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Introduction

® Many scientific applications involve estimating the intensity field of some
physical phenomenon.

® The field is sampled by an acquisition system.
® Recovery is performed by interpolating the “samples”.

® Sampling followed by interpolation acts as a projection.

Acquisition System (Sampling Operator)
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Convolution Artifacts

® Interpolating the acquired samples can be seen as convolving the true
intensity field with some point spread function (specified by the tool).
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Aliasing artifacts forbid direct
identification of sources !




CLEANING the Intensity Field

® lterative deconvolution algorithm: locate strongest source,removes
contribution of the dirty beam at that location, iterate with next strongest

source.

® Suboptimal,computationally expensive, nonlinear, no convergence result...

Typically
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Random Fields

® Continuous spatial random fields

S=1{S(r):Q—=C, reci},

with (€, F,P) some probability space.
® Gaussian random fields are such that
(S(r1),...,S(r,)) LN, Vry,...,r, X, ¥necN.
® When centered, fully characterized by their second order moments
> Intensity field: I(r) =E[S(r)S"(r)], Vredk,

> Covariance function: k(r,s) =E[S(r)S*(s)], V(r,s) <€ X~
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Point Source Random Fields

® Consider Gaussian random fields of the form:;

Q
S('I"):qu 5(T_rq)7 \V/'T‘EX,
qg=1

where {r¢, ¢=1,...,Q} C X.

® The random amplitudes are such that

fq i"i\.’d CN(QUS)-
® We have

I(r), ifr=s,

0, otherwise.

Q
I(r)=) old(r—my),  K(r,s)= {



Acquisition System

Sampling Operator 3*

Spatial Filtering Spatial Sampling
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Acquisition System

Sampling Operator 3*

Spatial Filtering Spatial Sampling
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Acquisition System

Sampling Operator 3*

Spatial Filtering Spatial Sampling
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Least-Squares Estimate (Discrete)

® We want to solve the inverse problem

yl= 8" 15|,
with y: Q — CF, B*:/H|—=|CH, S:QxH — C.

® Discrete methods:

C Bi(r) o Biten) 1| Str) ] [ v ]
LBl - Bplrw) | [ S(rv) | Lwe |
BH&ELXN S;HQN yg(EL

® Least-squares estimate given by pseudo-inverse

UNSTABLE
EXPENSIVE
DISCRETE

—

§=DB|B"B) Yy

regularization needed!!



Least-Squares Estimate (Continuous)

® Why discretizing? Pseudo-inverse of operators also exist! (see MFSP)

® Continuous least-squares estimate given by

STABLE
IN PRACTICE
(LOFAR LAYOUT)

L
S(r)=B(BB) " y= iiBi(r), VreX.
1=1

® Numerical stability depends on sampling strategy and beamforming.

® Analytical computation possible in radio astronomy

L . .
68 = 3w ( / eww’pf”—pzi”dr), [ et dr = amsinc(za )
SQ SZ

I,k=1

® Inversion of the Gram matrix efficiently performed using Cholesky
factorization, backward and forward substituion.
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Estimation of the Second Order Moments

® The covariance function of the estimated random field is given by
v =B(8"68)"'2(8"68)"' 87,
where ¥ = E[yy”].

® Make sense of this equation using tensor products:

vee(r) = (B B)|[(B*8) " © (B8°8) '] vec(D)}

SYNTHESIS GRAM CORRECTION ON DATA

® We finally get
L
k(r, s) Z Gij Pi(r V(r,s) € X2,

Vr € X.
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Example: Point Sources on Circle
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Deconvolution of the Random Field
® Link with the true random field ?

= pB(B*B)"'B*S
® Orthogonal projection onR(3).

® The operator B(8°8)"'3" : H — H can be seen as a convolution

1=1

EL:( )ds) Bi(r) = [ S(s) (i ﬁ;‘(s)&(r))ds

7
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Point Spread Function

® Second order moment is given by

R(r,s) = ‘/S2 I{uw)((r,u)(* (s, u)du

—



Deconvolution of the Random Field

® For point source random field, the integral simplifies

Za(jrrq (s,7q).

® Assume sources’ locations known,and sample the covariance function
K = Zdiag(o) 2%,
& vech(K) = (ZoZ)o  (+€)

® Solve with weighted least-squares

2

A

O = argming pe

Wik - (Zo Z)U)H2

l\JI*

= (ZoZ)'W(ZoZ)| (ZOZ) W



How to Find Sources Locations ?

® Brute force: oversample the space on a fine grid.
® Computationally intensive, leads to severe ill-conditioning...

® Exploit available information !

Intensity Field Estimate JEEEEEEEIE s Covariance Function Estimate

® Local maxima... Too many ! @ Eigenvectors
: inspection

® Persistent Homology : [, — Ba,
@ Graph based
: methods:

® Artifacts clustering
® Graph filtering




Graph Based Methods

® Define the affinity matrix as the
absolute value of covariance

matrix.

® Interpret points in the field as
nodes on a graph.Edges are
weighted according to the
covariance matrix.

® Define the Laplacian of the graph
as

L=D - A.

® Perform spectral decomposition

L=UANU".




Spectral Clustering

© Spectral clustering is solving for

K

i r )1 W(A;, A;
{Ai1,...,Ax} = arg min 52 (|A7,| ) | Ay, Ag eV UA =V

1=1

® Use eigenvectors associated to K smallest eigenvalues as features.

® Perform K-means.



Application to Radio Astronomy 6 sources NR=-23 dB

Dirty Image Result of Clustering
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Graph Fourier Transform

® Define signal on a graph

® Graph Fourier transform can be defined as

I= Ull, where

L



Graph Fourier Transform

® High eigenvalues correspond to high frequency correspond to high

frequencies, low eigenvalues to low frequencies
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Example: Graph Fourier Filtering

fore Filtering




Example: After Deconvolution
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Deconvolution of Arbitrary Random Field

O]

O]

O]

What about aribitrary random fields? Integral does not simplify.

Consider an operator formulation

R(r,s) = /32 I{uw)C(r,u)(* (s, u)du

&S k= Mk,

Solution given by

R =

M(M* M) HE.

In practice, sample one side to compute the inverse

K = AM*k,

k= MAAM* MA)"HK.

—



Conclusion and future work

® We have proposed a new interpolation algorithm to produce continuous
least-squares estimate of the random field

® Orders of magnitude faster !

® Aliasing artifacts remain.

® Deconvolution methods for point source random fields have been
proposed

® Graph-based methods are very successful

® Deconvolution for arbitrary random field needs to be address (at the
continuous level)




