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Abstract:
Real-life acquisition systems are fundamentally limited in their ability to reproduce point sources. For example, a point source object, a
star say, observed with an optical telescope is blurred by the imperfect lenses composing the system. Mathematically, the point sources
are convolved with a device-specific kernel. This kernel, which depends only on the characteristics of the acquisition system, can to a
certain extent be designed so as to minimise the effect of the convolution. But in many applications careful design of the sensing device
is not good enough, and a proper deconvolution step is needed.
In this paper, we propose an efficient deconvolution algorithm for point source Gaussian random fields as sensed by phased arrays.
The algorithm first obtains a continuous least-squares estimate of the random field’s second order moment. The procedure is then in
two subsequent steps, decoupling sources localisation and intensity recovery.
First, we sample the continuous estimate at a high enough resolution and use the covariance function to construct a weighted graph.
We then define a signal on this graph by assigning to each of the sample locations in the field their corresponding intensity (variance
of the field at this location). The Graph Fourier Transform (GFT) is then used in order to filter out the convolution artifacts within the
estimate. Candidate locations of the sources can then be identified with local maxima of the filtered estimate. From these locations a
deconvolution problem is solved by means of weighted linear regression and the intensities of the sources within the field recovered.
Finally, a multi-scale approach based on the filtering of the leading eigenvalues of the covariance operator is discussed, and its benefits
in terms of efficiency and accuracy are highlighted.
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1. Introduction

Gaussian random fields are widely used in scientific applications
to model spatial fluctuations of natural phenomena. In radio as-
tronomy for example [1], the sky is modelled as a random field
composed of uncorrelated point sources at unknown locations,
emitting narrowband signals with random complex amplitudes
[2, 3]. Similarly, in positron emission tomography (PET), the brain’s
metabolic activity is indirectly mapped by estimating the intensity
field of positron emissions, modelled as a Poisson random point
field [4].

Acquisition systems to sense these random fields take different
forms depending on the application, but often consist in an array
of sensors, measuring the incoming field at different locations. As
proposed in [5], the action of the acquisition system on the un-
known field can conveniently be formulated in terms of a sampling
operator Φ∗ : H → CL, linear mapping from an infinite dimen-
sional Hilbert space H to a finite dimensional vector space CL,
where L denotes the number of sensors. By then constructing
an interpolation operator Φ̃ : CL → H consistent with this sam-
pling operator, it is possible to recover a continuous estimate of the
original random field (see fig. 1 and [5, 6] for more details). Typi-

cally, the interpolation operator is chosen [5] to be the generalised
pseudo-inverse of the sampling operator Φ∗:

Φ̃ = Φ(Φ∗Φ)−1, (1)

where Φ : CL → R(Φ) is the synthesis operator, adjoint of Φ∗,
and Φ∗Φ ∈ CL×L the Gram matrix (following the same naming
conventions as in [6]). Details on how to compute these quantities
in practice are provided in [5], where the interpolation operator (1)

Figure 1 | Block diagram of the processing chain. For sensor arrays, the
sampling operator can in general be decomposed in three subsequent
operations: filtering, sampling and beamforming. The interpolation
operator is then chosen consistently with the sampling operator.
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(a) True sky. (b) Convolution kernel. (c) Dirty image.

Figure 2 | In radio astronomy, the least-squares estimate of the sky (c)
is the result of the convolution between the true underlying sky (a) and
a layout-dependent convolution kernel (b) (called dirty beam). Because
of the numerous convolution artifacts polluting it, the least-squares
estimate is called the dirty image.

is efficiently implemented for the specific example of beamformed
radio interferometric data.

While mathematically elegant, computationally efficient and nu-
merically stable, this method is unfortunately of limited use with-
out an adequate post-processing of the estimate. Indeed, the recov-
ered field can be shown to be in general the convolution of the true
random field with some application-dependent kernel, entirely
specified by the specifications of the acquisition system in use. This
convolution can introduce serious artifacts within the estimate (see
fig. 8), hence forbidding direct identification of features of interest
(e.g. point sources in radio astronomy or audio source localisation).
In this paper, we propose an efficient deconvolution algorithm to
remove these convolution artifacts. We limit ourselves to the case
of Gaussian point source random fields. The procedure is in two
subsequent steps, decoupling the problem s of sources localisation
and intensities recovery. First, we sample the field of view at a fine
enough resolution. Each pixel in the field is then interpreted as a
node in a fully connected graph. Edges are weighted according to
the covariance existing between the different pixels, inferred from
a least-squares estimate of the random field’s covariance function
(see [5]). We then define a signal on this graph by assigning to
each of the sample locations their corresponding intensity (vari-
ance of the field at this location). This construction permits us
to leverage the Graph Fourier Transform (GFT) to filter out the
convolution artifacts within the estimate. An ideal high-pass filter
is hence constructed, to separate the smooth artifacts from the
actual point sources. Candidate locations of the sources are then
directly identified from local maxima of the filtered estimate. From
these locations a deconvolution problem is solved by means of
weighted linear regression and the intensities of the sources within
the field recovered. A multi-scale approach based on the filtering
of the leading eigenvalues of the covariance operator is finally dis-
cussed, and its benefits (both in terms of efficiency and accuracy)
are highlighted. In particular, we show that such method permits
to super-resolve the sources within the field.

2. Background Concepts on Random Fields

In this section, we define random fields as collections of random
variables indexed over some set. We then consider a few specific
classes of random fields, particularly used for modelling natural
phenomena. More specifically, we introduce Gaussian random
fields, white noises, and integral white noises. A reader already
familiar with these notions and spatial statistics in general can
skip this section and go directly to section 3. The definitions and
theorems summarized in this section are based on the work of M.
Lifshits in his books [7, 8].

2.1. Random Functions & Random Fields
Random functions are defined as collections of random variables
indexed over some set X . Depending on the nature of the indexing
set, random functions are denominated differently in the literature:
for X ⊂ N we speak of random sequences, while for X ⊂ Rn we
speak of random processes for n = 1 and random fields for n ≥ 2.

Definition 2.1 — Random Functions. Let (Ω,F ,P) be some proba-
bility space and K some field. Then, a K-valued random function
S ⊂ KΩ is a collection of random variables S(x) : Ω→ K, indexed
by a variable x taking value in some set X :

S = {S(x) : Ω→ K, x ∈ X}.

The set X is called the parametric set or indexing set for S.

Instead of defining random functions as collections of univariate
functions from Ω to K, some may find more convenient to think of
them as bivariate functions with domain Ω×X and codomain K,

S : Ω×X → K.

This naturally leads to the notion of sample functions, obtained
by keeping fixed the first argument to some ω0 ∈ Ω and letting
the second argument x ∈ X range over the entire parametric
set:

Definition 2.2 — Sample Functions. Let (Ω,F ,P) be some proba-
bility space, K some field and X some set. Let S : Ω×X → K be a
random function, with parametric set X . Then, for a given ω0 ∈ Ω
the function sω0 ∈ KX given by

sω0 :

{
X → K,
x 7→ sω0(x) = S(ω0, x),

is called a sample function of S (or sample path when X ⊂ R).

In practice, summary statistics of the random function S are
estimated from a finite number of sample functions. The goal is
to characterise the stochastic behaviour of the random function
through a set of sufficient statistics. For example, Gaussian random
functions, extensively used in the modelling of spatial fluctuations
of natural phenomena, can be fully characterised by their first
and second order moments [7, 8]. A Gaussian random field S is
such that any finite subset of S follows a multivariate Gaussian
distribution:

Definition 2.3 — Gaussian Random Functions. A random function
S = {S(x) : Ω → K, x ∈ X} is called Gaussian if all its finite
dimensional distributions are multivariate Gaussian:

[S(xi1), . . . , S(xin)]T
d∼ Nn, ∀{i1, . . . , in} ⊂ X , ∀n ∈ N.

For centered Gaussian random functions (E[S(x)] = 0, ∀x ∈
X ), the set of sufficient statistics for S reduces to its covariance
function κ : X 2 → K alone, measuring the spatial coherency of the
random function:

κ :

{
X × X → K,
(x, y) 7→ κ(x, y) := Cov[S(x), S(y)].

For such random functions, we can hence trade the analysis of
the random object for the analysis of its covariance function. This
analysis, although considerably simplified by the deterministic na-
ture of κ, may require occasional switches in perspective on the
covariance function, sometimes seen as a bivariate function and
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sometimes seen as a linear operator between Hilbert spaces. In-
deed, in the same way that a matrix A ∈ Kn×m can be considered
either as a vector in Knm or as a linear operator from Km to Kn, the
covariance function κ can also be seen as the kernel of an associated
covariance operator Tκ : L2(X )→ L2(X ),

Tκ :

{
L2(X )→ L2(X ),

f 7→ (Tκf)(y) :=
∫
X κ(y, x)f(x)dx, ∀y ∈ X .

