
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. V. Kuncak, président du jury
Prof. M. Odersky, directeur de thèse

Prof. E. Visser, rapporteur
Dr A. Warth, rapporteur

Prof. C. Koch, rapporteur

Specialising Parsers for Queries

THÈSE NO 7249 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 11 NOVEMBRE 2016

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE MÉTHODES DE PROGRAMMATION 1

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Manohar JONNALAGEDDA

Is it a bird? No!

Is it a plane? No!

It’s a PhD thesis!

Acknowledgements
During my adventure as a PhD student, I’ve been extremely fortunate to have worked in a

great environment with inspiring people, from whom I have learned so much. I have also

been lucky to have had great friends thanks to whom life became just that bit easier. For this I

would like to give thanks.

To Martin, my advisor, for his passion for programming languages, his ability to federate an

amazing team, and the independence and patience he gave for my research.

To Alex, Christoph, Eelco, my committee members, who took real time out to read this doc-

ument, and provided great feedback and support, and helped improve the quality of this

dissertation.

To Tiark, who got me interested in parsers back in my master studies days, and later in parsing

and staging. Who also encouraged me to write up on results as I went, leading up to my

academic blogging, and ensuing publications.

To Sandro, my dear friend and colleague, whose love for theory, thoroughness and clarity of

thought helped me understand categorically complex papers, and inspired me to explain my

research ever more clearly and accurately. To the countless hours spent with him discussing

everything and anything, usually over beers, and having great fun doing so.

To Vojine, whose never-say-die attitude to life taught me to put that little bit extra effort

whenever I felt the chips were down and reverse tough situations as a result. To the amazing

unplanned adventures had with him during various trips.

To Heather, whose advice and suggestions helped me avoid many pitfalls and focus on the

important stuff much better.

To Nico, my office mate, with whom much fun was had designing "Ce gars là", and so many

more Scala and LAMP related jokes and memes.

To Seb "John-Bob" Doeraene, whose extraordinary discipline when developing software

eventually left some traces in my work. With whom much fun was had discussing and creating

musical interpretations of lab life.

To Denys, whose love for hacking, in-depth knowledge of quasiquotes and great insights on

software development influenced my own design decisions and approach to presentations. To

his happy go lucky approach to life which made us experiment with many a thing in life. Not

caring too much about the consequences helped us achieve very positive ones.

To Don Macros whose deep knowledge of meta-programming and macros was instrumental

in the final stages of this dissertation. Whose unique approach to software development and

life influenced me in approaching life differently myself. Yes at all.

i

Acknowledgements

To Nada, whose appetite for reading made me discover some wonderful books, each of them

unusual reads in their own right.

To Hubert, with whom many profound discussions about life, research and dance were had.

To all the other lampions, past and present, Dima, Felix, Olaf, Julien, Vladimir, Guillaume,

Guillaume, Olivier, Alex, for the great atmosphere at work, and the even better atmosphere

during non-work times.

To Georg, whose last-minute graph generation capabilities and general good vibes were

essential to complete this document.

To Ingo "ShadeRide" Maier, Herr Doktor Haller, Eva Darulova, Michel Schinz, Sammy G, ever

inspiring in their positivity, their approach to research, and their patience to read through and

listen to various drafts and dry runs of mine.

To Thierry, Eric, Mathieu, Alexis, Jorge, who all graciously accepted to help me with various

parts of my research, and whose ability to code I remain envious of.

To my other EDIC mates Alexandre "The Duke" Duc, Mr. White, Stefan, Goran, Niranjan,

Etienne, with whom countless hours were spent at coffee breaks, football grounds, climbing

gyms, tennis courts and of course, bars: productively procrastinating by having fun all the

time.

To so many other friends, who have been a constant reminder of a world of opportunities in

all walks of life.

To Tim I, Miss Tikaly, Duke Luke and Little Warrior, members of the Skankin’ Society Sound

System, singing and dancing to reggae vibes all night long, many nights long.

To Vinz Del, with whom it has been a lot of fun pursuing ambitious yet measurable goals every

year.

To Indira and Suryanarayana, my grandparents, whose unconditional love and support is so

relieving to have had over the years, a continent of distance notwithstanding.

To Sash, my brother and roommate, whose mere presence has been a joyful experience and

calming influence. To his happy vibes which help realise that everything can be done while

having fun. To his passport, which has occasionally accompanied me on trips.

And finally to Rama and Siva, my parents, who worked very hard to provide me with this

platform. To their unwavering guidance and support thanks to which I never really had to

worry too much. To my dad’s adventurous spirit, which shows that crazy and amazing things

can be done anytime, if only you want to. To my mom’s exceptional cooking, which has so

often kept my belly full, and most importantly, satisfied.

Lausanne, October 31, 2016 M. J.

ii

Abstract
Many software systems consist of data processing components that analyse large datasets to

gather information and learn from these. Often, only part of the data is relevant for analysis.

Data processing systems contain an initial preprocessing step that filters out the unwanted

information.

While efficient data analysis techniques and methodologies are accessible to non-expert

programmers, data preprocessing seems to be forgotten, or worse, ignored. This despite real

performance gains being possible by efficiently preprocessing data.

Implementations of the data preprocessing step traditionally have to trade modularity for

performance: to achieve the former, one separates the parsing of raw data and filtering it, and

leads to slow programs because of the creation of intermediate objects during execution. The

efficient version is a low-level implementation that interleaves parsing and querying.

In this dissertation we demonstrate a principled and practical technique to convert the modu-

lar, maintainable program into its interleaved efficient counterpart.

Key to achieving this objective is the removal, or deforestation, of intermediate objects in a

program execution. We first show that by encoding data types using Böhm-Berarducci encod-

ings (often referred to as Church encodings), and combining these with partial evaluation for

function composition we achieve deforestation. This allows us to implement optimisations

themselves as libraries, with minimal dependence on an underlying optimising compiler.

Next we illustrate the applicability of this approach to parsing and preprocessing queries.

The approach is general enough to cover top-down and bottom-up parsing techniques, and

deforestation of pipelines of operations on lists and streams.

We finally present a set of transformation rules that for a parser on a nested data format and a

query on the structure, produces a parser specialised for the query. As a result we preserve the

modularity of writing parsers and queries separately while also minimising resource usage.

These transformation rules combine deforested implementations of both libraries to yield an

efficient, interleaved result.

Key words: Parsers combinators, partial evaluation, Church encodings, staging, deforestation,

fusion, querying.

iii

Résumé
Bien des logiciels comportent des composantes dédiées aux tâches de traitement et d’analyse

de données, afin d’en tirer de l’information. Souvent, seulement une partie des données

globales est pertinente pour l’étape d’analyse. Il est donc commun de pré-traiter ou pré-filter

les données brutes afin d’en rejeter la partie inutile.

Il est de nos jours devenu facile d’accéder à des techniques avancées d’analyse d’information,

même pour un programmeur non-expert. Ce n’est hélas pas le cas pour les tâches de pré-

traitement, des réels gains en performance nonobstant.

Traditionnellement, l’implantation de l’étape de pré-traitement doit choisir entre modularité

du programme et performance. La modularité est obtenue en séparant l’analyse, ou le parsing

des données brutes, et le filtrage. Cette séparation résulte en une éxecution lente, due à la

création d’objets intermédiares durant l’éxecution. La version efficace du programme est

quant à elle écrite dans un style bas-niveau, entremêlant la requête et le parsing.

Dans cette thèse nous proposons une technique pratique et bien fondée qui convertit le

programme maintenable et modulaire en son équivalent efficace et bas-niveau.

Pour atteindre cet objectif il est capital d’éliminer, ou de déforester, les objets intermédiaires.

Nous montrons tout d’abord qu’il est possible d’obtenir la déforestation pour les structures de

données de base en les représentant par leur encodages de Böhm-Berarducci (communément

dites de Church), et en les combinant avec l’évaluation partielle. Ceci nous permet de conce-

voir les optimisations elles-mêmes comme des bibliothèques, sans dépendre des capacités

d’optimisation d’un compilateur sous-jacent.

Nous montrons ensuite que cette approche s’applique systématiquement au parsing et aux

requêtes de pré-traitement. L’approche s’avère suffisemment générale pour couvrir des straté-

gies diverses de parsing, et la déforestation de séquences d’opérations sur des listes.

Nous présentons enfin un ensemble de règles de transformation qui, étant donné un parser

pour un format de données imbriquées, et une requête sur cette structure, produit un nouveau

parser qui est, quand à lui, spécialisé pour la requête en question. Nous préservons ainsi la

modularité voulue, et minimisons aussi l’utilisation de ressources. Ces règles de transforma-

tion combinent les implantations déforestées des deux bibliothèques et produisent un résultat

entremêlé et efficace.

Mots clefs : Combinateurs pour le parsing, évaluation partielle, programmation multi étapes,

fusion, requêtes, déforestation, encodages de Church.

v

Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

1 Introduction 1

1.1 Contributions and overview . 4

1.1.1 Optimisations as libraries . 4

1.1.2 Short-cut fusion as a library . 5

1.1.3 Staged parser combinators . 5

1.1.4 Specialising parsers for queries . 6

1.1.5 Implementation . 6

2 Background 7

2.1 Böhm-Berarducci (Church) encodings . 7

2.1.1 Products . 7

2.1.2 Sums . 9

2.1.3 Lists . 10

2.1.4 Of Church encodings and initial algebras 12

2.2 Partial evaluation and multi-stage programming 12

2.2.1 Function composition and application . 12

2.2.2 Multi-stage programming . 13

2.3 Multi-stage programming in practice . 13

2.3.1 Lightweight Modular Staging . 13

2.3.2 Scala Macros . 15

3 Optimisations as libraries 17

3.1 Staged products . 17

3.2 Staged sums . 18

3.2.1 Conditional expressions . 20

3.2.2 Nested Church encodings . 22

3.3 Discussion . 24

3.4 Related work . 26

vii

Contents

I Staged Shortcut Fusion 27

4 Fold-Based fusion as a library 31

4.1 Introduction . 31

4.2 Staging foldLeft . 33

4.2.1 CPSList, staged . 35

4.2.2 The API of staged CPSList . 36

4.3 Partitioning and grouping . 39

4.3.1 Partition . 39

4.3.2 GroupBy . 41

4.4 Removing boxes . 43

4.4.1 Tying the knot with staged products and sums 44

4.5 Related work . 46

4.6 Conclusion . 46

5 Stream fusion as a library 49

5.1 Introduction . 49

5.2 List operations as unfolds . 50

5.3 Staging streams . 52

5.4 Zip . 54

5.5 FlatMap . 56

5.6 Discussion . 56

II Staged Parser Combinators 59

6 Staged parser combinators for data processing 63

6.1 Introduction . 63

6.1.1 Contributions . 65

6.2 Parser combinators . 66

6.2.1 The overhead of abstraction . 70

6.3 Staging Parser Combinators . 71

6.3.1 Church-encoded parse results . 71

6.3.2 Recursion . 73

6.4 Evaluation . 74

6.5 Related work . 77

7 Dynamic programming on sequences with staged parser combinators 79

7.1 Introduction . 79

7.2 Algebraic Dynamic Programming . 80

7.3 A staged parser combinator library . 82

7.3.1 Staging and memoisation . 84

7.3.2 Top-down to bottom-up evaluation . 85

7.3.3 Single sequences . 85

viii

Contents

7.3.4 Mutually recursive parsers . 86

7.4 GPU parallelisation . 86

7.5 Computing the backtrace . 87

7.5.1 Computing the paper trail . 88

7.5.2 Backtrace construction . 88

7.5.3 Reuse of the backtrace . 88

7.5.4 A note on complexity . 89

7.6 Evaluation . 89

7.6.1 Dynamic programming on CPU and GPU 89

7.6.2 The Nussinov algorithm . 89

7.6.3 The Zuker algorithm . 91

7.6.4 Scalability . 91

7.7 Related work . 92

III Specialising Parsers for Queries 95

8 Specialising parsers for queries 99

8.1 Introduction . 99

8.1.1 Contributions . 101

8.2 Repetition parsers as lists . 101

8.3 Interleaving parsers and queries . 104

8.3.1 Correctness . 108

8.3.2 Optimisation . 109

8.4 Implementation . 110

8.4.1 Step 1: Lifting parsers to an AST. 112

8.4.2 Steps 3-4: Staging parsers and partially evaluating them 114

8.4.3 Step 2: Transforming parsers . 115

8.4.4 Efficient base parsers . 116

8.5 Evaluation . 116

8.6 Discussion . 118

8.6.1 Recursive parsers and queries . 118

8.6.2 Specialisation of filters . 120

8.6.3 Sharing parsers between multiple scopes. 120

8.6.4 Alternative implementations . 120

8.7 Related work . 121

8.8 Conclusion and future work . 122

Synopsis 123

Bibliography 125

Curriculum Vitae 133

ix

List of Figures
2.1 Encoding pairs in the lambda calculus . 8

2.2 A Scala implementation of Church pairs . 9

2.3 Encoding sums in the lambda calculus . 10

2.4 A Scala implementation of Church Either . 10

2.5 Encoding lists in the lambda calculus, based on foldRight 11

2.6 A Scala implementation of Church lists . 11

2.7 Staging in LMS . 13

2.8 The implementation of a macro in Scala . 16

3.1 An implementation of staged Church pairs in LMS 18

3.2 An example of partial evaluation for CPSPair . 19

3.3 An implementation staged Church Either in LMS 19

3.4 A naive virtualisation of conditional expressions for Church pairs in LMS 20

3.5 Code resulting from the use of naive conditional expressions for Church pairs . 21

3.6 Virtualising conditional expressions for Church pairs using local state 21

3.7 Code generated for conditional expressions after introduction of a join point . 22

3.8 PairWrapper: LMS IR wrapper around CPSPair . 23

3.9 Virtualising conditional expressions for Church pairs after customising mutable

variables . 24

3.10 Customising mutable variable creation for CPSPair 25

4.1 The movieCount function in an idiomatic Scala style 31

4.2 The movieCount function, without intermediate structures 32

4.3 The foldLeft function on lists . 33

4.4 The foldRight function on lists . 33

4.5 The foldRight function on lists implemented using foldLeft 34

4.6 The map function on lists implemented using foldLeft 34

4.7 CPSList as a staged abstraction . 35

4.8 The API of CPSList . 36

4.9 The fromRange function for constructing a CPSList 37

4.10 An example pipeline using the CPSListAPI . 38

4.11 The partially evaluated result of cpsListExampleusing LMS 38

4.12 The partition function on lists using foldLeft . 39

xi

List of Figures

4.13 The partition function with Either . 40

4.14 The partition function on CPSList . 41

4.15 The groupBy function on lists using foldLeft . 42

4.16 The movieCount function using a variant of groupBy 42

4.17 The groupWith function on CPSList . 43

4.18 A staged version of movieCount, using the CPSListAPI 43

4.19 EitherWrapper: LMS IR wrapper around CPSEither 45

5.1 The zip function on lists . 49

5.2 The zip function on lists using foldLeft . 49

5.3 The unfold function on lists . 50

5.4 The map function on lists using unfold . 50

5.5 The zip function on lists using unfold . 51

5.6 The filter function on lists using unfold . 51

5.7 The flatMap function on lists using unfold . 52

5.8 The interface of the staged streams library . 52

5.9 The map function on streams . 53

5.10 The filter function on streams . 53

5.11 Closing the hylomorphism on streams with toCPSList 54

5.12 The atEndmethod on a zipped stream . 55

5.13 The nextmethod on a zipped stream . 55

5.14 The nextmethod on a flatmapped stream . 57

6.1 A HTTP parser implemented using parser combinators 64

6.2 An unstaged interface for parser combinators . 67

6.3 The sequencing combinator for parser combinators 67

6.4 The alternative combinator for parser combinators 68

6.5 The rep combinator for parser combinators . 68

6.6 The map combinator for parser combinators . 69

6.7 The flatMap combinator for parser combinators 69

6.8 The sequencing combinators for parser combinators, using for-comprehensions 69

6.9 Base parsers acceptIf and accept . 70

6.10 Base recogniser for acceptIf . 70

6.11 A staged interface for parser combinators . 71

6.12 An interface for Church-encoded parse results . 72

6.13 An implementation of CPSParseResult . 72

6.14 Specialised conditional expressions for CPSParseResult 73

6.15 An implementation of CPSParseResult . 74

6.16 The rec combinator for recursion on staged parser combinators 75

6.17 HTTP parser throughput in MB/s . 76

6.18 A JSON parser using parser combinators . 77

6.19 JSON parser throughput in MB/s . 77

xii

List of Figures

7.1 A recurrence relation describing the matrix multiplication problem 80

7.2 The matrix multiplication problem as a grammar 81

7.3 A signature for the matrix-chain multiplication problem 81

7.4 An algebra computing the optimal cost for a chain of matrices 82

7.5 An algebra printing various chaining alternatives 82

7.6 A grammar for matrix chain multiplication, and tying an algebra to this grammar 83

7.7 An interface for ADP-based parser combinators 83

7.8 Main combinators for ADP-based parsers . 84

7.9 An implementation of parser combinators for dynamic programming 84

7.10 The tabulate combinator, for memoisation . 84

7.11 Processing a parser in bottom-up order . 85

7.12 Threads progress jointly along matrix diagonal. Dependencies can be reduced

to immediately preceding matrix cells. 86

7.13 A backtrace for an instance of the matrix multiplication problem 88

7.14 A grammar for the Nussinov sequence alignment problem 90

7.15 Nussinov algorithm running time . 90

7.16 Zuker algorithm running time . 92

7.17 Nussinov and Zuker algorithms scalability . 93

8.1 Preprocessing XML metadata . 99

8.2 The repFold combinator . 102

8.3 The rep combinator implemented using repFold 102

8.4 An API for CPSListF . 103

8.5 Creating variants of CPSListF, for classic lists or parsers 104

8.6 Idiomatic filtering of a sequence of list parsers . 105

8.7 Filtering a sequence of list parsers, close to the list creation 105

8.8 The main transformation . 106

8.9 Converting CPSLists to CPSListParsers . 107

8.10 Converting parsers to recognisers . 107

8.11 From filtered to filtered2, mechanically . 108

8.12 A typical usage of the optimisemacro . 111

8.13 A compile-time AST for parser combinators . 112

8.14 An interface for staged parser combinators, with Scala macros 114

8.15 Running time as we vary the file size from 12 to 240 MB. 116

8.16 Running time as we vary the file size from 240 to 1800 MB. 117

8.17 Running time as we vary the file size from 12 to 1800 MB in log scale. 118

8.18 Varying the percentage of recognising vs. parsing on the largest file size, 1800MB 119

xiii

1 Introduction

We live in an era of information. We make a lot of decisions, be they political or personal,

global or local, by analysing data gathered from around us. As the quantity of information

increases, so does the need to process it efficiently. Hence the recent surge in the development

of data processing systems.

Often we distinguish two main phases in such a system, data acquisition and data analysis.

Consider, for example, a transportation network company that wishes to analyse driving

patterns of its vehicles in a particular region of the world. Reasons for doing so may vary

from optimising routes based on specific geographic circumstances to training autonomous

vehicles for these circumstances. The analysis is based on data collected by the company,

pertaining to, among other factors, geographic coordinates of a vehicle, its speed, its trajectory

and direction. These logs obey a certain format specification, and due to their sheer size, are

dumped in this raw format into files on servers owned by the company.

The core analysis phase will likely be a statistical (machine learning) algorithm. Once data

relevant to the region in question has been filtered from the full dataset, it will be shipped to a

cluster of machines so that the algorithm can benefit from parallelism to run faster. Nowadays,

writing programs that seamlessly operate on large datasets in a distributed and parallel setting

has become a lot easier for the general programmer, through the development of frameworks

such as Spark [94]. These libraries abstract away the details of distributing and parallelizing a

program: a developer only needs to focus on the core logic of his application, yet can obtain

excellent performance as well as modular and declarative programs. Manipulating large sets

of data is therefore on the cusp of being available to the masses.

An area where such abstractions are lacking, however, is the acquisition of relevant data from

a full, raw, dataset. This is sometimes referred to as data preprocessing. Traditionally, this

would be implemented in two steps:

• We first read all the raw data, and construct a representation for it that is easy to ma-

nipulate from a program. In other words, we parse data into a structure as per the

1

Chapter 1. Introduction

specifications of the data format.

• We then write a program that, from this collection representing the full dataset, selects

the subset that we are interested in. In other words, we query the dataset for a specific

subset.

There are multiple advantages to implementing these steps independently. Most of all, there

are good abstractions for writing parsers and queries, as both domains have been studied for

a long time. We could use an external parser generator tool, or a parser combinator library

for the first step. Likewise we can use an external query language such as SQL, or a querying

library such as LINQ [54], for the second step. In all cases, not only is it easy to write these

programs, it is also easy to read, maintain, or even change them. If the company wishes to

apply analysis to another region in the world for instance, the change to the query is simple to

make. Similarly, if the format of the vehicle data changes, it is also easy to change the parser.

Unfortunately this modularity comes with a heavy performance cost. By parsing the full

dataset, we create a collection that is potentially far larger than the eventual data we are

truly interested in. These intermediate structures take up a lot of memory resources. In

memory-managed runtimes such as the JVM, this can directly lead to significant performance

hit as well, because the virtual machine will spend a lot of time in tasks such as garbage

collection. Moreover, during the querying step, we iterate over these intermediate structures

again, causing more performance hits. Clearly it is better to discard unwanted data as early

during the parsing step as possible.

The issue of intermediate objects manifests itself in subtler ways too. External tools for parsing

and querying exhibit good performance in general. For our purposes though it is required

that both steps have a common interface to communicate in. Hence the need for parsing

and querying libraries in a common programming language. Alas, such libraries tend to run

significantly slower than their external counterparts: the latter tend to be optimised for their

specific tasks. Libraries, meanwhile, make use of many language features in order to appear

intuitive and become easy to use. These features contribute to indirections and intermediate

object creation during the execution of a program, which ultimately results in a performance

hit.

Two possible solutions to the parsing and querying problem come to mind: manual interleav-

ing and stream-based parsers.

Specialising by hand

The naive solution is to write a carefully hand-crafted low-level program that interleaves a

given parser and a query. The advantage of this approach is that we can focus on removing in-

efficiencies in a very detailed manner, and obtain fast execution times. However, this solution

does not scale: writing a program that interleaves parsing and querying is substantially more

2

difficult than writing two separate modules. Also, changing either the query or the parser

becomes significantly harder. More philosophically, it is rather sad that we must sacrifice

program elegance for performance.

Event-based stream parsing

A hybrid approach is to use an event-based parser, also known as a push parser. An event-

based parser allows us to specify actions to perform every time a sub-structure in the raw data

is parsed: as soon as we detect subsets of data we do not need, we can immediately discard it.

This approach is not without its issues though.

Crucially, writing queries here is not as declarative as with the independent step approach. A

programmer has to manually intertwine his query as possibly many events in an event-based

parser. He therefore needs to be familiar with the structure of the original data format and

cannot operate in a parser-agnostic manner anymore.

Moreover, event-based parsers tend to be hand-specialised and optimised for specific data

formats. The best known class of such parsers are SAX and STAX [57], which target the XML

format. At the time of writing, XML has gone out of fashion, in favor of newer formats such

as JSON or protocol buffers. Many domains specify their own unique data formats as well.

Implementing hand-specialised parsers for these is once again tedious: there is a need for a

more declarative way to write efficient parsers.

This dissertation

There is a need for a solution that reconciles declarative parsing and querying libraries with

performance. Both parsers and queries must be written independently of each other as well.

Beyond the domain of data preprocessing, such a solution would have implications on other

domains such as network protocols and data marshalling/unmarshalling. Essentially, good

programming abstractions and performance are needed any time raw data must traverse a

pipeline in which only a subset of it is relevant.

In this dissertation we describe a solution that has it all: given a parser for a data format, and

a query operating on the parsed data, we automatically specialise the query for the parser,

that is we interleave both so that unwanted data is discarded as early as possible: the resulting

program looks similar to a low-level hand-crafted one, and exhibits performance equivalent

to the latter. Previous solutions to this problem focus on a specific data format, or use analysis

and optimisation techniques that are complex. Our solution is unique in that it applied to

any data format. Moreover, we considerably simplify the analysis and optimisation phases by

viewing the problem in a programming language context. As such, we contribute to the state

of the art.

3

Chapter 1. Introduction

Libraries for parsers (and queries) rely on creating complex parsers (or queries) by composing

simpler ones. The crucial insight is to realise that this composition is static, even if the

data being processed is dynamic. By evaluating the static composition parts of a parser (or

query) before the dynamic parts, we eliminate intermediate objects that result in performance

overhead, and obtain programs that run faster.

It is not only key to correctly identify which parts are static, but also to have an abstraction

removal mechanism that is simple, so that it can be readily ported to any programming

language. Dependence on an underlying compiler should be minimal. Essentially, we want

optimisations as libraries.

Contributions and overview

To specialise parsers for queries, we must therefore combine different features: a conversion

mechanism from an independent parser and a query to an interleaved parser, optimised,

high-level libraries for parsers and queries. These libraries should be implemented so as

to minimally rely on a specific compiler for efficient execution. To this effect we make the

following contributions.

Optimisations as libraries

We present a methodology for developing libraries which by construction present good ab-

straction removal properties in Chapter 3.

The idea is to encode programming constructs and data types as functions, as proposed by the

lambda calculus. These are known as Böhm-Berarducci encodings [9], and often referred to as

Church encodings. By doing so, pipelines of operations on these reduce to chains of function

compositions. Note that the functions themselves are static: they merely help in organising

the flow of a program. The real computation takes place on underlying primitive datatypes.

In such a program, overhead is caused by intermediate structures created at the boundaries

of functions, and by the indirection of having to call and apply these functions. The only

abstraction removal mechanism now needed is the elimination of this static composition.

This can be done by partially evaluating the composition away, or by inlining function bodies.

The residual program then contains one function that is the optimised equivalent of its pre-

transformed counterpart. Indeed, inlining is the main feature that a compiler needs to have

in order to support our solution. In other words, any programming language that has a good

inliner can design libraries as we describe them, and benefit from very good performance.

The above idea is by itself not new. Combining Church encodings with partial evaluation is

implicitly understood as an elegant way to achieve performance [10]. Our key contribution is

to distill the essential properties of Church-encoding based libraries, and of partial evaluators

for these to the point where they are portable, and do not depend on a particular inliner

4

1.1. Contributions and overview

or partial evaluation framework. Some aspects are not completely straightforward: these

include the handling of join-points in a program flow, as well as recursion. We illustrate

and solve these issues by presenting implementations in the Lightweight Modular Staging

framework [69]. Similar results can be achieved using other frameworks, such as Scala Macros.

This methodology provides the basis for implementing efficient parser and query libraries.

Short-cut fusion as a library

Queries can be viewed as a pipeline of operations over list-like data structures. Evaluated

naively, they create intermediate structures that once again hinder performance. Following

the optimisations as libraries methodology, we present a library for Church-encoded lists (or

folds) in Chapter 4. Partially evaluating function composition converts a pipeline of operations

into a tight loop over some initial data. This technique is commonly known as short-cut fusion.

By representing lists in their Church-encoded form we get an optimisation as powerful as

foldr/build fusion [29]: it does well on functions that operate on a single input list, i.e. that

can be easily expressed as a fold, such as map, flatMap and filter. We extend the technique to

the partition and groupBy functions.

List pipelines are also constructed using functions that work on multiple lists. Such pipelines

are better optimised when using a stream (or unfold) based representation. In Chapter 5 we

present a library for streams based on the above methodology. This library allows fusion of

zip-like operations. It is slightly less powerful than the generic stream fusion algorithm [15]

in the handling of the generic flatMap function. In addition to the optimisation as a library

approach for streams, the main contribution here is to show that a variant of the latter function,

known as name-capturing flatMap [14, 19] can also be optimised in this framework.

Staged parser combinators

Parser combinators can also be implemented using the optimisation as libraries approach

(Chapter 6). A key advantage of combinators over parser generators is that the latter are

embedded libraries: it becomes easier to specify actions to perform on parsed data. More-

over, combinator libraries also facilitate specification of context-sensitive parsing, where the

manner in which data should be parsed depends on previous input.

This approach not only applies to top-down recursive-descent parsing, but also to bottom-up,

CYK style parsing (Chapter 7). It is particularly useful when handling ambiguous grammars

where we seek an optimal result: such problems correspond to dynamic programming in-

stances. In addition to removing intermediate structures, we take advantage of the inherent

parallelism present in these, and generate code that runs on the GPU.

In both cases, we show that these libraries exhibit good performance.

5

Chapter 1. Introduction

Specialising parsers for queries

The above give us efficient implementations for parsers as well as pipeline-like query opera-

tions. We combine both to achieve our final goal in Chapter 8.

We describe a transformation from a tree representing a parser for a data format to a specialised

parser for a given query. We treat queries that are a combination of the selection, projection

and aggregation operators on a nested relational algebra. The transformation includes the

conversion of skipped parsers to recognisers.

A key insight to make the transformation possible is to realise that repetition parsers, i.e.

parsers that repeatedly look for the same structure, can also be treated as Church-encoded

lists. By composing over repetition parsers, we therefore systematically push query operations

directly to the point where a single element is parsed: it can be processed or discarded very

early in the pipeline.

We show that our transform is semantics preserving: if a non-transformed parser succeeds on

an input, a transformed parser succeeds with the same result. The correctness argument relies

on correct implementations of recognisers for base parsers. We also discuss optimisation

properties of the transformation.

This transformation further improves on the already partially evaluated parsing and querying

libraries. Indeed, discarding data as early as possible considerably reduces strain on memory

and garbage-collection tasks a virtual machine would have to otherwise perform.

Implementation

The libraries presented in this dissertation are implemented in Scala. To properly showcase par-

tial evaluation capabilities we use the Lightweight Modular Staging framework (Section 2.3.1).

