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Introduction
¤ Many scientific applications involve estimating the intensity field of some 

physical phenomenon.

¤ The field is sampled by an acquisition system.

¤ Recovery is performed by interpolating the “samples”.

¤ Sampling followed by interpolation acts as a projection.
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Convolution Artifacts

¤ Interpolating the acquired samples can be seen as convolving the true 
intensity field with some point spread function (specified by the tool).
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Aliasing artifacts forbid direct
identification of sources !

ID = I ⇤DB



CLEANING the Intensity Field
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¤ Iterative deconvolution algorithm: locate strongest source, removes 
contribution of the dirty beam at that location, iterate with next strongest 
source.

¤ Suboptimal, computationally expensive, nonlinear, no convergence result…
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Random Fields

¤ Continuous spatial random fields

with                 some probability space. 

¤ When centered, fully characterized by their second order moments

Ø Intensity field:

Ø Covariance function:

S = {S(r) : ⌦ ! C, r 2 X} ,

(⌦,F ,P)

¤ Gaussian random fields are such that

(S(r1), . . . , S(rn))
d⇠ Nn, 8r1, . . . , rn 2 X , 8n 2 N.

I(r) = E [S(r)S⇤(r)] , 8r 2 X ,

(r, s) = E [S(r)S⇤(s)] , 8(r, s) 2 X 2.



¤ Consider Gaussian random fields of the form:

where 

¤ The random amplitudes are such that

Point Source Random Fields

¤ We have

S(r) =
QX

q=1

⇠q �(r � rq), 8r 2 X ,

{rq, q = 1, . . . , Q} ⇢ X .

⇠q
i.i.d⇠ CN (0,�2

q ).

I(r) =
QX

q=1

�2
q�(r � rq), (r, s) =

(
I(r), if r = s,

0, otherwise.



Acquisition System

�(r,p)
{p1, . . . ,pn} ⇢ P

Sampling Operator
Spatial Filtering Spatial Sampling

S(r)
Y(p)

y : ⌦ ! CL

�⇤



Acquisition System

�(r,p)
{p1, . . . ,pn} ⇢ P

Sampling Operator
Spatial Filtering Spatial Sampling

S(r)
Y(p)

y : ⌦ ! CL

Y = �⇤S

Y(p) =

Z

X
S(r)�⇤(r,p)dr.

�⇤



Acquisition System

�(r,p)
{p1, . . . ,pn} ⇢ P

Sampling Operator
Spatial Filtering Spatial Sampling

S(r)
Y(p)

y : ⌦ ! CL

Y = �⇤S

Spatial Sampling
& Beamforming

Y(p) =

Z

X
S(r)�⇤(r,p)dr.

�⇤

y = �⇤S = W ⇤ � �⇤ S

yi =

Z

X
S(r)�i(r)dr = hS,�ii

�i(r) :=
PL

k=1 wk �(r,pk)



¤ We want to solve the inverse problem

with  

¤ Discrete methods: 

¤ Least-squares estimate given by pseudo-inverse

regularization needed!! 

Least-Squares Estimate (Discrete)
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y : ⌦ ! CL, �⇤ : H ! CL, S : ⌦⇥H ! C.
y = �⇤ S ,



¤ Why discretizing? Pseudo-inverse of operators also exist! (see MFSP)

¤ Continuous least-squares estimate given by

Least-Squares Estimate (Continuous)

Ŝ(r) = � (�⇤�)�1 y =
LX

i=1

ỹi �i(r), 8r 2 X .

¤ Numerical stability depends on sampling strategy and beamforming.

STABLE
IN PRACTICE 
(LOFAR LAYOUT)
EFFICIENT

¤ Analytical computation possible in radio astronomy

(�⇤�)ij =
LX

l,k=1

w(i)
l w(j)

k

⇤
✓Z

S2
e2⇡jhr,p

(i)
l �p(j)

k idr

◆
,

Z

S2
e2⇡jhr,pidr = 4⇡sinc(2⇡kpk).

 ' 2

¤ Inversion of the Gram matrix efficiently performed using Cholesky
factorization, backward and forward substituion. 



¤ The covariance function of the estimated random field is given by

where  

¤ Make sense of this equation using tensor products:

¤ We finally get 

Estimation of the Second Order Moments

̂ = �(�⇤�)�1⌃(�⇤�)�1�⇤,

⌃ = E[yyH ].

vec(̂) = (� ⌦ �)
⇥
(�⇤�)�1 ⌦ (�⇤�)�1

⇤
vec(⌃).