By analogy with the vec(·) operator for matrices [9], κ is sometimes
written as

κ = vec(Tκ).

This inherent duality in the representation of the covariance func-
tion, will allow us to resort to a variety of different tools when
analysing it, ranging across the fields of calculus, functional analy-
sis and signal processing.

2.2. White Noises
In the modelling of natural phenomena with point source emis-
sions, it is usually assumed that signals from different sources are
uncorrelated, no matter how close the sources may be from one
another. This assumption, although physically unrealistic, is a
convenient mathematical simplification, which still retains some
validity in many scenarios. In order to construct random functions
with such a property, we need to introduce the concept of Gaussian
white noises. Roughly speaking, Gaussian white noises can be seen
as finite random measures on the set of ν-finite measurable sets for
some control measure ν.

Definition 2.4 — Gaussian White Noise. Let (X ,A, ν) be a measure
space and (Ω,F ,P) a probability space. Define A0 ⊂ A as the set of
ν-finite measurable sets:

A0 := {A ∈ A : ν(A) <∞}.

Let further assume a K-valued Gaussian random functionW ⊂ KΩ

with parametric set A0:

W = {W (A) : Ω→ K, A ∈ A0}.

Then,W is called a Gaussian white noise with control measure
ν if:

• E[W (A)] = 0, ∀A ∈ A0,

• E[W (A)W ∗(B)] = ν(A ∩B), ∀A,B ∈ A0.

From the definition 2.4, two properties of Gaussian white noises
immediately follow:

• The intensity function (variance) of a Gaussian white noise is
given by its control measure:

Var[W (A)] = ν(A), ∀A ∈ A0. (2)

Restricting the parametric set to ν-finite measurable sets hence
guaranteesW to have finite second order moment.

• W (∅) = 0 almost surely. Indeed, as ν is a measure, ν(∅) =
0 <∞ and hence ∅ ∈ A0. Thus E[W (∅)] = 0. Moreover, from
(2) we have that Var[W (∅)] = ν(∅) = 0. HenceW (∅) is almost
surely equal to 0.

• A Gaussian white noise verifies the σ-additivity property al-
most surely [8]. Indeed, for any disjoint sets A1, . . . , An ∈ A0,
the random variables W (A1), . . . ,W (An) are independent
and

n∑
i=1

W (Ai) = W

(
n⋃
i=1

Ai

)
, almost surely.

From the last two points, we deduce that sample functions of
Gaussian white noises are almost surely finite measures on A0. In
that sense, we can hence think of Gaussian white noises as random
measures as claimed earlier. Within the scope of this work, we will
restrict our attention to a specific class of Gaussian white noises,
that we call Gaussian point source random functions. Roughly
speaking, Gaussian point source functions can be seen as streams
of Diracs with random amplitudes.

Definition 2.5 — Gaussian Point Source Random Function. Let
(X ,A, ν) be a measure space and (Ω,F ,P) a probability space. Let
W ⊂ KΩ be a Gaussian white noise with parametric space A0 and
control measure ν, as in 2.4. Then, this random function is called
a Gaussian point source random function if the indexed random
variable inW can be written as

W (A) =

Q∑
q=1

ξqδxq (A), ∀A ∈ A0.

In the above equation, δxq denotes the Delta measure, Q > 0 de-
notes the number of sources, {x1, . . . , xQ} are the sources locations
in X and ξq are random amplitudes, independent and identically
distributed:

ξq
i.i.d∼ N (0, σ2

q), σ2
q > 0, ∀q = 1, . . . , Q.

It is easy to see that Gaussian point source random functions are
indeed Gaussian white noise. For this specific type of white noise,
the control measure is given by

ν(A) =

Q∑
Q=1

σ2
qδxq (A), ∀A ∈ A0.

2.3. White Noise Integrals
Aside from their use for modelling purposes, Gaussian white
noises are also very important theoretically, as many Gaussian
random functions can be expressed in terms of white noise in-
tegrals [8]. In particular, and of interest for this work, the filter-
ing of a white noise with a suitable kernel results in a Gaussian
random function of a special kind, collection of integral white
noises.

Definition 2.6 — White Noise Integral. Let (X ,A, ν) be a measure
space and (Ω,F ,P) a probability space. Take a Gaussian white noise
W ⊂ KΩ with parametric space A0 and control measure ν, as in 2.4.
Then, for any f ∈ L2(X ,A, ν), the random variable J : Ω → K
given by

J =

∫
X
f(x)W(dx), (3)

is called an integral white noise.

When defining the sampling operator in section 3, it will help to
think of J in eq. (3) as the result of an integral operator associated
with the white noiseW , acting on the function f∗ ∈ L2(X ,A, ν)

J = 〈W|f∗〉 :=

∫
X
f(x)W(dx) (4)

In the above equation, we borrowed the convenient bra-ket notation,
very popular in quantum mechanics, introduced by Paul Dirac in
[10]. With this formalism, the bra 〈W| is interpreted as an element
of the dual H of L2(X ,A, ν). As such, it acts linearly on the ket
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|f∗〉 ∈ L2(X ,A, ν), as described in eq. (4). Remember that, as it is
well know, to every ket corresponds a bra, but the converse does
not necessarily hold. Indeed, for a bra |g〉 ∈ L2(X ,A, ν) we can
define a corresponding ket 〈g| ∈ H, defined as

〈g|f〉 =

∫
X
g(x)f∗(x) dx, ∀ |f〉 ∈ L2(X ,A, ν).

Observe that section 2.3 also defines an inner product between
g and f . For a white noise W : Ω × A0 → K, we have a nat-
ural interpretation of it as a bra 〈W| ∈ H (see eq. (4)) but the
existence of an associated ket is not guaranteed. A necessary and
sufficient condition is forW to be absolutely continuous with re-
spect to the Lebesgue measure. In which case, we can associate
the bra 〈W|with a ket |ω〉, where ω : Ω× L2(X ,A, ν)→ R+ is the
Radon-Nikodym derivative of the measureW with respect to the
Lebesgue measure (also called density ofW). Indeed, we have

〈W|f〉 =

∫
X
f∗(x)W(dx) =

∫
X
f∗(x)ω(x)dx = 〈ω|f〉.

Notice that for absolutely continuous white noises, the linear oper-
ation 〈W|f〉 coincides with the inner product between the density
ω ofW and the function f . Borrowing some intuition from this
specific case, we can hence informally think of a white noise in-
tegral (3) as the "inner product" between the white noiseW and
some function f∗ (as suggested by the bra-ket notation in eq. (4)).

Using the isometric property (see [8]), one can compute the covari-
ance between two integral white noises as

E
[(∫

X
f dW

)(∫
X
g dW

)∗]
=

∫
X
fg∗dν, ∀f, g ∈ L2(X ,A, ν).

This yields in particular

Var
[∫
X
f dW

]
=

∫
X
|f |2 dν = ‖f‖22,ν , ∀f ∈ L2(X ,A, ν).

Moreover, it is easy to see that E
[∫
X f dW

]
= 0, and the distribu-

tion of a white noise integral is finally:∫
X
f dW d∼ N

(
0,

∫
X
|f |2 dν

)
, ∀f ∈ L2(X ,A, ν).

Many Gaussian random functions admit a representation in terms
of a white noise integral. This representation is called an integral
representation, or spectral representation.

Definition 2.7 — Integral Representation. Let (Ω,F ,P) be a prob-
ability space and (X ,A, ν) be a measure space. Let A0 = {A ∈
A : ν(A) < ∞} and W = {W (A) : Ω → K, A ∈ A0} be
a Gaussian white noise with control measure ν. Assume further
S = {S(x) : Ω → K, x ∈ X} to be a Gaussian random function.
Then, S admits an integral representation (or spectral representa-
tion) if the indexed random variables S(x) : Ω→ K can be written
as

S(x) =

∫
X
ζ(x, y)W(dy), ∀x ∈ X ,

where ζ(x, ·) ∈ L2(X ,A, ν). The control measure ν is called the
spectral measure of the random function S.

Assuming a random field S with finite first and second moment
and admitting an integral representation, then the covariance func-

tion takes the form:

κ(x, y) = E[S(x)S∗(y)]

= E
[(∫

R
ζ(x, u)W(du)

)(∫
R
ζ(x, v)W(dv)

)∗]
=

∫
X
ζ(x, u)ζ∗(y, u) ν(du), ∀(x, y) ∈ X 2, (5)

where we have used the isometry property for the third equality.
One of the most famous random process admitting an integral
representation is most probably the Wiener process, also called
Brownian motion. In this work, integral representations will appear
particularly useful to represent both the Gaussian white noise
filtered by the instrument and the least-squares estimate obtained
with the algorithm in [5].

