Deconvolution of Gaussian Random Fields and Application to Radio Astronomy

EDIC SEMESTER PROJECT

Author:

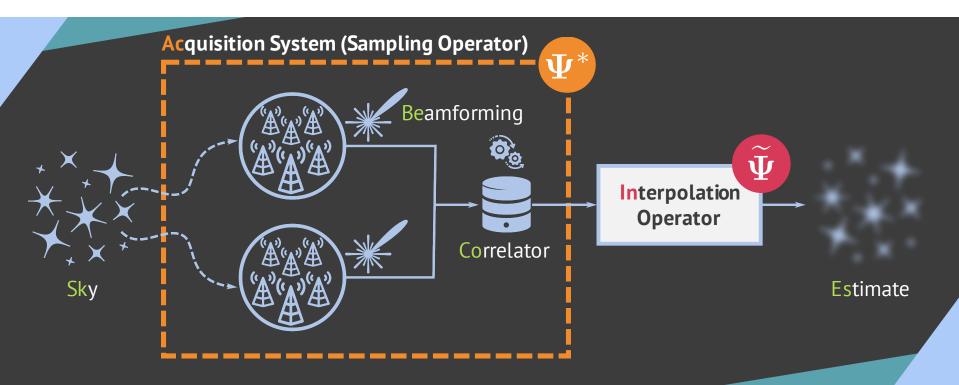
Matthieu Simeoni, EPFL & IBM Research

Supervisors:

Prof. Victor Panaretos, SMAT, EPFL Prof. Martin Vetterli, LCAV, EPFL Dr. Paul Hurley, IBM Research, Zürich

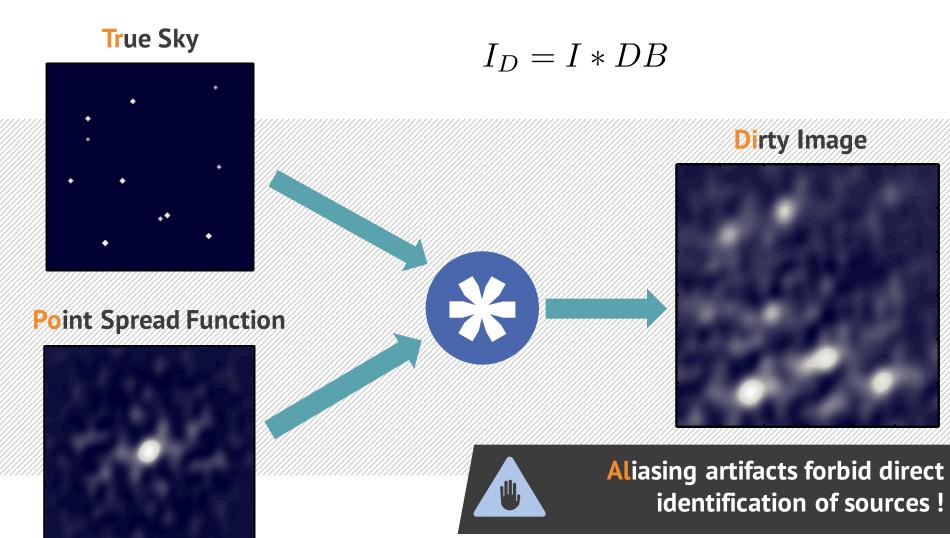
Introduction

- Many scientific applications involve estimating the intensity field of some physical phenomenon.
- The field is *sampled* by an **acquisition system**.
- Recovery is performed by interpolating the "samples".
- Sampling followed by interpolation acts as a projection.



