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Abstract
In cities, urban places provide a socio-cultural habitat for people to counterbalance the
daily grind of urban life, an environment away from home and work. Places provide an
environment for people to communicate, share perspectives, and in the process form new
social connections. Due to the active role of places to the social fabric of city life, it is important
to understand how people perceive and experience places. One fundamental construct that
relates place and experience is ambiance, i.e., the impressions we ubiquitously form when
we go out. Young people are key actors of urban life, specially at night, and as such play an
equal role in co-creating and appropriating the urban space. Understanding how places and
their youth inhabitants interact at night is a relevant urban issue.

Until recently, our ability to assess the visual and perceptual qualities of urban spaces and to
study the dynamics surrounding youth experiences in those spaces have been limited partly
due to the lack of quantitative data. However, the growth of computational methods and tools
including sensor-rich mobile devices, social multimedia platforms, and crowdsourcing tools
have opened ways to measure urban perception at scale, and to deepen our understanding
of nightlife as experienced by young people.

In this thesis, as a first contribution, we present the design, implementation and computational
analysis of four mobile crowdsensing studies involving youth populations from various coun-
tries to understand and infer phenomena related to urban places and people. We gathered a
variety of explicit and implicit crowdsourced data including mobile sensor data and logs, sur-
vey responses, and multimedia content (images and videos) from hundreds of crowdworkers
and thousands of users of mobile social networks. Second, we showed how crowdsensed im-
ages can be used for the computational characterization and analysis of urban perception in
indoor and outdoor places. For both place types, urban perception impressions were elicited
for several physical and psychological constructs using online crowdsourcing. Using low-level
and deep learning features extracted from images, we automatically inferred crowdsourced
judgments of indoor ambiance with a maximum R2 of 0.53 and outdoor perception with a
maximum R2 of 0.49. Third, we demonstrated the feasibility to collect rich contextual data to
study the physical mobility, activities, ambiance context, and social patterns of youth nightlife
behavior. Fourth, using supervised machine learning techniques, we automatically classified
drinking behavior of young people in an urban, real nightlife setting. Using features extracted
from mobile sensor data and application logs, we obtained an overall accuracy of 76.7%.
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While this thesis contributes towards understanding urban perception and youth nightlife
patterns in specific contexts, our research also contributes towards the computational un-
derstanding of urban places at scale with high spatial and temporal resolution, using a
combination of mobile crowdsensing, social media, machine learning, multimedia analysis,
and online crowdsourcing.

Keywords : Mobile Crowdsensing, Ambiance, Urban Perception, Indoor Places, Outdoor
Places, Visual Perception, Youth, Nightlife, Alcohol, Ubiquitous Computing, Urban Computing,
Social Computing, Social Media, Foursquare
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Résumé
En ville, les lieux publics constituent un habitat socio-culturel qui permet à tout un chacun
de contrebalancer la routine quotidienne de la vie urbaine ; ces lieux constituent ainsi un
environnement à la fois hors du travail et de la maison. Ces lieux sont une opportunité pour
les gens de communiquer, partager des idées, ou encore former de nouveaux liens sociaux.
Étant donné l’importance de ces lieux pour le tissu social d’une ville, la compréhension
de la manière selon laquelle les gens les perçoivent et en font l’expérience constitue un
problème qui mérite d’être abordé. Un construit social fondamental qui relie les lieux publics à
l’expérience de ceux-ci est la notion d’ambiance, c’est-à-dire les impressions que nous nous
faisons de manière omniprésente lorsque nous sortons. Les jeunes adultes comptent parmi
les acteurs-clé de la vie urbaine, particulièrement de nuit ; dans ce sens, ils jouent un rôle
égal dans la co-création et l’appropriation de l’espace urbain. Comprendre les interactions
entre les lieux publics et le comportement des jeunes la nuit consttitue ainsi un problème
urbain pertinent.

Jusqu’à récemment, notre capacité à évaluer les qualités visuelles et perceptuelles des
espaces urbains et à étudier les dynamiques entourant le comportement des jeunes dans
ces endroits a été partiellement limitée par le manque de données quantitatives. Cependant,
les avancées dans le domaine des méthodes computationnelles combinée au développement
d’outils tels que les appareils mobiles incluant des capteurs, les plateformes sociales de
contenu multimedia, ou les systèmes de crowdsourcing (travail collaboratif de masse) ont
permis de mesurer la perception urbaine à grande échelle, ainsi que d’approfondir notre
compréhension de la vie nocturne expérimentée par les jeunes adultes.

Dans cette thèse, en tant que première contribution, nous avons conçu, mis en œuvre et
analysé quatre études de crowdsensing mobile incluant des populations de jeunes adultes
de pays divers dans le but de comprendre et inférer plusieurs phénomènes liés aux lieux
publics urbains et aux personnes. Nous avons collecté diverses données crowdsourcées de
manières implicite et explicite, comprenant des logs et des données de capteurs provenant
de smartphones, des réponses à des questionnaires, ainsi que du contenu multimedia
(images et vidéos) de centaines de volontaires et de milliers d’utilisateurs de réseaux sociaux.
Deuxièmement, nous avons montré comment des images crowdsourcées peuvent être
utilisées pour la caractérisation automatique et l’analyse de perception urbaine dans les
lieux intérieurs et extérieurs. Pour chaque type d’endroits, les impressions de perception
urbaine ont été collectées sur la base de plusieurs attributs physiques et psychologiques par
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le biais de crowdsourcing en ligne. En utilisant des features de bas niveau et des descripteurs
de deep learning, nous avons inféré de manière automatique des jugements d’ambiance
de lieux intérieurs avec un R2 maximum de 0.53 et de 0.49 pour la perception de lieux
extérieurs. Troisièmement, nous avons démontré la faisabilité de collecter des données
contextuelles riches pour étudier la mobilité physique, les activités, les contextes d’ambiance,
ainsi que le comportement social de jeunes adultes de nuit. Quatrièmement, en utilisant des
techniques d’apprentissage statistique supervisé, nous avons classifié le comportement de
consommation d’alcool de jeunes adultes dans un environnement nocturne et urbain réel.
En utilisant des descripteurs dérivés de données de capteurs de smartphones ainsi que des
logs d’utilisation d’applications, nous avons obtenu une précision générale de 76.7%.

Alors que cette thése contribue à une meilleure compréhension de la perception urbaine
ainsi qu’au comportement des jeunes adultes de nuit dans des contextes bien définis, notre
recherche contribue aussi à la compréhension computationnelle des lieux publics à grande
échelle, avec une résolution spaciale et temporelle élevée, en utilisant une combinaison
de crowdsensing mobile, de médias sociaux, d’apprentissage statistique, d’analyse de
multimédia, et de crowdsourcing en ligne.

Mots-clé : crowdsensing mobile, ambiance, perception urbaine, lieux intérieurs, lieux ex-
térieurs, jeunesse, vie nocturne, alcool, informatique omniprésente, informatique urbaine,
informatique sociale, médias sociaux, Foursquare.
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1 Introduction

1.1 Context and Motivation

CITIES are unique expressions of human activity and, at their core, are the intersection
of physical spaces and the people who live in it. Cities are not only buildings and

roads but also the people who use them and who, through the continuous exchange of
ideas and intermingling, create new knowledge and innovate [77]. From a city perspective,
public places have always played a central role in facilitating a socio-cultural habitat for
people to counterbalance the daily grind of urban life, an environment away from home and
work [149, 234, 40]. Places provide a social environment for individuals to communicate,
share perspectives, and in the process form new friendships [68] or opportunities to find life
partners [77]. With increasing urbanization, the role of public places in urban life has become
more important than ever as they contribute towards the functioning and vitality of a city.

There is a growing body of research in urban studies and psychology to contextualize the
understanding of places according to the perceptions of their inhabitants, and the socio-
economic and psychological factors behind them [71]. In those domains, the literature has
started investigating connections between psychological features of cities and key indicators
like well-being and prosperity [167]. Given the inevitable growth of urban life worldwide, and
the connections between places and well-being, an important goal is the development of
scientific methodologies to provide “a better idea of how people perceive and experience
places” [71].

One fundamental construct that relates place and experience is ambiance, defined as “the
mood or feeling associated with a particular place” or “the character and atmosphere of a
place” [137, 56]. As soon as we walk into a place or an unfamiliar neighborhood, we can tell
if it is suitable for us. We ubiquitously judge restaurants, cafes, or bars according to their
ambiance – whether a venue is energetic, bohemian, loud, or trendy. Similar perceptions
are formed when visiting an unknown city – a lot can be told about a place from its appear-
ance [98]. Overall, we form place impressions combining perceptual cues from the physical
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environment that involve most senses (vision and hearing, but also smell, taste, and touch) as
well as prior knowledge of both the physical space and its inhabitants [81]. As urban dwellers,
we rely on ambiance to make decisions that have long-term impact on how we interact with
those places e.g., defining our favorite social hangouts and shaping our discoveries, including
the kind of people we might end up meeting and interacting with.

Until recently, our ability to assess the visual and perceptual qualities of urban environ-
ments has been limited partly due to the lack of quantitative data. However, the growth of
sensor-rich mobile devices, social media, and crowdsourcing platforms have opened ways
to measure urban perception at scale. Social multimedia platforms (e.g., Flickr, Foursquare,
Yelp, Instagram) that allow users to take and share photos using mobile devices have gained
widespread adoption. These social media platforms represent a crowdsourced mechanism
to document cities and places within them. Users are documenting not just the diversity and
richness of places that city life offers, but also the character of the city including skyscrapers,
monuments, touristic spots, public parks, etc. As a result, millions of images describing
places and cities across the globe are available.

Complementary to this trend, due to an increased use of online crowdsourcing platforms to
obtain judgments from diverse populations, scientists have started to use crowdsourcing as a
medium to study urban perception for both indoor [83, 183] and outdoor environments [176,
171, 162], in a similar fashion as we form impressions of people [21]. In summary, mobile and
social technologies are providing new opportunities to document, characterize, and gather
impressions of urban environments.

In other disciplines it has been shown that cities have always been an attractive option for
young people due to their better access to education, improved job opportunities, active
nightlife, and better amenities [77]. However, urban public spaces are often seen as “adult
space”, where young people and their practices are seen as dangerous, threatening the
adult order in public spaces as well as the safety of others [210, 192, 211]. Youth are often
stereotyped as “trouble-makers” creating public disturbance and disorder particularly during
night time, resulting in increased surveillance and regulations [210, 211, 212]. Relatively little
is known about the dynamics surrounding youth experiences in urban spaces particularly at
night [212].

Mobile crowdsensing and social media provides the possibility to study questions related to
youth populations and their environments that have been elusive in the past. Understanding
nightlife, i.e., how cities and their youth inhabitants interact at night, is a relevant issue
to multiple stakeholders including city officials, business associations, police departments,
health and educational authorities. A vibrant nightlife scene can be simultaneously seen as
an urban development strategy, an economic opportunity, a source of health and safety risks,
and a way in which citizens co-create and appropriate the urban space [212]. Young people
are key actors of nightlife, and as such become the focus of many of the above stakeholders,
with respect to the design of strategies and policies that encourage the appropriation of the
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urban space while promoting healthy behaviors [100, 49]. We posit that the emergence of
mobile and social technologies can contribute to the understanding of nightlife as experienced
by young people, who use mobile and social technologies day and night.

In this dissertation, we take a multidisciplinary approach to the computational characterization
of urban public places from the perspective of urban perception and study how young people
can document and use these urban spaces, by integrating concepts from urban studies,
human geography, social psychology, and computing, including mobile crowdsensing and
online crowdsourcing, machine learning, and multimedia analysis.

1.2 Goals and Research Questions

In the thesis, we present the design, implementation and analysis of four mobile crowd-
sensing studies involving populations of young people contributing a variety of multifaceted
crowdsourced data including mobile sensor data, mobile application logs, survey responses,
and multimedia content (images and videos). We pursue the following objectives:

• Objective 1: To examine how crowdsensed images can be used for the analysis and
automatic inference of urban perception in indoor and outdoor urban places. For both place
types, urban perception are obtained for several physical and psychological constructs.
Indoor places are judged along categories including romantic, bohemian, formal and trendy,
among others. Outdoor perception are assessed along dimensions including dangerous,
dirty, happy, picturesque, etc.

• Objective 2: To understand the going out behavior of young people during night time:
the places where youth spend their weekend nights (physical mobility), the activities they
perform (consumption of alcohol), the atmosphere of their hang-outs (ambiance context),
and the people they hang out with (social context).

• Objective 3: To demonstrate the feasibility to automatically infer youth’s nightlife activity of
alcohol consumption based solely on mobile sensor data and application logs.

While this thesis contributes towards understanding urban perception and youth nightlife
behavior in specific contexts, our research also contributes towards the computational
understanding of urban places at scale with high spatial and temporal resolution using a
combination of mobile crowdsensing, social media, machine learning, multimedia analysis,
and online crowdsourcing. More specifically, we address the following research questions in
this thesis:

RQ1: Data Collection via Mobile Crowdsensing: How can mobile crowdsensing be used
to inform about the places, activity, and social context of youth nightlife patterns? How
can a population of young people be engaged through mobile crowdsensing to collect
images of urban environments? How can the correctness and validity of crowdsensed
data, in particular images, be verified?

RQ2: Human Perception of Places: Can human observers reliably assess the perception
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of indoor and outdoor places using crowdsourced images? If so, what physical and
psychological dimensions of perception can be consistently assessed? To what extent
do crowdsourced annotations by external observers correspond to in-situ self-reports?

RQ3: Machine Perception of Places: Can crowdsourced judgments of place perception
be automatically inferred using features extracted from images? To what extent do
automatically extracted ambiance features represent the crowdsourced annotations by
both in-situ observers and external online observers?

RQ4: Social Activity Recognition: Can alcohol consumption be automatically inferred from
mobile sensor and log data in an uncontrolled, real-life nightlife setting? If so, what
sensor features are more predictive of alcohol consumption?

1.3 Summary of Contributions

1.3.1 Mobile Crowdsensing

As a first contribution, we used diverse populations to collect rich contextual data using mobile
crowdsensing to gain insights about people and urban places. Mobile Crowdsensing is a
umbrella term used to describe sensing studies ranging from participatory mobile sensing to
opportunistic mobile sensing for a variety of application scenarios including infrastructure
sensing, personal analytics, and social computing [75, 123]. Participatory sensing involves the
active participation of individuals to gather sensory data e.g., capturing images of dangerous
looking streets, reporting civic issues (street lighting, illegal dumping of waste, potholes,
etc.) [39]. Opportunistic sensing is an autonomous (or semi-autonomous) collection of data
without the active involvement of individuals or explicit user interaction e.g., continuous
sampling of mobile sensor data (such as GPS, Accelerometer, Bluetooth, etc.).

On one hand, opportunistic sensing provides scalability and diversity while reducing partici-
pants’ response burden; on the other hand, participatory sensing provides valuable contextual
information via experience sampling which otherwise is difficult to infer using raw sensor
streams. Consequently, researchers have adopted a mix of participatory and opportunistic
sensing approaches for studies which demand explicit user intervention to enrich contextual
information, while leveraging the continuous collection of sensor data on participants’ mobile
devices [45, 216, 217].

Besides the use of smartphones for data collection, the ubiquity and popularity of mobile
social multimedia platforms offers a promising avenue to obtain data about places and
people. In all these platforms, users often take photos of many city areas and share them
publicly resulting in millions of images across the globe. We refer to these platforms as a
form of implicit crowdsensing where thousands of users are collecting and contributing
data voluntarily without any external or definitive requirement. On the other hand, we refer to
a mix of participatory and opportunistic sensing methodology as explicit crowdsensing as
participants are explicitly instructed to intentionally gather certain types of data.
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Figure 1.1 – Taxonomy of mobile crowdsensing used in the thesis.

In this thesis, we have adopted both implicit and explicit crowdsensing methodology to obtain
data about people and places. We have successfully carried out one implicit crowdsensing
using Foursquare data and three explicit mobile crowdsensing studies, ranging from a purely
participatory approach (SenseCityVity and CommuniSense) to a combination of participatory
and opportunistic sensing (Youth@Night). Figure 1.1 visually summarizes the different types
of crowdsensing studies carried out in this thesis and Table 1.1 summarizes the data collected
as part of these studies. Below we describe these studies and the collected data.

Foursquare Study

Foursquare is one of the world’s most popular location-based social networks, with over
8 billion place visits (check-ins) at over 65 million places from over 50 million users world-
wide [73]. Due to its large-scale place database and developer-friendly API, we collected
over 50,000 images and 28,000 comments from 300 indoor places across six cities around
the world (Table 1.1). The collected images were subsequently used to gather impressions of
indoor places via online crowdsourcing as described in Section 1.3.2. The dataset and the
analysis have been described in a paper published at the 23rd ACM International Conference
on Multimedia (MM ’15) [183].

SenseCityVity

SenseCityVity describes an approach aimed at documenting urban environments of cities
in Mexico by youth through the use of mobile crowdsensing. The study was conducted in
three cities, each one characterized by distinct geography, economic activity, and population.
The project involved the development of a mobile crowdsensing platform and a deployment
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Study Feature Location Dataset

Foursquare
300 popular indoor
places across six

cities

Barcelona, Mexico
City, New York City,
Paris, Seattle, and

Singapore

50,000
semantically-localized

images; 28,000 comments

SenseCityVity
200 participants
over 3 months

duration

Guanajuato, Leon,
and Sliao (Mexico)

7,000 geo-localized images;
380 videos; 13 video

documentaries

CommuniSense
30 participants over

2 weeks
Nairobi (Kenya)

881 travel survey responses;
254 hazard reports; 101

geo-localized images

Youth@Night
241 participants
over 3 months

Zurich and Lausanne
(Switzerland)

8 million sensor points;
2,500 images; 894 video

clips; 10,000 questionnaires;
40 interviews; 54,000
Foursquare check-ins

Table 1.1 – Summary of data collected during four mobile crowdsensing studies.

of an Urban Data Challenge (UDC) co-designed with young student volunteers to collect
geo-localized images, audio, and video. More than 200 student volunteers participated in
the UDC that resulted in a collection of over 7,000 geo-localized images, and 380 first-
person perspective videos. The collected images contain outdoor scenes of each city’s built
environment, including touristic, historical, and business sites, residential neighborhoods, and
areas with narrow streets and alleys. The image dataset was subsequently used to gather
impressions of outdoor scenes as described in Section 1.3.2. Going beyond just a mapping
exercise, the SenseCityVity project addresses the need for communities to become more
aware of their urban environment and take collective action towards addressing some of
the urban problems in their respective local communities. The data collected by and for the
people provides an alternative and more comprehensive picture of the issues that matter to
citizens. The SenseCityVity project and the collected data have been described in detail in a
paper to appear at the IEEE Pervasive Computing 2016 [172].

CommuniSense

The use of mobile crowdsensing for infrastructure monitoring present exciting opportunities
for developing cities, as they currently lack technologies to obtain reliable data on road infras-
tructure conditions. In this research thread, we built a mobile citizen-reporting application,
CommuniSense, to support data collection and verification of road infrastructure conditions
for the citizens of Nairobi. CommuniSense can be seen as a special case of the SenseCityVity
project, where citizens turned the focus of their cameras downwards to capture images of
road hazards, specifically potholes and speed-bumps. Using a two-week field study with
30 college students, we captured a total of 254 report submissions and 101 geo-localized
images from different parts of Nairobi. The research conducted as part of the CommuniSense
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project has been published at the 17th ACM International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI’15) [185].

Youth@Night

The Youth@Night project outlines a large-scale mobile crowdsensing study with more than
200 young participants over three months in two cities of Switzerland. The study was designed
to capture the heterogeneity of youth behavior during night time and to examine the feasibility
to automatically characterize alcohol consumption using mobile sensor data. For the study,
we developed two smartphone applications that allowed participants to respond to various
surveys using a participatory approach, while at the same time opportunistically collect
sensor and log data. The study resulted in over 10,000 survey responses (in-situ and ex-situ),
8 million sensor data points, 2,500 images, and 894 videos.

During the study, participants recorded a total of 1,394 place visits (check-ins) at diverse
places including personal homes, and non-commercial public spaces. Irrespective of place
type, the study captured places along the full spectrum of social and ambiance variables,
i.e., check-ins to public places alone, and house parties at private homes; or, public places
which were reported to be quiet, and private places which were reported to be very loud.
Using the video dataset, we conducted a computational analysis to measure the extent to
which automatically extracted loudness and brightness of places represent the crowdsourced
annotations by both in-situ participants and external online observers. To the best of our
knowledge, this kind of analysis has not been reported earlier in the Ubicomp community.

Overall, we demonstrated a crowdsensing methodology to collect rich contextual data to
improve our current understanding of youth nightlife practices in Switzerland. The proposed
methodology and the analysis have been published in a paper to appear at the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’16) [181].

1.3.2 Characterization and Inference of Urban Perception

One of the key challenges to understand how people perceive places is the difficulty in
obtaining place impressions. Most of the related works in psychology are based on physically
visiting a place and making observations about its atmosphere [83]. While this approach is
ecologically valid, it is not scalable and does not capture the temporal features (e.g., a place
that might be ideal for a business lunch, but that turns into a trendy loud bar in the night) and
geographical aspects (e.g., places differ across cities). Our proposed approach is to gather
place impressions based on images shared on social media, where observers rate ambiance
after viewing images for that place in an online setting. This approach has the advantage
of being scalable and can easily span national boundaries to help examining spatial and
cross-cultural differences in ambiance perception. In addition, this approach also permits a
better understanding of a place based on images taken during different times of the day.
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To study ambiance of indoor places, we used the data collected from Foursquare (Table 1.1).
To understand what type of images are most appropriate to describe ambiance and to assess
how people perceive places, we designed online crowdsourcing experiments on MTurk using
50,000 images from 300 indoor places. Results showed that images with clear views of the
environment were perceived by crowdworkers as being more informative of ambiance than
other image categories. We demonstrated that reliable estimates of ambiance (as defined
in the psychology literature) can be obtained using social media images for several of the
investigated dimensions, suggesting the presence of visual cues to form place impressions.
Furthermore, we found that most aggregate impressions of ambiance were similar across
popular places in all six studied cities.

For outdoor environments, previous studies have examined urban perception using images
from Google Street View (GSV) [176, 162, 23]. While GSV provides a scalable and automated
way to obtain images, not every world region is equally represented in the platform [171].
Instead in this work, we used a subset of images collected during the SenseCityVity project.
Using 144,000 individual judgments from MTurk, we gathered impressions of urban outdoor
scenes along 12 dimensions. Statistical analysis showed that outdoor environments can be
reliably assessed with respect to most urban dimensions in an online crowdsourcing setting.
Furthermore, cross-city statistical analysis showed significant differences across cities. As
a way of showing the additional value of mobile crowdsensing with respect to online street
level imagery (which provides static and daytime views), we also investigated whether the
perceptions of urban environments vary across different times of the day, and found that
places in the evening are perceived as less happy, pleasant and preserved, when compared
to the same place in the morning.