3. Sampling & Interpolation

As proposed in [5], the action of the acquisition system on the
unknown random field can be conveniently modelled in terms
of a sampling operator. In this section we describe this sampling
operator and relate it to the characteristics of the sensor array in use.
Following the derivations in [5], we then construct an interpolation
operator consistent with the specified sampling operator. For this
work, we restrict our attention to the ideally matched interpolation
operator, pseudo-inverse of the sampling operator. However the
analysis in the subsequent sections could easily be extended to
more general consistent interpolation operators.

3.1. Acquisition System & Sampling Operator
In experimental setups, evidence about the random field of interest
is collected with an acquisition system [6]. Real-life acquisition
systems act on the random field in two subsequent stages: filtering
and sampling (see fig. 3). These two steps can be summarised
by means of a sampling operator, measuring the resemblance of
the unknown random field with some canonical basis functions,
tailored to the acquisition system in use. In all that follows, we will
assume an incoming Gaussian point source random field S ⊂ KΩ

as in definition 2.5, with control measure ν. We will also used the
bra-ket formalism, introduced in section 2.3 (see eq. (4)). We note
H the dual space of L2(X ,A, ν).

First, the random field S is spatially filtered, yielding a Gaussian
random field in integral representation. This random field is called
the measurement field Y , and has parametric set P :

Y = {Y (p) : Ω→ K, p ∈ P} ,
where

Y (p) =

∫
X
φ∗(p, x)S(dx) = 〈S|φ(p, ·)〉 ∀p ∈ P, (6)

and P ⊂ Rn is the measuring manifold. This manifold is often
related to the geometry of the acquisition system. For example,

Figure 3 | The acquisition system can be modelled as a sampling opera-
tor Φ∗, acting of the random field S in two subsequent steps: filtering and
sampling.
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if one is measuring a sound field with an array of microphones
disposed on a sphere, then the measuring manifold will be a sphere.
The filtering kernel φ : X ×P → K is known and depends only on
the physics of the phenomenon of interest and the characteristics
of the acquisition system in use. In the case of radio astronomy for
example, the kernel is a complex plane-wave [5, 3]

φ(x, p) = e
j 2π
λ0
〈x,p〉

, ∀(x, p) ∈ X × P, (7)

where λ0 ∈ R is the wavelength of the observed signal. Note that
for eq. (6) to be well-defined we need φ(p, ·) ∈ L2(X ,A, ν). For
point source random fields, a sufficient condition for this is that
φ(p, ·) be bounded, which is obviously always the case in practice.

The second stage of the acquisition consists in a sampling of the
measurement field Y , at locations {p1, . . . , pL} ⊂ P . These sam-
pling locations are again often related to the underlying geometry
of the measuring device, and can correspond for example to the
positions of the various sensors composing the tool in the case of
sensor arrays. We finally obtain a random vector y : Ω→ CL

y = (Y (p1), . . . , Y (pL))T .

Notice that the entries Y (pi) of the random vector y are white
noise integrals, given by

Y (pi) =

∫
X
φ∗i (x)S(dx) = 〈S|φi〉, ∀i = 1, . . . , L, (8)

where φi(x) = φ(x, pi) ∀x ∈ X for i = 1, . . . , L. The equations
in (8) can be more compactly rewritten as

y = Φ∗S, (9)

where Φ∗ : H → CL is the analysis operator [6] associated to the
family {φi(r), i = 1, . . . , J} ⊂ L2(X ,A, ν) :

Φ∗ :

{
H → CL

S 7→ [〈S|φ1〉, . . . , 〈S|φL〉]T .

We will call this operator the sampling operator in all that fol-
lows. In more advanced experimental setups, the sampling opera-
tor can be refined a little by the use of beamforming [5]. Beamform-
ing aims at both reducing the amount of data sent to the central
processor and creating virtual super antennas, with improved sen-
sitivity patterns [3, 11, 12]. This is typically the case for the LOw
Frequency ARray (LOFAR), the current largest radio telescope in the
world, which leverages matched beamforming in its hierarchical
design [13].

The data collected by the instrument during a certain period of
time can hence be seen as various realisations of the J-dimensional
random vector y, with distribution

y
d∼ KNL(0L,Σ).

Its covariance matrix Σ = Φ∗νΦ ∈ KL×L (see fig. 4) is given by

(Σ)i,j =

∫
X
φ∗i (x)φj(x) ν(dx), ∀i, j = 1, . . . , L.

The goal will then be to interpolate observations from y with an ap-
propriate interpolation operator, so as to estimate some summary
statistics of the underlying random field S.

(a) Gaussian layout of the linear
phased array. The array is com-
posed of 48 antennas, distributed
according to the Gaussian quan-
tile function, with diameter 60λ.

(b) Covariance matrix Σ esti-
mated with 800 noisy antenna
samples, for the underlying
point source random function
considered in fig. 6.

Figure 4 | Example of a linear phased array, and estimate of the asso-
ciated covariance matrix Σ for the Gaussian point source in fig. 6. The
array has a Gaussian layout and a diameter of 60 λ (λ being the wave-
length of the incoming signal). The antenna samples are corrupted by an
independent Gaussian white noise, with a PSNR of approximately 0 dB.

3.2. Interpolation
The problem of estimating the random field S from the measure-
ments y ∈ CL is referred to as interpolation. Mathematically speak-
ing, we would like to find a linear operator Φ̃ : CL → H, that
maps the finite measurements set y onto an infinite-dimensional
object SD ∈ H, hopefully constituting in a good approximation
of the true random field S from which the measurements were
obtained. This can indeed be interpreted as an interpolation step,
in the sense that a discrete set of samples from the measuring field
is mapped to a continuous function [6]. A usual requirement for
the interpolation operator is for it to be consistent with the sampling
operator [6]:

Φ∗Φ̃ = I. (10)

The consistency condition (10) requires interpolation followed by
sampling to be equal to the identity, which seems like a sensi-
ble enough condition to impose on our interpolation operator.
Mathematically speaking, this is equivalent to saying that Φ̃ is a
right-inverse for Φ∗, and hence Φ̃Φ∗ is a projection operator [6] (or-
thogonal or oblique). To obtain an orthogonal projection operator,
we must haveR(Φ̃) = R(Φ), which is guaranteed when choosing
Φ̃ to be equal to the pseudo-inverse of Φ∗

Φ̃ = Φ (Φ∗Φ)
−1

= ΦG−1
Φ .

In which case, we say that the interpolation operator Φ̃ is ideally
matched with the sampling operator Φ∗ [6]. The operator Φ : KL →
H, adjoint of Φ∗, is called the synthesis operator and is defined as

Φ :

{
KL → H,
α 7→ (Φα)(x) =

∑L
k=1 αkφk(x), ∀x ∈ X .

The matrix GΦ = Φ∗Φ ∈ CL×L is called the Gram matrix and is
defined as

(GΦ)ij = 〈φi|φj〉 =

∫
X
φi(x)φ∗j (x) dx, ∀i, j ∈ {1, . . . , L}.

This matrix can either be computed numerically or, in some specific
scenarios, analytically. For complex plane waves (7) defined over
the circle X = S1, we have for example

〈φi|φj〉 =

∫
S1
ej2π〈x,pi−pj〉 dx = 2πJ0(2π‖pi−pj‖), ∀pi, pj ∈ R2,
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Figure 5 | The sampling operator Φ̃, acts of the antenna samples y :

Ω→ KL in two subsequent steps: first, the samples are corrected by the
Gram matrix and then fed to the synthesis operator Φ.

where J0 denotes the Bessel function of degree 0. Similar analytical
results exist also for the sphere and more generally for Sn−1, n ∈ N
(see [5] for an example). The invertibility of the Gram matrix
comes from the assumption that the family of functions {φk, k =
1, . . . , L} is linearly independent (often verified in practice if the
array layout is properly chosen). To prevent GΦ from being ill-
conditioned (and hence facilitate its numerical inversion), we can
further require {φk, k = 1, . . . , L} to be a Riesz basis for its span
R(Φ) = span{φk, k = 1, . . . , L} (see [6]).

The interpolation step can hence be decomposed in two subse-
quent steps (see fig. 5). First, a Gram correction is applied to the
samples y : Ω→ KL

ỹ = G−1
Φ y.

This correction compensates for the lack of orthogonality of the
family {φk, k = 1, . . . , L}. Indeed, if the family were orthogonal,
the Gram matrix would simply reduce to the identity and the
above correction would be trivial.

Then, the corrected samples ỹ : Ω → KL are acted on by the
synthesis operator Φ. This yields a Gaussian random function
SD ⊂ KΩ, given by

SD =

{
SD(x) =

L∑
k=1

ỹkφk(x) : Ω→ K, x ∈ X

}
. (11)

We can show that SD is the least-squares estimate of S in the sense
that

SD = argmin
ϕ∈R(Φ)

E‖S − ϕ‖22, and S − SD ∈ R(Φ)⊥.