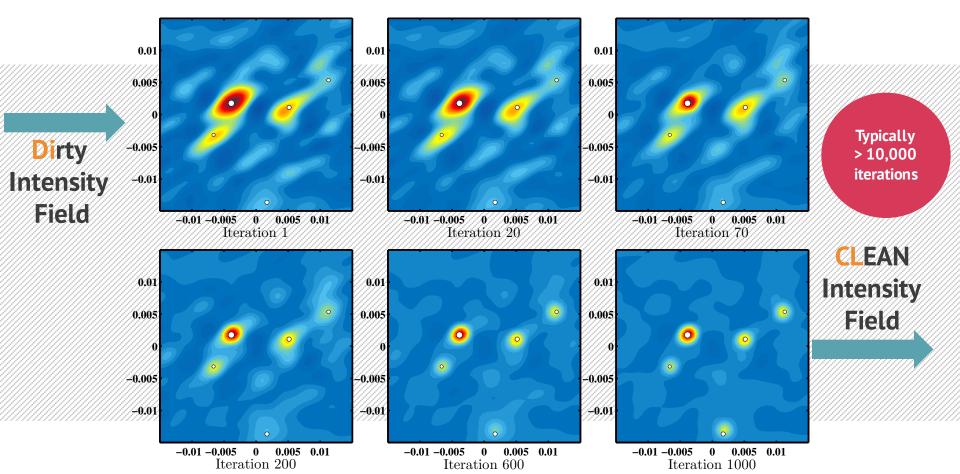
Convolution Artifacts

 Interpolating the acquired samples can be seen as convolving the true intensity field with some point spread function (specified by the tool).



CLEANING the Intensity Field

- Iterative **deconvolution algorithm**: locate strongest source, removes contribution of the dirty beam at that location, iterate with next strongest source.
- Suboptimal, computationally expensive, nonlinear, no convergence result...

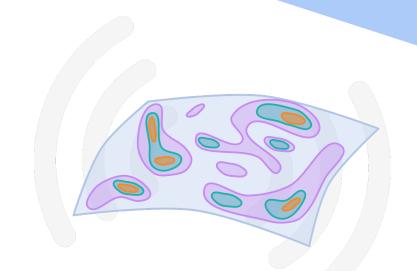


Random Fields

Continuous spatial random fields

$$S = \{S(\mathbf{r}) : \Omega \to \mathbb{C}, \ \mathbf{r} \in \mathcal{X}\},$$

with $(\Omega, \mathcal{F}, \mathbb{P})$ some probability space.



Gaussian random fields are such that

$$(S(\mathbf{r}_1),\ldots,S(\mathbf{r}_n)) \stackrel{d}{\sim} \mathcal{N}_n, \quad \forall \mathbf{r}_1,\ldots,\mathbf{r}_n \in \mathcal{X}, \, \forall n \in \mathbb{N}.$$

- When centered, fully characterized by their second order moments
 - ightharpoonup Intensity field: $I(r) = \mathbb{E}\left[S(r)S^*(r)\right], \quad \forall r \in \mathcal{X},$
 - ightharpoonup Covariance function: $\kappa(m{r},m{s})=\mathbb{E}\left[S(m{r})S^*(m{s})
 ight], \quad orall (m{r},m{s})\in\mathcal{X}^2.$

Point Source Random Fields

Occupance Consider Gaussian random fields of the form:

$$S(\mathbf{r}) = \sum_{q=1}^{Q} \xi_q \ \delta(\mathbf{r} - \mathbf{r}_q), \quad \forall \mathbf{r} \in \mathcal{X},$$

where $\{r_q, q = 1, \dots, Q\} \subset \mathcal{X}$.

The random amplitudes are such that

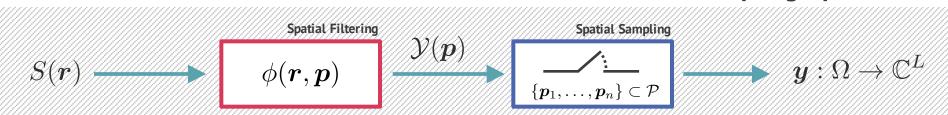
$$\xi_q \overset{i.i.d}{\sim} \mathbb{C}\mathcal{N}(0, \sigma_q^2).$$