Our findings indicate the feasibility of using crowdsourced images to gather impressions
of urban perception for both indoor and outdoor places. These findings further suggest
the presence of visual cues used by raters to form place impressions. While there is a
variety of potentially informative visual cues, the specific connections of visual features with
urban perception still needs to be established. We hypothesized that some of the studied
dimensions have the potential to be automatically recognized. To test this hypothesis, we
conducted two studies to automatically infer place ambiance using visual cues from images.
For inference, we build upon prior work in object classification and scene understanding using
low-level image features including Color Histogram, GIST, HOG, LBP, SIFT and generic deep
learning features (activation layer of convolutional neural network) [173, 165, 232]. Features
extracted from deep learning with convolutional nets consistently outperformed individual
and combinations of several low-level image features to infer the studied dimensions for both
indoor and outdoor places. Our results further demonstrated the feasibility to automatically
infer indoor ambiance with a maximum R2 of 0.53 and outdoor perception with a maximum
R2 of 0.49.

To our knowledge, our work contributes one of the first results on how images collected
from mobile crowdsensing can be used for characterization of impressions in indoor and
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outdoor places. From the perspective of multimedia computing, our work contributes towards
developing automated ways to study social perception of urban places at scale. The appli-
cations derived from the above research are manifold. For indoor places, this could include
hyper-local, ambiance-driven place search and discovery (e.g., a trendy place for a night-out
or a romantic place for the wedding anniversary) to data-driven recommendations for place
owners to improve the presentation of their venues (e.g., architecture design and style). For
outdoor spaces, characterizing perception could potentially provide urban designers and city
planners a data-driven and scalable approach to examine the physical appearance of cities
and help design and evaluate urban policies informed by urban perception.

Much of our research on indoor places has been published at the 23rd and 24th ACM
International Conference on Multimedia [183, 184]; while the work on outdoor perception has
been published at the 6th ACM Symposium on Computing for Development (DEV’15) [186].

1.3.3 Characterizing Youth Drinking Behavior

Alcohol consumption is the number one risk factor for morbidity and mortality among young
people in many countries in the developed world. Heavy drinking and related incidents in
public on weekend nights are a concern for city authorities, and a nuisance for the general
public [135, 221]. In late adolescence and early adulthood, excessive drinking and intoxication
is more common than in any other life period, which carries a significant risk of adverse
psychological, social, and physical health consequences [78]. To examine drinking habits,
most previous studies in alcohol research have relied on self-reported assessments. This
setting has three limitations. First, self-reported data on past alcohol consumption is prone to
recall biases. Second, the environment in which drinking happens often differs from the one
under which the self-assessment of drinking happens. Third, the collected data is limited by
study design, focusing on single aspects of this complex phenomena. In order to increase
research validity and advance understanding of contextual factors, smartphones offer a
promising alternative to capture drinking-related phenomena.

Using the sensor data collected during the Youth@Night study (Table 1.1), we examined the
feasibility to automatically classify drinking behavior of young adults in an urban, real nightlife
setting. We found features extracted from accelerometer data to be the most informative
among all features types with 75.8% accuracy, and that a combination of features results
in an overall accuracy of 76.7%. Features extracted using location logs were the second
best feature with an accuracy of 68.5%. We observed that Wifi and Bluetooth logs were
also discriminant. To contextualize these findings, we explored the role of two potential
confounding variables – going out (home vs. away) and gender – on the reported alcohol
consumption. We found that these two variables alone cannot explain the more nuanced
notions of drinking behavior observed in our data.

Our findings demonstrated the feasibility of classifying drinking behavior using smartphone
data. From the mobile computing viewpoint, we believe it is a promising result.
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1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 outlines the Foursquare data collection, online
crowdsourcing experiments to obtain human impressions, data analysis, and automatic
inference of ambiance for indoor places. Chapter 3 follows a similar methodology to char-
acterize and infer urban perception for outdoor places using the SenseCityVity dataset.
Chapter 4 presents the design and implementation of the mobile crowdsensing study for
road infrastructure monitoring in Nairobi, including the findings of a city-wide road quality
survey. Chapter 5 outlines the design and implementation of the Youth@Night study including
a detailed analysis of the questionnaire, survey, and video data, and proposes a machine
learning pipeline to automatically classify alcohol consumption of young adults in Switzerland.
Chapter 6 presents the conclusions of the thesis as well as possible directions for future work.
Due to the multi-disciplinary nature of the thesis, the related work is discussed individually in
each chapter.

1.5 Publications

This thesis outlines much of the research which have been previously published in the
following peer-reviewed journals and conference papers. Additionally, the thesis reports
research which is currently under review or unpublished work. The list of publications is
provided in reverse chronological order below:

[P1] Darshan Santani, Rui Hu, Daniel Gatica-Perez. “InnerView: Learning Place Ambiance
from Social Media Images”, in Proceedings of the ACM International Conference on
Multimedia (MM ’16), 2016

[P2] Darshan Santani, Joan-Isaac Biel, Florian Labhart, Jasmine Truong, Sara Landolt,
Emmanuel Kuntsche, Daniel Gatica-Perez. “The Night is Young: Urban Crowdsourcing
of Nightlife Patterns” in Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp ’16), 2016

[P3] Darshan Santani, Trinh-Minh-Tri Do, Florian Labhart, Sara Landolt, Emmanuel Kuntsche,
Daniel Gatica-Perez. “DrinkSense: Characterizing Youth Drinking Behavior using Smart-
phones” Currently Under Submission, 2016

[P4] Salvador Ruiz-Correa, Darshan Santani, Beatriz Ramirez Salazar, Itzia Ruiz Correa,
Fatima Alba Rendon-Huerta, Carlo Olmos Carrillo, Brisa Carmina Sandoval Mexicano,
Angel Humberto Arcos Garcia, Rogelio Hasimoto Beltran and Daniel Gatica-Perez.
“SenseCityVity: Mobile Sensing, Urban Awareness, and Collective Action in Mexico”, in
IEEE Pervasive Computing (Forthcoming), 2016

[P5] Darshan Santani, Salvador Ruiz-Correa, Daniel Gatica-Perez “Looking at Cities in
Mexico with Crowds ”, in Proceedings of the ACM Symposium on Computing for
Development (DEV ’15), 2015
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[P6] Darshan Santani, Daniel Gatica-Perez. “Loud and Trendy: Crowdsourcing Impressions
of Social Ambiance in Popular Indoor Urban Places” in Proceedings of the ACM
International Conference on Multimedia (MM’15), 2015

[P7] Darshan Santani, Jidraph Njuguna, Tierra Bills, Aisha W. Bryant, Reginald Bryant,
Jonathan Ledgard, Daniel Gatica-Perez. “CommuniSense: Crowdsourcing Road Haz-
ards in Nairobi”, in Proceedings of the 17th International Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI ’15), 2015

Funding Acknowledgments: This thesis was funded by the Swiss National Science Foun-
dation (SNSF) through the HAI and Youth@Night projects. We also acknowledge the financial
support of EPFL CODEV for the SenseCityVity project.
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2 Characterizing Impressions of Am-
biance in Indoor Places

2.1 Introduction

THERE is an increasing interest in social media and ubiquitous computing to characterize
places beyond their function and towards psychological and emotional constructs. In

this context, an area of active research is the development of “a better idea of how people
perceive and experience places” [71]. As soon as we walk into a bar, cafe or a restaurant, we
judge if the place is appropriate for us. In other words, we form place impressions combining
perceptual cues that involve most senses (vision and hearing, but also smell, taste, and
touch) as well as prior knowledge of both the physical space and its inhabitants [81]. As
urban dwellers, we rely on ambiance to make decisions that have long-term impact, defining
our favorite social hangouts and shaping our discoveries, including the kind of people we
might end up meeting and interacting with.

One of the key challenges to understand how people perceive a place is the difficulty in
obtaining place impressions. A standard approach involves physically visit a place and gather
impressions making observations about its atmosphere [83]. Clearly, this approach is neither
scalable nor captures contextual aspects of venues like time, by which a place might be ideal
for a business lunch, but then turns into a trendy loud bar at night. In contrast, gathering
place impressions based on images or videos shared on social media, where observers
rate ambiance after viewing media items coming from a venue, has the advantages of being
scalable, allowing the study of contextual factors like time, and spanning national boundaries
to examine geographic and cultural differences in ambiance perception. In this work we
conduct our ambiance analysis based on the social media approach.

Social media represents a crowdsourced mechanism to document urban places like restau-
rants, bars, clubs, and cafes. Due to the growth of sensor-rich mobile devices, online directory
services like Yelp, Foursquare, and TripAdvisor are all popular today. These platforms provide
users with functionality to search for places in a given region and to leave feedback in the
form of reviews and comments highlighting their experiences [25]. These services co-exist
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with integrated services like Google Places, Facebook Places, and Instagram. In all of them,
users often take photos at venues and share them publicly. As a result, millions of images
documenting places across the globe are available. While many of the shared images are
either personal or show food or drink related items, there are also images which provide
views of the indoor environment and likely adequate to gauge the place atmosphere.

Relying on a combination of social media data collection, image crowdsourcing, data analysis,
and automatic feature extraction we contribute research resources and findings towards the
understanding of how social ambiance can be systematically studied. This chapter addresses
the following research questions:

RQ2.1: What types of social media images best convey the ambiance of popular indoor
places? (RQ2.1 maps to thesis’s RQ2)

RQ2.2: Can human observers reliably assess the perception of indoor places using crowd-
sourced images? If so, what physical and psychological dimensions of perception
can be reliably assessed? (RQ2.2 maps to thesis’s RQ2)

RQ2.3: Can crowdsourced judgments of indoor ambiance be automatically inferred using
low-level image and deep learning features extracted from images? (RQ2.3 maps to
thesis’s RQ3)

In this chapter, we make the following five contributions:

1. Using Foursquare, we collected 50,000 images from 300 popular places from six cities
worldwide in three world regions – North America (New York City, Seattle, and Mexico
City), Europe (Barcelona and Paris) and Asia (Singapore) (Section 2.3). In addition
to geographic and cultural diversity, these cities were chosen because of their active
user population on Foursquare. The focus of our collection was on popular places in
Foursquare rather than on arbitrary places.

2. We designed an image crowdsourcing experiment on Amazon’s Mechanical Turk (MTurk)
to assess the suitability of image categories that are most appropriate to describe the
ambiance of a place (Section 2.4). Research in both psychology and computing has
confirmed the feasibility of crowdsourcing as a way to conduct behavioral studies when
appropriate incentives and mechanisms for quality control are established [113]. Using
statistical tests, the results showed that images with clear views of the environment were
perceived by crowdworkers as being more informative of ambiance than other image
categories, like food and drinks, or groups of people. Based on the crowdsourcing results,
we built a refined image corpus suitable for indoor ambiance characterization.

3. A priori, the social ambiance of places is not known to zero-acquaintance visitors or
observers. We design a second crowdsourcing experiment to assess how people perceive
places from the perspective of ambiance (Section 2.5). We asked crowdworkers to rate
indoor ambiance along 13 different physical and psychological dimensions where images
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served as stimuli to form place impressions. The ambiance categories include romantic,
bohemian, formal and trendy, among others.

4. Based on the results obtained from the second experiment, we found that reliable esti-
mates of ambiance can be obtained using social media images, suggesting the presence
of strong visual cues to form place impressions. Furthermore, while we identify a few
statistically significant differences across cities along four ambiance dimensions, most
aggregate impressions of ambiance were similar across popular places in all cities, which
open relevant questions about the roles that geography and background knowledge of
observers might be playing.

5. We devised a methodology to automatically infer human impressions of place ambiance for
the studied places, using a variety of low-level image features (including color histogram,
texture, structural features, histogram of oriented gradients), and generic deep learning
features. Our results indicated the feasibility to automatically infer indoor ambiance with
a maximum R2 of 0.53 using features extracted from a pre-trained convolutional neural
network (CNN), precisely GoogLeNet model trained on ImageNet data. Furthermore,
CNN features consistently outperformed individual and combinations of several low-level
image descriptors for all the 13 studied dimensions.

The chapter is organized as follows. We begin with a review of related work (Section 2.2).
Section 2.3 presents the methodology to select places and their associated images using
Foursquare. Section 2.4 describes our first crowdsourcing experiment to identify the most
adequate image categories for ambiance characterization. Next, Section 2.5 describes the
design of the second crowdsourcing experiment to examine whether reliable estimates of
indoor ambiance can be obtained using online crowdsourcing along 13 different physical
and psychological dimensions. Using the aggregated annotations, Section 2.6 provides
descriptive statistics and study differences of perceptual characteristics across cities for each
ambiance label. Next, Section 2.7 proposes a machine learning methodology to automatically
infer ambiance impressions using low-level image features and generic deep learning features.
Section 2.7 was a joint work with Rui Hu of Idiap Research Institute. Finally, Section 2.8
concludes with a summary of our findings. This chapter describes much of the research that
has been published here in these papers [183, 184].

2.2 Related Work

Given the multifaceted nature of our research questions, we review the related work along
multiple research axes: ubiquitous and multimedia computing, social media, hospitality
research, social psychology, and urban computing.
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2.2.1 Place Characterization in Ubiquitous Computing

The existing work on place characterization in ubiquitous computing, computer vision, and
audio processing has examined several aspects including physical properties of places like
their geographic location [109]; place composition, including the scene layout and the objects
present in the scene [161]; place function, i.e., home, work, or leisure places; and place
occupancy and noise levels [214]. This research has used both automatic [130, 46] and
semi-automatic approaches [230] and a variety of data sources often studied in isolation,
including images, sensor data like GPS/Wifi, and RF data. Works like [130, 46] have used
audio or audio-visual data to characterized places through phone apps. The studied place
categories (personal places in [130], home, work in [46]) differ significantly from ours. A recent
work [214] investigates the recognition of physical ambiance categories (occupancy, human
chatter, noise and music levels) using standard audio features collected in-situ by users. In
contrast, our work examines social images as source of data, impressions of people who are
not physically at the places, and a much larger number of social ambiance categories.

2.2.2 Analysis of Social Media Images

The emergence of social multimedia platforms, which allow users to take and share photos
using mobile devices, have gained wide spread adoption. In the social multimedia literature,
the work in [231] studies the problem of recommending locations based on mobility traces
extracted from GPS and social links, without using image information. In contrast, the work in
[44] uses geo-localized images, travel blog text data, and manual user profiles to suggest
trips. Other works involving social images include [61] and [48]. These cases are focused on
outdoor places and do not address the atmosphere dimensions we studied in this chapter.
Due to the availability of large amount of images on Flickr or Instagram, researchers have
analyzed these platforms (recent examples include [93, 26]). In [26], using a corpus of one
million Instagram images, the authors studied the relationship between photos containing a
face and its social engagement factors and found that photos with faces are more likely to
receive likes and comments. As it relates to our work, an interesting result is that only 20%
of images were found to contain faces, which suggests that many other image categories
(related to food, drinks, places, etc.) exist (for an example, refer to the small-scale coding
study in [93]).

2.2.3 Study of Ambiance in Indoor Places

In hospitality and retail studies, there has been significant interest to examine the effect of
physical ambiance cues or “atmospherics” such as color, lighting, or layout on customer
perception and quality inferences [24, 208]. In a study conducted in a retail store, it was found
that ambient (such as music, lighting, smell), design (such as color, ceilings, spatial layout)
and social factors present in the store environment contribute towards higher merchandise
and service quality [24]. In another study [90], the role of atmospherics across 10 full-service
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restaurants in Hong Kong was investigated. Using five dimensions of restaurant atmospherics
(facility aesthetics, ambiance, spatial layout, employee factors, and view from the window) it
was found that these dimensions have a significant influence on patrons’ dining experience,
and their willingness to pay more and recommend the restaurant to others. Similar results
were obtained in another related work conducted across ethnic restaurants in the U.S. [127].
However, most of these studies are either done in controlled laboratory settings or based on
questionnaires, which may have limitations with respect to ecological validity or recall biases.

Unlike the above research, we take a different direction examining the social perception of
places (the ambiance impressions that people form about venues). Our proposed research
is most closely related to work in social psychology [167, 81] which has investigated first
impressions of places in connection to the personality of their inhabitants, mostly in controlled
settings. A key first study [83] investigated the reliability (in terms of inter-rater agreement) of
impressions of place ambiance and patron personality formed by (a) observers physically
present at a number of indoor places, and (b) observers of Foursquare user profiles who
visited those places (as opposed to views of places as we do). The results suggest that
people do indeed form consistent impressions of ambiance and patrons traits. Extending this
work using the same data, authors in [166] proposed to infer place ambiance using visual
cues (including color and aesthetic features) extracted from the profile pictures of its patrons.
Both these studies, however, only examined 49 places in one city (Austin, TX). In contrast,
we study 300 places in six cities.

In the field of architecture and urban planning, there is a body of work to measure visual
perceptions of outdoor built environments using qualitative research methods including
interviews, visual preference surveys, and observations of the built environment using either
actual or simulated images. More recently in urban computing, there is a recent push to
measure urban perception of outdoor spaces using images from Google Street View [142,
151, 159] or Panoramio images to discover salient visual features in outdoor scenes in
cities [61, 22, 233]. We review all the related work on outdoor environments in Section 3.2.3
of Chapter 3. In contrast with these works, we focus on indoor places and to the best of our
knowledge, our work constitutes a first study to automatically infer ambiance impressions of
indoor places from deep features learned from images shared on social media.

2.3 Dataset

In this section, we describe our methodology to select the list of popular places and their
associated images across six cities in Foursquare.

2.3.1 Place Database

We ground our analysis on data collected from Foursquare. In Foursquare, users typically visit
a place, announce their arrival (check-in) and share information about their visits to places.
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(a) Food/Drinks (b) People/Group

(c) Physical Environment (d) None of these

Figure 2.1 – Sample images from Random Image corpus. Based on online annotations, a
random set of four images which were annotated as (a) Food/Drinks, (b) People/Group, (c)
Physical Environment, and (d) None of these. For privacy reasons, images showing faces
have been pixelated. Best viewed in color.

City Ratings Photos Visitors
Barcelona (BCN) 8.66 (0.67) 309.58 (383.53) 1,874.34 (2,371.43)

New York City (NYC) 9.31 (0.41) 463.62 (387.31) 8,272.16 (6,208.76)
Paris (PAR) 8.55 (0.63) 220.98 (254.16) 1,685.76 (1,433.14)

Seattle (SEA) 8.95 (0.38) 240.7 (147.94) 3,533.54 (1,815.34)
Singapore (SG) 8.29 (0.86) 304.88 (206.58) 3,457.64 (3,916.89)

Mexico City (MXC) 8.78 (0.49) 361.34 (374.85) 3,692.56 (3,578.84)

Table 2.1 – Summary statistics of Foursquare data. For each city, mean attribute scores of
popular places are shown, along with their standard deviations (shown in brackets).

Each place on Foursquare maintains a profile page, which contains general information about
the place (address, directions, phone number, etc.), in addition to place-specific data such as
its popularity, total number of check-ins and past visitors, and a collection of images uploaded
by users. As per Foursquare rules, a place or a venue is a geographical location with fixed
spatial coordinates, i.e., latitude and longitude. Using the Foursquare public API, we collected
all the relevant information for a selected place. Note that Foursquare has changed its mobile
application and API significantly since our data collection. Throughout this chapter, we will
use place and venue interchangeably in the context of Foursquare.

For our analysis, we studied popular indoor places on Foursquare for six cities around the
world – Barcelona, Mexico City, New York City, Paris, Seattle, and Singapore. These cities
were chosen for two reasons. First, they all are large cities in diverse world regions, and
are known to have a vibrant urban life. Second, they all have an active user population on
Foursquare. For each city, we chose 50 of the most popular places in each city which fall
under the Foursquare-defined category of either being “Food” or “Nightlife Spots”, which
means cafes, restaurants, or bars. Table 2.1 lists the mean values of Foursquare data for all
50 places in each city. For indoor ambiance work, we focused on studying popular indoor
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places as opposed to arbitrary places (i.e., indoor or outdoor, and that might or might not be
represented on Foursquare).

Place selection was performed manually by me, taking into account place popularity, number
of checkins, number of past visitors and number of available images. As image quality was
an important criterion for selecting a place, we ignored all places which did not had any
good-quality images such as dark images. In Table 2.1, using data obtained from Foursquare
API, we noticed that the user-generated mean rating of places selected for the study is above
8.2 (on a scale from 1 to 10) for all cities, confirming the popularity of places. We also observe
that these places are frequently visited by a large visitor population.

2.3.2 Image Corpora

The second important consideration was the selection of images for each chosen place.
Using the Foursquare public API, we collected all the publicly available images for each
selected place to build the 50K image corpus which is described below.

50K Image Corpus

Images for a place listed on Foursquare can be obtained via the API, but due to rate limits
imposed by the API, we have access to at most 200 publicly visible images per place. We
gathered a total of 50,023 images for all 300 places. This gives an average of 166 images
per place, which is lower than the average estimated from the profile metadata (≥ 300),
yet it remains a large number. In addition to gathering the images, the API also provides
information on the image source (i.e., the application used to generate the photo), creation
time, user metadata, and other attributes such as image height and width. However, due to
API restrictions we had access to metadata information for only 47,980 (96%) images, which
were fairly distributed across all six studied cities (Figure 2.2b)

Using the metadata information, we found that the median height and width of an image
in our collected corpus is 720 pixels, with 55% of images taken via iPhone, 19% via an
Android device, 2% by Blackberry devices, and 22% uploaded via Instagram. 42% of images
were uploaded by females, 54% of images by male users on Foursquare, while the rest 4%
of users chose not to disclose their gender information on Foursquare. We also plot the
distribution of image creation times in Figure 2.2a. We identify three distinctive peaks – the
first one occurs during the lunch hour (11am–1pm), the second peak around dinner time
(6–8pm), and the last one occurs after midnight and early hours of the morning (nightlife).
This result confirms our intuition that social media images provide a well-suited medium to
capture places during different times of the day.

Given that each place in our database has on average more than 300 user-contributed
images (Table 2.1), we decided to select a small number of images per place to illustrate the
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Figure 2.2 – Plots showing the image metadata for the 50K Image Corpus a) Histogram
showing the frequency of images taken during different times of the day. b) Barplot showing
the total number of images per city.

place’s atmosphere. This decision was motivated by the need to account for the variability in
image quality, while at the same time providing general views of a place, without complicating
the annotation process. Moreover, having more than one image for a place gives us the
flexibility to show the place at different times of the day. Our hypothesis is that images of the
physical environment will often be more representative of the place ambiance, so to test our
hypothesis we built two image corpora, which are described next.

Random Image Corpus

It is challenging to select a small number of representative images that can accurately
describe the ambiance of a place. One approach is to randomly select them given the
collection of all images available for a place. We follow this approach to build a random
image corpus. For the study described in this section, since we are interested in only a few
images to represent each place, we randomly sampled three images per place from the 50K
image corpus, to build a random image corpus of 900 images for all 300 places. Figure 2.1
highlights a sample of selected images from this corpus.