The covariance operator TκD : L2(X ) → L2(X ) of the random
function SD is given by

TκD = ΦG−1
Φ ΣG−1

Φ Φ∗. (12)

It may appear easier to some to interpret TκD in terms of its associ-
ated kernel κD : X × X → K, given by

κD = vec (TκD )

= vec
(
ΦG−1

Φ ΣG−1
Φ Φ∗

)
=
(
Φ⊗ Φ

) (
G−1

Φ ⊗G
−1
Φ

)
vec(Σ), (13)

where ⊗ denotes the tensor product. The last equality in eq. (13),
was obtained by leveraging well-known properties of the the ten-
sor product (see [14, 9, 1] for more details on the tensor product
and the Kronecker product in the finite dimensional case). If we
define σ̃ =

(
G−1

Φ ⊗G
−1
Φ

)
vec(Σ), then eq. (13) can be re-written as

a weighted sum of separable kernels:

κD(x, y) =
L∑

i,j=1

σ̃i,j φi(x)φ∗j (y), ∀(x, y) ∈ X 2. (14)

(a) Intensity function I of the un-
known Gaussian point source ran-
dom function.

(b) Least-squares estimate ID of the
intensity function constructed with
the first 8 eigenfunctions (85% of
total energy).

(c) Squared magnitude of the eigenfunctions associated with the eight
largest eigenvalues of the covariance operator TκD , in decreasing
order.

Figure 6 | Estimation of the second order moments of a Gaussian point
source random function on the sphere. The random function is sensed
by the linear array in fig. 4. From 800 noisy observations of the antenna
samples y, the eigenfunctions of TκD are estimated and the intensity
field reconstructed. We observe that many convolution artefacts pollute
the eigenfunctions and consequently the intensity field, complicating the
identification of sources.

Finally, the diagonal part of TκD yields the intensity field ID :
X → R, describing the variance of the Gaussian random field SD
for every location x ∈ X :

ID(x) = κD(x, x) =

L∑
i,j=1

σ̃i,j φi(x)φ∗j (x), ∀(x, y) ∈ X 2. (15)

As we can observe in fig. 6b, the intensity field is severely polluted
by sidelobes, forbidding the direct identification of sources within
the function. We will show in section 3.4 that these sidelobes are
actually convolution artefacts.

3.3. Functional Principal Component Analysis

In eq. (14), we have expressed κD as a linear combination of L2

separable bivariate functions φ(x)φ∗j (y). These functions, although
tailored to the instrument in use, are however not the most ideally
suited for representing κD . Indeed, if we use the eigenfunctions of
TκD as spanning functions, it is then possible to represent κD with
a much smaller set of function, with cardinality ranging from 0
to L depending on the desired accuracy. This effectively accounts
to performing a functional principal component analysis on κD ,
by projecting it onto optimal finite subspaces with increasing di-
mensionality. As stated in theorem 3.1, these eigenfunctions can
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be efficiently computed by applying the synthesis operator Φ to
the eigenvectors of a generalized eigenvalue problem:

Theorem 3.1 — Functional PCA for Interpolated Random Functions.
Let S ∈ H be a Gaussian point source random function, sam-
pled by a full rank operator Φ∗ : H → KL, yielding the random
vector

y = Φ∗S,

with covariance matrix Σ ∈ KL×L. We note K ≤ L the rank of
Σ. Let further Φ̃ = ΦG−1

Φ be the interpolation operator ideally
matched with Φ∗ and

SD = Φ̃y,

be the orthogonal projection of S onto the range of Φ. Then,
the covariance operator TκD : L2(X )→ L2(X ) of SD given in
eq. (12), has a null eigenvalue with infinite multiplicity, and K
non-null real eigenvalues. These eigenvalues and their associ-
ated eigenfunctions are given by:(

λi,
Φαi√
α∗iGΦαi

)
∈ K× L2(X ), i = 1, . . . ,K,

where λi ∈ K and αi ∈ KL are the K distinct non-null eigen-
pairs of the generalized eigenvalue problem:

Σαi = λiGΦαi, ∀i = 1, . . . ,K. (16)

Hence, TκD has rank K ≤ L and admits the following decom-
position

TκD =

K∑
i=1

λi
Φαiα

∗
iΦ
∗

α∗iGΦαi
. (17)

� Proof 3.1 First, notice that any element f ∈ N (Φ∗) with ‖f‖2 = 1 is an
eigenfunction for TκD for the eigenvalue 0:

TκDf = ΦG−1
Φ ΣG−1

Φ Φ∗f︸︷︷︸
=0

= 0.

Hence, becauseN (Φ∗) = R(Φ)⊥ and Φ has rank L, the eigenspace associ-
ated to the eigenvalue 0 is infinite dimensional, and finally 0 has infinite
multiplicity.

Assume now that {(λi, αi), i = 1, . . . ,K} are distinct, non-null eigen-
pairs of the generalized eigenvalue problem:

Σαi = λiGΦαi. (18)

The matrices Σ and GΦ being Hermitian and definite-positive, existence of
non-trivial eigenpairs for eq. (18) is guaranteed, and the eigenvectors are
GΦ-orthogonal [15]:

α∗iGΦαj = 0, ∀i, j = 1, . . . ,K. (19)

Moreover, rank(Σ) = K ≤ L and rank(GΦ) = L and hence we have
indeed K distinct, real eigenvalues different from 0.

Define then fi := Φαi ∈ L2(X ), i = 1, . . . ,K. We have

TκDfi = ΦG−1
Φ ΣG−1

Φ Φ∗Φαi

= ΦG−1
Φ Σαi

= λiΦαi

= λifi,

where the third equality was obtained from eq. (18). Indeed,

Σαi = λiGΦαi ⇔ G−1
Φ Σαi = λiαi, ∀i = 1, . . . ,K.

We can verify that the functions fi are orthogonal to one another. Indeed,
we have from eq. (19):

〈fi, fj〉 = α∗iΦ∗Φαj = α∗iGΦαj = 0, ∀i, j = 1, . . .K.

Finally, we can compute the norm of the functions fi as

‖fi‖2 =
√
〈fi, fi〉 =

√
α∗iGΦαi, ∀i, j = 1, . . .K.

5 10 15 20 25 30 35 40 45

Eigenvalue index

10

20

30

40

50

60

70

M
a
g
n
it
u
d
e

(a) Spectrum of TκD . We observe
a sharp decay (85 % of the energy
contained in the 8 first eigenvalues).
This can be leveraged to compress
the signal with almost no loss.
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(b) Compression rate versus accu-
racy. We observe that with a com-
pression rate of 99% we still have
an accuracy above 90 % (here accu-
racy means percent of total energy
in the signal).

(c) Light blue: intensity function
recovered with the K eigenval-
ues (100 % of the total energy).
Dark blue: Compressed intensity
function, recovered with the first
K0 = 8 largest eigenvalues of TκD
(85 % of total energy). We observe
that the energy in the noisy side-
lobes is significantly reduced, and
hence the compression acts as a
denoiser.

(d) Absolute error between com-
pressed and uncompressed inten-
sity function. We observe that the
compression is not uniform across
the field of view: the error near ac-
tual sources is close to zero, and
increases in noisy regions. Hence
the compression is virtually loss-
less as it only affects insignificant
parts of the signal.

Figure 7 | Functional PCA used as both a compression scheme and
denoiser, for the scenario desribed in fig. 6. Here the peak signal to noise
ratio was set to PSNR=-6.67 dB. The eigenvalues associated to the 8
largest eigenvalues can be found on fig. 6.

The pairs {(λi, εi), i = 1, . . . ,K}, where εi = fi/‖fi‖, i = 1, . . . ,K,
form hence K distinct eigenpairs for the self-adjoint, bounded operator
TκD . Moreover, from the expression eq. (12) of TκD , we see that

rank(TκD ) = min(rank(Φ), rank(K)) = min(L,K) = K.

Hence, {(λi, εi), i = 1, . . . ,K} are the onlyK non-null eigenpairs of TκD ,
and we have

TκD =
K∑
i=1

λi
Φαiα

∗
iΦ∗

α∗iGΦαi
.

�

The decomposition eq. (17) provides us with a much more con-
venient representations of κD and ID than previously derived in
eqs. (14) and (15). Indeed, if we call the eigenfunctions

εi :=
Φαi√
α∗iGΦαi

, i = 1, . . .K,

then we can write

κD(x, y) =

K∑
i=1

λi εi(x)ε∗i (y), ∀(x, y) ∈ X 2, (20)

and

ID(x) =

K∑
i=1

λi |εi(x)|2, ∀x ∈ X . (21)
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(a) Intensity field estimated using all
the K = 48 eigenvalues.