We assume that the reader has some basic notions of the language, and provide context and

details as and when necessary.

6

2 Background

In this chapter we review Church encodings and partial evaluation frameworks. We introduce

two Scala frameworks for partial evaluation, namely Lightweight Modular Staging and Scala

Macros. The main reason to use these is to decouple our optimisations from anything an

underlying compiler may do. As a result, we are able to demonstrate the portability of our

technique.

Böhm-Berarducci (Church) encodings

The lambda calculus is a formal system used to reason about computation/programming

languages. It consists of two operations, function abstraction and function application. Us-

ing just these two, we can encode any programming language construct, such as booleans,

numerals, conditional expressions, products, sums and lists. These encodings are known as

Church encodings.

Adding types and polymorphism to the lambda calculus gives us System F. Equivalent encod-

ings exist in this calculus as well: the Böhm-Berarducci encodings [9]. For ease of presentation

(and as the former term is more prevalently used), we will refer to them as Church encodings.

In this section we describe encodings for products, sums, and lists, following the presentation

by Pierce [65]. We elide booleans and numerals, as we use their primitive counterparts instead.

Products

In the untyped lambda calculus, pairs are encoded using the following functions:

pair = λl. λr. λb. b (f s)

fst = λp. p (λl. λr. l)

snd = λp. p (λl. λr. r)

That is, a pair is a function that takes two “elements” l, r, a “constructor” b and applies the

constructor to the elements. To retrieve the first/second element, we pass the function that

7

Chapter 2. Background

returns the left/right element respectively. In System F, the type of a Church pair becomes:

Pair A B = ∀X. (A -> B -> X) -> X

where A, B represent the types of the underlying elements. The type X represents an eventual

representation of the data type, which is only decided when a function of type A -> B ->

X is passed. This function is also referred to as a continuation. Therefore in the rest of

this dissertation we will also use the term CPS-encoding to refer to Church encodings. This

encoding generalises to products of any arity.

We redefine pair, fst, snd to operate with Pair A B. Their definitions follow their untyped

counterparts above. In addition, products are functors, which means we can define a map

function over them:

pair : ∀A. ∀B. A -> B -> Pair A B

pair = λX. λA. λB.

λa: A. λb: B. λk: A -> B -> X. k (a b)

fst : ∀A. ∀B. Pair A B -> A

fst = λA. λB.

λp: Pair A B. p (λ a: A. λ b: B. a)

snd : ∀A. ∀B. Pair A B -> B

snd = λA. λB.

λp: Pair A B. p (λ a: A. λ b: B. b)

map : ∀A. ∀B. ∀C. ∀D. (A -> C) -> (B -> D) -> Pair A B -> Pair C D

map = λX. λA. λB. λC. λD.

λf: A -> C. λg: B -> D.

λp: Pair A B.

λc: C. λd: D. λk: C -> D -> X. p (λ a: A. λ b: B. k (f(a) g(b)))

Figure 2.1 – Encoding pairs in the lambda calculus

Note how the map function does not extract the first and second elements of the pair p, but

instead forwards the mapping by applying a continuation to p.

A Scala implementation. For completeness sake, and especially for reference further on, we

provide a Scala implementation of Church pairs in Figure 2.2. A Church pair is represented

by the abstract CPSPair class, parametric in A, B. Scala does not have a universal quantifier,

unlike System F. We must therefore encode it. Here we achieve this by making the apply

function polymorphic in X. In the rest of the dissertation, for simplicity sake, we will often

abuse notation and use the forall keyword when referring to Church encodings: Church pairs

therefore will be represented using the pseudo type alias:

type CPSPair[A, B] = forall X. ((A, B) => X) => X

8

2.1. Böhm-Berarducci (Church) encodings

abstract class CPSPair[A, B] { self =>

def apply[X](k: (A, B) => X): X

def fst = self.apply((a, b) => a)

def snd = self.apply((a, b) => b)

def map[C, D](f: A => C, g: B => D) = new CPSPair[C, D] {

def apply[X](k: (C, D) => X) = self.apply((a, b) => k(f(a), g(b))

}

def toPair: (A, B) = self.apply((a, b) => (a, b))

}

// companion object

object CPSPair {

def mkPair[A, B](a: A, b: B) = new CPSPair[A, B] {

def apply[X](k: (A, B) => X): X = k(a, b)

}

}

Figure 2.2 – A Scala implementation of Church pairs

The self type (self) in Figure 2.2 is a reference to the outer instance: we make use of this

reference to construct new pairs, for instance in the map function. We can also construct a

classic pair with the toPair function.

Sums

Sums express the choice between different variants. The simplest sums are a) the Maybe of

Optiondata type, which expresses the choice between some value or nothing, and b) the Either

data type, which expresses the choice between a left and a right value. The Eitherdata type

are encoded as follows:

left = λl. λr. λa. l a

right = λl. λr. λb. r a

The left function takes two functions l, r and applies l to the argument a. Analogously,

the right function applies r to the final argument. The functions l, r represent the choice

between a left and right side. In System F, we get the following encoding:

Either A B = ∀X. (A -> X) -> (B -> X) -> X

As with products above, we define the sum constructors and the map function, shown in

Figure 2.3. As expected, the map function propagates f and g correctly to the appropriate

variants.

9

Chapter 2. Background

left : ∀A. ∀B. A -> Either A B

left = λX. λA. λB.

λa: A.

λl: A -> X. λr: B -> X. l(a)

right : ∀A. ∀B. A -> Either A B

right = λX. λA. λB.

λb: B.

λl: A -> X. λr: B -> X. r(b)

map : ∀A. ∀B. ∀C. ∀D. (A -> C) -> (B -> D) -> Either A B -> Either C D

map = λX. λA. λB. λC. λD.

λf: A -> C. λg: B -> D.

λe: Either A B.

λl: C -> X. λr: D -> X.

e (λ a: A. l(f(a))) (λ b: B. r(g(b)))

Figure 2.3 – Encoding sums in the lambda calculus

abstract class CPSEither[A, B] { self =>

def apply[X](l: A => X, r: B => X): X

def map[C, D](f: A => C, g: B => D) = new CPSEither[C, D] {

def apply[X](l: C => X, r: D => X) =

self.apply(a => l(f(a)), b => r(g(b)))

}

def toEither: Either[A, B] = self.apply(a => Left(a), b => Right(b))

}

//Companion object

object CPSEither {

def mkLeft[A, B](a: A) = new CPSEither[A, B] {

def apply[X](l: A => X, r: B => X) = l(a)

}

def mkRight[A, B](b: B) = new CPSEither[A, B] {

def apply[X](l: A => X, r: B => X) = r(b)

}

}

Figure 2.4 – A Scala implementation of Church Either

A Scala implementation. Figure 2.4 gives a Scala implementation of CPSEither. We use a

translation that is similar to the one for CPSPair, and is fairly straightforward.

Lists

Finally, lists are another basic data type in functional programming, and are used to represent

an arbitrary sequence of elements. A list is a recursive structure, which is either the empty list

10

2.1. Böhm-Berarducci (Church) encodings

nil : ∀A. CPSList A

nil = λX. λA.

λn: X. λc: (A -> X) -> X. n

cons : ∀A. A -> CPSList A -> CPSList A

cons = λX. λA.

λhd: A. λtl: CPSList A.

λn: X. λc: (A -> X) -> X. c (hd (tl [X] n c))

map : ∀A. ∀B. (A -> B) -> CPSList A -> CPSList B

map = λX. λA. λB.

λf: A -> B. λls: CPSList A.

λn: X. λc: (B -> X) -> X. ls [X] (n (λa: A, λacc: X. c (f (elem) acc)))

Figure 2.5 – Encoding lists in the lambda calculus, based on foldRight

abstract class CPSList[A] { self =>

def apply[X](z: X, combine: (A, X) => X): X

def map[B](f: A => B) = new CPSList[C, D] {

def apply[X](z: X, combine: (B, X) => X) =

self.apply(z, (elem, acc) => combine(f(elem), acc))

}

}

//Companion object

object CPSList {

def nil[A] = new CPSList[A] {

def apply[X](z: X, combine: (A, X) => X): X = z

}

def cons[A](hd: A, tl: CPSList[A]) = new CPSList[A] {

def apply[X](z: X, combine: (A, X) => X): X =

combine(hd, tl.apply(z, combine))

}

def foldRight[A](ls: List[A]): CPSList[A] = new CPSList[A] {

def apply[X](z: X, combine: (A, X) => X): X = ls match {

case Nil => z

case a :: as => combine(a, foldRight(as))

}

}

}

Figure 2.6 – A Scala implementation of Church lists

(Nil) or an element prepended to a list. In System F, the Church encoding for a list is given by

the following type:

CPSList A = ∀X. X -> ((A -> X) -> X) -> X

We define the basic constructs nil, cons and map in Figure 2.5: The nil function returns a base

11

Chapter 2. Background

element n provided by the continuation whereas the cons function applies the accumulator c

to the element hd. The map function applies the function f to every element in the original list.

A Scala implementation. Figure 2.6 gives a Scala implementation of CPSList. We also define

a function that converts a classic List to a CPSList: this function is commonly known as

foldRight. Indeed, a Church list corresponds to the foldRight function. We present a much

more detailed library for CPSList in Chapter 4.

Of Church encodings and initial algebras

Products, sums and lists are but a few data structures that have Church encodings. Church

encodings exist for any algebraic data type. This is because these data types correspond to

least fixed points (or initial algebras) on functors implicitly defined by them [55]. The apply

methods defined above correspond to folds, that is, they are unique morphisms from the

initial algebra to any other algebra.

Partial evaluation and multi-stage programming

Partial evaluation [24] is a technique used primarily to perform program optimisation. Sup-

pose we want to run a program p on inputs in1 and in2:

val res = p(in1, in2)

If we know in1 statically (but in2 remains dynamic), we can evaluate p in two steps:

• We first evaluate p by replacing all occurrences of in1 in its body by the static value. This

yields a residual program p_in1 that is specialised for in1.

• We then evaluate p_in1 on the dynamic input in2.

The result of either is the same (i.e. res). The difference is that since p_in1 is specialised, it

can potentially run faster than the original program p. We also say that p_in1 is obtained by

partially evaluating p over in1.

Function composition and application

Consider the following functions:

def f(i: Int) = i * 2

def g(i: Int, j: Int) = i + 3 + j

def composed(i: Int, j: Int) = g(f(i), j)

12

2.3. Multi-stage programming in practice

In the above, we assume i, j to be dynamic inputs. Yet the operations on these are statically

available, i.e. the bodies of the functions are statically known. Therefore we can partially

evaluate g and f in composed, yielding a function where the bodies of g and f are inlined:

def composed_g_f(i: Int, j: Int) = i * 2 + 3 + j

Effectively, partial evaluation of function composition and application corresponds to inlining

the respective function bodies.

Multi-stage programming

A partial evaluator detects which parts of a program are static, and which dynamic, by per-

forming binding-time analysis. This phase is often aided by the programmer, who annotates

parts of the program as static, or dynamic.

A closely related concept is multi-stage programming (MSP) or staging [85], a form of gen-

erative programming. In a multi-staged program, one explicitly specifies which parts of the

program are to be evaluated at the current stage, and which parts should be evaluated at a later

stage. Running a staged program generates a new program, where current stage computations

have been evaluated away. MSP can therefore be used to achieve controlled partial evaluation.

Multi-stage programming in practice

In practice, staging can be implemented in many different ways. We look at two possibilities

for Scala in this section, Lightweight Modular Staging (LMS) and Scala Macros.

Lightweight Modular Staging

Figure 2.7 – Staging in LMS

Lightweight Modular Stating (LMS) is a staging/runtime code generation framework written

in Scala. The evaluation of expressions is controlled through the use of a special abstract type

Rep[T]:

13

Chapter 2. Background

• an expression of type T evaluates to a constant of type T in the generated code,

• an expression of type Rep[T] generates code for an expression of type T.

Essentially, binding-time analysis is guided by the type system itself. Figure 2.7 illustrates this

principle. Starting from a program as in the bottom-left corner, a programmer adds Rep types,

as in the top-left corner. The LMS framework will run this program, yielding later-stage code

(top-right corner). Only when this code is executed do we get the final result of the program.

Note that when we compose expressions of type Rep[T], we compose code generators.

Staged functions. We saw above (Section 2.2.1) that partially evaluating function compo-

sition and application amounts to inlining. A static function in LMS is given by the type

Rep[T] => Rep[U]. Therefore, in order to achieve inlining for the composed method above, we

add Rep types as follows:

def f(i: Rep[Int]) = i * 2

def g(i: Rep[Int], j: Rep[Int]) = i + 3 + j

def composed(i: Rep[Int], j: Rep[Int]) = g(f(i), j)

Sometimes it is desirable to stage a function, for example with recursive functions. Such a

function has the type Rep[T => U].

The LMS infrastructure. Note in the example above that the multiplication and addition

operators are defined on values of type Rep[Int]. Similarly, it is possible to use boolean

operators on values of type Rep[Boolean]. LMS takes a closed world view: we progressively

increase the expressiveness of staged values by combining separate modules which define

operations on them. By convention, these modules are traits suffixed by -Ops. In order to

program with staged conditional expressions, boolean and arithmetic expressions, we would

mix these modules in:

trait MyProgramOps extends Base with BooleanOps with ArithOps with IfThenElse

The Base trait is the root of the hierarchy, and defines the Rep type constructor. The core LMS

library contains modules for many other basic data types and structures, such as arrays and

lists. These can be used out of the box.

A value of type Rep[T] is an abstract representation. To this abstract representation we must

map a concrete representation. In LMS, to each instance of Rep[T] corresponds a concrete

expression datatype Exp[T]. For a given staged program, the collection of these Exp datatypes

forms its LMS intermediate representation (IR), and a particular instance is a node in this IR.

To define a domain-specific IR node we create a definition Def[T], which is a subtype of Exp[T].

By convention these nodes are defined in a trait suffixed by -Exp:

trait MyProgramOpsExp extends MyProgramOps with BaseExp

with BooleanOpsExp with ArithOpsExp with IfThenElseExp

14

2.3. Multi-stage programming in practice

The intermediate representation is useful for performing domain-specific optimisations and

rewrites. For instance, a conditional expression where the condition is known to be constant

may be replaced by one of its branches. Once such optimisations are performed, the IR is used

for code generation.

It is useful to think of Rep and Exp as two distinct worlds, interface and implementation: the

interface is visible to a DSL user, while the implementation is where domain-specific nodes are

created and optimised. For instance, if we wanted to add the modulo operation for integers,

the interface would contain the following abstract method:

def mod(dividend: Rep[Int], divisor: Rep[Int]): Rep[Int]

In the Expworld we would define an IR node represeting a modulo operation, and implement

mod such that it creates this node:

case class Mod(dividend: Exp[Int], divisor: Exp[Int]) extends Def[Int]

def mod(dividend: Exp[Int], divisor: Exp[Int]): Exp[Int] = Mod(dividend, divisor)

In addition to the programming interfaces for basic constructs mentioned above, the core

LMS library also defines intermediate nodes for these. These building blocks can be used to

build more complex code generators [71].

Language virtualisation For maximal developer productivity, staged programs should look

as close as possible to their non-staged counterparts. Adding the extra Repwrapper may be an

acceptable trade-off, but other basic constructs in the language should remain unchanged.

In LMS, it is possible to write conditional expressions where the condition is a Rep[Boolean]

(instead of Boolean). These facilities extend to other basic Scala constructs, such as mutable

variable creation and assignment, pattern matching, while loops. This is possible by virtual-

ising these constructs, which is accomplished by the Scala Virtualized compiler [67]. Here,

every basic construct is treated as a method call. Domain-specific behaviour is implemented

for these constructs by simply overriding implementations for corresponding methods. At the

time of writing, there is also an alternate macro-based virtualisation implementation.

Scala Macros

Scala Macros are a compile time meta-programming tool in Scala. They allow to analyse and

transform code blocks at compile time. Scala Macros come in many flavours, each of them

allowing to accomplish particular kinds of tasks [8]. In this dissertation we only present def

macros: they are sufficient for partial evaluation purposes. The implementations we describe

follow those of Scala 2.12.x, and may change for future Scala versions.

A defmacro looks very much like a classic Scala function. It is defined as follows:

def myMacro(x: => T): U = macro myMacro_impl

15

Chapter 2. Background

We declare myMacro to be a macro that takes trees of type T and returns trees of type U. The

distinguishing feature from a normal Scala function is the usage of the macro keyword. A

macro is expanded at compile time, as opposed to a function, which is applied at runtime.

The implementation of the macro is delegated to the myMacro_impl function (Figure 2.8). This

function’s parameters are representations of expressions of type T.

A defmacro receives well-typed trees: ill-typed Scala programs cannot be operated on in such

a macro. Such trees also have the type c.Tree, instead of being wrapped as c.Expr[T]: since we

know these trees are well-typed, we can recover the type via the Scala reflection libraries. Using

the reflection libraries, we can also manipulate these expressions, in a manner analogous

to the manipulation of Exp nodes in LMS. Quasiquotes act as a more programmer friendly

frontend in this respect [76]. The myMacro_impl function must return expressions of type U.

A defmacro can inspect trees defined inside its scope, but not beyond: as such it also takes a

closed-world view.

import scala.reflect.macros.Context

import scala.language.experimental.macros

trait MyMacro {

val c: Context

import c.universe._

def myMacro_impl[T, U](x: c.Expr[T]) : c.Expr[U] = {

// implementation

}

}

Figure 2.8 – The implementation of a macro in Scala

Note the resemblance between c.Expr[T] and Rep[T] from LMS. Programming with either

can indeed be thought of as composing code generators (macros allow for more through

the reflection library): the same principles present when programming with Rep types apply

directly to programming with expressions in macros. A user of a staged library would however

benefit from a macro implementation: his program is wrapped in as myMacro function, and

does not need to contain any extra boilerplate notation that Rep or c.Exprbring. Lifting user

code into Rep form remains the responsibility of the library developer. We illustrate this lifting

process for parser combinators in Section 8.4.

In this dissertation, we seek to lay out the principles behind staged libraries, and therefore will

explicit the use of code generators. Since Rep or c.Expr can be used in an equivalent way for

our purposes, we will use the former unless explicitly mentioned otherwise.

16

3 Optimisations as libraries

In this chapter we develop a methodology for developing efficient high-level libraries from

first principles. These guidelines will be instrumental in implementing subsequent libraries

for lists and parsers.

The key insight explored by this dissertation is to realise that Church encodings and staging

can be combined for great benefit, i.e. to achieve deforestation of arbitrary data types by

construction. Deforestation [86], or fusion, is a technique whereby intermediate objects that

typically appear in a functional program are eliminated. The resulting program exhibits better

performance as a result. In a nutshell:

1. By Church encoding data structures, we can reduce fusion of arbitrary data types to

fusion of functions.

2. Staging allows us to partially evaluate function composition, thus effectively achieving

fusion of functions.

In this chapter we illustrate this insight for products and sums. This is essential in order to

optimise more complex structures. Deforestation of lists using these principles is covered in

detail in Chapter 4. As mentioned previously, we use Rep types from here on to distinguish

dynamic and static values (see Section 2.3.1 for more details).

Staged products

Recall the CPS encoding of pairs seen in Section 2.1.1, represented here as a (pseudo) type

alias:

type CPSPair[A, B] = forall X. ((A, B) => X) => X

We systematically add Repwrappers to argument and return types, and get the following type

alias:

17

Chapter 3. Optimisations as libraries

type CPSPair[A, B] = forall X. ((Rep[A], Rep[B]) => Rep[X]) => Rep[X]

A staged Church pair is an unstaged function that takes a continuation (itself an unstaged

function) and returns an eventual value of type X. This systematic introduction of Rep types

can be performed for the full API presented in Figure 2.2, to yield a staged implementation,

given in Figure 3.1.

trait CPSPairOps extends Base with IfThenElse with PairOps {

abstract class CPSPair[A, B] { self =>

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X]

def fst: Rep[A] = self.apply((a, b) => a)

def snd: Rep[B] = self.apply((a, b) => b)

def map[C, D](f: Rep[A] => Rep[C], g: Rep[B] => Rep[D]) = new CPSPair[C, D] {

def apply[X](k: (Rep[C], Rep[D]) => Rep[X]) =

self.apply((a, b) => k(f(a), g(b))

}

def toPair: Rep[(A, B)] = self.apply((a, b) => make_tuple2(a, b))

}

// companion object

object CPSPair {

def mkPair[A, B](a: Rep[A], b: Rep[B]) = new CPSPair[A, B] {

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X] = k(a, b)

}

...

}

}

Figure 3.1 – An implementation of staged Church pairs in LMS

The enclosing trait CPSPairOps contains definitions for staged CPSPair. It mixes in modules for

staged pairs, which are used by the toPair function, as well as conditional expressions, which

we describe in more detail below (Section 3.2.1).

With this implementation of Church pairs we can now chain pipelines of operations where no

intermediate objects are created, as shown in Figure 3.2. In the first half, x and y are symbolic

expressions of type Rep[Int]. In the second half we see the partially evaluated code generated

by LMS. Note that no pair structure is created anywhere.

Staged sums

Staging Church sums follows the same procedure as for products. By adding Rep types, we get

the following:

18

3.2. Staged sums

// these operations on staged pairs

mkPair(x, y).map(a => a * 3, b => b + 7).apply((a, b) => a + b)

//yield the following partially evaluated code

===>

val x: Int = ...; val y: Int = ...

val x_2: Int = x * 3

val y_2: Int = y + 7

x_2 + y_2

Figure 3.2 – An example of partial evaluation for CPSPair

trait CPSEitherOps extends Base with IfThenElse with EitherOps {

abstract class CPSEither[A, B] { self =>

def apply[X](l: Rep[A] => Rep[X], r: Rep[B] => Rep[X]): Rep[X]

def map[C, D](f: Rep[A] => Rep[C], g: Rep[B] => Rep[D]) = new CPSEither[C, D] {

def apply[X](l: Rep[C] => Rep[X], r: Rep[D] => Rep[X]) =

self.apply(a => l(f(a)), b => r(g(b)))

}

def toEither: Rep[Either[A, B]] = self.apply(a => Left(a), b => Right(b))

}

//Companion object

object CPSEither {

def mkLeft[A, B](a: Rep[A]) = new CPSEither[A, B] {

def apply[X](l: Rep[A] => Rep[X], r: Rep[B] => Rep[X]) = l(a)

}

def mkRight[A, B](b: Rep[B]) = new CPSEither[A, B] {

def apply[X](l: Rep[A] => Rep[X], r: Rep[B] => Rep[X]) = r(b)

}

}

}

Figure 3.3 – An implementation staged Church Either in LMS

type CPSEither[A, B, X] = (Rep[A] => Rep[X], Rep[B] => Rep[X]) => Rep[X]

Figure 3.3 provides the full staged implementation.Once again, partial evaluation removes

intermediate structures. So the following expression:

mkLeft(x).map(a => a * 3, b => b + 7).apply((a => a + 5), (b => b))

generates the following code:

19

Chapter 3. Optimisations as libraries

val x: Int = ...

val x_2: Int = x * 3

x_2 + 5

Note how code for the right hand side is never generated as it is not used.

Conditional expressions

Consider the following code that creates Church pair based on a dynamic condition:

val cond: Rep[Boolean] = ...

val p = if (cond) mkPair(x1, y1) else mkPair(x2, y2)

p.map(a => a * 3, b + 5).apply((a, b) => a + b)

We must first specialise conditional expressions for CPSPair, since by default, conditional

expressions expect values of type Boolean (see Section 2.3.1). This is done by implementing

the virtualised __ifThenElsemethod. A naive implementation would create a new instance of

CPSPair, where the continuation is pushed to both branches of the condition:

trait CPSPairs ... {

...

def __ifThenElse[A, B](

cond: Rep[Boolean],

thenp: => CPSPair[A, B],

elsep: => CPSPair[A, B]) = new CPSPair[A, B] {

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X] = {

if (cond) thenp.apply(k)

else elsep.apply(k)

}

}

}

Figure 3.4 – A naive virtualisation of conditional expressions for Church pairs in LMS

Unfortunately this implementation results in duplicating code. Following the execution trace

of the partial evaluator shows why:

p.map(a => a * 3, b + 5).apply((a, b) => a + b)

-> if (cond) mkPair(x1, y1).map(a => a * 3, b + 5).apply((a, b) => a + b)

else mkPair(x2, y2).map(a => a * 3, b + 5).apply((a, b) => a + b)

The generated code reflects this duplication (Figure 3.5). Indeed, conditional expressions act

as split points in a program. Naively choosing to inline continuations in each branch will lead

to exponential code generation as the number of nested conditional expressions increases.

While in some cases, it might pay off to duplicate code (if we seek to run both branches in

parallel for instance), a safe solution is to introduce an explicit join point at the end of a

20

3.2. Staged sums

val cond: Boolean = ...

if (cond) {

val x_3: Int = x1 * 3

val y_3: Int = y1 + 7

x_3 + y_3

} else {

val x_3: Int = x2 * 3

val y_3: Int = y2 + 7

x_3 + y_3

}

Figure 3.5 – Code resulting from the use of naive conditional expressions for Church pairs

conditional expression. Since we want to avoid allocating intermediate objects, a solution is

to introduce intermediate mutable variables that are assigned to in each branch. Figure 3.6

shows an implementation for CPSPair.

trait CPSPairOps extends ... with Variables {

...

def __ifThenElse[A, B](

cond: Rep[Boolean],

thenp: => CPSPair[A, B],

elsep: => CPSPair[A, B]) = new CPSPair[A, B] {

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X] = {

var aTmp: Rep[A] = zeroVal[A]

var bTmp: Rep[B] = zeroVal[B]

val assignK = (a: Rep[A], b: Rep[B]) => { aTmp = a; bTmp = b }

if (cond) thenp.apply(assignK) else elsep.apply(assignK)

k(aTmp, bTmp)

}

}

}

Figure 3.6 – Virtualising conditional expressions for Church pairs using local state

Note that we now mix in the Variables component, which allow us to program with staged

mutable variables. The zeroVal method provides default values for various types. In each

conditional branch, we pass continuations that simply assign the new values to previously

declared temporary variables. The final continuation is applied to these temporary variables.

For the above example with CPSPair, the generated code looks as one would expect (Figure 3.7).

For CPSEither, we use an extra boolean variable isLeft to help us decide which variant in the

sum we are dealing with. For sums with more variants, a more complex flag (an integer for

instance) will have to be used instead.

21

Chapter 3. Optimisations as libraries

val cond: Boolean = ...

var xTmp = 0; var yTmp = 0

if (cond) { xTmp = x1; yTmp = y1 }

else { xTmp = x2; yTmp = y2 }

val x_3: Int = xTmp * 3

val y_3: Int = yTmp + 7

x_3 + y_3

Figure 3.7 – Code generated for conditional expressions after introduction of a join point

This implementation is safe: it makes use of state in a controlled manner in a very localised

scope. It corresponds to wrapping the conditional expression in a state monad [81].

Nested Church encodings

The attentive reader will have noticed that the above solution is not quite general yet. If A

or B are CPS-encoded structures themselves, our current library does not allow us to create

such values, as the mkPair constructor expects values of type Rep[A] and Rep[B]. The issue also

carries to zeroVal.

A naive solution would be to maintain specialised Church encodings for nested structures (for

example CPSPairPair[A, B, C]). Naturally this does not scale, as maintaining every possible

combination of nesting will result in exponentially large libraries.

A more elegant solution is possible. Note that we always precisely know the points where and

how Church-encoded structures are created: by calling the constructors in the library interface,

by using higher-order library functions, and in branches of conditional expressions. From an

intermediate representation point of view, these are all constant, static nodes. Therefore it is

sufficient to create constant wrappers for CPSPair[A, B] in order to lift them into the Expworld,

and simply unwrap them as and when needed.

Recall from above (Section 2.3.1) that IR nodes (Exp[T]) in LMS are either constants Const[T]

or definitions Def[T]. For our case it is sufficient to wrap a value p of type CPSPair[A, B] into a

constant by using the unit lifter. For reasons tied to the way Scala resolves implicits, however,

it is more practical to create a deliberate wrapper definition, which we do as follows:

case class PairWrapper[A, B](p: CPSPair[A, B]) extends Def[CPSPair[A, B]]

The rest of the implementation for PairWrapper is straightforward. Every single method in

the API of PairWrapperhas a corresponding method that simply forwards the implementation

down, as shown in Figure 3.8. We refer the interested reader to [71] for more details on the

LMS IR.

