to offer higher capacity bids and
improve comfort while offering regulation.

e Comfort level and regulation capability can be traded
off, for example by relaxing the temperature con-
straints. The more the relaxation, the lower the
comfort and the higher the bid.

Secondly, it can be seen that experimental results are
consistent with the simulations in the sense that computed
bids are almost identical while comfort levels are close.
Experiments (especially when constraints are very tight),
tend to display lower comfort with respect to the simula-
tions. This is expected since simulations assume perfect
predictions and perfect measurements, which of course is
not the case in experiments.

Another conclusion seems to appear through the sim-
ulation results: for a given constraint level, the use of the
intraday market increases the capacity offer, but also mit-
igates the variance of the comfort with respect to weather
scenarios and AGC signals.

11

To illustrate the extent to which the intraday market is
used, we report in Table 3 the statistics of the experiments.
The numbers reported the total Energy consumption, total
net and absolute amount of intraday trades, as well as total
day-ahead energy purchased. For the simulation columns,
the number are average over simulations performed with
the same set of experiment as for Figure 6, with an ex-
tended test set for the AGC scenarios. The average over
the 10 experiments reported in Figure 6 is reported for
experiments. The following observations are in order:

e The volume of intraday trades (sum of the absolute
value of intraday trades) amounts to about 25% of
the total power consumption, both in simulations
and experiments. This demonstrates that the closed
loop controller described in Section 5.2 is not trying
to overact on the intraday market to maintain the
temperature in the comfort range.

e In simulations, the net intraday energy trades are
quite small on average: this means that intraday
trades tend to cancel out over time, leaving a net
intraday purchase below 5 % of the total power con-
sumption.

e In experiment, intraday trades are consistently posi-
tive at around 10 % of the total power consumption.
This means that the algorithm tends to underesti-
mate the needed power consumption slightly. Be-
side the fact that the number of experiment is not
statistically significant, it is extremely complicate to
identify a single factor explaining this phenomenon:
errors in weather forecast, bias in the AGC signal
received, model mismatch and unexpected distur-
bances will together contribute to these prediction
errors. Note that if consistent bias was confirmed
over a more extensive set of experiments, it should
be possible to eliminate it by, e.g., readjusting the
prediction model. However, it should be expected
that prediction errors cannot be completely elimi-
nated.

e In experiments, the average amount of constraint
violations is almost divided by two when resorting
to intraday trades. This confirms the observations
made based on Figure 5 and can be explained simply:
in the case where the baseline cannot be readjusted,
the control authority available after the baseline has
been computed is relatively limited, whereas it is sig-
nificantly increased when intraday trades are avail-
able. Therefore in the latter case, the controller is
able to reject disturbance more efficiently and there-
fore mitigate constraint violations and increase av-
erage comfort, despite the fact that the regulation
capacity offered is even larger. A by-product of that
is that the controller is then less sensitive to forecast
errors, which supports the decision in that case to
not model them as uncertain parameter entering the
bidding problem.
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Quantity Simulation  Simulation = Experiment  Experiment
(in kWh/h) (intraday) (no intraday) (intraday) (no intraday)
Total Consumption 3.2 3.3 4.1 3.8

Day Ahead Purchases 3.3 3.3 3.6 3.8

Net Intraday Purchases -0.1 0 0.5 0
Absolute Intraday Purchases 1 0 0.8 0

Avg Constraint Violation (°C) 0 0 0.026 0.047

Table 3: Statistics of the experiments. Numbers reported are normalized by the length of the experiments, yielding an average hourly
consumption. The last line reports the constraint violation, averaged over rooms and time, in Celsius degrees.
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One of the take-away message of this paper is that the
strength of our approach is that the closed loop controller
is able to successfully overcome prediction errors and unex-
pected disturbance, that are always present in a real-world
application, by readjusting the baseline, therefore increas-
ing the robustness of the scheme significantly.