• We have

$$I(\mathbf{r}) = \sum_{q=1}^{Q} \sigma_q^2 \delta(\mathbf{r} - \mathbf{r}_q), \qquad \kappa(\mathbf{r}, \mathbf{s}) = \begin{cases} I(\mathbf{r}), & \text{if } \mathbf{r} = \mathbf{s}, \\ 0, & \text{otherwise.} \end{cases}$$

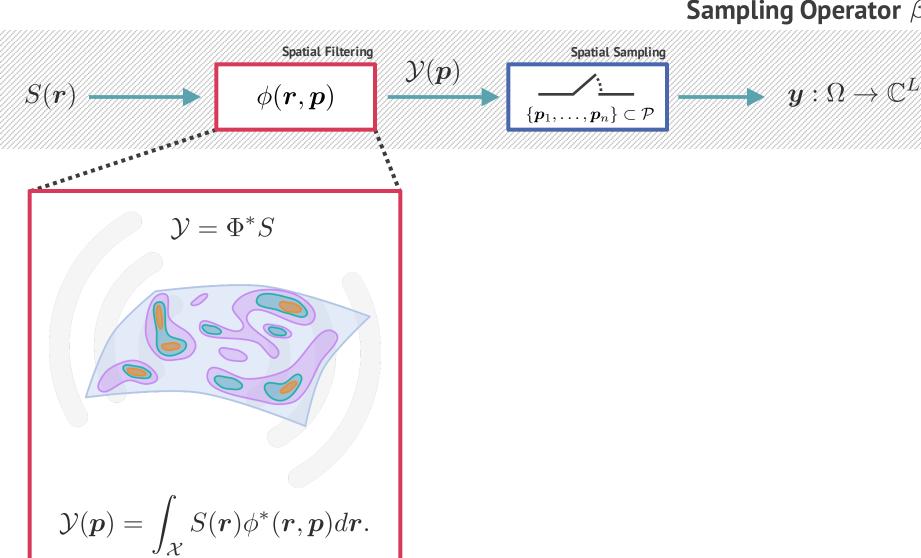
Acquisition System

Sampling Operator $oldsymbol{eta}^*$



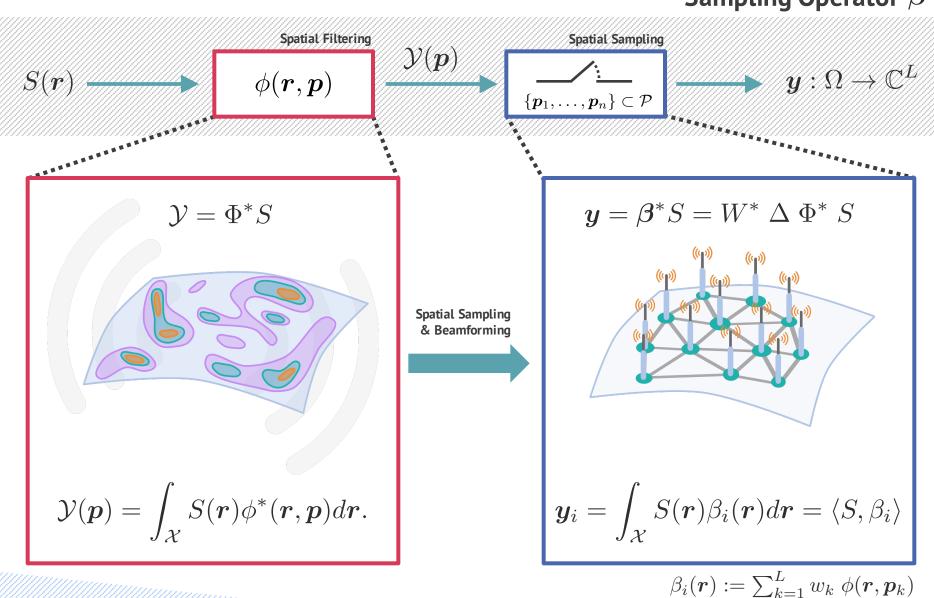
Acquisition System

Sampling Operator eta^*



Acquisition System

Sampling Operator $oldsymbol{eta}^*$



Least-Squares Estimate (Discrete)