Physical Environment Image Corpus

Our second approach is to build an image corpus with clear views of the physical environment.
We manually select a small number of images per place that satisfy this condition. Although
this task can potentially be automated (Section 2.7), we have chosen to manually control the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3 – Sample images from Physical Environment Image corpus. Based on MTurk
annotations, images which scored the highest on (a) Artsy, (b) Creepy, (c) Loud, and (d)
Trendy; and lowest on (e) Artsy, (f) Creepy, (g) Loud, and (h) Trendy. For privacy reasons,
images showing faces have been pixelated. Best viewed in color.

quality of data for the crowdsourcing experiment. The selection was performed by me after
browsing through all the user-contributed images. During the process, we opted for images
with a view clearly showing the space from different angles (with or without the presence
of visitors). To the best of our ability, we avoided images where one can potentially identify
faces, to protect the privacy of individuals. Moreover, images that showed the venue name or
any other information that explicitly revealed the identity of the place were discarded e.g., an
image showing Starbucks or Hard Rock Cafe logos, to reduce any bias while characterizing
the place ambiance. Figure 2.3 presents a sample of selected images from this corpus. Note
that all these attributes cannot be controlled for while choosing images randomly.

The physical environment image corpus also contains 900 images for all 300 places (three
images per place). The manual selection was constrained by the quality of Foursquare
images. At times, we encountered images which were not optimally bright or clear. However,
this setting is realistic due to the absence of any beautified or vendor-provided images, which
can potentially add biases to the impressions.

2.4 Experiment 1: Suitability of Images to Convey Ambiance

In this section we address RQ2.1, i.e., we use both image corpora to judge which approach
results in better “ambiance quality”, that is, images which are more adequate to convey
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Method Physical Environment
Top 2 Bottom 3

Ambiance Phy. Env. Ambiance Phy. Env.
Majority Vote 91.7% 95.8% 8.3% 4.2%

Median 89.7% 94.7% 10.3% 5.3%

(a) Physical Environment Image Corpora
Method Random

Top 2 Bottom 3
Ambiance Phy. Env. Ambiance Phy. Env.

Majority Vote 5.8% 2.7% 94.2% 97.3%
Median 4.1% 2.0% 95.9% 98.0%

(b) Random Image Corpora

Table 2.2 – Table showing the summary statistics for each aggregation method for a) Physical
Environment, b) Random image corpora. For each method, we show the percentage of
images from both image corpora which are either in Top 2 ranks (rank 1 or 2), or ranked in
Bottom 3 (ranks 3,4,5).

ambiance according to crowd judgments. On one hand, random selection of images is a
realistic “in the wild” setting that provides an automated way to collect images. However, it will
represent a valid approach only if it results in a collection of images which provide sufficient
visual cues to characterize place ambiance. On the other hand, the manual selection of
physical environment images is a controlled setting that satisfies the criteria described in the
previous section.

2.4.1 Crowdsourcing Image Impressions

Our hypothesis is that many images in the random image corpus might not be perceived
by crowdworkers as ideal to characterize a place’s ambiance, as they do not contain visual
cues to gauge a place’s physical environment. In our exploratory inspection, most of these
random images contain food items or show groups of people. To answer RQ1, we conducted
a crowdsourcing study to gather the perceived ability of both image corpora – random
and physical environment, to describe a place’s ambiance and physical environment. For
crowdsourcing, we used MTurk and chose US-based workers with at least 95% approval rate
for historical HITs (Human Intelligence Tasks). In addition, to increase the potential reliability
of MTurk annotations, we only chose “Master” annotators, which typically involves a worker
pool with an excellent track record of completing tasks with precision.

For each HIT annotation task, we picked a set of five images per place, consisting of two
from the physical environment image corpus, and three from the random image corpus. We
ensured that images from the two sets do not overlap. In each HIT, workers were asked to
view these five images and then answer three questions. In the first question, the workers
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2.4. Experiment 1: Suitability of Images to Convey Ambiance

were asked to rank the images based on how informative they were of the ambiance of the
place. In the second one, workers were asked to rank the same set of images based on
their degree of information about the physical environment of the place. The third question
asked workers to categorize the images in four classes: a) Food/Drinks, b) People/Group,
c) Physical Environment, and d) None of these. For these questions, no explicit definitions
of ambiance, physical environment, food/drinks or people were provided, as we wanted the
workers to rely on their internal representation of these concepts.

In the two ranking questions, images cannot be given the same rank, each image needed to
have a different rank. For the image categorization task, the workers were asked to choose
exactly one category for each image. If the images had the same rank or fell into one or more
categories, we asked the annotators to pick the rank or category that for them was the best
choice. We collected 10 annotations for each HIT across all 300 places, for a total of 3,000
responses for every question. Every worker was reimbursed 0.15 USD per HIT.

We also gathered crowdworkers’ demographics via an email-based survey. We asked workers
about their age group, gender, education level, current place of residence (categorized as
either rural, suburbs, small-sized town, mid-sized town or city), and any experience of living
in a big city. We also inquired them about their typical frequency to go out for food or drinks
(almost every day, 2-3 times per week, once a week, 1-2 times a month, or less than once a
month). These questions were designed to understand the ability of workers to rate images
for ambiance and physical environment based on previous experiences.

2.4.2 Results

In this subsection, we present the results of our first crowdsourcing experiment.

Worker Participation and Demographics

For a total number of 3,000 HITs available for this experiment, we observe that a typical
worker completed an average of 39 HITs. While 50% of the workers submitted less than 9
HITs, the worker with the highest number of HITs completed 295 assignments. We observe
a long-tailed distribution in HIT completion times (mean: 114 secs, median: 88 secs, max:
593 secs). It is worth noting that we allocated a maximum of 10 minutes per HIT.

We had a pool of 101 workers who responded to our HITs. Of all HIT respondents, 32%
replied to our demographics survey. We notice a balanced gender ratio (50% of workers
being female), which corroborates earlier findings in the literature [169]. While only 34%
of our worker pool currently lives in a big city, 75% of them had already experienced city
living in the past. Furthermore, 56% of them go out for food or drinks at least once a week.
These findings provide evidence that the majority of respondents are likely capable to assess
ambiance in urban environments. We also notice that the worker population is relatively not
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Chapter 2. Characterizing Impressions of Ambiance in Indoor Places

so young with the most popular category (53%) being the age group of 35-50 years old. Note
that the worker demographics reported here encompasses the worker population in both
online crowdsourcing experiments of this chapter.

Analysis of Annotations

Now we turn our focus towards assessing the suitability of each image corpus to convey
ambiance. As mentioned earlier, for each HIT we collected 10 impressions per place. Thus,
it becomes essential to consider the role of different aggregation methods in analyzing the
results. Aggregation is used to create a composite score per place given the 10 responses for
each question. In other words, for every question, aggregation is performed at the place-level.
We use two different aggregation techniques. The first one is the majority vote, where we
compute the majority score given the 10 impressions for each place. We then summarize the
results based on 300 majority impressions. For the median method, we compute the median
as the composite score across 10 impressions for each place.

Table 2.2 lists the summary statistics for the two aggregation techniques. For each aggregation
technique and each corpus, we report the percentage of images which are in Top 2 ranks
(ranks 1,2) and Bottom 3 ranks (ranks 3,4,5). We list these statistics for both the ambiance
and physical environment questions. For the majority vote technique, manually selected
images (physical environment image corpus) are in Top 2 ranks 91.7% for ambiance and
95.8% for physical environment, whereas random images are in Bottom 3 ranks for 94.2% and
97.3%, respectively. Note that a random ranking method would assign the manually selected
image in the Top 2 rank with a probability of 1/10 (1/

(
5
2

)
). We also plot the histogram of

rankings for image sets from both corpora in Figures 2.4a and 2.4b. These results show that
manually selected images are associated with higher ranks, while the random set of images
are associated with lower ranks for both ambiance and physical environment, irrespective of
the aggregation technique.

In addition to asking annotators to rank images, we also asked them to classify images
into one of the four categories (food/drinks, people/group, physical environment, and none
of these), as described in Section 2.4.1. In Figure 2.4c, we plot the assigned category for
the majority vote technique. We observe that images from the physical environment image
corpus are labeled as describing the physical environment in 96.2% of the cases. In contrast,
images from the random image corpus are representative of either food/drinks, or people, or
other in 74.6% of cases combined, and showing food items or people in 67% of cases.

Statistical Comparison: We perform a statistical comparison of rankings between both
image corpora for ambiance and physical environment dimensions. We performed the
Wilcoxon signed-rank statistical test, which is a non-parametric test to compare the mean
ranks of two populations [220]. At the 99% confidence level, we obtained a p-value <

2.2× 10−16 for both dimensions, validating the hypothesis that manually selected images are
perceived by crowdworkers as better describing ambiance and physical environment.
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Figure 2.4 – Results for Majority Vote aggregation technique. Plot showing the histograms for
a) Ambiance, b) Physical Environment, and c) Image Category, for both Physical Environment
Image and Random Image corpus.

In summary, these results provide an answer to RQ2.1, validating that images with clear views
of the environment from Foursquare places are perceived as more suitable to characterize
indoor ambiance than other image categories, as they contain visual cues to gauge a place’s
ambiance and physical environment. Note that in this section we report the summary statistics
across all cities combined. Individual trends for each city are similar to the overall trends.
Section 2.7.3 investigates the use of automatic techniques to explore visual categories
representative of the studied places in connection to indoor ambiance.

2.5 Experiment 2: Crowdsourcing Place Ambiance

A priori, the ambiance of places is not known to zero-acquaintance observers. In this section,
we address the second question (RQ2.2) i.e., whether reliable estimates of ambiance can
be obtained using Foursquare images. Based on the physical environment image corpus of
900 images across 300 places, we design a second online crowdsourcing experiment and
asked crowdworkers to rate indoor ambiance along 13 different physical and psychological
dimensions where images served as stimuli to form place impressions.

2.5.1 Selection of Ambiance Categories

In order to select dimensions to characterize place ambiance, we base our methodology on
prior work [83] in which the authors proposed a rating instrument consisting of 41 dimen-
sions for ambiance characterization. In our work, we chose 13 dimensions for which the
corresponding intraclass correlations were amongst the highest as reported in [83]. Note
that many dimensions in [83] did not reach sufficient inter-annotator agreement. We used a
five-point Likert scale ranging from strongly disagree (1) to strongly agree (5) to judge the
ambiance labels, while [83] used a 3-point categorical scale (yes, maybe, no). In the rest of
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Chapter 2. Characterizing Impressions of Ambiance in Indoor Places

Label BCN NYC PAR SEA SG MXC Combined Graham [83]
Artsy 0.81 0.66 0.69 0.72 0.80 0.76 0.76 0.63
Bohemian 0.63 0.58 0.54 0.54 0.66 0.66 0.62 0.67
Conservative 0.67 0.77 0.78 0.67 0.70 0.85 0.76 0.77
Creepy 0.54 0.62 0.60 0.57 0.32 0.62 0.59 0.81
Dingy 0.74 0.81 0.59 0.69 0.67 0.81 0.74 0.74
Formal 0.76 0.93 0.93 0.89 0.89 0.90 0.91 0.82
Sophisticated 0.68 0.91 0.90 0.85 0.80 0.87 0.86 0.70
Loud 0.80 0.81 0.76 0.74 0.82 0.82 0.80 0.74
Old-fashioned 0.82 0.46 0.78 0.45 0.72 0.67 0.72 0.67
Off the beaten path 0.58 0.62 0.39 0.54 0.61 0.59 0.58 0.73
Romantic 0.38 0.84 0.86 0.80 0.83 0.86 0.82 0.63
Trendy 0.69 0.71 0.50 0.43 0.68 0.85 0.69 0.58
Up-scale 0.69 0.91 0.90 0.85 0.81 0.85 0.86 0.76

Table 2.3 – ICC(1, k) scores of 13 ambiance dimensions for each city. ICC(1, k) scores
obtained in [83] are also shown in the last column for comparison. Cells marked in italic are
not statistically significant at p < 0.01.

the chapter, we will use the terms dimensions and labels interchangeably in the context of
ambiance categories. The list of selected labels is shown in alphabetical order in Table 2.3.

2.5.2 Crowdsourcing Ambiance Impressions

To answer RQ2.2, crowdsourcing was employed to gather ambiance impressions. We used
MTurk with the same worker qualification requirements as the first experiment (Section 2.4.1).
In each HIT, the workers were asked to view three images corresponding to a place, and
then rate their personal impressions of the place ambiance based on what they saw. As part
of the annotation interface, we ensured that workers viewed images in high resolution (and
not just the image thumbnails). People were given a previous definition of each ambiance
category. Moreover, workers were not informed about the city under study to reduce potential
bias and stereotyping associated to the city identity. We collected 10 annotations for each
dimension across all 300 places, for a total of 3,000 responses.

2.5.3 Results

For the 3,000 available HITs in this experiment, a typical worker completed an average of
56 HITs, with one worker completing 270 HIT assignments. When compared to the first
experiment, similar results were obtained for HIT completion times (mean: 97 secs, median:
68 secs, max: 596 secs).

We turn our focus towards assessing the reliability of the annotations. We measure the
inter-annotator consensus by computing intraclass correlation (ICC) among ratings given by
the worker pool. Our annotation procedure requires every place to be judged by k annotators
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Label BCN MXC NYC PAR SEA SG Combined
Artsy 2.54 2.20 2.14 2.36 2.05 2.46 2.29
Bohemian 2.34 1.94 2.07 2.09 1.99 2.04 2.08
Conservative 2.04 2.36 2.33 2.17 2.37 2.28 2.26
Creepy 1.33 1.37 1.21 1.20 1.21 1.18 1.25
Dingy 1.68 1.61 1.60 1.49 1.57 1.49 1.57
Formal 1.60 2.13 2.14 2.01 1.95 1.62 1.91
Sophisticated 2.09 2.41 2.42 2.37 2.20 2.15 2.27
Loud 2.30 2.45 2.51 2.09 2.33 2.49 2.36
Old-fashioned 2.20 2.30 2.33 1.90 2.44 2.16 2.22
Off the beaten path 2.27 1.88 2.06 1.89 1.99 1.96 2.01
Romantic 1.77 2.09 1.95 1.92 1.86 1.80 1.90
Trendy 2.34 2.55 2.55 2.49 2.45 2.54 2.49
Up-scale 1.93 2.36 2.39 2.36 2.13 2.01 2.20

Table 2.4 – Means of annotation scores for each city and label.

randomly selected from a larger population of K workers (k = 10, while K is unknown as we
have no means to estimate the MTurk “Masters” worker population). Consequently, ICC(1, 1)

and ICC(1, k) values, which respectively stand for single and average ICC measures [189],
are computed for each ambiance dimension across all cities.

Table 2.3 reports the ICC(1, k) values for all cities. In addition to listing the individual scores
for each city and label, we also report the combined ICC(1, k) scores for each label for the
whole dataset, where we have combined all places across cities. We observe acceptable
inter-rater reliability for many labels, with all the scores being statistically significant (p-value
< 0.01), with the exception of creepy label in Singapore. Furthermore, we notice that the inter-
rater reliability for labels formal, sophisticated, romantic, and up-scale is typically high (above
0.8) for most of the cities. Using correlation analysis between labels (which is presented
in Section 2.6.2), we find that these four labels are collinear, with pairwise correlations
exceeding 0.8. It is interesting to note that label loud achieved high agreement from images
not showing any sound (0.8 combined score). On the other hand, labels creepy and off the
beaten path are the labels with the lowest ICC (below 0.6 for the combined score).

Importantly, these reliability scores are comparable to the ones obtained by Graham et al.
[83] (last column of Table 2.3), who conducted a similar study, but where the raters physically
visited every venue; while in our case online images act as a stimuli. To summarize, these
results provide an answer to RQ2.2 as they suggest that consistent impressions of place
ambiance can be formed based upon images contributed in social media, which further
suggests that there might be strong visual cues present for annotators to form accurate place
impressions. The investigation of automatically inferring ambiance impressions using visual
cues from images is presented in Section 2.7.
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Figure 2.5 – Barplots comparing the mean annotation scores across all cities for a) Artsy, b)
Conservative, c) Loud, and d) Sophisticated.

2.6 Characterizing Ambiance Impressions Across Cities

In this section, we present descriptive statistics and study differences of ambiance impres-
sions across six studied cities for each ambiance label.

2.6.1 Descriptive Statistics

Table 2.4 lists the descriptive statistics (mean annotation score) for each city and label. The
mean scores are derived as follows: first, for every place we compute the mean score for
each ambiance label, using the 10 annotations per label for each place; we then compute the
mean scores and standard deviations for each city and label using the 50 places for each city.
At the level of individual annotations, minimum and maximum values are 1 and 5 respectively
for all each city and label, showing that the full scale is used by the crowdworkers. The
mean value obtained for all labels and all cities is below 3, which indicates a trend towards
disagreement with the corresponding label. On the other hand, each city has venues that
score high for each dimension.

In all cities, except Barcelona, the mean score for trendy is the highest amongst all labels;
Barcelona places score the maximum on being artsy. Creepy scores the lowest (along with
the lowest variance) for all cities, which is not surprising given that all places are popular
places in their respective cities. From Table 2.4, we do not observe much variation in the
mean values across cities, but a few differences stand out. For instance, the mean differences
of the formal attribute between NYC and Barcelona, and the old fashioned attribute between
Paris and Seattle exceed 0.5, potentially suggesting differences in place perceptions. We
explore this further in Section 2.6.3. To visually aid the comparison between cities, we show
the barplots of the binned mean annotation scores for four the ambiance labels in Figure 2.5,
where finer differences can be observed across cities and relative ratings.
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Figure 2.6 – a) Plot showing the correlation matrix between ambiance dimensions. Black
rectangular borders indicate the four distinct clusters found in the correlation matrix. Cells
marked X are not statistically significant at p < 0.01. b) Plot showing the first two principal
components on aggregated place annotation scores across all cities.

2.6.2 Correlation and PCA Analysis

To look for linear relationship between ambiance labels, we perform correlation analysis using
the mean annotation scores for all ambiance labels. Figure 2.6a visualizes the correlation
matrix across all ambiance dimensions. We have used hierarchical clustering to re-order the
correlation matrix in order to reveal its underlying structure. We color code the matrix instead
of providing numerical scores to facilitate the discussion. We observe four distinct clusters.
Starting from top left in the first cluster, labels formal, sophisticated, romantic and up-scale
are highly collinear with pairwise correlations exceeding 0.8. The second cluster consists
of places which are either conservative or old-fashioned, and the third cluster consists of
off-beaten, bohemian or artsy places. The fourth cluster (bottom-right) lies on the opposite
spectrum with respect to cluster one, and consists of loud, dingy and creepy places. Each
of these four clusters clearly correspond to different ambiances. Furthermore, we can also
observe significant negative correlations between dimensions in cluster one and cluster four
and between clusters two and three.

To further explore the relationship between labels, we perform principal component analysis
(PCA) on the aggregated annotation scores for all 300 places. PCA is a statistical method to
linearly transform high dimensional data to a set of lower orthogonal dimensions that best
explains the variance in the data [157]. Figure 2.6b shows the first two principal components
which in total explain 66% of the variance in the annotation scores. The first component, which
accounts for 42% of variance, contains dimensions that resemble either the positive (cluster
1 in Figure 2.6a) or negative attributes (cluster 4 in Figure 2.6a) respectively, on the right and
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left side of X-axis. The second principal component explain 24% of variance and contain
labels associated with trendiness or artsy nature of places on the positive Y-axis, whereas the
negative Y-axis contains labels on the opposite spectrum (conservative, old fashioned), as
shown in Figure 2.6b. Overall, these findings corroborate the correlation analysis, potentially
suggest the presence of halo effect in indoor ambiance impressions [144], and have support
from research in environmental psychology [174].

2.6.3 Statistical Comparison

To better understand whether mean differences across cities for some of these ambiance
labels are statistically significant, we perform the Tukey’s honest significant difference (HSD)
test. Tukey’s HSD test is a statistical procedure for groups which compares all possible
pairs of mean values for each group, the null hypothesis being that the mean values being
compared are drawn from the same population [207]. We perform the HSD test to compute
pairwise comparisons of mean values between cities for each ambiance label, which result in
a total of 195 comparisons (15 city-wise pairs across 13 dimensions). Table 2.5 lists only the
significant results of the Tukey’s HSD test, where the differences in the observed means are
statistically significant at p-value < 0.01. Based on these statistics and commenting only on
results where differences is larger than 0.4, we observe that:

1. Popular places in Seattle are perceived as less artsy compared to places in Barcelona
(Figure 2.5);

2. Popular places in Paris are perceived as less old fashioned compared to New York City
and Seattle.

To validate the statistical significance of the Tukey’s HSD test, we perform a series of
pairwise Kolmogorov-Smirnov test (KS test) across all cities and labels. The KS test is a non-
parametric test to compare the empirical distributions of two samples, with the null hypothesis
being that the two samples are drawn from the same distribution [133]. We perform the KS
test to compare the cumulative distribution functions of each city-pair across each dimension
(195 comparisons). We report the p−values for the KS test in Table 2.5 for a statistical level
α = 0.01. Results from the KS test confirms most of the results from the Tukey’s HSD test. It
is worth noting that if we increase the significance level (α) to 0.05, we observe differences
across other city-pairs to be statistically significant as well.

To conclude this subsection, our study shows that most of the differences across cities for
each of the ambiance dimensions are not statistically significant. This result is interesting
in itself as it might suggest that popular places in social media in cosmopolitan cities have
many points in common. To our knowledge, this is a result that has not been reported before
in social media research, but that could have some support from literature that discusses
the “uniformization of taste” in globalized cities [50] and social media content. This said, any
possible interpretation would have to be further validated with more data and a combination
of further data analysis and ethnography.
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Label City Pair Mean Difference p−value ×10−3

Old Fashioned SEA–PAR +0.544 0.099 (0.007)
Artsy SEA–BCN −0.492 4.26 (6.18)

Old Fashioned PAR–NYC −0.434 4.09 (0.67)
Bohemian MEX–BCN −0.398 3.70 (39.68)

Off the beaten path MEX–BCN −0.386 1.43 (0.051)
Off the beaten path PAR–BCN −0.376 2.11 (0.67)

Table 2.5 – Tukey’s HSD and KS test statistics. p−values obtained from KS test are shown in
brackets in the last column. Values marked in italic are not statistically significant at p < 0.01.

2.7 Automatic Inference of Indoor Ambiance Perception

In Section 2.5, reliable estimates of ambiance were obtained for several of the dimensions,
suggesting the presence of visual cues that allow to create such impressions. In this section,
we address RQ2.3 to examine the feasibility of automatically inferring human ambiance
impressions using visual cues from images. To automatically infer human perception of
outdoor spaces, recent works have used a variety of low-level image features including Color
Histogram, GIST, HOG, LBP, SIFT and generic deep convolutional activation features [142,
151, 159]. For indoor places, we build upon these works and prior work in object classification
and scene understanding using deep learning techniques [173, 165, 232].

For automatic inference, we used the 50K image and physical environment image corpora
which were described in detail in Section 2.3.2. Due to changes in the Foursquare API [2],
we had API access to only 280 places (as opposed to 300 places examined so far) resulting
in a total of 45,848 (out of 50,023) images for the 50K image corpus. On the other hand,
physical environment image contains 900 manually selected images for all 300 places. All
the subsequent analysis is based on these image corpora.

2.7.1 Visual Feature Extraction and Aggregation

Building upon recent work in the literature, we extracted the following set of low-level and
deep visual features as described below:

1. Color Histogram: We computed global color histogram in RGB space. Each channel was
quantized into 8-bins, resulting in 83 possible color combinations and a 512-dimensional
feature vector for color descriptor.

2. GIST: This descriptor captures the dominant spatial structure of a scene from a set
of perceptual dimensions (e.g., naturalness, openness, roughness, expansion, rugged-
ness) [150]. We use the standard setting of this descriptor, resulting in a 512-dimensional
vector.