22

3.2. Staged sums

trait CPSPairExp extends CPSPair with ... {

/** The wrapper acting as Rep[CPSPair[A]] */

case class PairWrapper[A, B](p: CPSPair[A, B]) extends Def[CPSPair[A, B]]

def mkPair[A, B](a: Rep[A], b: Rep[B]): Exp[CPSPair[A, B]]

= PairWrapper(PairStruct(a, b))

def paircps_map[A, B, C, D](

pair: Rep[CPSPair[A, B]],

f: Rep[A] => Rep[C],

g: Rep[B] => Rep[D]): Rep[CPSPair[C, D]] = pair match {

case Def(PairWrapper(pair)) => PairWrapper(pair.map(f, g))

}

def paircps_apply[A, B, X](

pair: Rep[CPSPair[A, B]],

k: (Rep[A], Rep[B]) => Rep[X]): Rep[X] = pair match {

case Def(PairWrapper(pair)) => pair(k)

}

def pair_conditional[A, B](

cond: Rep[Boolean],

thenp: => Rep[CPSPair[A, B]],

elsep: => Rep[CPSPair[A, B]]

): Rep[CPSPair[A, B]] = (thenp, elsep) match {

case (Const(t), Const(e)) => PairWrapper(conditional(cond, t, e))

}

def paircps_toPair[A, B](pair: Rep[CPSPair[A, B]]): Rep[(A, B)] = pair match {

case Def(PairWrapper(pair)) => pair.toPair

}

}

Figure 3.8 – PairWrapper: LMS IR wrapper around CPSPair

With this extra wrapping layer, it is now possible to create values which are nested, yet defor-

ested, pairs. The following staged program:

def aProgram(i: Rep[Int]): Rep[Int] = {

val p = mkPair(mkPair(i + 1, i + 2), i + 3)

p.apply { (p1, c) => p2.apply { (a, b) => a + b + c }}

}

generates, as expected, no intermediate pairs:

def generated(i: Int): Int = {

val b = i + 1; val c = i + 2

i + b + c

}

23

Chapter 3. Optimisations as libraries

Customised handling of mutable variables. The final step is to customise mutable variables

as well. Recall that we require them as join points in conditional expressions. In Figure 3.6 we

specifically assigned values to both elements (zeroVal[A] and zeroVal[B]). Since we now have

a wrapper for CPSPair, we can create default values for Church pairs using zeroVal[PairCPS

[A, B]]: its implementation is to simply create a wrapper where the underlying values are

themselves default values. So conditional expressions can now be implemented as follows:

def __ifThenElse[A, B](

cond: Rep[Boolean],

thenp: => CPSPair[A, B],

elsep: => CPSPair[A, B]) = new CPSPair[A, B] {

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X] = {

var tmpPair = zeroVal[PairCPS[A, B]]

val assignK = (a: Rep[A], b: Rep[B]) => { tmpPair = mkPair(a, b) }

if (cond) thenp.apply(assignK) else elsep.apply(assignK)

k(tmpPair._1, tmpPair._2)

}

}

Figure 3.9 – Virtualising conditional expressions for Church pairs after customising mutable
variables

Variable creation, assignment and reading are virtualised constructs, and therefore can be

overridden for our specific needs. With Scala Virtualised and LMS the var_new, var_assign

and readVarmethods can be customised. With Church pairs, this involves creating a specific

wrapper PairVar that flags a mutable pair when a new variable is created. Just as is the case

with zeroValwe forward actions on mutable operations to the underlying values. We elide the

details of the implementation in this section, as it relates more to how the internals of LMS

work than the principles themselves. We nonetheless provide the signature and general sketch

for these in Figure 3.10. The interested reader may directly refer to the source code referred to

in this section.

Discussion

In this section we have built up basic deforestation for products and sums from first principles

(CPS-encodings), and judicious use of partial evaluation. We have also seen that both code

blowup and mutable variable creation can be elegantly handled by this framework as well,

provided we add minimal access to a meta intermediate representation. As a result the

technique generalises to sums and products of any arity and nesting.

It may seem tedious, nonetheless, to implement such encodings for every data type we need

in the program. Many compilers already optimise for some of these cases: Scala with value

24

3.3. Discussion

trait CPSPairExp ... {

case class PairVar[A, B](a: Var[A], b: Var[B])

extends Def[Variable[PairCPS[A, B]]]

def mkPairVar[A, B](a: Var[A], b: Var[B]) = PairVar(a, b)

override def var_new[T](init: Exp[T]): Var[T] = init match {

case Def(PairWrapper(PairStruct(a, b))) => ...

case _ => super.var_new(init)

}

override def var_assign[T](lhs: Var[T], rhs: Exp[T]): Exp[Unit] = (lhs, rhs) match {

case (Variable(Def(Reflect(PairVar(v1, v2), _, _))), Def(PairWrapper(p))) => ...

case _ => super.var_assign(lhs, rhs)

}

override def readVar[T](v: Var[T])(implicit pos: SourceContext): Exp[T] = v match {

case Variable(Def(Reflect(PairVar(v1 @ Variable(a), v2 @ Variable(b)), _, _))) => ...

case _ => super.readVar(v)

}

}

Figure 3.10 – Customising mutable variable creation for CPSPair

classes [58], Haskell with newtype and single-constructor datatypes [53]. Even C has support

for structs which are stack allocated, and remove the need to carefully handle conditional

expressions.

In fact, many optimisations performed by the Glasgow Haskell Compiler mirror, and surpass,

those presented here [64, 63]. The main difference is that Haskell targets a larger variety of

programs than suggested by the library approach here: we advocate APIs for algebraic data

types that are fold-based [26]. These are already capable of expressing pipelines of operations

on data, and optimising them involves fewer analysis algorithms than in the general functional

programming language case.

If the language these libraries are developed in does not have good inlining/optmising ca-

pabilities, a developer can nonetheless choose to build some extra infrastructure, in the

form of a partial evaluator for function composition. Arguably this is more complicated, and

seems to contradict the idea of optimisations as libraries. Especially due to structures such as

PairWrapper and PairVar, which require manipulating IR notes in a meta-language. We argue

however that the knowledge required is minimal. A library developer needs to know how to

create constant nodes in the meta-language of his choice, and how to extract underlying values

from these nodes. In many frameworks, this remains easy. With Scala Macros for instance (see

Section 2.3.2), we could create a specific subclass of the generic Tree type and match on it as

and when needed.

Note also that the use of language virtualisation is solely for aesthetic purposes: it is desirable

25

Chapter 3. Optimisations as libraries

for a program written using a staged library to have a look and feel similar to that of a traditional

program. Yet it is not mandatory. In the absence of virtualisation capabilities, a developer can

offer API functions that are the equivalent to __ifThenElse, var_new, var_assign and readVar.

Related work

This chapter shows that Church encodings and staging can be systematically and practically

combined to achieve deforestation as a library. As such, it brings together theoretical ideas

and compiler implementations.

In his seminal paper, Wadler initially proposed deforesting programs that are in treeless

form [86]. Church encodings are in treeless form: partial evaluating function composition

corresponds to a usage of this treeless algorithm. Through staging we provide a library-level

implementation of this algorithm. Since we support non-linear tree forms via the usage of

conditional expressions we also support deforestation of blazed treeless forms.

The Church encoding of datatypes we present is very close in spirit to the Finally Tagless ap-

proach by Carette et al. [10]: any datatype we wish to not create during partial evaluation time

is represented as a function that eventually yields a value. This is mainly used for embedding

domain-specific languages in a host language without the use of complex constructs such as

GADTs. We propose using this encoding for developing libraries. In addition, we also restrict

dependence on a partial evaluator to inlining of function composition.

Beyond encodings at a library-level, continuations are a classic way to represent a programs

structure in a compiler to perform further optimisations [44]: our treatment of conditional

expressions is a reuse of Phi nodes from SSA, which has been shown to have a correspondence

with CPS [5]. LMS also has a generic way to handle nested conditional expressions in a manner

similar to Phi nodes [70]. In both cases the optimisation is performed at the intermediate

representation level. Our use of the IR is merely for tying the knot with respect to nested data

types. The implementation itself is lifted to the library level.

LMS enables embedding of domain-specific languages in Scala, and is based on a multi-staged

approach. It draws inspiration from MetaOCaml [32]. Feldspar is a Haskell-based framework

for embedding DSLs [6]. Many DSLs in this framework also tend to use a functional (tagless)

representation of domain-specific data types to achieve deforestation.

26

Part IStaged Shortcut Fusion

27

Chapter 3 introduced us to a methodology to achieve deforestation for simple data types:

Church-encode them, and partially evaluate function composition. We expand this technique

to lists in this chapter. Lists are a compelling data structure: they represent a collection of

elements that can be iterated over. The fusion techniques covered in this chapter therefore

apply to any linear, traversable data structure.

This part of the thesis has partially been previously published [43], and handles shortcut fusion

similar to foldr/build [29]. We extend it here to apply to Stream Fusion [15]. The code for both

is available online [41].

29

4 Fold-Based fusion as a library

Introduction

Suppose we are given a list of people, along with a list of movies each of these people like. If

we want to find out how many people like each movie, here is a Scala snippet to do the job:

def movieCount(people2Movies: List[(String, List[String])]): Map[String, Int] = {

val flattened = for {

(person, movies) <- people2Movies

movie <- movies

} yield (person, movie)

val grouped = flattened groupBy (_._2)

grouped map { case (movie, ps) => (movie, ps.size) }

}

Figure 4.1 – The movieCount function in an idiomatic Scala style

The function creates intermediate data structures: flattened and grouped are explicitly de-

clared, while some additional structures are implicitly created by the for comprehension.

These data structures are helpful in organising the program and making it more readable. On

the other hand, their allocation and construction incurs a significant memory and processing

overhead. Yet it is possible to implement the movieCount function without creating any inter-

mediate structures (Figure 4.2). The movieCount2 function is arguably harder to read, but more

efficient.

Fusion is a program transformation that converts functions written in a movieCount style

to efficient equivalents in the movieCount2 style. Its goal is to avoid the creation of costly

intermediate data structures. Fusion has been extensively studied, both theoretically [34] and

in practice [29, 80, 15].

Practical implementations of fusion tend to rely on an optimising compiler for a pure, func-

31

Chapter 4. Fold-Based fusion as a library

def movieCount2(people2Movies: List[(String, List[String])]): Map[String, Int] = {

var tmpList = people2Movies

val tmpRes: Map[String, Int] = Map.empty

while (!tmpList.isEmpty) {

val hd = tmpList.head

var movies = hd._2

while (!movies.isEmpty) {

val movie = movies.head

if (tmpRes.contains(movie)) {

tmpRes(movie) += 1

} else tmpRes.update(movie, 1)

movies = movies.tail

}

tmpList = tmpList.tail

}

tmpRes

}

Figure 4.2 – The movieCount function, without intermediate structures

tional language. In non-pure languages, it is more difficult to implement fusion as part of

the compiler, due to the possible presence of side-effects, open recursion in datatypes, vir-

tual method dispatch, etc. There are however many pure, functional subdomains in such

languages that could greatly benefit from fusion. Examples for such subdomains include

collection libraries and query-like languages. Essentially, programs that process data through

"pipelines" of operations are amenable to fusion.

Using the principles shown in Chapter 3, we present in this chapter libraries for performing

fusion for pipelines of operations over iterable collections, or lists. This decouples the optimi-

sation from an underlying compiler, making it portable, and readily applicable to different

contexts. In particular:

• We present an API for staged, CPS-encoded lists (Section 4.2) based on the foldLeft

function. Staging is used as a means to systematically separate function composition

from data processing. The library closely follows that of classic lists, such that program-

mers require minimal changes to the way they program with classic lists. In reality, they

compose operations over code generators of folds. This composition is partially evalu-

ated away at staging time, yielding code that contains no intermediate data structures.

Our fusion technique remains as powerful as foldr/build fusion [29]: it does well on

functions that operate on a single input list.

• Some functions are not trickier: while consuming a single list, they produce multiple

outputs. Partitioning and grouping fall under this category. We present variants of these

32

4.2. Staging foldLeft

functions that are easier to fuse (Section 4.3).

• These variants introduce extra boxes around data in order to continue operating under

a single pipeline. We present a technique to systematically eliminate them. Once

again, the key is to CPS-encode the data representations of the boxes, and stage these

representations (Section 4.4).

By embracing generative programming as a paradigm [68] and combining it with functional

APIs, we get an implementation that has a library look-and-feel.

Staging foldLeft

Many operations on lists can be implemented in terms of the generic fold function [29]. For

lists, there are two variants of this function, foldLeft and foldRight. They are equivalent in

that one can be implemented using the other (see below). We choose foldLeft: we will see

later in this section why this representation benefits us more. Here is an implementation of

foldLeft:

def foldLeft[A, S](ls: List[A])(z: S, comb: (S, A) => S): S = ls match {

case Nil => z

case x :: xs => foldLeft(xs)(comb(z, x), comb)

}

Figure 4.3 – The foldLeft function on lists

It takes a zero (or initial) element of type S, and returns this element if the input list is empty.

If the list contains some elements, they are recursively combined with the element z using the

binary operator comb. The elements are combined to the left, hence the name of the function.

The foldRight function, on the other hand, combines elements to the right:

def foldRight[A, S](ls: List[A])(z: S, comb: (A, S) => S): S = ls match {

case Nil => z

case x :: xs => comb(x, foldRight(xs)(z, comb))

}

Figure 4.4 – The foldRight function on lists

As mentioned above, an alternative implementation of foldRight can be achieved using

foldLeft:

The idea is to make a first pass over the list using foldLeft to construct a function which will

eventually combine the elements to the right.

33

Chapter 4. Fold-Based fusion as a library

def foldRight[A, S](xs: List[A])(z: S, comb: (A, S) => S): S = {

val accumulated = foldLeft[A, S => S](xs)(s => s, { (acc, elem) =>

s => acc(comb(elem, s))

})

accumulated(z)

}

Figure 4.5 – The foldRight function on lists implemented using foldLeft

An example of an operation on list that can be implemented with foldLeft is map:

def map[A, B](ls: List[A], f: A => B): List[B] = foldLeft[A, List[B]](ls)(

Nil,

(acc, elem) => acc :+ (f(elem))

)

Figure 4.6 – The map function on lists implemented using foldLeft

Starting with an empty list, the combination function simply appends (:+) to the accumulator

the results of applying f to the elements of the input list. The append function on lists is

inefficient in terms of complexity. One could however imagine using a more efficient collection

(such as a list buffer) to efficiently append to the right, and convert it to a list at the end of

foldLeft. We defer the presentation of the full API to Section 4.2.2.

Church-encoded lists. Recall from Section 2.1.3 that a Church-encoded list corresponds to

thefoldRight function. We can construct an alternate Church-encoding for lists usingfoldLeft

instead (often referred to as snoc-lists). Consider the type signature of foldLeft:

List[A] => (S, (S, A) => S) => S

The signature tells us that, given a list over any type A, foldLeft returns a function that will fold

the elements of that list into a structure of some type S. The type of this function is a Church

encoding for lists, or equivalently the list functor [55]:

type CPSList[A, S] = (S, (S, A) => S) => S

Here, Sdenotes the eventual result type of operations over the list. For instance in the abovemap

example, S = List[A]. In essence, foldLeftmaps plain lists to Church lists. In the background

section on Church lists(Section 2.1.3), we used CPSList to represent those that are resulting

from foldRight. For the rest of this dissertation, we override the name so that it applies for

foldLeft instead.

34

4.2. Staging foldLeft

CPSList, staged

We now follow the principles elaborated in Chapter 3 to stage CPSList. The dynamic types here

are the input type A and the eventual return type S:

type CPSList[A, S] = (Rep[S], (Rep[S], Rep[A]) => Rep[S]) => Rep[S]

Note that the name is deliberately overloaded. For the rest of the paper, unless explicitly

mentioned, CPSList refers to the staged version. As promised, we use unstaged functions.

trait CPSListOps extends ListOps with IfThenElse ... with Variables with While {

type Comb[A, S] = (Rep[S], Rep[A]) => Rep[S]

abstract class CPSList[A] { self =>

def apply[S](z: Rep[S], comb: Comb[A, S]): Rep[S]

//operations on CPSList go here

}

}

//companion object

object CPSList {

//create a fold from a list

def fromList[A](ls: Rep[List[A]]) = new CPSList[A] {

def apply[S](z: Rep[S], comb: Comb[A, S]): Rep[S] = {

var tmpList = ls

var tmp = z

while (!tmpList.isEmpty) {

tmp = comb(tmp, tmpList.head)

tmpList = tmpList.tail

}

tmp

}

}

...

}

Figure 4.7 – CPSList as a staged abstraction

Figure 4.7 shows an implementation of staged CPSList in LMS. The enclosing trait CPSListOps

mixes in some of LMS’ building blocks which help in composing code generators [71]. Com-

pared to staged implementations of pairs and sums (Figures 3.1, 3.3), we mix in While to allow

usage of staged while loops.

Every instance of CPSListmust implement an applymethod, corresponding to the application

of fold. As explained above, the type parameter S for this method corresponds to the eventual

structure resulting from the fold.

We create aCPSList from a regular list using thefromList function. SinceCPSListcorresponds to

35

Chapter 4. Fold-Based fusion as a library

the return type of the foldLeft function on lists, fromList is essentially a staged code generator

for foldLeft.

Here we choose an implementation using loops instead of recursion. This is because the target

languages for our code generation (Scala, Java or C) are better at executing while loops than

recursive functions. This also explains our choice of foldLeft: contrary to foldRight, it can be

implemented in a tail-recursive manner, hence easily written as a low-level loop.

Note that fromList takes as parameter a Rep[List[A]], and not a List[Rep[A]]. Indeed, the

input list to a pipeline of folds is not usually known statically.

The API of staged CPSList

We now extend our staged CPSList implementation by adding a list-like API. Note that these

methods can be added to an unstaged CPSList as well. The only difference is the use of staged

types and unstaged functions. The API consists of the usual suspects, map, filter and flatMap,

shown in Figure 4.8.

//as methods on CPSList

def map[B](f: Rep[A] => Rep[B]) = new CPSList[B] {

def apply[S](z: Rep[S], comb: Comb[B, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) => comb(acc, f(elem)))

}

def filter(p: Rep[A] => Rep[Boolean]) = new CPSList[A] {

def apply[S](z: Rep[S], comb: Comb[A, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) =>

if (p(elem)) comb(acc, elem) else acc)

}

def flatMap[B](f: Rep[A] => CPSList[B]) = new CPSList[B] {

def apply[S](z: Rep[S], comb: Comb[B, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) => f(elem)(acc, comb)

)

}

Figure 4.8 – The API of CPSList

CPSList.map. The map on CPSList is fairly straightforward and follows the classic implementa-

tion using foldLeft (Figure 4.6). The combine function applies (the unstaged function) f on the

36

4.2. Staging foldLeft

element it receives.

CPSList.filter. The filter function combines an element if it passes the unstaged predicate

function p, and returns the accumulator unchanged otherwise. Note that the conditional

expression is also a code generator since it takes a value of type Rep[Boolean] as the condition.

CPSList.flatMap. The type of the function argument f of flatMapdeserves some elaboration.

Expanding the type of CPSList, we get the following type for f:

f: Rep[A] => (Rep[S], Comb[B, S]) => Rep[S]

which is a curried, unstaged function. By fully applying this function, we inline not only the

body of f, but also the body of the resulting CPSList. This way, we avoid generating code for an

intermediate collection.

Note that the function passed to flatMap must return CPSList. If this CPSList is created from

a call to fromList, this means that it makes use of a dynamic list after all: this list will not be

fused. A programmer must therefore be careful how he creates a CPSListwhen using flatMap.

We can naturally extend the library to have easier methods of creating static lists. In particular,

there can be a method fromStaticList that takes a List[Rep[B]], i.e. a static list of dynamic

values.

It is also possible to create a CPSList from a range of numbers, so that there is no need for an

initial list either:

//in the companion object of CPSList

def fromRange(a: Rep[Int], b: Rep[Int]) = new CPSList[Int] {

def apply[S](z: Rep[S], comb: Comb[Int, S]) = {

var tmpInt = a

var tmp = z

while (tmpInt <= b) {

tmp = comb(tmp, tmpInt)

tmpInt = tmpInt + 1

}

tmp

}

}

Figure 4.9 – The fromRange function for constructing a CPSList

A code generation example. LMS takes as input a staged program, and generates a later-

stage program. Consider an example that uses CPSList, shown in Figure 4.10. Given an integer

interval, it creates nested intervals. It then sums all odd elements of the nested intervals, after

37

Chapter 4. Fold-Based fusion as a library

def cpsListExample(a: Rep[Int], b: Rep[Int]): Rep[Int] = {

val fld = CPSList.fromRange(a, b)

val flatMapped = fld flatMap {

i => CPSList.fromRange(1, i)

}

val filtered = flatMapped filter (_ % 2 == 1)

filtered.map(_ * 3).apply[Int](

0, (acc, x) => acc + x

)

}

Figure 4.10 – An example pipeline using the CPSListAPI

def generatedFunction(x0: Int, x1: Int): Int = {

var x2: Int = x0; var x3: Int = 0

while (x2 <= x1) {

val x7 = x3; val x8 = x2

var x9: Int = 1; var x10: Int = x7

while (x9 <= x8) {

val x14 = x10; val x15 = x9

val x16 = x15 % 2

val x17 = x16 == 1

val x20 = if (x17) {

val x18 = x15 * 3

val x19 = x14 + x18; x19

} else { x14 }

x10 = x20

val x22 = x15 + 1; x9 = x22

}

val x26 = x10; x3 = x26

val x28 = x8 + 1; x2 = x28

}

val x32 = x3; x32

}

Figure 4.11 – The partially evaluated result of cpsListExampleusing LMS

having multiplied them by 3. Note that in the flatMap call, we pass a function that creates a

fold from an interval, rather than from a list. Running LMS will partially evaluate the staged

CPSList away, yielding code as in Figure 4.11. As we can see, we are left with two nested while

loops, exactly what we wished for.

The power of staged CPSList. We now have a library over a staged fold abstraction, which

enables us to write pipelines of operations over lists. Through partial evaluation, we generate

code that is devoid of intermediate data structures. The main difficulty consisted in identifying

the correct types for unstaged function arguments.

38

4.3. Partitioning and grouping

It is natural to wonder how many of the common operations over lists are fusible by this

technique in practice. Our staged CPSList, being purely fold based, is as powerful as foldr/build

fusion [29].

Partitioning and grouping

We have so far only considered list operations that output exactly one list as their result. It is not

much of a surprise that such functions should be amenable to fusion since their composition

will always result in "straight pipelines", i.e. functions which again take lists to lists. This is

sometimes referred to as vertical fusion.

In this section we turn to operations that produce multiple outputs, and hence allow us to

build forked pipelines. The main challenge consists in keeping all operations in the same

pipeline, while avoiding the introduction of intermediate data structures to do so. This is also

known as horizontal fusion. We start with the partition function.

Partition

Thepartition function on lists takes a list and a predicate, and returns two lists, one containing

the elements satisfying the predicate, and the other containing those that do not. We can

implement this function using foldLeft as defined in Section 4.2:

def partition[A](ls: List[A], p: A => Boolean): (List[A], List[A]) = {

foldLeft[A, (List[A], List[A])](ls)(

(Nil, Nil), {

case ((trues, falses), elem) =>

if (p(elem)) (trues ++ List(elem), falses)

else (trues, falses ++ List(elem))

})

}

Figure 4.12 – The partition function on lists using foldLeft

The initial element is a pair of empty lists. Based on the predicate, we add each element of

the input list to either the first of the second accumulating list. Here is an example usage of

partition:

val myList: List[Int] = ...

val (evens, odds) = partition(myList, (x: Int) => x % 2 == 0)

(evens map (_ * 2), odds map (_ * 3))

In the context of fusion, we naturally want to avoid creating the evens and odds lists.

39

Chapter 4. Fold-Based fusion as a library

A naive attempt. One way to implement partition on CPSList is to have it return two sepa-

rate CPSLists:

//as a method on CPSList

def partition(p: Rep[A] => Rep[Boolean]): (CPSList[A], CPSList[A]) = {

val trues = this filter p

val falses = this filter (a => !p(a))

(trues, falses)

}

Though we create a pair in the above code, it is unstaged and so is partially evaluated away.

Moreover, we can access both CPSLists separately and further construct their pipelines sepa-

rately.

Unfortunately, if both trues and falses are used later on, code for two separate traversals over

the entire pipeline will be generated, which defeats the point of fusion. It is preferable to have

a single traversal.

Partition with Either. If our objective is to generate a single traversal, we must fix the return

type for partition to be CPSList, our current abstraction for loops. This particular CPSListdoes

not see elements of type A anymore, but elements that have either passed a predicate, or not.

The Either type captures this notion very well: instances of Left represent elements satisfying

the predicate, instances of Right represent elements that do not. We can rewrite the example

above as shown in Figure 4.13.

def partitionE[A](ls: List[A], p: A => Boolean): List[Either[A, A]] =

ls map { elem => if (p(elem)) Left(elem) else Right(elem) }

val myList: List[Int] = ...

val partitioned = partitionE(myList, (x: Int) => x % 2 == 0)

val mapped = partitioned map {

case Left(x) => Left(x * 2)

case Right(x) => Right(x * 3)

}

foldLeft[Either[Int, Int], (List[Int], List[Int])](mapped)(

(Nil, Nil), {

case ((trues, falses), elem) =>

elem.fold(

x => (trues ++ List(x), falses),

x => (trues, falses ++ List(x)))

})

Figure 4.13 – The partition function with Either

The partitionE function is simply an application of map, turning an element of type A into an

element of type Either[A, A]. It has the effect of delaying the creation of two separate lists to

40

4.3. Partitioning and grouping

a later application of foldLeft. Between the final application and the partition point, we use

the map function on Either to thread computations through to the actual values. Essentially,

Either acts as a box that wraps underlying values.

Note that eventually, we are left with no option but to fork the pipeline into two lists, through a

final call to foldLeft. Here, the combination operation concatenates elements to the resulting

lists through the use of the fold function on Either.

The staged version of partitionE (Figure 4.14) is analogous. It uses the functions left and

right, which create instances of Rep[Either].

//as a method on CPSList

def partitionBis(p: Rep[A] => Rep[Boolean]): CPSList[Either[A, A]] = {

this map { elem =>

if (p(elem)) left[A, A](elem) else right[A, A](elem)

}

}

Figure 4.14 – The partition function on CPSList

The reader will surely object to this implementation. We have not really eliminated intermedi-

ate data structures. Rather, we have created new ones, in the form of instances of Rep[Either].

The insight is that we know exactly what type of boxes we create. We will discuss shortly how

to eliminate them (Section 4.4). Before that, we discuss another multiple output producer

function, groupBy.

GroupBy

The partition function on CPSList allows us to write pipelines so that no intermediate lists are

created, and the single traversal requirement is met. We now focus our attention on a cousin

of partition’s, groupBy.

While partitioning splits a list into two groups, groupBy partitions a list into possibly many

groups. This operation is also particularly interesting because it is a common query operation.

It is of course used in query languages, but it is also not uncommon in spreadsheet-like

languages to visualise results better. Recall the example in Section 4.1, where we group movies

by people who like them, and then count the number of people per group.

For lists, the groupBy function can be implemented using foldLeft (Figure 4.15). It takes an

input list, and a function f that attributes a key to a value. It returns a collection of key-value

pairs, where the value is itself a collection of values from the input list ls. The initial element

passed to the fold is an empty map (Map.empty). The combination operator adds a new key-

value pair to the map if the key has not been created yet. Otherwise, it appends the element to

the pre-existing list.

41

Chapter 4. Fold-Based fusion as a library

def groupBy[A, K](ls: List[A], f: A => K): Map[K, List[A]] = {

foldLeft[A, Map[K, List[A]]](ls)(

Map.empty[K, List[A]], {

case (dict, elem) =>

val k = f(elem)

if (dict.contains(k))

dict + ((k, dict(k) ++ List(elem)))

else

dict + ((k, List(elem)))

})

}

Figure 4.15 – The groupBy function on lists using foldLeft

We can reimplement the example from the introduction using the above implementation of

groupBy:

def movieCount(people2Movies: List[(String, List[String])]): Map[String, Int] = {

val flattened = for {

(person, movies) <- people2Movies

movie <- movies

} yield (person, movie)

val grouped = groupBy[(String, String), String](flattened, _._2)

grouped map { case (movie, ls) => (movie, ls.size) }

}

Figure 4.16 – The movieCount function using a variant of groupBy

Note that we use the map function on the Mapdata structure after the call to groupBy. Once again,

in terms of fusion, we would like to avoid creating the intermediate HashMap[Int, List[Int]].

One possibility for the above example is to implement a specific reduceBy function that takes

an extra reduction function and applies it. Many collection libraries do indeed contain this

alternative. We may however want to first group elements, perform group-specific operations

on the values, and then reduce them. In which case a reduceBywill not suffice.

Delaying the application of the final fold. As in the case for partition, the key idea is to keep

everything on a single fold pipeline for as long as possible. To achieve this, we once again

resort to introducing an extra box type, through the use of a function named groupWith. This

function is shown in Figure 4.17.

The result of applying a groupWith is a CPSList over key-value pairs. Values from the input fold

are simply tagged with their group, and sent further down the pipeline. We can therefore finally

fully implement the movieCount example using the staged CPSListAPI (Figure 4.18). One might

42

4.4. Removing boxes

//as a method on CPSList

def groupWith[K](f: Rep[A] => Rep[K]): CPSList[(K, A)] =

this map { elem => (f(elem), elem) }

Figure 4.17 – The groupWith function on CPSList

argue that this code is as difficult to write as the low-level loop version seen in Section 4.1, due

to the added complexity of Rep and CPSList annotations. While this is admittedly true for our

small example, writing hand-optimised loops is error-prone and does not scale to larger, more

complex pipelines, especially those spanning multiple functions.

def repMovieCount(

people2Movies: Rep[List[(String, List[String])]]): Rep[HashMap[String, Int]] = {

val fld = CPSList.fromList[(String, List[String])](people2Movies)

val flattened: CPSList[(String, String)] = for {

elem <- fld

movie <- CPSList.fromList[String](elem._2)

} yield (elem._1, movie)

val grouped = flattened groupWith { elem => elem._2 }

grouped.apply[HashMap[String, Int]](

HashMap[String, Int](),

(dict, x) =>

if (dict.contains(x._1)) dict + (x._1, dict(x._1) + 1)

else dict + (x._1, 1)

)

}

Figure 4.18 – A staged version of movieCount, using the CPSListAPI

Summary. In this section, we integrated multiple output producers to the staged fold API.

This was done by implementing variants of the functions that delay the final application of

fold by boxing elements into a type that preserves information about the multiple output

separation. We also preserve the CPSList representation in the process.

These extra boxes unfortunately manifest themselves in the generated code. In the next section

we show how to eliminate this overhead.

Removing boxes

So far, we have successfully integrated partition and groupBy into the staged CPSList abstrac-

tion. Unfortunately this leads to the creation of boxes (Either[A, B] for partition, (K, V) for

43

Chapter 4. Fold-Based fusion as a library

grouping) around elements. In this section, we discuss how to eliminate these boxes.

