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Abstract
The most basic form of the max-sum dispersion problem (MSD) is as follows: given n points

in Rq and an integer k, select a set of k points such that the sum of the pairwise distances

within the set is maximal. This is a prominent diversity problem, with wide applications in

web search and information retrieval, where one needs to find a small and diverse representa-

tive subset of a large dataset. The problem has recently received a great deal of attention in

the computational geometry and operations research communities; and since it is NP-hard,

research has focused on efficient heuristics and approximation algorithms.

Several classes of distance functions have been considered in the literature. Many of the most

common distances used in applications are induced by a norm in a real vector space. The

focus of this thesis is on MSD over these geometric instances. We provide for it simple and

fast polynomial-time approximation schemes (PTASs), as well as improved constant-factor

approximation algorithms. We pay special attention to the class of negative-type distances,

a class that includes Euclidean and Manhattan distances, among many others. In order to

exploit the properties of this class, we apply several techniques and results from the theory of

isometric embeddings.

We explore the following variations of the MSD problem: matroid and matroid-intersection

constraints, knapsack constraints, and the mixed-objective problem that maximizes a combi-

nation of the sum of pairwise distances with a submodular monotone function. In addition to

approximation algorithms, we present a core-set for geometric instances of low dimension,

and we discuss the efficient implementation of some of our algorithms for massive datasets,

using the streaming and distributed models of computation.

Key words

Combinatorial optimization, computational geometry, approximation algorithms, max-sum

dispersion, remote clique, distances of negative type, theory of embeddings, convex program-

ming, local search, core-sets.
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Résumé
Dans sa forme la plus rudimentaire, le problème nommé max-sum dispersion (MSD) est défini

comme suit : étant donnés n points sur Rq et un nombre entier k, choisir un ensemble de

k points de façon à ce que la somme de toutes les distances par paires dans l’ensemble soit

maximale. Ceci est un célèbre problème de diversité, avec un grand rang d’applications dans

des domaines tels que la recherche d’information et les systèmes de recommandation, où

l’on vise à extraire d’un ensemble de données un échantillon petit et divers. Récemment ce

problème a reçu beaucoup d’attention dans les communautés de géométrie algorithmique

et recherche opérationnelle ; et puisqu’il est NP-difficile, la recherche s’est concentrée sur

l’heuristique et les algorithmes d’approximation.

Plusieurs classes de distances ont été considérées dans la littérature. De nombreuses distances

utilisées dans la pratique sont associées à une norme dans un espace vectoriel. Cette thèse

est axée sur le problème MSD restreint à de tels instances géométriques. On fournit pour

celui-ci des schémas d’approximation en temps polynomial (PTAS), ainsi que des algorithmes

d’approximation de facteur constant améliorés. On prête une attention particulière à la classe

de distances de type négatif, classe qui inclut les distances euclidiennes et les distances de

Manhattan, parmi beaucoup d’autres. Dans le but exploiter les proprietés de cette classe, on

utilise plusieurs techniques et resultats provenant de la théorie de plongement isométriques.

Nous explorons les variations suivantes du problème : des contraintes définies par une

matroïde ou par l’intersection de deux matroïdes, des contraintes du type sac à dos (knapsack),

et le problème d’objectif mixte qui maximise une combinaison de la somme de distances avec

une fonction sous-modulaire monotone. Outre des algorithmes d’approximation, on présente

un core-set pour des instances géométriques de dimension basse, et on touche aussi sur la

mise en œuvre efficace de quelques uns de nos algorithmes pour des ensembles de données

massifs, dans les modèles de calul streaming et distribué.

Mots clefs

Optimisation combinatoire, géométrie algorithmique, algorithmes d’approximation, max-sum

dispersion, remote clique, distances de type négatif, théorie de plongements, programmation

convexe, recherche locale, core-sets.
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1 Introduction

Diversity-maximization problems seek to retrieve a small representative sample of a large

database, that is as diverse as possible. They have recently received a lot of attention due

to their many applications in information retrieval, web search, recommender systems, text

summarization, facility location, operations research, etc. One of the most popular functions

to measure diversity is dispersion, which for an inherent dissimilarity or distance measure

between pairs of data items, considers the total sum of pairwise distances between chosen

items. Our definition of dispersion of a set A is thus d(A) =∑
{a,b}⊂A d(a,b). The maximization

of this function, over sets restricted by a cardinality threshold or by further constraints, is

known as max-sum dispersion, or MSD. Frequently, instances of this problem are geometric

in nature, or a geometric interpretation can be given to the distances in the dataset. These

geometric instances are the focus of this thesis.

Being a generalization of densest k-subgraph, the MSD problem is particularly hard to approx-

imate. However, as the most common applications observe the triangle inequality, the search

for approximation algorithms has concentrated on metric instances. This led to fast, greedy-

based algorithms, offering an approximation ratio of 1
2 , which is tight under mild complexity

assumptions. Yet, the theoretically hard metric instances do not play a prominent role as a

dissimilarity measure, and the geometric structure of the most common distances, such as

Euclidean and Manhattan, was not fully exploited in the analyses found in the literature. This

fact motivated us to consider the class of distances of negative type, with its rich supporting

theory of embeddings, that started with the work of Schoenberg in the 1930s.

Hence, in this work we focus mostly on negative-type distances, a class which contains Man-

hattan, Euclidean, Euclidean-squared, Jaccard, cosine, and many other distances that are

prominent in practical applications. Our main contribution is to prove that MSD admits

polynomial-time approximation schemes (PTAS) for these distances. Our algorithms work

even if the embedding dimension is part of the input, hence they represent a result much

stronger than anything that was previously known for distances in this class. And they work

even under the constraints defined by a general matroid. Matroid constraints are particularly

relevant in this context, as they model several natural restrictions expected from a small and

diverse sample.
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Chapter 1. Introduction

We present two procedures to achieve such a PTAS, that require very different techniques and

analysis, and have different strengths. The first one uses quadratic programming and a careful

randomized rounding procedure. The algorithm offers great flexibility to deal with general

linear constraints. In particular, besides ensuring the satisfaction of a matroid constraint,

it outputs a solution that observes concentration bounds, and hence will not violate any

additional linear constraint by a large margin, with high probability.

The second algorithm is based on a standard local search. The simplicity of the algorithm

makes it less flexible in terms of constraints, but very efficient and practical even for very

large datasets. Furthermore, in contrast to its apparent simplicity (or rather thanks to it), this

method proves to be very malleable, so that implementations for different objectives can be

merged with ease into new algorithms to handle mixed objectives. We formalize this technique,

and use it to obtain improved approximations for an objective that combines dispersion with

a submodular monotone function. This objective models an even larger number of real-life

applications, where one needs a small representative set of datapoints that maximizes both a

diversity objective and a relevance objective.

Another contribution of this thesis is a PTAS for the cardinality-constrained MSD problem

over distances induced by an arbitrary norm in fixed dimension. Very little was previously

known about the approximability of the problem in this scenario, despite the fact that it covers

several natural applications. Our result thus adds up to our understanding of the problem.

The simplicity of this algorithm makes it also very applicable, even for large instances, as the

computational task can be easily fragmented and handled in a distributed system.

This last algorithm is built over a core-set, with a very specific structure. This core-set has

very desirable properties, as it reduces the input to a number of points linear in the output

size while preserving an almost optimal solution, and it can be computed with a single-pass

streaming algorithm. Finally, the combination of this core-set with the local-search algorithm

results in an extremely efficient procedure, that can be implemented under streaming and

distributed models.

Contribution and organization

The theoretical contributions of this thesis are found in Chapters 3, 4 and 5. These chapters

are only weakly linked and do not require a sequential reading. However, we recommend the

reader to start with Chapter 2, which compiles a considerable amount of required background

information and notation. Each chapter starts with a summary, to facilitate its study.

In Chapter 2, we present all the needed background on distances of negative type and em-

beddability theory, as well as key definitions, and an extended literature review. We also

prove there that the max-sum dispersion problem (MSD) is strongly NP-hard on distances of

negative type, and distances in �p , for any 1 ≤ p ≤∞ (Thm. 2.18).

12



Chapter 3 is based on joint work with my advisor Friedrich Eisenbrand, and Rico Zen-

klusen. Our work is reflected in the publication [32]. We prove that the usually non-convex

quadratic relaxation of MSD can be convexified when the distances are of negative type

(Thm. 3.2). Through convex optimization and a deterministic rounding procedure, we ob-

tain a (1−O( logk
k ))-approximation algorithm for MSD over these distances, constrained by a

general matroid of rank k. (Thm. 3.4). This algorithm immediately implies a PTAS. Finally, by

randomizing the rounding procedure, we extend the PTAS to the case of a matroid constraint

and an additional constant number of knapsack constraints (Thm. 3.11).

Chapter 4 is also based on joint work with Friedrich Eisenbrand and Rico Zenklusen, and cor-

responds to the paper [31]. There, we analyze a generic non-oblivious local-search algorithm,

for the maximization of a monotone increasing objective, constrained by a matroid. We study

the cases where this objective is a submodular function, our dispersion function, or a linear

combination of these two types of functions. As a result, we obtain a fast and simple PTAS

for negative-type MSD with a matroid constraint (Thm. 4.10), as well as an asymptotically

optimal O(1)-approximation for the mixed-objective problem (Thms. 4.7 and 4.13). We also

provide a more involved PTAS for negative-type MSD constrained by a matroid intersection

(Thm. 4.19).

Chapter 5 presents a PTAS for cardinality-constrained MSD over distances induced by a norm

of fixed dimension q (Thm. 5.17). The algorithm performs exhaustive search over a certain

collection of subsets, which is guaranteed to contain a good approximation to the problem. Its

analysis exploits a quality of hollowness of the optimal solution, and the notion of subgradient

of the norm function. A consequence of this analysis is the existence of a core-set for MSD over

these geometric instances. This core-set offers an approximation ratio of (1−ε) and has size

Õ(k),1 for any ε> 0 and where k is the cardinality threshold; furthermore, it can be computed

in a distributed fashion, or with a single-pass stream requiring space Õ(k) and update time

Õ(1) (Thm. 5.18).

Finally, we prove that for the cardinality-constrained MSD over Manhattan, Euclidean, or

Euclidean-squared distances of fixed dimension q , the construction of the previous core-set,

followed by a standard local search, offers an approximation ratio of (1− 4
k −ε), in time Õ(n+k3)

and space Õ(k), for any ε> 0 and where k is the cardinality threshold and n is the size of the

input set (Thm. 5.19).

1The notation Õ(·) hides terms logarithmic in k, and constants that depend on ε and q . It also hides the
complexity of distance evaluations and inner products between two vectors in Rq .
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2 Preliminaries

2.1 Chapter overview
In this chapter, we present the most important background definitions and results needed in

this thesis, in particular in the theory of embeddings for distance spaces. The highlights of the

chapter are as follows. We present the definition and several characterizations of distances of

negative type (Section 2.3.1). We include an extended list of examples of distances in this class,

that are both of theoretical and practical interest. We then list several important properties

of this class, in terms of the dispersion function and the auxiliary cross-dispersion function

(2.3.2). And finally, we define the various versions of the max-sum dispersion problem that we

will deal with in this thesis (2.3.3).

Section 2.4 contains an extended literature review on the problem. It includes a proof of the

NP-hardness of max-sum dispersion over distances of negative type and several geometric

instances; and it also includes a table that summarizes the state of the art in approximability

for the problem.

2.2 Basic definitions and notation
Throughout this thesis, we consider a finite ground set X , with n elements. Given a set A ⊂ X

and an element a ∈ X , for brevity we use the shorthands A+a for A∪ {a}, and A−a for A \ {a}.

The sets Z, Q and R are the integer numbers, rational numbers and real numbers, respectively,

and to each one of these sets we add the subscript + to signify their restriction to non-negative

values; for instance, Z+ = {0,1,2, · · · }, and so on. The all-ones vector in Rq is represented as

1= (1, · · · ,1)T ; and the set Sq−1 = {x ∈Rq : ‖x‖2
2 = 1} corresponds to the unit sphere in Rq .

We denote the symmetric difference of two sets by A�B = (A \ B)∪ (B \ A). For any set A ⊂ X

and vector x ∈ RX , the restricted vector x A ∈ RX has components x A
a = xa if a ∈ A, and 0

otherwise. In particular, the characteristic vector of set A is 1A .

A real symmetric matrix Q ∈Rn×n is called positive semidefinite if

xT Qx ≥ 0 for all x ∈Rn .

15



Chapter 2. Preliminaries

And it is called negative semidefinite if the previous inequalities hold in the opposite direction,

or equivalently, if −Q is positive semidefinite.

A non-zero vector x ∈Rn is an eigenvector of matrix Q if there is a (possibly complex) coefficient

λ such that Qx = λx. In this case, such coefficient is unique, and is called the eigenvalue of

the corresponding eigenvector. For a real symmetric matrix, all of its eigenvalues are real.

Moreover, Q is positive semidefinite if and only if all of its eigenvalues are non-negative, and

similarly it is negative semidefinite if and only if all of its eigenvalues are non-positive.

Submodular functions and matroids

Consider the set function f : 2X → R+ over the ground set X . For singletons, we will write

f (a) as short-hand for f ({a}). The function is monotone increasing, or simply monotone, if

f (A+a) ≥ f (A) for any A ⊂ X and a ∈ X . It is normalized if f (�) = 0. And it is submodular if,

for any sets B ⊂ A ⊂ X and any element a ∈ X \ A, we have

f (A+x)− f (A) ≤ f (B +x)− f (B).

If the inequalities above hold in the opposite sense, f is supermodular. A function is linear if

and only if it is both submodular and supermodular, in which case the above inequalities hold

with equality. If f is linear, then there are coefficients w(a) = f (a)− f (�) for each a ∈ A, such

that f (A) = f (�)+∑
a∈A w(a) for all A ⊂ X .

Next, we provide an overview of the basics of matroid theory. For further information, we refer

to [114]. A matroid (X ,I ) over the ground set X consists of a non-empty family I ⊂ 2X of

subsets, called independent sets, satisfying:

1. if A ∈I and B ⊂ A, then B ∈I ; and

2. if A,B ∈I and |A| > |B | then there is an element a ∈ A \ B such that B +a ∈I .

The matroid (X ,I ) defines a rank function r : 2X → Z+, where r (A) = max{B ∈ I : B ⊂ A},

i.e., it is equal to the largest cardinality of an independent subset of A. The rank function

characterizes its matroid, and it is always submodular, monotone and normalized. The value

r (X ) is called the rank of the matroid, and we will usually denote it by k. Inclusion-wise

maximal independent sets are called bases, and it is a consequence of the definition of matroid

that all bases are of equal cardinality k.

We list some common examples of matroids. In a uniform matroid of rank k, I consists of all

sets in X of cardinality at most k. A partition matroid is defined in terms of a partition of the

ground set X =∪p
i=1Xi , and integers k1, · · · ,kp , and a set A ⊂ X is in I if |A ∩ Xi | ≤ ki for all

1 ≤ i ≤ p. In a graphical matroid, the ground set X corresponds to the edges of a given graph G ,

and an edge set is independent if it contains no cycles. Finally, in a linear matroid, the ground

set X contains vectors in a vector space, and a vector set is in I if it is linearly independent.
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2.2. Basic definitions and notation

The matroid polytope P (I ) ⊂ RX of matroid (X ,I ) is the convex hull of the characteristic

vectors 1A of all independent sets A ∈I . It can be described as follows:

P (I ) = {
x ∈RX

+ : 1T x A ≤ r (A), ∀A ⊂ X
}

,

where 1T x A =∑
a∈A xa . The base polytope PB (I ) ⊂RX is the convex hull of the characteristic

vectors 1A of all bases in A, and it can be described by

PB (I ) = P (I )∩{
x : 1T x = k

}
.

Complexity and approximation algorithms

In this thesis we restrict our attention to a specific type of combinatorial optimization problems

– namely, to the constrained maximization of set functions. We remark that the definitions

presented here have been narrowed to this context, and are hence different from standard

definitions. We consider problems where an instance is defined by

1. a ground set X on n elements,

2. an objective function f : 2X →R+ to be maximized, and

3. a family F ⊂ 2X of feasible solutions.

The goal of the problem is to find the feasible set A ∈F that maximizes the objective function

f (A). We denote the optimal set in F by O, and its value by opt = f (O). In fact, in the present

work we will only deal with functions that are monotone.

We assume that the instance (X , f ,F ) is represented in a compact way. To achieve this, the

family F may be defined indirectly via a membership oracle,1 which answers whether or not a

set A is in F ; and the function f may be defined by a value oracle, which returns the value

f (A) of any set A. We similarly assume that all evaluations of f (·) have a small binary encoding.

As we will deal with NP-hard problems, we focus on approximation algorithms. For a problem

P containing instances (X , f ,F ) as above, an approximation algorithm is an always-halting

process, that takes as input an instance (X , f ,F ) from P, performs a number of operations that

is polynomial in the size of the representation of the instance, including all necessary oracle

calls, and outputs a feasible set S ∈F . Such an algorithm has an approximation ratio α≥ 0

if f (S)/ f (O) ≥α for all instances of problem P. For a randomized approximation algorithm,

where the output S is a random set in 2X , we say that it has an approximation ratio of α if,

for all instances of problem P, with probability at least 1/2 we will have that S is feasible and

f (S)/ f (O) ≥α. The coefficient α may be constant or depend on the instance; in particular, we

will consider cases where α depends on |X | = n, on |O|, and even on O.

We aim to design algorithms with approximation ratios that are as high as possible. An approx-

imation ratio can have value at most 1, and is strictly smaller than 1 if the problem is NP-hard

1This is also called an independence oracle when F is defined by a matroid.
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Chapter 2. Preliminaries

(unless P=NP). A problem P may have a hardness of approximation result, which establishes a

bound β< 1 and gives evidence against the existence of an algorithm with α≥β. If the approxi-

mation ratio of an algorithm is equal to a hardness bound for the problem, we say that it is tight.

For a problem P, an approximation algorithm is a polynomial time approximation scheme

(PTAS) if, for any constant ε> 0, it can be calibrated to achieve an approximation ratio of 1−ε.

The running time of such algorithm must be polynomial in the size of the input instance, but

may have any kind of dependency on 1/ε. If the running time is also polynomial in 1/ε, the

algorithm is a fully polynomial time approximation scheme (FPTAS). Finally, a randomized

PTAS is also called a PRAS.

Remark 2.1. In this thesis, we will use the fact that if the approximation ratio of an algorithm

is α= 1−o(1), as |O| increases, then the algorithm immediately defines a PTAS. Indeed, for

any constant ε> 0, if α≥ 1−ε then the algorithm achieves the desired ratio of 1−ε. Otherwise,

the optimal solution O has a size bounded by a constant (that depends only on ε), so it can be

found in polynomial time by an exhaustive search.

2.3 Distance and dispersion
An important part of the theoretical background needed in this thesis comes from the theory of

embeddings. We review some relevant notions and results, and refer to [44, 97] for a thorough

account. A finite distance space (X ,d) over the ground set X is defined by a symmetric function

d : X 2 →R+,

with the property that d(a, a) = 0 for all a ∈ X . We call d(a,b) the distance between a and b.

However, for brevity and when there is no risk of ambiguity, we will use the term distance

as short-hand for finite distance space. The distance (X ,d) is called metric if it observes the

triangle inequality: d(a,b)+d(b,c) ≥ d(a,c) for all a,b,c ∈ X .2

For a real vector space Rq , a norm ‖ · ‖∗ : Rq →R+ is a function such that for all x, y ∈Rq and

λ ∈ R: a) ‖λx‖∗ = |λ| · ‖x‖∗, b) if x �= 0 then ‖x‖∗ > 0, and c) ‖x + y‖∗ ≤ ‖x‖∗ +‖y‖∗ (this last

property is called subadditivity). In particular, the �p norm is defined as

‖x‖∞ = max
1≤i≤q

|xi | and ‖x‖p =
[

q∑
i=1

|xi |p
]1/p

for p ≥ 1.

We extend this last definition for values 0 < p < 1, even though for these values the function

‖ ·‖p is not a proper norm as it does not respect the subadditivity property (this is known as a

quasi-norm).

2We highlight that our definition of metric distance space, sometimes called semi-metric, is weaker than the
standard definition, which also establishes the property that d(a,b) > 0 whenever a �= b. In general we have no
need to assume this last property in this thesis.
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A distance (X ,d) is isometrically embeddable into (Rq ,‖·‖∗) if there is an embedding ρ : X →Rq

such that for all a,b ∈ X , we have d(a,b) = ‖ρ(a)−ρ(b)‖∗. In this case, we may also say

that (X ,d) is induced by norm ‖ · ‖∗. Norm-induced distances are always metric, as a con-

sequence of the subadditivity property. In particular, for 0 < p ≤ ∞, a distance (X ,d) is

�p -embeddable, or is in �p , if there is a dimension q such that it is isometrically embeddable

into (Rq ,‖ ·‖p ).3 Distances in �1 and �2 are usually called Manhattan and Euclidean distances,

respectively. It will also be convenient to make an extra, non-standard definition: we say that

(X ,d) is Euclidean-squared if there is a dimension q and an embedding ρ : X →Rq such that

d(a,b) = ‖ρ(a)−ρ(b)‖2
2 for all a,b ∈ X . This class of distances is in general not metric;4 how-

ever, as we will show, it is a very interesting class from both theoretical and practical viewpoints.

We cite two classic results in embeddability theory. They establish some inclusions among the

classes of �p -embeddable distances.

Proposition 2.2 (Fréchet [60]). If a distance (X ,d) is metric, then it is in �∞, with embedding

ρ : X →RX , where
(
ρ(a)

)
b = d(a,b) for all a,b ∈ X .

Proposition 2.3 (Dor [46]). If (X ,d) is in �2, then it is in �p for all 1 ≤ p ≤∞.