3. Gradient (HOG): Histogram of oriented gradients (HOG) computes occurrences of gra-
dient orientations in localized region of an image [104]. We apply the pyramid HOG
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implementation, where images are first represented in pyramid hierarchies, then the HOG
descriptor is computed on each level, and finally the final descriptor is the concatenation
of vectors across all levels [33]. We compute the pyramid HOG descriptor for levels l = 0

to l = 3. Images are divided into 22∗l regions, and a 8-bin histogram is computed within
each region, which results in a 680-dimensional feature vector.

4. Texture (LBP): Texture captures the spatial arrangement of color and intensities in an
image. We apply the local binary pattern (LBP) descriptor [146], which encodes local
texture information (such as spots, edges, and corners) by comparing each pixel with its
neighborhood pixels, resulting in a 256-dimensional vector.

5. CNN: The availability of large-scale image datasets [173] and the performance of deep
neural networks for object classification and scene understanding [165, 232], have opened
opportunities to explore these features for our problem. We have used the features
extracted using a pre-trained convolutional neural networks model (CNNs) using the Caffe
framework [101]. Specifically, we used the GoogLeNet CNN [194] trained on ImageNet
data. ImageNet data contains over 14 million images across 1,000 categories. To extract
the CNN descriptors, for each image, we obtained the final layer class probabilities across
all 1,000 ImageNet classes, resulting in a 1000-dimensional feature vector.

We chose to use a pre-trained model trained on a large and diverse data (ImageNet in our
case), as opposed to training a CNN model on our data from scratch for two reasons. First,
it has been shown that features extracted using pre-trained CNN models can potentially
provide discriminative features for multiple visual recognition tasks [62, 165]. ImageNet
categories are well suited for our problem as they are descriptive of visual cues typically
present in restaurants, bars, etc. (refer to Figure 2.3, Figure 2.7, and Figure 2.8). Second,
using a pre-trained model avoids the need to train, adapt or fine-tune a CNN on our
dataset, which can be computationally expensive and resource intensive.

Feature Aggregation: As previously stated in Section 2.5.2, ambiance ratings were given
for each place and each place had an average of over 160 images. We extracted all the
above described visual features for each image. Then, in order to obtain a representative
feature vector for each place, we apply an early feature fusion approach by computing the
mean feature vectors across all images describing the same place, for each feature set.

2.7.2 Inference Method and Evaluation

We formulate the inference of indoor ambiance perception as a regression problem where our
objective is to predict aggregated human impressions using visual cues extracted from images.
For regression, we used Random Forest which is a tree-based supervised learning method
that guards against overfitting to the training data [36]. For model validation, we performed m

repetitions of a k-fold stratified cross-validation approach. For all experiments, we set m = 10,
and k = 10. After the model run and validation, we computed the mean of the evaluation
metric across mk runs as the model output. To evaluate the performance of different feature
sets, we used two standard measures: the root-mean-square error (RMSE) and coefficient of
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2.7. Automatic Inference of Indoor Ambiance Perception

(a) Restaurant (b) Stage

(c) Library (d) Grocery Store

Figure 2.7 – Sample of random images from the 50K image corpus which were automatically
classified as (a) Restaurants/Eating Place, (b) Stage, (c) Library, and (d) Grocery Store. For
each class, from top to bottom, images are sorted in decreasing order of ImageNet dominant
class probability. Best viewed in color.

determination (R2) between the perceived ground-truth (i.e., aggregated MTurkers judgments)
and predicted ambiance scores for each label and feature set. Furthermore, we also examined
the variable importance measures from random forests to understand the relative importance
of specific visual cues for each dimension (see Section 2.7.4). To understand and compare
the predictive performance of each feature set, we choose the baseline model to be the mean
annotated score as the predicted value for each label.

2.7.3 Visual Categories

We begin our analysis by examining the distribution of the most likely ImageNet class
assigned to each image. As stated before, the last layer of the GoogLeNet CNN model
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Figure 2.8 – Histogram of Top 10 recognized ImageNet classes for a) 50K Image Corpus,
and b) Physical Environment Image Corpus.

outputs the probability distribution of the image across all 1,000 ImageNet classes. Given
this probability distribution, we chose the ImageNet class with the highest probability as
the dominant class for each image. In Figure 2.8, we show the distribution of the top-10
dominant classes for both image corpora. For the 50K image corpus, most of the top
ten dominant categories are associated with either food (e.g., plate, meatloaf, ice-cream,
chocolate) or drinks (e.g., beer glass, espresso, eggnog), as shown in Figure 2.8a. These
results corroborate previous findings reported in Section 2.4.2, where we found that randomly
sampled images from Foursquare showed food-related items in close to 50% of cases
(Figure 2.4c). Furthermore, these findings are expected given that all selected places in
the study are either restaurants, bars, cafes, or nightclubs (Section 2.3.1). To elucidate the
recognized classes visually, Figure 2.7 shows a sample of images selected randomly across
four of the top-10 ImageNet categories from the 50K image corpus.

While analyzing the top-10 class distribution for the physical environment image corpus, we
observe that most of the dominant classes relate to the physical attributes of the indoor
environment (e.g., stage, library, dining table, bakery, grocery store) and do not contain
food or drinks categories, which is in contrast with the class distribution for the 50K image
corpus (Figure 2.8b). These findings are not surprising given that all images in this corpus
were manually selected to show clear views of the indoor scene (Section 2.3.2). Some of
the automatically recognized categories in physical environment image corpus may seem
intriguing at first glance (e.g., library, grocery store, or barbershop), but after manually
browsing the images belonging to these categories, we found that these classes describe
various attributes of the indoor environment and are misclassified yet makes sense visually.
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Baseline
50K

Color
50K

GIST
50K

HOG
50K

LBP
50K

LLC
50K

CNN-Phy-
Env

CNN-50K

RMSE R2 R2 R2 R2 R2 R2 RMSE R2 RMSE

Artsy 0.69 0.01 0.02 0.04 0.05 0.05 0.12 0.66 0.22 0.63
Bohemian 0.55 0.08 0.05 0.11 0.09 0.14 0.08 0.54 0.24 0.50
Conservative 0.67 0.21 0.20 0.19 0.11 0.25 0.24 0.60 0.30 0.57
Creepy 0.29 0.05 0.04 0.01 0.00 0.04 0.06 0.29 0.14 0.28
Dingy 0.50 0.04 0.02 0.01 0.05 0.05 0.05 0.50 0.17 0.47
Formal 0.82 0.10 0.07 0.03 0.10 0.14 0.28 0.72 0.37 0.70
Loud 0.73 0.33 0.29 0.26 0.31 0.42 0.53 0.51 0.52 0.51
Off-beaten 0.61 0.05 0.01 0.01 0.00 0.01 0.15 0.47 0.17 0.47
Old-fashioned 0.50 0.16 0.11 0.10 0.08 0.16 0.24 0.54 0.22 0.55
Romantic 0.67 0.10 0.15 0.03 0.08 0.17 0.36 0.57 0.39 0.56
Sophisticated 0.79 0.11 0.10 0.04 0.10 0.17 0.26 0.72 0.38 0.67
Trendy 0.64 0.19 0.1 0.12 0.15 0.21 0.17 0.61 0.32 0.54
Up-scale 0.78 0.14 0.11 0.03 0.13 0.19 0.29 0.69 0.40 0.65

Table 2.6 – Inference results for 13 ambiance dimensions for all feature sets, using R2 and
RMSE as evaluation measures. Cells marked in bold correspond to the best R2 result
obtained for each dimension across all feature sets. LLC-50K refers to the model with all
low-level image features combined.

For instance, most of the images belonging to “library” class contain images showing wall
shelves typically found in cafes and bars (Figure 2.7c); while some of the “grocery store”
images contain transparent window shelves displaying food or drink items (Figure 2.7d).

Further, we observe that the top class in both image corpora is “restaurant/eating place”. For
the 50K and physical environment image corpora, this class respectively contains 8% and
65% of total images. At first, it looks like a generic class but after manually browsing these
images (Figure 2.7a), we found that most of the images represent the physical environment
well, providing clear and unoccluded views of the indoor space. These findings point towards
the feasibility to automate the selection of images for indoor ambiance characterization, and
avoiding the need to manually select images, as was carried out for the physical environment
image corpus (Section 2.4). We previously reported that human observers preferred views of
the physical environment of places to make impressions of ambiance (Figure 2.4 described
in Section 2.4.2). However, as we show in the following subsection, other image categories
are also exploited by the learning algorithm.

While the plots shown in Figure 2.8 are focused on illustrating the dominant visual class,
many other classes are also informative of ambiance for a given image (e.g., a photo of
someone eating an ice cream in a restaurant or drinking an espresso in a coffee shop are
not likely to be generated in a club). This is the reason why we use the 1000-dimensional
probability vector to infer the ambiance dimensions. Overall, these findings point towards
the nature of images shared on Foursquare, which to our knowledge has not been analyzed
before at such a scale from the perspective of ambiance.
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(a) Dining Table (b) Table Lamp (c) Suits (d) Altar

Figure 2.9 – Sample of images from the 50K image corpus which are recognized to belong
to the visual category of a) Dining Table, b) Table Lamp, c) Suits of clothes, and d) Altar. Best
viewed in color.

2.7.4 Predicting Ambiance Impressions

In this section, we evaluate the performance of both low-level image and deep CNN features
to automatically infer human impressions of place ambiance. Table 2.6 reports the R2 values
between perceived ground-truth and inferred ambiance scores for each label and feature
set. Note that Table 2.6 reports the results across all cities combined. As previously stated
in Section 2.7.2, we assigned the mean annotated scores as the predicted value to be the
baseline model for each label. For the baseline model, we only report the RMSE values
as it has a R2 of 0. For the model learned using CNN features, we report both the R2 and
RMSE values. All the low-level visual features are computed on the 50K image corpus,
while the CNN features are computed for both image corpora. A model having a better
feature representation to estimate ambiance impressions would result in higher R2 and lower
RMSE values, when compared to other models.

Overall, the results indicate that a maximum R2 of 0.53 can be obtained by the CNN-based
regressor (for the loud dimension), while low R2 values are obtained for other dimensions
(creepy, dingy, off the beaten path). For seven out of 13 dimensions, the obtained R2

exceeds 0.30. On the 50K image corpus, CNN features consistently outperform individual
and combinations of several low-level image features (including Color Histogram, GIST,
HOG, and LBP) for all labels, which is consistent with the results reported in the vision and
multimedia literature [165]. The results highlight the suitability of pre-trained CNN models to
infer perceptual judgments in indoor places; our finding complements the works in recent
literature adopting deep learning to infer high-level perception of outdoor scenes [151, 159].

The performance of low-level features indicates that all feature sets perform the best for
the loud feature (Table 2.6). Amongst the low-level features, color features achieve the
highest R2 for most of the ambiance dimensions, including trendy and up-scale places, which
corroborates results reported in [166], that attempted to infer ambiance for a 50-place dataset
from profile pictures of Foursquare users rather than using photos of the venues. HOG and
GIST also perform moderately for the conservative label.

36



2.7. Automatic Inference of Indoor Ambiance Perception

While examining individual labels, the loud label achieves the highest performance with
R2 ≥ 0.26 for all feature sets, suggesting visual patterns such as texture cues associated
with the perception of loudness e.g., presence of crowd, elevate stage, etc. (Figure 2.7b).
On the other hand, creepy achieves the lowest predictive performance (R2 ≤ 0.14). The low
predictive power for creepy can be attributed to a combination of lower inter-rater agreement
and lowest mean scores out of all labels (Table 2.3 and Table 2.4). Overall, positively phrased
(romantic, up-scale, sophisticated) and negatively phrased labels (creepy, dingy), which
likely correspond to different ambiances, achieve in each case similar R2 values.

Moreover, the romantic label achieves promising prediction performance (R2 = 0.39) with
CNN features extracted using the 50K image corpus, and relatively poor performance with
low-level image features. We further analyze the relative importance of visual categories for
different labels using the variable importance measures taken from random forests [36]. Using
these measures, we find that “dining table” and “table lamp” are the top two discriminative
visual categories for romantic places (see Figure 2.9a and 2.9b); “suit of clothes” and “red
wine” for places perceived as upscale and formal (see Figure 2.9c); and “altar” for artsy
places (see Figure 2.9d).

Comparing CNN-Phy-Env and CNN-50K: While evaluating the performance of deep fea-
tures between the 50K and physical environment image corpora, we observe that the
CNN-50K model outperformed the CNN-Phy-Env model in terms of higher R2 and lower
RMSE values for most of the dimensions except the loud and old-fashioned dimensions. We
found that for some labels (e.g., loud, romantic, old-fashioned, off the beaten path), R2 values
are comparable, while for some dimensions (e.g., artsy, bohemian, trendy), the difference
between R2 values across image corpora is relatively high. Note that the ambiance ratings
were obtained using just three manually selected images (Section 2.5.2). These findings
suggest that it is difficult to automatically represent some dimensions with just three images
(compared to the human ability to infer and generalize from very few examples), and that the
availability of more images provides additional informative visual cues to characterize some
of these labels at high level.

To further investigate the effect of the amount and type of images on the predictive perfor-
mance, we conducted a series of experiments. How can we train machines to identify image
types which can describe the atmosphere of indoor places? From the 50k image corpus,
we selected all images belonging to the top k dominant classes of the physical environment
image corpus. For the experimental setup, we varied the parameter k ∈ {1, 10, 20, 50} e.g.,
for k = 10, we first computed the top 10 dominant visual classes of physical environment
image corpus and then selected all images from the 50K images corpus which were classified
as belonging to either of these top 10 categories. To detect the dominant visual class for each
image, we followed the methodology outlined in Section 2.7.3. After image selection, we ran
the regression experiments for each k using the CNN-based features. Table 2.7 reports the
R2 values and the number of images (N ) selected for each k. Note that due to the long-tail
characteristics of the dominant class distribution (Figure 2.8), the number of images (N ) do
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Top-1
N=3,811

Top-10
N=7,605

Top-20
N=9,029

Top-50
N=11,306

All
N=45,848

Artsy 0.11 (0.09) 0.18 (0.11) 0.17 (0.14) 0.20 (0.12) 0.22
Bohemian 0.12 (0.08) 0.18 (0.08) 0.21 (0.16) 0.23 (0.11) 0.24
Conservative 0.24 (0.20) 0.31 (0.23) 0.29 (0.21) 0.30 (0.26) 0.30
Creepy 0.07 (0.06) 0.06 (0.08) 0.11 (0.13) 0.10 (0.08) 0.14
Dingy 0.09 (0.06) 0.11 (0.10) 0.11 (0.09) 0.15 (0.10) 0.17
Formal 0.25 (0.16) 0.30 (0.21) 0.32 (0.29) 0.27 (0.30) 0.37
Loud 0.38 (0.32) 0.54 (0.37) 0.56 (0.43) 0.56 (0.37) 0.52
Off-beaten 0.10 (0.05) 0.12 (0.07) 0.16 (0.12) 0.18 (0.08) 0.17
Old-fashioned 0.17 (0.16) 0.24 (0.15) 0.26 (0.18) 0.23 (0.18) 0.22
Romantic 0.27 (0.16) 0.37 (0.21) 0.38 (0.33) 0.37 (0.27) 0.39
Sophisticated 0.25 (0.12) 0.32 (0.20) 0.33 (0.32) 0.32 (0.30) 0.38
Trendy 0.13 (0.16) 0.27 (0.22) 0.29 (0.26) 0.29 (0.23) 0.32
Upscale 0.27 (0.15) 0.32 (0.22) 0.33 (0.32) 0.31 (0.29) 0.40

Table 2.7 – Inference results obtained when varying the amount and type of images of the
50k image corpus for all studied dimensions.

not increase linearly with increasing k. For comparison, the last column of Table 2.7 lists the
results for the entire 50K image corpus, which is identical to the one reported in Table 2.6.
Using these statistics, we can make the following observations:

� Overall, as k increases, R2 also increases for most of the labels, which is expected due to
the availability of more images (N ). We report the results for four different values of k but
similar trends were observed for other values.

� When comparing the performance of different k, comparable results were obtained for
k = 50 and k = 20, and competitive results for k = 10 relative to the model trained on
the entire corpus. With k = 1, moderate results are obtained for conservative, loud, and
old-fashioned. Note that k = 1 corresponds to “restaurant/eating place” class, which was
the dominant class for both image corpora (see Figure 2.8 and Figure 2.7a). Most of the
images in this category represent the physical environment well, which might likely suggest
the competitive performance for some of the ambiance labels.

� To diagnose the role of image types, Table 2.7 also shows the R2 values (in brackets)
when the regression experiment was run with a random selection of images not belonging
to the the top-k classes for each k. In other words, N was held constant but random image
selection was performed. For all k, we consistently observe higher R2 using images from
top k classes relative to random image selection.

In summary, we have presented results on the effect of the amount of data and image
types used for learning ambiance. These findings potentially point towards the feasibility to
automate the selection of images for indoor ambiance characterization, and avoiding the
need to manually select images, as was carried out for the physical environment image
corpus (Section 2.4).
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2.8. Conclusion

Overall, the regression results suggest the feasibility to automatically infer place ambiance
with promising prediction performance for some of the dimensions. To the best of our
knowledge, our work reports the first results on how images collected from popular places
on Foursquare can be used to automatically infer indoor ambiance impressions from deep
features. Most of the research on prediction of perceptual dimensions have focused on
outdoor places, so at present we can not compare our results with prior work in the literature.

2.8 Conclusion

In this chapter, we presented a study on perception and inference of psychological dimensions
of indoor places from social media content under the construct of ambiance. Using about
50,000 Foursquare images collected from 300 popular indoor places across six cities, we first
assessed the suitability of social media images as data source to convey place ambiance,
and found that images with clear views of the environment were perceived as being more
informative of ambiance than other image categories. Second, we demonstrated that reliable
estimates of ambiance can be obtained for several dimensions using Foursquare images,
suggesting the presence of visual cues to form place impressions. We further found that
most aggregated impressions of places were similar across cities. Third, we demonstrated
the feasibility to automatically infer ambiance impressions using visual cues extracted from
images. Using pre-trained convolutional neural network models, we extracted visual features
and obtained a maximum R2 of 0.53 and lower root-mean-squared errors for all dimensions
relative to the baseline method.

The applications derived from this research are manifold. On the user side, this could include
hyper-local, ambiance-driven place search and discovery in online platforms, where users
could search for places by its ambiance e.g., a formal place for a family dinner, a romantic
place for a date, or a trendy place for a night out. This could complement existing sources of
information like place reviews and user comments. As a second application domain, on the
side of venue owners, this could include data-driven tools to deepen the understanding of the
impressions that their venues evoke in potential and real customers, and recommendations
about improving the appearance and architecture style of their venues.
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3 Characterizing Urban Perception in
Outdoor Places

3.1 Introduction

COMMUNITY awareness and action on urban problems are long-standing practices in
developing countries [67]. The ability to reflect and act upon concerns defined by a

community’s interests and values for its own benefit takes on special relevance in Latin
America due to the local governments’ inability to realize the full potential of both human and
economic resources and a historically slow (when not absent) response by the authorities.
Civic engagement and action with the local environment have educational, social, and
economic aspects [41].

In this context, mobile and social technologies are providing new opportunities to document,
characterize, map, and ultimately address urban problems in developing cities. Mobile crowd-
sensing efforts for urban mapping and surveying conducted by citizens equipped with mobile
phones (who generate reports, take pictures, or create maps) are emerging, often concen-
trated in informal settlements and other problematic regions [171, 7, 14, 178]. Other recent
approaches are studying cities in the developed world, and use custom-built crowdsourcing
platforms to establish the feasibility of obtaining reliable estimates of urban impressions of
physical and psychological constructs like safety, beauty, and quietness, elicited by images
of the city taken at street level [176]. The possibility of obtaining crowdsourced perceptions
of the socio-urban image of a city by non-residents is valuable for developing cities, specially
when the cities have large flows of visitors (tourists, students or business people), as it could
help to understand the choices that non-locals make regarding the use of the public space,
or to identify misperceptions due to the lack of local context. In this chapter, we present a
study on computationally characterizing urban perception of outdoor environments of three
cities in central Mexico.

In research examining urban impressions in developed cities using online crowdsourcing,
judgments have been elicited using images obtained from Google Street View (GSV) [176,
162, 87]. Even though GSV provides a scalable and automated way to collect images, it
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suffers from two limitations. First, the GSV image database is not exhaustive in spatial
coverage in developing countries due to accessibility and safety issues. For instance, due to
the way Google collects street views (via cameras mounted on top of a vehicle), GSV does
not always contains images of narrow streets and winding alleys. For instance, we found
in a small sample of images taken in this type of area that more than half of GSV images
were either unavailable or erroneous within a mid-size touristic city in Mexico [171]. Second,
GSV images fail to capture the temporal aspects of a city: only static and daytime views are
available, and it can take years before images are updated. This does not facilitate studying
the effect of time of the day in the perception of the urban environment, which is a key
aspect as discussed in urban studies literature [155, 128]. In contrast, mobile crowdsensing
represents an opportunistic, just-in-time way of documenting urban changes over time.

Outdoor spaces contain architectural elements that are visually and perceptually different
relative to indoor places. Consequently, the study of outdoor places involves the collection
of visual data which can describe these elements in the built environment. In this chapter,
we present the SenseCityVity project which integrated: (1) mobile crowdsensing involving a
local youth community to collect first-person perspective images depicting urban issues that
were defined by the community itself, and (2) online crowdsourcing using MTurk, where US
crowd-workers contributed their impressions on photos of the urban environment along twelve
physical and psychological dimensions. The SenseCityVity project was a joint collaboration
with Prof. Salvador Ruiz-Correa (IPICYT, Mexico).

We address the following research questions in this chapter:

RQ3.1: How can a population of young people be engaged through mobile crowdsensing to
collect images of urban environments? (RQ3.1 maps to thesis’s RQ1)

RQ3.2: Can human observers reliably assess the urban perception of outdoor environments
using images? If so, what physical and psychological dimensions of urban perception
can be reliably assessed? (RQ3.2 maps to thesis’s RQ2)

RQ3.3: Can crowdsourced judgments of urban perception be automatically inferred using
low-level image and deep learning features extracted from images? (RQ3.3 maps to
thesis’s RQ3)

In this chapter, we make the following contributions:

1. A participatory mobile crowdsensing framework involving over 70 local students that
resulted in a data set of 7,000 geo-localized images collected in three cities in Guanajuato
state (Guanajuato, Leon, and Silao), each one characterized by its distinct geography,
economic activity, and population. Guanajuato is a touristic city, Leon is a business and
industrial hub, and Silao is an agricultural town. The images contain outdoor scenes and
views of each city’s built environment, including touristic, historical, and business sites,
residential neighborhoods, and areas with narrow streets and alleys.
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2. An online crowdsourcing study on MTurk to gather impressions of crowd-workers along 12
physical and psychological labels including (dangerous, dirty, interesting, happy, polluted,
etc.), based on 1,200 images (400 images per city). The studied dimensions include
and extend those studied in recent literature. Statistical analyses on 144,000 individual
judgments show that the outdoor scenes in the investigated cities can be reliably assessed
by observers of crowdsourced images with respect to most urban dimensions.