(b) Compressed intensity field esti-
mated using only the K0 = 2 largest
eigenvalues.

(c) Absolute difference between com-
pressed and uncompressed intensity
field estimates.

Figure 8 | Estimating the full sky intensity field at 50 MHz using real data from LOFAR. The estimation was carried out using 800 observations from
48 LBA antennas in station CS302. For this scenario, because of the very limited amount of samples and exposition time, only two very bright stars
are distinguishable. These two sources correspond to the two largest eigenvalues, in which most of the energy is contained. By performing functional
PCA and keeping only the contributions from these two leading eigenvalues, we can successfully denoise the intensity field estimate (see (b)). We
observe that this compression does not introduce any bias in the estimated sources’ intensities, and mainly affects noisy regions with prominent
sidelobes (see (c)).

This yields an alternative algorithm for the computation and
processing of κD and ID in practical applications (see algorithm 1).
This algorithm has numerous advantages over the algorithm pro-
posed in [5], both in terms of computational complexity and nu-
merical stability. Moreover, it offers much more flexibility in the
processing of the estimates, allowing for example to trade accuracy
and efficiency in a very controlled and systematic manner, as well
as the parallel processing of each of the independent contributions
of energy described by the eigenfuncitons εi. These advantages
are listed below:

• Numerical Stability: unlike the algorithm proposed in [5],
algorithm 1 does not require the inversion of the Gram ma-
trix GΦ, but only the resolution of the generalized eigenvalue
problem eq. (16). The matrices Σ and GΦ being respectively
Hermitian symmetric and Hermitian symmetric positive def-
inite, this problem can be solved for in a numerically stable
and efficient manner using the Cholesky factorization. This
improved numerical stability avoids magnifying potential
noise corruptions in the samples at an early stage.

• Computational Efficiency: the use of eqs. (22) and (23) rather
than eqs. (14) and (15) for the computation of κD and ID is
of course much more efficient computationally speaking. In-
deed, we only need to evaluate K0 � L2 functions, against
L2 in eqs. (14) and (15). Moreover, both the eigenvalues λi and
eigenfunctions εi are real-valued unlike the complex plane
waves φi. In practice, we observe tremendous speed improve-
ments when using algorithm 1 rather than the algorithm pro-
posed in [5].

• Trading Accuracy for Efficiency (and Denoising): depend-
ing on the decay rate of the eigenvalues λi forming the spec-
trum of TκD , it is possible to approximate κD and ID with a
reduced number of basis functions K0 < K, hence further
reducing the complexity with almost no loss in accuracy (see
fig. 7). This trade off can be explicitly studied to find optimal
compression rates. In fig. 6 for example, 8 eigenfunctions only
are necessary to represent 85 % of the total energy of the signal,
against the 2304 functions necessary to represent it with the al-
gorithm proposed in [5]. This represents a reduction factor of
288, which is tremendous for practical applications. Moreover,

Algorithm 1 | Estimation of the second order moments of a Gaussian
point source random function S, from its samples y = Φ∗S. The energy
fraction 0 < τ ≤ 1 trades accuracy of the estimate versus efficiency of
computation.

1: procedure INTERP(y,Φ, τ )
2: Estimate the covariance matrix Σ ∈ CL×L

Σ̂← 1

Ns

Ns∑
i=1

yiy
H
i ,

3: Compute the Gram matrix GΦ ∈ CL×L

GΦ ← Φ∗Φ.

4: Find the K ≤ L sorted eigenpairs of the generalized eigen-
value problem

Σ̂αi = λiGΦαi, ∀i = 1, . . . ,K.

5: Select the K0 ≤ K greatest eigenvalues such that

K0∑
i=1

λi > τ

(
K∑
i=1

λi

)
.

6: Evaluate εi = Φαi, i = 1, . . . , L and approximate
κD : X 2 → K and ID : X → K as

κD(x, y) '
K0∑
i=1

λi εi(x)ε∗i (y), ∀(x, y) ∈ X 2, (22)

ID(x) '
K0∑
i=1

λi |εi(x)|2, ∀x ∈ X . (23)

7: end

this compression often acts as a denoiser, resulting in estimate
even cleaner than if we used the entire K eigenfunctions (see
figs. 7 and 8). Indeed, the eigenfunctions associated with the
smallest eigenvalues are often either very corrupted by the
noise or even representing the noise component only. Hence,
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filtering them out results in reduced sidelobes in the estimates,
with virtually no bias in relevant parts of the signal.

• Post-processing of the eigenfunctions: Representing inde-
pendent contributions of energy, the eigenfunctions can be
post-processed separately and differently according to the
structures they exhibit. This not only offers an opportunity
for parallelisation schemes, but also permits to design multi-
scale algorithms, able to cope with wider variety of structures
within the signal. One example of this will be given in sec-
tion 4.3, with a multi-scale graph filtering.

3.4. A Deconvolution Problem
We have claimed earlier that the estimated random function SD
could be seen as a convolution between the Gaussian white noise
S and an instrument-specific kernel ζ : X 2 → K, associated with
the projection operator Φ̃Φ∗:

ζ = vec
(

Φ̃Φ∗
)
.

This kernel can actually be written explicitly in terms of the family
of the basis functions ϕ = {φi, i = 1, . . . , L} ⊂ L2(X ). To this
end, we need to define a set of basis functions associated to the
interpolation operator Φ̃, that we denote ϕ̃ = {φ̃i, i = 1, . . . , L} ⊂
L2(X ). The two bases are dual of one another, and form a bi-
orthogonal pair of bases (see [6]). Elements of ϕ̃ can be written in
terms of the elements of ϕ as

φ̃i(x) =

L∑
j=1

γjiφj(x), ∀x ∈ X , i = 1, . . . , L,

where γji denotes the element of G−1
Φ ∈ KL×L at the jth row and

ith column. Hence, we can re-write the indexed random variables
in SD (see eq. (11)) as

SD(x) =

L∑
i=1

yiφ̃i(x)

=

L∑
i=1

(∫
X
φ∗i (y)S(dy)

)
φ̃i(x)

=

∫
X

(
L∑
i=1

φ̃i(x)φ∗i (y)

)
S(dy), ∀x ∈ X . (24)

and we finally get the following expression for ζ : X 2 → K,

ζ(x, y) =

L∑
i=1

φ̃i(x)φ∗i (y), ∀(x, y) ∈ X 2. (25)

The quantity ζ(·, y0) : X → K is sometimes called the point spread
function of the instrument at y0 ∈ X . Notice that it depends only
on the functions φi, and hence on the layout of the underlying
phased array. We could have derived an equivalent but more
compact expression for ζ using eq. (17), but we would have then
made the kernel data dependent, which is undesirable. Indeed, we
would like to be able to think of ζ as a data-independent quantity,
which can be optimized by properly choosing the layout of the
array for example.

From eqs. (24) and (25), we can derive a spectral representation
(see definition 2.7) for SD :

SD(x) =

∫
X
ζ(x, y)S(dy), ∀x ∈ X .

(a) Modulus of the point spread
function for y = 78.9◦.

(b) Modulus of the point spread
function for y = 28.65◦.

(c) Modulus of the point spread
function for y = 133.97◦.

(d) Modulus of the kernel
ζ(x, y), for x, y ∈ S2.

Figure 9 | Convolution kernel ζ for the layout described in fig. 4. We
observe that the point spread function is not shift invariant: the artefacts
in the point spread function are stronger for off-centred locations.

As shown in eq. (5), a similar representation holds for the covari-
ance function κD :

κD(x, y) =

∫
X
ζ(x, u)ζ∗(y, u) ν(du), ∀(x, y) ∈ X 2,

where ν is the control measure of the Gaussian point source ran-
dom field S.

4. Deconvolution of Gaussian Random Fields

We have derived in section 3.4 a spectral representation for the
least-squares estimate SD , expressing it as the convolution between
the unknown random function S and a know instrument-specific
kernel ζ:

SD(x) =

∫
X
ζ(x, y)S(dy), ∀x ∈ X . (26)

The inverse problem of recovering S from eq. (26) is called a decon-
volution problem. For Gaussian random functions, this deconvolu-
tion can equivalently be performed on the covariance function κD .
The goal is then to recover the spectral measure ν of SD , verifying
the equation:

κD(x, y) =

∫
X
ζ(x, u)ζ∗(y, u) ν(du), ∀(x, y) ∈ X 2. (27)

Notice that the spectral measure ν is also the control measure of
the Gaussian white noise S and hence its knowledge suffices to
fully characterise the white noise (see definition 2.4). This formula-
tion conveniently transfers the problem of deconvolving Gaussian
random functions into a deterministic setup.