2.3.1 Distances of negative type
A distance (X ,d) can be represented in a compact way by the symmetric matrix D ∈ RX×X+ ,

where Da,b = d(a,b) for all a,b ∈ X , known as the distance matrix. Distance (X ,d) is of negative

type if

xT Dx ≤ 0 for all x ∈ZX with
∑

a∈X
xa = 0.

We present some alternative characterizations of this definition. Recall that 1= (1, · · · ,1)T is

the all-ones vector in RX .

Lemma 2.4. (X ,d) is of negative type if and only if

xT Dx ≤ 0 for all x ∈RX with 1T x = 0. (2.1)

Proof. It is clear that
∑

a∈X xa = 1T x, so the conditions are equivalent for integer-valued

vectors. This proves the if part. For the only if part, assume the distance is of negative

type. Inequality (2.1) on integer-valued vectors implies the same condition on rational-valued

vectors – this is verified simply by multiplying a vector x by the lowest common denominator

of its coordinates. And finally, if we consider the function xT Dx defined over the subspace

{x : 1T x = 0}, the fact that it is continuous and non-positive over all rational points implies

that it is also non-positive over its entire domain. This completes the proof.
3We stress the fact that the corresponding dimension q and embedding ρ need not be known. For instance,

finding an embedding for an �2-embeddable distance is polynomial-time solvable, while the respective task for
an �1-embeddable distance is NP-complete [13]. If (X ,d) is �p -embeddable, with |X | = n, then the minimum
necessary dimension q is at most n −1 for p = 2 and p =∞, and at most

(n
2

)
for all p ≥ 1 [16, 57].

4The simplest example of a Euclidean-squared distance that is not metric is the triple X = {a,b,c} with d(a,b) =
d(b,c) = 1 and d(a,c) = 4, that is embeddable into a line.
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Remark 2.5. Inequalities of the form (2.1) are called negative-type inequalities, and they imply

that matrix D is conditionally negative semidefinite. This term means that it satisfies the

conditions of a negative semidefinite matrix over a proper subspace, in this case the (n −1)-

dimensional subspace orthogonal to 1. A real symmetric matrix D is the distance matrix of a

negative-type distance if and only if it has zero diagonal entries, non-negative off-diagonal

entries, and satisfies (2.1) (see [24]). Furthermore, such a matrix will have exactly one positive

eigenvalue, provided it is not the zero matrix [44, Theorem 6.2.16].

Lemma 2.6. (X ,d) is of negative type if and only if

(y + z)T D(y + z)

1T (y + z)
≥ yT D y

1T y
+ zT Dz

1T z
for all y, z ∈RX

+ \ {0}. (2.2)

Proof. For the only if part, assume the distance is of negative type, and consider some non-

zero vectors y, z in RX+ . If we define x =
√

(1T z)/(1T y)y −
√

(1T y)/(1T z)z, then 1T x = 0, and

inequality (2.1) gives

0 ≥ xT Dx = 1T z

1T y
yT D y + 1T y

1T z
zT Dz −2yT Dz. (2.3)

On the other hand, we have the equation

(y + z)T D(y + z) = yT D y + zT Dz +2yT Dz, (2.4)

and summing up the last two lines yields the result:

(y + z)T D(y + z) ≥
(
1+ 1T z

1T y

)
yT D y +

(
1+ 1T y

1T z

)
zT Dz

= (
1T y +1T z

)[ yT D y

1T y
+ zT Dz

1T z

]
.

Now, for the if part, assume that inequality (2.2) holds, and consider a vector x ∈ ZX with

1T x = 0. As the case x = 0 is trivial, we assume that x is non-zero. Let y = max{x,0} and

z = max{−x,0}, where the max function is taken component-wise. Then y and z are non-zero

vectors in RX+ , x = y − z, and the condition 1T x = 0 implies that 1T y = 1T z. The proof now

works backwards. Using equation (2.4) over inequality (2.2), we obtain

yT D y + zT Dz +2yT Dz

2
≥ yT D y + zT Dz.

And if we multiply by 2 and move all terms to the right-hand side,

0 ≥ yT D y + zT Dz −2yT Dz = (y − z)T D(y − z) = xT Dx.
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Proposition 2.7 (Schoenberg [113]). (X ,d) is of negative type if and only if it is Euclidean-

squared.

In Remark 2.14 we will provide some intuition behind this surprising geometric characteri-

zation.5 The previous result was proven by Isaac Schoenberg, who in the 1930s developed a

deep theory over distances of negative type and isometric embeddings. With this result, it is

easy to check that these distances are in general not metric (or vice versa), hence results for

these two distance classes are not directly comparable.

Examples of distances of negative type

We present several examples of distances of negative type, as well as several distance trans-

formations that either produce or preserve this property. For a distance d and a transfor-

mation function f : R+ → R+ with f (0) = 0, we represent by f (d) the distance defined by

f (d)(a,b) = f (d(a,b)).

Proposition 2.8 (Schoenberg [113]). For any 0 <α< p ≤ 2, if (X ,d) is in �p , then (X ,dα) is of

negative type.

A direct consequence of Proposition 2.8 (setting α= 1) is that Euclidean and Manhattan dis-

tances are of negative type, as are all distances in �p for 1 ≤ p ≤ 2. Euclidean distances are

widely popular in several diversity maximization problems, especially in facility location (see

Section 2.4). And Manhattan distances are a prominent similarity measure in information

retrieval [96], in particular when using sketching techniques [94] where data points are repre-

sented by small-dimensional bit-vectors whose Hamming distance approximates the distance

of the corresponding points.

In many applications, the data objects that populate the ground set X are described in terms

of features, and a dissimilarity or distance function measures how different these features are

between two objects. When these features are binary, each object in X is represented by a

set P ⊂U , where U is the collection of all features. There exist several popular definitions of

distances d(P,Q) between two sets P,Q ⊂U , which are of negative type, such as the Jaccard

distance |P�Q|
|P∪Q| [68], Simple Matching |P�Q|

|U | , Russel and Rao 1− |P∩Q|
|U | , Dice |P�Q|

|P |+|Q| , etc. We

remark that the Dice distance is not metric. We refer to [102, Table 5.1] for an extensive list of

binary dissimilarity measures, classified by metricity and negative type.

For more general data, the features are quantitative. This naturally leads to a representation

of the objects in X as vectors in space Rq , where q is the number of features. In this case,

norm-induced distances are usually applied [96, 111]. However, sometimes one may want to

ignore the absolute magnitudes of the features, and rather compare objects by the relative

weights of their features. For vectors x, y ∈ X ⊂ Rq \ {0}, we achieve this goal by defining a

distance d(x, y) that depends exclusively on the angle θx,y between x and y . The spherical

5Because of this geometric connection, the distance matrix of a negative-type distance is also known in the
literature as a Euclidean distance matrix (see, e.g., [24]).
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distance is defined by d(x, y) = θx,y ,6 and it is known to be �1-embeddable [20, 44], hence it is

of negative type. The cosine distance, on the other hand, is defined by d ′(x, y) = 1−cosθx,y ,

and it is easy to prove that it is Euclidean-squared: simply verify that d ′(x, y) = 1
2‖ x

‖x‖2
− y

‖y‖2
‖2

2.

Hence, it is also of negative type (and non-metric).

The following results will be useful for problem reductions.

Proposition 2.9 (Deza and Maehara [45]). If (X ,d) is metric, with |X | = n, then (X ,d log2( n
n−1 ))

is of negative type.

Lemma 2.10. Let (X ,d) be a metric space with |X | = n, such that all distances between distinct

points are in the range [1,c].

• If c = 2, then (X ,d) is metric;

• If c = n
n−1 , then (X ,d) is of negative type; and

• If c =
√

n
n−1 , then (X ,d) is Euclidean.

Proof. If (X ,d) is such that all distances are in the range [1,2], the triangle inequality can

be easily verified, so it is metric. By applying Proposition 2.9 and the transformation f (d) =
d log2( n

n−1 ), we obtain the second claim. And the third claim follows from Proposition 2.7 and

the transformation f (d) =�
d .

We present some additional examples and transformations which are of theoretical interest.

Proposition 2.11 (Schoenberg [112]). If (X ,d) is of negative type, then (X , f (d)) remains of

negative type under any of the following transformations: f (d) = d
1+d , ln(1+d), 1− e−λd for

λ> 0, and dα for 0 ≤α≤ 1.

Proposition 2.12 (See Theorem 3.6 in [98]). The following distance classes are of negative type:

distances induced by a two-dimensional norm, metric distances of up to four points, ultrametric

distances, hyperbolic distances, and weighted tree distances.

2.3.2 The dispersion and cross-dispersion functions
We abuse notation by a great deal in this thesis, and use d(·) to represent several related

functions. We do it to keep notation simple, and because we believe that doing so will simplify

and bring intuition to many of this work’s proofs.

Given a distance (X ,d), we define the dispersion function d : 2X →R+ as

d(A) = ∑
{a,a′}⊂A

d(a, a′) = 1

2

∑
a,a′∈A

d(a, a′) ∀A ⊂ X .

6If one desires to have the property that distinct elements have non-zero distances, then the ground set must be
restricted to the unit sphere Sq−1 in Rq .
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The dispersion of A corresponds to the sum of pairwise distances within A. We also define the

auxiliary cross-dispersion function as

d(A,B) = ∑
a∈A,b∈B

d(a,b) ∀A,B ⊂ X .

We write (A,b) as short-hand for (A, {b}). Some easy-to-check properties of these functions are

d(A∪B) = d(A)+d(B)+d(A,B), d(A, A) = 2d(A), d(A, a) = d(A−a, a),

for all disjoint sets A,B ⊂ X , and element a ∈ A.

Both of these functions can be written in terms of the distance matrix D and characteristic

vectors. Namely, d(A) = 1
2 (1A)T D(1A), and d(A,B) = (1A)T D(1B ), for any sets A,B ⊂ X . This

fact motivates us to further define the extended dispersion and cross-dispersion functions for

arbitrary vectors in RX , in such a way that d(A) = d(1A) and d(A,B) = d(1A ,1B ). Let

d(x) = 1

2
xT Dx and d(x, y) = xT D y ∀x, y ∈RX .

These extended functions have the properties

d(x + y) = d(x)+d(y)+d(x, y), d(λx) =λ2d(x), d(λx, y) =λd(x, y), (2.5)

for all vectors x, y ∈RX and scalar λ ∈R.

When the distance (X ,d) is of negative type, then d(x) ≤ 0 for all x ∈ RX with 1T x = 0.

Lemma 2.6 implies the following additional properties, which are key for the analysis of

the approximation algorithms that we will present for this class of distances. They correspond

to inequalities (2.2) and (2.3) in Lemma 2.6.

Lemma 2.13. If (X ,d) is of negative type, then for any non-zero vectors x, y ∈RX+ ,

d(x, y) ≥ 1T y

1T x
d(x)+ 1T x

1T y
d(y) and (2.6)

d(x + y)

1T (x + y)
≥ d(x)

1T x
+ d(y)

1T y
. (2.7)

Consequently, for any non-empty sets A,B ∈ X ,

d(A,B) ≥ |B |
|A|d(A)+ |A|

|B |d(B), (2.8)

and if additionally A and B are disjoint,

d(A∪B)

|A∪B | ≥ d(A)

|A| + d(B)

|B | . (2.9)

23



Chapter 2. Preliminaries

Remark 2.14. To provide an intuition to Schoenberg’s geometric characterization of negative-

type distances (Proposition 2.7), we mention that inequality (2.9) can also be proved from

a Euclidean-squared embedding of the distance space, and the notion of centroid. Given a

finite, non-empty set of points A ⊂ Rq , the centroid of A is defined as cA = 1
|A|

∑
a∈A a. This

point observes the following two properties, which will be proved in Lemma 5.1.

d(A,ca) = d(A)

|A| and d(A,cA) = min
c∈Rq

d(A,c).

Then, for two finite, disjoint and non-empty sets A,B in Rq , inequality (2.9) simply states that

d(A∪B ,cA∪B ) = d(A,cA∪B )+d(B ,cA∪B ) ≥ d(A,cA)+d(A,cB ).

Remark 2.15. For metric distances, the following inequality similar to (2.8) holds:7

d(A,B) ≥ |A|
|B |−1

d(B), for all A,B ⊂ X with |B | ≥ 2. (2.10)

This property has often been used in the analysis of approximation algorithms, see [108, 23].

Intuitively, inequality (2.8) is weaker than inequality (2.10) for small sets, but (much) stronger

for large sets.

2.3.3 The max-sum dispersion problem

This thesis focuses on the problem of max-sum dispersion, or MSD for short. It is

max{d(A) : A ∈F },

where (X ,d) is a distance space, and F ⊂ 2X is a given family of feasible subsets. In words, we

want to maximize the dispersion of a feasible subset. Some examples of feasible families F

that will consider are those defined by a cardinality constraint, a matroid, the intersection of

two matroids, and knapsack constraints. We will specify what F is in every case, except for

the cardinality-constrained problem max{d(A) : A ⊂ X , |A| ≤ k}, which receives the special

label MSDk . We will also in general clarify the class of distances we are restricting the problem

to, by names such as metric MSD, negative-type MSD, and so on.

For a set function f : 2X → R+ that is submodular and monotone, we will also consider the

maximization problem with combined objective

max{g (A) : A ∈F }, where g (A) = d(A)+ f (A) ∀A ⊂ X .

For convenience, we denote this problem by MSD+ f. If, in addition, f is linear, we denote the

corresponding problem by MSD+ l. As all considered objectives are monotone, we will always

restrict our attention to feasible solutions that are inclusion-wise maximal sets.

7This inequality is proven by Ravi et al. [108], originally only for disjoint sets, but their proof extends to the
general case.
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2.4 Literature review
The max-sum dispersion problem, in particular in its cardinality-constrained version (MSDk ),

is one of the most prominent diversity maximization problems. This type of problems seeks to

maximize a diversity function over a subset of specified cardinality, from a large ground set.

They include, for instance, the also popular max-min dispersion problem, where the diversity

function is di v(A) = min{d(a, a′) : a, a′ ∈ A, a �= a′}.

Remark 2.16. A related problem, the max-mean dispersion [29], is defined as maxA⊂X ,|A|≤k
d(A)
|A| .

Even though the objective function is not monotone in general, from inequalities (2.9) and

(2.10) it can be easily proved to be monotone for both negative-type and metric distances;

hence for these distances the problem is equivalent to MSDk in terms of approximability.

In another related problem, called the p-maxian problem [49], the ground set X = Y ∪ Z is

partitioned into unselected points Y and preselected points Z , and the goal is to find a subset

A ⊂ Y of bounded size that maximizes d(A∪Z ). We note that this can be easily converted into

an MSD+ l instance.

The problem of MSDk receives several names in the literature, such as maxisum dispersion,

max-avg dispersion, maximum diversity, and remote clique. Its origin can be traced to several,

separate research communities.

In the context of facility location, max-sum dispersion and max-min dispersion were intro-

duced by Kuby [91]. Several applications have been proposed, where one must select locations

that are far from each other. For instance, strategic facilities such as oil tanks [99] and ammu-

nition dumps [51] should be kept separated from each other, in order to minimize the damage

of a localized attack. Hazardous equipment susceptible to fire or other accidents should also

be properly spaced to minimize the risk of spread [91]. Location diversity is desirable for

business franchises, seeking to avoid mutual competition; or for the placement of firehouses

and ambulance stations, in order to obtain an efficient an fair coverage of a city [125].

Many other applications in facility location have been suggested [33], and the work was

followed by [50, 48, 85, 74, 104], where heuristics are considered for several scenarios and

applications, and where the focus is almost exclusively on Euclidean distances.

In the context of representing a large database by a small and diverse sample, MSDk was intro-

duced by Glover et al. [65], for an application in biological diversity preservation. Examples

of application scenarios range from agricultural breeding stocks, to composing jury panels,

to very-large-scale integration (VLSI) [86]. It received immediate attention in the operations

research community in the 1990s and 2000s, and many heuristics were applied to it, such as

linearization of the quadratic formulation, local-search and greedy algorithms, GRASP, tabu

search, simulated annealing, Lagrangian relaxation, etc. [63, 66, 124, 12, 115, 43, 47, 62]. In

most of these papers, the experimental results are either performed on Euclidean distances,

or on randomly generated non-metric distances.
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Approximation algorithms for MSDk

When no assumption is made on the distance class, the cardinality-constrained problem

(MSDk ) corresponds to a weighted version of the densest k-subgraph problem (DkS), which

is notoriously hard. For a graph G and a number k, the goal of DkS is to find a set of k ver-

tices in G that induce the largest number of edges. This case is outside of the scope of the

present work, hence we skip the literature survey and refer the reader to the relevant work

[88, 9, 55, 117, 11, 54, 53]. We only mention that DkS is known to be strongly NP-hard and not

admitting a PTAS [84], its current best approximation ratio is (only) of 1
O(n1/4−ε) for any ε> 0 [17],

and the problem admits no constant-factor approximation under the assumption that the

planted clique problem is hard [8].

As most applications work with distances that are metric, or even geometric (induced by a

norm), the search for heuristics with provably good performance has focused on these distance

classes. For metric MSDk , Ravi et al. [108] obtained the first constant-factor approximation,

showing that the standard greedy algorithm (that iteratively selects the item maximizing the

marginal gain until k items are selected) has an approximation ratio of 1
4 . Hassin et al. [77]

then presented a 1
2 -approximation, obtained by a somewhat slower greedy algorithm (that

selects two new items of maximal mutual distance at each step). Birnbaum and Goldman [19]

finally showed that a ratio of 1
2 is also guaranteed by the standard greedy studied in [108]. This

ratio is tight, as it is shown in [23] that the problem admits no approximation factor of 1
2 +ε,

for any constant ε> 0, again under the assumption that the planted clique problem is hard.

For the case of distances induced by a norm in fixed dimension, Ravi et al. [108] presented

an efficient exact algorithm for dimension 1,8 and they used it to obtain a 2
π -approximation

for planar Euclidean distances, based on the idea of projecting the points into a random 1-

dimensional subspace. Fekete and Meijer [56] then presented a PTAS for Manhattan distances

on any fixed dimension; and they observed that their result implies an approximation ratio of

( 1�
2
−ε) for planar Euclidean distances, for any ε> 0. The authors in [108] and [56] both remark

that the NP-hardness of MSDk is open over fixed-dimensional Manhattan and Euclidean

distances.

Diversification, matroid constraints, and mixed objectives

There is growing interest in the application of MSDk and other related problems in informa-

tion retrieval [21, 128, 38, 121, 129, 105, 106]. These instances are mostly related to Internet

applications with very large databases, from which a small sample of items must be presented

to the users, based on a query or known user attributes. Contrary to the aforementioned

applications, here the main objective is to maximize a relevance function, which is a priori

unrelated to any notion of diversity. However, an additional measure of diversity is introduced,

in order to avoid redundancy, to satisfy a maximum number of users, or to increase the chance

of relevance when a query is ambiguous. Problems that combine these two objectives are

8In fact, Tamir [120] later remarked that optimal solutions in dimension 1 always have a simple structure, and
hence can be found by a trivial algorithm (see Section 5.4.1).
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referred to as diversification problems, and application examples consist of online shopping,

web search, document summaries, etc.

For instance, in web search, diversification is considered to be an effective solution to min-

imize query abandonment, which is the problem of a user not finding any relevant result

within the returned items [7, 39, 42]. Furthermore, diversification has been recently explored

as an aid in recommender systems [130, 126]. Recommender systems [109] provide customers

with recommendations of products they might be interested in, based on their past purchases

or preferences, and demographic information. In this context, diversification decreases re-

dundancy, and increases customer satisfaction under the natural assumptions that users have

a wide range of interests and enjoy to explore new products.

In the context of document summary, Carbonell and Goldstein [28] modeled diversification

by defining an objective function which is the convex combination of two set functions: a

relevance measure that depends on the query, and a diversity measure that depends only

on the chosen set. A parameter controls the degree of the trade-off. Later on, Gollapudi

and Sharma [67] and Bhattacharya et al. [18] took this model and considered the dispersion

function over a metric distance to measure diversity, and a monotone linear function to mea-

sure relevance. That is, they considered the metric, cardinality-constrained MSD+ l problem.

And they presented an approximation ratio of 1
2 for it. It is worth mentioning that Gollapudi

and Sharma select the dispersion function (the sum of pairwise distances) as an optimal

measure of diversity for web search, after a detailed study of desirable properties for an ob-

jective function; and they consider Jaccard and weighted tree distances, both of which are of

negative type. On the other hand, Bhattacharya et al. argue that the choice of the dispersion

function is desirable in the context of e-commerce, and validate this claim through a user study.

Motivated by an application in news aggregator services, Abbassi, Mirrokni and Thakur [2]

introduced matroid constraints to the study of this problem, as an additional means to ensure

diversity. In particular, for news articles that are classified into categories, they highlight the

use of a partition matroid constraint in order to limit the number of results within the same

category. For metric MSD under a matroid constraint, they prove that a standard local-search

algorithm also achieves an approximation ratio of 1
2 . Since a cardinality constraint can be

represented by a uniform matroid, the 1
2 -hardness that is known for metric MSDk still holds

for this new constraint, hence their approximation ratio is tight.

Finally, Borodin et al. [23] studied the more general scenario where the relevance function is

a monotone and submodular function, i.e., they consider the metric MSD+ f problem, also

under a matroid constraint. They prove that the standard local-search algorithm achieves an

approximation of 1
2 , which is known to be tight for both functions in the objective. They argue

that monotone submodular functions naturally model the relevance of the set of returned

items for a keyword-based search in a database.
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Chapter 2. Preliminaries

Distance class Hardness result Approximation ratio
Metric / �∞ No 1/2−ε † [23] 1/2 [77]
Negative type No FPTAS (Thm. 2.18) PTAS (Thms. 3.4, 4.10)
�p for 1 ≤ p ≤ 2 No FPTAS (Thm. 2.18) PTAS (Thms. 3.4, 4.10)
�p for 2 < p <∞ No FPTAS (Thm. 2.18) 1/2 [77]
One-dimensional 1 1 [108]
q-dimensional, fixed q ≥ 2 (all norms) 1 PTAS (Thm. 5.17)

Table 2.1: This table presents the current best hardness results and approximation ratios
for MSDk over several distance classes. The sign † indicates that the result assumes
hardness of the planted clique problem.