We observe that, inside the CPSListpipeline, we are free to choose any representation for our

boxes, provided we can reconstruct the original representation at the end of the pipeline. In

other words, we do not need to create instances of Rep[Either[A, B]] or Rep[(K, V)] until the

final application of CPSList. In particular, by using CPS-encoded versions of the boxes inside

the pipeline, we can delay their construction, much like we delay the construction of lists!

Tying the knot with staged products and sums

We can directly reuse Church pairs and sums seen in Sections 3.1 and 3.2, respectively. For

context, here are their staged encodings (full implementations can be found in Figures 3.1

and 3.3):

abstract class CPSPair[A, B] {

def apply[X](k: (Rep[A], Rep[B]) => Rep[X]): Rep[X]

}

abstract class CPSEither[A, B] {

def apply[X](l: Rep[A] => Rep[X], r: Rep[B] => Rep[X]): Rep[X]

}

Getting back to CPSList, we can now implement partitionusing CPSEither. We face one final

issue though. We may think that partition can be written as follows:

def partitionCPS(p: Rep[A] => Rep[Boolean]): CPSList[CPSEither[A, A], S] = {

this map { elem =>

if (p(elem)) mkLeft[A, A](elem)

else mkRight[A, A](elem)

}

}

However, CPSEither expects a Rep type as its first argument: it expects a Rep[CPSEither[A, A]]

but we provide a plain CPSEither[A, A].

We are in the presence of nested CPS encodings once again (cf. Section 3.2.2). Just as with

products, we also statically know all points at which an instance of CPSEither is created in

the list pipeline: precisely in each branch of the partition predicate. Therefore we can once

again use constant wrappers around CPSEither. Figure 4.19 shows the implementation of this

wrapper. Every method on CPSEither has a corresponding method in EitherWrapper which

simply forwards the implementation down.

44

4.4. Removing boxes

trait CPSEitherOpsExp extends CPSEitherOps with ... {

import CPSEither._

//The wrapper acts as a Rep[CPSEither[A, B]]

case class EitherWrapper[A, B](e: CPSEither[A, B]) extends Def[CPSEither[A, B]]

def mkLeft[A, B](a: Rep[A]) = EitherWrapper(mkLeft[A, B](a))

def mkRight[A, B](b: Rep[B]) = EitherWrapper(mkRight[A, B](b))

def either_map[A, B, C, D](

e: Rep[CPSEither[A, B]],

lmap: Rep[A] => Rep[C],

rmap: Rep[B] => Rep[D]): Rep[CPSEither[C, D]] = e match {

case Def(EitherWrapper(sth)) =>

EitherWrapper(sth map (lmap, rmap))

}

def either_apply[A, B, X](

e: Rep[CPSEither[A, B]],

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]): Rep[X] = e match {

case Def(EitherWrapper(sth)) => sth.apply(lf, rf)

}

def __ifThenElse[A, B](

cond: Rep[Boolean],

thenp: => Rep[CPSEither[A, B]],

elsep: => Rep[CPSEither[A, B]]): Rep[CPSEither[A, B]] = {

(thenp, elsep) match {

case (Def(EitherWrapper(t)), Def(EitherWrapper(e))) =>

EitherWrapper(conditional(cond, t, e))

}

}

}

Figure 4.19 – EitherWrapper: LMS IR wrapper around CPSEither

45

Chapter 4. Fold-Based fusion as a library

Related work

Fusion, or deforestation, has been studied extensively. One of the first known techniques is

Wadler’s algorithm for eliminating intermediate trees [86]. For list-like pipelines, there are

three main algorithms: foldr/build fusion [29], which is based on implementing list operations

as folds. Its dual, destroy/unfoldr fusion, fuses multiple input consumers such as zips well [80].

Stream fusion [15, 14] converts list operations to operations on streams, and can handle

both kinds of functions well. All three have been implemented using Haskell’s rewrite rule

system [40]. The technique presented here is an instance of, and therefore as powerful as,

foldr/build fusion.

Fusion systems have also been studied theoretically. Meijer et al. [55] propose a theoretical

framework for functional programs that are based on high-level recursive operations over

algebras. The CPS-encoded datatypes (FoldLeft, EitherCPS) we use are instances of such

algebras.

Hinze et al. provide a theoretical framework that unifies the above-mentioned fusion al-

gorithms [34]. Ghani et al. generalise foldr/build fusion to other inductive datatypes [25].

Although we only treat lists, sums and pairs, their work suggests that our technique can be

extended to other inductive datatypes.

LMS also proposes its own fusion algorithm for indexed loops [70]. This algorithm performs

both horizontal and vertical fusion on representations of loops and provides facilities for

heterogeneous code generation. However, while the framework embraces the "fusion as a

library" approach, it also relies heavily on LMS’ compiler infrastructure. Our goal here was

to avoid this kind of dependency, and implement a simple library based entirely on partial

evaluation.

Partial evaluation and multi-stage programming have been used with great success to optimise

programs. The general idea is to apply the first Futamura projection to turn interpreters into

compilers [24]. The LMS framework enables us to compose code generators; we effectively

operate in a generative programming language [68].

Svensson et al. use defunctionalisation to unify push and pull arrays in an embedded DSL

context [82]. Much like our approach, their representation effectively turns a CPS-encoded

array into a code generator.

Conclusion

We have shown how to implement fold-based fusion as a library. The key is to represent

data-structures using their CPS-encodings. As a result, composition over these data structures

turns into function composition. We then partially evaluate function composition to achieve

vertical fusion.

46

4.6. Conclusion

The technique readily extends to multiple output producers such as partitioning and grouping

operations by introducing additional boxes. By CPS-encoding the box types, we are once

again able to apply partial evaluation to eliminate intermediate data structures, and achieve

horizontal fusion.

We used LMS as our staging/partial evaluation framework of choice: our implementation

is available as an open-source project [41]. Our approach is, however, not tied to a particu-

lar framework. Indeed, any system capable of partially evaluating function composition is

sufficient.

47

5 Stream fusion as a library

Introduction

Fold-based fusion is rather elegant. We simply Church-encode lists and are able to fuse

quite a few operations on lists, as these can be expressed using foldLeft. Some functions are

unfortunately not so straightforward to implement as a fold. The most popular example is the

zip function, which takes two lists as inputs and outputs a list of paired elements from each

list:

def zip[A, B](as: List[A], bs: List[B]): List[(A, B)] = (as, bs) match {

case (Nil, _) => Nil

case (_, Nil) => Nil

case (a :: as2, b :: bs2) => (a, b) :: zip(as2, bs2)

}

Figure 5.1 – The zip function on lists

This function can be implemented using foldLeft as well:

def zip[A, B](as: List[A], bs: List[B]): List[(A, B)] = {

val (res, _) = foldLeft[A, (List[(A, B)], List[B])](as)(

(Nil, bs),

{ case ((abs, bs2), a) => bs2 match {

case Nil => (abs, bs2)

case b :: bs3 => (abs :+ (a, b), bs3)

}})

res

}

Figure 5.2 – The zip function on lists using foldLeft

The accumulator tracks both the state of the second list bs and the resulting list of pairs abs.

49

Chapter 5. Stream fusion as a library

The combination function creates a pair if the second list still has elements.

There are two issues with this implementation that make fusion difficult. First of all, even if

the second list bs2 becomes empty, we still iterate over the rest of the elements of as. We could

jump out of the function at that point by returning the accumulated list of pairs (return abs).

But this creates two exit points for zip, and breaks the abstraction of a single pipeline.

Secondly, we manually inspect and extract from bs. Which means that the list must be

materialised at this point, and thus becomes an intermediate structure in the process of

creating the final list of pairs abs.

Inherently, zip takes more than one list as its input: this is not easily represented in terms of a

fold. An alternate representation for list operations is via the dual operation to fold, unfold.

Stream fusion [15] is based on such a representation in order to fuse pipelines of operations

on lists. As a continuation of the main theme in this dissertation, we implement a variant of

staged stream fusion in this chapter. While zip-like functions work well in an unfold setting,

the implementations of filter and flatMapbecome more complicated [80] (Section 5.2).

List operations as unfolds

The dual to the fold function, which consumes elements from a list, is unfold, which produces

elements from a (possibly infinite) source into a list:

def unfold[S, A](source: S)(step: S => Option[(A, S)]): List[A] = {

def loop(tmpRes: List[A], tmpSeed: S): List[A] = step(tmpSeed) match {

case Some((elem, rest)) => loop(tmpRes :+ elem, rest)

case None => tmpRes

}

loop(Nil, source)

}

Figure 5.3 – The unfold function on lists

Given an initial source, and a stepper function, unfold extracts elements from the source until

there are no more elements to be extracted, when step returns None.

def map[A, B](ls: List[A], f: A => B): List[B] = unfold[List[A], B](ls){

case Nil => None

case x :: xs => Some((f(x), xs))

}

Figure 5.4 – The map function on lists using unfold

An example of a list operation using unfold is map, shown in Figure 5.4. The zip function now

50

5.2. List operations as unfolds

def zip[A, B](as: List[A], bs: List[B]): List[(A, B)] = {

unfold[(List[A], List[B]), (A, B)]((as, bs)){

case (Nil, _) => None

case (_, Nil) => None

case (a :: as2, b :: bs2) => Some((x, y), xs))

}

}

Figure 5.5 – The zip function on lists using unfold

becomes easy to implement as well (Figure 5.5): the source is a pair comprising both initial

lists. The stepper function extracts a pair if both lists have at least one element.

The filter and flatMap functions are not so straightforward however. Here is filter:

def filter[A](ls: List[A], p: A => Boolean): List[A] = {

def inner(tmpSource: List[A]): Option[(A, List[A])] = tmpSource match {

case Nil => None

case x :: xs =>

if (p(x)) Some(x, xs)

else inner(xs)

}

unfold[List[A], A](ls)(inner _)

}

Figure 5.6 – The filter function on lists using unfold

The stepper function provided to unfold is itself recursive: it eagerly pulls elements from the

source until is sees one that passes the predicate. This recursive nature makes it difficult

to fuse filter, as it introduces nested recursion. Both fold and unfold are already recursion

schemes, and it is in our interest to keep operations that use these non-recursive.

The flatMap function is even trickier (Figure 5.7). At all times in the stepper function, we must

know whether to pull from the an inner list of type List[B], or from the source list and apply f.

Hence the use of two kinds of flags:

• The source is a pair of the source list as well as a potential inner list. We only pull from

the outer list when the inner list is itself empty.

• The output type to the unfold function is Option[B]. When the inner list becomes empty,

we must pull from the outer list. Rather than applying f directly and pulling from the

resulting list (which would once again result in nested recursion), we produce a “bubble”

value. These bubbles are removed by a final call to foldLeft.

51

Chapter 5. Stream fusion as a library

def flatMap[A, B](ls: List[A], f: A => List[B]): List[B] = {

val innerList: List[Option[B]] = unfold[(List[B], List[A]), Option[B]] {

case (Nil, Nil) => None

case (Nil, a :: as) => Some((None, (f(a), as)))

case (b :: bs, as) => Some((Some(b), (bs, as)))

}((Nil, ls))

foldLeft[Option[B], List[B]](ls)(

Nil,

(acc, elem) => elem match {

case None => acc

case Some(b) => acc :+ b

}

)

}

Figure 5.7 – The flatMap function on lists using unfold

Staging streams

trait StreamOps extends CPSListOps with PairCPS with OptionCPS {

abstract class Stream[A, Source] { self =>

def source: Rep[Source]

def atEnd(s: Rep[Source]): Rep[Boolean]

def next(s: Rep[Source]): Rep[CPSPair[CPSOption[A], Source]]

}

Figure 5.8 – The interface of the staged streams library

Keeping in mind the difficulties with filter and flatMap above, we propose a staged stream

implementation in this section. Its interface is given in figure 5.8: a Stream[A, S] sees elements

of type A, from a source of type S. Its signature closely mirrors that of unfold. We decouple

the stepper into two methods atEnd and next. The main difference is that next returns a value

of type OptionCPS[A] rather than just A: this encodes the fact that we may add bubbles in

the pipelines (see below). This decoupling reveals the closeness of streams to iterators in

imperative programming, with the difference being that that ours have a functional interface.

Note that we use Church-encoded pairs and options, to benefit from deforestation for these.

We describe key methods from the API here below. We then treat zip and flatMap individually.

Stream.map. The map function is once again easy to implement. It creates a stream that has

the same source and atEnd methods as the one it wraps around. The next method pulls an

element and applies the mapping function f to an element, if there is one (Figure 5.9).

52

5.3. Staging streams

// as a method on Stream

def map[B](f: Rep[A] => Rep[B]) = new Stream[B, Source] {

def source = self.source

def atEnd(s: Rep[Source]): Rep[Boolean] = self.atEnd(s)

def next(s: Rep[Source]): Rep[PairCPS[OptionCPS[B], Source]] = {

val nextAndRest = self.next(s)

nextAndRest.map(

nxt => nxt map f,

rst => rst

)

}

}

Figure 5.9 – The map function on streams

Stream.filter. The crucial bit with filter is to propagate a Nonedownstream when the predi-

cate is not satisfied. The solution of inserting a bubble helps in keeping the implementation

non-recursive (Figure 5.10).

// as a method on Stream

def filter(p: Rep[A] => Rep[Boolean]) = new Stream[A, Source] {

def source = self.source

def atEnd(s: Rep[Source]): Rep[Boolean] = self.atEnd(s)

def next(s: Rep[Source]): Rep[PairCPS[OptionCPS[A], Source]] = {

val nextAndRest = self.next(s)

nextAndRest.map(

nxt => nxt filter p,

rst => rst

)

}

}

Figure 5.10 – The filter function on streams

Stream.toCPSList. The final step in a steam pipeline is to collapse all desired elements into

some structure. In terms of recursion schemes, the pipeline corresponds to a hylomorphism

that needs a final catamorphism (fold) that is composed with the initial anamorphism (unfold).

It is at this point that bubbles created by previous functions are eliminated: we pass the unit

continuation to a None element (Figure 5.11). Also, thanks to the customised treatment of

default values (zeroVal) and mutable variable assignment for Church-encoded structures (cf.

Section 3.2.2), we are guaranteed that there is no intermediate object creation in the while

loop.

53

Chapter 5. Stream fusion as a library

//as a method on Stream

def toCPSList = new CPSList[A] {

def apply[Sink](z: Rep[Sink], comb: Comb[A, Sink]): Rep[Sink] = {

var tmpSource = source

var tmpSink = z

while (!atEnd(tmpSource)) {

var optA = zeroVal[OptionCPS[A]]

/* peeling out the pair and the option */

next(tmpSource).apply { (optcps, src) =>

optA = optcps

tmpSource = src

}

optA.apply(
_ => unit(()),

e => tmpSink = comb(tmpSink, e)

)

}

tmpSink

}

}

Figure 5.11 – Closing the hylomorphism on streams with toCPSList

Zip

The implementation of zip for streams is more complex than its unfold counterpart (see

Figure 5.5), because of the extra OptionCPS wrapper around an element. Its signature is the

following:

def zip[B, S2](

that: Stream[B, S2]

): Stream[PairCPS[A, B], PairCPS[OptionCPS[A], PairCPS[Source, S2]]]

The source for the resulting stream combines both the left and right sources. In addition there

is an intemediate state holding an OptionCPS[A]. It allows us to decide whether to pull from

the left or the right source, depending on whether it is empty or contains a value, respectively.

Initially it is naturally empty:

def source = mkPair(mkNone[A], mkPair(self.source, that.source))

A zipped stream becomes empty when either the left or right stream are empty. We must also

check first whether the intermediate state itself is empty, lest it be possible to create another

pair (Figure 5.12).

The next method creates a pair of values once they are availabe. For this to happen, the

54

5.4. Zip

def atEnd(p: Rep[InnerSource]): Rep[Boolean] = {

p.apply { (optA, sources) => sources.apply { (s1, s2) =>

(self.atEnd(s1) && !optA.isDefined) || that.atEnd(s2)

}}

}

Figure 5.12 – The atEndmethod on a zipped stream

intermediate state should contain a value, and pulling from the stream to the right must

also return a value. In other cases, a bubble is created, and modifications are made to the

remaining source if the intermediate state is empty and the left stream yields an element:

def next(s: Rep[InnerSource]): Rep[PairCPS[OptionCPS[PairCPS[A, B]], InnerSource]] = {

s.apply { (optA, sources) => sources.apply { (s1, s2) => optA.apply(

/** if ‘optA‘ not defined we pull from ‘s1‘ */
_ => {

val nextAandRest = self.next(s1)

nextAandRest.apply { (newOptA, s1Rest) =>

mkPair(mkNone[PairCPS[A, B]], mkPair(newOptA, mkPair(s1Rest, s2)))

}

},

/** if ‘optA‘ is defined we pull from ‘s2‘ */

a => {

val nextBandRest = that.next(s2)

nextBandRest.apply { (optB, s2Rest) =>

optB.apply(

/** if ‘optB‘ not defined we continue */
_ => mkPair(mkNone[PairCPS[A, B]], mkPair(optA, mkPair(s1, s2Rest))),

/** if ‘optB‘ is defined we can create a pair */

b => mkPair(mkSome(mkPair(a, b)), mkPair(mkNone[A], mkPair(s1, s2Rest)))

)

}

}

)}}

}

Figure 5.13 – The nextmethod on a zipped stream

Thanks to zip, it is now possible to fully deforest the classic functional implementation of the

dot product function:

def dotProduct(a: Stream[Int, Int], b: Stream[Int, Int]): Rep[Int] = {

val dotted = (xs zip ys).map(pair => pair.apply((x, y) => x * y))

dotted.toFold.apply[Int](unit(0), (acc, x) => acc + x)

}

55

Chapter 5. Stream fusion as a library

Partial evaluation of this function generates code with no intermediate data structures, as a

single loop that iterates over two indices, one for each input stream.

FlatMap

The flatMap function is given by the following signature:

def flatMap[B, S2](

f: Rep[A] => Stream[B, S2]

): Stream[B, PairCPS[Source, OptionCPS[PairCPS[A, S2]]]]

It takes a function which for an element of type Rep[A] yields a new static stream, whose

element and source types are both known. The resulting stream naturally yields elements of

type Rep[B]. Its source consists of two elements, the outer source of type Source, and internal

state that marks both which current outer element we are flattening, as well as the current

inner source:

def source = mkPair(self.source, mkNone[PairCPS[A, S2]])

We have reached the end of a flatMap stream if the outer source is empty, and there is nothing

left to flatten:

def atEnd(s: Rep[TotalSource]): Rep[Boolean] = s.apply { (outer, inner) =>

self.atEnd(outer) && !(inner.isDefined)

}

To compute a next element, if the internal state is defined, it means that we can pull from

the inner source, otherwise that we must pull from the outer source. The flattened stream

reaches its end if both the outer stream has reached its end, and if the inner state is empty

(Figure 5.14).

Discussion

The stream implementation presented here reveals the type of the source very early. A pro-

grammer must therefore provide a source type early when declaring a pipeline. An alternate

implementation would be to have the source parameter as a type member:

abstract class Stream[A] {

type S

}

The main reason for not doing so is due to the difficulty of deforesting flatMap. Indeed, we

restrict the function f passed to flatMap to return a stream whose source is of the same type

for every element a: A of the initial stream. In the general case, the type of a stream’s source

could depend on the value of an element.

56

5.6. Discussion

def next(s: Rep[TotalSource]): Rep[PairCPS[OptionCPS[B], TotalSource]] = {

s.apply { (outer, optInner) =>

optInner.apply(

/** if no inner source, pull from outer */
_ => {

val nextAndRest = self.next(outer)

nextAndRest.apply { (optA, rest) =>

mkPair(mkNone[B], mkPair(rest, optA map (a => mkPair(a, f(a).source))))

}

},

/** if the inner source is defined we pull from it */

inner => inner.apply { (innerA, innerSource) =>

/** calling the innerStream, to have access to the functions */

val innerStream = f(innerA)

if (innerStream.atEnd(innerSource)) {

mkPair(mkNone[B], mkPair(outer, mkNone[PairCPS[A, S2]]))

} else {

val nextAndRest = innerStream.next(innerSource)

nextAndRest.apply { (optB, rest) =>

mkPair(optB, mkPair(outer, mkSome(mkPair(innerA, rest))))

}

}

}

)

}

}

Figure 5.14 – The nextmethod on a flatmapped stream

Such cases are far more difficult to optimise. In the original stream fusion work by Coutts et

al. [15], optimising this function involves complex compiler optimisations such as the case of

case transformation, and even then, not all boxes can be always removed [14]. Coutts proposes

a weaker version of concatMap (Haskell’s name for flatMap), known as the name-capturing

flatten, that corresponds to the version of flatMap presented here. Farmer et al. propose a

tranformation from flatMap to flatten (when possible) using the HERMIT framework [19]. We

choose instead to restrict the operation by design. In practice, pipelines of streams using

flatMap tend to have a single inner source type, and therefore this is not, we believe, a major

restriction. Moreover, it allows us to benefit from deforestation without having to implement

more complex analysis algorithms for the body of a general flatMap.

We saw implementations of partitioning and grouping functions that wrap an element as a

sum or a product, respectively (Section 4.3). These implementations are a simple use of the

map function itself. As a result they directly carry over to streams.

57

Chapter 5. Stream fusion as a library

The toCPSListmethod on streams also demonstrates the ease with which two a priori distant

deforestation algorithms can be connected for great benefit. One might wonder, as a result,

why we need to implement functions such as flatMap and filter in a stream context. Is it

not enough to call toCPSList first and only then use these functions? Unfortunately some

pipelines may require performing these operations before the call to a zip function. Shaikhha

et al. further explore the relation between fold and unfold fusion in query engines of database

systems, and the quality and performance of generated code in both cases [77].

58

Part IIStaged Parser Combinators

59

In Part I we implemented shortcut fusion by encoding lists as either folds or unfolds, and par-

tially evaluating function composition. This is but one half of "Specialising Parsers to Queries".

In this part we study parsers, in particular parser combinators. Among many advantages

described below, parser combinators are classically implemented as functions themselves.

Which is ideal for partial evaluation and performance purposes. While practical parser combi-

nator implementations handle recursive-descent parsing, we show that the techniques also

apply to bottom-up parsing, in particular in the context of dynamic programming.

Part of this work has been previously published. The work on dynamic programming was

done in collaboration with Thierry Coppey [42]. Eric Béguet developed a first macro-based

implementation of recursive-descent parser combinators [7]. The presentation in this part

is more principled and considerably simplifies the treatment of both recursion and code

generation issues.

61

6 Staged parser combinators for data
processing

Introduction

Parser combinators [87, 48, 56] are an intuitive tool for writing parsers. Implemented as a

library in a host language, they use the language’s abstraction capabilities to enable composi-

tion. As a result, a parser written with such a library can look like formal grammar descriptions,

and is also readily executable: by construction, it is well-structured, and easily maintainable.

Moreover, since combinators are just functions in the host language, it is easy to combine

them into larger, more powerful combinators.

However, parser combinators suffer from poor performance (see Section 6.4) inherent to

their implementation. There is a heavy penalty to be paid for the expressivity they allow. A

grammar description is, despite its declarative appearance, operationally interleaved with

input handling, such that parts of the grammar description are rebuilt over and over again

while input is processed. Moreover, since parsing logic may depend on previous input, there

is no clear phase distinction between language description and input processing that could be

straightforwardly exploited for optimizations without giving up expressiveness and therefore

some of the appeal of parser combinators.

For this reason, parser combinators are rarely used in applications demanding high through-

put. This is unfortunate, because they are so useful and parsing is such an ubiquitous task in

computing. Far from being used only as a phase of compiler construction, parsers are plentiful

in the big data era: most of the data being processed is exchanged through structured data

formats, which need to be manipulated efficiently. An example is to perform machine learning

on messages gathered from social networks. Most APIs return these messages in a structured

JSON format transferred over the HTTP protocol. These messages need to be parsed and

decoded before performing learning on them.

The accepted standard for performance oriented data processing is to write protocol parsers

by hand. Parser generators, which are common for compilers, are not frequently used. One

reason is that many protocols require a level of context-sensitivity (e.g. read a value n, then

63

Chapter 6. Staged parser combinators for data processing

read n bytes), which is not readily supported by common grammar formalisms. Many open-

source projects, such as Joyent/Nginx and Apache have hand-optimized HTTP parsers, which

span over 2000 lines of low-level C code [84, 4]. From a software engineering standpoint, big

chunks of low-level code are never a desirable situation. First, there may be hidden and hard

to detect security issues like buffer overflows. Second, the low-level optimization effort needs

to be repeated for new protocol versions or if a variation of a protocol is desired: for example,

a social network mining application may have different parsing requirements than an HTTP

load balancer, even though both process the same protocol.

Parser combinators could be a very attractive implementation alternative, if only they weren’t

so slow. Their main benefit is that the full host language can be used to compose parsers, so

context sensitivity and variations of protocols are easily supported. To give an example, we

show the core of a combinator-based HTTP parser.

Parsing communication protocols with combinators The language of HTTP request and

response messages is straightforward to describe. Here is an example HTTP response:

HTTP/1.1 200 OK

Date: Mon, 23 May 2013 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2012 23:11:55 GMT

Etag: "3f80f-1b6-3e1cb03b"

Content-Type: text/html; charset=UTF-8

Content-Length: 129

Connection: close

... payload ...

In short, an HTTP response consists of a status message (with a status code), a sequence of

headers separated by line breaks, a final line break, and the payload of the response. A header

is a key-value pair. The length of the payload is specified by the Content-Lengthheader. We can

express this structure as follows using the parser combinator library that comes with the Scala

distribution (Figure 6.1).

def status = (("HTTP/" ~ decimalNumber) ~> wholeNumber <~ (text ~ crlf)) map (_.toInt)

def headers = rep(header)

def header = (headerName <~ ":") flatMap { key =>

(valueParser(key) <~ crlf) map { value => (key, value) }

}

def valueParser(key: String) = if (key == "Content-Length") wholeNumber else text

def body(i: Int) = repN(anyChar, i) <~ crlf

def response = (status ~ headers <~ crlf) map { case st ~ hs => Response(st, hs) }

def respWithPayload = response flatMap { r => body(r.contentLength) }

Figure 6.1 – A HTTP parser implemented using parser combinators

64

6.1. Introduction

In this example, we observe the following:

• thestatusparser looks for the code in a status message. It uses the sequencing operators

~, ~> and <~. The latter two combinators ignore parse results on their left and right

sides, respectively. Here, we are only interested in the status code (wholeNumber). The map

combinator is then used to convert the code to an integer value.

• the headers parser uses the rep combinator to parse a sequence of headers; header

parses a key-value pair. It uses the flatMap combinator to bind the result of parsing

a headerName to a key, which is then passed on to valueParser. Note that this parser is

context-dependent: it decides whether to parse the subsequent value based on the key.

The map combinator is used to create the pair itself.

• theresponseparser parses a status message followed by headers: here themapcombinator

is used to create a Response structure (case class) from the results.

• Finally, respWithPayloadparses and extracts the body of the message, based on the value

of the contentLengthfield of the Response structure.

It is easy to see the appeal of parser combinators from the above example. In less than 10

lines of code we have defined a parser for HTTP responses that is declarative and fairly easy to

understand. Of course a bit more work is needed to support the full protocol; the complete

parser we developed contains around 250 lines. Here, we have also omitted the definition

of simple parsers such as decimalNumber and wholeNumber: the advantage being that these are

implemented in a standard parser combinator library. Moreover, we can easily extend our

implementation to handle key-value pairs more precisely by adding cases to the valueParser

function, for example. If these 10 lines of re-usable high-level code could be made to perform

competitively with 2000 lines of low-level hand-written C, there would be much less incentive

for the latter to exist.

Since parser combinators compose easily, a fast implementation would even have the potential

to surpass the performance of hand-written parsers in the case of protocol stacks: layering

independent hand-optimized parsers may require buffering which can be avoided if the

parsers can be composed directly.

Contributions

As is the theme in this dissertation, the answer to performance with parser combinators lies in

judiciously using partial evaluation. By doing so, we create a library of parser combinators that

performs competitively to hand-optimized parsers. Lifting the performance level of parser

combinators to that of hand-written parsers removes a key incentive to write parsers by hand,

and enables more developers to reap the productivity benefits of high-level programming. In

particular, we make the following contributions:

65

Chapter 6. Staged parser combinators for data processing

• We dissociate static from dynamic computations for parser combinators using Lightweight

Modular Staging (LMS) [69]. The key insight is to allow static (grammar level) computa-

tion to treat pieces of dynamic (input handling) computation as first class values, but

not the other way around. We leverage the Scala type system to ensure that no parser

combinators can appear in the generated code. As a result we create a program that, at

the first stage, eliminates the combinator abstraction, and generates an efficient parser.

The first stage can still use the full host language for parser composition (Section 6.3).

• The stage distinction is non-obvious, due in particular to context-sensitive and recursive

parsers. The key trade-off is between inlining code as much as possible vs. when and

where to emit functions in the generated code. We use a mix of present-stage and

future-stage functions at key junctions to generate efficient recursive descent patterns

(Section 6.3.2).

• We evaluate the performance of our top-down parsers by comparing to hand-written

HTTP and JSON parsers from the Nginx and JQ projects. Our generated Scala code,

running on the JVM, achieves HTTP throughput of 75% of Nginx’s low-level C code, and

120% of JQ’s JSON parser. Other Scala based tools such as Spray are at least an order of

magnitude slower. (Section 6.4).

Parser combinators

The introduction gave us a taste for implementing parsers with combinators. In this section we

give insights on what causes them to be inefficient. For this, we show how they are commonly

implemented.

In a parser combinator library, parsers are represented as functions from some input to a parse

result. Complex parsers are created from simpler ones through the use of special operators,

called combinators. They essentially combine parsers through function composition. Fig-

ure 6.2 shows an interface for parser combinators in Scala. The implementation is contained

inside a Parsersmodule. The abstract class Parser[T] represents a parser that returns results

of type T. It is a function from an abstract Input type to a ParseResult datatype. An input

represents a (finite) stream yielding elements of type Elem. A parse result is either a Success,

in which case it contains a value of type T, and the rest of the input from where to continue

parsing. Or it is a Failure, in which case it contains the input from where we can recover. We

use a helper function mkParser to reduce boilerplate when creating new parsers.