3. A cross-city statistical analysis shows that outdoor urban places in Guanajuato city are
perceived as more quiet, picturesque and interesting compared to places in Leon and
Silao. In contrast, Silao is perceived to have higher accessibility than Guanajuato, but
lower accessibility than Leon. Overall, Guanajuato has the highest mean scores amongst
all three cities on most positive labels and lowest scores on negative labels. This finding
is relevant as it could inform both citizens and authorities about significantly different
perceptions that could lead to action.

4. As a way of showing the additional value of mobile crowdsensing with respect to GSV-type
surveying, we present a study to compare the perceptions of urban environments across
different times of the day using a small sample of 100 images and 12,000 individual
MTurk judgments. The results show that places at evenings were perceived as less happy,
pleasant and preserved, in comparison with mornings. We did not observe statistically
significant differences in perception of dangerous between mornings and evenings for the
studied places.

5. Using a similar methodology that was adopted for indoor places, we automatically inferred
human perceptions of outdoor places using a variety of low-level image, and generic
deep learning features. CNN features consistently outperformed all the individual low-level
image features for the 12 studied dimensions. We obtained a maximum R2 of 0.49 using
CNN features; for 9 out of 12 labels, the obtained R2 values exceeded 0.44.

In this chapter, we have focused on the empirical analysis and automatic characterization
of urban perception for outdoor places. Going beyond just the collection and analysis of
images, the SenseCityVity project addresses the need for local communities to become
more aware of the realities of their urban environment and take collective action towards
addressing some of the urban civic issues in their respective local communities. In addition to
geo-localized images, the project also resulted in a collection of videos of urban scenes and
video-recorded interviews of locals which was subsequently used for community reflection
and artistic creation as described here [172].

The chapter is organized as follows. We begin with a review of related work in Section 3.2.
Section 3.3 describes the data collection framework, including the criteria to select the studied
cities in Mexico, the definition and selection of urban awareness dimensions, and the mobile
crowdsensing design to collect two image corpora. The development of the mobile phone
application, recruitment of participants and collection of raw image data was carried out by a
team led by Salvador Ruiz-Correa. Section 3.4 outlines the design of the online crowdsourcing
experiment on MTurk to gather impressions of crowdworkers along 12 labels. Using the
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MTurk annotations, Section 3.5 presents the descriptive statistics, provides statistical results
on cross-city comparison, and study differences in urban perceptions across different times
of the day. Section 3.6 proposes a machine learning methodology to automatically infer urban
perception of outdoor environments using low-level image and generic deep learning features.
Finally, Section 3.7 concludes with a summary of our findings, and the potential impact of our
work. This chapter some of the research that has been published here [186, 172].

3.2 Related Work

In this section, we begin by reviewing the related work on existing systems for reporting civic
issues. Next, we discuss studies describing the crowdsourced and automatic perception of
outdoor places in the field of architecture, urban computing and computer vision. Finally, we
review research that relates to the temporal effects on urban perception.

3.2.1 Systems for Reporting Civic Issues

There are various existing systems that allow citizens to report urban issues. One in the
developed world is FixMyStreet (FMS) [16], launched in the UK in 2007 [112], and later
implemented in other countries (mainly in Europe) with varying degrees of success. FMS
allows people to share and map text reports about problems; the system allows uploading
images as an optional feature. SeeClickFix [17], was launched in the US in 2008. These
systems have not generally been adopted in Latin America, among other reasons, because
they require an authority committed to take ownership for the system and respond timely
to the reports. A recent analysis of six years of FMS reports concluded that only 11%
of them contain images, but also that image uploading was a significant indicator of the
actual response of the authorities to the reports and the commitment of reporters to keep
contributing [190]. These findings support our choice of mediating participation via geo-
localized photo taking. On the other hand, in contrast to these systems, which by design
promote individual participation [29], our work is community-oriented and puts community
interests and action at the center.

In this sense, our work is closer to a number of open mapping initiatives in developing regions.
Notable examples include the Kibera slum in Kenya [7], and various systems built around
Ushahidi [18]. In Latin America, other examples include the work done to map informal
settlements in Buenos Aires, Argentina [14], and in Rio de Janeiro, Brazil [222]. Another
mapping effort is led in India by Humara Bachpan [178], an organization that conducts
civic campaigns centered on “child clubs” to create maps of marginalized neighborhoods
in India. Two differences between these initiatives and our work are (1) the engagement of
communities of youth in both data collection and data appropriation exercises; and (2) the
development of a methodology to produce crowdsourced assessments of the conditions of
photographed urban places.
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Recently, social media channels are being used to generate reports of urban-related con-
cerns, sometimes containing photos. In Mexico, Twitter has been notably used for real-time,
eyewitness reports of insecurity and drug-related crimes in towns and cities [139]. This is
an attractive alternative, but it is limited in terms of representativeness and spatio-temporal
coverage [206].

3.2.2 Crowdsourced Perception of Outdoor Places

In the field of architecture and urban planning, many of the studies about visual perceptions
of built environments have used qualitative research methods including interviews, visual
preference surveys [179, 155] and observation of the built environment using either actual or
simulated images [126]. However, most of these studies are either conducted in controlled
laboratory settings or are based on questionnaires, which may have limitations with respect
to scalability, ecological validity, or recall biases.

With the popularity of social media and mobile phones, together with an increased use of
online crowdsourcing platforms to obtain judgments from diverse populations, scholars have
started to explore crowdsourcing as a medium to obtain estimates of urban perception for both
indoor [83] (including our work on indoor places in Chapter 2) and outdoor environments [176,
171, 162]. For outdoor environments, gathering perceptions typically involve the use of
Google Street View (GSV) [176, 162, 23]; while GSV is widely available in the developed
world, it is not so for the developing world [171]. In [176], the authors conducted a study to
measure the perception of outdoor urban scenes on safety, class and uniqueness, based
on geo-tagged images obtained via GSV in four developed cities (in the US and Austria).
In a similar study on urban perception, judgments were collected to examine visual cues
that could correlate outdoor places in London with three dimensions (beauty, quietness, and
happiness) [162].

3.2.3 Automatic Inference of Outdoor Perception

To automatically infer human perception of places, most of the recent work have focused
on outdoor places. Recent works have used a variety of low-level image features including
Color, GIST, HOG, LBP, SIFT and more recently, generic deep convolutional activation
features. Using these features on geo-tagged images from GSV, high-level attributes for
outdoor scenes are inferred in two US cities [142, 151]. Using the same dataset, in [159],
a CNN architecture is proposed to predict and discover mid-level visual patterns which
correlate with the perceived safety of an outdoor scene. Using images from Google Street
View, in [61], authors proposed a discriminative clustering methodology to identify visual
elements (e.g. windows, balconies, and street signs) unique to the cities of Paris and London
(HOG and Color features). Building upon this work, authors in [22], proposed a scalable
visual processing framework to identify the relationships between the visual appearance
of a city and its non-visual attributes (e.g. crime statistics, housing prices, etc.). In another
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study to identify attributes specific to a city [233], authors conducted an analysis of 2 million
geo-tagged Panoramio images from 21 cities to discover salient visual features of outdoor
scenes.

3.2.4 Temporal Effects on Urban Perception

The works described in the previous subsections use temporally fixed image stimuli to obtain
perceptions. However, cities are dynamic and the time of day might play an important role with
respect to urban perception. In the field of urban planning, there has been significant interest
to quantify perceived safety and fear of crime during night-time [155, 128, 86]. Using on-street
pedestrian surveys, the authors found that 90% of the respondents felt that the improvements
in street lighting lead to a reduction in the perceived fear of crime, an increased sense of
personal safety, and increased pedestrian use after dark [155]. No image stimuli were used
in this study. Another study compared 16 images of outdoor scenes taken during day-time
and night-time to test the effect of visibility on making a place feel safe [128]. Respondents
were undergraduate psychology students who were asked to rate these scenes. The authors
found statistically significant differences on ratings on perceived safety during different times
of the day. A similar study was conducted using 20 photographs of night-time locations from
a university campus [86]. In our work, we study not only the role of night-time or dark scenes
on perceived safety, but also other psychological dimensions e.g., quietness, happy, etc.

In contrast with the previous works, we followed a mobile crowdsensing approach to collect
images of outdoor scenes and document them statically and dynamically over time. In
this chapter, we define and study a large number of urban constructs, and examine how
perceptions of urban environments vary across different times of the day. In this chapter, we
have focused on the related work on outdoor environments. To review the literature on the
visual perception of indoor places, please refer to Section 2.2.3 of Chapter 2.

3.3 Data Collection Framework

In this section, we describe the SenseCityVity data collection framework, including the criteria
to select the studied cities in Mexico, the definition and selection of perceptual dimensions,
and the mobile crowdsensing design to collect two image corpora.

3.3.1 SenseCityVity Project Design

The image corpus used in our study was collected with an approach aimed at exploring urban
environments of cities in Latin America, with an initial emphasis in Mexico. The approach
was developed in the context of a larger research initiative, SenseCityVity, which aims at
addressing specific urban issues by young volunteers through the use of collective action,
and mobile crowdsensing. SenseCityVity emphasizes that empowering citizens through
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technological means that increase awareness and deepen the understanding of socio-
urban concerns is of crucial importance. This is so because the state and evolution of their
cities strongly depend on the capacity of their populations and the existence of institutional
policies to create the structural conditions for sustainable development. By development,
we understand the “process by which people individually and collectively enhance their
capacities to improve their lives according to their values and interests” [41].

SenseCityVity followed a transdisciplinary approach to explore the urban environment involv-
ing computer scientists and other experts on one side, and social actors on the other. Our
team included specialists in computer science, social media, psychology, and visual arts,
who conducted the technical and social design, as well as the development and execution
of experiments on mobile sensing and crowdsourcing jointly with student volunteers, who
were recruited from a local technical high school. Participating students were altruistically
motivated and eager to contribute their knowledge and experiences, and to co-design all
project activities to better understand the urban environment of their city.

3.3.2 Selection of Cities

To collect images of outdoor urban spaces, we grounded our work in three small to mid-size
cities in central Mexico: Guanajuato (pop. 170,000), Leon (pop. 1.5 million) and Silao (pop.
147,000). Guanajuato is a touristic city in central Mexico, and the capital of a state of the same
name. Guanajuato occupies a valley, forming a complex network of narrow roads, pedestrian
alleys, and stairways running uphill. Most pedestrian alleys have no car access, and other
major roads run underground. Guanajuato is a historical city and a UNESCO world heritage
site, with a vibrant tourism industry that is centred around the city’s historical downtown area
(dating from the Spanish colonial times) and several large art festivals. Guanajuato city often
appears as one of top destination to visit in Mexico [168, 47].

The city of Leon is a business and industrial hub in the state of Guanajuato that drives a
large part of the economical activity of the state. Leon has a strong leather industry, offering
products both to the national and international markets. Leon also receives a large number
of tourists. In contrast, Silao is a local hub of agricultural and industrial activity in the region,
with a wide variety of farm crops, dairy packaging plants and a major car assembly plant.
Due to its relatively larger size, some areas in Leon are quite inaccessible either due to
safety concerns or because of the presence of large walls which typically surround up-scale
neighborhoods.

The three cities reflect a common situation in Latin American urbanization, which produces
complex environments with historical sites, suburban sprawl, affluent neighborhoods, and
informal settlements. For the three cities, images were captured from areas that included
different neighborhoods reflecting the characteristics of each city, as well as touristic and
historical sites. Figure 3.1 shows a sample of images from each city.
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3.3.3 Definition and Selection of Dimensions

To select labels to characterize urban awareness for outdoor environments, we base our
methodology on prior work [176, 171, 162]. The list of selected labels in our study encom-
passes the labels studied in the literature, in addition to new ones. We have chosen the
following 12 dimensions in alphabetical order: accessible, dangerous, dirty, happy, inter-
esting, pleasant, picturesque, polluted, preserved, pretty, quiet and wealthy. Three labels
(dangerous, dirty and polluted) have a negative connotation, while the rest have a neutral or
a positive connotation. Throughout this chapter, we use the umbrella term “urban awareness”
to refer to these labels. As was the case with indoor places, images served as stimuli to rate
perceptions for 12 urban awareness labels. Impressions were elicited along a seven-point
Likert scale ranging from strongly disagree (1) to strongly agree (7), as typically done in
psychology and urban planning research [83, 128].

We had chosen this list of labels for several reasons. First, these labels encompass physical
and psychological constructs evoked while describing socio-urban characteristics of the built
environment. Second, all the three cities face various problems including crime, prevalence of
alcohol and drugs, and streets with garbage and non-artistic graffiti, to mention a few. These
issues not only affect the well-being and safety of its citizens, but also hurt the image of a city
e.g., as a tourist destination. Thus, it was essential to study and understand the role these
perceptions play in these cities.

Note that the list of dimensions studied for outdoor spaces were different from the ones
chosen for indoor places. From the perspective of urban design, studying elicited impressions
for outdoor spaces should involve examination of different variables when compared to indoor
places. For instance, “picturesque” is a meaningful perception construct for an outdoor place,
but not necessarily so for an indoor place.

3.3.4 Urban Data Challenge

The images used in this study were collected as part of an Urban Data Challenge (UDC).
The UDC was co-designed with the help of student volunteers from a technical school in
Guanajuato city. The technical school was founded to provide high-quality education on
science, technology and humanities to working class youth (about 600 students in the age
group of 16–18 years old) who live in Guanajuato and surrounding suburbs. The UDC was
carried out by the team in Mexico led by Salvador Ruiz-Correa.

The data challenge was carried out during a 12-week period and consisted of weekend
camps, workshops, data collection, and creative use of collected data with follow-up activities.
Student volunteers were organized into ten teams of ten members, each consisting of
seven students, two parents and a teacher. Teams sought support from their classmates to
achieve their goals, with the objective of involving a larger community in the data collection.
Workshop activities included discussions about ethics, privacy, urbanism, basic techniques of
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Figure 3.1 – Random selection of images from the city image corpus. Top row contains all
images from Guanajuato city, middle row describes all images from Leon city, and bottom
row shows images from Silao city. For privacy reasons, images showing faces have been
pixelated. Best viewed in color.

photography, and the use of mobile devices for participatory sensing in urban environments.
To cover Leon and Silao, student teams visited these cities in person, which are 56km and
25km respectively from Guanajuato.

Teams explored each city to document their urban concerns by photographing urban places
via mobile phones. Each team was given an Android-based smartphone. However, students
also used their own mobile devices for data collection. We developed a mobile application that
enabled students to take pictures and upload them to our image server. The collected images
covered not only urban concerns, but also captured the ebb and flow of the city highlighting
different facets of urban life. Mechanisms to incentivize participation included creation of study
circles to raise awareness about the importance of understanding urban phenomena through
the use of mobile technology, and the role of citizens in proposing creative, community-based
solutions to prevalent urban problems. The UDC produced over 7,000 geo-tagged images. All
the images were taken from a first-person perspective, corresponding to the natural situation
in which a person navigates and perceives the urban environment. Twelve hundred images
were then selected for the crowdsourcing experiments reported in this chapter.

3.3.5 Image Corpora

City Image Corpus: UDC resulted in an image corpus consisting of 7,000 geo-tagged
images. For the analysis reported in this chapter, we focused on a random selection of 1,200
images with 400 images per city, which we call the city image corpus. All images were taken
between 9 AM and 5 PM during workdays. The collected image set consists of outdoor
images captured at touristic hotspots, key historical sites, traditional neighborhoods, main
squares, thoroughfares, main/commercial streets and downtown areas. Volunteers were
asked to capture images of urban scenes in their natural setting and to avoid beautified

49



Chapter 3. Characterizing Urban Perception in Outdoor Places

Figure 3.2 – Random selection of images from the evening image corpus. Top row indicates
images of outdoor scenes taken during the morning, and bottom row indicates the same
places photographed during the evening. For privacy reasons, images showing faces have
been pixelated. Best viewed in color.

images or applying digital filters, as is usually the case with images found in social media
platforms, like Flickr or Instagram. It is important to note that the city image corpus contains
not only those images that document an urban concern, but also images which capture the
ebb and flow of the city while depicting different aspects of urban life and built environments.
Figure 3.1 shows a sample of images from this corpus for each city.

Evening Image Corpus: In addition, people participating in the UDC also collected images
of urban areas during different times of the day in order to test if perceptions of the urban
environments vary across different times of the day. This illustrates the benefits of just-in-time
crowdsourced photo taking compared to static approaches, like Google Street View. We
focused our analysis on 50 urban sites in Guanajuato city, where volunteers captured images
of the same place during two different times of the day: first during the morning (between
10-11 AM), and then in the evening (between 6-7:30 PM). As a result, for the evening image
corpus, we obtained 50 images per time slot, resulting in a total of 100 images. Figure 3.2
shows two images of an urban place taken during morning and evening respectively.

3.4 Crowdsourcing Impressions

To gather impressions of online annotators, we designed a crowdsourcing study on Mechani-
cal Turk (MTurk). We chose US-based workers with at least 95% approval rate for historical
HITs. To increase the reliability of annotations, we only chose “Master” annotators, a worker
pool with an excellent track record of completing tasks with precision. In each HIT, the workers
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Figure 3.3 – Worker Participation. Plot showing the complementary cumulative distribution
function (CCDF) of a) Number of HITs per worker, b) HITs completion times.

were asked to view an image of an urban space, and then rate their personal impressions
based on what they saw along 12 labels. Additionally, workers were required to view images in
high-resolution (and not just the image thumbnails). Workers were not given any information
of the studied city or the country to reduce potential bias and stereotyping associated to the
place identity. We collected 10 annotations for each image and label, resulting in a total of
13,000 responses (12,000 for the city image corpus and 1,000 for the evening image corpus)
and a total of 156,000 individual judgments. Every worker was reimbursed 0.10 USD per HIT.

We also gathered crowdworkers’ demographics via an email-based survey. We asked workers
about their age group, gender, level of education, current place of residence (categorized
as rural, suburbs, small town, mid-size town, or city), and any experience of visiting any
developing countries, in any region including Latin America, Asia and Africa.

3.4.1 Worker Participation

For a total number of 12,000 HITs available for city image corpus, we observe that workers
completed an average of 82 HITs, while they could potentially undertake 1,200 HITs (400
HITs per city). We had a pool of 146 workers who responded to our tasks. While 50% of the
workers submitted less than 30 HITs, the worker with the highest number of HITs completed
624 assignments (Figure 3.3a). We observe a long-tailed distribution in HIT completion times
(mean: 59 secs, median: 43 secs, max: 297 secs), as shown in Figure 3.3b. It is worth noting
that we allocated a maximum of 5 minutes per HIT. Similar statistics were obtained for the
1,000 HITs available for evening image corpus.
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3.4.2 Worker Demographics

Of all 146 HIT respondents, 53% replied to our demographics survey. We notice a slightly
skewed gender ratio (58% of workers being female), which corroborates earlier findings in the
online crowdsourcing literature [169]. 80% of respondents reported their ethnicity as White/-
Caucasian, with 12% participants being Asian, and 3% each belonging to Hispanic/Latino
and Black/African American. 45% of respondents are college graduates. Furthermore, we
also notice that the worker population is relatively middle age with the most popular category
(43%) being the age group of 35-50 years old (18–24: 3%, 25–34: 32%, 50+: 22%)

While only 18% of our worker pool reported to live in a big city, the majority of them (45%)
are sub-urban (for the remaining categories: rural: 18%, small-sized town: 9%, mid-sized
town: 9%). Only a minority (23%) of the survey respondents reported having experience
visiting any country in the developing world. For those with traveling experience in developing
countries, holidays and tourism were the main purposes of the visit (55%). Amongst the
visited countries, 44% of these subset of respondents have traveled to Mexico, which is not
surprising given that the pool of crowdworkers is based in the US.

3.5 Crowdsourcing Results

In this section, we report the results on crowdworkers’ annotation quality, present descriptive
statistics of crowdsourced annotations, provides statistical results on cross-city comparison,
and study differences in urban perceptions across different times of the day.

3.5.1 Annotations Quality

We begin our analysis by assessing the reliability of annotations. We measured the inter-rater
consensus by computing intraclass correlation (ICC) among ratings given by the worker
pool [189]. Our annotation procedure required every place to be judged by k annotators
randomly selected from a larger population of K workers. The average ICC measures,
ICC(1, k), were computed for each label and city across all images. Table 3.1 reports the
ICC(1, k) values for all cities for k = 10. In addition to listing the individual scores for each
city and label, we also report the combined ICC(1, k) scores for each label and the whole
dataset, where we have combined all places across cities. We observe acceptable inter-rater
consensus for most labels, with all values being statistically significant (p-value < 0.01).

We notice that the inter-rater reliability for labels is above 0.7 for most of the labels and cities,
suggesting that MTurk observers tend to agree on their perceptions of most dimensions. The
quiet label achieves high agreement from images not showing any sound (0.73 combined
score). On the other hand, the label polluted is the one with lowest combined ICC (0.64).
We also observe that accessibility has low ICC for two of the three cities. Silao has overall
received the lowest ICC scores compared to the other two cities.
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Label Guanajuato Leon Silao Combined
Accessible 0.86 0.55 0.36 0.72
Dangerous 0.83 0.65 0.73 0.76
Dirty 0.85 0.72 0.70 0.78
Happy 0.82 0.76 0.61 0.78
Interesting 0.61 0.70 0.60 0.70
Pleasant 0.83 0.77 0.66 0.79
Picturesque 0.77 0.69 0.64 0.76
Polluted 0.68 0.56 0.57 0.64
Preserved 0.82 0.75 0.63 0.77
Pretty 0.80 0.69 0.66 0.76
Wealthy 0.84 0.73 0.57 0.76
Quiet 0.71 0.65 0.53 0.73

Table 3.1 – ICC(1, k) scores of 12 dimensions for each city. All values are statistically
significant at p < 0.01.

3.5.2 Descriptive Statistics

Given the multi-annotator impressions, it is necessary to create a composite score for each
image, given a label. To gather the individual ratings, we used an ordinal scale, which implicitly
describes a ranking. It is known that the central tendency of an ordinal variable is better
expressed by the median [193]. Thus, we compute the median score for each label given the
10 responses per image. Given the median scores, we then compute the mean scores and
standard deviations for each label using all 400 images for each city.

Table 3.2 lists the descriptive statistics for each city and label, in addition to showing the
aggregated scores for each label across all cities. At the level of individual annotations, the
minimum and maximum values are 1 and 7 respectively for each label and city, indicating
that the full scale was used by the crowdworkers. The mean scores for the majority of labels
is below 4 for each city, which indicates a trend towards disagreement with the corresponding
label. On the other hand, each city has urban sites that score high and low for each dimension.

In all cities, the mean scores for accessible are the highest amongst all labels. On all labels
phrased positively (except accessible and wealthy ), Guanajuato scores the highest amongst
all cities, which is not surprising given that Guanajuato is a UNESCO world heritage site
with a vibrant tourism industry. In contrast, wealthy has the lowest mean score for all cities
(combined mean 2.64), which is not surprising either given that the type of cities we studied
and the intended goals of the crowdsourced collection, were leaned towards documenting
urban concerns.