8. Discussion

8.1. Practical relevance and relations to other works

This work demonstrates how the inherent storage in a
building can be used in order to offer significant flexibility
at a controlled level of occupant discomfort. Combining
our findings with those of other works considering commer-
cial HVAC systems suggests some direction for practical
implementation of regulation with commercial buildings.
The works [26], and [40] have shown experimentally that
frequency regulation could technically be provided by vari-
able speed drive chillers and fans. However, they limit the
frequency band supported by pre-filtering the regulation
signal within a frequency band between 30 seconds and
10 minutes. By limiting the impact of the controls on the
inside temperature as much as possible, only the inertia in
the HVAC system is used, and this inertia is quite small
in the absence of a storage system. Effectively, the inertia
of the building system itself remains unused. By modeling
the thermal dynamics of the building, our work demon-
strated that a robust strategy could be used to exploit
the inertia in the building heated space successfully and,
hence, extend the frequency range of the service.

Interestingly, [2] proposes to modulate zone tempera-
ture setpoints to achieve frequency regulation, and vali-
dates the idea in a simulation case study, but without ex-
plicitly modeling the effect of the strategy on the rooms.
An interesting research direction could be to combine both
concepts. On one side, the inertia of the HVAC could be
exploited to absorb the fastest frequencies, for example by
changing the duct pressure setpoint [40]. On the other
hand, thermal power demand of the indoor space could be
used to absorb slower frequencies. This requires the mod-
elling of the response of the room temperature to changes
in thermal power input, which has been demonstrated in
our work. In general, a model of the effect of changes in
the thermal power demand on the electricity power con-
sumption needs to be found, but for slower timescales only,
which mitigates the issue of modelling the interactions of
all the components on fast timescales. The difficulty of
this task is system dependent.

8.2. Need for fast actuation

Realistic HVAC system also have a limit in terms of
how fast they can vary power consumption. Previous work
on chillers and fans suggest that frequency faster than 30
sec can pose operational issues for the equipment. To im-
prove the quality of tracking, it might be needed to attach
to the system a fast storage element such as an electric
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Figure 7: Characteristics of the battery needed to absorb the fastest
frequency in the AGC. Power ratings are in blue and energy storage
capacity in red. Solid line is the worst case over one year, and dashed
line the value needed to cover 99% of the signal. Values are computed
for a 1 kW tracking capacity.

battery. Because of the high cost of battery capacity, the
operation should try to limit the capacity needed for the
control task, and therefore absorb only the fastest frequen-
cies with the battery. Figure 7 gives the size of the battery
needed to absorb the high frequency part of the AGC as
a function of the filtering frequency.

8.8. System benefits

The system used in our experiments offers virtually
perfect tracking because of the very fast response of the
heating elements and the fact that the tracking require-
ment was hard coded in the tracking controller (at the
expense of occasional temperature violations). This vastly
outperforms traditional resources whose tracking response
is often subject to ramp constraints, slower response and /or
delays. This is one of the benefits of using loads to provide
ancillary services. Though the Swiss regulatory framework
does not reward financially providers base on their track-
ing quality, improved tracking improves the network sta-
bility. It has actually been recognized and incentivized
in other market such as the PJM ancillary services mar-
ket [2]. On the other hand, the impact of moving part
of the regulation power from the transmission grid to dis-
tribution networks can be problematic and a system wide
study is required to evaluate the consequence of a large
deployment of regulation power in distribution networks.
Previous studies such as [41] suggest that large amount of
frequency control using loads could be deployed without
stressing the underlying network, provided an appropriate
control architecture is adopted.



9. Conclusion

The work presented proposes a model-based control
method which computes the amount of grid regulation
power a building can offer exploiting its HVAC system
and internal thermal storage. Baseline consumption and
capacity offered are computed based on a model of the
system, which allows to optimally trade comfort and regu-
lation service provision. The scheme proposed successfully
models the opportunity to trade on the intraday market
to reschedule the baseline. It identifies that higher regu-
lation capacity can then be offered at the same fixed level
of comfort. In addition, full-day experiments have been
conducted and demonstrate not only that the system can
provide regulation power successfully in a realistic setup
at a controlled comfort level, but also that the intraday
market trades help enhancing the robustness of the con-
trol scheme compared to day-ahead baseline scheduling.

Further work will focus on implementing the proposed
algorithms on more complex commercial HVAC systems
with realistic operational constraints.
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