We want to solve the inverse problem

$$\begin{aligned} \boldsymbol{y} &= \boldsymbol{\beta}^* \, \overline{S} \,, \\ \text{with } \boldsymbol{y} : \Omega \to \mathbb{C}^L, \ \boldsymbol{\beta}^* : \overline{\mathcal{H}} \to \overline{\mathbb{C}^L}, \ S : \Omega \times \mathcal{H} \to \mathbb{C}. \end{aligned}$$

Discrete methods:

$$\begin{bmatrix}
\beta_1^*(\boldsymbol{r}_1) & \cdots & \beta_1^*(\boldsymbol{r}_N) \\
\vdots & \ddots & \vdots \\
\beta_L^*(\boldsymbol{r}_1) & \cdots & \beta_L^*(\boldsymbol{r}_N)
\end{bmatrix}
\begin{bmatrix}
S(\boldsymbol{r}_1) \\
\vdots \\
S(\boldsymbol{r}_N)
\end{bmatrix} = \begin{bmatrix}
y_1 \\
\vdots \\
y_L
\end{bmatrix}$$

$$\boldsymbol{s} \in \mathbb{R}^N$$

$$\boldsymbol{y} \in \mathbb{C}^L$$

Least-squares estimate given by pseudo-inverse

$$\hat{\boldsymbol{s}} = B \left[(B^H B)^{-1} \right] \boldsymbol{y}$$

regularization needed!!

Least-Squares Estimate (Continuous)

- Why discretizing? Pseudo-inverse of operators also exist! (see MFSP)
- Continuous least-squares estimate given by

$$\hat{S}(\boldsymbol{r}) = \boldsymbol{\beta} \; (\boldsymbol{\beta}^* \boldsymbol{\beta})^{-1} \; \boldsymbol{y} = \sum_{i=1}^L \tilde{y}_i \; \beta_i(\boldsymbol{r}), \quad \forall \boldsymbol{r} \in \mathcal{X}. \qquad \qquad \boldsymbol{\kappa} \simeq \mathbf{2} \quad \text{IN PRACTICE (LOFAR LAYOUT)}$$

- Numerical stability depends on sampling strategy and beamforming.
- Analytical computation possible in radio astronomy

$$(\boldsymbol{\beta}^*\boldsymbol{\beta})_{ij} = \sum_{l,k=1}^{L} w_l^{(i)} w_k^{(j)^*} \left(\int_{\mathbb{S}^2} e^{2\pi j \langle \boldsymbol{r}, \boldsymbol{p}_l^{(i)} - \boldsymbol{p}_k^{(j)} \rangle} d\boldsymbol{r} \right), \qquad \int_{\mathbb{S}^2} e^{2\pi j \langle \boldsymbol{r}, \boldsymbol{p} \rangle} d\boldsymbol{r} = 4\pi \mathrm{sinc}(2\pi \|\boldsymbol{p}\|)$$

• Inversion of the Gram matrix efficiently performed using Cholesky factorization, backward and forward substitution.

Estimation of the Second Order Moments

• The covariance function of the estimated random field is given by

$$\hat{\kappa} = \beta(\beta^*\beta)^{-1} \Sigma(\beta^*\beta)^{-1} \beta^*,$$

where $\Sigma = \mathbb{E}[\boldsymbol{y}\boldsymbol{y}^H].$

• Make sense of this equation using tensor products:

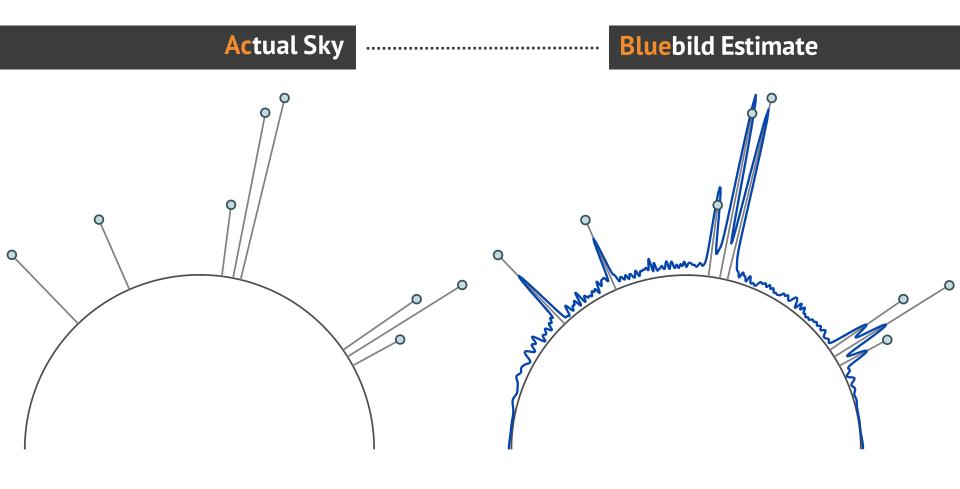
$$\operatorname{vec}(\hat{\kappa}) = (\overline{\beta} \otimes \beta) \left[(\overline{\beta^* \beta})^{-1} \otimes (\beta^* \beta)^{-1} \right] \operatorname{vec}(\Sigma).$$
Synthesis Gram correction on data

We finally get

$$\hat{\kappa}(\boldsymbol{r}, \boldsymbol{s}) = \sum_{i,j=1}^{L} \tilde{\sigma}_{ij} \; \beta_i(\boldsymbol{r}) \beta_j^*(\boldsymbol{s}), \quad \forall (\boldsymbol{r}, \boldsymbol{s}) \in \mathcal{X}^2,$$

$$\hat{I}(\boldsymbol{r}) = \sum_{i=1}^{L} \tilde{\sigma}_{ij} \; \beta_i(\boldsymbol{r}) \beta_j^*(\boldsymbol{r}), \quad \forall \boldsymbol{r} \in \mathcal{X}.$$

Example: Point Sources on Circle



> MULTI-RESOLUTION DEMO <

Deconvolution of the Random Field

• Link with the true random field?

$$\hat{S} = \beta(\beta^*\beta)^{-1}\beta^*S.$$

- \odot Orthogonal projection on $\mathcal{R}(\beta)$.
- The operator $\beta(\beta^*\beta)^{-1}\beta^*:\mathcal{H}\to\mathcal{H}$ can be seen as a **convolution**

$$\hat{S}(\boldsymbol{r}) = \sum_{i=1}^{L} \left(\int_{\mathcal{S}^2} S(\boldsymbol{s}) \beta_i^*(\boldsymbol{s}) d\boldsymbol{s} \right) \tilde{\beta}_i(\boldsymbol{r}) = \int_{\mathcal{S}^2} S(\boldsymbol{s}) \underbrace{\left(\sum_{i=1}^{L} \beta_i^*(\boldsymbol{s}) \tilde{\beta}_i(\boldsymbol{r}) \right)}_{\zeta(\boldsymbol{s},\boldsymbol{r})} d\boldsymbol{s}$$
Point Spread Function

Second order moment is given by

$$\hat{\kappa}(\boldsymbol{r},\boldsymbol{s}) = \int_{S^2} I(\boldsymbol{u}) \zeta(\boldsymbol{r},\boldsymbol{u}) \zeta^*(\boldsymbol{s},\boldsymbol{u}) d\boldsymbol{u}$$

Deconvolution of the Random Field

For point source random field, the integral simplifies

$$\hat{\kappa}(oldsymbol{r},oldsymbol{s}) = \sum_{q=1}^Q \sigma_q^2 \zeta(oldsymbol{r},oldsymbol{r}_q) \zeta^*(oldsymbol{s},oldsymbol{r}_q).$$

• Assume sources' locations **known**, and sample the covariance function

$$\hat{K} = Z \operatorname{diag}(\boldsymbol{\sigma}) Z^*,$$
 $\Leftrightarrow \operatorname{vech}(\hat{K}) = (\overline{Z} \circ Z) \boldsymbol{\sigma} \quad (+\boldsymbol{\epsilon})$