From Table 3.2, we observe variation in the mean values across cities for some of the labels,
but a few differences stand out. For instance, the mean differences of the picturesque and
interesting attributes between Guanajuato and Silao, and the quiet attribute between Guana-
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Label Guanajuato Leon Silao Combined
Accessible 4.62 (1.1) 5.02 (0.8) 4.41 (0.7) 4.69 (0.9)
Dangerous 2.92 (1.2) 2.86 (0.8) 3.17 (0.9) 2.98 (1.0)
Dirty 3.00 (1.2) 3.05 (0.9) 3.44 (1.0) 3.16 (1.1)
Happy 3.97 (1.1) 3.69 (0.8) 3.36 (0.8) 3.67 (1.0)
Interesting 4.38 (1.0) 3.63 (0.8) 3.50 (0.8) 3.84 (0.9)
Pleasant 4.13 (1.1) 3.83 (0.8) 3.48 (0.8) 3.82 (1.0)
Picturesque 3.55 (1.2) 3.00 (0.9) 2.73 (0.8) 3.09 (1.1)
Polluted 2.55 (0.9) 2.93 (0.8) 3.19 (0.9) 2.89 (0.9)
Preserved 4.04 (1.2) 4.00 (0.9) 3.48 (0.9) 3.84 (1.0)
Pretty 3.41 (1.2) 3.10 (0.9) 2.80 (0.9) 3.11 (1.0)
Quiet 4.08 (0.9) 3.24 (0.8) 3.10 (1.0) 3.47 (1.0)
Wealthy 2.58 (1.0) 2.90 (0.8) 2.43 (0.7) 2.64 (0.9)

Table 3.2 – Means and standard deviations (in brackets) of annotation scores for each city
and label.

juato and Leon and Silao all exceed 0.8, potentially suggesting differences in city perceptions.
A systematic statistical analysis of these differences are presented in Section 3.5.4.

3.5.3 Correlation and PCA Analysis

To understand basic statistical connections between urban awareness labels, we performed
correlation analysis using the mean annotation scores for all labels. Figure 3.4a visualizes
the correlation matrix across all dimensions using the aggregated data for all cities. We
have used hierarchical clustering to re-order the correlation matrix in order to reveal its
underlying structure. We color coded the matrix instead of providing numerical scores to
facilitate the discussion. We observe three distinct clusters. Starting from the bottom right
in the first cluster, all the positive labels happy, preserved, pretty, picturesque, pleasant,
interesting and wealthy are highly collinear with pairwise correlations exceeding 0.7. The
second cluster consists of quiet dimension. The third cluster (top-left) lies on the opposite
spectrum with respect to cluster one, and consists of dangerous, dirty and polluted. Each of
these clusters correspond to different aggregate impression, the first and third somewhat
resemble “sentiment” i.e., positive/negative. As such, we also observe significant negative
correlations between dimensions in cluster one and cluster three.

Furthermore, the strong correlation between dangerous and dirty points towards the valida-
tion of the well-known Broken Window Theory in urban sociology [224], which postulates
that the presence of physical disorder (garbage, grafitti, etc.) in urban environments leads
to social disorder (crime, fear). In other words, in our study, we found that images which
were perceived to be dirty (indicating some form of physical disorder) were also perceived as
dangerous (indicating some form of social disorder), with high correlation (Figure 3.4a).
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Figure 3.4 – a) Plot showing the correlation matrix between dimensions. Matrix is color coded
as per the palette shown in the right, with blue (resp. red) indicating positive (resp. negative)
correlation coefficients. Black rectangular borders indicate the three distinct clusters found
in the correlation matrix. Cells marked X are not statistically significant at p < 0.01. b) Plot
showing the first two principal components on aggregated annotation scores on 1,200 images
across all cities.

PCA Analysis: To further explore the relationships between labels, we perform principal
component analysis (PCA) on the aggregated annotation scores for all 1,200 images. PCA is
a statistical method to linearly transform high dimensional data to a set of lower orthogonal
dimensions that best explains the variance in the data [157]. In Figure 3.4b, we show the first
two principal components which explain 77% of the variance in the annotation scores along
the 12 dimensions. Note that before applying PCA, the labels were scaled to unit variance.
We observe that the first component, which accounts for 67% of the variance, contains labels
that resemble either the positive or negative “sentiment”, respectively, on the right and left
side of X-axis. Furthermore, component two primarily contains label quiet. These results
corroborate the findings from correlation analysis and have clear support from early work
in environmental psychology [174]. Note that similar findings were observed for ambiance
impressions of indoor places in Section 2.6.2 (Figure 2.6).

3.5.4 Statistical Comparison across Cities

To better understand whether mean differences across cities for some of these urban
awareness labels are statistically significant, we perform the Tukey’s honest significant
difference (HSD) test. Tukey’s HSD test is a statistical procedure for groups which compares
all possible pairs of mean values for each group, with the null hypothesis stating that the
mean values being compared are drawn from the same population [207]. We performed the
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Label City Pair Mean Difference ± CI
Quiet SC-GC −0.98 ± 0.19
Interesting SC-GC −0.88 ± 0.18
Quiet LC-GC −0.84 ± 0.19
Picturesque SC-GC −0.82 ± 0.21
Interesting LC-GC −0.75 ± 0.18
Pleasant SC-GC −0.65 ± 0.19
Polluted SC-GC +0.63 ± 0.18
Happy SC-GC −0.62 ± 0.19
Accessible SC-LC −0.61 ± 0.19
Pretty SC-GC −0.61 ± 0.20

Table 3.3 – Tukey’s HSD test statistics showing the top–10 significant results, where the
differences in the observed means across cities for labels exceed 0.6. GC, LC, SC respectively
refers to Guanajuato City, Leon City and Silao City. All mean differences are statistically
significant at p < 0.01.
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Figure 3.5 – Barplots comparing the mean annotation scores across all cities for a) Quiet, b)
Polluted, c) Picturesque, and d) Accessible.

HSD test to compute pairwise comparisons of mean values between cities for each label,
which resulted in a total of 36 comparisons (3 city-wise pairs across 12 dimensions). Out of a
total of 36 comparisons, we found 30 comparisons to be statistically significant at p-value
< 0.01. In Table 3.3, we report the top-10 significant results of the Tukey’s HSD test, where
the differences in the observed means were 0.6 or higher i.e., greater than half a point on
the rating scale. We refrain from making claims for all smaller effect cases, following recent
discussions in the statistical literature [76]. Additionally in Figure 3.5, we show the barplots
comparing the mean annotation scores across all cities for four labels to elucidate some of
the significant results from Tukey’s HSD statistics. Based on these statistics we observe that:

1. Outdoor urban places in Guanajuato were perceived as more quiet, picturesque and
interesting compared to places in Leon and Silao (rows 1,2,3,4,5 in Table 3.3). Overall,
Guanajuato has the highest mean scores amongst all three cities on most positive labels,
except accessible and wealthy, and the lowest mean scores on most negative labels
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Label Mean Scores Mean Diff. ± CI p−value
Morning Evening

Accessible 4.40 (0.93) 4.38 (1.26) −0.02 ± 0.58 0.928
Dangerous 2.86 (0.99) 3.38 (1.29) +0.52 ± 0.60 0.026
Dirty 2.89 (1.09) 3.33 (1.29) +0.44 ± 0.63 0.069
Happy 3.92 (0.98) 3.11 (1.18) −0.81 ± 0.57 0.0003
Interesting 4.35 (0.74) 3.78 (1.18) −0.57 ± 0.52 0.005
Picturesque 3.63 (0.97) 3.00 (1.21) −0.63 ± 0.58 0.005
Pleasant 4.01 (1.03) 3.24 (1.20) −0.77 ± 0.59 0.0008
Polluted 2.48 (0.86) 2.79 (1.12) +0.31 ± 0.52 0.123
Preserved 4.03 (1.02) 3.32 (1.26) −0.71 ± 0.60 0.003
Pretty 3.58 (1.05) 3.03 (1.23) −0.55 ± 0.60 0.018
Quiet 4.12 (1.01) 3.79 (1.16) −0.33 ± 0.57 0.132
Wealthy 2.71 (1.03) 2.15 (0.92) −0.56 ± 0.51 0.005

Table 3.4 – Descriptive statistics and Tukey’s HSD test statistics showing the results for
morning and evening times of the day. Value marked in bold are statistically significant at
p < 0.01.

except dangerous, as highlighted in Table 3.2. To highlight the differences in perception
between Guanjuato and the other two cities, we present the barplot comparing the
mean annotation scores of quiet dimension across all cities in Figure 3.5a. We observe
that the relative percentage of places in Guanajuato which are rated higher than 4 is
significantly larger than those corresponding to other cities. Similar patterns are observed
for interesting and picturesque (Figure 3.5c).

2. Silao was perceived to be more polluted, when compared to Guanajuato with differences
in mean scores exceeding 0.6 (row 7 in Table 3.3). We believe these results are an effect
of agricultural and industrial activity in Silao, when compared to the historic and touristic
nature of Guanajuato. When looking at the barplot in Figure 3.5b, we observe a similar
pattern as highlighted above, where the relative proportion of places which were rated on
a higher scale for being polluted in Silao are significantly larger than those in Guanajuato.

3. Silao was perceived to have lower accessibility than Leon (row 9 in Table 3.3 and Fig-
ure 3.5d). We believe this result is due to the fact that Leon, as a larger and more modern
city, has many broad avenues and multi-lane streets. In contrast, Silao has small town
streets. See examples in Figure 3.1.

To further validate the statistical significance of the Tukey’s HSD test, we performed a series
of pairwise Kolmogorov-Smirnov test (KS test) across all cities and labels. We performed the
KS test to compare the cumulative distribution functions of each city-pair across each label
(36 comparisons) and found 32 comparisons to be statistically significant for a statistical level
α = 0.01. Results from the KS test corroborates the findings from the Tukey’s HSD test.
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Figure 3.6 – Scatter plots showing the pair-wise annotator scores across two different times
of the day for a) Happy, b) Preserved, and c) Dangerous. Each dot corresponds to an image,
with the size of the dots proportional to the number of observations. The 45◦ line is also
shown in all the plots.

3.5.5 Analysis of Evening Image Corpus

In this subsection, we analyze the evening image corpus to statistically test if the perceptions
of the urban environments in one of the studied cities vary across different times of the day,
along the selected dimensions. As described in Section 3.3.5, we collected 50 images of
places during the morning (between 10-11 AM), and the evening (between 6-7:30 PM) in
Guanajuato. In Table 3.4, we list the mean scores for each label across times of the day. To
aggregate the impressions, we followed the same procedure as explained in Section 3.5.2
for each image and time slot. Using Table 3.4, we notice that the mean scores for the
majority of labels is below 4 for each time slot, which indicates a trend towards disagreement
with the corresponding label, analogous to the results obtained with the city image corpus
(Section 3.5.2). Furthermore, we observe that the mean values of the perceptual ratings in
mornings are similar to the ones observed for Guanajuato in Table 3.2. This is consistent
with the fact that all the images from the city image corpus were taken between between 9
AM and 5 PM (Section 3.3.5).

For the evening image corpus, the mean annotation scores for all positive (resp. negative)
labels are higher (resp. lower) for images taken in the morning, compared to the ones taken
during the evening. In Table 3.4, we also report the results of of the Tukey’s HSD statistics to
test whether the mean scores differ across different times of the day for all labels. Based on
these statistics we observe that:

1. Evenings were perceived as less happy, pleasant and preserved, in comparison with
morning time (differences: −0.81, −0.77, −0.71 respectively). See Figure 3.6a and 3.6b.

2. We do not observe statistically significant differences in the perception of dangerous
between mornings and evenings (p-value = 0.026). This result is in contrast with findings
from the literature [128, 86]. To put our finding in perspective, it is important to note that
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places were overall not perceived as dangerous in the evening image corpus (combined
mean: 3.12). See also Figure 3.6c.

Pair-wise Analysis: After observing that some of the perceptual ratings differ across times
of the day, and in order to understand the variability of ratings for individual places, we
examined the pair-wise ratings of each image between morning and evening time. We focus
our pair-wise analysis on two statistically significant labels (happy and preserved), in addition
to examining the non-significant dangerous label. Figure 3.6 shows the respective plots. If
the perception ratings were similar between morning and evening, most of the points would
have fallen on the 45◦ line. On the contrary, we observe that a significant majority of points
lie below the line for happy and preserved (Figure 3.6a and 3.6b), indicating that places
in the morning were perceived on a higher scale compared to evenings. Furthermore, it is
interesting to observe a more mixed trend for the dangerous label (Figure 3.6c). These plots
further validate our findings on the evening image corpus.

3.6 Automatic Inference of Outdoor Perception

In Section 3.5, reliable estimates of perception was obtained for several of the urban aware-
ness dimensions, suggesting the presence of visual cues that allow to create such impres-
sions. In this section, we address RQ3.3 to examine the feasibility to automatically infer these
perceptual impressions using visual cues from images of outdoor places. For automatic
inference we used the city image corpus consisting of 1200 images across three cities
(Section 3.3.5). Due to the relatively small size of the evening image corpus, it was not used
in the subsequent analysis.

3.6.1 Visual Feature Extraction

For automatic outdoor perception, we extracted a similar set of low-level and deep learning
visual features as was done earlier for the inference of indoor ambiance perception. Table 3.5
summarizes the list of visual features extracted from images. A detailed explanation of these
features has been described in Section 2.7.1.

To extract the low-level features on the city image corpus, we used the same configuration as
described earlier. With regard to deep learning features, there is one key difference – the
choice of the image database on which the deep CNN architecture was trained. For outdoor
places, we chose a pre-trained CNN model which uses the GoogLeNet architecture trained
on Places205 database [232], in contrast to ImageNet that was used for indoor places.
Places205 database is a large-scale scene-centric database of 2.5 million images of indoor
and outdoor scenes across 205 categories, while ImageNet is an object-centric database.
It has been shown that Places205 database contains more images per scene category
compared to ImageNet [232]. Recently, authors in [159] reported that features extracted
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Visual Feature Description Dimensionality
Color Color histogram in RGB space 512
GIST Dominant spatial structure of a scene 512
HOG Histogram of oriented gradients 680
LBP Spatial arrangement of color and intensities 256

CNN-CP
Final layer class probabilities using a

GoogLeNet CNN pre-trained on Places205
205

CNN-FC
Fully connected layer of a GoogLeNet CNN

pre-trained on Places205
1024

Table 3.5 – Summary of the visual features extracted from images.

from a pre-trained Places-CNN achieve higher performance accuracy relative to a similar
CNN architecture trained on ImageNet for outdoor scenes. Given the kind of images that was
collected during the SenseCityVity project (e.g., outdoor scenes of city’s built environment,
residential neighborhoods, streets and alleys, etc.), we believe Places205 database is more
suited for outdoor places compared to ImageNet.

With this configuration, besides extracting the final layer class probabilities (CNN-CP model),
we also extracted the output of the fully-connected layer (FC) of the GoogLeNet architecture
as additional feature representation (Table 3.5). To extract CNN features, all images were
resized to 256 × 256 pixels and subjected to mean image subtraction. To conclude, for
both CNN models we used the same CNN architecture (GoogLeNet) trained on Places205
database, these models differ only in terms of derived activation features.

3.6.2 Inference Method and Evaluation

As done in Chapter 2, we formulate the inference of urban outdoor perception as a regression
problem where our objective is to predict aggregated human impressions using visual cues
extracted from images. We used Random Forest as the regression technique. For model
validation, we performed m repetitions of a k-fold stratified cross-validation approach. For
all the experiments, we set m = 10, and k = 10. After the model run and validation,
we computed the mean of the evaluation metric across mk runs as the model output. To
evaluate the predictive performance between feature sets, we used root-mean-square error
(RMSE) and coefficient of determination (R2) as evaluation metrics. These evaluation
metrics were computed between the perceived ground-truth (i.e., human judgments) and
predicted perceptual scores obtained for each label and feature set. For the baseline model,
we chose the mean annotated score as the predicted value for each label to better understand
and compare the predictive performance of each feature set individually.
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Figure 3.7 – a) Histogram of top-10 recognized classes for the city image corpus, b) Histogram
of the class probabilities for the top-10 recognized categories for the city image corpus.

3.6.3 Visual Categories

We begin our analysis by examining the distribution of the most likely Places205 category
assigned to each image. Using the CNN model, for each image in the city image corpus, we
obtained the vector containing the class probabilities across 205 scene categories. Given this
vector, we chose the scene category with the highest probability as the dominant class for
each image. Figure 3.7a shows the histogram of the top-10 recognized Places205 categories.
To visually illustrate the recognized classes, Figure 3.8 shows a mosaic of images across
four of the top-10 Places205 categories from the city image corpus.

Overall, the dominant class distribution exhibits long-tail characteristics, with a total of 52
unique scene categories. 90% of the images were assigned these top-10 categories (out
of 205 possible categories). More than 54% of the images were classified as an “alley” as
their dominant class (see Figure 3.8a for a visual illustration). Most of the top ten dominant
categories are associated with the physical attributes of the outdoor environment (e.g., alley,
parking lot, plaza, crosswalk, residential neighborhood, construction site, etc.) which poten-
tially suggest an automated way to validate the images collected as part of the SenseCityVity
study (Figure 3.8). These findings further point towards the differences between images
describing indoor (50K image corpus) and outdoor environments (city image corpus). Refer
to Figure 2.8 and Figure 3.8 for a visual comparison.

As a second observation, some of the recognized categories in Figure 3.7a may seem
surprising at first glance e.g., “medina”, but after manually browsing the images belonging to
these categories (Figure 3.8d), we found that these classes describe various attributes of the
outdoor environment specific to the studied cities and are likely misclassified yet makes sense
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(a) Alleys (b) Parking Lot

(c) Plaza (d) Medina

Figure 3.8 – Sample of random images from the city image corpus which were classified
as (a) Alley, (b) Parking Lot, (c) Plaza, and (d) Medina. For each class, from top to bottom,
images are sorted in decreasing order of dominant class probability. Best viewed in color.

visually. For instance, most of the images belonging to “medina” category contain images
showing narrow and windings alleys and streets, which is typical to the city of Guanajuato. Of
all images classified as “medina”, 66% of images were from Guanajuato.

The distribution of dominant class captured similarities and differences in urban characteristics
across the three studied cities. For all the three cities, a similar proportion of images were
labeled as alleys. However, more crosswalks and plazas were identified in Leon city; more
medinas and staircase were recognized in the city of Guanajuato; while in Silao city, more
outdoor markets were classified relative to other two cities. These findings corroborate the
functional and urban characteristics of each city (Section 3.3.2).

Furthermore, we noticed that the probabilities associated with the dominant classes were
not similar across images. In Figure 3.7b, we plot the histogram of the dominant class
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Baseline Color GIST HOG LBP CNN-FC CNN-CP
RMSE R2 R2 R2 R2 R2 RMSE R2 RMSE

Accessible 0.94 0.21 0.23 0.16 0.25 0.48 0.69 0.46 0.70
Dangerous 0.99 0.16 0.16 0.09 0.15 0.38 0.79 0.35 0.80

Dirty 1.06 0.14 0.15 0.10 0.14 0.37 0.85 0.35 0.87
Happy 0.95 0.26 0.21 0.13 0.19 0.46 0.71 0.43 0.73

Interesting 0.94 0.25 0.30 0.18 0.25 0.45 0.70 0.41 0.73
Pleasant 0.97 0.24 0.21 0.15 0.20 0.45 0.73 0.42 0.75

Picturesque 1.06 0.23 0.25 0.15 0.22 0.49 0.76 0.44 0.79
Polluted 0.92 0.13 0.13 0.09 0.09 0.30 0.77 0.28 0.78

Preserved 1.05 0.20 0.20 0.15 0.18 0.45 0.78 0.40 0.81
Pretty 1.02 0.23 0.21 0.15 0.19 0.46 0.75 0.43 0.77

Wealthy 0.88 0.22 0.20 0.13 0.19 0.46 0.65 0.44 0.66
Quiet 1.00 0.32 0.30 0.18 0.18 0.48 0.73 0.45 0.75

Table 3.6 – Inference results for 12 ambiance dimensions for all feature sets, using R2 and
RMSE as evaluation measures. Cells marked in bold correspond to the best R2 result
obtained for each dimension.

probabilities for the top-10 recognized categories. Some images were classified with higher
probabilities; while others were fairly difficult to classify which might be due to scarcity of city
image corpus kind of images in Places205 database [202]. Overall, manually browsing these
images highlight the various aspects of urban life and built environment of the studied cities
– narrow and winding alleys, wall graffiti, clutter of open wires hanging low in the streets,
unmarked pavements, etc. Note that the UDC participants were instructed to capture images
of urban scenes in their natural setting and focused on the general environment (rather than
only on detected problems).

3.6.4 Predicting Urban Perception

In this subsection, we evaluate the predictive performance of both low-level image descriptors
and deep learning features to infer the urban perception of outdoor scenes. Table 3.6 reports
the R2 values between the human impressions (i.e., ground-truth) and predicted perceptual
scores for each feature set over all 12 dimensions. For the baseline model, we only report
the RMSE values as it has a R2 of 0.

For automatic inference, we built two CNN models which differ in the way visual features were
extracted for each image using the GoogLeNet CNN. For the CNN-FC model, image features
correspond to the output of the fully-connected layer of the GoogLeNet CNN, while CNN-CP
model contains the final layer class probabilities across all 205 Places205 categories as the
feature vector (Table 3.5). For both the CNN models, we also report the RMSE values. A
model having a better feature representation to estimate urban perception would result in
higher R2 and lower RMSE values, when compared with other models. Using the results
reported in Table 3.6, we can make the following observations:
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Figure 3.9 – Sample of images with the highest and lowest predicted scores for dangerous,
dirty, and picturesque dimensions using CNN-FC model. Best viewed in color.

� CNN based features consistently outperformed low-level image descriptors (including Color
Histogram, GIST, HOG, and LBP) for all dimensions. These findings are consistent with the
results reported for indoor place ambiance (Table 2.6) and computer vision literature [165].
For outdoor places, we did not conduct the experiments combining low-level image features
as we believe that the overall trends would not change significantly, as observed for indoor
place ambiance (Table 2.6).

� Overall, the results indicate that a maximum R2 of 0.49 for picturesque dimension can be
obtained using the CNN-FC regressor. For 9 out of 12 variables, the obtained R2 values
exceeded 0.44, with the lowest one obtained for polluted label.

� Among the low-level features, Color Histogram, GIST, and LBP have comparable predictive
performance, while HOG performs relatively poorly for most of the dimensions. Color
and GIST features achieved the best performance for the quiet label (R2 ≥ 0.30). The
performance of HOG features, which have performed well for scene recognition [226],
potentially suggest that the shape context within an image holds low predictive power to
characterize the perceptual attributes of the outdoor environments in our dataset.

� While examining individual labels, polluted achieved the lowest predictive performance
across all feature sets (R2 ≤ 0.30), which might be associated with the labeling noise
during the annotation process i.e., low inter-rater agreement (Table 3.1). Positively phrased
labels (happy, pretty, picturesque, etc. – cluster 1 in Figure 3.4a) have higher R2 values
than negatively phrased labels (dangerous, dirty and polluted – cluster 3 in Figure 3.4a),
though all the dimensions in both clusters achieve similar R2 values.