Remark 2.17. While the max-sum dispersion objective maximizes the average distance in the

output set, it may select points that are clustered together in some regions. If such clusters are

undesirable, a possible solution is to maximize the function d(A)+ f (A), where f (A) equals the

total number of elements in the ground set X that are covered by balls of radius r and centered

in elements of A, for a fixed r > 0. It can be checked that f (A) is a monotone submodular

function, and thus this is an MSD+ f problem.

State of the art in approximability

We prove below that the max-sum dispersion problem remains strongly NP-hard, even when

restricted by a cardinality constraint, over distances of negative type, as well as general geo-

metric instances.

Theorem 2.18. MSDk is strongly NP-hard when restricted to any of the following distance

classes: metric distances, distances of negative type, and distances in �p , for any 1 ≤ p ≤∞. In

particular, for these classes it does not admit fully polynomial time approximation schemes.

Proof. We present a reduction from DkS, which is strongly NP-hard. For a DkS instance given

by G = (V ,E) and k, we define the distance (V ,d) where two distinct vertices are at distance√
n

n−1 if they are adjacent, and at distance 1 if they are not. By Lemma 2.10, this distance is

metric, of negative type, and Euclidean. And by Proposition 2.3, it is also in �p for all 1 ≤ p ≤∞.

If the optimal solution to the DkS instance has value opt , then the optimal solution to MSDk

over (V ,d) with parameter k will be exactly (
√

n
n−1 −1)opt + (k

2

)
. This proves NP-hardness.

Finally, as is a typical argument for strongly NP-hard problems, we remark that if there was an

FPTAS for this MSDk instance, by choosing the error parameter ε sufficiently small we could

transform it into an exact algorithm.

We present in Table 2.1 the current state of the art in approximation and inapproximability

results for MSDk , over several distance classes. The table showcases some of the results

presented in this thesis, which greatly improve our understanding of this problem. However,

we notice that the NP-hardness of the problem remains unproven for distances induced by a

norm in fixed dimension; and the same goes for the existence of a PTAS for variable-dimension

distances in �p , for 2 < p <∞.
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2.4. Literature review

Local search in related geometric clustering problems

As this thesis showcases the use of local search9 for a geometric optimization problem, it is

worth mentioning other examples of such problems where this technique has been applied

successfully. In particular, there have been recent breakthroughs in the approximability of the

geometric clustering problems of k-median and k-means. Given a metric distance (X ,d) and

a number k, these problems are defined as

min
A⊂X , |A|=k

∑
b∈X

min
a∈A

dα(a,b), (2.11)

where α= 1 for k-median, and α= 2 for k-means.

For the general metric case, it is NP-hard to approximate k-median and k-means within a

factor of 1+ 2
e and 1+ 3

e , respectively [70, 80]. Local search has been amply studied for metric

k-median: it was shown to yield constant-factor bi-criteria approximations [89, 34], and finally

Arya et al. [10] proved that it gives a (3+ε)-approximation, and that this bound is tight.10 For

metric k-means, Gupta and Tangwongsan [72] showed that local search achieves a (25+ε)-

approximation.

For the Euclidean case with variable dimension, neither problem admits a PTAS [73, 14].

Whether Euclidean k-means is APX-hard was an open problem for a long time, recently an-

swered positively by Awasthi et al. [14]. Moreover, Kanungo et at. [81] proved that local search

offers the improved ratio of (9+ε) for Euclidean k-means, and this is the current best approxi-

mation ratio for the problem.

Finally, if the dimension is fixed, k-median is known to admit PTASs [75, 76, 87]. The question

of whether the same is true for k-means remained open for many years. In a recent develop-

ment, Cohen-Addad et al. [40] finally provided a PTAS for fixed-dimension Euclidean k-means.

This is achieved by local search with a neighborhood of size 1/εO(1). In fact, they prove that

the same algorithm provides a PTAS for k-median and for the general problem (2.11) with

any fixed α≥ 1. In independent and simultaneous work, Friggstad et al. [61] obtained similar

results, extending the PTAS even to k-means over general metric distances with bounded

doubling dimension (see [71]).

9An introduction to this technique can be found in Section 4.2
10Better approximation ratios with other techniques are currently known, see [93, 26]
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3 MSD via convex programming

3.1 Chapter overview
In this chapter, we consider the max-sum dispersion problem (MSD) exclusively over distances

of negative type, and we describe for it approximation algorithms obtained with the classical

approach of randomized rounding, introduced by Raghavan and Thompson [107].

In the case of a linear objective function over X , and very basic linear constraints, the idea

behind randomized rounding is simple enough: define the optimization problem in terms

of a Boolean linear program; relax it into a linear program over the unit cube; solve this

relaxation to obtain a fractional solution x∗ with a higher objective value than the optimal

integral solution; and finally, use the component values of x∗ to define an independent ran-

domized rounding procedure – for each a ∈ X , independently sample a with probability x∗
a .

The sampled set S ⊂ X has the same objective value as x∗ in expectation, and each constraint

is satisfied or almost satisfied with high probability, due to concentration bounds. If the

number of constraints is low, then the union bound is applied to guarantee that no constraint

is violated by a large margin, with good probability.

This “solve the relaxation, then round" technique is standard in combinatorial optimization,

and readily yields algorithms with good approximation ratios for a large number of problems.

Furthermore, there has been a continuous effort in the literature to extend its applicability. For

instance, the union bound will not give meaningful results in the case of a large (exponential)

number of constraints; a corresponding alternative is that of dependent rounding: the frac-

tional solution x∗ is pushed towards an integral point, usually in an iterative process, so that

its feasibility is guaranteed along each step. Yet, if this process is performed deterministically,

the concentration bounds are lost, and hence if the rounding process fails to guarantee the

satisfiability of a single constraint, the rounded solution can be arbitrarily far from feasible. In

the case of a matroid constraint, Chekuri, Vondrák and Zenklusen [35, 36] present a dependent

randomized rounding framework. This procedure outputs a random integral point which is

guaranteed to lie in the matroid polytope, and with a distribution that still observes concen-

tration bounds, allowing to tackle extra constraints.
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Chapter 3. MSD via convex programming

If the objective function is non-linear, this framework does not extend in general, as it may

be NP-hard to solve the corresponding relaxation of the problem. Nevertheless, if the relaxed

problem corresponds to the maximization of a concave function over a convex region, then it is

known as a convex program, and it is tractable. The extended dispersion function d(x), which

is quadratic, is neither concave nor convex, but if it comes from a negative-type distance, we

will prove that the relaxed problem can be convexified – that is, it can be restated and solved in

terms of convex programming.

Contribution and organization

Recall that the general max-sum dispersion (MSD) problem is max{d(A) : A ∈ F }, where

d(A) = 1
2

∑
a,b∈A and F ⊂ 2X is a collection of feasible subsets of X . In this chapter, we deal

with a collection F defined by linear constraints in general, and matroid and knapsack con-

straints in particular. We focus exclusively on distances of negative type.

In Section 3.2, we relax the problem into a quadratic program, and then convexify it. More

concretely, we prove that by solving convex sub-programs, we are able to find a fractional

feasible solution with a higher objective value than that of the optimal integral solution.

In Section 3.3, for the case of a matroid constraint of rank k, we complement the point above

with a deterministic rounding procedure, reminiscent of pipage rounding. The resulting

algorithm provides an approximation ratio of 1−O( logk
k ), and hence implies a PTAS for the

problem. We also prove that the result immediately extends to a combination with linear

functions in the objective (MSD+ l).

Finally, in Section 3.4, we randomize the previous deterministic rounding procedure, to

obtain an algorithm with the same approximation guarantee in expectation, and offering

concentration bounds as well. Consequently, we obtain a PTAS for the case of a matroid

constraint and a constant number of knapsack constraints.

3.2 A relaxation for general linear constraints
A quadratic program is an optimization problem of the form

min

{
1

2
xT Qx +cT x : x ∈Rn , M x ≤ b

}
, (3.1)

where Q ∈Rn×n is a symmetric matrix, c ∈Rn , M ∈Rm×n and b ∈Rm . The objective function

f (x) = 1
2 xT Qx + cT x is convex if and only if Q is positive semidefinite, in which case the prob-

lem is a convex quadratic program.

There are several efficient algorithms related to convex quadratic programs. In particular, the

ellipsoid method [83] can be used to solve this problem in polynomial time (see e.g. [90]). This

remains true even if the set of constraints defined by M x ≤ b is not explicitly given, but the

separation problem over the polyhedron defined by M x ≤ b can be solved in polynomial time
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3.2. A relaxation for general linear constraints

(see [69]). In this case, the running time is polynomial in the input size of Q and c and the

largest binary encoding length of a coefficient on M or b.

A matroid polytope, for instance, in general cannot be represented in a compact way under

the form M x ≤ b, but its separation problem can be solved efficiently, provided that an

independence oracle is given [69]. In that case, the largest encoding length of the numbers in

the previously mentioned description of the matroid polytope is O(logn). Hence, a convex

quadratic program over a matroid polytope con be solved in polynomial time.

Problem formulation and relaxation

We consider the negative-type MSD problem with general linear constraints. This means

that the family F ⊂ 2X of feasible solutions can be represented as F = {S ⊂ X : M(1S) ≤ b},

for some M ∈ Rm×n and b ∈ Rm . We assume that the separation problem over M x ≤ b can

be solved in polynomial time, and that the encoding lengths of coefficients in M and b

are small.1 This scenario covers the cases of a matroid constraint, a cardinality constraint

(uniform matroid), knapsack constraints, among others. Let O ∈F the optimal solution, with

value d(O) = opt . If D is the distance matrix, we can use the extended dispersion function

d(x) = 1
2 xT Dx (see Section 2.3.2), to write the problem as

max

{
1

2
xT Dx : x ∈ {0,1}X , M x ≤ b

}
. (3.2)

We now remove the integrality constraints, and relax it into a quadratic program:

max

{
1

2
xT Dx : x ∈ [0,1]X , M x ≤ b

}
. (3.3)

Notice that the set of feasible solutions in (3.3) contains all feasible solutions in (3.2), so the

value of the optimal solution in (3.3) can only increase. Our (naive) plan of attack is to solve

this quadratic program exactly, and obtain a feasible fractional point x∗ with d(x∗) ≥ opt .

A rounding procedure can then be applied to it, to produce a feasible integer point with

guaranteed value.

Convexification

Unfortunately, (3.3) is not a convex quadratic program, as D is not negative semidefinite.2

However, we know from Remark 2.5 that D is conditionally negative semidefinite, with exactly

one positive eigenvalue. This means that, even though we cannot solve (3.3) exactly,3 we can

easily convexify it by restricting its domain to certain hyperplanes. Hence, we can cover up all

integer points in (3.3) with slices, and solve these convex sub-programs exactly. This will be

enough to compute a (suboptimal) point x∗ in (3.3) that still has the property d(x∗) ≥ opt .

1If the encoding lengths are large, in many cases our framework will still work, at a cost of a small decrease in
the approximation ratios obtained.

2A maximization problem that is written as in (3.1), where Q is negative semidefinite, is equivalent to a convex
quadratic program, via a standard transformation.

3A non-convex program as (3.1) is NP-hard, even if Q has a single negative eigenvalue [101].
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Lemma 3.1. If (X ,d) is of negative type, then d(x) = 1
2 xT Dx is a concave function over the

domain {x ∈RX : 1T x =α}, for each fixed α ∈R.

Proof. The statement is equivalent to saying that, for any two points x, y ∈ RX such that

1T x = 1T y , the function d(·) is concave over the line connecting x and y . Or equivalently,

that for any point x ∈RX and vector v with 1T v = 0, the function f (λ) := d(x +λv) is concave

over λ ∈R. As 1T v = 0 and the distance is of negative type, we have d(v) ≤ 0. With the use of

properties (2.5), the function f (λ) can be written as

f (λ) = d(x +λv) = d(x)+λd(x, v)+λ2d(v),

and hence its second derivative is d 2

(dλ)2 f (λ) = 2d(v) ≤ 0. This proves the statement.

We remark that convexifications have proved useful before in the design of approximation

algorithms, see for example [116]. It is also worth mentioning that Tamir [119] proves a

statement similar to Lemma 3.1 for weighted tree distances (which are of negative type, see

Proposition 2.12), and uses this result to show that MSDk has an exact algorithm for these

distances.

Theorem 3.2. Consider the negative-type MSD problem (3.2) with general linear constraints

for which the separation problem can be solved efficiently. One can compute a fractional point

x∗ that is feasible in the relaxation (3.3), and such that d(x∗) ≥ opt, in time polynomial in the

input size and the maximal binary encoding length of any coefficient in M and b.

Proof. Notice that for any integer point in (3.3), 1T x will be an integer smaller than n. Using

the ellipsoid method, we solve each of the following n convex quadratic programs exactly.4

max

{
1

2
xT Dx : x ∈ [0,1]X , M x ≤ b, 1T x =α

}
, for α= 1, · · · ,n.

We obtain the optimal solutions x1, · · · , xn , and we define x∗ = argmax{d(xα) : 1 ≤ α ≤ n}.

Clearly, x∗ is feasible in (3.3). For the optimal integral solution O, we know that 1O is feasible

for the program with α= |O|, hence opt = d(1O) ≤ d(xα) ≤ d(x∗).

Remark 3.3. At this point, for the cardinality-constrained case (MSDk ), a standard randomized

rounding technique [107] readily provides a PTAS, as we now explain. The point x∗ obtained

in the previous theorem satisfies the constraint 1T x∗ ≤ k, and from it we sample a set A ⊂ X

by selecting each element a ∈ X independently with probability (1−ε)xa . The resulting set

has an expected value E[d(A)] = (1−ε)2d(x∗) > (1−2ε)opt , and its cardinality will be sharply

concentrated around its expected value E[|A|] = (1−ε)1T x∗ ≤ (1−ε)k, due to Chernoff-type

concentration bounds. Hence, for large enough k, A will be feasible with high probability.

However, this technique fails for more complex linear constraints, such as a matroid constraint.

4See [90, 69] for details on why exact solutions can be obtained here, without an additive error that is typical for
many convex optimization techniques.
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3.3. Deterministic rounding for a matroid constraint

3.3 Deterministic rounding for a matroid constraint
We consider now the case of negative-type MSD constrained by a matroid. Building up from

Theorem 3.2, we describe a deterministic rounding procedure, which will lead to a PTAS. This

procedure has similarities with pipage rounding [5, 27] and swap rounding [36], in the sense

that it iteratively modifies at most two components of the fractional point, until an integer

point is obtained. However, it differs substantially from these procedures, as we deal with a

quadratic objective function, and we must accept a certain loss in the objective value due

to rounding.5 By carefully selecting the two components to be modified in each iteration,

and using once again the properties of negative-type distances, we manage to establish a

small bound for this loss. Relevant to our scenario is also a procedure by Makarychev et

al [95], which is based on swap rounding, and provides concentration bounds for polynomial

objective functions. However, these bounds are not strong enough for our purposes.

Recall that for a vector x ∈ RX and a set S ⊂ X , we define the restricted vector xS ∈ RX by

xS
a = xa if a ∈ S, and 0 otherwise. The input of our problem comprises a negative-type distance

matrix D , and a matroid (X ,I ) of rank k, which is assumed to be given by an independence

oracle. The feasible polytope in the relaxation (3.3) corresponds to the matroid polytope

P (I ) = {
x ∈RX

+ : 1T xS ≤ r (S), ∀S ⊂ X
}

,

where r (·) is the matroid rank function. As the extended dispersion function d(x) is monotone,

the optimal fractional solution x∗ must be on the base polytope6 PB (I ) = P (I )∩{x :1T x = k},

so Theorem 3.2 will actually find this exact point by solving a single convex quadratic program.

We describe now a deterministic iterative rounding algorithm, that takes x∗ as input, and

outputs an integral point x0 on the base polytope, with d(x∗)−d(x0)
d(x∗) =O( logk

k ). It will imply the

following result, which in turn implies a PTAS (see Remark 2.1).

Theorem 3.4. There exists a deterministic algorithm for negative-type MSD with a matroid

constraint of rank k, that outputs in polynomial time a basis S with d(S) ≥
(
1− 4+2lnk

k

)
opt.

Therefore, this problem admits a polynomial-time approximation scheme.

3.3.1 The rounding procedure
In the remainder of this section, for any vector x ∈ P (I ) we ignore the elements a ∈ X with

xa = 0, and we assume without loss of generality that x has no zero components. We call an

element a ∈ X integral or fractional (with respect to x), if xa = 1 or xa < 1, respectively; and

we call a set S ⊂ X tight or loose, respectively, if 1T xS = r (S) or 1T xS < r (S). We will need the

following result about faces of the matroid polytope, which is a well-known consequence of

combinatorial uncrossing (see [64], or [114, Section 44.6c in Volume B]).

5Pipage and swap rounding are typically applied in settings where the objective value is preserved in expectation.
6Using standard techniques from matroid optimization (see [114, Volume B]), for any point y ∈ P (I ) one can

find a point z ∈ PB (I ) satisfying z ≥ y component-wise. And in this case it is clear that d(z) ≥ d(y). Hence the
optimal solution must be on the base polytope.
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Lemma 3.5. Let x ∈ PB (I ) be a vector with no zero components, and let

�= S0 � S1 � · · ·� Sp = X

be an inclusion-wise maximal chain of tight sets with respect to x. Then, the polytope

P (I )∩{
y : 1T ySl = r (Sl ) for l = 1, . . . , p

}
defines the minimal face of P (I ) that contains x. In other words, all other tight sets with respect

to x are implied by the ones in the chain.

Given a point x ∈ PB (I ), one can efficiently find a maximal chain of tight sets (Sl )p
l=1 as

described above. The algorithm will run in iterations; in each iteration it will change two

components of x in such a way that x does not leave the minimal face of the matroid polytope

on which it lies. This condition is ensured by preserving the structure of the chain. Moreover,

in each step the change in x will reduce the dimension of this minimal face. That in turn

ensures that x is ultimately rounded into a vertex of the polytope, in a linear number of steps.

And finally, the careful selection of the two changing coefficients will bound the total loss.

Consider a point x on the base polytope, and a maximal chain of tight sets (Sl )p
l=1. For each

l = 1, · · · , p, we define the set Rl = Sl \ Sl−1 – we call these sets rings. The rings form a partition

of X , their weights 1T xRl = r (Sl )− r (Sl−1) are strictly positive integers whose sum is k, and

each ring Rl consists either of a single integral element, or of at least 2 elements, all fractional.

This is because whenever a ∈ Rl is integral, the set Sl−1 +a is tight, hence it can be added to

the chain. We call the rings integral or fractional, accordingly.

We start with x = x∗, a chain as above, and a corresponding partition of X into rings. We

perform the following process in iterations, and stop when all elements are integral. Among

all fractional rings, and all pairs of fractional elements within the same ring, select the pair

a,b that minimizes the term xa xbd(a,b). We perturb vector x by adding to xa and subtracting

from xb a certain quantity ε. The dispersion d(x) = 1
2 xT Dx is linear in ε except for the term

xa xbd(a,b), hence we can select the sign of ε so that the value of d(x)−xa xbd(a,b) does not

decrease. We assume without loss of generality that this choice is ε> 0, so xa is increasing

and xb decreasing. Notice that the weights of all the rings stay constant in this process, and

thus all sets in the chain stay tight. And by Lemma 3.5, all tight sets stay tight. We increment ε

until a new tight constraint appears. If the constraint corresponds to xb becoming zero, we

erase that element and end the iteration step. Otherwise, a previously loose set S ⊂ X becomes

tight, and S must contain a but not b, as otherwise its weight 1T xS would not increase during

this process. If the ring containing a and b is Rl = Sl \ Sl−1, then the set S′ = (S ∪Sl−1)∩Sl is

also tight,7 and it also contains a but not b, so Sl−1 � S′ � Sl (see Figure 3.1). We add S′ to the

chain, update the list of rings, and end the iteration step.

7This follows from the uncrossing property: if A and B are tight sets, then A∩B and A∪B are tight as well. This
property is a consequence of the submodularity of the matroid rank function r .
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3.3. Deterministic rounding for a matroid constraint

(a) The fractional ring containing the pair a,b
that minimizes xm

a xm
b d(a,b).

(b) Elements a and b are separated by a new
tight set that fits in the chain structure.

Figure 3.1: The refinement of a fractional ring in an iteration of the rounding procedure.

Analysis

We now analyze this algorithm, and prove Theorem 3.4. At any stage of the algorithm, if q is

the number of fractional rings, f is the number of fractional elements, and m is the number of

iterations remaining, then f −q ≥ m. This is because the value f −q can never be negative,

and it decreases in each iteration. Either f decreases, or q increases, or q decreases by 1 but f

decreases by 2 (any disappearing fractional ring has 2 disappearing fractional elements). This

implies in particular that the total number of iterations is at most n, hence the algorithm runs

in polynomial time.

Suppose there are M iterations, enumerated in reverse order by m. We add a superscript m to

all variables to signify their value at this stage. This way, x0 is the integral output vector, x1

is the vector at the beginning of the last iteration, and so on until xM = x∗. It is clear that all

vectors xm stay inside P (I ), and their weights 1T xm remain unchanged, hence they are all

on the base polytope. Furthermore, x0 is integer-valued, so it is the characteristic vector of a

basis in the matroid. For 1 ≤ m ≤ M , define lossm = d(xm)−d(xm−1), hence the total additive

loss incurred in the rounding algorithm is
∑M

m=1 lossm . We postpone for a moment the proof

of the following claim.

Lemma 3.6. The loss in iteration m is bounded by

lossm ≤ min

{
2

m2 ,
2

km

}
·d(xm).