We distinguish three main sorts of combinators, sequencers, alternatives, and repetition.

Sequencers. The parser lhs ~ rhs uses the sequencing combinator ~. It succeeds if lhs

succeeds, and rhs succeeds on the remaining input. The result is a pair containing the left and

right results, respectively (Figure 6.3.

66

6.2. Parser combinators

trait Parsers {

type Elem

abstract class Input {

def atEnd: Boolean

def first: Elem

def rest: Input

}

abstract class ParseResult[T] {

def map[U](f: T => U): ParseResult[U] = this match {

case Success(t, rest) => Success(f(t), rest)

case _ => this

}

def flatMapWithNext[U](f: T => Input => ParseResult[U]) = this match {

case Success(res, next) => f(res)(next)

case _ => this

}

}

case class Success(res: T, next: Input) extends ParseResult[T]

case class Failure(next: Input) extends ParseResult[T]

def mkParser[T](f: Input => ParseResult[T]) = new Parser[T] {

def apply(in: Input) = f(in)

}

abstract class Parser[T] extends (Input => ParseResult[T]) { ... }

}

Figure 6.2 – An unstaged interface for parser combinators

//as a method on Parser[T]

def ~[U](that: Parser[U]): Parser[(T, U)] = mkParser { in => this(in) match {

case Success(t, rest) => that(rest) match {

case Success(u, rest2) => Success((t, u), rest2)

case _ => Failure(in)

}

case _ => Failure(in)

}}

Figure 6.3 – The sequencing combinator for parser combinators

Variants of this combinator are the operators <~ and ~>. The parser lhs <~ rhs succeeds if both

the left hand side and right hand side succeed, and returns only the left result, resulting in a

parser of the type of lhs. Analogously, lhs ~> rhs returns the right result.

Alternatives. The parser lhs | rhs uses the alternative combinator |, and succeeds if either

of lhs or rhs succeed. Our notation follows the PEG grammar notation, which means that

67

Chapter 6. Staged parser combinators for data processing

there is a notion of priority in parsing an alternative: parsing rhs is attempted only if lhs fails.

//as a method on Parser[T]

def | (that: Parser[T]): Parser[T] = mkParser { in => this(in) match {

case s @ Success(_, _) => s

case _ => that(in)

}

Figure 6.4 – The alternative combinator for parser combinators

Repetition. The parser rep(p) parses the underlying parser p repeatedly until failure. It

aggregates the results of each successful parse into a list. An empty list is returned if p does not

succeed even once. Note that our implementation of rep uses a tail-recursive loop function.

def rep[T](p: Parser[T]): Parser[List[T]] = {

def loop(curIn: Input, curRes: List[T]): ParseResult[T] = {

p(curIn) match {

case Success(t, rest) => loop(rest, curRes.append(t))

case Failure(_) => Success(curRes, curIn)

}

}

mkParser[List[T]] { in => loop(in, Nil) }

}

Figure 6.5 – The rep combinator for parser combinators

We could have implemented repetition using sequencers and alternatives too:

def success[T](t: T): Parser[T] = mkParser(in => Success(t, in))

def rep[T](p: Parser[T]) =

((p ~ rep(p)) map { (x, xs) => x :: xs }) | success(Nil)

The success combinator creates successful parse results without consuming input, and the map

combinator transforms results of a parser. This implementation uses recursion at the grammar

level. We however prefer to treat repetition as full first-class citizen in the library, because this

enables us to treat such parsers as list-like recursion schemes. We refer to Section 8.2 for more

details.

Common variants of the repetition combinator are repN(p, min, max), which succeeds if p

succeeds between min and max times, and repsep(p, q), which repeatedly parses occurrences

of p, interleaved with occurrences of q. The latter is useful, for example, for parsing comma-

separated values, where a comma parser takes the place of q.

68

6.2. Parser combinators

Transforming a parse result. The above three combinators allow creating more complex

parsers based on simple ones. In addition we also have a map combinator which we use to

transform a parse result. This combinator is also commonly known as a means to specify a

semantic action. In particular, we will use this combinator to perform a query on data resulting

from a successful parse.

//as a method on Parser[T]

def map[U](f: T => U): Parser[U] = mkParser { in => this(in) map f }

Figure 6.6 – The map combinator for parser combinators

Context-dependent parsing. TheflatMap combinator enables the creation of a parser based

on the result of a previous parser, effectively enabling context-dependence. It is used, for

instance, in defining the header and respWithPayload from the above HTTP example.

//as a method on Parser[T]

def flatMap[U](f: T => Parser[U]): Parser[U] = mkParser { in =>

this(in) flatMapWithNext f

}

Figure 6.7 – The flatMap combinator for parser combinators

Note that we can re-implement all sequencing combinators using flatMap. This gives us a

much more intuitive for-comprehension notation:

//as methods on Parser[T]

def ~[U](that: Parser[U]): Parser[(T, U)] = for (l <- this; r <- that) yield (l, r)

def ~>[U](that: Parser[U]): Parser[U] = for (_ <- this; r <- that) yield r

def <~[U](that: Parser[U]): Parser[T] = for (l <- this; _ <- that) yield l

Figure 6.8 – The sequencing combinators for parser combinators, using for-comprehensions

Base parsers. As mentioned, we can construct complex parsers from simpler ones, but

we still need to create the simplest possible parsers. The simplest one, acceptIf, accepts an

element of type Elem if it passes a predicate. We can then define a helper function accept for

single elements (Figure 6.9).

In theory, any parser can be built from acceptIf. In practice, and mainly for performance

reasons, we define additional base parsers for handling token parsers for identifiers and string

literals.

69

Chapter 6. Staged parser combinators for data processing

def acceptIf(p: Elem => Boolean): Parser[Elem] = mkParser { in =>

if (!in.atEnd && p(in.first)) Success(in.first, in.rest)

else Failure(in)

}

def accept(e: Elem) = acceptIf { (x: Elem) => x == e }

Figure 6.9 – Base parsers acceptIf and accept

Recognisers. If a parser succeeds on a certain input and does not return any value, we

refer to it as a recogniser. They have the type Parser[Unit], since success or failure is already

captured in the ParseResult datatype. For example, a recogniser for acceptIf is defined as

follows:

def acceptIfReco(p: Elem => Boolean): Parser[Unit] = mkParser { in =>

if (!in.atEnd && p(in.first)) Success((), in.rest)

else Failure(in)

}

Figure 6.10 – Base recogniser for acceptIf

A recogniser for a string literal would succeed by verifying that the input is a sequence of

characters wrapped in quotes, while a parser for the same would return the literal in question.

The overhead of abstraction

Similar to overhead incurred by products, sums and list pipelines, this functional parser

combinator implementation also suffers from poor performance:

• The execution of a parser goes through many indirections. First and foremost, every

parser is a function. Functions being objects in Scala, function application amounts to

method calls. A composite parser, composed of many smaller parsers, when applied to

an input, not only constructs a new parser at every application, but also chains many

method calls, which incurs a huge cost due to method dispatch. The use of higher-order

functions incurs this cost as well.

One would expect a virtual machine like the JVM to inline most of these calls; the JVM’s

heuristics are however geared to optimize hot code paths. We may only be able to inline

a parser that is called very often. With a plug- gable VM, such as Truffle/Graal [92], we

could hint the virtual machine to inline these code paths. The important insight here is

that we want a more deterministic way of optimizing the method calls. This will also

open up further optimization opportunities down the line.

• We construct many intermediate parse results during the execution of a parser: for

70

6.3. Staging Parser Combinators

every combinator, we box the parse, plus the position, into a ParseResult object, before

manipulating its fields.

In summary, it is precisely the language abstraction mechanisms that enable us to compose

combinators that are hindering our performance. In the following sections, we show how to

get rid of this penalty.

Staging Parser Combinators

As mentioned before, in a parser combinator library parsers are represented as functions from

and input to a parse result. Moreover, our guiding principles tell us that partially evaluating

function composition effectively removes intermediate structures. Based on the above, we

can systematically add Rep types to the parser combinator API:

abstract class Parser[T] extends (Rep[Input] => CPSParseResult[T]) {

def map[U](f: Rep[T] => Rep[U]): Parser[U]

def flatMap[U](f: Rep[T] => Parser[U]): Parser[U]

def ~[U](that: Parser[U]): Parser[(T, U)]

def ~>[U](that: Parser[U]): Parser[U]

def <~[U](that: Parser[U]): Parser[T]

def |[T](that: Parser[U]): Parser[U]

}

Figure 6.11 – A staged interface for parser combinators

Note in particular the signature offlatMap, which takes a function that returns aParser (instead

of Rep[Parser]). This is indeed analogous to the staged flatMap counterparts for lists and

streams: a staged parser is already a code generator (i.e. a staged function), so the semantics

and flow are preserved. The implementations of these remain exactly the same to their

unstaged counterparts, since they redirect to the corresponding implementations on parse

results.

Church-encoded parse results

The reader will have noticed the use of CPSParseResult, which seems natural in a partial

evaluation context. A parse result is a glorified Option, therefore Church-encoding is fairly

straightforward (Figure 6.12). A parse result waits for two continuations, success and failure.

One of these is called based on whether we create a successful of failing result. The map and

flatMapmethods follow directly from their non-CPS counterparts, and do not require much

description. For completeness sake we provide their implementation in Figure 6.13.

71

Chapter 6. Staged parser combinators for data processing

abstract class CPSParseResult[T] { self =>

def apply[X](

success: (Rep[T], Rep[Input]) => Rep[X],

failure: Rep[Input] => Rep[X]

): Rep[X]

def mkSuccess[T](t: Rep[T], next: Rep[Input]) = new CPSParseResult[T] {

def apply[X](

success: (Rep[T], Rep[Input]) => Rep[X],

failure: (Rep[Input]) => Rep[X]

): Rep[X] = success(t, next)

}

def mkFailure[T](next: Rep[Input]) = new CPSParseResult[T] {

def apply[X](

success: (Rep[T], Rep[Input]) => Rep[X],

failure: (Rep[Input]) => Rep[X]

): Rep[X] = failure(next)

}

}

Figure 6.12 – An interface for Church-encoded parse results

//as methods on CPSParseResult

def map[U](f: Rep[T] => Rep[U]) = new CPSParseResult[U] {

def apply[X](

success: (Rep[U], Rep[Input]) => Rep[X],

failure: Rep[Input] => Rep[X]

): Rep[X] = self.apply(

(t: Rep[T], in: Rep[Input]) => success(f(t), in),

failure

)

}

def flatMapWithNext[U](f: (Rep[T], Rep[Input]) => CPSParseResult[U]) = {

new CPSParseResult[U] {

def apply[X](

success: (Rep[U], Rep[Input]) => Rep[X],

failure: Rep[Input] => Rep[X]

): Rep[X] = self.apply(

(t: Rep[T], in: Rep[Input]) => f(t, in).apply(success, failure),

failure

)

}

}

Figure 6.13 – An implementation of CPSParseResult

72

6.3. Staging Parser Combinators

As with EitherCPSwe once again specialise conditional expressions for parse results by overrid-

ing the virtualised __ifThenElsemethod. We fully benefit from customised variable creation as

well (Figure 6.14).

def __ifThenElse[T](

cond: Rep[Boolean],

thenp: => CPSParseResult[T],

elsep: => CPSParseResult[T]) = new CPSParseResult[T] {

def apply[X](

success: (Rep[T], Rep[Input]) => Rep[X],

failure: Rep[Input] => Rep[X]): Rep[X]): Rep[X] = {

var tmp = zeroVal[CPSParseResult[T]]

val successK = (t: Rep[T], rest: Rep[Input]) => { tmp = mkSuccess(t, rest) }

val failK = (rest: Rep[Input]) => { tmp = mkFailure(rest) }

if (cond) thenp.apply(successK, failK)

else elsep.apply(successK, failK)

if (tmp.isSuccess) success(tmp.value, tmp.rdr) else failure(tmp.rdr)

}

}

Figure 6.14 – Specialised conditional expressions for CPSParseResult

In addition, we add a orElse method that simplifies the implementation of the alternative

combinator for parser combinators: if the left result is a success it is returned, otherwise the

right result is returned. This is the trickiest function to implement (Figure 6.15). There are two

join points involved here, first with the result on the left, and then with the potential result on

the right. Hence the need to not only use temporary variables for the left part, but also to use

the customised conditional expressions for the right hand side, and to call the applymethod

at the end.

Recursion

Even the most basic parsers have some form of recursion. Simply using unstaged functions

will create infinite loops during code generation because recursive calls would be unfolded

and inlined during staging time. We are forced to stop the recursion by generating a staged

function for recursive parsers. This is done by explicitly declaring a parser needs using the rec

combinator. This combinator performs the lifting as necessary. It works using the classical

memoization scheme. The first time it sees a parser, it stores, in a static map, parser function.

The next time the same parser is seen, we replace it with a function application, using the

staged function stored before. In the generated code, we have a function application. The rec

combinator is therefore similar to a fixpoint combinator.

Consider for instance a simple digitAdderparser that reads a sequence of digits and maintains

73

Chapter 6. Staged parser combinators for data processing

def orElse(that: => CPSParseResult[T]) = new CPSParseResult[T] {

def apply[X](

success: (Rep[T], Rep[Input]) => Rep[X],

failure: Rep[Input] => Rep[X]): Rep[X] = {

var tmp = zeroVal[CPSParseResult]

val successK = (t: Rep[T], rest: Rep[Input]) => { tmp = mkSuccess(t, rest) }

val failK = (rest: Rep[Input]) => { tmp = mkFailure(rest) }

self.apply(successK, failK)

(if (tmp.isSuccess) mkSuccess(tmp.value, tmp.rdr) else that).apply(success, failure)

}

}

Figure 6.15 – An implementation of CPSParseResult

a running sum:

def adder: Parser[Int] =

(digit2Int ~ adder) map { case (x, y) => x + y } | digit2Int

In a staged setting, we wrap the definition around a rec combinator:

lazy val adder: Parser[Int] = rec {

(digit2Int ~ adder) map { case (x, y) => x + y } | digit2Int

}

Note that we use lazy evaluation to bind the instance of adderproperly: when the implemen-

tation of rec sees adder for the second time it will know to generate a function call rather

than define a new function. The definition of rec is given in Figure 6.16. It is implemented

at the IR level (in the Expworld). When a parser is seen for the first time, a new symbol for a

staged function Rep[Input => ParseResult[T]] is created. Since this is a function boundary, we

must materialise the parse result, and cannot use Church-encodings here, hence the call to

toParseResult. The doLambdaDef function reifies an unstaged function: it converts a Rep[T] =>

Rep[U] to a Rep[T => U], and is available by mixing in the FunctionsExp trait. The symbol and its

corresponding definition are stored in a cache, and reused when the parser p is seen again.

Evaluation

Our evaluation of staged parser combinators attempted to answer two questions: how much

does staging itself impact performance, and how does a fully staged version compare to hand-

optimised parsers. We ran our Scala/Java benchmarks using Scalameter [66], a benchmarking

and performance regression testing framework for the JVM. This framework handles JIT

warm-ups as well as running a benchmark until performance stabilizes.

We answered the first question by taking a profiler-based approach on a simple parser that

74

6.4. Evaluation

trait StagedParsersExp extends StagedParsers ... with FunctionsExp {

val store = new scala.collection.mutable.HashMap[Parser[_], Sym[_]]

def rec[T](p: Parser[T]) = Parser[T] { in =>

val myFun: Rep[Input => ParseResult[T]] = store.get(p) match {

case Some(f) =>

val realf = f.asInstanceOf[Exp[Input => ParseResult[T]]]

realf

case None =>

val funSym = fresh[Input => ParseResult[T]]

store += (p -> funSym)

val f = p.toParseResult

val g = createDefinition(funSym, doLambdaDef(f))

store -= p

funSym

}

val res: Rep[ParseResult[T]] = myFun(in)

if (res.isEmpty) mkFailure(res.next),

else mkSuccess(res.get, res.next)

}

}

Figure 6.16 – The rec combinator for recursion on staged parser combinators

parses a sequence of comma-separated boolean values. Its parser is given by:

def p = (accept(’[’) ~>

repsep((accept("true") | accept("false")), skipWs(accept(’,’)))

<~ accept(’]’))

We started out with a naive parser combinator library, and progressively added staging for

various data types until we got results within range of a hand-written recursive version of the

same parser. We added the optimisations based on the data type whose instances were the

highest, based on information from the profiler. Here are the optimisations, in order:

A mutable collection to fold into. An order of magnitude in performance was obtained by

using a mutable list buffer to gather results rather than immutable lists in the implementation

of rep and repsep. This seems obvious in hindsight. Yet the standard library use immutable

lists, and also implements rep using a right fold, i.e. it first accumulates closures. With this

simple change, the standard library combinators would perform much better. A fair baseline

is therefore a parser combinator library that “does the reasonable thing” for repetition parsers.

For this benchmark, despite using mutable data structures we are still 4-5x slower than the

hand-optimised version.

75

Chapter 6. Staged parser combinators for data processing

Staged parsers and Church-encoded parse results. The data structure that appears most

often next is the parse result. Indeed, an instance is created for every simple parser. By

staging these (which naturally implies staging parsers themselves) we get to within 1.5x of the

hand-optimised version.

Staged input readers. We finally stage the input reader as well. Since we know at compile

time what structure we will be parsing, this amounts to specialising the reader for the parser.

In this benchmark we load an array of characters in memory and use that as an input. This

final optimisation even surpasses the hand-written recursive implementation. We are now

1.5x faster. We suspect this is because the staged implementation generates a while loop that

seems to have a better shape for the JVM to further optimise.

We answered the second question by benchmarking a HTTP and a JSON parser. We use Scala

2.10 (-optimise) on Oracle JDK7 and GCC 4.8.2 with the most efficient optimization for given

programs (-O2 or -O3). Our staged parser combinators generate Scala code for both the HTTP

and JSON parser.

Scala combinators
Staged Scala

NGINX Java port
NGINX / gcc -O2

0 75 150 225 300

274.32
112.58

200.82
0.03

Figure 6.17 – HTTP parser throughput in MB/s

HTTP response parser The first test is a comparison of the parsing throughput of different

implementations of an HTTP response parser. To do that, we used a dataset of Twitter messages

with 100 HTTP responses totaling 8.15 Mb of data that decompose in 54.2 Kb of HTTP headers

and 8.10 Mb of JSON payload. The messages were obtained by querying the Twitter Search

API. The HTTP parsing happens only on headers.

We compare our staged combinators with both Scala’s standard parser combinators and the

Nginx proxy client, a hand-optimized, fast, open-source implementation. We also ported this

client to Java, for comparison. Figure 6.17 shows the results. As mentioned in the introduction,

native Scala parser combinators are a non-option. The JIT engine of the JVM seems not able to

optimize across functions. We perform better than the Java port. We think that this difference

may be due to the JVM performing better speculation for conditional expressions generated

by our code, than on the state-machine like structure present in the hand-optimized code.

Similarly, the C version is faster than staged parser combinators. We presume that the O2

compiler optimizes switch/case statements efficiently.

76

6.5. Related work

val jsonParser = {

lazy val value: Parser[Any] = rec { obj | arr | stringLit |

decimalNumber | "null" | "true" | "false" }

val obj: Parser[Any] = "{" ~> repsep(member, ",") <~ "}"

val arr: Parser[Any] = "[" ~> repsep(value, ",") <~ "]"

val member: Parser[Any] = stringLit ~ (":" ~> value)

value

}

Figure 6.18 – A JSON parser using parser combinators

JSON parser Our second evaluation (Figure 6.19) compares parsing of the JSON payload of

the previous messages. The JSON grammar is given in Figure 6.18. For simplicity sake we have

omitted the accept and acceptIfwrappers around characters and strings. This is achievable

in real code using the implicit classes (colloquially known as the pimp my library pattern).

This JSON parser looks very similar to a standard parser combinator implementation [59,

Chapter 31]. A JSON object is either:

• a primitive value, such as a decimal, string literal, a Boolean or the null value.

• or an array of values (the arr function).

• or an associative table of key-value pairs (the obj function).

We compare with Spray-json, a JSON parser for the popular Spray web toolkit for Scala [16]. Its

JSON parser is written using a parser combinator library. We also compare with JQ, a popular,

efficient, command line tool implemented in C to process queries on JSON. Once again, we

see that a traditional parser combinator implementation performs poorly. On the other hand,

staged combinators compete very well with the C implementation, and even surpass them.

Spray/parboiled
Staged Scala
JQ / gcc -O3

0 15 30 45 60

48.60
57.80

5.72

Figure 6.19 – JSON parser throughput in MB/s

Related work

Tools for parsing Parser combinators and their implementations are popular in functional

programming [22, 37, 87]. Their original implementations led to mainstream libraries, like

77

Chapter 6. Staged parser combinators for data processing

Parsec [48] in Haskell and the Scala parser combinator library [56]. These libraries focus on

producing a single result. Koopman et al [47] use a continuation-based approach to eliminate

intermediate list creation.

On the other hand are parser generators like Yacc [39], Antlr [61] and Happy [30]. While such

tools are good in terms of performance, they do not easily support context-sensitivity, which

is required in protocol parsing.

The staged parser combinator approach bridges the gap between both worlds in terms of

features for a parser: ease of use, context-sensitivity, composability, specializability and

performance.

Metaprogramming and compiler technology Staged parser combinators are a specific in-

stance of partial evaluation [24]. We make use of the well known technique of multi-stage

programming [85]. Sperber et al. also use partial evaluation for optimizing LR parsers which

are implemented as a functional-style library [78].

78

7 Dynamic programming on sequences
with staged parser combinators

Introduction

Protocol parsers are not the only use case for parsers in general and parser combinators in

particular. Other important data processing applications, for example in natural language

processing and bioinformatics, require nondeterministic parsers and highly ambiguous gram-

mars. These applications involve computing a parse result over a sequence with respect to

some cost function: we are not only looking for a parse result, we seek the best possible parse

result. For these use-cases, recursive descent with backtracking is inefficient. An efficient

implementation comes in the form of a memoization/dynamic programming algorithm. A

general technique, Algebraic Dynamic Programming (ADP) [27], can be used to describe

sequence structures as grammars in a parser combinator library.

ADP uses a grammar for the structure, and an algebra to compute over that structure. The

added benefit of this separation is modularity: we can define multiple algebras (cost functions)

for the same sequence structure. Primary use cases for ADP-style parser combinators are

dynamic programming problems on sequences, found in the realm of bioinformatics, such as

sequence folding. For very large sequences, it is beneficial to turn the evaluation strategy into

a bottom-up algorithm: this exposes uniform layouts which are amenable to parallelization.

In this chapter we present a staged parser combinator library for algebraic dynamic program-

ming. As expected, staging allows the removal of intermediate data structures. Staging also

allows us to generate code for various types of hardware. The added value of this chapter is in

using this feature to generate GPU code in order to perform dynamic programming in parallel:

• From a grammar specification of a dynamic program and a cost function, we generate a

CYK style parser. In contrast to the recursive descent parsers generated for unambiguous

grammars, we impose a bottom-up order for their ambiguous counterparts. At staging

time, we compose iterations over lists (of results) instead of the lists themselves, and

replace recursion by memoization (Sections 7.3.2, 7.3, 7.3.1).

79

Chapter 7. Dynamic programming on sequences with staged parser combinators

• Imposing a bottom-up order also opens up the possibility to parallelize processing, as

independent intermediate results can be computed independently [75, 79]. Our use of

staging coupled with generative programming enables us to generate code that runs

on the GPU for dynamic programs (Section 7.4). The GPU code computes an optimal

cost function efficiently. In Section 7.5, we discuss how to retrieve the trace of this

optimal cost. This trace is independent of the cost function itself, and can be applied to

other algebras later. Compared to previous approaches, we trade extra memory usage

in the forward computation for a better running time complexity for the backtrace

computation.

• We evaluate our bottom-up parsers on two different bioinformatics algorithms. We com-

pete with hand-written C code for the Nussinov algorithm, and show good scalability

for both CPU and GPU code generated from parser combinators.

Algebraic Dynamic Programming

Consider the following classic dynamic programming example: given a sequence of matrices

mi of appropriate dimensions, we want to determine the order of multiplication that min-

imizes the number of scalar multiplications. The problem satisfies the Bellman property:

optimal solutions are constructed from optimal sub-solutions. Let M [i , j] denote the opti-

mal cost of multiplying matrices i to j , the solution is described by the following recurrence

relation:

M [i , j] = 0 if i = j , else

M [i , j] = min
i≤k< j

{
M [i ,k]+M [k +1, j]
+rows(mi) ·cols(mk) ·cols(m j)

}

Figure 7.1 – A recurrence relation describing the matrix multiplication problem

We can memoize intermediate results in a matrix, and look them up when we need them.

The recurrence relations above do not capture the structure of the problem in an intuitive

manner though. We can express the problem as a grammar instead, as shown in Figure 7.2.

A chain of matrices is made by either a single matrix, or two consecutive sub- chains. The

mult and single functions act on a parse result, while tabulate memoizes the computation.

The aggregate function, as its name indicates, combines results of a parse based on a given

function.

Note that we have not shown the implementations of mult, single and h. Indeed, they are

customisable. We may be interested in the optimal cost of multiplication, but we may also be

interested in simply visualizing the result. More interestingly, we may want to visualize the

optimal result.

80

7.2. Algebraic Dynamic Programming

def chain = tabulate((

singleMatrix map single

| (chain ~ chain) map mult

) aggregate h)

Figure 7.2 – The matrix multiplication problem as a grammar

Algebraic dynamic programming is a formalism allowing us to specify these possibilities.

Formally, ADP decomposes into four components:

• A signature Σ that defines the input alphabet A , a sort symbol S and a family of

operators ◦ : s1, ..., sk →S where each si is either S or A .

• A grammar G over Σ operating on a string A ∗ that generates sub-solutions candidates.

• One or more algebras, that instantiates a signature and attributes a score to extracted

sub-solutions. The sort symbol and the signature functions have implementations.

• An aggregation function h : S ∗ → S ∗ retaining sub-solution with appropriate score

(usually optimal ones).

Based on the above, the matrix-chain problem has the following signature:

trait MatMultSig {

type A, S

def single(a: A): S

def mult(l: S, r: S): S

def h(xs: List[S]): List[S]

}

Figure 7.3 – A signature for the matrix-chain multiplication problem

In the above, the abstract types A, Sdesignate the input alphabet and sort symbol, respectively.

Thesingleandmultmethods correspond to operators on the signature, andh is the aggregation

function.

An implementation of a signature and two algebras for the matrix-chain multiplication prob-

lem are given in Figure 7.3. In addition to the aggregation function h, we define two operations,

single representing a single matrix and mult representing the multiplication of two matrices.

Note that the arguments to mult are of the generic sort type S.

This signature can spawn many algebras, of which we show two interesting ones here. The first

one is the cost algebra, which seeks to minimize the cost of multiplying matrices. The input

alphabet is a pair of integers representing the dimensions of the matrix, and the output is a

81

Chapter 7. Dynamic programming on sequences with staged parser combinators

triple of integers, for the rows, optimal cost and columns of the final result, respectively. As with

the recurrence relation above (Figure 7.1) the cost of a single matrix is 0, while multiplying

two matrices (the mult function) has an associated non-zero cost. The crucial part is the

aggregation function, which selects the result with the minimal cost among a list of results.

trait CostAlgebra extends MatMultSig {

type A = (Int, Int) // input matrix (rows,columns)

type S = (Int, Int, Int) // product (rows,cost,columns)

def single(a: A) = (a._1, 0, a._2)

def mult(l: S, r: S) =

(l._1,

l._2 + r._2 + l._1 * l._3 * r._3,

r._3)

def h(xs: List[S]) = List(xs.minBy(_._2))

}

Figure 7.4 – An algebra computing the optimal cost for a chain of matrices

Another useful algebra prints all possible configurations. In this case the sort is just a String,

and the implementations of single and mult print the matrix dimensions, with brackets as

appropriate. The aggregation function simply returns all elements it receives as input.

trait PrettyPrintAlgebra extends MatMultSig {

type A = (Int, Int)

type S = String

def single(a: A) = "[" + a._1 + "x" + a._2 + "]"

def mult(l: S, r: S) = "(" + l + "*" + r + ")"

def h(xs: List[S]) = xs

}

Figure 7.5 – An algebra printing various chaining alternatives

We already saw the grammar describing the chain above. It is in fact contained in a trait that

mixes the signature MatMultSig and ADPParsers, which provide a parser combinator library for

these grammars (Figure 7.6). The MatMult object ties a grammar to a concrete algebra to a

grammar using mix-in composition.

A staged parser combinator library

Algebraic Dynamic Programming enables a modular way to express semantic operations on

a (potentially) ambiguous grammar. As we have seen in the previous section, this can be

easily reworked into an executable program. We have however only hinted at how the parsers

themselves are implemented. In this section we present an implementation for these. Since by

this point, the reader will be familiar with staging techniques, we add Rep types directly as well.

82

7.3. A staged parser combinator library

trait MatMultGrammar extends ADPParsers with MatMultSig {

def chain = tabulate((

singleMatrix map single

| (chain ~ chain) map mult

) aggregate h)

}

object MatMult extends MatMultGrammar with CostAlgebra

Figure 7.6 – A grammar for matrix chain multiplication, and tying an algebra to this grammar

Note that the aggregation function h operates on a set of results, not a single one. Indeed with

ambiguous grammars it is possible to build multiple parse trees for a single input sequence.

Hence parsers now become functions from an input to a list of results. Figure 7.7 provides

an interface for these parsers. The ADPParsers trait has an abstract input sequence that will

be parsed. A parser is tasked with computing all possible results over a subsequence of this

input. Hence it is a function from a pair of integers (representing the beginning and end of the

subsequence) to a list of results. We use CPSList: this is in line with grammar specifications.