Solve with weighted least-squares

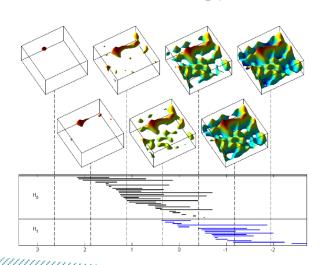
$$\hat{\boldsymbol{\sigma}} = \operatorname{argmin}_{\boldsymbol{\sigma} \in \mathbb{R}^{Q}} \left\| W^{\frac{1}{2}} (\hat{\boldsymbol{\kappa}} - (\overline{Z} \circ Z) \boldsymbol{\sigma}) \right\|_{2}^{2}$$
$$= \left[(\overline{Z} \circ Z)^{*} W (\overline{Z} \circ Z) \right]^{-1} (\overline{Z} \circ Z)^{*} W^{\frac{*}{2}} \hat{\boldsymbol{\kappa}}.$$

How to Find Sources Locations?

- Brute force: **oversample** the space on a fine grid.
- Computationally intensive, leads to severe ill-conditioning...
- Exploit available information!

Intensity Field Estimate

- Description
 Local maxima... Too many !
- Persistent Homology

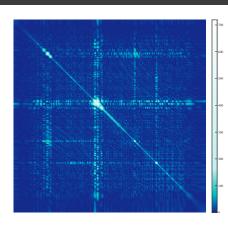


Covariance Function Estimate

Eigenvectors inspection

$$f_i = \Phi \alpha_i$$

• **Graph** based methods:



- Artifacts clustering
- Graph filtering

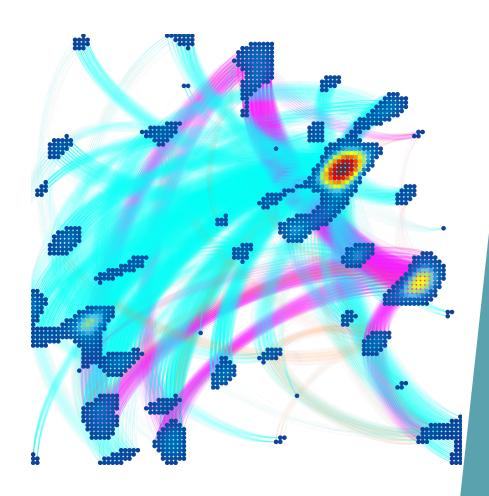
Graph Based Methods

- Define the affinity matrix as the absolute value of covariance matrix.
- Interpret points in the field as nodes on a graph. Edges are weighted according to the covariance matrix.
- Define the Laplacian of the graph as

$$L = D - A$$
.