The total additive loss incurred by the algorithm is

d(x∗)−d(x0) =
M∑

m=1
lossm ≤

M∑
m=1

min

{
2

m2 ,
2

km

}
·d(xm)

≤
∞∑

m=1
min

{
2

m2 ,
2

km

}
·d(x∗) =

(
k∑

m=1

1

km
+ ∑

m>k

1

m2

)
2d(x∗)

≤
(

1+ lnk

k
+ 1

k

)
2d(x∗) = 4+2lnk

k
d(x∗),
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where we used the inequalities
∑k

m=1
1
m ≤ 1+lnk and

∑
m>k

1
m2 ≤ 1

k . In summary, the algorithm

finds a basis with dispersion

d(x0) ≥
(
1− 4+2lnk

k

)
d(x∗) ≥

(
1− 4+2lnk

k

)
opt .

This completes the proof of Theorem 3.4.

Proof of Lemma 3.6. We fix a value for m and analyze the respective iteration, and we skip

the superscripts m to simplify notation. Let F ⊂ X be the set of fractional elements for the

current point x. Therefore, xF =∑
R xR , where the sum is over all fractional rings R. We apply

inequality (2.7) multiple times over this decomposition of xF , to obtain

d(xF )

1T xF
≥∑

R

d(xR )

1T xR
.

If the pair a,b ∈ X of fractional elements is chosen during this iteration, then loss ≤ xa xbd(a,b),

and because of the way the pair is chosen, we have that d(xR ) ≥ (|R|
2

)
loss > (|R|−1)2 loss

2 , for

every fractional ring R. Thus,

d(xF ) ≥ (
1T xF )∑

R

d(xR )

1T xR
> loss

2

[∑
R
1T xR

][∑
R

(|R|−1)2

1T xR

]

≥ loss

2

[∑
R

(|R|−1)

]2

= loss

2
( f −q)2 ≥ m2

2
loss;

where in the second line we used a Cauchy-Schwarz inequality. We obtain the bound

loss ≤ 2

m2 d(xF ).

The first claimed inequality now follows because d(xF ) ≤ d(x). For the second one, we start

by noticing that the weight 1T xF decreases by at most 1 in each iteration, which means that

1T xF ≤ m. Using once again inequality (2.7), we have

d(x)

1T x
≥ d(xF )

1T xF
,

and so d(xF ) ≤ 1T xF

1T x d(x) ≤ m
k d(x). This proves the second inequality.

Notice that, towards the end of the proof of Theorem 3.4, we used Lemma 3.6, and the fact

that d(xm) ≤ d(x∗) for all m, because x∗ is the optimal point on the base polytope PB (I ). We

argue below that this last condition is not needed. In other words, if we perform the rounding

procedure starting from an arbitrary fractional solution in PB (I ), the bound on the loss in

the objective value still holds. This observation will be of use when we deal with knapsack

constraints.
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Lemma 3.7. Starting from any point x∗ ∈ PB (I ), and for a distance of negative type, the

previous rounding procedure returns an integral point x0 ∈ PB (I ) such that

d(x∗)−d(x0) ≤ 4+2lnk

k
d(x∗).

Proof. Let x∗ = xM , xM−1, · · · , x1, x0 be the distinct values taken by point x in the rounding

iterations, with labels as before. We use the short-hand λm = min
{ 2

m2 , 2
km

}
. Let m′ be the

lowest index such that d(xm′
) ≥ d(x∗). If m′ = 0, then d(x∗)−d(x0) ≤ 0, and the claim follows

trivially. Otherwise, by Lemma 3.6,

d(xm′−1) = d(xm′
)− l ossm′ ≥ (1−λm′

)d(xm′
) ≥ (1−λm′

)d(x∗).

Therefore, d(x∗)−d(xm′−1) ≤λm′
d(x∗). Now, for all lower indexes 0 < m < m′, we have

d(xm)−d(xm−1) = lossm ≤λmd(xm) ≤λmd(x∗),

by Lemma 3.6 and the definition of m′. Hence,

d(x∗)−d(x0) ≤
m′∑

m=1
λmd(x∗) ≤

∞∑
m=1

λmd(x∗),

and the proof continues as in Theorem 3.4.

3.3.2 Integrality gap

To complement our approximation result, we remark that the integrality gap of the convex

quadratic program max{ 1
2 xT Dx : x ∈ PB (I )} considered above is bounded by 1− 1

k , a bound

that almost matches the approximation ratio of our algorithm. Consider the matrix D with all

off-diagonal entries equal to 1, which defines a negative-type distance by Lemma 2.10, and a

uniform matroid constraint corresponding to the polytope {x ∈ [0,1]X : 1T x = k}. Any k-set is

an optimal integral solution with value opt = (k
2

)
; but the fractional point x∗ = k

n1 is feasible

and has value k2

n2

(n
2

)
. Hence,

opt

d(x∗)
= n2

(k
2

)
k2

(n
2

) = k −1

k

n

n −1
→ 1− 1

k
as n →∞.

3.3.3 Combination with a linear function

We also remark that the previous approximation easily extends to the combination of the

dispersion function with a linear function, i.e., to MSD+ l. The new objective function can be

written as

g (x) = 1

2
xT Dx +wT x,

for a non-negative weight vector w . The extra linear term does no change the concavity of

the objective function, hence Lemma 3.1 and Theorem 3.2 are still valid for this problem.

Moreover, g (x) is still monotone, which means that the optimal fractional point x∗ will be on
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Chapter 3. MSD via convex programming

the base polytope PB (I ), and we can find it exactly. In each iteration of this section’s rounding

algorithm, g (x)− xa xbd(a,b) is linear in ε, so we can bound the loss of value of g (x) during

this iteration by xa xbd(a,b), as before. Hence, the previous analysis still holds and shows that

the total loss is very small, even when compared to d(x∗) and ignoring the linear contribution

to the objective g (x∗). Therefore, the same approximation ratio holds for this more general

problem.

3.4 Randomized rounding for further constraint types

We present in this section a natural randomization of the previous rounding procedure. A

randomized rounding algorithm can deal with further constraint through concentration

bounds. In particular, this will lead to a randomized PTAS, i.e., a PRAS, for negative-type MSD

constrained by a matroid and a constant number of knapsack constraints.

3.4.1 The modified rounding procedure

We define a randomized version of the rounding algorithm in Section 3.3.1 for the same frame-

work, namely a matroid constraint. This is a standard randomization of pipage rounding that

is known in contexts with linear objective functions (see [35, 36]). Given an input fractional

point x∗ in the base polytope, the new algorithm returns a random point x0, which is the

characteristic vector of a basis, whose expected objective value has the same guarantee as

before. And in addition, it will observe Chernoff-type concentration bounds.

The setup for the iterations remains unchanged. Let x ∈ PB (I ) be the current fractional point.

We select, among all fractional rings and all pairs within the same ring, the pair a,b that

minimizes the term xa xbd(a,b). Define the vector v =1a −1b and the coefficients

ε+ = max{ε ∈R : x +εv ∈ P (I )} and ε− = max{ε ∈R : x −εv ∈ P (I )}.

With prob. ε−
ε++ε− , update x ← x +ε+v ; else, with prob. ε+

ε++ε− , update x ← x −ε−v .

In words, the point x will move along the line parallel to v , just as before, but the direction

is chosen at random. Coefficients ε+ and ε− represent the amounts by which it will move in

either direction. Notice that both coefficients are strictly positive, because x is moving inside

the minimal face of P (I ) containing it, and by the definition of this face, x starts in its interior.

On the other hand, we have the upper bounds ε+ ≤ xb and ε− ≤ xa due to the non-negativity

constraints. The probabilities are chosen so that the marginals of the new random point are

given by x. Indeed, if the new point is x ′,

E[x ′] = ε−
ε++ε−

(x +ε+v)+ ε+
ε++ε−

(x −ε−v) = x. (3.4)

By linearity of expectation, this implies for the output point x0 that E[x0] = x∗.
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3.4. Randomized rounding for further constraint types

We study now the expected loss incurred in the objective value during an iteration. For

convenience, we pre-multiply it by −(ε++ε−).

−(ε++ε−)E[loss] = ε−[d(x +ε+v)−d(x)]+ε+[d(x −ε−v)−d(x)]

= ε−[d(x,ε+v)+d(ε+v)]+ε+[d(x,−ε−v)+d(−ε−v)]

= ε−[ε+d(x, v)+ε2
+d(v)]+ε+[−ε−d(x, v)+ε2

−d(v)]

= (ε++ε−)ε+ε−d(v),

where we used the properties in (2.5). For the term d(v) we have the identity

d(v) = d(1a −1b) =−d(1a ,1b) =−d(a,b),

hence

E[loss] =−ε+ε−d(v) = ε+ε−d(a,b) ≤ xa xbd(a,b).

In each iteration, the expected loss in the objective value is bounded by the same amount that

was used as bound in the analysis of the deterministic algorithm. Therefore, using linearity

of expectation on the sum of losses over all iterations, we can prove the same guarantee in

expectation.

Lemma 3.8. Consider negative-type MSD constrained by a matroid (X ,I ) of rank k. If we

apply the aforementioned randomized rounding procedure to a point x∗ in the matroid base

polytope PB (I ), the output is a random characteristic vector x0 of a basis, with

E[d(x0)] ≥
(
1− 4+2lnk

k

)
d(x∗), and

P

[
d(x∗)−d(x0) ≥ c

(
4+2lnk

k

)
d(x∗)

]
≤ 1

c
, for any c ≥ 1.

Proof. The first part follows from the argument above and Lemma 3.7.

Now, define the variable z = max{0,d(x∗)−d(x0)}. The proof of Lemma 3.7 can be easily

adapted to show that the expected value of this non-negative variable is E[z] ≤
(

4+2lnk
k

)
d(x∗).

Then, the second statement is simply an application of Markov’s inequality over z.

3.4.2 Concentration bounds for linear constraints

Chekuri, Vondrák and Zenklusen [36] prove that this randomized pipage rounding procedure,

whose marginals observe identity (3.4), produces a random variable with negatively correlated

components. This means that, if x0 is the output point for input x∗, then for any set S ⊂ X we

have

P

[∏
a∈S

x0
a = 1

]
≤ ∏

a∈S
x∗

a and P

[∏
a∈S

(1−x0
a) = 1

]
≤ ∏

a∈S
(1−x∗

a ).

And therefore, x0 fulfills the Chernoff-type concentration bounds.
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Lemma 3.9 (see [36]). Let x0 be the random characteristic vector of a matroid basis, obtained

from an input point x∗ ∈ PB (I ) by the previous randomized pipage rounding procedure. For

a fixed vector of coefficients m ∈ [0,1]X , define the variable Y = mT x0 = ∑
a∈X ma x0

a, whose

expectation is E[Y ] = mT x∗ because the procedure preserves marginals in expectation. The

following bounds hold for Y .

If δ≥ 0 and μ≥ E[Y ], then

P[Y ≥ (1+δ)μ] ≤
(

eδ

(1+δ)1+δ

)μ
,

which, for δ ∈ [0,1], can be simplified to

P[Y ≥ (1+δ)μ] ≤ e−μδ
2/3.

And if δ ∈ [0,1] and μ≤ E[Y ], then

P[Y ≤ (1−δ)μ] ≤ e−μδ
2/2.

These last two lemmas show that this procedure is likely to return a solution with large

objective value, that does not violate knapsack constraints by much. This is already sufficient

to deal with knapsack constraints that are soft, where a slight violation of constraints is

acceptable. In the following, we show that a proper PRAS can be obtained for a constant

number of knapsack constraints along with one matroid constraint.

3.4.3 Dealing with knapsack constraints
As our randomized rounding procedure is a special case of pipage rounding, we can follow

existing approaches to deal with knapsack constraints. It is shown in [35] that a procedure

that observes concentration bounds can deal with knapsack constraints via a pre-processing

step. This step guesses a subset G ⊂O of constant size containing “valuable" elements of the

optimal solution O, and then removes from the ground set a subset Q ⊂ X \G of elements with

large knapsack weights.

To obtain a strong approximation guarantee, one needs to prove that the potential contribution

of the deleted subset Q towards the optimal solution is small. For linear (and more generally

submodular) objective functions, this is easily achieved by making sure that the guessed set G

contains the elements of O with highest objective value. As we deal with a quadratic function,

this intuition becomes opaque, because there is no intrinsic objective value in individual

elements. Still, it is not difficult to adapt this idea to our dispersion function, as we prove in

the next lemma.

Lemma 3.10. For any distance space (X ,d), let S be an arbitrary subset of X , and let q ∈ Z+
and 0 < ε< 1. Then, there exists a set G ⊂ S of size at most �2q

ε �, such that for any set Q ⊂ S \G of

size at most q we have

d(S \Q) ≥ (1−ε)d(S).
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3.4. Randomized rounding for further constraint types

Algorithm 3.1: Randomized rounding over a matroid constraint and knapsack constraints.

Set the constants q = ⌈9r
ε2 ln r

ε

⌉
and κ=

⌈
2q
ε

⌉
.

Find (via exhaustive search) the best feasible set S′ of size ≤κ+q +⌈1
ε

⌉
.

Guess a set G ⊂O of size at most κ that fulfills the properties of Lemma 3.10 for S =O.8

for 1 ≤ i ≤ r , let bi = 1−∑
a∈G mi

a be the remaining capacity of knapsack i , after subtracting
the weights of the guessed elements in G . Define b = (b1 · · · ,br )T .

Remove from the ground set all elements a ∈ X \G such that there exists at least one knapsack
i with mi

a ≥ r
q bi . Let N ⊂ X \G be the set of these discarded elements.

Compute the optimal solution x∗ of the following convex quadratic program

max

{
1

2
xT Dx : x ∈ P (I ), xG =1G , xN = 0, M x X \(G∪N ) ≤ (1−ε)b, 1T x ∈Z

}
. (3.5)

Let (X ,I ′) be the matroid obtained from (X ,I ) by truncating at rank k ′ =1T x∗. Use the
randomized rounding procedure described above to round x∗ to a base S of this matroid.

if S is feasible, return the better of S and S′; else, return S′.

Proof. We assume that |S| is of size at least �2q
ε �, for otherwise the statement holds trivially

by setting G = S. Let G consist of the �2q
ε � elements a ∈ S with highest cross-dispersion value

d(S, a). Then, for any Q ⊂ S \G of size at most q , we have

d(S)−d(S \Q) = d(S,Q)−d(Q) ≤ d(S,Q)

≤ |Q|
|G|d(S,G) ≤ ε

2
d(S,G)

≤ ε

2
d(S,S) = εd(S),

where the second inequality follows from the definition of G . This completes the proof.

Consider a constant number r of knapsack constraints given by

∑
a∈X

mi
a xa ≤ 1, ∀i = 1, · · · ,r

where all coefficients satisfy 0 < mi
a ≤ 1, and we assume without loss of generality that the

coefficients on the right-hand side are all 1, since we can scale the constraints. For brevity,

sometimes we write these constraints in matrix form M x ≤1, where M = [m1, · · · ,mr ]T .

Let 0 < ε≤ 1
3 be an error parameter. In the remainder of the section, we prove that Algorithm 3.1

returns with probability 1− Õ( ε
2

r ) a feasible solution of value at least (1−6ε)opt . Here, Õ(·)
hides terms logarithmic in r and 1

ε . This immediately implies a PRAS for the problem. We

shall favor simplicity in our analysis, and make no attempt to optimize the running time of the

algorithm.

8This is done by exhaustive search, running the remaining steps of the algorithm for each such subset and
returning the best obtained solution.
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Theorem 3.11. The negative-type MSD problem, constrained by a matroid and a constant

number of knapsacks, admits a polynomial-time randomized approximation scheme.

Analysis

We will use use the definitions and notation found in Algorithm 3.1. We assume that |O| ≥
κ+q +�1

ε �; otherwise the algorithm finds and returns the optimal set S′ =O. We also assume

without loss of generality that |G| = κ.

Lemma 3.12.

d(x∗) ≥ (1−5ε)opt .

Proof. After guessing G , each knapsack i has capacity bi , hence it can fit at most q
r elements

of weight at least r
q bi . This proves that the number of elements in O that are erased has a

bound |N ∩O| ≤ q . By Lemma 3.10,

d(O \ N ) ≥ (1−ε)d(O) = (1−ε)opt .

Furthermore, it is evident that the point 1G + (1− ε′)1O\(G∪N ) is feasible in the quadratic

program (3.5), where ε′ is the smallest constant larger than ε such that (1−ε′)|O \ (G ∪N )| ∈Z.

For this last set, we have the following bound on its size:

|O \ (G ∪N )| = |O|− |O ∩N |− |G| ≥ |O|−κ−q ≥ 1

ε
.

Therefore, ε′ ≤ 2ε. We conclude that

d(x∗) ≥ d
(
1G + (1−ε′)1O\(G∪N ))≥ d

(
(1−ε′)1O\N )

= (1−ε′)2d(O \ N ) ≥ (1−2ε)2(1−ε)opt

≥ (1−5ε)opt .

Lemma 3.13. With probability 1−Õ( ε
2

r ), the dispersion of set S is d(S) ≥ (1−6ε)opt .

Proof. Consider the randomized rounding procedure that starts with x∗ and outputs a basis

S of the matroid (X ,I ′). This procedure does not modify integer coordinates, hence G ⊂ S.

In particular, if k ′ is the rank of this matroid, then k ′ ≥ |G| = κ. We also have that κ≥ 2q
ε , so

ε≥ 2q
κ . From Lemma 3.12, we obtain

P[d(S) ≤ (1−6ε)opt ] ≤P[d(S) ≤ (1−ε)(1−5ε)opt ]

≤P[d(S) ≤ (1−ε)d(x∗)] =P[d(x∗)−d(S) ≥ εd(x∗)]

≤P

[
d(x∗)−d(S) ≥ 2q

κ
d(x∗)

]
.

Lemma 3.8 implies that this last probability is bounded by κ
2q

4+2lnk ′
k ′ = κ

q O( logk ′
k ′ ) = κ

q O( logκ
κ ) =

O( lnκ
q ) = Õ( 1

q ) = Õ( ε
2

r ). Here, we used the definition of q , and fact that k ′ ≥ κ.
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3.4. Randomized rounding for further constraint types

Our final task is to give a bound on the probability that all knapsack constraints are satisfied.

Concentration bounds guarantee that each individual constraint is satisfied with high proba-

bility, and then a union bound is used to guarantee their simultaneous satisfiability. We remark

that the matroid constraint is satisfied with probability 1. The following lemma completes the

proof of Theorem 3.11.

Lemma 3.14. With probability at least 1− ε2

r , S satisfies all r knapsack constraints.

Proof. Fix a knapsack 1 ≤ i ≤ r , and define the vector m̄ = q
bi r (mi )X \G . The i -th knapsack

constraint is satisfied by set S if and only if

∑
a∈S

mi
a ≤ 1 ⇔ ∑

a∈S\G
mi

a ≤ bi ⇔ q

bi r

∑
a∈S\G

mi
a ≤ q

r
⇔ m̄T1S ≤ q

r
.

Observe that the vector of coefficients m̄ is in [0,1]X , because mi
a ≤ r

q bi for each a ∈ X \ G .

Furthermore, since the randomized rounding procedure is unbiased, we have that

E[m̄T1S] = m̄T x∗ = q

bi r
(mi )T (x∗)X \(G∪N ) ≤ q

bi r
(1−ε)bi = (1−ε)

q

r
,

where the inequality is ensured by the feasibility of point x∗ in the program (3.5). We apply

Lemma 3.9 over the vector m̄ and the variables Y = m̄T1S and μ= (1−ε) q
r , to conclude that

the probability of violating the i -th knapsack constraint is at most

P[Y ≥ (1+ε)μ] ≤ e−
με2

3 = e−(1−ε) ε
2 q
3r ≤ e−(1−ε)3ln r

ε ≤ e−2ln r
ε = ε2

r 2 ,

where we used the fact that ε≤ 1
3 . Finally, by the union bound, we find that the probability

that any of the r knapsack constraints is violated is at most ε2

r . This completes the proof.
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4 MSD via local search

4.1 Chapter overview
In this chapter, we focus mostly on distances of negative type, and extend some remarks

to the metric case as well. The performance of local search is analyzed for several versions

of the max-sum dispersion problem. We prove that these simple and efficient algorithms

provide PTASs for negative-type MSD, when the constraint is a general matroid, or even an

intersection of two matroids. And we obtain asymptotically optimal O(1)-approximations for

the combinations of the dispersion function with monotone submodular objectives (MSD+ f).

The main result of the chapter is a (1−O( 1
k ))-approximation for negative-type MSD, con-

strained by a general matroid of rank k, in time linear in n. Thus, it provides a similar approxi-

mation as the algorithm presented in the previous chapter, with a considerably faster running

time. The new algorithm is hence suitable for practical applications on very large data sets.

Organization and contribution

In Section 4.2, we give an informal introduction to the technique of local search, for the general

scenario of a monotone function being maximized over a matroid constraint. We define a

generic algorithm, and present general guidelines for its use. They include conditions that

ensure an efficient execution time, and a framework to calculate approximation ratios. More

interestingly, we formalize a technique that has been recently used to achieve best-possible

approximation ratios for submodular maximization [58, 118]. This technique allows to merge

two local-search algorithms with distinct objective functions, into a new algorithm that is

tailored to maximize a combination of the objectives. We consider the study and formalization

of this procedure to be of independent interest.

In Section 4.3, we present a literature review of the most relevant work related to this chapter.

The review consists of the most recent approximability results for the maximization of a mono-

tone submodular function, and for metric MSD, both constrained by a matroid. Furthermore,

we provide an improved approximation ratio for the combination of these two objectives (met-

ric MSD+ f). The use of the theory and techniques presented in Section 4.2 is highlighted there.

47



Chapter 4. MSD via local search

In Section 4.4, we consider the negative-type max-sum dispersion problem, constrained by a

matroid of rank k. We prove that the standard local-search algorithm offers an approximation

ratio of 1− 4
k , in time O(nk2 logk), and hence provides a PTAS. Moreover, for the combina-

tion with monotone submodular functions (MSD+ f), we present an improved O(1)-factor

approximation, which is considerably better than the current 1
2 -factor approximation, for

negative-type distances.