For point source random functions, eq. (27) simplifies consider-
ably. Indeed, the control measure ν can be written as (see definition
2.5)

ν =

Q∑
q=1

σ2
qδxq , (28)
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with σ2
q > 0 and xq ∈ X , for q = 1, . . . , Q. Plugging eq. (28) in

eq. (26) yields

κD(x, y) =

Q∑
q=1

σ2
qζ(x, xq)ζ

∗(y, xq), ∀(x, y) ∈ X 2. (29)

Equation (29) seems to suggest a two-stages deconvolution pro-
cedure, decoupling the problem of sources localisation from the
problem of intensities recovery. Indeed, assuming the sources posi-
tions xq known, the sources’ intensities σ2

q can easily be estimated
by evaluating eq. (29) at Q well-chosen locations in order to form
a linear system of Q independent equations. We then face a classic
linear regression problem, with minor complications due to the
structure of the noise (see section 4.1).

We hence propose in this section a two-stages deconvolution
procedure. First, the sources are located using a high-pass filtering
on a suitable graph. Then, we estimate the sources intensities by
solving a linear regression problem. For simplicity, we postpone
the sources localisation procedure to sections sections 4.2 and 4.3.

4.1. Deconvolution by Means of Linear Regression
Assuming the sources locations {xq, q = 1, . . . , Q} ⊂ X known,
we want to estimate the sources intensities {σ2

q , q = 1, . . . , Q} ⊂ R
from the equation

κD(x, y) =

Q∑
q=1

σ2
qζ(x, xq)ζ

∗(y, xq), ∀(x, y) ∈ X 2. (30)

To this end, we take a collection of N points in X

∆ = {xk ∈ X , k = 1, . . . , N},

and sample eq. (30) at these selected locations. This yields a form
a matrix equation:

K = ZΛZH , (31)

where Λ := diag(σ) ∈ RQ×Q is a diagonal matrix with diagonal
entries given byσ := (σ2

1 , . . . , σ
2
Q) ∈ RQ. The matricesK ∈ KN×N

and Z ∈ KN×Q are defined as

K :=


κ1,1 · · · κ1,N

...
. . .

...

κN,1 · · · κN,N

 , and Z :=


ζ1,1 · · · ζ1,Q

...
. . .

...

ζN,1 · · · ζN,Q

 ,
where κi,j = κ(xj , xi), ∀i, j = 1, . . . , N, ζk,q = ζ(xi, xq), ∀k =
1, . . . , N, ∀q = 1, . . . , Q.

The collection of points ∆ ⊂ X can either be chosen uniformly
over the domain, or according to a prior we have on ν, such as the
least-squares estimate of the intensity field ID(x) = Var(SD(x)).
Indeed, the N points with higher magnitude in the intensity field
are likely to be more informative samples about ν. Alternatively,
one could also use the eigenfunctions of the covariance operator
TκD (see eq. (17) on how to compute these eigenfunctions), and
select the points with higher magnitudes in the first eigenfunctions
containing a significant portion of the total variance. We observe
that, to get an overdetermined system, and hence unicity of the
solution when invertible, we should choose N(N + 1)/2 ≥ K.
In the noiseless case and when the system is invertible, choosing
N(N + 1)/2 = K is theoretically sufficient to uniquely recover
{ν1, . . . , νK}. In the presence of noise, choosing N(N + 1)/2 ≥ K
can bring noise resilience.

It is possible to re-write eq. (31) on the form of a traditional linear
system by using the vec( ) operator [14, 9]. We get [1]

vec(K) = Z ⊗ Z vec(Λ)

κ = Z ⊗ Z ς, (32)

where ⊗ denotes the Kronecker product. Because Λ is a diagonal
matrix, eq. (32) simplifies to [1]

vec(K) = Z ◦ Z diag(σ)

κ = Z ◦ Z σ, (33)

where ◦ denotes the Khatri-Rao product, or column-wise Kro-
necker product. This drastically reduces the dimensionality of
the search space, as we go from ς ∈ RQ

2

to σ ∈ RQ. It is possi-
ble to even further reduce the dimensionality of eq. (33). Indeed,
K being a symmetric matrix, we can restrict our attention to its
lower (or equivalently upper) triangular part. This can be done
by using the half vectorization operator vech() [9], that vectorizes
a symmetric matrix and discards the entries corresponding to its
upper triangular part. The vec() and vech() operators are linked
through the elimination En : KN

2

→ KN(N+1)/2 and duplication
Dn : KN(N+1)/2 → KN

2

operators, such that [9]:

vec(A) = DNvech(A), & vech(A) = ENvec(A),

for every symmetric matrix A ∈ RN×N .
With these definitions in hand, we can now re-write eq. (33) as

EN,Lvec(K) = EN,L
(
Z ◦ Z

)
σ

vech(K) = EN,L
(
Z ◦ Z

)
σ

κh = EN,L
(
Z ◦ Z

)
σ

κh =M σ. (34)

In practice, the matrix K (and hence κh) has to be estimated
from repeated observations of the random fields SD at locations
x1, . . . , xN ∈ X :

K̂ =
1

Ns − 1

Ns∑
i=1

SDS
T
D,

where SD = (SD(x1), . . . , SD(xN )) ∼ NN (0,K). For large
enough sample sizes Ns, we can write

vec
(
K̂
)

= vec(K) + ε,

with ε ∼ NN2(0, R) and covariance matrix R ∈ RN
2×N2

given by
[9]

R =
1

Ns

(
I + I(N,N)

)
(K ⊗K),

where I(N,N) ∈ RN
2×N2

is the commutation matrix of order
(N,N), defined in general as

vec(A) = I(m,n)vec(AT ),

for any matrix A ∈ Rm×n. From that we obtain the empirical
version of eq. (34)

κ̂h =Mσ + εh, (35)

where εh = EN,Lε ∼ N (0, Rh), with Rh ∈ R
N(N+1)

2
×N(N+1)

2

given by
Rh = EN,LR ETN,L. (36)

We observe that eq. (35) is on the form of a classical linear regres-
sion problem, with Gaussian additive noise. However, the noise is
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correlated from one measurement to another, and this correlation
structure can be estimated in practice by plugging K̂ in eq. (36).
This suggests a weighted least-squares estimation procedure:

σ̂ = argmin
{
‖W

1
2 (κh −Mσ)‖22 , σ ∈ RQ

}
, (37)

where the weighting matrix W
1
2 is given by W

1
2 = R̂

− 1
2

h . Efficient
computation of this matrix can be carried out by performing a
Cholesky factorization on R̂h and then a backward substitution
to obtain the inverse of the Cholesky factor. Provided thatM is
full-column rank, a closed form solution for eq. (37) exists and is
given by

σ̂ = (MTWM)−1MTW κ̂h.

WhenM is ill-conditioned, the above estimate is numerically un-
stable and can lead to noise magnification. Regularization tech-
niques must then be explored.

Under the assumption of known sources’ locations
{x1, . . . , xQ} ⊂ X and for large enough sample sizes, marginal
and joint confidence intervals for σ̂ can be obtained. Indeed, we
have

εh ∼ N (0, Rh),

and hence
σ̂ ∼ N (0, Rσ),

where Rσ ∈ RQ×Q is given by

Rσ = (MTWM)−1MTW RhWM(MTWM)−1

= (MTWM)−1MTWT/2W 1/2RhW
T/2W 1/2M(MTWM)−1

= (MTWM)−1MTWT/2R
−1/2
h RhR

−T/2
h︸ ︷︷ ︸

=I

W 1/2M(MTWM)−1

= (MTWM)−1MTWM(MTWM)−1

= (MTWM)−1.

Marginal confidence intervals are then given by

IC(σ̂q, βq) =
[
σq ± Φ1−βq

√
(Rσ)q,q

]
, ∀q = 1, . . . , Q.

where 0 < βq < 1 and Φ1−βq ∈ R is the 1 − βq quantile of the
standard Gaussian distribution. For simultaneous 95% confidence
confidence intervals, we can apply the Bonferroni method and
choose

Q∑
q=1

βq = 0.05,

which is met for example when βq = 0.05/Q, ∀q = 1, . . . , Q.

4.2. Sources Localisation by means of Graph Signal Process-
ing

We now address the problem of estimating the positions
{x1, . . . , xQ} of the Q sources within the domain X . For this, we
propose to use the least-squares estimate ID of the intensity func-
tion (see fig. 6b) . By looking at the diagonal part of eq. (29), we
get

ID(x) =

Q∑
q=1

σ2
q |ζ(x, xq)|2, ∀x ∈ X .

Hence, the intensity function ID correspond to a weighted summa-
tion of squared point spread function |ζ(x, xq)|2, each centred at
different sources’ locations xq ∈ X . From fig. 9, we observe that the
kernel ζ(x, y) is diagonally dominant, with each of the point spread
functions ζ(·, y0) admitting a global maximum1 at y0. Roughly

1This is always the case in practice, by design of the phased array.