Perform spectral decomposition

$$L = U\Lambda U^T.$$

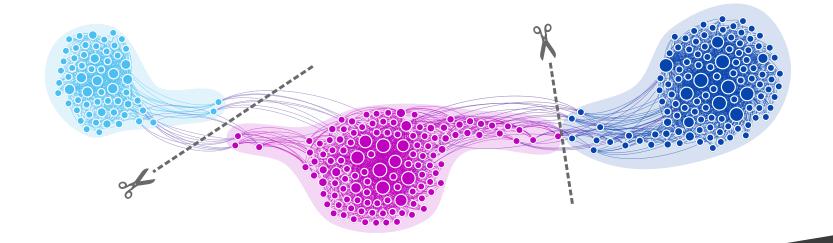


Spectral Clustering

Spectral clustering is solving for

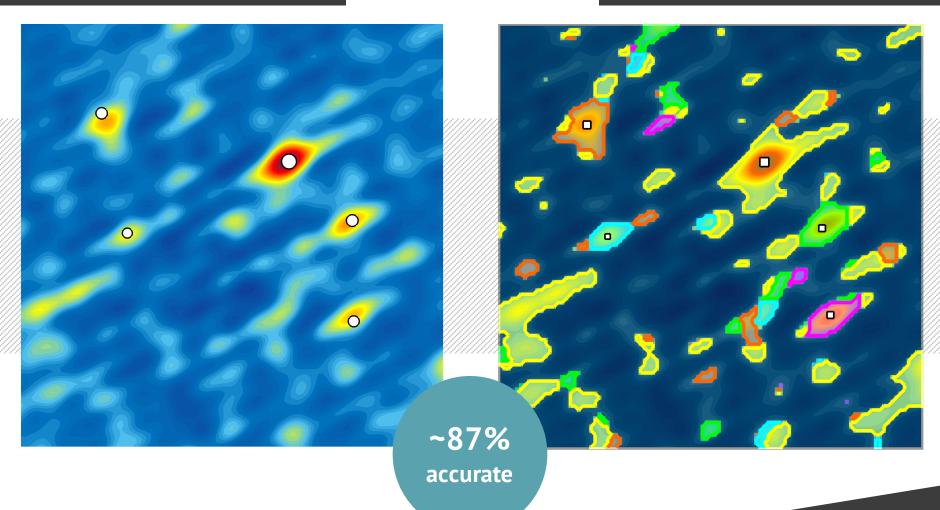
$$\{\tilde{A}_1, \dots, \tilde{A}_K\} = \arg\min\left\{\frac{1}{2} \sum_{i=1}^K \frac{W(A_i, \bar{A}_i)}{|A_i|} \mid A_1, \dots, A_K \in V, \cup_i A_i = V\right\}$$

- Use eigenvectors associated to K smallest eigenvalues as features.
- Perform K-means.



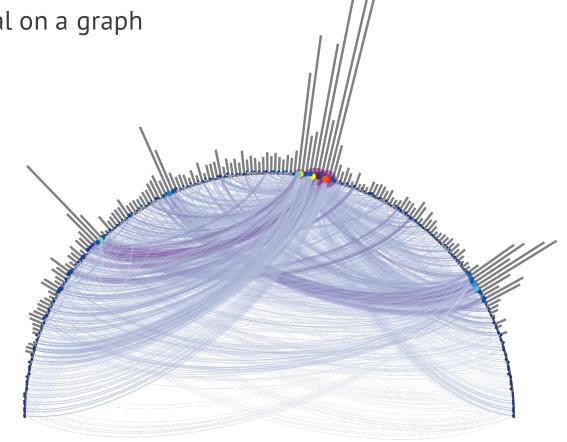
Dirty Image

Result of Clustering



Graph Fourier Transform

Define signal on a graph

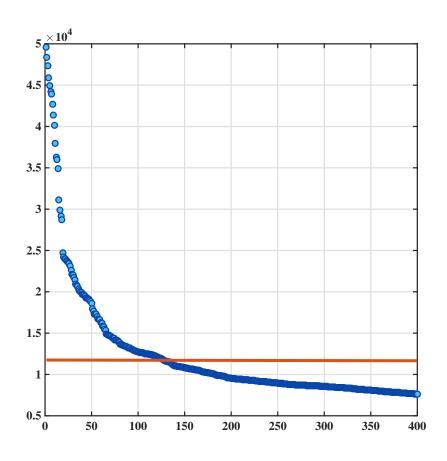


• Graph Fourier transform can be defined as

$$\hat{I} = U^T I$$
, where $L = U \Lambda U^T$

Graph Fourier Transform

 High eigenvalues correspond to high frequency correspond to high frequencies, low eigenvalues to low frequencies