In Section 4.5, a PTAS is given for the negative-type MSD problem constrained by two matroids.

Such a broad result has no parallel on the metric case, and showcases the strength of the

negative-type inequalities.

4.2 A local-search toolbox for matroid-constrained maximization
In this section, we present a generic local-search algorithm for the maximization of a mono-

tone function over the independent sets of a matroid. We list some basic properties that are

sufficient for the algorithm to provide an approximation ratio. Furthermore, we analyze the

scenario where the sum of two functions is to be maximized: if local-search algorithms provide

approximation ratios for the individual functions, then they can be merged into an algorithm

for the combined function.

We present the basic notions of a local search algorithm, in an informal way. For a more

detailed introduction, we direct the reader to [1, 123]. Before we focus on a matroid constraint,

we consider a general scenario, where for a finite ground set X , a monotone objective function

f : 2X →R+ is to be maximized, over a certain family F ⊂ 2X of feasible solutions (this is the

same framework described in Section 2.2). Let O ∈F be the optimal solution.

For each solution A ∈F , we need to define a neighborhood N (A) ⊂F . A solution A is called a

local optimum if none of its neighbors has a better objective value. We describe the basic idea

of the algorithm. Starting at some initial solution, it iteratively performs exhaustive search

over the neighborhood of the current solution. It then moves to the best neighbor, and starts a

new iteration. The algorithm thus advances from neighbor to neighbor, in a greedy way, until

it finds a local optimum. Hence, for the design of an efficient algorithm, one must ensure that

neighbors are small, while at the same time making sure that local optima compare well to the

global optimum O.

The value min{ f (A)/ f (O) : A is a local optimum}, is called the locality gap. It gives a theoreti-

cal limit to the approximation ratio that the algorithm may offer. The value of the locality gap

is usually not known. On the other hand, a known lower bound to this value is called a locality

ratio. Proving a locality ratio is equivalent to proving an approximation ratio of the same value,

for any approximation algorithm that outputs a local optimum.

However, in order to ensure an efficient execution time, the local optimality condition is often

relaxed, and a local-search algorithm is set to halt as soon as it finds a solution such that the
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objective value improvement offered by any neighbor is bounded by a threshold (we call this

solution a near local optimum). There will be a trade-off between the threshold used as halting

condition, and a consequent loss in the approximation ratio, with respect to the locality ratio.

Sometimes it is convenient to define an auxiliary potential function F different from f , and

run a local-search algorithm returning a (near) local optimum with respect to F . Such an

algorithm is called non-oblivious. In this case, the locality gap is defined as min{ f (A)/ f (O) :

A is a local optimum w.r.t F }, and it may be larger than the locality gap of the standard (oblivi-

ous) local search. Consequently, better locality and approximation ratios can be obtained with

non-oblivious algorithms, as we shall see.

4.2.1 Generic algorithm for a matroid constraint

We suppose in this section that the feasible solutions correspond to the independent sets of a

matroid (X ,I ) of rank k. We will describe for this case a generic local-search algorithm. As

stated in Section 2.2, we assume that the objective function f and the matroid are given by a

value oracle and an independence oracle, respectively, and we are looking for an algorithm

that runs in polynomial time. In particular, only polynomially many calls to these oracles can

be made.

As f is monotone, we can restrict our attention to solutions that are bases (of cardinality k).

Two bases A,B are considered neighbors if |A�B | ≤ 2.1 For greater generality, we consider a

non-oblivious local-search algorithm for this problem, that maximizes a potential function

F : 2X →R+. This function F will be defined in terms of f , and possibly I , and should provide

a good locality ratio. In the case that F is equal to (a scalar multiple of) f , this is equivalent to

an oblivious algorithm. And for a parameter ε> 0, we establish a halting condition in such a

way that the difference between the locality ratio and the approximation ratio of the algorithm

is no more than ε.

We present now a list of sufficient conditions for such an algorithm to work successfully. Let

O f and OF be optimal bases for functions f and F , respectively. We call F bounded, if there

is a computable number BF of polynomial size, such that F (OF )
f (O f ) ≤ BF . We also need an initial

basis A0 whose objective value is not too low. We call a basis A0 restricted for F if log F (OF )
F (A0) is

polynomially bounded.

An evaluation of F might need a superpolynomial number of evaluations of f to be computed.

We call F approximable if, for any basis A, and numbers M and δ> 0, an estimate F ′(A) of

F (A) can be computed in time polynomial in n,δ−1 and log M , such that

P
[|F ′(A)−F (A)| ≥ δF (A)

]≤ 1

M
.

1The notion of neighborhood will be different in Section 4.5, as it deals with a different type of constraint.
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Algorithm 4.1: Local search for matroid-constrained maximization, associated to a potential
function F and a parameter ε> 0.

Define δ= ε
kBF

.
Compute a restricted basis A0 and initialize A ← A0.
while ∃ pair (a,b) ∈ A× (X \ A) such that A−a +b ∈I and F (A−a +b) > (1+δ)F (A) do

Find such a pair (a,b) maximizing F (A−a +b).
Set A ← A−a +b.

return A.

If this is the case, we can choose M large enough, and use the union bound, to prove that with

high probability all the necessary evaluations of F ′ during the algorithm execution will have

a multiplicative error within 1±δ. Hence, the approximation loss due to estimation errors

can be made of the same or smaller order as the loss due to the halting condition. To simplify

analysis, whenever F is approximable, we assume that we have an exact value oracle for it.2

We assume that the previous conditions are satisfied by a potential function F , and define

Algorithm 4.1, associated to F and to a parameter ε> 0, which performs single-element swaps

in each iteration. In order to prove a good locality ratio, we will use the following well-known

exchange property observed by the bases of a matroid. We shall refer to the bijection defined

below as Brualdi bijections.

Lemma 4.1 (Brualdi [25]). For any two independent sets A,B ⊂I of equal cardinality, there

is a bijection π : A → B such that for any a ∈ A, we have A−a +π(a) ∈I . In particular, such a

bijection satisfies that it is the identity mapping over A∩B.

Theorem 4.2. Consider the problem maxA∈I f (A), for a matroid (X ,I ) and a monotone func-

tion f : 2X →R+, and let O f be the corresponding optimal basis. Let F : 2X →R+ be a potential

function that is bounded, approximable, and for which a restricted basis can be computed

efficiently. Moreover, assume that for any two bases A and B and a Brualdi bijection π : A → B,

f (A) ≥ (1−αB ) f (B)+ ∑
a∈A

[F (A)−F (A−a +π(a))] , (4.1)

for a coefficient αB in [0,1] that may depend on B. Then, for the problem above, Algorithm 4.1

associated to F and to a parameter ε> 0 offers an approximation ratio of (1−αO f −ε).

Proof. First we study the approximation ratio. By the way the updates are performed, A will

be a basis throughout the execution of the algorithm. Let the output basis be S, and consider a

Brualdi bijection π : S →O f . For each a ∈ S, the set S−a+π(a) is also a basis, so by the halting

condition we have that (1+δ)F (S) ≥ F (S −a +π(a)). It implies that

F (S)−F (S −a +π(a)) ≥−δF (S) ≥− ε

kBF
F (S) ≥− ε

k
f (O f ).

2Technical details about dealing with an approximable potential function can be found in [58].
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If we apply inequality (4.1) to this bijection, and use the previous bound for all a ∈ A, we get

f (S) ≥ (1−αO f ) f (O f )−k
( ε

k
f (O f )

)
= (1−αO f −ε) f (O f ).

Next, we analyze the complexity of the algorithm. The basis A0 is computed in polynomial

time, and indeed in most applications this complexity is low compared to the rest of the

algorithm. Each iteration is performed in time O(nk), and in every iteration the value F (A)

grows at a multiplicative rate of at least (1+δ). If the total number of iterations is T , then

F (OF ) ≥ F (S) ≥ (1+δ)T F (A0),

and consequently

T =O

(
1

δ
log

F (OF )

F (A0)

)
=O

(
kBF

ε
log

F (OF )

F (A0)

)
.

The terms BF and log F (OF )
F (A0) are polynomially bounded, so the proof is complete. If we consider

the complexity N of approximating each evaluation of F , then the overall running time is

O

(
ε−1nk2BF N log

F (OF )

F (A0)

)
.

In the limit ε → 0, the previous theorem states that the locality ratio of the algorithm is

(1−αO f ), which is apparent from inequality (4.1). When maximizing a function under a

matroid constraint, it is common in the literature to state the locality ratio with a similar

inequality, as we will see in Section 4.3, where α is usually a constant, and F is often just a

scalar multiple of f .

4.2.2 Combining objective functions
The following is a formalization of a technique that has been recently used in the maximization

of monotone submodular functions [58, 118], to obtain optimal approximation ratios via local

search. The result allows to combine the locality ratios of two distinct objective functions,

expressed in the form of (4.1), into a locality ratio for a combined objective function.

Theorem 4.3. Consider a matroid (X ,I ), and for i = 1,2, consider a monotone function

fi : 2X →R+, and a corresponding potential function Fi : 2X →R+ that satisfies all conditions

of Theorem 4.2, and where in particular inequality (4.1) holds for a coefficient α(i )
B . Define

the function g = f1 + f2, consider the problem maxA∈I g (A), and let Og be the corresponding

optimal basis. Then, G = F1 +F2 is a potential function for g that satisfies all conditions of

Theorem 4.2, and where inequality (4.1) holds for a coefficient

αB = f1(B)

g (B)
α(1)

B + f2(B)

g (B)
α(2)

B .

Consequently, this problem admits an approximation ratio of (1−αOg −ε), for any ε> 0.
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We remark that αB corresponds to a convex combination of α1
B and α2

B , so in particular

αB ≤ max{α1
B ,α2

B }. Notice also that the claim extends to combinations of more than two

functions, and to weighted combinations.

Proof. Consider any bases A and B and any Brualdi bijectionπ : A → B . For potential functions

F1 and F2, inequality (4.1) reads

fi (A) ≥ (1−αi
B ) fi (B)+ ∑

a∈A
[Fi (A)−Fi (A−a +π(a))] , for i = 1,2.

If we sum up these two inequalities and use the definitions of g and G , we get

g (A) ≥ g (B)−α1
B f1(B)−α2

B f2(B)+ ∑
a∈A

[G(A)−G(A−a +π(a))]

=
(
1− f1(B)

g (B)
α1

B − f2(B)

g (B)
α2

B

)
g (B)+ ∑

a∈A
[G(A)−G(A−a +π(a))] .

Hence we obtain the desired inequality (4.1) for G . If F1 and F2 are approximable, then G is

clearly also approximable. G is also bounded because

G(OG )

g (Og )
= F1(OG )

g (Og )
+ F2(OG )

g (Og )
≤ F1(OF1 )

g (O f1 )
+ F2(OF2 )

g (O f2 )
≤ F1(OF1 )

f1(O f1 )
+ F2(OF2 )

f2(O f2 )
≤ BF1 +BF2 .

And finally, if we can efficiently compute a restricted basis Ai for Fi , i = 1,2, and, say, F1(A1) ≥
F2(A2), then A1 is a restricted basis for G because

G(OG )

G(A1)
≤ F1(OG )+F2(OG )

F1(A1)
≤ F1(OG )

F1(A1)
+ F2(OG )

F2(A2)
≤ F1(OF1 )

F1(A1)
+ F2(OF2 )

F2(A2)
.

4.3 Related work
We present a short review of the most relevant results in the literature. They correspond to

recent developments in the approximability of monotone submodular maximization [58, 118],

using non-oblivious local search, as well as the current best approximation algorithms for

metric MSD [23]. We also provide an improved result for the problem of metric MSD+ f.

We highlight the use of the theoretical toolbox introduced above. Throughout this section,

(X ,I ) is a fixed matroid, A and B are arbitrary matroid bases, π : A → B is a Brualdi bijection,

and ε> 0 is an arbitrary constant. We will state local ratio results in the form of inequality (4.1),

and invoke Theorems 4.2 and 4.3 to obtain corresponding approximation guarantees.

4.3.1 Monotone submodular maximization
Consider the problem maxA∈I f (A), where f : 2X →RX+ is a submodular monotone function.

This problem is first studied in the seminal work of Fisher, Nemhauser and Wolsey [59].

They show that the oblivious local-search algorithm achieves a locality ratio of 1
2 , and an
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approximation ratio of 1
2 −ε. They also provide an example where the locality gap is 1

2 , proving

that the analysis is tight. Borodin et al. [23, Lemma 5] state this locality ratio in the form of

inequality (4.1):3

f (A) ≥
(
1− 1

2

)
f (B)+ 1

2

∑
a∈A

[
f (A)− f (A−a +π(a))

]
. (4.2)

Here, the potential function can be considered to be F = 1
2 f .

However, a different, more careful choice of the potential function can yield better results.

Filmus and Ward [58, Theorem 5.1] prove that

f (A) ≥
(
1− 1

e

)
f (B)+ ∑

a∈A
[F (A)−F (A−a +π(a))] , (4.3)

for a potential F that is approximable, bounded with bound BF = O(logk), and for which a

restricted basis can be computed efficiently.4 Therefore, by Theorem 4.2, the local search

associated to F offers an approximation ratio of 1− 1
e −ε. This function was found with the

technique of factor-revealing LPs, to ensure its optimality. And indeed, this approximation

ratio is best possible, as Feige [52] proves that improving the bound of 1− 1
e is NP-hard, even

if f is an explicitly given coverage function. And Nemhauser and Wolsey [100] show that

improving upon this bound requires an exponential number of queries in the value oracle

model.

Conforti and Cornuéjols [41] define the curvature of a monotone submodular function f as

c = 1−min
a∈A

f (X )− f (X −a)

f (a)− f (�)
.

The property of submodularity implies that c ≥ 0, while monotonicity implies c ≤ 1. Hence,

the coefficient c is always between 0 and 1, and it measures how close the function is to

being linear, where c = 0 if and only if f is linear. Sviridenko, Vondrák and Ward [118] build

upon Filmus and Ward’s result, and optimize the choice of the potential F depending on the

curvature of f . More concretely, for a monotone and submodular function f of curvature c,

Sviridenko et al. consider the decomposition f = l + f ′, where

l (A) = f (�)+ ∑
a∈A

[ f (X )− f (X −a)], and f ′(A) = f (A)− l (A), ∀A ⊂ X .

They prove that l is linear, f ′ is submodular, monotone and normalized, and f ′(A) ≤ c f (A) for

each A ⊂ X . It is easy to see that for any linear function l ,

l (A) = l (�)+ ∑
a∈A

[l (A)− l (A−a +π(a))] . (4.4)

3This result is originally stated in less generality, but its original proof carries on directly for this statement.
4The original potential function in [58] is a scalar factor (1−1/e) away from this function.
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Hence, if we define a potential function F ′ for f ′ as in inequality (4.3), and use it to define

F = l +F ′, it follows from Theorem 4.3 over inequalities (4.3) and (4.4), that F is a potential

function of f which satisfies all conditions of Theorem 4.2, and such that

f (A) ≥
(
1− 1

e

f ′(B)

f (B)

)
f (B)+ ∑

a∈A
[F (A)−F (A−a +π(a))]

≥
(
1− c

e

)
f (B)+ ∑

a∈A
[F (A)−F (A−a +π(a))] . (4.5)

Thus, in [118] the authors conclude that the local search associated to F offers an approxi-

mation ratio of 1− c
e −ε. Moreover, they extend the negative result of [100] to prove that this

bound is best possible; namely they show that, for each c ∈ [0,1], improving upon the bound

of 1− c
e requires an exponential number of queries in the value oracle model.

As another applicability example, we perform the same decomposition of f = l + f ′ as above,

and this time define the potential function F = l + 1
2 f ′. Then, using Theorem 4.3 over inequali-

ties (4.2) and (4.4), we conclude the following.

Theorem 4.4. For the matroid-constrained maximization of a submodular monotone function

f of curvature c, there is a non-oblivious local-search algorithm that achieves an approximation

ratio of 1− c
2 − ε, for any ε > 0, with a potential function that can be computed exactly in

polynomial time.

4.3.2 Metric MSD
Consider the MSD problem over a metric distance (X ,d), constrained by a matroid (X ,I ) of

rank k. We study the results by Borodin et al. [23], for which we present short proofs. This

will serve as a starting point for our analysis of the negative-type case considered in Section 4.4.

The first thing we need is a bound on the distances between elements paired by the Brualdi

bijection π : A → B . This is given in the next lemma.

Lemma 4.5 ([23]). If (X ,d) is metric, then for any sets A,B ⊂ X of equal size k ≥ 3, and any

bijection π : A → B, ∑
a∈A

d(a,π(a)) ≤ d(A,B)−d(B).

Proof. For any a in A and two distinct elements b,b′ in B −π(a), the triangle inequality gives

d(a,b)+d(a,b′) ≥ d(b,b′).

Keeping a fixed and summing these inequalities over all
(k−1

2

)
pairs in B −π(a) yields

k −2

2
d(a,B −π(a))+ k −2

2
d(a,B −π(a)) ≥ d(B −π(a)), or equivalently

(k −2)[d(a,B)−d(a,π(a))] ≥ d(B)−d(B ,π(a)).
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A−a

a

b

d(A)

A−a

a

b

d(A,b)

A−a

a

b

d(A−a +b)

A−a

a

b

d(A, a)

A−a

a

b

d(a,b)

Figure 4.1: Visual proof of identity d(A)+d(A,b) = d(A−a+b)+d(A, a)+d(a,b), assuming
that a ∈ A and b ∉ A−a. Each edge is counted once on either side of the equation.5

Finally, summing over all elements a in A,

(k −2)

[
d(A,B)− ∑

a∈A
d(a,π(a))

]
≥ kd(B)−d(B ,B) = (k −2)d(B).

The result follows after dividing by (k −2) and rearranging the terms.

In the remainder of the section, we assume for simplicity that the rank is k ≥ 3; instances with

smaller rank can be solved efficiently by exhaustive search.

Lemma 4.6 ([23]). If (X ,d) is metric, then for any bases A,B ∈I (of size k ≥ 3) and any Brualdi

bijection π : A → B,

d(A) ≥
(
1− 1

2

)
d(B)+ 1

2

∑
a∈A

[d(A)−d(A−a +π(a))] . (4.6)

Proof. A Brualdi bijection corresponds to the identity when restricted to A∩B . Therefore, for

any a ∈ A, we have π(a) ∉ A−a, and the following identity holds (see Figure 4.1).

d(A)−d(A−a +π(a)) = d(A, a)−d(A,π(a))+d(a,π(a)). (4.7)

Summing up these terms over all a ∈ A, and using the previous lemma, we get

∑
a∈A

[d(A)−d(A−a +π(a))] = d(A, A)−d(A,B)+ ∑
a∈A

d(a,π(a))

≤ 2d(A)−d(B).

We obtain the claim after solving for the term d(A) on the right-hand side.

5Image excerpted from [31], with permission from the authors.
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It is easy to check that all conditions of Theorem 4.2 are satisfied. Hence, Borodin et al. con-

clude that an oblivious local search offers an approximation ratio of 1
2 − ε for metric MSD

constrained by a matroid.

Next, the authors in [23] study metric MSD+ f, i.e., for a given submodular and monotone

function f , the goal is to maximize the function g = d + f over a basis of the matroid. The sum

of inequalities (4.2) and (4.6) immediately gives

g (A) ≥
(
1− 1

2

)
g (B)+ 1

2

∑
a∈A

[
g (A)− g (A−a +π(a))

]
,

and so, by Theorem 4.3, we have that an oblivous local search also offers an approximation

ratio of 1
2 −ε for metric MSD+ f constrained by a matroid.

We highlight that the recent non-oblivious local-search procedures [58, 118] presented in

Section 4.3.1 lead to a strengthening of the results of Borodin et al. Assume function f has

curvature c. Define for it the potential F as in inequality (4.5) (see [118]), and set G = 1
2 d +F .

Then, the sum of inequalities (4.5) and (4.6) yields

g (A) ≥
(
1− 1

2

d(B)

g (B)

)
g (B)− c

e

f (B)

g (B)
+ ∑

a∈A
[G(A)−G(A−a +π(A))] .

From Theorem 4.3 we conclude the following.

Theorem 4.7. Consider metric MSD+ f constrained by a matroid, where f has curvature c. Let

λd ≥ 0 be such that d(O)
g (O) ≤λd , where O is the optimal basis. Then, Algorithm 4.1 associated to

ε> 0 and the potential function G defined above, offers an approximation ratio of

1−λd
1

2
− (1−λd )

c

e
−ε.

4.4 Negative-type MSD with a matroid constraint
We now pass to the MSD problem over a distance of negative type, constrained by a matroid of

rank k. In this section, we prove that the oblivious version of the generic Algorithm 4.1 offers

an approximation ratio of 1−O( 1
k ), and hence, provides a PTAS. We provide a detailed analysis

of the running time of this algorithm. Then, we use the local-search machinery introduced

in Section 4.2 to define a non-oblivious algorithm for the mixed-objective problem MSD+ f,

with a O(1) approximation ratio that is asymptotically optimal.

4.4.1 Statement of locality ratio
We start our analysis in a similar way as for the metric case (Section 4.3.2). We consider a

Brualdi bijection between two arbitrary bases, and look for a statement of the locality ratio in

the form of inequality (4.1). Once again, the sum of distances between paired elements needs

to be bounded.

Lemma 4.8. If (X ,d) is of negative type, then for any sets A,B ⊂ X of cardinality k, and any
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bijection π : A → B, ∑
a∈A

d(a,π(a)) ≤ 2

k
d(A,B).

Proof. For any a ∈ A, if π(a) �= a, inequality (2.8) gives

d(A, a)+d(A,π(a)) = d(A, {a,π(a)}) ≥ 2

k
d(A)+ k

2
d(a,π(a)).