� Similar to the loudness trait for indoor places (R2 ≥ 0.26), the quietness of outdoor places
achieved R2 ≥ 0.18 for all feature descriptors.
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Figure 3.10 – Plots comparing the histograms of both actual and predicted values for a)
Dangerous, b) Picturesque, c) Quiet.

� While comparing the performance of CNN-FC and CNN-CP model, we notice that CNN-FC
model outperformed CNN-CP model, though the R2 and RMSE values are relatively
comparable for all dimensions. To visually assess the performance of the CNN-FC model,
Figure 3.9 shows example images with the highest and lowest predicted scores for three
studied dimensions.

Overall, our findings suggest the suitability of using pre-trained CNN models to infer high-level
human perceptual judgments for outdoor scenes. Our findings are comparable to what have
been reported in the literature. On the Place Pulse dataset, Naik et al. built a predictor
combining low-level features from geometric texton histograms, GIST, and geometric color
histograms to achieve an R2 of 0.54 for the safety dimension [142]. Using the same dataset,
the authors in [151] reported correlation coefficients (r) ranging from 0.4 to 0.7 to predict
safety, uniqueness, and wealth using generic deep convolutional activation features. On the
Place Pulse data, Porzi et al. using a different CNN architecture, reported an accuracy of
70% when predicting users’ votes on image pairs for the safety label [159].

To further diagnose the performance of our top performing feature representation, CNN-FC
model, we plot the histogram of the ground-truth and predicted values for three labels in Fig-
ure 3.10. Using these plots, for each dimension, we observe that the model is over-estimating
lower values and under-estimating higher values i.e., even though we obtained promising
R2 values, the model is biased towards the mean value for each dimension. In other words,
for images which were perceived by humans as high on dangerous or picturesque, was
predicted by the model as less dangerous or picturesque and vice-versa. Even though we
obtained promising R2 values the model seems to be sensitive or biased towards outliers.
Recent work has proposed a CNN model that weights extreme values during training as
means to counter the inherent data bias due to unbalanced distribution [102]. It seems like a
promising approach to increase the model performance for future work.
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Guanajuato Leon Silao
EBL ERF R2 EBL ERF R2 EBL ERF R2

Accessible 1.13 0.7 0.62 0.8 0.64 0.38 0.75 0.67 0.22
Dangerous 1.17 0.85 0.49 0.84 0.69 0.34 0.92 0.75 0.36

Dirty 1.22 0.91 0.46 0.93 0.79 0.29 0.96 0.82 0.31
Happy 1.11 0.77 0.54 0.81 0.62 0.41 0.8 0.67 0.33

Interesting 0.95 0.77 0.36 0.82 0.62 0.44 0.80 0.64 0.37
Picturesque 1.23 0.87 0.51 0.88 0.66 0.45 0.83 0.68 0.34

Pleasant 1.12 0.78 0.54 0.84 0.65 0.41 0.81 0.68 0.32
Polluted 0.91 0.77 0.30 0.82 0.71 0.25 0.92 0.81 0.25

Preserved 1.19 0.82 0.54 0.93 0.70 0.45 0.90 0.76 0.31
Pretty 1.18 0.84 0.51 0.87 0.67 0.43 0.88 0.73 0.33
Quiet 0.94 0.77 0.35 0.82 0.68 0.33 0.95 0.74 0.42

Wealthy 1.01 0.69 0.55 0.83 0.65 0.41 0.70 0.58 0.31

Table 3.7 – Inference results for each city across 12 ambiance dimensions using CNN-FC
model. For each city, EBL and ERF refer to the RMSE for baseline and CNN-FC model
respectively.

Urban Perception across Cities: Until now, we have discussed the inference results using
the combined data for all cities. Now, we examine the predictive performance of CNN-FC
model on each city. Table 3.7 reports the inference results for each city across all 12 ambiance
dimensions. For each city, we report the baseline RMSE (EBL) and CNN-FC model RMSE

(ERF ), in addition to reporting their respective R2 values. Using the results listed in Table 3.7,
we observe similar trends to the findings reported for inter-rater reliability scores for each
city (Table 3.1). Amongst all the three cities, Guanajuato achieves the best performance
for all dimensions (except interesting and quiet), while Silao has received the lowest R2

scores for most dimensions. As a second observation, the obtained R2 values for Guanajuato
are higher when compared to the values for all cities combined for most of the dimensions
(Table 3.6).

3.7 Conclusion

In this chapter, we presented the design and implementation of the SenseCityVity project
co-designed with over 200 young volunteers contributing over 7,000 geo-localized images,
and 380 first-person perspective videos documenting three cities in Mexico. The collected
images describe outdoor scenes and views of each city’s built environment. Using a subset
of 1,200 images, we presented a computational analysis and automatic characterization of
urban perception of outdoor places for three cities in central Mexico. Using the aggregated
annotations, we concluded that outdoor environments can be reliably assessed with respect
to most urban dimensions. We further demonstrated the feasibility to automatically infer
human perceptions of outdoor places using a variety of low-level image and deep learning
features with promising accuracy. To demonstrate the additional value of collecting images
via crowdsensing relative to street-level imagery, we investigated the perception of urban
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environments during different times of the day and found that places in the evening were
perceived as less happy, pleasant and preserved relative to the same place in the morning.
Overall, our findings are promising that could potentially provide urban designers and city
planners a data-driven and scalable approach to examine the physical appearance of cities
and help design urban policies informed by urban perception.

We conclude the chapter by discussing the potential impact of our work. Today, the purpose
of improving the urban life in developing cities depends on the collective action of citizens,
communities, and governments. It is through synergistic interactions between government
and self-organized citizens that complex urban issues can be tackled in the midst of chaotic
urban growth and prevailing conditions of economic inequality. In this regard, educating
citizens to develop a more discerning understanding of urban problems is crucial. Our work
addresses this matter (beyond scientific inquiry) by contributing tools that communities
could use to generate benefits for themselves. The mobile crowdsensing approach used
to collect the data enabled participating volunteers to become more aware of their urban
environment. The data collected by and for the people provides an alternative and more
comprehensive picture of the issues that matter to citizens, beyond a mapping exercise
conducted by professional surveyors, which is often expensive and less detailed. As a final
point, our proposed methodology was recently adopted by other researchers in other cities in
Mexico, including Leon, Merida, and Queretaro.
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4 Crowdsensing Road Infrastructure
Conditions

4.1 Introduction

URBANIZATION is increasing at a faster pace than ever. For the first time in human civiliza-
tion, a majority of world’s population lives in urban areas [209]. Rural and transnational

populations are constantly migrating towards cities in search for better opportunities and
quality of life. Rapid urbanization has put a considerable amount of strain on urban infrastruc-
ture including public transportation and road surface conditions. This is a common scenario
in most of the emerging economies including cities in Africa, India, China, and Latin America.

In this regard, Nairobi is no different. Nairobi is one of the fastest growing metropolitan cities
in Africa and a major business and technology powerhouse in East Africa. In the last decade,
Nairobi (population of 3.1 million in 2009) has experienced rapid urbanization, which has
led to a rise in traffic congestion and long commute times resulting in growing frustration
amongst commuters [97]. While there has been significant growth in car ownership and
informal bus transit (known as matatus), the transportation infrastructure has not kept pace
with this growth. It is estimated that traffic congestion in Nairobi costs the economy an
estimated 37 billion Kenyan Shillings annually (equivalent to 413 million USD) [13]. This trend
is unsustainable and detrimental to Kenya’s 2030 development plans [203].

In addition to this growth in travel demand, Nairobi has not received adequate attention
with regard to long term transportation planning [79]. Nairobi roads are known for their
hazardous conditions, which include gaping potholes, unregulated speed-bumps and abrupt
road surface changes. Figure 4.1 shows some of the road hazards typically seen on the
streets of Nairobi. In the rest of the chapter, by “road hazards”, we specifically refer to
potholes and speed-bumps. Although speed-bumps are traditionally used for traffic calming
and speed mitigation, in Nairobi they are frequently unlabeled, poorly (and often irrationally)
placed, and are not accompanied with proper signage (Figure 4.1b). For example, in one of
our field tests on a 2.4km stretch of road where the speed limit is 60km/h, under free flow
conditions we encountered 13 speed-bumps resulting in an average travel speed of 20km/h.
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(a) Potholes (b) Speed Bumps

Figure 4.1 – Road surface conditions in Nairobi (a) Potholes (b) Speed Bumps.

As is the case with most developing cities, Nairobi lacks monitoring technologies to obtain
reliable data on road infrastructure conditions in urban areas. The costs associated with
deploying sensing infrastructure to monitor road quality in developing urban areas are often
prohibitive, and impractical to implement; therefore it becomes imperative to leverage locally
available resources (i.e., people) to collect this information. We posit that mobile crowdsensing
offers a promising avenue to obtain reliable data on urban infrastructure conditions.

In this chapter, we present the design and implementation of a mobile prototype system,
called CommuniSense, to address the problem of documenting Nairobi’s road infrastructure
conditions. CommuniSense allowed citizens to locate, describe, and take pictures of road
hazards using smartphones. A crowdsensing approach, using smartphones, is promising due
to the widespread penetration of mobile devices (78.2% mobile penetration in 2013 [203])
and the increasing popularity of smartphones in Kenya. Smartphone penetration has been
fueled by the introduction of low-cost Android phones and the trend is expected to con-
tinue as different vendors including Google, Huawei, and LG plan to roll out more low-cost
smartphone devices in Kenya [204, 205]. This trend is similarly observed in other developing
countries [160].

Prior research on route recommendation has typically focused on computing the shortest
route with minimal commute times. Existing mapping services only take into account traffic
congestion. However, they fail to account for poor road surface conditions, which are prevalent
in many developing cities including Nairobi. Our current work builds on recent work [111] that
introduces a mobile framework to collect GPS traces from probe vehicles, to examine speed
implications caused by poor road quality in Nairobi. Our work extends this work by providing
a tool to collect labeled road hazard data. Together, these two strategies (collection of mobile
sensor data, and labeled road hazard data) can be used to predict the locations of various
road hazards. Our broader objective is to build a travel model to estimate travel speeds, fuel
consumption, and vehicle emissions, as a function of road surface conditions.
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CommuniSense advocates a model of citizen participation that facilitates the push towards a
public-private partnership for small-scale community infrastructure maintenance activities.
In this regard, CommuniSense can be seen as a special case of the SenseCityVity project
(Chapter 3). In SenseCityVity, citizens collected images of city’s built environment with a
focus on urban issues, whereas in CommuniSense citizens turned the focus of their cameras
downwards to capture images of road hazards. This chapter addresses the following research
questions:

RQ4.1: What are the perceptions of citizens in large developing cities towards the state of
existing road infrastructure conditions? (RQ4.1 maps to thesis’s RQ2)

RQ4.2: How can mobile crowdsensing be leveraged to support citizen-based data collection
of road infrastructure conditions in developing cities, like Nairobi? (RQ4.2 maps to
thesis’s RQ1)

RQ4.3: How can the correctness and validity of crowdsensed data, in particular images, be
verified? (RQ4.3 maps to thesis’s RQ1)

This research was partly done during my research internship at IBM Research Africa in
Nairobi, together with Jidraph Njuguna, Tierra Bills, Aisha W. Bryant, and Reginald Bryant.
The chapter makes the following four research contributions:

1. Our first contribution is a travel survey to understand the existing state of road quality
conditions in Nairobi. The survey questionnaire collected demographics, weekly travel
practices, perception of current road quality conditions and impact on their travel expe-
rience. To account for socio-economic bias, we conducted the survey via two different
channels: web-based and SMS-based. To the best of our knowledge, our survey is the
first survey with publicly available results to assess the opinions of people on road surface
conditions and their impact in Nairobi.

2. Based on the survey’s findings, we then developed a mobile crowdsensing application,
called CommuniSense to collect data on road surface conditions. The application allows
users to submit road hazard reports where they locate, describe, and take pictures of road
hazards. We test our application through a two-week field study amongst 30 participants,
who submitted a total of 254 reports characterizing various forms of road hazards from
different areas in Nairobi.

3. Our third contribution is the verification of the authenticity of user-contributed reports from
our field study. For this, we designed and conducted an online crowdsourcing study using
MTurk, to verify whether submitted reports indeed depicts road hazards, as recorded
by smartphone users. We found 92% of user-submitted reports to match the MTurkers
judgments.

4. Our fourth contribution is the design and development of a layered and an interactive
web-based visualization framework to visualize the location of road hazards and other
geo-localized information in Nairobi.
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While the mobile prototype was designed and tested on a specific city, our methodology
is equally applicable to other developing cities. Our overall contribution lies in designing,
implementing and understanding the adoption of a mobile crowdsensing platform in a world
region which is often under-represented and under-studied in mobile computing research.

The chapter is structured as follows. Section 4.2 presents a review of the related work. Sec-
tion 4.3 describes the design and implementation of the road quality survey and demonstrates
its key findings. Using the survey’s findings, Section 4.4 outlines the design and the backend
architecture of the mobile application and reports the results of the field study. The mobile
application was developed by Jidraph Njuguna. Section 4.6 proposes the image verifica-
tion methodology for user-contributed submissions using online crowdsourcing. Section 4.7
presents the visualization framework. Section 4.8 discusses the technical challenges faced
during the design and implementation of CommuniSense. Finally, Section 4.9 concludes with
a summary of the findings. This chapter outlines research that has been published here [185].

4.2 Related Work

Given the multifaceted nature of our work, we review the related work that speaks to three
research domains, as described below.

4.2.1 Data Collection in Developing World

In the developing world, one of the most common ways to collect data is via text messages
or SMS. The low cost of feature phones and wide availability of SMS service has enabled
various SMS-based data collection systems including RapidSMS [10], FrontlineSMS [27],
and Ushahidi [147]. FrontlineSMS has been designed to gather unstructured data, while
RapidSMS has been designed primarily for structured data. The Ushahidi platform extended
FrontlineSMS and was deployed first in Kenya during the 2007 post-election violence. The
platform allowed Kenyans to submit violence related reports using SMS (and email).

Despite the popularity of SMS, SMS-based tools are often unreliable and expensive. The
costs associated with sending 1Mb data over SMS is over 3600 times more expensive than
GPRS (General Packet Radio Service) [12] (as cited in [88]). Furthermore, SMS-based tools
cannot provide fine-grain location and high-quality image data. Although these platforms
have been successfully deployed in the past, they provide a bare minimum support for user
interactivity and are designed to be deployed in environments experiencing financial, social,
political, or natural disaster hardships.

In the recent past, the increasing popularity of smartphones and increasing investment
in cellular infrastructure has generated excitement for smartphone-based crowdsourcing
solutions in developing regions. This growth has provided major opportunities to collect data
in a cost effective manner. Tools like OpenDataKit (ODK) [88] and Nokia Data Gathering [8],
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have been designed primarily for the developing world. ODK is a smartphone-based platform
designed to build data collection solutions for organizations with limited financial and technical
resources (e.g., NGOs). In a more recent work, the team behind ODK, redesigned its
architecture to simplify the process of creating and managing data collection pipelines for
individuals with limited technical experience [37].

Technically, CommuniSense is similar to ODK 2.0. We designed and build our system
from scratch to integrate incentive (financial/social) [84, 229], gamification, crowdsourced
verification and social media modules for future needs. To the best of our understanding,
incorporating these modules in ODK would require systemic changes to its core architecture.

4.2.2 Road Surface Monitoring

In field of mobile sensing, there has been research interest to automatically detect potholes
and monitor road surface conditions using accelerometer sensor data [66, 170, 136]. In
Pothole Patrol, the authors presented a machine learning based approach to detect potholes,
using accelerometer and GPS data [66]. Mednis et al. described a pothole detection algorithm
using accelerometer data obtained using Android based smartphones [136]. In contrast with
the mobile sensing domain, the transportation research community has proposed road
surface monitoring using camera-based systems [107]. Most of the systems and algorithms
described above rely on manually collected ground truth data which serve as training data.
Collecting training data this way requires careful planning and experimentation, which typically
involves repeatedly driving a set of road segments and manually labeling the location of
potholes and other forms of road anomalies. Relying on hand-labeled datasets severely limits
the scale, spatial coverage and amount of data available to train classifiers. Therefore, we
believe that a crowdsourced platform like CommuniSense provides an alternate scalable
solution to collect labeled data for developing future automated platforms.

4.2.3 Crowdsourcing in Intelligent Transportation Systems

In intelligent transportation systems (ITS) and traffic research domain, the use of crowd-
sourcing methods have began to receive attention [20, 103, 154]. In CrowdITS, the authors
proposed a hybrid system to integrate crowd-based reporting with GPS-based navigation
system, to suggest congestion-free routes [20]. In [103], the author advocated the use of
mobile social media and collaborative applications to increase social interactions on the
road. Crowdsourcing in ITS present exciting opportunities for developing cities, as they lack
monitoring technologies to obtain reliable data on traffic and road infrastructure conditions,
as argued in Section 4.1. In this regard, our proposed system, CommuniSense, advances
the research in this direction by integrating citizen-based reporting with online crowd-based
verification for quality control.
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4.3 Road Quality Survey

Most surveys in Kenya have focused on either traffic congestion [203], travel choice behav-
ior [177] or mobile penetration and usage [225]. To the best of our knowledge, no digitized
survey has been conducted to understand the opinions of people on the state of road quality
in the context of Nairobi or Kenya in general. We conducted a travel survey in Nairobi with
two goals. First, we wanted to understand what Nairobi travelers think of the existing state
of road quality in their city. Second, we wanted to gauge their willingness to engage and
participate in reporting information on road hazards to support government in urban road
maintenance. The survey questionnaire had a series of questions asking respondents about
themselves, how they travel on a weekly basis, and how they rate the current road quality
conditions based on their daily travel experience. Specifically, our survey had four themes:

� Mode of transport: In this section, we asked respondents about their frequency of usage
of different transportation modes on a weekly basis. We focused on four transport mode
choices: personal vehicle, matatus or bus, taxis, and walking. Matatus are privately-owned
informal minibuses that form the backbone of transportation network in Nairobi.

� Status quo on road quality: In this section, we explored the current state of road quality
in respondents’ residential neighborhood, workplace neighborhood, and Nairobi at large,
on a five-point Likert scale ranging from very poor (1) to very good (5). We also asked
participants to rate potholes and speed bumps as major road nuisances on a five-point
Likert scale ranging from strongly disagree (1) to strongly agree (5).

� Overall impact of road hazards: In this section, we asked users about the impact of road
hazards on their travel discomfort and their personal vehicle’s wear and tear (if they owned
a personal vehicle). In the survey, we used “road hazards” as an umbrella term to refer to
potholes, speed bumps, cracks on the road surface, abrupt pavement changes, or uneven
road surface conditions; we made this definition explicit to the respondents.

� Reporting road hazards: In this section we quizzed users on their knowledge about how
to report a road hazard to the city council, and if they had reported any in the past. We
also asked them about their preferred choices and motivations for reporting road hazards.

� Demographics: We asked participants about their demographic characteristics (age and
gender), living status, and whether they own an Android-based smartphone.

The majority of the survey questions were multiple choice where respondents chose from
a list of options. Additionally, we had two open-ended questions where respondents were
asked to name their residential and workplace neighborhood (as free-form text). All the
multiple-choice questions were mandatory, whereas the open-ended questions were optional.
In total, the survey consisted of 18 mandatory and 2 optional questions. Responses were
anonymous.

For conducting the survey, we used two different channels: web-based (online) and SMS-
based (offline). We used two different channels to account for any demographics bias. On
one hand, we believe that an online survey would typically target upper class, upper middle
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class, and expatriate communities; while on the other hand, a SMS-based survey would cater
more to working class and non-smartphone users who typically do not have easy access to
the internet. We acknowledge that our surveys are not representative of population of Nairobi
as no stratification technique or demographic sampling was applied while selecting users.

4.3.1 Online Survey

In this channel, we used an online platform (Google Forms) to conduct the survey. The
survey was distributed via email to mostly university students, and internally within my
host organization in Nairobi (IBM Research Africa). In addition to asking the respondents
to complete the survey, we also asked them to share the survey on various social media
channels (including Twitter and Facebook) to reach a larger audience. We also posted the
survey on IBM Africa’s Twitter and Facebook official pages. No monetary incentives were
provided for answering the survey.

4.3.2 SMS-based Survey

Our second distribution channel was a SMS-based mobile survey platform using mSurvey [9].
mSurvey is a Nairobi-based company which provides a mobile platform to conduct surveys
and market research in Kenya. In order to have a wider reach and specifically address a
population that does not have easy access to the internet, we used mSurvey’s platform,
where respondents receive each question per SMS on their mobile devices.

The mSurvey platform used a sample of 500 users randomly selected from their existing
worker population in Nairobi. No stratification techniques and demographics filters were
applied while selecting the user sample in our survey. Respondents received 40 Kenyan
Shillings (equivalent of 0.5 USD) as financial reward to complete the full survey.

4.3.3 Results

For the online survey (gSurvey), we received a total of 442 responses, while for the SMS-
based survey (mSurvey), we received a total of 439 completed responses. In total we have a
pool of 881 respondents to our survey. In this section we describe the results of both surveys.
We focus on five survey themes, which are relevant to the scope of our work.

Demographics

In the online survey, 62% of respondents were male, and 37% of them were female, while the
remaining participants chose not to share their gender identity. On the other hand, amongst
the mSurvey participants, 58% of respondents were male, and 42% of them were female.
For the age distribution, we observe that amongst the gSurvey (resp. mSurvey) population,
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Figure 4.2 – Nairobi residential neighborhoods of respondents for a) web-based survey, and
b) SMS-based survey. Spatial information of different administrative areas and neighborhoods
of Nairobi are obtained via [4]. Best viewed in color.

23% (resp. 66%) belong to 18–24 age group, 47% (resp. 26%) belonged to the age category
of 25–34 years, and 25% (resp. 7%) belong to 35–50 age segment. For both surveys, we
did not had a single participant below 18 years old. From these results, it is clear that both
surveys cater to different population demographics. In terms of smartphone ownership,
76% of gSurvey respondents owned an Android-based smartphone, while for the mSurvey
population 50% of them owned one.

As mentioned in the previous paragraph, participants were asked to list the name of their
residential and workplace neighborhood. Of all the users who provided a response, we
geocoded their neighborhood addresses to geographic coordinates (latitude and longitude
pairs). Figure 4.2 shows the spatial coverage of participants’ residential neighborhoods in
Nairobi, for both surveys. Based on the local knowledge of the city, we observe that high-
income neighborhoods (like Karen, Kilimani and Kileleshwa) are represented more in the
web-based survey, when compared to SMS-based survey.

Status quo on road quality

In the online survey, 47% (resp. 30%) of respondents rated road quality as either poor or very
poor in their residential (resp. workplace) neighborhoods (see Figure 4.3a). Consistent with
the online survey, the majority of mSurvey respondents 55% (resp. 38%) rated the quality
of roads in their residential (resp. workplace) neighborhoods, as either poor or very poor.
Figure 4.3a shows the distribution of road quality in residential neighborhoods across the
entire response scale, which clearly highlights that both survey populations find the state of
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Figure 4.3 – Plots showing the histograms for a) Road quality in residential neighborhood,
b) Potholes as a major road nuisance, and c) Impact of road hazards on personal travel
discomfort, for both online and SMS-based surveys.

road quality at places where they live to be dismal, with a more negative perception for the
mSurvey participants.