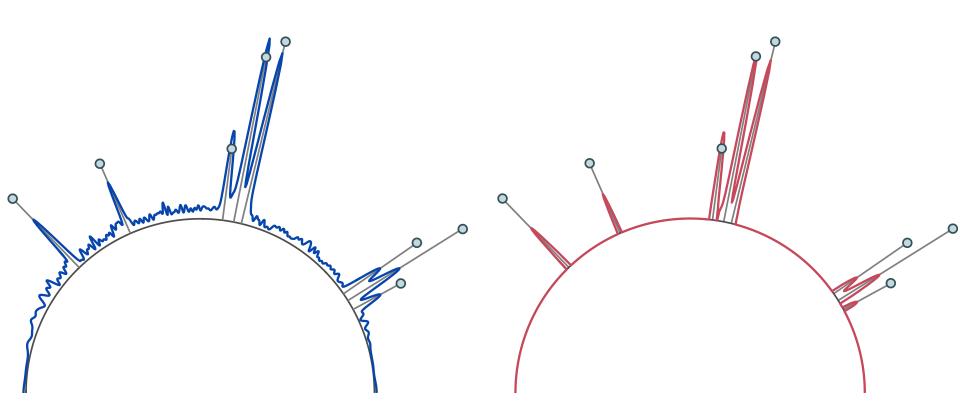
PERFORM HIGH-PASS FILTERING

$$\tilde{I} = \hat{I} \times f$$

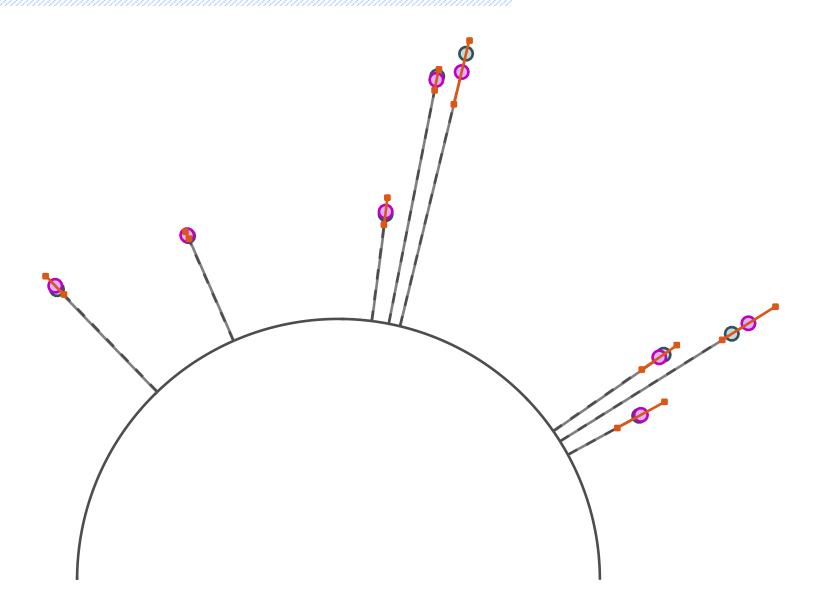
Example: Graph Fourier Filtering

Before Filtering

After Filtering



Example: After Deconvolution



Deconvolution of Arbitrary Random Field

- What about aribitrary random fields? Integral does not simplify.
- Consider an operator formulation

$$\hat{\kappa}(\boldsymbol{r}, \boldsymbol{s}) = \int_{\mathcal{S}^2} I(\boldsymbol{u}) \zeta(\boldsymbol{r}, \boldsymbol{u}) \zeta^*(\boldsymbol{s}, \boldsymbol{u}) d\boldsymbol{u}$$
$$\Leftrightarrow \hat{\kappa} = \mathcal{M}^* \kappa.$$

Solution given by

$$\hat{\hat{\kappa}} = \mathcal{M}(\mathcal{M}^*\mathcal{M})^{-1})\hat{k}.$$

In practice, sample one side to compute the inverse

$$\hat{K} = \Delta \mathcal{M}^* \kappa, \qquad \hat{\hat{\kappa}} = \mathcal{M} \Delta (\Delta \mathcal{M}^* \mathcal{M} \Delta)^{-1}) \hat{K}.$$

Conclusion and future work

- We have proposed a new interpolation algorithm to produce continuous least-squares estimate of the random field
- Orders of magnitude faster!
- Aliasing artifacts remain.
- Deconvolution methods for point source random fields have been proposed
- Graph-based methods are very successful
- Deconvolution for arbitrary random field needs to be address (at the continuous level)