And the same inequality is true if π(a) = a; namely, in this case we have d(A, a) ≥ 1
k d(A), also

stemming from inequality (2.8). The sum of these inequalities over all a ∈ A gives

d(A, A)+d(A,B) ≥ 2d(A)+ k

2

∑
a∈A

d(a,π(a)).

The terms d(A, A) and 2d(A) cancel out, and the claim follows.

We prove now a locality ratio of 1− 4
k+2 .

Lemma 4.9. For any two bases A,B ⊂ X , and any Brualdi bijection π : A → B,

d(A) ≥
(
1− 4

k +2

)
d(B)+ k

k +2

∑
a∈A

[d(A)−d(A−a +π(a))] . (4.8)

Proof. We assume that the matroid rank k is at least 2, for otherwise the statement follows

trivially. Summing up identity (4.7) over all a ∈ A, and using the previous lemma, we get

∑
a∈A

[d(A)−d(A−a +π(a))] = d(A, A)−d(A,B)+ ∑
a∈A

d(a,π(a))

≤ 2d(A)−
(
1− 2

k

)
d(A,B)

≤ 2d(A)−
(
1− 2

k

)
[d(A)+d(B)]

= k +2

k
d(A)− k −2

k
d(B),

where the last inequality comes from inequality (2.8). The claim now follows after solving for

the term d(A) on the right-hand side.

Theorem 4.10. For negative-type MSD with a rank k matroid restriction, the oblivious Algo-

rithm 4.1 offers an approximation ratio of (1− 4
k+2 −ε), for any ε> 0. Consequently, it provides

a polynomial-time approximation scheme to the problem.

See Remark 2.1 for the implication towards a PTAS. The previous statement is a direct appli-

cation of Theorem 4.2, for which all necessary conditions are satisfied. In particular, if we

take as initial solution a basis A0 that contains the pair {a,b} ∈ I of maximum distance d(a,b),

then it can be checked that d(A0) ≥ opt
k , so A0 is restricted.6 However, we prove next that the

algorithm is highly efficient, even if the initial solution is an arbitrary basis.

6Indeed, if {a,b} ⊂ A0, inequality (2.9) gives d(A0) ≥ k
2 d(a,b); and we also know that opt ≤ k2

2 d(a,b).
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4.4.2 Complexity of the algorithm

The following is a mostly standard argument showing exponentially fast convergence of the

local search algorithm. We will take advantage of the greedy way in which the improvements

are made.

Lemma 4.11. If the oblivious Algorithm 4.1 starts with an arbitrary basis A0, and returns a

basis At after t iterations, then

d(At ) ≥
[

1− 4

k +2
−

(
1− k +2

k2

)t ]
opt .

Proof. Denote by Ai , i = 0, · · · , t , the basis obtained after i iterations of the algorithm. For a

fixed i , let π : Ai →O be a Brualdi bijection between Ai and the optimal basis O. A reformula-

tion of inequality (4.8) gives

1

k

∑
a∈Ai

[d(Ai −a +π(a))−d(Ai )] ≥ k −2

k2 d(O)− k +2

k2 d(Ai ).

The left-hand side corresponds to the average improvement in the objective value, obtained

by swaps of the paired elements. As Ai+1 is chosen greedily over all feasible swaps, we learn

that

d(Ai+1)−d(Ai ) ≥ k −2

k2 d(O)− k +2

k2 d(Ai ),

and after regrouping terms:

(
1− 4

k +2

)
d(O)−d(Ai+1) ≤

(
1− k +2

k2

)[(
1− 4

k +2

)
d(O)−d(Ai )

]
, ∀i = 0, · · · , t −1.

If we apply the previous inequality sequentially over all 0 ≤ i ≤ t −1:

(
1− 4

k +2

)
d(O)−d(At ) ≤

(
1− k +2

k2

)t [(
1− 4

k +2

)
d(O)−d(A0)

]
.

And hence,

d(At ) ≥
(
1− 4

k +2

)[
1−

(
1− k +2

k2

)t ]
d(O)+

(
1− k +2

k2

)t

d(A0)

≥
[

1− 4

k +2
−

(
1− k +2

k2

)t ]
d(O).

Theorem 4.12. For negative-type MSD with a rank k matroid constraint, it suffices to run the

oblivious Algorithm 4.1 for O(k logk) iterations, starting with an arbitrary basis, to obtain an

approximation ratio of (1− 4
k ). Moreover, this algorithm can be implemented to run in time

O(nk2 logk), when counting distance evaluations and calls to the independence oracle as unit

time.
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Proof. From the previous lemma, if Algorithm 4.1 runs for t =
⌈

k2

k+2 ln k(k+2)
8

⌉
= O(k logk)

iterations, then the approximation ratio is 1− 4
k+2 − 8

k(k+2) = 1− 4
k .

To complete the proof, it remains to show that each iteration can be performed in time O(nk).

To achieve this, we use the following identity (see Figure 4.1).

d(A−a +b) = d(A)−d(A, a)+d(A,b)−d(a,b), ∀a ∈ A, b ∈ X \ A.

Consider a fixed iteration, where the current set is A, and suppose that we have a table with

the values of d(A,c) for each c ∈ X . Then, for any (a,b) ∈ A×(X \ A), the evaluation d(A−a+b)

can be computed in constant time, using the table and the identity above, and the feasibility

of A−a +b is also checked in constant time. Hence, the optimal swap pair can be found in

time O(nk). And after the swap, the table can be updated in constant time per entry.

We remark the high efficiency of the algorithm, which is linear in n. It is thus applicable on

many real-life applications, where n is large and k is of medium size. For instance, if k = 50,

the running time stays low, and the approximation guarantee is over 90%. In Section 5.5, we

will discuss the application of core-sets for geometric instances of the problem. It will allow to

reduce the complexity of the algorithm even more, and adapt it into streaming and distributed

models of computation, to tackle instances with huge values of n.

4.4.3 Locality gap
We prove that the previous approximation ratio almost matches the locality gap of the local-

search algorithm, even in the case of a uniform matroid, and even if several elements are

swapped in each iteration.

Theorem 4.13. For negative-type MSDk , the locality gap of a local-search algorithm that swaps

a sublinear number of elements per iteration is at most 1− 1
2k +o( 1

k ).

Proof. Consider a local-search algorithm that in each iteration removes at most c elements

of the current set and adds at most c new elements, where c = o(k). We define the following

distance space (X ,d), which will be of negative type by Lemma 2.10. Let n = 2k, and let X be

partitioned into two k-sets X = A∪B . The distances are: 1+ c
2k2 for all pairs within A, 1+ 1

2k

for all distances within B , and 1 for all pairs across A and B . Then, d(A)/d(B) = 1− 1
2k +o( 1

k ).

The proof is complete once we show that A is a local optimum. If we swap c elements in A for

c elements in B , the gain is
(c

2

)
(1+ 1

2k )+c(k −c); and the loss is
(c

2

)
(1+ c

2k2 )+c(k −c)(1+ c
2k2 ).

Thus, the total gain is

(
c

2

)(
1

2k
− c

2k2

)
−c(k −c)

c

2k2 ≤ c2

2

(
1

2k
− c

2k2

)
− c2

2k2 (k −c)

= c2

4k2 [(k −c)−2(k −c)]

=−c2(k −c)

4k2 < 0.
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4.4.4 Combination with a monotone submodular function

We consider now the negative-type MSD+ f problem. That is, we are given a distance (X ,d)

of negative type, a matroid (X ,I ) of rank k, and additionally a function f : 2X → R+ that is

monotone and submodular, and we search for the basis that maximizes the mixed function

g = d + f . We assume moreover that the curvature of f is c.

We define for f the potential function F as in inequality (4.5) (see [118]), and use it to define

G = k
k+2 d +F . Then, for any bases A,B , and any Brualdi bijection π : A → B between them, the

sum of inequalities (4.5) and (4.8) yields

g (A) ≥
(
1− 4

k +2

d(B)

g (B)
− c

e

f (B)

g (B)

)
g (B)+ ∑

a∈A
[G(A)−G(A−a +π(a))] .

From Theorem 4.3 we conclude the following.

Theorem 4.14. Consider negative-type MSD+ f constrained by a matroid of rank k, where f

has curvature c. Let λd = d(O)
g (O) and λ f = f (O)

g (O) , where O is an optimal basis. Then, Algorithm 4.1

associated to ε> 0 and the potential function G defined above, offers an approximation ratio of

1−λd
4

k +2
−λ f

c

e
−ε≥ 1−max

{
4

k +2
,

c

e

}
−ε.

We make some observations about this last result. In the case c = 0, the algorithm offers a PTAS

for the linear case (MSD+ l). This greatly improves upon the known 1
2 -approximation [18, 23],

for negative-type distances. On the other hand, if k is large enough, the result yields an approx-

imation ratio of 1− c
e −ε, which is known to be optimal even for the special case of maximizing

a monotone submodular function with curvature c over a matroid constraint [118].

4.5 Negative-type MSD with a matroid-intersection constraint
We extend our results in the previous section, and prove that a local-search algorithm also

offers a PTAS in the case of a matroid-intersection constraint. The PTAS is mostly of theoretical

interest, as its complexity will be large. For clarity of exposition, we do not attempt to provide

a sharp bound on its complexity. We consider a distance space (X ,d) and two matroids (X ,I1)

and (X ,I2) over the same ground set X , and our goal is to maximize the dispersion of a

common independent set A ∈I1 ∩I2.

4.5.1 Algorithm definition

Our Algorithm 4.2 for this problem is similar to Algorithm 4.1, except that a larger number

of elements is exchanged per iteration. For a parameter p ≥ 2, at most p elements from the

current set A are removed, and at most p −1 new elements are added to it. This algorithm is

also very similar to a procedure suggested by Lee, Sviridenko and Vondrák [92], designed for

the maximization of a monotone submodular function subject to multiple matroid constraints.
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4.5. Negative-type MSD with a matroid-intersection constraint

Algorithm 4.2: Local search for a matroid-intersection constraint with exchange parameter p
and error parameter ε.

Define δ= ε
12k .

Compute a restricted set A0 ∈I1 ∩I2 and initialize A ← A0.
while ∃P ⊂ X with

1. |P ∩ A| ≤ p, |P \ A| ≤ p −1,

2. A�P ∈I1 ∩I2, and

3. d(A�P ) > (1+δ)d(A),
do

Find such a set P maximizing d(A�P ).
Set A ← A�P .

Find a maximal set S ∈I1 ∩I2 containing A.
return S.

In this section, k = max{|A| : A ∈ I1 ∩I2} will be the maximum cardinality of a common

independent set. It is well known that the cardinality of any (inclusion-wise) maximal com-

mon independent set is at least k
2 (see, e.g. [123]). We will use this property in our analysis. A

possibility to define the initial solution A0 is to find the pair {a,b} ∈I1 ∩I2 with maximum

distance d(a,b), and then compute any maximal set containing the pair. Then, inequal-

ity (2.9) gives d(A0) ≥ |A0|
2 d(a,b) ≥ k

4 d(a,b); while for the optimal solution we know that

d(O) ≤ (k
2

)
d(a,b) ≤ k2

2 d(a,b). Thus, we have the bound d(A0) ≥ 1
2k d(O).

The algorithm runs in polynomial time. Each iteration is performed in time nO(p), where p is

a constant. And in each iteration, the value of d(A) grows at a multiplicative rate of at least

(1+δ). Hence, by an argument as in Theorem 4.2, the total number of iterations is

T =O

(
1

δ
log

d(O)

d(A0)

)
=O

(
k

ε
logk

)
.

4.5.2 Exchange property for matroid intersection

In the single matroid case, the analysis of our local-search algorithm had Brualdi’s exchange

property at its core (Lemma 4.1). For the intersection of two matroids, we will heavily rely on

a similar, recently developed exchange property, where for any two common independent

sets A,B ∈I1 ∩I2, subsets of A are paired up with subsets of B , in such a way that swapping

any subset of A with its paired subset in B leads again to a common independent set. The

following lemma was shown in [37], building up on previous work [92, 36]. We present a

simplified version of the lemma, leaving out some properties that we do not need.
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Chapter 4. MSD via local search

Lemma 4.15 ([37, Lemma 3.3]). For an integer p ≥ 2, and two common independent sets

A,B ∈ I1 ∩I2 with |A| = |B |, there exists a family of nonempty sets P1, . . . ,Pm ⊆ AΔB, with

|Pi ∩ A| ≤ p and |Pi ∩B | ≤ p −1 for 1 ≤ i ≤ m, and coefficients λ1, · · · ,λm > 0, such that

1. AΔPi ∈I1 ∩I2, for 1 ≤ i ≤ m, and

2.
∑m

i=1λi1
Pi = p

p−11
A\B +1B\A.

We recall again that 1A ∈RX represents the characteristic vector of a set A ⊂ X . In the previous

statement, the condition |A| = |B | is in fact not necessary, even though it is important in the

original lemma in [37] to achieve further properties. For completeness, we state the lemma

without this requirement, and provide a short proof for it.

Lemma 4.16. For an integer p ≥ 2, and two common independent sets A,B ∈ I1 ∩I2, there

exists a family of nonempty sets P1, . . . ,Pm ⊆ AΔPi , with |Pi ∩ A| ≤ p and |Pi ∩B | ≤ p −1 for

1 ≤ i ≤ m, and coefficients λ1, · · · ,λm > 0, such that

1. AΔPi ∈I1 ∩I2, for 1 ≤ i ≤ m, and

2.
∑m

i=1λi1
Pi = p

p−11
A\B +1B\A.

Proof. In the case that A,B ∈I1 ∩I2 have different sizes, we will “lift" them into larger sets A′

and B ′ of the same size, that are common independent sets of two auxiliary matroids I ′
1 and

I ′
2. Then, the application of Lemma 4.15 over these auxiliary matroids will imply the claim.

Recall that k is the maximum cardinality of a common independent set. Define X ′ = X ∪Y ,

where Y is an auxiliary k-set that is disjoint from X . And define the auxiliary matroids (X ′,I ′
j ),

for j = 1,2, where I ′
j = {S′ ⊂ X ′ : S′ ∩X ∈Ij }. These are indeed matroids, as they correspond

to the direct sum of the matroid (X ,Ij ) with the free matroid (Y ,2Y ) (see, e.g., [114, volume

B]). Finally, for sets A,B ∈ I1 ∩I2, let A′,B ′ ∈ I ′
1 ∩I ′

2 be any sets such that |A′| = |B ′| = k,

A = A′ ∩X , and B = B ′ ∩X .

We can now apply Lemma 4.15 to sets A′ and B ′, with respect to matroids I ′
1 and I ′

2, to obtain

a family of sets P ′
1, · · · ,P ′

m ⊂ X ′ and coefficients λ1 · · · ,λm , satisfying the properties guaranteed

by the lemma. To complete the proof, it is enough to observe that the family Pi = P ′
i ∩X for

1 ≤ i ≤ m also satisfies the claimed properties (after removing empty sets). These properties

follow from the definitions of the auxiliary matroids, which in particular imply that for any

S′ ∈I ′
1 ∩I ′

2, we have S′ ∩X ∈I1 ∩I2.

4.5.3 Statement of locality ratio
As in the previous sections, when we use the exchange property in the analysis, we will need

to bound the dispersion of the paired elements. We do that in the next lemma.

Lemma 4.17. For p ≥ 2 and A,B ⊂I1 ∩I2, let Pi ⊂ X and λi > 0 (for 1 ≤ i ≤ m) be a family of

sets and coefficients satisfying the conditions of Lemma 4.16. If (X ,d) is of negative type, then

|A|
2p −1

m∑
i=1

λi d(Pi ) ≤ 2p

p −1
d(A)+d(A,B).
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4.5. Negative-type MSD with a matroid-intersection constraint

Proof. For any 1 ≤ i ≤ m, inequality (2.8) gives

d(1A ,1Pi ) = d(A,Pi ) ≥ |A|
|Pi |

d(Pi ) ≥ |A|
2p −1

d(Pi ),

where we used |Pi | ≤ 2p −1. Multiplying by λi and summing over all i , we obtain

d

(
1A ,

m∑
i=1

λi1
Pi

)
≥ |A|

2p −1

m∑
i=1

λi d(Pi ).

Now, by Lemma 4.16, the left-hand side of the inequality above is

d

(
1A ,

m∑
i=1

λi1
Pi

)
= d

(
1A ,

p

p −1
1A\B +1B\A

)

= p

p −1
d(A, A \ B)+d(A,B \ A)

≤ p

p −1
d(A, A)+d(A,B)

= 2p

p −1
d(A)+d(A,B).

The claim now follows.

In the next lemma, we state a locality ratio for the local-search Algorithm 4.2. It has the

same basic form as inequality 4.1, except that we express it in terms of the square root of the

dispersion,
�

d(A). This framework turns out to be more convenient in terms of clarity of the

analysis. Also, it is evident in the following inequality that a PTAS is achieved when p and k/p

are large enough.

Lemma 4.18. Consider the same hypotheses as in Lemma 4.17, where in addition A is a maxi-

mal set. Define λ= 4p−2
k , and assume that k � p � 1, so that 1−2λ− 1

p > 0. Then

√
d(A) ≥

(
1−2λ− 1

p

)√
d(B)+

1−λ− 1
p

2
�

d(A)

m∑
i=1

λi [d(A)−d(A�Pi )].

Proof. For a fixed i , the following identity can be verified by a diagram similar to Fig. 4.1:

d(A)−d(A�Pi ) = d(A,Pi ∩ A)−d(A,Pi ∩B)+d(Pi ∩ A,Pi ∩B)−d(Pi ∩ A)−d(Pi ∩B)

≤ d(A,Pi ∩ A)−d(A,Pi ∩B)+d(Pi ).

We multiply the previous inequality by λi , and sum over all indices i :

m∑
i=1

λi [d(A)−d(A�Pi )] ≤ d

(
1A ,

m∑
i=1

λi1
Pi∩A

)
−d

(
1A ,

m∑
i=1

λi1
Pi∩B

)
+∑

i
λi d(Pi ).

For the sum on the left-hand side, we use the short-hand
∑

, and we analyze the three terms

on the right-hand side. From Lemma 4.16, we know that
∑

i λi1
Pi∩A = p

p−11
A\B ; hence the

63



Chapter 4. MSD via local search

first term is p
p−1 d(A, A \ B). Similarly, the second term is d(A,B \ A). And for the third term,

we use the previous lemma, and we also use the fact that A is maximal, so 2|A| ≥ k and

λ= 4p−2
k ≥ 2p−1

|A| . Hence,

∑≤ p

p −1
d(A, A \ B)−d(A,B \ A)+λ

(
2p

p −1
d(A)+d(A,B)

)

≤ p

p −1
d(A, A)−d(A,B)+λ

(
2p

p −1
d(A)+d(A,B)

)

= (1+λ)
2p

p −1
d(A)− (1−λ)d(A,B)

≤ (1+λ)
2p

p −1
d(A)− (1−λ)

[ |B |
|A|d(A)+ |A|

|B |d(B)

]
,

where in the second line we added and removed multiples of the expression d(A, A∩B), with

a positive net addition, and in the last line we used inequality (2.8). Now, let q = |B |
|A| , and

consider the expression qd(A)+ 1
q d(B). For fixed values of d(A) and d(B), the coefficient q

that minimizes this expression is q =
√

d(B)
d(A) , which corresponds to the value 2

�
d(A) ·d(B).

Thus,

∑≤ (1+λ)
2p

p −1
d(A)−2(1−λ)

√
d(A) ·d(B)

= 2
√

d(A)

[
(1+λ)

p

p −1

√
d(A)− (1−λ)

√
d(B)

]

≤ 2
√

d(A)

[
1

1−λ− 1
p

√
d(A)− (1−λ)

√
d(B)

]
.

The claim follows after solving for the term
�

d(A) inside the brackets, and using the inequality

(1−λ)(1−λ− 1/p) ≥ 1−2λ− 1/p.

Finally, we prove that the PTAS follows from the previous statement of locality ratio by setting

k and p large enough.

Theorem 4.19. Negative-type MSD over a matroid-intersection constraint admits a polynomial-

time approximation scheme.

Proof. Suppose that we want Algorithm 4.2 to achieve a (1− ε)-approximation ratio, for a

constant ε> 0. We set the exchange parameter p large enough, so that 1
p ≤ ε

8 , i.e., p = �8
ε � =

θ(ε−1). We also assume k (the maximum size of a common independent set) to be large

enough, so that λ= 4p−2
k ≤ ε

8 . If this is not the case, then the cardinality of the optimal solution

is bounded by a constant O(ε−2), and we can find it efficiently via exhaustive search.

Let S ∈I1 ∩I2 be the output solution of the algorithm. We apply Lemma 4.16 over S and the

optimal solution O, to obtain a family of sets Pi ⊂ X , and coefficients λi > 0, for 1 ≤ i ≤ m. S is

a maximal set, hence we can apply Lemma 4.18 to obtain
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4.5. Negative-type MSD with a matroid-intersection constraint

√
d(S) ≥

(
1−2λ− 1

p

)√
d(O)+

1−λ− 1
p

2
�

d(S)

m∑
i=1

λi [d(S)−d(S �Pi )].

The coefficient that multiplies
�

d(O) is bounded from below by 1− 3ε/8, because of our

bounds on p and λ. Now we study the term inside the sum. By the halting condition in the

algorithm, for each set Pi we know that d(S �Pi )−d(S) ≤ δd(S). On the other hand, we can

bound the sum of coefficients λi by

m∑
i=1

λi ≤
∥∥∥∥∥

m∑
i=1

λi1
Pi

∥∥∥∥∥
1

=
∥∥∥∥ p

p −1
1A\B +1B\A

∥∥∥∥
1
≤ 2|A \ B |+ |B \ A| ≤ 3k,

where we used the fact that p ≥ 2. Therefore,

√
d(S) ≥

(
1− 3ε

8

)√
d(O)− 1

2
�

d(S)

(∑
i
λi

)
δd(S)

≥
(
1− 3ε

8

)√
d(O)− 3kδ

2

√
d(S)

=
(
1− 3ε

8

)√
d(O)− ε

8

√
d(S)

≥
(
1− ε

2

)√
d(O).