Since we do not know at grammar construction time what algebra will be applied, we do not

need to create intermediate lists.

trait ADPParsers extends CPSLists with ... {

type Elem

abstract class Input(val source: Rep[List[Elem]]) {

def elemAt(i: Rep[Int]): Elem

}

def input: Input

abstract class Parser[T] extends ((Rep[Int], Rep[Int]) => CPSList[T]) { ... }

def mkParser[T](f: (Rep[Int], Rep[Int]) => CPSList[T]) = new Parser[T] {

def apply(i: Rep[Int], j: Rep[Int]) = f(i, j)

}

}

Figure 7.7 – An interface for ADP-based parser combinators

As with recursive-descent parsers, we implement combinators for sequencing, alternation,

and transforming of results. With lists, sequencing corresponds to a cross-product of all

possible pairings resulting from the left and the right parsers, and alternation corresponds

to list concatenation. In addition to these we provide a combinator for filtering, and one for

aggregating results. The latter simplifies the use of the aggregation function h from a signature.

A basic parser is created using the el combinator, which is analogous to acceptIf. It returns a

single element if the indices have the correct interval (Figure 7.9).

83

Chapter 7. Dynamic programming on sequences with staged parser combinators

//as methods on Parser

def ~[U](that: Parser[U]) = mkParser[(T, U)] { (i, j) =>

if (i < j) for {

k <- fromRange(i, j - 1)

x <- this(i, j)

y <- that(k, j)

} yield (x, y)

else mkCPSNil()

}

def | (that: Parser[T]) = mkParser[T] { (i, j) => this(i, j) ++ that(i, j) }

def map[U](f: Rep[T] => Rep[U]) = mkParser[U] { (i, j) => this(i, j) map f }

def filter(p: (Rep[Int], Rep[Int]) => Rep[Boolean]) = mkParser[T] { (i, j) =>

if (p(i, j)) this(i, j) else mkCPSNil()

}

def aggregate(h: CPSList[T] => CPSList[T]) = mkParser[T] { (i, j) => h(this(i, j)) }

Figure 7.8 – Main combinators for ADP-based parsers

def el = mkParser[Elem] { (i, j) =>

if (i + 1 == j) mkCPSList(input.elemAt(i))

else mkCPSNil()

}

Figure 7.9 – An implementation of parser combinators for dynamic programming

Staging and memoisation

With recursive-descent parsers, we introduced the rec combinator for handling recursion. The

tabulate combinator plays an analogous role for memoisation with dynamic programming. If

a parser has already been seen, a table lookup is generated. Otherwise, the code for computing

the current result is generated (Figure 7.10).

def tabulate[T](p: Parser[T], mem: Rep[Array[Array[T]]]) = mkParser[T] { (i, j) =>

if (mem(i)(j).isEmpty) {

val tmp = p(i, j)

mem(i)(j) = tmp

tmp

} else mem(i)(j)

}

Figure 7.10 – The tabulate combinator, for memoisation

84

7.3. A staged parser combinator library

Top-down to bottom-up evaluation

Running the chain parser on an input sequence in with the argument (0, in.length) will

compute the best cost for the sequence. The parser runs in a top-down manner, calling

rules recursively on smaller subsequences. The advantage of this strategy is that unreachable

subsequences are not parsed in sparse problems. For our application cases, however, it is

common that all subsolutions need to be computed. It is therefore useful to use a bottom-up

strategy instead:

def bottomUp(p: Parser[T]): Unit = {

val n = in.length

(0 until n).foreach { d =>

(0 until n - d).foreach { i =>

val j = i + d

p(i, j) // call parser between i and j

}

}

}

Figure 7.11 – Processing a parser in bottom-up order

Here, we are taking advantage of the Bellman’s optimality principle to process all subproblems

of a certain size (d) before moving to the next size. This evaluation strategy computes all the

results on the same anti-diagonal (also known as wavefront) and progresses along the diagonal

of the tabulation matrix. All recursive calls to a parser become simple table lookups.

Single sequences

The parser combinator library presented above works on single sequences, just like recursive-

descent combinators. Along with the matrix multiplication problem above, other dynamic

programming problems that benefit from this approach can be found in the bioinformatics

realm, mostly in sequence folding. From a parsing point of view, we are indeed trying to find

the best structure for a given sequence.

Another prominent class of dynamic programming problems in bioinformatics is sequence

alignment, with the most well-known algorithm being Smith-Waterman: we want to find the

best alignment of two sequences. While ADP can support dynamic programs on multiple

sequences [75], state of the art implementations for sequence alignment face challenges that

are orthogonal to its representation as a grammar. Not only does the size of the sequence

require a stochastic approach, but there are also a number of hardware-specific optimizations

that can be applied to accelerate Smith-Waterman even further [74, 73].

We therefore choose to focus on single sequence problems; not only are sequence sizes

typically smaller (fit on the GPU), but the expressivity and performance gains are also higher

85

Chapter 7. Dynamic programming on sequences with staged parser combinators

for these problems.

Mutually recursive parsers

With mutually recursive parsers, production rules need to be ordered to ensure that a parser is

computed only when all its dependencies are valid (dependency analysis). In addition, we can

make the following observations:

• Referring to the intermediate solution matrix (Figure 7.12), all possible dependencies

are contained in a sub-matrix. By induction, it suffices that the immediately preceding

elements in the row and the column are valid for all other dependencies to be satisfied.

Hence elements on a diagonal can be computed in parallel (wavefront).

• In the presence of multiple grammar rules, we evaluate all rules on a given subsequence

at once; dependency analysis provides us with a correct evaluation order, assuming that

the grammar is correct (satisfies the Bellman’s property, and has no cyclic rules that

would cause infinite loops in top-down evaluation).

GPU parallelisation

thread 1

thread 2

. . .

fi
rstelem

en
t

last element

cell M [i , j] contains
solution for seq(i , .., j)

Figure 7.12 – Threads progress jointly along matrix diagonal. Dependencies can be reduced to
immediately preceding matrix cells.

Modern graphic cards1 are powered by massively parallel processors running hundreds of

cores, each able to schedule multiple threads. The threads are grouped by warps (32 threads)

and blocks, and scheduled synchronously: a divergence in execution path causes both alter-

natives to be scheduled sequentially, thereby stalling some threads. Two levels of memory

are exposed to the programmer: global memory accessible by any thread, and a faster local

memory accessible by threads in the same block. In many applications, the computational

1We focus on Nvidia/CUDA features; other frameworks have similar concepts.

86

7.5. Computing the backtrace

power of GPUs outperforms the memory bandwidth such that (global) memory access is often

the bottleneck.

The key insight is that GPU programs need to be regular, both in their computation logic (all

threads should be kept busy) and memory accesses (contiguous, or coalesced). In dynamic

programming, the cost function is usually simple and regular with respect to the combination

of sub-solutions.

Since elements computed in parallel are along one diagonal, the underlying matrix needs

to be stored diagonal-by-diagonal. To respect the dependency order, threads progress along

the rows of the matrix and synchronize with the neighboring thread (to validate column

dependencies) before moving to the next diagonal. This synchronization is done by active

waiting on threads between computations of diagonals [93].

We use the heterogeneous code generation capacities of LMS to dissociate these hardware-

specific decisions from the parser description. The progress on diagonals is given by the

bottomUp function above. We generate GPU specific code for the body (p(i, j)) of these loops.

Computing the backtrace

In addition to the optimal cost of a dynamic program, one is typically interested in the cor-

responding parse result. In our matrix multiplication example above, we could construct

such results simply by mixing in the PrettyPrint algebra and the CostAlgebra. This strategy

does not extend easily to the GPU: the cost function is regular, but pretty printing involves

string creation and storage, which adds unnecessary computation overhead on the GPU. It is

better to treat PrettyPrint as a backtracing algebra, and reconstruct the best parse tree after

the optimal cost has been found. In fact, it is possible to decouple the costing and backtracing

algebras completely, by precomputing backtraces. The remainder of this section describes this

process.

The cost function of a dynamic program computes its optimal cost, which corresponds to one

or more optimal parse trees. A backtrace is a linear representation of an optimal parse tree.

Figure 7.13 depicts the backtrace for an example instance of the matrix multiplication problem.

Given matrix dimensions in the left third of the figure, there is one optimal multiplication

order, given in pretty-print form. The optimal tree is overlaid on the cost matrix. The root of

this tree naturally lies on cell [0,3], which contains the optimal cost for multiplying all four

matrices. In the final third of the figure, we show the backtrace of the tree, that is, its in-order

traversal.

The backtrace computation is done in two phases: during the forward cost computation phase,

we store, along with the optimal cost, some backtrace-related information, which we call the

paper trail. This trail records what decisions we have made to reach a given cell. Once the

forward phase is complete, we start from the root of the tree, and reconstruct the optimal

87

Chapter 7. Dynamic programming on sequences with staged parser combinators

backtrace as the in-order traversal of the tree. We can then reuse this backtrace and apply it to

various algebras.

Computing the paper trail

The paper trail is computed along with the cost function. We need to store, for each cell, how

we got there. The only two combinators that contribute to this decision are sequencing (~)

and alternation (|). Alternation tells us which production rule was chosen, while sequencing

tells us where a subsequence was split. The number of splits in a subsequence is determined

by the number of concatenation combinators in a given rule, and corresponds to the number

of children of the relevant node in the parse tree. For the matrix multiplication problem

(Figure 7.6), there can be at most one split, resulting in a binary parse tree with leaves and

internal nodes corresponding to applications of the singleMatrix and chain rules, respectively.

Therefore, at every cell, we store a pair (ruleId, concats), where ruleId corresponds to a

chosen alternative, and concats is a list of splits due to concatenation. We attribute a ruleId

for every alternative in a tabulate combinator in a prior grammar analysis phase.

Backtrace construction

After the forward phase, both the cost matrix and the backtrace matrix have been filled

out. The actual backtrace corresponding to the optimal tree is reconstructed by running

a simple recursive in-order tree traversal starting from the root cell [0,n]. This yields a list

representation of the backtrace (List[(ruleId, concats)]). The final third of Figure 7.13 depicts

this representation.

i:0

i:1

i:2

i:3

j:0 j:1 j:2 j:3

Backtrace:
(i , j), (rule,concats)

(3,3), (singleMatrix, []),
(2,2), (singleMatrix, []),
(1,1), (singleMatrix, []),
(1,2), (chain, [2]),
(0,0), (singleMatrix, []),
(0,2), (chain, [1]),
(0,3), (chain, [3])

Matrices:
A : 3×2
B : 2×4
C : 4×2
D : 2×5

Solution:
(A · (B ·C)) ·D

Figure 7.13 – A backtrace for an instance of the matrix multiplication problem

Reuse of the backtrace

Now that the backtrace is constructed, it can be applied to any algebra. By following the list

in order, we apply the score function of the given algebra to the rule specified by the ruleId

88

7.6. Evaluation

parameter. Previous elements are guaranteed to be constructed beforehand.

A note on complexity

Let t be the number of tabulations, c be the maximum number of concatenations and r be

the number of rules in a grammar. Since these factors are constant for a given grammar, we

will only take them into account when they appear as exponents in the following complexity

bounds.

The space complexity for the optimal cost matrix O(n2). Storing the paper trail takes an extra

O(n2) of memory. The running time complexity of the forward computation phase is not

affected by the paper trail, and remains O(n2+c).

The backtrace reconstruction phase is a tree traversal, where the depth of the tree is n (as the

cost matrix is of size n2). The length of the backtrace is bounded by the size of this tree, which

is O(n). This is also the running time complexity of the backtrace phase.

Finally, if we want to apply the backtrace to another algebra, the running time is once again

bounded by the length of the trace.

Previous approaches combining ADP and backtracing allow to separate optimal cost com-

putation and other algebras [75, 36]. The difference is that they do not explicitly compute a

backtrace, but reuse the matrix computed in the forward phase. This saves on memory, but

applying a new algebra has a higher complexity (O(n2)).

Evaluation

Dynamic programming on CPU and GPU

Our benchmarking environment for dynamic programming (CPU and GPU) consisted of a

dual Intel Xeon X5550 with 96GB of RAM with an Nvidia Tesla C2050 (3Gb RAM) graphic card.

We measured the running time of two different bioinformatics algorithms for RNA sequence

folding. RNA folding consists of identifying matching basepairs that produce 2D features

such as hairpins, bugles and loops in the secondary structure of RNA molecules [38, 35]. For

both algorithms, we generate C code from staged parser combinators. For parallelisation, we

generate CUDA, additionally.

The Nussinov algorithm

The Nussinov algorithm maximises the number of matching basepairs. Its running time com-

plexity is O(n3). Its grammar is given in Figure 7.14. There are 4 possible folding alternatives:

• an element on the left side is dropped.

89

Chapter 7. Dynamic programming on sequences with staged parser combinators

• an element on the right side is dropped.

• two elements match according to the basePairfilter.

• a fold is split into two smaller folds.

def s = tabulate(

empty map nil

| el ~ s map left

| s ~ el map right

| (el ~ s ~ el filter basePair) map pair

| s ~ s map split

) aggregate h

Figure 7.14 – A grammar for the Nussinov sequence alignment problem

200 400 600 800 1000

1e-3

1e-2

1e-1

1e+0

RNA sequence length

N
us

si
no

v
al

g.
 r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

HandOptimized
ADP fusion
CPU
CPU+BT
GPU
GPU+BT

Figure 7.15 – Nussinov algorithm running time

Our evaluation results are displayed in Figure 7.15. We show the running time for four variants

of our generated code, along with a hand optimised C version, and an ADPfusion version:

• ADPfusion is an embedded Haskell DSL for ADP. It uses stream fusion [15] to eliminate

intermediate list creation, and performs close to hand-optimised C on the CPU. We

compare ADPfusion’s optimal cost calculation with ours, omitting the computation of

the backtrace.

90

7.6. Evaluation

• The CPU versions of our implementations run on a single thread. The CPU+BT version

fills the backtrace matrix and runs the procedure to construct the backtrace.

• Similarly, our CUDA implementation is presented both with and without the backtrac-

ing.

The CPU version without backtracing has similar performance to hand-optimised C code.

Indeed, manual inspection of the generated code reveals very close implementations. The

ADPfusion version is about 2× slower, which is in line with some remaining overhead that

stream fusion is unable to completely eliminate [36, Section 7]. For sequences larger than 800

elements, the CPU version takes a slight extra performance hit: this can be attributed to data

overflowing caches. We notice that parallelising on the GPU is worthwhile only for significant

sequence sizes. Also since the costing algorithm is fairly simple, we notice a clear overhead

when backtracing is enabled.

The Zuker algorithm

The Zuker algorithm also predicts the optimal secondary structure of an RNA sequence.

Instead of maximising the number of basepairs, it minimises free energy. Because the free

energy is computed from hundreds of coefficients based on physical measurements, a lot

of memory traffic is generated for each computation. The grammar for Zuker’s algorithm

consists of 4 tabulations with 15 productions and 13 scoring functions. The Zuker algorithm

has a complexity of O(n4) but it is commonly accepted to bound some productions of very

rare large structures to reduce its complexity to O(n3) with a large constant factor.

In Figure 7.16, we present results obtained for the Zuker algorithm. Once again, we show

results for both CPU and GPU generated code, with and without backtracing. We compare

our implementation to ViennaRNA [35], a highly optimised Zuker algorithm implementation

written in C for CPU. ViennaRNA fares better than our implementation because it precom-

putes basepairs matching and stack-pairings for a sequence before launching the actual

computation phase; our generated implementations do not benefit from such optimisations.

Compared to the simpler Nussinov algorithm, we can see that lookup tables introduce sig-

nificant overhead to the computation. The overhead of computing the backtrace becomes

negligible as a result. In Figure 7.16 the GPU is slower than CPU as the length of the sequences

has not compensated for the transfer overhead yet.

Scalability

To give an intuition of scalability for both the GPU and CPU versions, we benchmarked an

extensive set of sequences ranging from 500 to 5000 elements in length (see Figure 7.17). The

Nussinov algorithm scales better on GPU, offering speedups from 4× to 40× (respectively for

1000 and 5000 elements sequences). The Zuker lookup tables hamper GPU performance more

91

Chapter 7. Dynamic programming on sequences with staged parser combinators

200 400 600 800 1000

1e-3

1e-2

1e-1

1e+0

1e+1

RNA sequence length

Z
uk

er
 a

lg
. r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

ViennaRNA
ADP fusion
CPU
CPU+BT
GPU
GPU+BT

Figure 7.16 – Zuker algorithm running time

significantly, as multiple random memory accesses are required for each scoring, thereby

delivering at best 3.3× speedup on the CPU for this algorithm.

Related work

Parser combinators and memoization are common knowledge. Frost et al. introduce this

technique [23, 21]. In libraries, techniques like packrat parsing [20] are supported. They are

also known to support left recursion [88].

Our work on dynamic programming parsers is inspired by Algebraic Dynamic Program-

ming [27]. The original implementation was a Haskell library, and later a external DSL known

as Bellman’s GAP was developed [75]. Bellman’s GAP also includes analysis techniques for

verifying some soundness properties, and optimizing memory consumption and running time

through yield-size analysis [28]. ADPfusion is a more recent Haskell DSL that uses compiler

optimizations to remove intermediate data structures (see below).

Bellman’s GAP and ADPfusion both have support for computing backtraces. Bellman’s GAP has

an explicit product algebra construct, which the compiler uses to generate a backtrace for one

of the algebras which is specified to be backtracing. ADPfusion supports a combine operator

<** which combines two algebras, and a backtrace operator which can be used to apply an

algebra on a matrix resulting from the optimal cost (forward) phase. Both these approaches

92

7.7. Related work

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

RNA sequence length

N
us

si
no

v
al

g.
 r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

CPU
CPU+BT
GPU
GPU+BT

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

RNA sequence length

Z
uk

er
 a

lg
. r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

CPU
CPU+BT
GPU
GPU+BT

Figure 7.17 – Nussinov and Zuker algorithms scalability

reuse the matrix computed in the forward phase, and may recompute some results during the

backtrace. Our approach on the other first creates an algebra-agnostic backtrace. We trade

memory consumption (the paper trail) for an improved running time complexity. The cost

matrix can be ignored during the backtracing phase: if the matrix is computed on the GPU, we

only need to transfer the backtrace back to the CPU, and not the full resulting matrix.

Other language approaches are StagedDP [83] (programs are expressed using classic recur-

rences) and Dyna [18] (a logic-programming style language prevalent in the field of NLP/s-

tochastic grammar parsing).

Cartey et al propose an intermediate DSL for recurrence relations, which they analyze and

generate GPU programs from [11]. Their approach is more general as they try to infer a parallel

schedule from recurrence relations; we leverage our domain-specific knowledge to force

diagonal progress.

Parallelization Bellman’s GAP supports a parallelization scheme for the GPU that is similar

to ours, based on bottom-up evaluation and computation following the diagonal [79]. We

additionally retrieve the backtrace on the GPU and transfer it to the CPU. The Nussinov and

matrix multiplication problems have also been studied as pure GPU implementations [91, 13].

93

Chapter 7. Dynamic programming on sequences with staged parser combinators

Much work on parallelizing dynamic programming has focused on the Smith-Waterman

sequence alignment problem [50]. CudAlign [72, 73] matches sequences much larger than the

GPU memory size, using a hybrid divide-and-conquer and dynamic programming approach.

We have focused on folding problems rather than alignment problems.

94

Part IIISpecialising Parsers for Queries

95

In Parts I and II we implemented staging-based libraries for list operations and parsers which

are rid of abstraction overhead, and therefore exhibit close to hand-written performance.

In this part we bring these two libraries together to attack another source of performance

overhead, namely the creation of intermediate and unwanted parse results.

97

8 Specialising parsers for queries

Introduction

Suppose we are interested in analysing contributions and revisions made by users on Wikipedia.

Before performing any of the core data analysis, our first task is to curate, or preprocess, full

Wikipedia data to select only what we need, and load that into a database so that we can move

on to our main task.

The classic way of performing the preprocessing task is to first partition the data into multiple

chunks and then do preprocessing on a cluster of machines. If we were using Scala, we would

opt for Apache Spark for distributing the work. The core program reads an XML file (the format

in which the Wikipedia dumps are created), parses it, runs a query that selects data we need,

and dumps this selected data into a database, as in Figure 8.1.

case class WikipediaPage(title: String,

redirectTitle: String,

timestamp: String,

lastContributorUsername: String,

text: String)

def parseXMLtoWikipediaPage(xml: String): WikipediaPage = {

val elem = scala.xml.XML.loadString(xml)

new WikipediaPage(

(elem \ "title").text,

(elem \ "redirect" \ "@title").text,

(elem \ "revision" \ "timestamp").text,

(elem \ "revision" \ "contributor" \ "username").text,

(elem \ "revision" \ "text").text.replaceAll("\n", " ")

)

}

val wikipediaDataFrame = sc.textFile(wikiDumpFile).map(parseXMLtoWikipediaPage)

Figure 8.1 – Preprocessing XML metadata

99

Chapter 8. Specialising parsers for queries

In this example, the parseXMLtoWikipediaPage function is a query over an XML file. We first

parse the xml string using a standard XML parsing library, and use an XPath-like language for

the query itself. The query succeeds because we know the schema for Wikipedia dumps.

Yet we could do better. The problem with the above code is that we iterate over the same data

twice: once for parsing it, and the second time for preprocessing. What is worse, we parse a

lot of data that we potentially ignore later on. The above query only shows the portion that

we are interested in. The schema for Wikipedia’s metadata contains many other fields and

subfields. In short, we waste both time and space, and all this before getting to the meat of

the data analysis itself. What if we could preprocess the data, and skip over unnecessary parts

while we parse it?

Indeed, we could write a specialised version of the XML parser that skips tags we do not require.

Of course, doing so by hand is tedious, error-prone, and non-scalable. We could instead use

an event-based (SAX) parser. This allows us to specify actions to perform when seeing certain

types of tags. In pseudocode, the implementation would look like the following:

def onTagSeen(tagName: String, beginPos: Int, endPos: Int) = {

if (tagName == "title") collectTitle(beginPos, endPos)

else if (... other tags we want to collect ...) ...

else skip (default case)

}

While this is already a huge improvement on writing such specialised parsers by hand, we

have lost the declarative and parser-agnostic nature of the query: we are forced to think of a

query in terms the underlying parser that reads data in.

Even high-level functional programming tools like parser combinators do not escape this

issue. We can write a well-typed parser for the Wikipedia schema, i.e. Parser[WikipediaPage].

To do so, we write a parser for the general schema, and then insert skipping combinators at

places where we do not need the result. Essentially we end up writing two parsers, one for the

general Wikipedia metadata, and one for parsing WikipediaPage.

In this chapter, we describe a technique that takes a parser (implemented using a parser

combinator library), and a query on the parsed structure, and returns a new parser that is

specialised to the query in question. Our technique applies to queries on nested, non-recursive

data structures; many prevalent and popular raw data sources adhere to such schemas. This

technique hinges on two insights:

• Converting a parser to a recogniser drastically decreases both running time and memory

consumption.

• Treating repetition parsers as folds over parsers allows us to express query-like opera-

tions on these folds.

100

8.2. Repetition parsers as lists

Contributions

• We describe a transformation from a tree representing a parser for a data format to a

specialised parser for a given query (Section 8.3). We treat queries that are a combination

of the selection, projection and aggregation operators on a nested relational algebra.

The transformation includes the conversion of skipped parsers to recognisers.

• The transformation relies on an efficient representation of repetition parsers. We can

treat repetition parsers as (Church-encoded) lists (Section 8.2), and therefore build a

list-like API for these. By composing over repetition parsers we push query operations

directly to the point where a single element is parsed, and we can therefore process or

discard it very early.

• Our transformation is semantics preserving: if a non-transformed parser succeeds

on an input, a transformed parser succeeds with the same result (Section 8.3.1). The

correctness argument relies on correct implementations of recognisers for base parsers.

We also discuss optimisation properties of the transformation (Section 8.3.2).

• For meaningful performance improvements, the transformation by itself is not enough.

We must have efficient implementations of both parser combinators and list operation

pipelines. In the previous chapters we have seen precisely how to achieve these partial

evaluation based implementations. The transformation presented in this chapter sits

atop a Scala macro version of a staged parser combinator library (Section 8.4).

• We evaluate the performance of our transformed parsers (Section 8.5). Our benchmarks

evaluate various degrees of parsing vs. recognising over a sequence of large tuples, from

full recognisers to full parsers. As the size of the data increases, parsing everything

stresses memory, to the point where long garbage cycles and swapping is required. This

translates into running times that get relatively worse as the data size increases.

We discuss our implementation choices in Section 8.6 and related work in Section 8.7.

Repetition parsers as lists

Recall the parser combinator implementation presented in Figure 6.5: the classic repetition

combinator accumulates results into a list. Often, we are interested in performing some seman-

tic action on the resulting list. Consider for instance personParser, which parses information

for a person, represented by their first name, last name, and age:

case class Person(first: String, last: String, age: Int)

def personParser: Parser[Person] = ...

If we wish to only count the number of people, we can take the length of the resulting list:

def numAdults: Parser[Int] = rep(personParser).map(_.length)

101

Chapter 8. Specialising parsers for queries

If we were instead interested in the first names of people who are adults, we would provide the

following semantic function:

def namesOfAdults: Parser[String] = rep(personParser) map { ls =>

ls.filter(_.age >= 18).map(_.first)

}

For both these queries we first create an intermediate data structure lswhich we subsequently

process. In this section we show that the creation of ls can be avoided altogether by introduc-

ing a more general repetition combinator repFold. Such combinators are usually present in

many combinator libraries. We then abstract over repFold so that repetition parsers can them-

selves be treated as lists. As a result we can compose over repetition parsers using operations

similar to those on traditional lists.

The repFold combinator. The repetition combinator rep folds its results into a list. The

choice of returning a list is an arbitrary one. We could have chosen any other foldable structure.

We can generalise this idea to create a repFold function as follows:

def repFold[T, R](p: Parser[T])(z: R, combine: (R, T) => R): Parser[R] = {

def loop(curIn: Input, curRes: R): ParseResult[R] = {

p(curIn) match {

case Success(t, rest) => loop(rest, combine(curRes, t))

case Failure(_) => Success(curRes, curIn)

}

}

mkParser[R] { in => loop(in, z) }

}

Figure 8.2 – The repFold combinator

This combinator is parametric over the type of the input parser, as well as the type of the result.

It takes an initial element z, which is the base value for the repetition parser. Successful parses

of p are combined with the accumulated result via the combine function. The traditional rep

function can be expressed using repFold; the initial element z is the empty list, and combine

appends an element to the accumulator:

def rep[T](p: Parser[T]): Parser[List[T]] = {

repFold(p)(Nil, (acc, elem) => acc.append(elem))

}

Figure 8.3 – The rep combinator implemented using repFold

CPS-encoded lists, all over again. Essentially, repFold is just like the foldLeft function on

lists, the difference being that it folds over a parser, and eventually returns another parser. The

102

8.2. Repetition parsers as lists

similarity is clearer when we look at both function signatures side by side:

def repFold[T, R](p: Parser[T])(z: R, combine: (R, T) => R): Parser[R]

def foldLeft[T, R](ls: List[T])(z: R, combine: (R, T) => R): R

We have indeed recovered a particular form of CPSList (see Section 4.2), CPSListParser:

type CPSListParser[T, R] = (R, (R, T) => R) => Parser[R]

The difference between a CPSList and a CPSListParser lies only in the eventual return type.

Since parser combinators satisfy the functor laws [87], we can create a more generic type that

accomodates for both, and build a list-like API over it:

type CPSListF[T, R, F[_]] = (R, (R, T) => R) => F[R]

The extra higher-kind parameter F represents the functor that wraps the eventual result value.

For the classic foldLeft this is the identity functor, whereas in repFold’s case it is Parser.

type Combine[T, R] = (R, T) => R

abstract class CPSListF[T, F[_]: Functor] {

private def self = this

def fold[R](z: R, combine: Combine[T, R]): F[R]

def map[U](f: T => U) = new CPSListF[U, F] {

def fold[R](z: R, combine: Combine[U, R]): F[R] = self.fold(

z,

(acc: R, elem: T) => combine(acc, f(elem))

)

}

def filter(p: T => Boolean) = new CPSListF[T, F] {

def fold[R](z: R, combine: Combine[T, R]) = self.fold(

z,

(acc: R, elem: T) => if (p(elem)) combine(acc, elem) else acc

)

}

def length: F[Int] = fold(0, (acc, elem) => acc + elem)

def toList: F[List[T]] = fold(Nil, (acc, elem) => acc.append(elem))

}

Figure 8.4 – An API for CPSListF

Figure 8.4 gives an implementation of CPSListF. The notation F[_]: Functor specifies that

the higher-kinded type F requires evidence of a Functor typeclass. Note that CPSListF is not

parameterised by R anymore. This type is instead delayed to the fold function. As a result we

only need to specify the eventual result type when the fold function is applied.

We create a CPSList, or a CPSListParser, from a list, or a parser, respectively (Figure 8.5). The

implementation of the generic fold function simply forwards to the specific, and concrete,

103

Chapter 8. Specialising parsers for queries

foldLeft, or repFold, respectively. The API of CPSListF closely mirrors the API for CPSList we

have previously seen.

type CPSList[T] = CPSListF[T, Id]

type CPSListParser[T] = CPSListF[T, Parser]

def fromList[T](ls: List[T]): CPSList[T] = new CPSListF[T, Id] {

def fold[R](z: R, combine: Combine[T, R]) = foldLeft(ls)(z, combine)

}

def fromParser[T](p: Parser[T]): CPSListParser[T] = new CPSListF[T, Parser] {

def fold[R](z: R, combine: Combine[T, R]) = repFold(p)(z, combine)

}

Figure 8.5 – Creating variants of CPSListF, for classic lists or parsers

We have already previously used partial evaluation over CPSList to achieve fusion. The more

generic CPSListF tells us that a pipeline of operations on a CPSListhas an equivalent pipeline

over CPSListParser. Fusion properties carry over as well. This allows us to rewrite above

examples as below, and benefit from deforestation.

def numAdults2: Parser[Int] = fromParser(personParser).length

def namesOfAdults2: Parser[String] =

fromParser(personParser).filter(_.age >= 18).map(_.first).toList

Naturally, one would not expect to manually convert parsers written in the namesOfAdults style

to the namesOfAdults2 style. Indeed, the original parser seems more natural to write, since it

separates the composing of parsers from semantic actions (queries) performed on the result.