SYNTHESIS GRAM CORRECTION ON DATA

̂(r, s) =
LX

i,j=1

�̃ij �i(r)�
⇤
j (s), 8(r, s) 2 X 2,

Î(r) =
LX

i,j=1

�̃ij �i(r)�
⇤
j (r), 8r 2 X .



Example: Point Sources on Circle 

Actual Sky Bluebild Estimate

> MULTI-RESOLUTION DEMO <



¤ Link with the true random field ?

¤ Orthogonal projection on 

¤ The operator                                        can be seen as a convolution 

¤ Second order moment is given by

Deconvolution of the Random Field

 ' 2

Ŝ = �(�⇤�)�1�⇤S.

R(�).

�(�⇤�)�1�⇤ : H ! H

Ŝ(r) =
LX

i=1

✓Z

S2

S(s)�⇤
i (s)ds

◆
�̃i(r) =

Z

S2

S(s)

 
LX

i=1

�⇤
i (s)�̃i(r)

!

| {z }
⇣(s,r)

ds

Point Spread Function

̂(r, s) =

Z

S2

I(u)⇣(r,u)⇣⇤(s,u)du



¤ For point source random field, the integral simplifies

¤ Assume sources’ locations known, and sample the covariance function

¤ Solve with weighted least-squares

Deconvolution of the Random Field

̂(r, s) =
QX

q=1

�2
q⇣(r, rq)⇣

⇤(s, rq).

K̂ = Zdiag(�)Z⇤,

, vech(K̂) = (Z � Z)� (+✏)

�̂ = argmin�2RQ

���W
1
2 (̂� (Z � Z)�)

���
2

2

=
⇥
(Z � Z)⇤W (Z � Z)

⇤�1
(Z � Z)⇤W

⇤
2 ̂.



¤ Brute force: oversample the space on a fine grid.

¤ Computationally intensive, leads to severe ill-conditioning…

¤ Exploit available information !

How to Find Sources Locations ?

Intensity Field Estimate Covariance Function Estimate
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¤ Local maxima… Too many !

¤ Persistent Homology

¤ Eigenvectors
inspection

¤ Graph based 
methods:

¤ Artifacts clustering
¤ Graph filtering

fi = �↵i



¤ Define the affinity matrix as the 
absolute value of covariance 
matrix. 

¤ Interpret points in the field as 
nodes on a graph. Edges are 
weighted according to the 
covariance matrix.

¤ Define the Laplacian of the graph 
as 

¤ Perform spectral decomposition

Graph Based Methods

L = D �A.

L = U⇤UT .



¤ Spectral clustering is solving for

¤ Use eigenvectors associated to K smallest eigenvalues as features.

¤ Perform K-means.

Spectral Clustering

{Ã1, . . . , ÃK} = arg min

(
1

2

KX

i=1

W (Ai, Āi)

|Ai|
| A1, . . . , AK 2 V, [iAi = V

)



Result of ClusteringDirty Image

6 sourcesApplication to Radio Astronomy

~87% 
accurate

PSNR=-23 dB



¤ Define signal on a graph 

¤ Graph Fourier transform can be defined as 

Graph Fourier Transform

Î = UT I, where L = U⇤UT



¤ High eigenvalues correspond to high frequency correspond to high 
frequencies, low eigenvalues to low frequencies 

Graph Fourier Transform
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Ĩ = Î ⇥ f



Example: Graph Fourier Filtering

Before Filtering After Filtering 



Example: After Deconvolution



¤ What about aribitrary random fields? Integral does not simplify.

¤ Consider an operator formulation

¤ Solution given by

¤ In practice, sample one side to compute the inverse

Deconvolution of Arbitrary Random Field

 ' 2̂(r, s) =

Z

S2

I(u)⇣(r,u)⇣⇤(s,u)du

, ̂ = M⇤.

ˆ̂ = M(M⇤M)�1)k̂.

K̂ = �M⇤, ˆ̂ = M�(�M⇤M�)�1)K̂.



Conclusion and future work

¤ We have proposed a new interpolation algorithm to produce continuous 
least-squares estimate of the random field 

¤ Orders of magnitude faster ! 

¤ Aliasing artifacts remain.

¤ Deconvolution methods for point source random fields have been 
proposed 

¤ Graph-based methods are very successful

¤ Deconvolution for arbitrary random field needs to be address (at the 
continuous level)