Finally, we conclude that d(S) ≥ (
1− ε

2

)2 d(O) ≥ (1−ε)d(O). This completes the proof.
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5 MSD via core-sets

5.1 Chapter overview
This chapter is dedicated to the problem of cardinality-constrained max-sum dispersion

(MSDk ), over distance spaces that are Euclidean-squared, or that are induced by an arbitrary

(but fixed) norm in Rq , and where the embedding dimension q is assumed to be a low constant.

We present a PTAS for all of these instances, by means of a single algorithm.

Using the convexity of the norm function, and the concept of subgradients, we prove the

existence of a solution with a very simple structure, and whose dispersion is arbitrarily close

to optimal. The algorithm starts by computing a core-set of the input that is guaranteed to

contain this approximate solution. Then, thanks to the known structure of the latter, the

algorithm is able to find it by exhaustive search in polynomial time.

The algorithm thus provides an approximation ratio of (1−ε), in time O(Mn logk +MkM ),

where M is a constant that depends on ε, the dimension q , and the norm. We highlight the

linear dependence on n. The implementation is very simple, and fits into streaming and

distributed models of computation in a straight-forward way. Our core-set also compares

favorably to other core-sets for MSDk recently proposed in the research community.

Related work

When the dimension is part of the input, this general framework is as hard as metric MSDk ,

because any metric distance can be embedded into the �∞ norm (Proposition 2.2). However,

surprisingly little is known for the case of fixed dimension, despite the fact that geometric

instances of low dimension constitute some of the most natural applications of the problem,

e.g. in facility location.

As we mentioned in Section 2.4, Fekete and Meijer [56] present a PTAS for the problem over

Manhattan distances of any constant dimension, and they remark that their result implies a

( 1�
2
−ε)-approximation for the two-dimensional Euclidean case, for any ε> 0. For all other

norms and dimensions, no approximation ratios better than 1
2 were previously known. As

noted in [108, 56], the NP-hardness status of the geometric MSDk problem on fixed dimension

remains open, for any norm (see Table 2.1).
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Organization and contribution

In Section 5.2, we present a PTAS for Euclidean-squared distances in fixed dimension. Al-

though a PTAS for this distance class is already implied by the (1−o(1))-approximations in the

previous chapters, this result is a useful complement, for instances where n is large but k is not

large enough with respect to the error parameter. Furthermore, the geometric properties of

these distances allow for a particularly elegant proof, that is simpler than for the norm-induced

cases. Hence, the study of this PTAS for Euclidean-squared distances is justified, if only as a

didactic tool.

In Section 5.3, we extend the PTAS to Euclidean distances, by exploiting the convexity of the

Euclidean norm function, and the concept of subgradients; and in Section 5.4, we further

extend the analysis to an arbitrary norm. We reiterate that it is a single algorithm that works

for all of these distance classes, up to a precision parameter that depends on the dimension,

norm, and error tolerance.

Finally, in Section 5.5, we discuss the implementation of the algorithm in the streaming and

distributed models. We also give a proper introduction to the notion of core-sets, and study

the properties of the one used in our algorithm. Our core-set can work in conjunction with the

local-search algorithm presented in Chapter 4, to achieve a high-quality and highly efficient

algorithm for instances of MSDk that are both of fixed dimension and of negative type.

5.2 The Euclidean-squared case
Consider a Euclidean-squared distance space that is represented with an embedding. That

is, the input consists of finite set X ⊂Rq , where q is a low constant, and d(x, y) = ‖y −x‖2
2 for

all points x, y ∈Rq . We present a (1−ε)-approximation algorithm for MSDk that runs in time

O
(
Mn logk +MkM

)
, for a constant M =O(ε−q/2).

5.2.1 Centroids and a geometric property of the optimal solution
The dispersion function has very particular geometric properties for the class of Euclidean-

squared distances, related to the concept of centroids.1 The centroid of a finite and non-empty

set A ⊂Rq is defined as

cA = 1

|A|
∑

a∈A
a.

This is the point that minimizes the cross-dispersion d(A,cA); and moreover, when computing

d(A, x) as a function of x, the set A may be treated like a single point placed at cA of mass |A|.
We state these properties formally in the following lemma.

Lemma 5.1. For any finite set A ⊂Rq with centroid cA = 1
|A|

∑
a∈A a, we have

d(A, x) = |A|d(cA , x)+d(A,cA) ∀x ∈Rq , and (5.1)

d(A) = |A|d(A,cA). (5.2)

1We already mentioned some of these properties in Remark 2.14.
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Proof. We consider the cross-dispersion d(A, x), for any point x ∈Rq :

d(A, x) = ∑
a∈A

‖x −a‖2
2 =

∑
a∈A

‖(x −cA)+ (cA −a)‖2
2

= ∑
a∈A

[‖x −cA‖2
2 +‖cA −a‖2

2 +2(x −cA)T (cA −a)
]

= ∑
a∈A

d(cA , x)+ ∑
a∈A

d(a,cA)+2(x −cA)T

(
|A|cA − ∑

a∈A
a

)

= |A|d(cA , x)+d(A,cA).

The last term vanishes, because the expression in parenthesis is zero by definition of the

centroid. This proves identity (5.1). Now, we use the identity d(A) = 1
2 d(A, A), together

with (5.1), to obtain

d(A) = 1

2
d(A, A) = 1

2

∑
a∈A

d(A, a)

= 1

2

∑
a∈A

[|A|d(cA , a)+d(A,cA)]

= 1

2
[|A|d(A,cA)+|A|d(A,cA)] = |A|d(A,cA).

We would like to understand how the dispersion function behaves, when all but one of the

points are fixed. To that effect, for a fixed non-empty set A, we study d(A, x) as a function of

x. From identity (5.1), we see that its value depends uniquely on the distance from x to cA .

Hence, the level sets of the function correspond to concentric spheres centered at cA . This

leads to the following observation.

Lemma 5.2. The optimal k-set O is equal to O = X ∩ (∪o∈O Ho), where Ho is the half-space

Ho = {y ∈Rq : (y −o)T (o −cO−o) ≥ 0}.

Proof. For any elements o ∈O and a ∈ X \O, the optimality of the set O implies that

0 ≤ d(O)−d(O −o +a) = d(O −o,o)−d(O −o, a) = (k −1)[d(cO−o ,o)−d(cO−o , a)],

where we used identity (5.1). Hence, d(cO−o , a) ≤ d(cO−o ,o). This implies that each point in

X \ O must be inside the sphere centered at cO−o and touching o; or equivalently, that each

point of X that is strictly outside of this sphere must be in O.

The half-space Ho described in the statement is the unique half-space that intersects with this

sphere exactly at point o. By the previous argument, all points of X contained in Ho must be

part of O, so o ∈ (X ∩Ho) ⊂O. Consequently, we have that X ∩ (∪o∈O Ho) both contains and is

contained in O, hence it must be equal to O. This completes the proof.
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The previous lemma describes a quality of hollowness of the optimal set O. For instance, it

says that no point in O is contained in the convex hull of X \O. The main idea of our PTAS is

to define a polynomially bounded collection of sets with a similar geometric structure, and

then simply perform an exhaustive search over it. Continuing with the analysis of the set O,

we remark that it is completely determined by sets of the form X ∩H , where H is a half-space,

and that each of these sets X ∩H is in turn determined by a direction v ∈Rq in space and a

cardinality m. This motivates the following definition.

Let Sq−1 be the unit sphere in space Rq . Given a unit vector v ∈Sq−1 and a positive integer m,

we define the m-set X (v,m) ⊂ X as follows: project X into the line spanned by v , and add the

m highest points into X (v,m). Equivalently, this set contains the m points a ∈ X with highest

value of vT a.2

It is clear that for any half-space H , the set X ∩ H can be written as a set X (v,m), where

0 ≤ m ≤ k. However, there are still too many sets of this form to execute an exhaustive search.

Fortunately, as we show below, reducing the search to only a small number of directions

v ∈Sq−1 will be enough to a find a k-set O′ whose dispersion is arbitrarily close to optimal.

5.2.2 θ-coverings and algorithm
For a fixed angle θ, we say that a set V ⊂ Sq−1 of unit vectors is a θ-covering of Sq−1, if for

any w ∈Sq−1 there is a v ∈V , such that the angle between w and v is at most θ.3 The use of

θ-coverings is common in the implementation of geometric algorithms, and it is known that

for any θ > 0, a θ-covering V of size M =O(θ−q ) can be constructed efficiently (see, e.g., [122,

Lemma 5.2]). Notice that M is a constant whenever θ is constant.

We will fix a θ-covering V = {v1, · · · , vM }, and build sets of the form X (v j ,m j ), with v j ∈V and

0 ≤ m j ≤ k. Then, we will approximate the optimal k-set O by a union of such sets, i.e., by a set

of the form ∪M
j=1X (v j ,m j ). We delay for a moment the proof of the following existence result,

which immediately implies the PTAS.

Theorem 5.3. If V = {v1, · · · , vM } is a θ-covering of Sq−1, then there exists a k-set O′ ⊂ X which

can be written as O′ = ∪M
j=1X (v j ,m j ), for some list of coefficients x1, · · · , xM ∈ {0, · · · ,k}, and

such that

d(O′) ≥ (1−3θ2)d(O).

Theorem 5.4. For any ε > 0, and setting θ = �
ε/3, Algorithm 5.1 offers an approximation

ratio of (1−ε), in time O(Mn logk +MkM ) and space O(Mk), where M =O(ε−q/2), assuming

that distance evaluations and inner products are performed in unit time. Therefore, it is a

polynomial-time approximation scheme for fixed-dimension Euclidean-squared MSDk .

2As we will work with only a small, fixed set of unit vectors v , we may perturb the input by an infinitesimal
amount to avoid ties. In particular, we may assume that no two input points share a common position.

3θ-coverings may be equivalently defined in terms of distances, and are usually called ε-coverings or ε-nets.
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Algorithm 5.1: Exhaustive search over sets of the form ∪M
j=1X (v j ,m j ), for a θ-covering V .

Let V = {v1, · · · , vM } be a θ-covering of Sq−1.
for j = 1, · · · , M do

Compute the set X (v j ,k), with elements a ordered by the value of vT
j a.

Initialize A ←�.
for each list (m1, · · · ,mM ) ∈ {0,k}M such that |∪M

j=1 X (v j ,m j )| = k do

if d(∪M
j=1X (v j ,m j )) > d(A) then

Set A ←∪M
j=1X (v j ,m j ).

return A.

Proof. The algorithm is bound to find the set O′ whose existence is guaranteed by Theorem 5.3,

so

d(A) ≥ d(O′) ≥ (1−3θ2)d(O) = (1−ε)d(O).

In terms of complexity, a θ-covering V of size M =O(θ−q ) =O(ε−q/2) can be found efficiently.

We split the algorithm in two phases, corresponding to the two for loops, that we call respec-

tively the list-building and exhaustive-search phases.

The list-building phase consists of M individual processes, where each process computes an

ordered list of the k best input points, with respect to a certain linear function.4 Each process

can be run in time O(n logk) and space O(k), using a heap-sort algorithm, which moreover

only passes through the set X once. Thus, this phase runs in time O(Mn logk) and space

O(Mk).

Assume now that these sorted lists are available. There are O(kM−1) ways to build a k-set of

the form ∪M
j=1X (v j ,m j ); and if these sets are explored in an order so that only one element

changes from a set to the next, then their dispersions can be computed in linear time O(Mk)

per set, as was described in the proof of Theorem 4.12. Thus, the exhaustive-search phase

runs in time O(MkM ) and space O(Mk). This completes the proof.

5.2.3 Proof of existence

In this section, we present the proof of Theorem 5.3. It will be constructive, by means of an

algorithm that starts with O and outputs a set O′ with the required properties. But first, we

present some needed lemmas. The first one is a property of the optimal set O, which holds for

a general distance space (X ,d).

Lemma 5.5. If O is the optimal k-set, then for any other k-set B, and any bijection π : O → B

that corresponds to the identity mapping over O ∩B, we have

d(O,B) ≤ 2d(O)+ ∑
o∈O

d(o,π(o)).

4The union of all points in these M lists provides a core-set. Such core-set will be discussed in Section 5.5.
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Figure 5.1: Inside the shaded region, point y minimizes the distance to point cA .

Proof. Since O is optimal, for any o ∈O we must have (see Figure 4.1)

0 ≤ d(O)−d(O −o +π(o)) = d(O,o)−d(O,π(o))+d(o,π(o)).

And the claim follows when we sum over all o ∈O:

0 ≤ 2d(O)−d(O,B)+ ∑
o∈O

d(o,π(o)).

For a fixed set A, we consider again the expression d(A, x) as a function of x. And for a point x,

we define the half-space Hx = {y ∈Rq : (y −x)T (x −cA)}. As we saw in the proof of Lemma 5.2,

if x moves anywhere within Hx , the value of d(A, x) can only increase. On the other hand, we

bound the decrease of d(A, x) in the case that x moves marginally outside of Hx .

Lemma 5.6. For any finite set A ⊂ Rq , and any points x, y ∈ Rq , if the angle between vectors

(x −cA) and (y −x) is at most π
2 +θ, for some 0 ≤ θ ≤ π

2 , then

d(A, x)−d(A, y) ≤ θ2d(A, x).5

Proof. From identity (5.1), we have

d(A, x)−d(A, y) = |A|[d(cA , x)−d(cA , y)
]

.

Thus, if the set A and point x are fixed, this difference is maximal whenever the distance from

cA to y is minimal. This occurs precisely when the points cA , x and y form a right triangle,

with angle θ at cA (see Figure 5.1). In this case, by the definition of the cosine function,

cos2θ = ‖y −cA‖2
2

‖x −cA‖2
2

= d(cA , y)

d(cA , x)
.

5As the zero vector is perpendicular to all other vectors, the statement holds (trivially) even if x = cA or x = y .
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Algorithm 5.2: Approximation of a k-set A ⊂ X by a set B of the form ∪M
j=1X (v j ,m j ), using the

notion of centroids.
Let V = {v1, · · · , vM } be a θ-covering of Sq−1.
Initialize A0 ← A, B 0 ←�, m0

j ← 0 for 1 ≤ j ≤ M .

for i = 1, · · · ,k = |A| do
Let ai be any point in Ai−1.
Let v j ′ ∈V be such that the angle between v j ′ and (ai −cAi−1∪B i−1−ai ) is at most θ
(if ai = cAi−1∪B i−1−ai , select any v j ′ ∈V ).
Let bi be the point in X \ B i−1 maximizing vT

j ′b
i .

if bi ∈ Ai−1, then
Set ai ← bi (forget previous value of ai ).

Set Ai ← Ai−1 −ai , B i ← B i−1 +bi .
Set mi

j ′ to smallest value such that X (v j ,mi
j ′) contains bi ; and mi

j ← mi−1
j for j �= j ′.

return B = B k .

And therefore,

d(A, x)−d(A, y) ≤ (1−cos2θ)|A|d(cA , x) = sin2θ|A|d(cA , x) ≤ θ2|A|d(cA , x).

Finally, again by (5.1), we have that |A|d(cA , x) ≤ d(A, x). This completes the proof.

We are ready to present the proof of Theorem 5.3, in the form of Algorithm 5.2 and Lemma 5.7.

Lemma 5.7. If Algorithm 5.2 receives as input a k-set A ⊂ X and a θ-covering V = {v1, · · · , vM },

then at each iteration 0 ≤ i ≤ k we have the identity B i =∪M
j=1X (v j ,mi

j ). Moreover, if A =O is

the optimal k-set, and the output set is B = B k , then

d(O)−d(B) ≤ 3θ2d(O).

Proof. Notice that each iteration removes an element from Ai , and adds an element to B i , so

that |Ai | = k − i , |B i | = i , and moreover Ai and B i remain disjoint, for each 0 ≤ i ≤ k. Using the

same labels that are ultimately given by the algorithm to the elements of A and B , we have

that A = {a1, · · · , ak }, Ai = {ai+1, · · · , ak }, B = {b1, · · · ,bk }, and B i = {b1, · · · ,bi }, where ai = bi

whenever bi ∈ A.

Next, we prove that B i = ∪M
j=1X (v j ,mi

j ) by induction on i , where the base case i = 0 holds

trivially. Suppose it is true for i −1, and let vector v j ′ be chosen during the i -th iteration. Then

B i = B i−1 +bi ⊂ B i−1 ∪X (v j ′ ,mi
j ′) =∪M

j=1X (v j ,mi
j ).

It only remains to argue that X (v j ′ ,mi
j ′) ⊂ B i . If this is not the case, there is an element

b ∈ X \ B i−1, different from bi , such that vT
j ′b > vT

j ′b
i . But this contradicts the way element bi

is chosen.

We consider now the difference in dispersion between sets A and B . We look at the evolution

of the k-set Ai ∪B i throughout the algorithm, and prove that its loss in dispersion in each
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iteration is bounded. Fix an iteration i , and again let the vector v j ′ be chosen during this

round. If bi ∈ Ai−1, then ai = bi and Ai−1 ∪B i−1 = Ai ∪B i , so there is no loss. Otherwise,

the fact that bi �= ai implies that vT
j ′b

i ≥ vT
j ′a

i , which means that the angle between v j ′ and

(bi −ai ) is at most π
2 . And by the choice of v j ′ , the angle between v j ′ and (ai −cAi∪B i−1 ) is at

most θ. Therefore, the angle between (bi −ai ) and (ai −cAi∪B i−1 ) is at most π
2 +θ, and we can

apply Lemma 5.6 to obtain

d(Ai−1 ∪B i−1)−d(Ai ∪B i ) = d(Ai ∪B i−1, ai )−d(Ai ∪B i−1,bi )

≤ θ2d(Ai ∪B i−1, ai )

= θ2

[ ∑
j :i< j

d(ai , a j )+ ∑
j :i> j

d(ai ,b j )

]
.

Hence, the total loss in dispersion incurred in the algorithm is

d(A)−d(B) =
k∑

i=1

[
d(Ai−1 ∪B i−1)−d(Ai ∪B i )

]

≤ θ2

[∑
i< j

d(ai , a j )+ ∑
i> j

d(ai ,b j )

]

≤ θ2

[
d(A)+ ∑

i �= j
d(ai ,b j )

]

= θ2

[
d(A)+d(A,B)−

k∑
i=1

d(ai ,bi )

]
.

And finally, if A corresponds to the optimal solution O, we simply replace d(O,B) by the bound

stated in Lemma 5.5, to obtain d(O)−d(B) ≤ 3θ2d(O).

5.3 The Euclidean case
In this section, the MSDk instance is given by a finite set X ⊂Rq , where Rq is equipped with

the Euclidean distance: d(x, y) = ‖y − x‖2 for all x, y ∈ Rq , and q is a low constant. We will

prove that Algorithm 5.1 also provides a PTAS in this framework. In terms of complexity the

only difference will be a worse dependency between θ and ε. We will exploit the convexity of

the norm function, and the notion of subgradients.

5.3.1 Subgradients and the norm function
A well-known result in convex analysis (see e.g. [110]) is that any convex and continuous

function f (x) on Rq has a subgradient vx at each point x. A subgradient at a point x is a vector

vx , in general not unique, with the property that

f (y)− f (x) ≥ (y −x)T vx , for all y ∈Rq . (5.3)

For a fixed point a, consider the function da(x) = d(a, x) = ‖x −a‖2 over all Rq . It corresponds

to the �2 norm function, translated by a. It is convex and continuous, and differentiable every-
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5.3. The Euclidean case

where except on a, and its gradient is the unit vector ∇da(x) = x−a
‖x−a‖2

. If we abuse notation

and extend the function ∇da(x) by defining ∇da(a) = 0, then it provides a subgradient of da(x)

over all x ∈Rq .

Next, for a fixed finite set A ⊂ Rq , we define the functions dA(x) = d(A, x) and ∇dA(x) =∑
a∈A ∇da(x). Since dA(x) is the sum of convex functions, it is itself convex, and it is easy to

check that ∇dA(x) provides a corresponding subgradient, with ‖∇dA(x)‖2 ≤ |A| for all x ∈Rq .

Inequality (5.3) applied to these functions gives

d(A, y)−d(A, x) ≥ (y −x)T ∇dA(x), for all x, y ∈Rq . (5.4)

Let us consider the level sets of the function dA(x). They are not perfect spheres anymore, as

in the previous section, and they are in general not smooth either, but they are the boundary

of convex regions. At each point x, ∇dA(x) is perpendicular to the corresponding level set at x,

and it defines as well a half-space Hx = {y ∈Rq : (y − x)T ∇dA(x) ≥ 0}, with the property that

each point y in it has a higher value dA(y) than dA(x). Inequality 5.4 gives a bound to this

value gain. We state now a property of the optimal solution O, similar to Lemma 5.2.

Lemma 5.8. The optimal k-set O is equal to O = X ∩ (∪o∈O H∗
o ), for the sets

H∗
o = {o}∪ {y ∈Rq : (y −o)T ∇dO−o(o) > 0}.

Proof. For any elements o ∈O and a ∈ X \O, the optimality of the set O implies

0 ≥ d(O −o +a)−d(O) = d(O −o, a)−d(O −o,o) ≥ (a −o)T ∇dO−o(o),

where we used inequality (5.4). As the inequality above is violated for all points in H∗
o −o, then

the points of X that lie in this set must be part of O. This completes the proof.

We remark that Lemma 5.8 is slightly weaker than Lemma 5.2, in the sense that we use open

half-spaces instead of closed ones. This is due to the fact that the function dA(x) might not

be strictly convex anymore.6 On the other hand, Lemma 5.8 will remain true for distances

induced by any norm in Rq .

As in the previous section, this hollow quality of the optimal solution motivates us to approxi-

mate it by a set of the form ∪M
j=1X (v j ,m j ), defined exactly as before, where V = {v1, · · · , vM }

is a θ-covering of the unit sphere Sq−1. Thus, once again we perform the exhaustive search

described in Algorithm 5.1. All that we need now is a corresponding existence result, as in

Theorem 5.3. We state it now, and delay its proof momentarily.