This is all the more visible if we sequence personParserwith some other parser later on. In the

next section, we describe a transform that mechanically rewrites the more declarative version

of a parser to its interleaved, but more efficient, counterpart.

Interleaving parsers and queries

Treating repetition parsers as lists gives us more expressivity from a combinator library point

of view. By using the fromParser combinator and operations over CPSListParser we push

operations close to the creation of a single parse result.

This is however not enough: a user is still required to manually place a query close to the

parser it operates on. Consider that in addition to people parsers by personParser, the raw data

file contains a list of countries. A parser for consuming both lists would sequence personParser

with countriesParser. If we wish to filter out the adults and all countries in Asia, the natural

way to write the parser is given in Figure 8.6.

Using CPSListParser we would instead write a filtered2 function (Figure 8.7). Performing

104

8.3. Interleaving parsers and queries

case class Person(first: String, last: String, age: Int)

case class Country(name: String, continent: String)

def personParser: Parser[Person] = ...

def countryParser: Parser[Country] = ...

def peopleAndCountries = rep(personParser) ~ rep(countryParser)

def filtered = peopleAndCountries map { t =>

(t._1.filter(_.age >= 18), t._2.filter(_.continent == "Asia"))

}

Figure 8.6 – Idiomatic filtering of a sequence of list parsers

the conversion by hand breaks the declarative nature of the query. If we wanted to slightly

change it, we would only ever have to rewrite the anonymous function in filtered. Changing

filtered2 is much more involved, and requires us to think about the flow of a parser rather

than just about the query.

def filtered2 = (

fromParser(personParser).filter(_.age >= 18).toList ~

fromParser(countryParser).filter(_.continent == "Asia").toList

)

Figure 8.7 – Filtering a sequence of list parsers, close to the list creation

Fortunately is it possible to automatically convert filtered like queries into their filtered2

like counterparts. In this section we describe a set of rules which perform this transformation.

We then argue that the transformation is correct, i.e. that it preserves semantics (Section 8.3.1),

and finally discuss optimisation properties (Section 8.3.2). For the rest of this section we

change the type of the rep combinator to return a Parser[CPSList[T]]:

def rep[T](p: Parser[T]): Parser[CPSList[T]]

This modification ensures that the transformation of repetition parsers is restricted to oper-

ations over CPSList. Such operations CPSListmust be concluded with a final call to the fold

function, to create an actual data structure.

The transformation operates in a purely functional subset of Scala with products and sums,

with strict evaluation semantics. The core rule T transforms as AST representing a Parser

[T] to another AST of Parser[T]. We restrict these ASTs to be non-recursive; this keeps the

transformation rules simple and clear. We discuss recursion in more detail in Section 8.6.

We subdivide the transformation into three parts. In these, metavariables a,b, p designate

parsers and fi designate ASTs corresponding to pure functions on simple types, with appro-

priate arity.

105

Chapter 8. Specialising parsers for queries

MAIN TRANSFORMATION T : AST [Parser[T]] → AST [Parser[T]]
Sequencing

T �a ~ b� = T �a� ~ T �b� (S-0)

T

�
�(a ~ b) map {

t => f3(f1(t._1), f 2(t._2))
}

�
� =

(T �a map f1� ~ T �b map f2�) map {

t => f3(t._1,t._2)
}

(S-1)

T �(a ~ b) map { t => f (t._1) }� = T �a map f � <~ TRECO �b� (S-2A)
T �(a ~ b) map { t => f (t._2) }� = TRECO �a� <~ T �b map f � (S-2B)

Repetition

T

�
�rep(p) map {

ls => g (ls).fold(z, fc)

}

�
� = T

�
TFUNC �g�(fromParser(p)).
fold(z, fc)

	
(R-1)

T

�
g (fromParser(p) map f).
fold(z, fc)

	
= T �g (fromParser(p map f)).fold(z, fc)� (R-2)

T �g (fromParser(p)).fold(z, fc)� = g (fromParser(T �p�)).fold(z, fc) (R-3)

Alternation

T �a | b� = T �a� | T �b� (A-0)
T �(a | b) map f � = T �a map f � | T �b map f � (A-1)

Other

T �p map f map g� = T �p map (g ◦ f)� (MAP-MAP)
T �p� = p (DEFAULT)

Figure 8.8 – The main transformation

Main transformation T . This transformation mainly handles rewriting parsers that perform

semantic actions, i.e. of the form p map f (Figure 8.8). For parsers that are not of this form,

we either propagate the transformation to the underlying parsers (S-0, A-0) or perform an

identity rewrite (DEFAULT). The latter applies to base parsers, as described in Section 6.2.

The S-1 rule pushes semantic functions as close as possible to the creation of a parse result.

By doing so we create possibilities for other rules to be applicable, and optimise parsing. Two

such rules are S-2A and S-2B: if we identify that we only use one of the halves of a sequence

parser, we can convert the other half into a recogniser, and ultimately discard the result, using

the variants ~> and <~, respectively.

For repetition parsers, the R-1 rule performs the functor change for CPSListF (see Section 8.2),

from a CPSList[T, Id] to a CPSList[T, Parser]. This is done by invoking the TFUNC tranforma-

tion. We invoke T on the result of TFUNC to trigger further rewrite possibilities. The R-2 rule is

106

8.3. Interleaving parsers and queries

one of them. It converts a map on a CPSListParser to a map on the underlying parser. Finally R-3

pushes T to the underlying parser.

The transform rule for alternation is straightforward, it simply pushes T to both alternatives.

Finally, the MAP-MAP rule pushes function composition under the parser functor. From a par-

tial evaluation point of view this rules is redundant, since inlining will automatically produce

code that composes functions correctly. From a practical point of view it is nonetheless useful,

in particular when extending the transformation to recursive data types (Section 8.6).

CPSLIST TO CPSLISTPARSER
TFUNC : AST [CPSList[T] => CPSList[U]]
→ AST [CPSListParser[T] => CPSListParser[U]]

TFUNC

�
(ls: CPSList[T]) =>

g (ls) map f

	
= (ls: CPSListParser[T]) =>

TFUNC �g� (ls) map f
(FUNC-MAP)

TFUNC

�
(ls: CPSList[T]) =>

g (ls) filter f

	
= (ls: CPSListParser[T]) =>

TFUNC �g�(ls) filter f
(FUNC-FILTER)

TFUNC �(ls: CPSList[T]) => ls� = (ls: CPSListParser[T]) => ls (FUNC-ID)

Figure 8.9 – Converting CPSLists to CPSListParsers

TFUNC: from CPSList to CPSListParser. This set of rules recursively transfers a pipeline of

operations on a CPSList to a pipeline of calls on CPSListParser.The metavariable g designates

functions from CPSListF to CPSListF, as per the API in Figure 8.4.

PARSER TO RECOGNISER TRECO : AST [Parser[T]] → AST [Parser[Unit]]

TRECO �a map f � = TRECO �a� (RC-MAP)

TRECO �g (fromParser(p)).fold(z, fc)� = fromParser(TRECO �p�).
fold((), (acc, _) => acc)

(RC-REP)

TRECO �a ~ b� = TRECO �a� ~> TRECO �b� (RC-SEQ)
TRECO �a | b� = TRECO �a� | TRECO �b� (RC-ALT)

TRECO �a :Parser[Unit]� = a (RC-BU)
TRECO �a� = r ecog ni se(a) (RC-BASE)

Figure 8.10 – Converting parsers to recognisers

TRECO: from Parser to Recogniser. This rule is key in the optimisation process. Once we

have identified that we do not require the results of a certain parser, we can convert it into a

107

Chapter 8. Specialising parsers for queries

recogniser.

The RC-MAP rule discards the application of a map, and converts the underlying parser into

a recogniser. RC-ALT pushes the transformation through, while RC-SEQ also replaces the

sequence combinator~with its discarding variant~>. The rule for repetition is more interesting.

Indeed, it not only transforms the underlying parser into a recogniser, but it also folds the

results into Unit. The consequence of this rewrite is that a potentially large accumulation into

a list is now but a recognition of the underlying parser followed by an immediate discard.

All the above rules depend on RC-BASE, which operates on base parsers. This rule depends on

a recogniser available in scope (recognise(p)). Unfortunately, we must require such implemen-

tations to be available. Indeed, it is not easy to “guess” what a recogniser for a base parser can

be. However, it is not only possible to provide base implementations for recognisers, it is also

possible to enforce, from a library point of view, that any base parser be implemented with a

recognising counterpart. In our implementation we introduce an additional abstract method

def recognise: Parser[Unit] in the Parser class. The compiler will therefore complain if any

parser does not provide an implementation for this method. An alternative implementation is

to require an evidence for aRecogniser typeclass for every parser. The base case is naturally the

id transformation for a parser that is already a recogniser, i.e. a Parser[Unit]. This is reflected

in the RC-BU rule. As a result, TRECO does not require a meta-language for its implementation.

Our intuitive transformation offiltered intofiltered2 at the beginning of the section can now

be derived using the rules (Figure 8.11).

peopleAndCountries map { t =>

(t._1.getAdults.toList, t._2.getAsian.toList)

}

= (rep(personParser) map getAdults).toList ~

(rep(countryParser) map getAsian).toList
(S-1)

=
TFUNC �getAdults� (fromParser(personPaser)).toList

~ TFUNC �getAsian�(fromParser(countryParser)).toList (R-1)

=

(fromParser(personPaser).

filter(_.age > 18)).toList

~ (fromParser(countryParser).

filter(_.continent == "Asia")).toList

(
FUNC-FILTER,
FUNC-ID

)

Figure 8.11 – From filtered to filtered2, mechanically

Correctness

The transformation T does not change the semantics of the parser it transforms. By semantics,

we mean the following:

108

8.3. Interleaving parsers and queries

• If a parser p succeeds on an input in, then T �p� succeeds on in with the same result.

• If p fails on a given input, so will T �p�.

The justification hinges on the correct implementation of base recognisers (The RC-BASE

rule). We can show that our recognisers, such as acceptIfReco, do indeed preserve semantics,

but we cannot guarantee that base parsers added externally do the same. Therefore, we argue

preservation of semantics modulo correct implementation of base recognisers.

The rest of the argument is a reasoning by structural induction on the shape ofp. The base cases

involve base parsers, which are handled by the DEFAULT and RC-BASE rules. We discussed

the latter just above. The former is the identity transform, and therefore trivially preserves

semantics.

Many of the other rules are straightforward applications of induction. The less obvious cases

are S-1, S-2A, S-2B, and R-2. The first group uses functorial properties of products along with

those of parsers. Indeed, in S-1 the expression f3(f1(t._1), f 2(t._2)) corresponds, in a pure

functional setting to applying a map on the pair t, followed by a fold on the pair. For S-2 we

have an application of fold on pairs that discards one of the elements.

We satisfy R-2 by expanding both the left and right hand sides as per the definitions of

fromParser, map on CPSList. The derivations arrive at matching expressions in the success

pattern match of the loop function of repFold.

The other key rules involve R-1 and the FUNC rules. These preserve semantics due to the

functorial properties of Parser over CPSListF, as seen in Section 8.2.

Optimisation

By performing the transformation, we hope to ultimately achieve better performance. From

a formal point of view, the notion of optimisation is captured more accurately in terms of

allocation of fewer objects.

For most of the rules presented above, this optimisation property does hold. As with the

correctness argument, this depends on the correct implementation of base recognisers. For

acceptIfReco, on successfully passing the predicate we assign the unique instance of Unit

instead of an Elem; we do not allocate anything as a result.

The rules that do make a difference (in creating fewer objects) are:

• R-1: By moving from CPSList to CPSListParser, we avoid creating the list ls on the left

hand side of the rule.

• RC-REP: We are converting a fold operation into a data structure into a fold operation

into Unit. The amount of allocations we save depends on the structure we previously

109

Chapter 8. Specialising parsers for queries

fold into. Typically we fold into a list, or another type of collection. The construction of

that collection is fully avoided here.

• RC-MAP: We avoid allocating a value of the resulting type of the map function.

• RC-SEQ: We avoid creating a pair value to contain results of a and scodeb.

Unfortunately this property breaks for S-1. If the sequencing parser a ~ b fails globally after

succeeding for a, bringing an expensive function f1 will create more allocations than in the

non-transformed version.

Even if we relax optimisation properties to apply only for successful parses, we cannot guaran-

tee it due to the alternative combinator and the A-1 rule. Consider for instance the following

parser:

def aParser = ((a ~ b) | (c ~ d)) map { t => (f1(t._1), f2(t._2)) }

According to the transformation rules, A-1 pushes the map function to both alternatives, and

in turn S-1 gets triggered, pushing f1, f2 close to their creation site. An input that succeeds

on a but fails the first alternative a ~ b will compute f1. If f1 is an expensive function, we will

end up creating many more objects than required.

The issues shown here apply more generally to inlining and conditional expressions. In

Section 3.2.2 we mitigated the problem by introducing explicit join points. The rules presented

here operate on parser ASTs, a meta-level higher than the code itself. The options we have are

therefore either to perform the transformation or not to. In the negative, we might be missing

optimisations opportunities further down the line.

At present, in practice, we systematically perform the transformation whenever it applies. A

possibly better solution is to base the transformation on heuristics, which we leave for future

work.

Implementation

In the previous section we described transformation rules that convert a parser to a specialised

version. Unutilised parsers are converted into recognisers. We saw that one of the rules, TRECO

(see Figure 8.8), could be implemented directly in the host system as a method on the Parser

class. For the other two rules, we choose to use Scala macros to implement them [8]. The

transformation T is transforms trees of parsers to trees of parsers. For true performance gains,

it is therefore not only important that the transformation creates fewer objects (Section 8.3.2),

it is also crucial that the underlying parser combinator implementation is efficient itself.

We have seen how to eliminate overhead abstraction by partially evaluating parser combinators

in Chapter 6. The implementation was in LMS. In this section we present a macro-based

110

8.4. Implementation

implementation of the same. By doing so we illustrate that the optimisation as a library

approach can be easily ported beyond a specific staging framework.

The library we describe here is the successor of previously published work [7]. The main

addition is the transformation phase described earlier. While implementing this phase we also

redesigned large parts of the library in order to be closer to the design principles described

in this dissertation. At the time of writing not all features present previously have been fully

ported. We hope to do so in the near future.

val aParser = optimise {

def a: Parser[A] = ...

def b: Parser[B] = ...

def finalParser = rep(a ~ b) map { ls => /* query on ls */ }

finalParser

}

Figure 8.12 – A typical usage of the optimisemacro

This library, named parsequery, is used by scoping parsers inside an optimisemacro, as shown

in Figure 8.12. The macro accepts a sequence of parser declarations followed by a final parser.

The latter is typically a call to the map combinator where the f function is a query on the parsed

data structure.

The parser declarations are implemented as a basic, unstaged parser combinator library, as

presented in Section 6.2. This means that they can be used even without being wrapped in

the optimisemacro. They will yield the same result given the same input, but since they are

not deforested, will run slower. The implementation of the optimisemacro consists of various

phases:

• Step 1: construct a compile-time AST for each parser declared in scope.

• Step 2: transform each parser in scope according to the rules.

• Step 3: stage each parser in order to optimise it.

• Step 4: create an optimised version for each parser by partially evaluating it.

In the background section we mentioned that macros operate on typed trees (Section 2.3.2).

In other words, any program wrapped inside the macro is well typed. Trees representing the

program can be accessed in their typed form, as expressions of type T (Expr[T]). They are

also accessible in their untyped form Tree. In the latter case the reflection API can be used to

recover types of original expressions, since we are guaranteed of receiving well-typed programs

as input to the macro: every tree has a member tpe of type Type. For the parsequery library

111

Chapter 8. Specialising parsers for queries

we have chosen the latter representation: the implementation in practice was considerably

simplified thanks to this choice.

Step 1: Lifting parsers to an AST.

abstract class Grammar(val tpe: Type)

/** base parsers */

case class AcceptIf(path: List[Tree], p: Tree => Tree)

extends Grammar(realElemType)

case class AcceptStr(path: List[Tree], s: String)

extends Grammar(typeOf[String])

case class PIdent(name: Ident) extends Grammar(name.tpe)

/** combinators */

case class Mapped(g: Grammar, f: Tree => Tree, tpe2: Type) extends Grammar(tpe2)

case class Concat(l: Grammar, r: Grammar, tpe2: Type)

extends Grammar(appliedType(typeOf[Tuple2[_, _]], List(l.tpe, tpe2)))

case class ConcatLeft(l: Grammar, r: Grammar, tpe2: Type) extends Grammar(l.tpe)

case class ConcatRight(l: Grammar, r: Grammar, tpe2: Type) extends Grammar(tpe2)

case class Or(l: Grammar, r: Grammar, tpe2: Type) extends Grammar(tpe2)

case class Rep(g: Grammar, tpe2: Type)

extends Grammar(appliedType(typeOf[List[_]], tpe2))

case class Repsep(g: Grammar, g2: Grammar, tpe2: Type, u: Type)

extends Grammar(appliedType(typeOf[List[_]], tpe2))

Figure 8.13 – A compile-time AST for parser combinators

A def macro accepts any arbitrary Scala program. Since we operate in the domain of parsers

and queries we restrict our language further. An optimise scope should contain a sequence of

parser declarations, followed by a final expression of higher-kinded type Parser. The parser

declarations themselves should be declared as method definitions (def, not val) that take

no parameters, have a return type Parser, and have a right-hand side expression that can

be lifted to a compile-time, domain-specific AST, Grammar. For any scope not matching this

specification we return a domain-specific compile-time error.

To check these properties we use quasiquotes. A parser declaration is matched as follows:

val parserType = typeOf[Parser[_]]

stmt match {

case q"def ${name: TermName}[..$tparams]: ${retType: Type} = ${g: Grammar}"

if retType <:< parserType => ...

}

A value is captured by the unquote operator $. The type ascription syntax allows us to bind

values to more specific data types than the generic Tree. For example, we require retType to be

a Type and name to a TermName in the above. This operation of binding to more specific types is

112

8.4. Implementation

known as unlifting (the dual operation lifting enables unquoting of specific data types). By

default quasiquotes support unlifting for primitive types, constants, and some special tree

data types from the scala reflection API.

Note that the Grammar data type is however not supported by default. Indeed, it is specific

to our domain. It is possible to extend quasiquote support for lifting and unlifting of user-

specified data types as well. As a result we effectively convert trees representing arbitrary

Scala code into trees representing a more specific domain (or fail with a compile-error in the

process). Figure 8.13 gives the main trees we unlift to. We have trees representing the principal

combinators for sequencing, alternation, repetition and mapping, as well as trees for base

parsers. We have a specific grammar tree for named parsers (PIdent), which occur if a parser

calls another one declared in scope (possibly recursively).

One may wonder whether we need to create a domain-specific tree for every combinator we

encounter. This can be tedious since there are many combinators implemented in terms of

others, such as for example accept (which uses acceptIf). Unlifting must be done for every

combinator, but it is not necessary to map it to a dedicated tree. We can use the knowledge

of implementation of a combinator to desugar it into a less specific tree. Therefore unlifting

an instance of accept yields an AcceptIf tree with the appropriate function as its parameter.

In essence, unless a combinator is essential, or can be optimised in a specific manner, we

desugar it to an existing tree during the unlifting phase.

Function values passed to combinators (acceptIf, map) are also handled specially: for map, the

function literal is of type Tree as seen from the macro scope:

q"${subg: Grammar}.map[${t: Type}]($f)"

Yet the AST counterpart Mapped has a member of type Tree => Tree: this is equivalent to a

static function type on dynamic input and output values (Rep[T] => Rep[U]). By applying this

function to a dynamic input (of typeTree) we effectively inline the body of the function. Indeed,

during the lifting phase we already stage functions. If f is a literal (i.e. an anonymous function),

we create an unstaged function whose body is f’s body, with the arguments substituted

appropriately. Otherwise we simply eta-expand it. We could do better if f is declared in the

optimise scope, since we would have access to its body as well. At present however, this is not

possible, since we restrict the block to contain parser declarations only. Growing the variety of

expressions supported by the macro is part of future work.

Note that Grammar is not polymorphic in the traditional sense. We “cheat” by providing a

field representing the type of the grammar instead. For all intents and purposes these are

equivalent.

At the end of the lifting phase, we have a set of names associated to domain-specific Grammar

trees. The rest of the optimisations are based on these trees.

113

Chapter 8. Specialising parsers for queries

Steps 3-4: Staging parsers and partially evaluating them

abstract class StagedParser(val elemType: Type) extends (CharReader => ParseResult) {

def map(t: Type, f: Tree => Tree): StagedParser

def flatMap(t: Type, f: Tree => StagedParser): StagedParser

def ~(that: StagedParser): StagedParser

def or(t: Type, that: StagedParser): StagedParser

}

def rep(elemType: Type, p: StagedParser): StagedParser

def repsep(p: StagedParser, sep: StagedParser): StagedParser

def acceptIf(elemType: Type, p: Tree => Tree): StagedParser

abstract class Reader(elemType: Type) {

def first: Tree

def atEnd: Tree

def rest: Reader

}

abstract class CharReader extends Reader(typeOf[Char]) { ... }

abstract class ParseResult(val elemType: Type) { self =>

def apply(success: (Tree, CharReader) => Tree, failure: CharReader => Tree): Tree

def map(t: Type, f: Tree => Tree): ParseResult

def flatMapWithNext(t: Type, f: Tree => CharReader => ParseResult): Tree

def orElse(t: Type, that: ParseResult): Tree

}

def mkSuccess(elemType: Type, elem: Tree, rest: CharReader): ParseResult

def mkFailure(rest: CharReader): ParseResult

def cond(elemType: Type)(test: Tree, thenp: ParseResult, elsep: ParseResult): ParseResult

Figure 8.14 – An interface for staged parser combinators, with Scala macros

Right after the lifting phase (and after the core transformation phase) we are in position of

a set of Grammar trees, representing parsers declared in scope. We could simply convert them

back into user-level parsers: this would either correspond to the identity transformation (if

done before the transformation phase) or a library-level implementation of the interleaved

parser. In both cases, execution still suffers from poor performance as we have not partially

evaluated function composition yet.

To do so we first stage every Grammar:

def stage(g: Grammar): StagedParser

A StagedParser is a data type representing a staged parser. Its interface is given in Figure 8.14.

We recognise an almost direct port of the LMS implementation in Figures 6.11 and 6.12:

• A parser is a static function from an input to a parse result. In this case we have already

specialised the input to be a character reader.

• A parse result is a Church-encoded data type, taking continuations for success and

114

8.4. Implementation

failure

• A CharReader is a CPS-encoded reader whose methods first and atEnd return dynamic

values.

The main difference is the usage of unstaged functions on generic Tree types instead of

unstaged functions on Rep types.

The implementation of the stage function is fairly straightforward: to every Grammar variant

corresponds a combinator in the StagedParserworld. So it is sufficient to pattern match on the

variants, and stage grammars recursively. The main difference being with recursive parsers.

Rather than using a dedicated rec combinator as with LMS, we rely on parser names recovered

from the lifting step: whenever we pattern match a PIdent we create a StagedParser whose

body is a call to the named parser in question.

Once each Grammar has been staged, the final step in the macro is to recreate a user-level

parser definition, but based on the optimised, staged equivalents. In step 3 we created a

StagedParser for each user-level parser declared in the macro step. We now perform the

reverse transformation, by creating a user-level parser definition. The difference lies in the

body. A StagedParser is an unstaged function over staged types: the right-hand side of the

user-level parser is the result of (statically) applying this function to a (freshly generated)

symbolic argument. In other words, the new body of the user-level parser is the deforested

equivalent of the combinator-based counterpart that the user initially wrote.

Step 2: Transforming parsers

The core transformation takes a Grammar as input, and returns a Grammar. As mentioned before,

we follow the rules provided in Figures 8.8, 8.9 and 8.10. Many of these rules are fairly straight-

forward to implement. As suggested by the rules, we match the relevant left-hand side, and

turn it into the corresponding right-hand side. The tricky parts lie in the variety of patterns we

recognise and transform. With the TFUNC �.� rules for instance, we perform the transformation

only if the expression matches syntactically, i.e. the body is a single expression containing

chains of calls to map and filter. We plan to tolerate a wider variety of expressions in the future

(see Section 8.6 for more details).

The trickiest rules to implement are S-1, S-2A, S-2B, which take as input expressions of the

form (a ~ b) map f. Here we analyse the body of f in order to identify largest independent

application subtrees for each argument of the function: subtrees where only one of the results

of a or b are manipulated. If we map each result to exactly one such subtree, we extract these

into their own function bodies before propagating them to their corresponding individual

parsers.

In case we do not recognise specific forms, we default to the identity transformation (the

DEFAULT rule). To help the user of the library we output compiler warnings where we suggest

115

Chapter 8. Specialising parsers for queries

changing the syntactic form of the function in order to enable more optimisation opportuni-

ties.

Efficient base parsers

For good performance we need efficient implementations of base parsers and recognisers

other than acceptIf and acceptIfReco. Our library provides these for identifiers, string match-

ers, string literals, digit and number parsers by default. In particular, identifiers and string

matchers seek to parse a string passed as input. We hoist this string out into a static value in

scope in order to not recreate it every time the parser runs.

Evaluation

12MB 24MB 60MB 120MB 240MB
0

5

10

15

20

T
im

e
(s

)

Recognizer
50%/50%
Full Parser

Figure 8.15 – Running time as we vary the file size from 12 to 240 MB.

We evaluate our transformation as follows: we measure the running time, for a sequence of

tuples, each one a key-value pair of string literals, of recognising the tuples versus. parsing

increasing percentages of these tuples. Each element contains 17 key-value pairs.

We use the Scalameter [66] benchmarking suite for our evaluation. This framework handles

JIT warm-ups as well as running a benchmark until performance stabilizes. The benchmarks

are executed on a computer running Ubuntu 12.04, with 32GB DDR3 of RAM memory and an

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz.

In Figures 8.15, 8.16, and 8.17, we benchmark the running time over the file size for three

cases: full parsing, full recognition and a mixed approach in which we parse half of the tuples

116

8.5. Evaluation

240MB 480MB 930MB 1.8GB
0

200

400

600

800

1000

1200

1400
T

im
e

(s
)

Recognizer
50%/50%
Full Parser

Figure 8.16 – Running time as we vary the file size from 240 to 1800 MB.

dataset described above and recognise the other half. We vary the size by doubling the number

of tuples each iteration from 12MB to 1800MB. This is separated into three figures for clarity:

Figure 8.15 varies the file size from 12 to 240MB, Figure 8.16 varies the file size from 240 to

1800MB. Figure 8.17 shows all these in log scale.

Figure 8.18 varies the percentage of tuples that are parsed. It shows 5 data points computed

on the largest file size, 1800MB. These data points represent parsing 0, 25, 50, 75, 100%. That

is, the “25%75%” data point in the figure represents the case where we recognize 25% of the

dataset and parse 75%.

The figures show that recognising really pays off. For a dataset of only 1.8 GB we get speedups

of up to 11x. Even if we parse 50% of the original data we are not significantly worse off than

recognising alone (10x faster than full parsing). This suggests that there is a threshold after

which the running time worsens significantly on large datasets. We believe this is due to effects

of the garbage collector, which kicks in an excessive number of times since the object creation

rate is very high and surpasses the expected rate of the JVM. Therefore, the JVM heuristics

make the garbage collector fully clean the memory before an OutOfMemoryError is thrown.

117

Chapter 8. Specialising parsers for queries

12MB 24MB 60MB 120MB 240MB 480MB 930MB 1.8GB
10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
(s

)

Recognizer
50%/50%
Full Parser

Figure 8.17 – Running time as we vary the file size from 12 to 1800 MB in log scale.

Discussion

Evaluation of our transformation shows that it really pays off to skip as early, and as often as

possible. In this section we discuss potential additions to the transformation rules that can

potentially trigger further optimisation possibilities. We also discuss other implementation

alternatives and additions for the staging and transformation steps.

Recursive parsers and queries

The transformation rules presented previously apply to queries on nested, non-recursive data

structures. Many prevalent and popular data formats satisfy these properties.

Yet this is a restriction in theory and in practice. For instance, queries such as "count all

variable declarations in this program snippet" are not covered. Also, in practice, it is common

to use generic recursive parsers, such as JSON and XML, to parse a data structure before either

a) decoding it into a precise schema or b) writing a dynamic query. We sketch a technique to

extend our transformation rules for such queries and parsers.

118

8.6. Discussion

100%
 Recognizer

75%
/25%

50%
/50%

25%
/75%

100%
 Full Parser

 0

 200

 400

 600

 800

1000

1200

1400
T

im
e

(s
)

108.69s 113.28s 125.44s 131.68s

1244.75s

Figure 8.18 – Varying the percentage of recognising vs. parsing on the largest file size, 1800MB

We first restrict ourselves to non-recursive queries but recursive parsers where the first op-

eration on the parsed data structure is to decode it into a more precise non-recursive data

structures. The structure of this parser matches the MAP-MAP rule, i.e. has the form p map

decode map query, where decode and query are the decoding and querying functions, respec-

tively. The parser p itself constructs an arbitrary ADT. Thereforedecode contains all information

required to specialise the recursive parser p. Essentially, the decoding function converts vari-

ants of the recursive data type from p by matching on their structure. These structures are

themselves constructed by alternating parsers that combine to yield p. That is, there is map-

ping between data type constructions and their parsers. Therefore we only need to unfold

the decode function in a top-down manner. Whenever a data type constructor is matched, we

create recursively create specialisations for the parsers the map to. This process will terminate

since we know that the datatype we decode to is finitely nested.