Figure 10 | Sampling and embedding of the least-squares estimate ID
from fig. 6 on a weighted graph, with weights given by the covariance
function κD .

speaking, this means that each of the functions |ζ(x, xq)|2 will
exhibit a main strong lobe at their center xq (see fig. 9). Hence,
searching for the positions xq of the sources, accounts to looking
for strong peaks in the intensity function ID , which would sig-
nificantly pop out from the rest of the signal. In Fourier analysis
terms, we are hence looking for high frequency contents within the
signal ID . An idea could then be to perform a suitable high pass
filtering on the signal in the Fourier domain, to retain only signifi-
cant peaks within it. Although intuitively appealing, this approach
fails in our given application, as it neglects potential correlations
existing between different parts of the signal (see fig. 11). Indeed,
because of the complicated sidelobes structure in ζ (see fig. 9),
convolution artefacts from strong sources could be locally inter-
preted as significantly popping out from the the signal, while they
are only "echoes" of an actual source, highly correlated with the
latter. Respectively, faint sources could be confused with smooth
structures if surrounded by artefacts with comparable magnitudes
and hence be discarded during the high-pass filtering operation.
In both cases, it seems that accounting for covariance structures
within the field could help in ruling out these pitfalls.

One way of doing that is to redefine our measure of smoothness,
and tailor it to the covariance structure of the signal under study.
The Fourier basis for example, provides a generic scale for splitting
a given signal in components of different degrees of smoothness.
However, being an eigenbasis for the classical Laplace-Beltrami op-
erator, it implicitly assumes a local measure of smoothness, where
signal’s variations are assessed on infinitely small neighbourhoods.
It is hence a very ill-suited basis (see fig. 11c) for our current pur-
pose, as large-scale correlations patterns within the signal can only
be captured with a global measure of smoothness. One possible
cure would be to find an embedding I from X to a (possibly in-
finite dimensional) Riemannian manifold M, such that on this
manifold, the notion of locality and connectivity (as defined by the
covariance structure of the signal) would agree [16]. More pre-
cisely, if x1, x2 ∈ X are "more correlated" than x3, x4 ∈ X , then
we would like I(x1), I(x2) ∈ M to be closer with respect to the
Riemannian metric dM from one another than I(x3), I(x4) ∈M:

E[SD(x1)S∗D(x2)] ≤ E[SD(x3)S∗D(x4)]

⇒ dM(I(x1), I(x2)) ≤ dM(I(x3), I(x4)).

Provided the existence of such a manifold, we could then define a
new Laplace operator ∆M, adapted to the new underlying geome-
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try. The Fourier basis would then be defined as the eigenvectors of
∆M, and would be a much better indicated basis to perform the
high-pass filtering described above, as tailored to the covariance
structure of the signal.

While finding such a manifoldM and deriving the associated
Laplace operator ∆M and its eigenbasis are challenging tasks at the
continuous level, things simplify considerably at the discrete level.
Indeed, assuming a very fine grid {x1, . . . , xNp} with resolution
Np ∈ N, we can sample the intensity field ID and embed the signal
on a a graph structure [16], skeleton of the underlying geometry of
M (see fig. 10). More precisely, let G = (V,E) be a fully connected
undirected graph, where V = {x1, . . . , xNp} ⊂ X is the vertex set,
and E = V × V is the edge set. We define a signal iD ∈ RNp on V ,
given by

iD = [ID(x1), . . . , ID(xNp)],

and weight the edges in E so as to reflect potential similarities
between nodes,

wij = κD(xi, xj), ∀i, j = 1, . . . , Np.

This weighting effectively encodes in the graph the connectivity
patterns described by the covariance function κD . We can then
define the graph Laplacian L ∈ KNp×Np of G, discrete analog of
the Laplace-Beltrami operator [16]:

L = D̃ −A,

where A ∈ KNp×Np is called the affinity matrix of G (see fig. 11a)

Aij =

{
wij , if (xi, xj) ∈ E,
0, otherwise,

i, j = 1, . . . , Np.

and D ∈ RNp×Np is a diagonal matrix with the absolute weighted
degree of each node on the diagonal Dii =

∑Np
k=1 |wik|, i =

1, . . . , Np. Analogously to the classical Fourier transform, the
Graph Fourier Transform (GFT) [16] can be defined from the
eigenvectors U ∈ RNp×Np of the Laplacian L:

L = UΥUH ,

where Υ ∈ RNp×Np is the diagonal matrix of eigenvalues of L
sorted in ascending order, and UUH = UHU = I . The GFT of the
signal iD ∈ RNp defined on V , is then given by

îD = UHiD.

It can be shown that the eigenvectors associated to the largest
eigenvalues are more oscillatory behaviours than the ones associ-
ated to the smallest eigenvalues [16]. Hence, in the graph setup,
performing an ideal high-pass filtering of bandwidth b ∈ N ac-
counts to setting to zero the first b coefficients (see fig. 11d). We
note the result of this filtering ĩD ∈ RNp :

ĩD =

{
0, for k = 1, . . . , b,

îD[k], for k = b+ 1, . . . , Np.

We choose the bandwidth b by finding an elbow in the spectrum Υ
of L, allowing us to seperate the high-frequency eigenvectors from
the low-frequency ones (see fig. 11b). Finally, we can recover the
filtered signal iF ∈ RNp by applying the inverse GFT:

iF = U ĩD.

The resulting estimate exhibits much less sidelobes than the orig-
inal signal îD . Candidate sources locations can then simply be
inferred from the local maxima of iF , and provided as input to the
deconvolution procedure described in section 4.1 to recover the
intensities.

(a) Absolute value of the affinity
matrix (covariance function κD
sampled on a fine grid).

(b) Spectrum of the graph Lapla-
cian. High frequencies corre-
spond to large eigenvalues
(above the threshold).

(c) Half spectrum of iD with the discrete Fourier transform.
The spectrum is very diffuse, evidence of the inadequacy
of the Fourier basis to represent iD . The high-pass filter
bandwidth is chosen according to the first major eigengap
in the spectrum (around frequency 20).

(d) Spectrum of iD with the graph Fourier transform. The
spectrum is much more condensed in the high-frequencies.

(e) Intensity function after high-
pass filtering in the DFT domain.
Many sidelobes remain.

(f) Intensity function after high-pass
filtering in the GFT domain. All the
sidelobes have disappeared.

Figure 11 | Sources localization by means of a GFT-based high-pass
filtering and comparison with the classical DFT. The merits of the GFT
are obvious: it is much easier to determine the optimal filter bandwidth,
and the convolution artefacts (sidelobes) are fully filtered out.
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4.3. A Multi-scale Approach
The graph-based filtering procedure proposed in section 4.2 suffers
from two major limitations:

• Computational Efficiency & Memory Consumption: the
procedure can become very computationally expensive and
memory demanding, as it requires to construct and store a
potentially dense and large matrix (square of the resolution
Np) as well as to perform its eigendecomposition. For very
large Np, forming the matrix only is already prohibitive. Al-
though sparsification techniques could be explored to store
and handle the matrix more efficiently, it remains unsatisfy-
ing, as there is a significant computational overhead in the
procedure. Indeed, not knowing a priori how the eigenvectors
of the graph Laplacian will cluster in high and low frequency
components, we have to compute its full eigendecomposition
and look for a change of regime in the spectrum, such as an
elbow in fig. 11b. Once the bandwith of the high-pass filtering
chosen, only a few eigenvectors are selected, the vast major-
ity (corresponding to low frequencies) being discarded. This
is a total waste of resources, especially since the discarded
eigenvectors are the most expensive to compute! State of the
art algorithms such as the Arnoldi method have indeed a
convergence rate exponential in the minimal eigengap in the
spectrum. Hence, if the spectrum exhibits a flat region, as
observed for low-frequencies in fig. 11b, then the correspond-
ing eigenvalues and eigenvectors will be increasingly hard
to compute with a prescribed accuracy. It would hence be
much more efficient to estimate in advance the elbow in the
spectrum, and then compute only the eigenvalues and eigen-
vectors corresponding to high frequencies. We will show that
this is achievable for a specific type of graph Laplacians, that
we call atomic Laplacians. For this special type of Laplacians,
we will further be able to propose a matrix-free [17] formula-
tion of the Arnoldi method, hence reducing a lot the memory
overhead.

• Accuracy for Faint Sources: one the main disadvantages of
using the covariance matrix as an affinity matrix, is that it is
scale-dependent. Hence, in the presence of very bright sources
in the field, the covariance matrix can be dominated by the
contributions of these sources, making it very hard to recover
the faint sources. This is typically what we observe in fig. 11f
where the faint sources on the right-hand side were filtered
out, considered as smooth components. A multi-scale filtering
procedure would hence be welcome, where sources with very
different intensity levels would be treated independently from
one another.