Theorem 5.9. If V = {v1, · · · , vM } is a θ-covering of Sq−1, then there exists a k-set O′ ⊂ X which

can be written as O′ = ∪M
j=1X (v j ,m j ), for some list of coefficients (x1, · · · , xM ) ∈ {0, · · · ,k}, and

such that

d(O′) ≥ (1−4θ)d(O).
6For the Euclidean norm, it can be verified that dA(x) is strictly convex as long as points in A are not collinear.
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Theorem 5.10. For any ε> 0, and setting θ = ε/4, Algorithm 5.1 offers an approximation ratio

of (1−ε), and runs in time O(Mn logk+MkM ) and space O(Mk), where M =O(ε−q ), assuming

that distance evaluations and inner products are performed in unit time. Therefore, it is a

polynomial-time approximation scheme for fixed-dimension Euclidean MSDk .

Proof. The proof is virtually identical to that of Theorem 5.4.

5.3.2 Proof of existence
Once again, the proof of Theorem 5.9 will be constructive, and based on an algorithm very

similar to Algorithm 5.2. We present first some required lemmas. The first one is a property

that holds for any metric distance (norm-induced distances are always metric).

Lemma 5.11. Let (X ,d) be a metric distance, and let O ⊂ X be the k-set of largest dispersion.

Then, for any k-set B ⊂ X , and any bijection O → B that corresponds to the identity mapping in

O ∩B, we have

(k −1)
∑

o∈O
d(o,π(o)) ≤ 4d(O).

Proof. For any elements o,o′ ∈O, the triangle inequality gives

d(o,π(o)) ≤ d(o,o′)+d(o′,π(o)).

And summing up over all o and o′ in O, we obtain

k
∑

o∈O
d(o,π(o)) ≤ 2d(O)+d(O,B).

Finally, if we replace the term d(O,B) by the bound given in Lemma 5.5, the claimed inequality

follows.

Lemma 5.12. For any finite set A ⊂Rq , and any points x, y ∈Rq , if the angle between vectors

(y −x) and ∇dA(x) is at most π
2 +θ, for some 0 ≤ θ ≤ π

2 , then

d(A, x)−d(A, y) ≤ θ|A|d(x, y).7

Proof. From inequality (5.4), we have

d(A, x)−d(A, y) ≤−(y −x)T ∇dA(x)

≤−‖y −x‖2 · ‖∇dA(x)‖2 cos
(π

2
+θ

)
= d(x, y)‖∇dA(x)‖2 sinθ

≤ θ|A|d(x, y)

where we used the inequalities ‖∇dA(x)‖2 ≤ |A| and sinθ ≤ θ.

7Since the zero vector is perpendicular to all vectors, the statement holds (trivially) even if x = y or ∇dA(x) = 0.
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Algorithm 5.3: Approximation of a k-set A ⊂ X by a set B of the form ∪M
j=1X (v j ,m j ), using the

notion of subgradients.

Let V = {v1, · · · , vM } be a θ-covering of Sq−1.
Initialize A0 ← A, B 0 ←�, m0

j ← 0 for 1 ≤ j ≤ M .

for i = 1, · · · ,k = |A| do
Let ai be any point in Ai−1.
Let v j ′ ∈V be such that the angle between v j ′ and ∇dAi−1∪B i−1−ai (ai ) is at most θ
(if ∇dAi−1∪B i−1−ai (ai ) = 0, select any v j ′ ∈V ).
Let bi be the point in X \ B i−1 maximizing vT

j ′b
i .

if bi ∈ Ai−1, then
Set ai ← bi (forget previous value of ai ).

Set Ai ← Ai−1 −ai , B i ← B i−1 +bi .
Set mi

j ′ to smallest value such that X (v j ,mi
j ′) contains bi ; and mi

j ← mi−1
j for j �= j ′.

return B = B k .

We present now the proof of Theorem 5.9, in the form of Algorithm 5.3 and Lemma 5.13.

Notice that Algorithm 5.3 is virtually identical to Algorithm 5.2, except that we use the notion

of subgradients, instead of that of centroids.

Lemma 5.13. If Algorithm 5.3 receives as input a k-set A ⊂ X and a θ-covering V = {v1, · · · , vM },

then at each iteration 0 ≤ i ≤ k we have that B i = ∪M
j=1X (v j ,mi

j ). Moreover, if A = O is the

optimal k-set, and the output set is B = B k , then

d(O)−d(B) ≤ 4θd(O).

Proof. The proof that B i = ∪M
j=1X (v j ,mi

j ) for each 0 ≤ i ≤ k is the same as in Lemma 5.7.

We use the labels ultimately given by the algorithm to the elements of A and B , so that

Ai = {ai+1, · · · , ak } and B i = {b1, · · · ,bi } for each i , where ai = bi whenever bi ∈ A.

Now, we look at the evolution of the k-set Ai ∪B i throughout the algorithm. Fix in iteration i

and let v j ′ be the vector selected during this round. If bi ∈ Ai−1, then ai = bi and Ai−1∪B i−1 =
Ai ∪B i . Otherwise, the fact that bi was selected over ai by the algorithm implies that the

angle between (bi − ai ) and v j ′ is at most π
2 . And we know that the angle between v j ′ and

∇dAi∪B i−1 (ai ) is at most θ. Hence, the angle between (bi − ai ) and ∇dAi∪B i−1 (ai ) is at most
π
2 +θ, and we can apply Lemma 5.12 to obtain

d(Ai−1 ∪B i−1)−d(Ai ∪B i ) = d(Ai ∪B i−1, ai )−d(Ai ∪B i−1,bi ) ≤ θ(k −1)d(ai ,bi ).

Hence, the total loss in dispersion incurred in the algorithm is

d(A)−d(B) =
k∑

i=1

[
d(Ai−1 ∪B i−1)−d(Ai ∪B i )

]
≤ θ(k −1)

k∑
i=1

d(ai ,bi ).

And if A =O is the optimal k-set, Lemma 5.11 implies that d(O)−d(B) ≤ 4θd(O).
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5.4 The case of a general norm
Finally, we consider the MSDk problem, given by a finite set X ⊂ Rq , where Rq is equipped

with an arbitrary but fixed norm ‖ ·‖∗, and q is a low constant. The distances are thus given

by d(x, y) = ‖y − x‖∗, for all x, y ∈ Rq . We prove that the PTAS for Euclidean norm is easily

extended. Once again, in terms of complexity, the only difference will be a somewhat worse

dependency between θ and ε.

5.4.1 One-dimensional case

We start with the case q = 1. The space R has a unique norm (up to scalar multiples), so we

can think of ‖ ·‖∗ as being the �2 norm. Let the optimal k-set be O = {o1, · · · ,ok }, with points

enumerated by increasing order on the line. For any 1 ≤ i ≤ k, it can be verified that

∇dO−oi (oi ) = 2i −k −1.

In this case, Lemma 5.8 implies that O must contain the �k
2 � left-most and �k

2 � right-most

points in X . And if k is odd, the extra point can be chosen arbitrarily.

This trivial solution was pointed out by Tamir [120], in a comment to a paper by Ravi et

al. [108], where a non-trivial, efficient algorithm was given for this framework. We notice also

that this description of O is true whenever the points in X are collinear and contained in any

Rq , equipped with any norm.

5.4.2 General case and equivalence of norms

Now we consider the general case q ≥ 2. A basic result in analysis is that all norms in Rq are

equivalent. This means that there exist constants C ≥ c > 0 such that

c‖x‖2 ≤ ‖x‖∗ ≤C‖x‖2 for all x ∈Rq . (5.5)

In particular, if ‖ · ‖∗ is the �p norm, for 1 ≤ p ≤∞, the corresponding coefficients are such

that C
c ≤�

q .

We study the norm function ‖x‖∗. It must be convex and continuous, but not necessarily

differentiable. In any case, at each point x it must have a subgradient vx , in general not unique.

We will need to bound the �2 norm of such a subgradient.

Lemma 5.14. If vx is a subgradient of the norm function ‖x‖∗ at point x, then

‖vx‖2 ≤C .

Proof. We define y = x + vx . The subadditivity of the norm function gives

‖y‖∗ = ‖x + vx‖∗ ≤ ‖x‖∗ +‖vx‖∗.
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By the definition of subgradient (inequality 5.3),

‖vx‖∗ ≥ ‖y‖∗ −‖x‖∗ ≥ (y −x)T vx = vT
x vx = ‖vx‖2

2.

And therefore, applying inequality 5.5, we obtain

‖v2‖2 ≤ ‖v2‖∗
‖v2‖2

≤C .

We fix such a subgradient of the norm at each point in Rq , to define a function that we de-

note by ∇d0(x) (by abuse of notation). Now, if we fix a point a and define the functions

∇da(x) = d(a, x) and ∇da(x) = ∇d0(x − a), it is clear that ∇da(x) provides a subgradient for

da(x) point by point. And if we now fix a finite set A and define the functions dA(x) = d(A, x)

and ∇dA(x) =∑
a∈A ∇da(x), again ∇dA(x) provides a subgradient for dA(x) at each point x ∈Rq .

And by the previous result, we have the bound ‖∇dA(x)‖2 ≤C |A|.

As in the Euclidean case, these subgradients define a half-space over which the function dA(x)

can only increase. In the next lemma, which is the counterpart to Lemma 5.12, we bound the

loss in the case that x moves to a new point that is marginally outside of this half-space.

Lemma 5.15. For any finite set A ⊂Rq , and any points x, y ∈Rq , if the angle between vectors

(y −x) and ∇dA(x) is at most π
2 +θ, for some 0 ≤ θ ≤ π

2 , then

d(A, x)−d(A, y) ≤ C

c
θ|A|d(x, y).

Proof. By the definition of subgradient (inequality (5.4)), we have

d(A, x)−d(A, y) ≤−(y −x)T ∇dA(x)

≤ ‖y −x‖2 · ‖∇dA(x)‖2 sinθ

≤
(

1

c
‖y −x‖∗

)
(C |A|)θ

= C

c
θ|A|d(x, y),

where we used the previous bound on ‖∇dA(x)‖2, and inequality (5.5).

We are now ready to present an existence result, which uses Algorithm 5.3, and which in turn

immediately shows the correctness of Algorithm 5.1.

Theorem 5.16. If V = {v1, · · · , vM } is a θ-covering of Sq−1, then there exists a k-set O′ ⊂ X which

can be written as O′ = ∪M
j=1X (v j ,m j ), for some list of coefficients (x1, · · · , xM ) ∈ {0, · · · ,k}M , and

such that

d(O′) ≥
(
1−4

C

c
θ

)
d(O).

In particular, such a set O′ is provided by Algorithm 5.3, for input set O.
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Proof. The proof is exactly the same as in Lemma 5.13, except that it invokes Lemma 5.15 in

place of Lemma 5.12.

Theorem 5.17. Consider the MSDk problem over the space Rq equipped with a norm ‖ · ‖∗
such that c‖x‖2 ≤ ‖x‖∗ ≤ C‖x‖2. For any constant ε > 0, and setting θ = c

4C ε, Algorithm 5.1

offers an approximation ratio of (1−ε), and runs in time O(Mn logk+MkM ) and space O(Mk),

where M = O
(( C

εc

)q
)
, assuming that distance evaluations and inner products are performed

in unit time. Therefore, it is a polynomial-time approximation scheme for fixed-dimension

norm-induced MSDk .

The proof of the previous theorem is virtually identical to that of Theorem 5.4. We recall that

in the case of an �p norm, for 1 ≤ p ≤∞, we have C
c ≤�

q , so the size of the θ-covering will be

M =O
((�

q/ε
)q)

.

5.5 Applications
In this section, we highlight some applications and adaptations of the results of this chapter.

The existence results seen in the previous sections give rise to core-sets of size linear in k

offering arbitrarily good approximations for these geometric instances of MSDk . Furthermore,

the simplicity of our algorithm makes it compatible with streaming and distributed models of

computation for very large datasets.

Streaming and distributed models

Problems of diversity maximization, such as MSD, find many important applications in the

analysis of massive amounts of data. As the size of the input increases, approximation algo-

rithms need to address several specific challenges, while keeping a high-quality approximation

ratio. For instance, a superlinear dependence on the size of the input becomes prohibitive.

And the local resources of any available processor become limited, as well.

The streaming model [78] considers a processor with very limited memory space, which re-

ceives large data volumes as a stream. Thus, only a small portion of the input can be stored

and accessed at any given moment. The stream may be read only one time (single pass), or

several times. The quality of a streaming algorithm is measured by: a) the number of required

passes of the stream, b) the space complexity required, and c) the time complexity required

per item of the stream (update time).

The distributed model of computation considers a scenario where a massive amount of pro-

cessors working in parallel is available, but each unit has limited resources. The input is

partitioned and distributed among these units (or in many scenarios, data is originally pro-

duced and stored in this distributed manner); and each unit performs a task in parallel, based

solely on its input. A single processor then merges their outputs, or another round of dis-

tributed computing may then take place. The quality of a distributed algorithm is measured by:

a) the time and space complexity required per processor, and b) the overall time complexity

required. A popular model for distributed computing is MapReduce [82, 103].
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Core-sets

A core-set [4], with respect to a given objective to be maximized, is a subset X ′ of the input X ,

which contains a good approximation to the optimal solution of the entire input. Ideally, the

size of the core-set should be much smaller, or even independent from the size of the input,

and close to the size of the output. Recently, the use of core-sets for diversity problems in

general, and the metric MSDk in particular, has received attention in the literature [79, 6, 30].

Core-sets help adapt a readily available, sequential approximation algorithm, into the stream-

ing and distributed models of computation: assuming that the computation of the core-set

X ′ fits these models, and that the size of X ′ is small enough to be read and stored by a single

processor, the sequential approximation algorithm can then be applied over it.

For MSDk , a core-set X ′ ⊂ X has an approximation ratio of (1−β), if it is guaranteed to

contain a k-set of value at least (1−β)opt . If an algorithm for MSDk with an approximation

ratio of (1−α) is then applied over X ′, the combination offers a ratio of (1−α)(1−β) ≥ (1−α−β).

A composable core-set [79] is a collection of core-sets for an arbitrary partition of the input set,

such that the union of the core-sets is a core-set for the whole input set. A stronger concept is

that of core-preserving core-sets [127], also called mergeable core-sets [3], with the additional

property that taking a core-set of a union of core-sets yields a core-set with the same size

and approximation factor; i.e., a sequential composition of core-set reductions affects neither

the size nor the approximation ratio of the result. These are key properties that facilitate the

construction of core-sets in streaming and distributed settings.

Composable core-sets with constant approximation ratios have been introduced for metric

MSDk [79, 6]. More recently, Cecarello et al. [30] study this problem over metric distances

with bounded doubling dimension q ′ (see [71]). We remark that all norm-induced distances

of dimension q have a doubling dimension q ′ = θ(q). For this framework, they provide a

(1−ε)-approximation composable core-set, of size O(ε−q ′
k2), which can be computed in a

single-pass streaming process; and of size O(ε−q ′
k) if two passes are taken.

Our results

Our Algorithm 5.1 is composed of two separate processes, corresponding to the two for loops,

that we call the list-building phase and the exhaustive-search phase. The existence results

of the chapter (Theorems 5.3, 5.9 and 5.16) prove that, if X ′ ⊂ X is the union of all points

contained in the M lists built in the first phase, then X ′ is a (1−ε)-factor core-set of size O(Mk).

Here, M depends on the distance class, but in general M =O(ε−q ).

The list-building phase consists of M independent processes, each keeping an ordered list of

the best k points from the input, with respect to a certain linear objective. Using heap-sort,

each lists can be built and maintained in a single-pass streaming model, in space O(k) and

update time O(logk). Furthermore, if the input points are distributed over several machines,

and the same θ-covering is used in each machine, the construction of these lists can be easily
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parallelized and merged. Thus, this core-set is composable and core-preserving.

Theorem 5.18. For MSDk on norm-induced distances and Euclidean-squared distances of fixed

dimension q, and for any ε> 0, there exists a core-set with an approximation ratio of (1−ε) and

size O(ε−q k). This core-set is composable and core-preserving, hence it can be computed in a

distributed system. Furthermore, it can be computed and maintained in a single-pass streaming

model, in space O(ε−q k), and update time O(ε−q logk). This is, assuming that inner products

are performed in unit time.

This core-set offers similar a dependence on ε and q as the best current core-set, by Cecarello

et al. [30]. However, it compares favorably to the latter, as it requires only a single-pass in

the streaming model to reach a size linear in k; and its core-preserving property makes its

construction more adaptable to diverse settings.

We also remark that the exhaustive-search phase of Algorithm 5.1 can be easily parallelized, by

an arbitrary number of processors, each with a space requirement of only O(ε−q k). Therefore,

the PTAS presented in this chapter fits in the distributed model of computation.

Finally, we consider an MSDk instance that is both geometric of fixed dimension, and of

negative type. For such an instance, we can first compute the core-set described above, and

then perform the local-search algorithm presented in Chapter 4. The following statement is a

direct consequence of Theorems 5.18 and 4.12.

Theorem 5.19. Consider the MSDk problem over the Euclidean-squared, Euclidean or Man-

hattan distances over Rq , for fixed q. Then, for any ε> 0, the problem admits an approximation

ratio of (1− 4
k − ε), in time O(ε−q (n +k3) logk) and space O(ε−q k), assuming that distance

evaluations and inner products are performed in unit time.
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6 Conclusions and open questions

Max-sum dispersion (MSD) is one of the most prominent diversity-maximization problems.

Prior to out results, the literature on approximation algorithms for this problem had focused

almost exclusively on the metric case. As a consequence, the approximability of metric MSD

was very well understood, even on special cases such as matroid constraints, and a combi-

nation with a submodular function in the objective. In contrast, surprising little was known

about some the most natural and relevant geometric instances, such as Euclidean distances.

In this thesis we provide new approximation algorithms for these geometric instances of MSD.

We obtain results that are much stronger than anything previously known for them, and for

further special cases including knapsack and matroid-intersection constraints.

In particular, we propose the study of the negative-type condition on the distance space, as an

alternative to the metric condition. This new distance class is general enough to contain some

of the most important instances seen in real-life applications (including some non-metric

ones), yet strong enough to provide a PTAS for this problem. This result is obtained by two

different techniques: convex optimization is able to handle very general linear constraints but

is relatively slow, and local search has a more restricted use but is highly efficient.

We also provide a PTAS for distances that are induced by an arbitrary norm, in fixed dimension.

The algorithm can be executed in the streaming and distributed models of computation, to

handle very large instances. A component of this algorithm is a core-set, with properties that

fare well compared to other core-sets recently proposed for this problem. The combination of

this core-set followed by local search results in an extremely fast and accurate algorithm for

geometric instances of negative type and fixed dimension.

Open questions

Consider the MSDk problem over distances induced by the q-dimensional �p norm. The

standard local search achieves a 1
2 -approximation ratio for all values of p and q , and a PTAS

whenever 1 ≤ p ≤ 2 or 1 ≤ q ≤ 2 (see Propositions 2.8 and 2.12). Both of these results are tight.

What is the precise approximation ratio achieved by this algorithm, for specific values of p

and q? Or rather, how far from negative-type is the q-dimensional �p norm?
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The metric condition is a standard assumption in the analysis of problems dealing with dis-

tances, such as diversity and clustering problems. The special geometric cases of Euclidean

and Manhattan distances are also widely studied, oftentimes under the assumption of fixed

dimension. On the other hand, the class of negative-type distances, and in particular its

definition in terms of negative-type inequalities (see Lemma 2.13), has received little attention

in these areas of combinatorial optimization. We raise the question as to whether the study

of this class can provide better algorithms, or simplify the analysis of current ones, for other

diversity and clustering problems.

One can draw several interesting parallels between the class of submodular monotone func-

tions f , and the dispersion function d over distances of negative type. For starters, for the

maximization of these two functions, local search works well, and even allows for natural

combinations of the functions. Next, the extension of d into [0,1]n is convex along the line

parallel to 1, and concave on its orthogonal hyperplane; while the multilinear extension of f

is concave along the line parallel to 1, and almost convex on its orthogonal hyperplane.1 This

difference can be appreciated when comparing our rounding algorithm for d (Theorem 3.4)

with the continuous greedy algorithm for f [27]. In the former the loss comes only from the

rounding procedure, and in the latter it comes only from the choice of the fractional solution.

Regarding the previous comment, and in the same spirit as Borodin et al. [22], we ask for the

definition of a class of monotone set functions, as broad as possible and containing both of the

aforementioned classes of functions, for which local search (Algorithm 4.1) offers high-quality

approximations for the constrained maximization problem. On the other hand, and also in

regards to our comment above, we conjecture that our rounding algorithm given by Theorem

3.4 can be combined with the continuous greedy algorithm, to yield good approximations for

the mixed-objective problem MSD+ f, under general linear constraints.

For negative-type MSDk , we leave it as an open question whether the standard greedy algo-

rithm matches the (1−O(1/k))-approximation ratio offered by local search (Theorem 4.12).

This would further reduce the complexity of the problem, and could open the door to a

greedy-based approximation algorithm in the streaming model. Such an algorithm is avail-

able, for instance, for monotone submodular maximization [15]. Similarly, for the cardinality-

constrained, mixed-objective problem (MSDk+ f ), on both metric and negative-type distances,

it would be of practical interest to develop a high-quality approximation in the streaming

model, that works with space O(k).

Another challenge is to extend our PTAS for MSDk over norm-induced distances of fixed

dimension (Algorithm 5.1), to general metric distances of bounded doubling dimension [71].

Our core-set (Thm. 5.18) might also be extended to these distances. And in terms of complexity,

the question remains open as to whether MSDk is NP-hard over distances induced by any

norm in fixed dimension (see Table 2.1).

1The multilinear extension is convex along the line spanned by v =1a −1b , for any a,b ∈ X [27].
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