Converting a recursive parser into a recognizer becomes easy. We follow the RECO rules

until we encounter a parser that we are already transforming, and exchange the call to the

untransformed parser by a recursive call to its corresponding recogniser.

For recursive queries the transformation is similar to that for recognisers. Since a matching

field can be nested at any level the idea it to specialise parsers that yield particular variants of

the data type, and substitute their original versions for these these in the global parser p.

Implementation-wise this transformation is a special case of the call-pattern specialisation

119

Chapter 8. Specialising parsers for queries

optimisation in Haskell [62]. The heuristics for deciding when to specialise or not would differ

from those for general recursive programs, and be more domain-specific.

Specialisation of filters

A common use case is, while parsing a sequence, to conditionally keep the result based on a

predicate on one of the underlying parsers. For instance, in the personParser example from

before, we could first recognise the triple, check that the age is above 18 and only then parse

the input. Such a rule can be easily added to the set of rules from Figure 8.8. But the efficacy of

this rule is dependent on where the predicate sits, and how many elements it is applied on.

Sharing parsers between multiple scopes.

The optimisemacro operates on parsers declared in its scope, but does not work beyond the

boundary. This situation is not ideal because it reduces modularity and violates the don’t

repeat yourself (DRY) principle. We can re-use a parser declared in a different scope, but

transformation and staging will not interleave this parser with others. One would have to

implement the whole parser in scope.

There are two possible solutions to this. In the previous version of the library we used the

@saveAST annotation to have access to the trees in the macros itself, so that they could be used

and expanded as and when required [7]. A more principled solution would be to implement

reusable parsers directly in the staged world, in separate components that can be mixed in

with general staged parsers. We would also need to extend lifting and unlifting, as well as the

Grammardata type. This follows the modular approach advocated by LMS for developing staged

libraries.

Alternative implementations

Our choice of macros for the transformation is driven by the underlying efficient implementa-

tion of parser combinators. Any other efficient implementation or parser combinators that

inlines function application would also do. For this we can either rely on the quality of a

compiler’s heuristics or use a use a partial evaluation framework [69].

We nonetheless need to inspect bodies of pure functions (for the SEQ) rules. We could restrict

the parser combinator library to only use map and fold on products and sums, and specialize

the functions passed to CPSList. The transformation could be written as a host language

function. The disadvantage of such restrictions is the introduction of prohibitive overhead for

a library user. It is preferable for us to do a little bit extra work by analysing function bodies in

order to make the library have a more natural look and feel.

120

8.7. Related work

Related work

Stream-based parsing. The popularity of the XML format led to the development of SAX

parsers, which are event-based parsers for this format [57]. With these, we can specify, using

callbacks, what actions to perform when the parser encounters certain types. In the functional

programming community, many stream processing libraries based on iteratees [45] can be

used to build incremental parsers, which are a variant of event-based parsers. Among these,

generators [46] are very popular in dynamic languages like Python as well. While these

techniques improve performance on parsing fully upfront, they forsake the declarative nature

of writing a query. Our transformation could be added on top of such parser combinators,

thereby automatically generating efficient generators which skip unwanted input at source.

Query languages for data formats. There is a plethora of implementations of query lan-

guages for raw data formats. The most basic one is of course awk [1], which is particularly well

suited for flat CSV files. XQuery [89] and XPath [90] are languages for querying XML files. There

are also DSLs and libraries that help with JSON. JQ [17] is a command-line JSON processor,

and Aeson [60] is a Haskell library for parsing JSON data into well typed datastructures. All

of these languages need data to be fully loaded in memory. Therefore they support joins as

well. We focus in this dissertation purely on preprocessing, where join-like queries are not

prevalent.

There has been work on optimising XPath queries in a streaming setting [3, 12, 33, 31]. The

goal in this work to be able to perform queries on the fly, as seen from events triggered by a

SAX parser. The challenge is to handle many statically known queries at the same time. To

achieve this a set of queries are analysed and converted into different types of state machines,

with index structures that allow to identify early enough which queries are matched. Our work

differs in that it does not depend on a specific format of a parser. While some of the work

uses schema knowledge to perform lazy optimisations, we believe better parsing time can be

achieved by introducing this knowledge into the parser directly. Moreover, the XML streaming

work tries handles multiple queries, which we do not handle yet. Techniques proposed here

can be used as a basis for future work.

Ludäscher et al. compile XQuery queries into a stream based paradigm called XSM [51]. They

perform schema-based optimisations by creating specific events for tags that are part of the

query. Also noteworthy is their composition optimisation which is reminiscent of fusion on

list operations. The solution we propose, beyond applying to other data formats, is arguably

simpler: instead of performing manual type inference for a query we delegate this job to the

compiler by virtue of embedding. And we get fusion for free thanks to Church encodings and

partial evaluation.

Marian et al. propose a method to pre-process an XML document to create a subset that is

relevant for future processing [52]. Their solution is close in spirit to ours, in that they first

define a domain-specific language for queries that they then statically analyse in order to

121

Chapter 8. Specialising parsers for queries

project out required subsets of a document. Our approach shows that this can be taken to

a streaming context, and that knowledge of language embedding can further simplify the

analysis.

More recently, the NoDB [2] system allows querying of large, raw datasets that cannot fit into

memory. They generate code that skips large sections of the data that is not needed. They

mostly handle flat (CSV) like data. Our tranformation rules show that this is easily generalised

to nested data structures as well. Our library can therefore be used as a middleware on

top of which the rest of the query engine is built. Since NoDB assumes that queries can be

executed more than once on the same dataset, they make use of positional maps to amortise

future query times. Positional maps, from a combinator point of view, are simply augmented

recognisers that return start and end positions for a given production.

Conclusion and future work

In this chapter we presented a set of transformation rules that specialise a query for a parser

of a data format. This transformation seems worthwhile for two reasons. First, it is good

programming practice to separate the flow of a parser from a query on the structures parsed.

Second, as data sizes grow, it is really important, for good preprocessing performance, that

unwanted data is thrown out as early as possible. Preprocessing is, all things considered, not

the most crucial step in a data analysis framework (insights from the data are more important),

and therefore should not consume prohibitive resources.

As immediate future work, we plan to measure the trade-offs in filter specialization (see Sec-

tion8.6) more precisely to warrant the implementation of the extra rule. A natural consequence

will be to release parsers for common data formats, so that the open-source community can

benefit from this technique.

At present, many programmers still use generic parsers such as JSON or XML despite having a

well specified data format. While augmenting our transformation to include recursion would

alleviate their issues, a more principled approach seems to make it easier to write well typed

parsers for a given format. Parser combinators seem to finally offer promise of performance,

even for large datasets. We plan to explore the direction generating parsers for given data

formats, especially by example, following recent progress in the field [49].

122

Synopsis

In this dissertation we set out to show that it is possible to implement efficient libraries

for parser combinators and pipelines of operations on list-like collections such that the

optimisations themselves can be expressed as libraries. Moreoever, we aimed to automatically

interleave a query into a parser from a decoupled description of the same. We posited that

these transformations would result in increased performance.

We achieved the first objective by developing a principled approach that combines Church

encodings of data types with partial evaluation. We reduced dependence on the partial

evaluator to function composition only by extracting optimisations of nested data types

and conditional expressions to the library level. We then illustrated the applicability of this

approach to a range of fusion algorithms on lists, and to two parser combinator libraries on

far ends of the parsing spectrum. We showed that the approach was portable thanks to two

implementations, each using a vastly different metaprogramming environment.

We achieved the second objective by treating repetition parsers as lists and hence recovering

fusion properties discovered above. We then provided a set of transform rules that specialise a

parser for a query. We implemented these rules in a macro. We evaluated this library to show

that deforestation does pay off in practice as well.

Many programming languages have libraries and frameworks that allow to handle and operate

on large amounts of data. While some languages’ compilers can execute these programs

efficiently, in many cases performance remains a major issues. Our hope is that developers

can reuse the ideas presented here to implement optimised libraries in their ecosystem, such

that they can avoid depending on a state-of-the-art optimising compiler.

Beyond parsers and queries, the work had us dive deep into the world of metaprogramming

and program embedding in Scala. Our experience with these tools reveals that many tasks that

are so easily expressed formally and in the literature remain difficult to implement: they either

require writing boilerplate heavy code or a lot of (too much) knowledge of compiler internals.

We are hoping that the implementation of the latest metaprogramming framework, scala.meta,

will go far in alleviating these headaches. Often it is clear, for a given class of programs, which

optimisations apply best. Yet a general purpose optimising compiler could only speculate, and

potentially yields a sub-optimal result. Ideally a domain-specific library would selectively pick

123

Chapter 8. Specialising parsers for queries

the optimisations most relevant to it. A good meta-programming tool would help democratise

this process, by enabling future implementations of optimisations as libraries.

124

Bibliography

[1] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK Programming Language.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: Efficient query

execution on raw data files. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’12, pages 241–252, New York, NY, USA,

2012. ACM.

[3] M. Altinel and M. J. Franklin. Efficient filtering of xml documents for selective dissemina-

tion of information. In Proceedings of the 26th International Conference on Very Large

Data Bases, VLDB ’00, pages 53–64, San Francisco, CA, USA, 2000. Morgan Kaufmann

Publishers Inc.

[4] The Apache HTTP server project. http://httpd.apache.org/.

[5] A. W. Appel. Compiling with Continuations. Cambridge University Press, New York, NY,

USA, 2007.

[6] E. Axelsson and M. Sheeran. Feldspar: Application and implementation. In Proceedings of

the 4th Summer School Conference on Central European Functional Programming School,

CEFP’11, pages 402–439, Berlin, Heidelberg, 2012. Springer-Verlag.

[7] E. Béguet and M. Jonnalagedda. Accelerating parser combinators with macros. In

Proceedings of the Fifth Anuual Scala Workshop on - SCALA ’14, pages 7–17, New York,

New York, USA, 2014. ACM Press.

[8] E. Burmako. Scala macros: Let our powers combine!: On how rich syntax and static types

work with metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA ’13,

pages 3:1–3:10, New York, NY, USA, 2013. ACM.

[9] C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-programs on term

algebras. Theor. Comput. Sci., 39:135–154, 1985.

[10] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially evaluated: Tagless staged

interpreters for simpler typed languages. J. Funct. Program., 19(5):509–543, Sept. 2009.

125

Bibliography

[11] L. Cartey, R. Lyngsø, and O. de Moor. Synthesising graphics card programs from DSLs. In

Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and

Implementation, PLDI ’12, pages 121–132, New York, NY, USA, 2012. ACM.

[12] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of xml documents

with xpath expressions. The VLDB Journal, 11(4):354–379, Dec. 2002.

[13] D.-J. Chang, C. Kimmer, and M. Ouyang. Accelerating the Nussinov RNA folding algorithm

with CUDA/GPU. In Proceedings of the 10th IEEE International Symposium on Signal

Processing and Information Technology, ISSPIT ’10, pages 120–125, Washington, DC, USA,

2010. IEEE Computer Society.

[14] D. Coutts. Stream Fusion: Practical shortcut fusion for coinductive sequence types. PhD

thesis, University of Oxford, 2010.

[15] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams to nothing

at all. In Proceedings of the 12th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’07, pages 315–326, New York, NY, USA, 2007. ACM.

[16] M. Doenitz. spray-json, a lightweight, clean and efficient json implementation in scala.

https://github.com/spray/spray-json, 2016.

[17] S. Dolan. jq: a lightweight and flexible command-line json processor.

[18] J. Eisner, E. Goldlust, and N. A. Smith. Dyna: A declarative language for implementing

dynamic programs. In Proceedings of the ACL 2004 on Interactive Poster and Demonstra-

tion Sessions, ACLdemo ’04, Stroudsburg, PA, USA, 2004. Association for Computational

Linguistics.

[19] A. Farmer, C. Hoener zu Siederdissen, and A. Gill. The hermit in the stream: Fusing

stream fusion’s concatmap. In Proceedings of the ACM SIGPLAN 2014 Workshop on

Partial Evaluation and Program Manipulation, PEPM ’14, pages 97–108, New York, NY,

USA, 2014. ACM.

[20] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time, functional pearl. In Proceed-

ings of the Seventh ACM SIGPLAN International Conference on Functional Programming,

ICFP ’02, pages 36–47, New York, NY, USA, 2002. ACM.

[21] R. Frost. Monadic memoization towards correctness-preserving reduction of search.

In Proceedings of the 16th Canadian Society for Computational Studies of Intelligence

Conference on Advances in Artificial Intelligence, AI ’03, pages 66–80, Berlin, Heidelberg,

2003. Springer.

[22] R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy functional

language. Comput. J., 32(2):108–121, Apr. 1989.

[23] R. A. Frost and B. Szydlowski. Memoizing purely functional top-down backtracking

language processors. Science of Computer Programming, 27(3):263–288, November 1996.

126

Bibliography

[24] Y. Futamura. Partial evaluation of computation process – an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

[25] N. Ghani, P. Johann, T. Uustalu, and V. Vene. Monadic augment and generalised short cut

fusion. In Proceedings of the Tenth ACM SIGPLAN International Conference on Functional

Programming, ICFP ’05, pages 294–305, New York, NY, USA, 2005. ACM.

[26] J. Gibbons and N. Wu. Folding domain-specific languages: Deep and shallow embeddings

(functional pearl). In Proceedings of the 19th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’14, pages 339–347, New York, NY, USA, 2014. ACM.

[27] R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming over se-

quence data. Science of Computer Programming, 51(3):215–263, June 2004.

[28] R. Giegerich and G. Sauthoff. Yield grammar analysis in the Bellman’s GAP compiler. In

Proceedings of the Eleventh Workshop on Language Descriptions, Tools and Applications,

LDTA ’11, pages 7:1–7:8, New York, NY, USA, 2011. ACM.

[29] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In Proceedings

of the Conference on Functional Programming Languages and Computer Architecture,

FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM.

[30] A. Gill and S. Marlow. Happy: The parser generator for Haskell. http://www.haskell.org/

happy/, 2010.

[31] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams with De-

terministic Automata, pages 173–189. Springer Berlin Heidelberg, Berlin, Heidelberg,

2003.

[32] M. Guerrero, E. Pizzi, R. Rosenbaum, K. Swadi, and W. Taha. Implementing dsls in

metaocaml. In Companion to the 19th Annual ACM SIGPLAN Conference on Object-

oriented Programming Systems, Languages, and Applications, OOPSLA ’04, pages 41–42,

New York, NY, USA, 2004. ACM.

[33] A. K. Gupta and D. Suciu. Stream processing of xpath queries with predicates. In Pro-

ceedings of the 2003 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’03, pages 419–430, New York, NY, USA, 2003. ACM.

[34] R. Hinze, T. Harper, and D. W. H. James. Theory and practice of fusion. In Proceedings

of the 22Nd International Conference on Implementation and Application of Functional

Languages, IFL’10, pages 19–37, Berlin, Heidelberg, 2011. Springer-Verlag.

[35] I. L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,

31(13):3429–3431, 2003.

[36] C. Höner zu Siederdissen. Sneaking around concatmap: efficient combinators for dy-

namic programming. In Proceedings of the 17th ACM SIGPLAN international conference

on Functional programming, ICFP ’12, pages 215–226, New York, NY, USA, 2012. ACM.

127

Bibliography

[37] G. Hutton. Higher-order functions for parsing. Journal of Functional Programming,

2(3):323–343, 007 1992.

[38] S. Janssen, C. Schudoma, G. Steger, and R. Giegerich. Lost in folding space? Comparing

four variants of the thermodynamic model for RNA secondary structure prediction. BMC

Bioinformatics, 12(429), 2011.

[39] S. C. Johnson. YACC: Yet Another Compiler-compiler, volume 32 of Computing Science

Technical Report. Bell Laboratories, Murray Hill, NJ, 1975.

[40] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a practical

optimisation technique in ghc, 2001.

[41] M. Jonnalagedda. Staged fold fusion, 2015. https://github.com/manojo/

staged-fold-fusion.

[42] M. Jonnalagedda, T. Coppey, S. Stucki, T. Rompf, and M. Odersky. Staged parser combina-

tors for efficient data processing. In Proceedings of the 2014 ACM International Conference

on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, pages

637–653, New York, New York, USA, 2014. ACM Press.

[43] M. Jonnalagedda and S. Stucki. Fold-based fusion as a library: a generative programming

pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala - SCALA 2015, pages

41–50, New York, New York, USA, 2015. ACM Press.

[44] A. Kennedy. Compiling with continuations, continued. In Proceedings of the 12th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’07, pages 177–190,

New York, NY, USA, 2007. ACM.

[45] O. Kiselyov. Iteratees. In Proceedings of the 11th International Conference on Functional

and Logic Programming, FLOPS’12, pages 166–181, Berlin, Heidelberg, 2012. Springer-

Verlag.

[46] O. Kiselyov, S. L. P. Jones, and A. Sabry. Lazy v. yield: Incremental, linear pretty-printing.

In APLAS, pages 190–206, 2012.

[47] P. Koopman and R. Plasmeijer. Efficient combinator parsers. In Implementation of

Functional Languages, LNCS, pages 122–138, Berlin, Heidelberg, 1998. Springer.

[48] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the real

world. Technical Report UU-CS-2001-35, Department of Information and Computing

Sciences, Utrecht University, 2001.

[49] A. Leung, J. Sarracino, and S. Lerner. Interactive parser synthesis by example. In Pro-

ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2015, pages 565–574, New York, NY, USA, 2015. ACM.

128

Bibliography

[50] Y. Liu, A. Wirawan, and B. Schmidt. CUDASW++ 3.0: Accelerating Smith-Waterman pro-

tein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics,

14:117, 2013.

[51] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based xml query

processor. In Proceedings of the 28th International Conference on Very Large Data Bases,

VLDB ’02, pages 227–238. VLDB Endowment, 2002.

[52] A. Marian and J. Siméon. Projecting xml documents. In Proceedings of the 29th Interna-

tional Conference on Very Large Data Bases - Volume 29, VLDB ’03, pages 213–224. VLDB

Endowment, 2003.

[53] S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler. In The Architecture of

Open Source Applications, Volume 2. Lulu, 2012.

[54] E. Meijer, B. Beckman, and G. Bierman. Linq: Reconciling object, relations and xml in the

.net framework. In Proceedings of the 2006 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006. ACM.

[55] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings of the 5th ACM Conference on Functional

Programming Languages and Computer Architecture, pages 124–144, New York, NY, USA,

1991. Springer-Verlag New York, Inc.

[56] A. Moors, F. Piessens, and M. Odersky. Parser combinators in Scala. CW Reports CW491,

Department of Computer Science, K.U.Leuven, February 2008.

[57] P. e. a. Murray-Rust. SAX. http://www.saxproject.org/.

[58] M. Odersky, J. Olson, P. Phillips, and J. Suereth. Sip-15 - value classes. http://docs.

scala-lang.org/sips/completed/value-classes.html, 2012.

[59] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Comprehensive Step-by-

step Guide. Artima Incorporation, USA, 1st edition, 2008.

[60] B. O’Sullivan. Aeson: A json parsing and encoding library optimized for ease of use and

high performance. https://hackage.haskell.org/package/aeson.

[61] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Softw., Pract.

Exper., 25(7):789–810, 1995.

[62] S. Peyton Jones. Call-pattern specialisation for haskell programs. In Proceedings of the

12th ACM SIGPLAN International Conference on Functional Programming, ICFP ’07,

pages 327–337, New York, NY, USA, 2007. ACM.

[63] S. Peyton Jones and S. Marlow. Secrets of the glasgow haskell compiler inliner. J. Funct.

Program., 12(5):393–434, July 2002.

129

Bibliography

[64] S. L. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for haskell. Sci.

Comput. Program., 32(1-3):3–47, Sept. 1998.

[65] B. C. Pierce. Types and Programming Languages. The MIT Press, 1 edition, Feb. 2002.

[66] A. Prokopec. Scalameter: Automate your performance testing today. http://scalameter.

github.io/.

[67] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-Virtualized: Linguistic reuse

for deep embeddings. Higher Order and Symbolic Computation, August-September:1–43,

2013.

[68] T. Rompf, K. Brown, H. Lee, A. Sujeeth, M. Jonnalagedda, N. Amin, Y. Klonatos, M. Dashti,

C. Koch, and K. Olukotun. Go meta! for a fundamental shift towards generative program-

ming and dsls in performance critical systems. In Proceedings of the Inaugural Summit

on Advances in Programming Languages, SNAPL 2015, 2015.

[69] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic approach to runtime

code generation and compiled DSLs. In Proceedings of the Ninth International Conference

on Generative Programming and Component Engineering, GPCE ’10, pages 127–136, New

York, NY, USA, October 10–13 2010. ACM.

[70] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee, M. Jonnalagedda,

K. Olukotun, and M. Odersky. Optimizing data structures in high-level programs: New

directions for extensible compilers based on staging. In Proceedings of the 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,

pages 497–510, New York, NY, USA, 2013. ACM.

[71] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky, and K. Olukotun.

Building-blocks for performance oriented dsls. In Proceedings IFIP Working Conference

on Domain-Specific Languages, DSL 2011, Bordeaux, France, 6-8th September 2011., pages

93–117, 2011.

[72] E. F. d. O. Sandes and A. C. M. A. de Melo. CUDAlign: Using GPU to accelerate the

comparison of megabase genomic sequences. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’10, pages 137–146,

New York, NY, USA, 2010. ACM.

[73] E. F. d. O. Sandes and A. C. M. A. de Melo. Smith-Waterman alignment of huge sequences

with GPU in linear space. In Proceedings of the 25th IEEE International Symposium on

Parallel and Distributed Processing, IPDPS ’11, pages 1199–1211, Washington, DC, USA,

May 16–20 2011. IEEE Computer Society.

[74] E. F. d. O. Sandes and A. C. M. A. de Melo. Retrieving Smith-Waterman alignments with

optimizations for megabase biological sequences using GPU. IEEE Transactions on

Parallel and Distributed Systems, 24(5):1009–1021, 2013.

130

Bibliography

[75] G. Sauthoff. Bellman’s GAP: a 2nd generation language and system for algebraic dynamic

programming. PhD thesis, Bielefeld University, 2011.

[76] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala. Technical report, 2013.

[77] A. Shaikhha, M. D. Dashti, and C. Koch. Push vs. pull-based loop fusion in query engines.

2016.

[78] M. Sperber and P. Thiemann. The essence of LR parsing. In Proceedings of the 1995 ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation,

PEPM ’95, pages 146–155, New York, NY, USA, 1995. ACM.

[79] P. Steffen, R. Giegerich, and M. Giraud. Gpu parallelization of algebraic dynamic pro-

gramming. In Proceedings of the 8th international conference on Parallel processing

and applied mathematics: Part II, PPAM ’09, pages 290–299, Berlin, Heidelberg, 2010.

Springer.

[80] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions.

In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional

Programming, ICFP ’02, pages 124–132, New York, NY, USA, 2002. ACM.

[81] J. Svenningsson, E. Axelsson, A. Persson, and P. A. Jonsson. Efficient monadic streams. In

Trends in Functional Programming, 2015.

[82] B. J. Svensson and J. Svenningsson. Defunctionalizing push arrays. In Proceedings of the

3rd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC ’14,

pages 43–52, New York, NY, USA, 2014. ACM.

[83] K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic. A monadic approach for avoiding code

duplication when staging memoized functions. In Proceedings of the 2006 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-based Program Manipulation, PEPM

’06, pages 160–169, New York, NY, USA, 2006. ACM.

[84] I. Sysoev. The nginx HTTP server. http://nginx.org/.

[85] W. Taha and T. Sheard. MetaML and multi-stage programming with explicit annotations.

Theoretical Computer Science, 248(1-2):211–242, 2000.

[86] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer

Science, 73(2):231–248, Jan. 1988.

[87] P. Wadler. Monads for functional programming. In Advanced Functional Programming,

First International Spring School on Advanced Functional Programming Techniques,

Tutorial Text, volume 925 of LNCS, pages 24–52, Berlin, Heidelberg, May 24–30 1995.

Springer.

131

Bibliography

[88] A. Warth, J. R. Douglass, and T. Millstein. Packrat parsers can support left recursion. In

Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

based Program Manipulation, PEPM ’08, pages 103–110, New York, NY, USA, 2008. ACM.

[89] World Wide Web Consortium. W3c xml query (xquery).

[90] World Wide Web Consortium. Xml path language (xpath).

[91] C.-C. Wu, J.-Y. Ke, H. Lin, and W. chun Feng. Optimizing dynamic programming on

graphics processing units via adaptive thread-level parallelism. In Proceedings of the 17th

IEEE International Conference on Parallel and Distributed Systems, ICPADS ’11, pages

96–103, Washington, DC, USA, December 7–9 2011. IEEE Computer Society.

[92] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Si-

mon, and M. Wolczko. One VM to rule them all. In Proceedings of the 2013 ACM Inter-

national Symposium on New Ideas, New Paradigms, and Reflections on Programming &

Software, Onward! ’13, pages 187–204, New York, NY, USA, 2013. ACM.

[93] S. Xiao and W. chun Feng. Inter-block GPU communication via fast barrier synchro-

nization. In Proceedings of the 24th IEEE International Symposium on Parallel and

Distributed Processing, IPDPS ’10, pages 1–12, Washington, DC, USA, April 19–23 2010.

IEEE Computer Society.

[94] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,

and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems

Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX

Association.

132

M A N O H A R J O N N A L A G E D D A

personal information

email manohar.jonnalagedda@gmail.com

blog http://manojo.github.io

interests

Functional Programming,
Domain Specific Languages,
Abstractions for Data Processing,
the Border between Theory and Practice

education

Sep 2011–Present EPFL

Programming Languages Group · Advisor: Prof. Martin OderskyPhD in
Computer Science I research embedded domain specific languages, their expressivity and

performance. I have mostly worked on optimizing data processing pipelines by
combining parsing, queries and generative programming. I currently maintain
a blog with regular write-ups on these research efforts.

Fall 2006–Fall 2010 EPFL, UC Berkeley (exchange year)

GPA: 5.75/6 · Specialization in Foundations of SoftwareMaster in
Computer Science I won the Prix de la Société Suisse d’Informatique for the second highest GPA

in the Computer Science section.

projects

Implemented and integrated packrat parsing, a novel parsing technique to thePackrat Parsing in
Scala parser combinator library in Scala. The results of the project are now part of the

Scala standard library.

Implemented various fusion algorithms on list-like data structures usingStaged Fold Fusion
multi-staged programming, and discovered that these optimizations can be
implemented as libraries (as opposed to compiler internals). These techniques
form the basis of the current data processing and parsing research.

A macro-based Scala library that specialises data-processing queries for parsersParsequery
written in a parser-combinator library. With this library it is easy to skip
unwanted parts of the data instead of parsing it, resulting in significant
memory savings and performance improvements.

A parser combinator library that eliminates abstraction overhead for parsers.Staged Parser
Combinators As a result, parsers written in Scala exhibit performance close to hand-tuned

parsers written in C.

Contributed struct-based optimizations to the Lightweight Modular StagingLightweight
Modular Staging Framework, a runtime code-generation approach for building DSLs.

Fully redesigned and developed ExPASy, one of the main bioinformaticsExPASy
resources portal for proteomics in the world.

133

employment

Sep 2011–Present PhD Student

Supervisor: Martin OderskyEPFL,
Lausanne,

Switzerland
Research student on the academic side of the Scala programming language
team. My main research topic is DSLs and their optimisation. I also supervise
student projects and am head TA of the undergraduate Functional
Programming class.

Jun 2013–Sep 2013 Research Intern

Supervisor: Tiark RompfOracle Labs,
Lausanne,

Switzerland
During this internship I came up with the initial design, and implemented a
prototype, of the staged parser combinator project. Post internship, I developed
benchmarks and published the results.

Sep 2010–Dec 2011 Software Engineer, Civil Service

Supervisors: Heinz Stockinger, Aurélien GrosdidierSwiss Institute of
Bioinformatics,

Lausanne,
Switzerland

Worked on various projects with the Swiss Institute of Bioinformatics. The most
important result of my work was a full re-design and development of Expasy,
one of the main bioinformatics resources for proteomics in the world.

Feb 2010–Sep 2010 Intern, Master’s Thesis

Supervisors: Michael Jaeger, Gerald KaeferSiemens Corporate
Technology,

Munich, Germany
Worked on a cloud-computing related Masters thesis: ”Achieving application
symmetry between on-premises and cloud platforms”. This project resulted in
key guidelines that Siemens used for adopting the cloud for current/future
projects.

teaching experience

Co-designed and mentored the course on Functional Programming in Scala,MOOCs
taken by > 200000 students to date. My main contribution was the design and
implementation of the popular Bloxorz homework on lazy evaluation.

Supervised 5 master level students on various programming language researchProject
Supervision related projects, yielding 2 peer- reviewed publications in international

conferences.

As head TA for the undegraduate functional programming course, I organizedTeaching Assistant
and led recitation sessions, homework projects and exam sessions for 3
consecutive years, each iteration of the course followed by more than 150
students. This course was the mirror of the Functional Programming MOOC.

selected publications

Fold-based Fusion as a Library: A Generative Programming PearlScala ’15

Co-authors: Sandro Stucki

Staged Parser Combinators for Efficient Data ProcessingOOPSLA ’14

Co-authors: Thierry Coppey, Sandro Stucki, Tiark Rompf, Martin Odersky

Accelerating Parser Combinators with MacrosScala ’14

Co-authors: Eric Béguet

April 13, 2016

2

134