To overcome both these limiations, we propose a multi-scale
graph-based filtering procedure based on the spectral approxima-
tion eqs. (22) and (23) of κD and ID :

κD(x, y) '
K0∑
i=1

λi εi(x)ε∗i (y), ∀(x, y) ∈ X 2,

ID(x) '
K0∑
i=1

λi |εi(x)|2, ∀x ∈ X ,

where K0 is the truncation level for the chosen accuracy level τ0,
and εi = Φαi/‖Φαi‖, i = 1, . . . ,K0. From the above equation and
the orthogonality of the εi’s, we note that we can decompose the
intensity function ID in independent contributions |εi|2 (see fig. 6c).
To each of these contributions, we can associate a covariance struc-
ture εiε∗i , and hence define a graph structure as in section 4.2. The
hope is that the sources will be clustered in groups of similar scales
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(a) True spectrum.
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(b) Spectrum estimated with
eq. (40).

Figure 12 | Estimation of the spectrum of an atomic Laplacian, with the
approximation eq. (40). We observe that the approximation is very good,
with the two sepctrums almost indistinguishable from one another.

across these different subgraphs, providing a much better chance
of recovery for faint sources, even in the presence of strong sources.

Sampling the above quantities on a grid {x1, . . . , xNp} ⊂ X we
get K0 signals

i
(k)
D =

[
|εk(x1)|2, . . . , |εk(xNp)|2

]
∈ KNp , k = 1, . . . ,K0,

defined over K0 graphs, with affinity matrices given by

Ak = εkε
H
k ∈ KNp×Np , k = 1, . . . ,K0,

where εk =
[
εk(x1), . . . , εk(xNp)

]
∈ KNp , k = 1, . . . ,K0. Being

outer products of a vector by itself, these affinity matrices admit a
Laplacian of the form

Lk = ‖εk‖1diag(|εk|) − εkεHk , k = 1, . . . ,K0. (38)

We call graph Laplacians of the form (38) atomic Laplacians. The
eigenvalues of atomic Laplacians can be shown to be given by the
roots of a certain function:

Proposition 4.1 — Eigenvalues of Atomic Laplacians. Let L ∈
KN×N be a square matrix, given by

L = ‖ε‖1diag(|ε|) − εεH ,

with ε = [ε[1], . . . , ε[N ]]T ∈ KN , and ε[n] 6= 0, ∀ k = 1, . . . , N.
Then, the eigenvalues of L are the roots of the function

f(τ) = 1 −
N∑
n=1

|ε[n]|2

‖ε‖1|ε[n]| − τ . (39)

� Proof 4.1 Let λn = ‖ε‖1|ε[n]|, for n = 1, . . . , N . We will first show that
the λn’s are not eigenvalues of L. By contradiction, assume the existence
of a nonnull vector v ∈ KN , such that, for a given n ≤ N we have

(‖ε‖1diag(|ε|)− λnI)v = εεHv.

Looking at the nth coordinate we get

0 = 〈ε,v〉ε[n],

and because ε[n] 6= 0, ∀n, we must have 〈ε,v〉 = 0. But then, all the
coordinates on the left hand-side are null, yielding

(‖ε‖1|ε[i]| − λn)v[i] = ‖ε‖1(|ε[i]| − |ε[n]|)v[i].

Again, because ε[i] 6= 0, ∀i, we find that v = 0 and hence λn is not an
eigenvalue of L as the kernel of L− λnI is trivial, for every n = 1, . . . , N.

Moreover, the characteristic polynomial of L is given by

det(L− τI) = det(‖ε‖1diag(|ε|)− τI − εεH)

= (λ1 − τ) · · · (λN − τ)

[
1−

N∑
n=1

|ε[n]|2

‖ε‖1|ε[n]| − τ

]
,
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Figure 13 | Deconvolved intensity field, after sources localization by
means of multi-scale graph-based high pass-filtering (see fig. 14) and
intensity recovery by means of linear regression (see section 4.1). Re-
covered sources are in pink and actual sources in green. Confidence
intervals for the intensities are superimposed in orange.

where we have used the identity:

det(B + xyH) =
(

1 + yHB−1x
)

det(B),

valid for any invertible matrix B ∈ KN×N . As proven above, the factors
(λn − tau) are all nonzero and hence the eigenvalues of L are the roots of
the function:

f(τ) = 1 −
N∑
n=1

|ε[n]|2

‖ε‖1|ε[n]| − τ
.

�

Because we are only interested in estimating roughly the location
of the elbow in the specturm, we do not compute exactly the roots
of eq. (39), but rather approximate them very efficiently. Indeed, a
quick study of the function f reveals that there is exactly one root
between each forbidden value of f , yielding for k = 1, . . . ,K0

τ
(k)
i ' ε̃k[i] + ε̃k[i− 1]

2
, i = 2, . . . , N, (40)

where τ (k)
1 < . . . < τ

(k)
N−1 and ε̃k are the vectors ‖εk‖1|εk| sorted

in ascending order.
From eq. (40), we can hence very efficiently approximate the

spectrum of the atomic LaplaciansLk as well as the location of their
respective elbows (see fig. 12). Then, the selected high-frequency
eigenvectors and eigenvalues are very efficiently computed with
a matrix-free formulation of the Arnoldi method. Indeed, the
Arnoldi method does not require the explicit knowledge of the
matrices Lk but only the result of their multiplication with any
vector v ∈ KNp . In our case, given the form eq. (38) of the atomic
Laplacians Lk, we can very efficiently compute such evaluations
with:

Lkv = ‖εk‖1|εk| � v − 〈v, εk〉εk, ∀v ∈ KNp , k = 1, . . . ,K0.
(41)

where� represents the point-wise or Hadamard product. Equation
eq. (41) is particularly memory efficient, as it permits to run the
Arnoldi method on very large Laplacians Lk ∈ KNp×Np without
having to even form these matrices.

We can hence very efficiently perform a GFT-based high-pass
filtering on each of the K0 independent contributions i(k)

D , embed-
ded on their respective graphs with affinity matrix Ak (see fig. 14).
Each of these filtering operations being independent from one an-
other, they can be performed in parallel. The K0 filtered signals
i
(k)
F can then be combined together as:

(a) Squared magnitude of the sampled eigenfunctions i(k)
D associated

with the K0 = 8 largest eigenvalues of the covariance operator TκD ,
in decreasing order.

(b) Squared magnitude of the high-passed filtered eigenfunctions i(k)
F .

(c) Intensity function ĩF recovered from the high-
pass filtered eigenfunctions i(k)

F . Candidate
locations for the sources are inferred from local
maxima, and marked of pink diamonds.

Figure 14 | Sources localization by means of a multi-scale GFT-based
high-pass filtering. Thanks to the multiscale approach, the faint sources
missed in fig. 11f are recovered.

ĩF =

K0∑
k=1

λki
(k)
F .

The resulting estimate exhibits much less sidelobes than the orig-
inal signal îD . Moreover, simulations reveal that it is more likely
to detect faint sources even in the presence of very bright sources,
because of its multi-scale approach (see fig. 14). Candidate sources
locations can then simply be inferred from the local maxima of ĩF ,
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and provided as input to the deconvolution procedure described
in section 4.1 to recover the intensities (see fig. 13).

5. Conclusion

In conclusion, we have proposed a generic and efficient decon-
volution algorithm for point source Gaussian random fields as
sensed by phased arrays. Based on the procedure described in [5],
the algorithm first performs very efficiently a functional principal
component analysis on the least-squares estimate of the random
field. This permits to conveniently represent the signal in indepen-
dent contributions, allowing explicit tradeoff between accuracy
and efficiency, denoising and parallel post-processing.

We then sample each of these contributions at a high enough
resolution and use their associated covariance kernel to embed
them on weighted graphs. A Graph Fourier Transform (GFT)
is then leveraged in order to filter out the convolution artifacts
within each of the independent contributions. We show that this
step can be performed in a computationally and memory efficient
manner for atomic Laplacians. The filtered eigenfunctions are
then summed together to form an artefact-free intensity function.
Candidate locations of the sources are then identified with local
maxima of the resulting intensity function. From these locations
a deconvolution problem is finally solved by means of weighted
linear regression and the intensities of the sources within the field
recovered.

The algorithm was tested on simulations for a variety of different
randomly generated Gaussian point source random functions, de-
fined over the sphere. For reasonable numbers of sources at least
(less than 40), the algorithm seemed to perform very well, with
very few false negative and a good accuracy in the recovered inten-
sities and locations. However, a more formal performance analysis
should be performed, with a much larger number of sources and
on the sphere. Different noise conditions should also be tested.
Finally, future work may include extending the filtering technique
proposed in this paper at the continuous level, without having to
sample the quantities at a given resolution.
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