When survey takers were asked to rate the road quality in Nairobi at large (i.e., not only for
home and work neighborhoods), 45% of online respondents found the existing road surface
conditions to be bad (poor or very poor ). Surprisingly, only 20% of SMS-based respondents
considered the overall Nairobi roads to be in bad condition, with an overwhelming 42%
found the roads in good shape (good or very good). This is in contrast to their perception of
their personal neighborhoods discussed in the previous paragraph. There might be some
aspirational factors at play here; this would have to be investigated in future work.

Of all the online respondents, 79% agreed or strongly agreed that potholes are a major
road nuisance, while 67% of the mSurvey population acknowledged this fact. Figure 4.3b
compares this trend across both populations and the entire scale. 42% of web-based and
29% SMS-based respondents agreed or strongly agreed that speed-bumps are a major road
inconvenience. These findings substantiate our intuition that potholes and speed-bumps are
indeed perceived as road hazards, with the SMS population being less sensitive to this issue.

Impact of road hazards

While considering the impact of road hazards, 65% of gSurvey and 46% of mSurvey respon-
dents considered road hazards to cause either major or severe impact on their personal
travel comfort, as shown in Figure 4.3c. Of all the online survey takers who own a personal
vehicle, 77% of people considered road hazards to have a major or severe impact on their
vehicle’s wear and tear. Note that while asking survey questions in this category, we explicitly
defined “road hazards” as potholes, speed bumps, road surface cracks, abrupt pavement
changes, or uneven road surface conditions.
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Reporting road hazards

Amongst the gSurvey population, 96% of respondents did not know the process of reporting
the road hazard to Nairobi’s city council. For the 4% who were aware of the process, 55%
have ever reported information on a road hazard to the local administration. In contrast, 23%
of SMS-based population were aware of the hazard reporting process, and 59% of them
have reported one or more of these road hazard complaints.

Furthermore, in this category we also asked respondents about their preferred choice to
report road hazards in Nairobi, even if they had never done it before. While asking this
question in the online survey, users were given the freedom to choose more than one option
as their response. We found that 70% of respondents chose mobile application as their
preferred choice, while the second option was to report hazards via social media channels
such as Twitter and Facebook (56%).

In contrast, for the SMS-based survey, we formulated this question as a ranking question,
where users were asked to rank their top-3 preferred choices. Due to the lack of ranking
feature in Google Forms, we formulated this question in the online survey as a multiple choice
question with multiple responses. For their top preferred choice, only 4% and 26% of respon-
dents chose mobile application and social media respectively, while 43% of respondents
choosing a personal visit to the city council as their top choice to report hazards in Nairobi.

These results point towards a clear difference in the populations; the SMS respondents
are probably making their choices based on their most common interaction practice with
government (face-to-face) in combination with lower degrees of mobile internet connectivity.

Free-form user comments and feedback

While conducting the online survey, respondents were given the option to voice their opinion
and leave comments towards the end of the survey. It was not possible to provide that
option to the mSurvey respondents due to the SMS inherent nature on how the survey was
conducted. Out of 442 gSurvey participants, 101 left feedback encompassing different topics.
We used topic modeling to perform basic content analysis and discover underlying topics
from user comments. We used Latent Dirichlet Allocation (LDA) model [31], where each
user comment was treated as a single document. After experimenting with different model
parameters, the resultant topics did not provide any clear insights due to data scarcity.

As an alternative, we manually coded each comment in order to reveal common concepts
and themes. We found that comments varied from general praise for the survey; personal
commentary on the current state of traffic situation in Nairobi; negligence and the lack of any
hope for a visible feedback from the local city council; and general advice on how to improve
the existing situation. In the words of few users, here are some comments we find insightful:
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“Speed bumps are fine as long as they are marked so you don’t just “discover” them
with your head on the ceiling and stuff flying in the car. Look at the roads around the
hospitals. I am sure a patient is half killed before they even get to the hospital for
treatment ...”

“The state of our roads is dismal at best. Networks that were designed for a 90’s
population are being used, unchanged in the second decade of the 21st century ”

“Road hazards is a major cause of road accidents in Kenya that should be addressed.”

“Good job, keep it up. I look forward to seeing a site where I can report hazards and
visualize whether the report has been received or not by the relevant authorities, and
track of whether reported hazards are being fixed or not.”

4.4 Mobile Application

In developing cities, the lack of reliable infrastructure, limited connectivity, and inadequate
resources make data collection difficult. Paper-based systems are a perennial favorite for city
and government administrations. In Nairobi, the city council relies on these systems to handle
road quality related complaints as well. However, the reasons that make paper popular are
also its liabilities. These paper-based reporting systems lack transparency, accountability,
and the speed at which reports are handled is very slow, leaving residents frustrated.

As part of our research, we visited the Nairobi city council engineering offices to learn
more about the current reporting system. We found out that residents can use three options
to report road hazards: phone calls, postal letters, or walk-in reports. Once the report is
submitted, they are sent out to the engineering department for assessment. The engineer
goes to the field to assess the hazard reported, takes pictures, documents exact location
and severity, and determines how to best fix the hazard. When the engineer gets back to the
office, they file a request for supplies which takes time to be fulfilled. This process usually
lasts on average between three and six months and in some cases longer before appropriate
actions are taken. We designed our crowdsensing solution to improve this current process.

CommuniSense is a mobile crowdsensing application, build on the Android platform, that is
designed to collect data on road surface conditions in Nairobi (Figure 4.4). It is a relatively
low-cost solution that leverages mobile technology. We chose to build CommuniSense on
Android since it is cost effective, provides rich programmable interface, offers in-built graphics
support and is supported across multiple devices. Using the Android platform, we can collect
rich data including multimedia (images), location (GPS) and a myriad of other sensor data
(accelerometer, Bluetooth, WiFi, etc.) which is not possible via a typical feature phone.
Furthermore, the Android platform automatically optimizes the user interface (UI) experience
on each device, while allowing as much control of the UI on different mobile device types.
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(a) Hazard Report Submission (b) Mapping Hazards

Figure 4.4 – Screenshots of the mobile app showing the sequence of stages for (a) Hazard
report submission, and (b) Mapping hazards (in the map interface, PH stands for Potholes
and SB stands for speed-bumps).

Crowdsourcing the execution of microtasks to a diverse group of people offers unique
advantages when combined with a highly motivated pool of workers. From the previously
discussed survey, we found that the citizens wants to be engaged and are willing to participate
in data collection. As per a travel survey conducted in [79], the mode of daily commutes in
Nairobi is 47% by walking, 29% by matatu or mini-bus, 15% by private auto, 7% by other buses
or shuttles, and 1% by other modes of transportation. This distribution avails a large segment
of commuters that can provide manual reporting via CommuniSense. We are well aware that
our smartphone-based approach presents constraints to our collection methodology in terms
of reaching a much wider audience. However, recent trends in smartphone penetration and
subsidized cost of smartphones in Kenya, demonstrate that they can be used to achieve
sufficient data diversity [148, 204, 205].

This data collection platform provides us with hand-labeled hazard locations for two purposes.
First, the geo-referenced images are valuable to document road hazards when displayed on
a map. Second, we plan to use the geo-located data as training data for future work to detect
and locate hazards using other phone sensor data, as done in other recent work [66, 138, 30].
The mobile application provides users with two reporting options which are described below.

4.4.1 Hazard Report Submission

In this option, users submitted a completely documented report which included the type of
road hazard, its description (including hazard’s severity and road type), a picture showing the
hazard, and its corresponding location (Figure 4.4a). To capture the location of the hazard,
GPS sensor was triggered as soon as the user started the application, so that when the user
submitted the report, we automatically captured hazard’s location.
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While GPS provides accurate location estimates in the order of few meters, it suffers from
few limitations, including urban canyon errors due to bad radio reception in areas surrounded
by tall buildings (applicable in Nairobi downtown) and cold-start problems which result in
inaccurate location estimates when a device is initially switched on. During some initial field
tests, we found that the GPS coordinates in urban areas were in most cases off by 100–250m.
As a result, the mobile application gave users the functionality to update the location of the
hazard (relative to its GPS-inferred location) by clicking and dragging the marker on the map,
as shown in Figure 4.4a.

In Nairobi, mobile data is relatively expensive, and in remote areas the signal strength is weak
to sustain a reliable data connection. Consequently, when the user was done completing the
report they were given two upload choices. Users could immediately submit the reports or
save them locally on the device and upload them later, when reliable mobile data connection
or access to Wi-Fi was available. Note that if the user decided to submit from the field and
the data failed to get to the servers, it was automatically saved locally.

The reason to provide the offline reporting functionality was motivated by an initial discussion
with a small set of commuters who raised concerns over the cost associated with uploading
an image from the field. As a result, we performed image compression as a second mean to
reduce the costs associated with transferring the hazard report. We used Android’s in-built
������ encoding for image compression. When a user took an image, we compressed the
image locally on the device and then sent the compressed image to the backend server for
storage. While compressing images, we took into account the orientation of the mobile device
(portrait or landscape mode) and its native resolution.

4.4.2 Mapping Hazards

The second option (MapIt in short) provided users with a quick way to report the location
of a road hazard. Users were shown a map interface centered and zoomed to their current
location (inferred from GPS). A click on the map prompted a dialog with a list of different
hazards. Once the user selected a hazard name, a marker was placed on the map. As with
the complete reporting, the user could adjust the location by clicking and dragging the marker.
Figure 4.4b shows the data capturing process.

The idea behind this option was to give users the flexibility to report road hazards who were
unable to fully document them during their commute. Drivers and commuters typically have
intimate knowledge of the routes they frequently take and therefore can offer insights on the
road surface conditions at a later time. This is a way to utilize the local knowledge of people
to document road quality conditions in areas they are most familiar with, without requiring
them to go through the process of submitting a complete report.

81



Chapter 4. Crowdsensing Road Infrastructure Conditions

External
API

Data Pre-Processing PHP Server

Bluemix 
Mysql DB

Cloudant 
CouchDB

Data Collection

CommuniSense

Backup Server

OpenStreetMaps, OpenData

Nairobi City Council

Visualization Platform

Data Post Processing
Internal System

E
xt

er
na

l

Other Mobile Apps

Sensor 
Data

Hazard
Images

Hazard 
Reports

Figure 4.5 – CommuniSense Backend Architecture

4.4.3 Backend Architecture

The application was linked to a cloud PHP server that handled user authentication, received
reports, and handled all device to server communications (Figure 4.5). Users were required
to create an account using their phone number. We anonymized the phone number and
other identifying information to maintain user privacy. A unique was generated and
associated with any activity between a user and the server. The hazard metadata was saved
in a MySQL database and images were saved as binary large objects.

4.5 Field Study

To test the functionality of CommuniSense, we conducted a two-week pilot user study. We
performed a limited release of our mobile application to a selected number of participants.
The application was published on Google Play Store but it was not open to everyone, as we
wanted to test the functionality of the app with a limited set of users, before making it open
for everyone. We restricted the access to our app via a private Google Plus community. Only
users who were part of the community had access to the CommuniSense application. To
enroll participants in our study, we emailed 150 users, mostly college students from local
universities and visiting students. Once a participant showed their willingness to be part of
the study, we invited the participant to join our Google Plus group. After joining the group,
participants had access to download and install the application on their devices. To motivate
the users, we promised to award 500 Ksh (equivalent of 5.5 USD) to the top five contributors
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Figure 4.6 – Results from the field study (a) Spatial coverage of user-contributed submissions
for full reports (left), and mapping hazards submissions (right). Regions colored gray do not
have any user contributed submissions. (b) Histogram showing hazard attributes for severity
of potholes (left), and labeling of speed-bumps (right), as reported by field users.

towards the end of the study. The top contributors were chosen based on the maximum
number of legitimate and unique reports covering different neighborhoods in Nairobi.

During our field experiment, of the 150 email invites sent, we had a total of 41 users who
accepted our invitation to join the Google Plus community. Out of those 41 users, 30 installed
the application (20% response rate). During the two weeks of the trial, we had a total of 101
full report submissions and 153 MapIt submissions. Of all the full reports, 62% submission
were of potholes, and the remaining 38% were of speed-bumps. Of all the MapIt submissions,
42% submission were of potholes, and the remaining 58.17% were of speed-bumps.

Out of 101 full reports submitted, 99 of them came from Nairobi county (61 potholes and 38
speed-bumps), while for the MapIt submissions, 109 came from Nairobi county. Figure 4.6a
shows the spatial coverage of the reports from within Nairobi city limits. One can observe that
there are at least a few reports from most neighborhoods. although some of the regions are
missing from our field experiment. Of the 61 full reports of potholes submitted, we observe
that 43% of potholes were rated minor, and 31% were rated either major or severe on the
severity scale, as shown in Figure 4.6b. Note that field users rated the severity of potholes on
a 4-point scale ranging from minor (1) to severe (4). When observing the speed-bumps, we
note that 55% of field users encountered an unlabeled speed-bump (Figure 4.6b).

4.6 Image Verification Experiment

Crowdsourcing offers opportunities for people to supplement their income in developing
countries. However, the openness of access to crowdsourcing platforms often leads to
malicious and spam behavior, and sometimes sabotage. As an example, for the well-known
DARPA network challenge, the winning entry received 80% of malicious submissions [195].
In another example Ushahidi, the crowdsourcing platform for social activism and crisis
mapping, shut down their operations during the 2011 Arab spring due to growing concern
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(a) Potholes (b) Speed Bumps

Figure 4.7 – Sample images collected from the field study. Two random images from our
dataset reported as (a) Potholes, and (b) Speed Bumps. Images showing faces and license
plate numbers have been blurred or masked. Best viewed in color.

that governments official might use the platform to track the activities of people [143]. For
most of the tasks available on crowdsourcing services like Mechanical Turk, Crowdflower,
or MobileWorks, financial incentives need to be in place to motivate the worker population
to participate. However, when the crowdsourcing task involves monetary incentives, users
might put in only minimum effort to secure the financial reward. As a result, quality control in
crowdsourced data cannot be neglected. This presents several research challenges.

In our case, we had to verify that a) a contributed submission indeed depicted the road hazard
as reported by the user, and b) it was located at the claimed location. The second verification
task is conceptually feasible as the location information was automatically captured via the
GPS location sensor most times. However, the authenticity of the reported road hazard and
its details is more subjective to evaluate. We present a crowdsourced approach for this in the
next subsection.

4.6.1 Crowdsourcing Image Verification

We designed and conducted a crowdsourcing study to assess whether the images obtained
via the mobile application can display road hazard properties. As done in previous chapters
(Chapter 2 and Chapter 3), we used MTurk for online crowdsourcing. We chose US-based
“Masters” workers with at least 95% approval rate for historical HITs. For each HIT annotation
task, the annotators were shown one image and asked to classify the image as either pothole
or speed-bump. Given the annotators’ choice, they were further asked to describe the chosen
hazard. If the user categorized an image as a pothole, users were asked to further describe
it in terms of size and severity. For size, users were given the option to choose from small,
medium and large; for severity, users were given a four-point scale ranging from minor (1),
moderate (2), major (3) and severe (4). If the user chose speed-bump as the option we
asked them to describe its size, number of bumps, and whether the speed-bump was labeled
or painted. If the user was unable to classify an image as either containing a pothole or a
speed-bump, then an option was given to mark whether the image contained both a pothole
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and a speed-bump; or showed uneven or cracked road surface; or the image showed a
smooth road surface. For the MTurk experiment, we randomly chose 50 images from the
set collected in the field experiment. We collected 10 different annotations for each image.
Consequently, we collected a total of 500 responses for every question. Every worker was
reimbursed 0.15 USD per HIT (i.e., per image)

The questions asked to describe the hazard were identical to the questions shown to users
reporting from the wild i.e., using our mobile application. For these questions, no explicit
definitions of a pothole or speed-bump were provided, so online annotators needed to rely
on their internal representation. All the images shown to the users were anonymized. To
the best of our ability, we avoided images where one could potentially identify faces or skin
color, to protect the privacy of individuals and reduce any potential bias while characterizing
the road quality. Moreover, we ensured that images that showed the license plate numbers
or any other information that could explicitly reveal the identity of the city under study were
masked e.g., an image showing street banners with the word Nairobi in it. Image examples
are shown in Figure 4.7.

4.6.2 Results

In this section we present the results of our image verification experiment.

Completion Rate

For the MTurk experiment, we had a pool of 39 workers who responded to our HITs. For a
total number of 500 HIT assignments available in this experiment, we observe that a typical
worker completed an average of 13 HITs, while they could potentially undertake 50 HITs.
One worker completed the highest number of 41 HIT assignments. We observe a typical
heavy tail-like distribution in HIT completion times (mean: 37.8 secs, median: 21 secs, max:
290 secs). Each HIT was allocated a maximum of 5 minutes for completion.

Image Label Quality

Aggregation was used to create a composite score per image given the 10 different responses
for each question. We explore two different aggregation techniques. The first one is the major-
ity vote where we computed the majority score given the 10 annotations for each image. The
second one is the median method, where we computed the median across the 10 annotations
for each image. Table 4.1 lists the summary statistics for both aggregation methods. For
each aggregation technique, we computed the total number of correctly classified images for
both road hazards where the consensus between the MTurk population and the field user
matched. Out of 50 images which were verified via MTurk, 34 were verified as potholes, and
12 as speed-bumps, where the MTurk population and the field user labeled the image in the
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Method Potholes Speed Bumps
Majority Voting 34 (100%) 12 (75%)

Median 34 (100%) 12 (75%)

Table 4.1 – Table showing summary statistics for aggregation methods. For each method,
we show the total number and percentage (shown in brackets) of correctly classified images
for both road hazards i.e., where the ratings between the MTurk population and the field
experiment were identical.

Min (Max) Mean (Median) ICC(1, k)

Size of potholes 1.0 (3.0) 2.16 (2.0) 0.90
Severity of potholes 1.0 (4.0) 2.26 (2.0) 0.91
Size of speed-bumps 1.0 (3.0) 1.92 (2.0) 0.73

Table 4.2 – ICC(1, k) scores of hazard attributes (All values were statistically significant at
p < 0.01.) Mean and median (in brackets) values of each hazard attribute is also shown.

same category (see Table 4.1 and image examples in Figure 4.7.)

In terms of agreement with the mobile app user, 92% of images were verified with the
same label as reported by the user, i.e., 46 images out of 50. Four images were labeled
as ambiguous. Based on manual inspection, we found that two out of those four images
contained both a pothole and a speed-bump (Figure 4.8a shows an example); while the
remaining two images contained an unlabeled speed-bump which was not clearly visible,
and hence was classified as ambiguous (Figure 4.8b demonstrates an example of this type).

Now we turn our focus towards assessing the reliability of annotations for hazard attributes
(e.g., severity of potholes, size of speed-bumps, etc.). Note that in addition to asking users
about image category, we also asked them to describe the attributes of the chosen hazard. As
done previously, to measure the inter-annotator consensus for hazard attributes, we computed
the intraclass correlation (ICC(1, k)), given the 10 annotations per image. Table 4.2 reports
the ICC(1, k) values for all correctly verified images (i.e., 46 out of 50 images). Table 4.2
lists the ICC values for three key hazard attributes: size and severity of potholes, and size
of speed-bumps. We observe high inter-rater reliability for all hazard attributes, with all the
scores being statistically significant (p-value < 0.01). Similar results were obtained for other
hazard attributes. These results highlight the potential of using a crowdsourcing approach as
means to verify the authenticity of the reported road hazard and its attributes.

4.7 Visualization Framework

Our visualization framework is a web-based application which provides a layered and an
interactive (zooming and map navigation) interface, where geo-localized information from
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(a) (b)

Figure 4.8 – Misclassified images where the consensus differed between the MTurk population
and the field user. Images showing faces and license plate numbers have been blurred or
masked. Best viewed in color.

varied data sources is overlaid on top of the base map layer in an interactive fashion. It was
developed using existing open-source web technologies built on top of OpenstreetMap (OSM)
data. The framework follows a layered architecture where the underlying base layer (or map
layer) consists of map data from OSM, while additional layers are overlaid on top of the base
layer. Using this framework, we visualize the location of road hazards in Nairobi in Figure 4.9.
The location of road hazards (potholes and speed-bumps) was contributed by the field users.

The visualization platform is data agnostic and any spatial information can be rendered as
an additional layer. Layers can be rendered in their raw form (latitude/longitude pairs) or
visualized in processed form (e.g., heatmaps), as in Figure 4.9. Moreover, the platform has
been designed to handle large-scale datasets. The framework has been presented using
Nairobi as the use case but it can be easily extended to any other city with minimal changes.

Besides the purpose of the visualization interface to provide a platform for local Nairobians
to browse through the crowdsourced data, we believe that it can serve as a platform to
engage citizens, increase awareness and initiate a public dialogue on the state of road
quality in Nairobi. The visualization platform was designed to give the citizen-contributed
data back to the community which helped create the data at the first place. In the process,
the platform could facilitate a reliable, independent source of information about potholes
and speed-bumps that can be used to alert municipal officials and allows citizens to monitor
progress in resolving these hazards.
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Figure 4.9 – Visualization Framework

4.8 Discussion

In this section, we first describe the technical challenges and lessons learned while de-
ploying CommuniSense in Nairobi. Then, we assess the potential of social media as an
alternative medium to obtain road hazard datasets. We conclude this section by discussing
CommuniSense’s possible role in promoting citizen engagement in Nairobi.

4.8.1 Technical Challenges

During the field study, we faced three major technical issues. First, due to the myriad of
affordable grey market devices, we found that certain devices did not handle the mapping and
location functionality well. As a result, users found it difficult to interact with the location marker
on the map (Figure 4.4a). Second, we observed that a significant number of smartphones
were still using older versions of Android (2.2 and 2.3). These versions required a different UI
design, when compared to the Android version (3.0 and above) on which CommuniSense
was developed. Although, Android provides backward compatibility, certain devices were
not able to render the UI properly, causing inconvenience to users when interacting with the
app. Third, for some user-submitted reports, the ������ compression caused loss of image
quality, dependent on the way the device was oriented (landscape vs. portrait mode).

We used Google Play store to deploy CommuniSense. The processes associated with
performing a limited release of the app using Google Play store, proved to be daunting for
non-technical users. The process required participants to be added to a private Google Plus
(G+) community. Access to G+ requires users to have a GMail account and activate alerts
from their G+ profiles. Note that only those users who were part of our private G+ community,
were given access to the app. Many users complained of not receiving the G+ invitation, only
to discover they had not activated alerts on their G+ profiles. Even when the user successfully
became part of the G+ community, they cannot search and install the app via the play store.
The only way to install the app is to click Install on the web-interface, which then prompted

88



4.8. Discussion

the app to be installed on the device automatically (only when the device was connected to
the internet). This is not the typical way users install mobile apps and so this process created
confusion among early users. We believe that more work needs to be done to simplify, and
streamline the process of conducting limited app release distribution via Google Play and
other app distribution channels.

4.8.2 Comparison with Social Media

As discussed in Section 4.2.1, there exist systems which allow citizens to report civic issues
(e.g., SeeClickFix [17], FixMyStreet [16], Citizens Connect [1], etc.), but none of these
systems exist for Kenya. Due to the lack of any real-time traffic monitoring and broadcast
systems, one of the systems which has gained popularity in Kenya and Nairobi in particular, is
ma3route [6]. ma3route is a mobile and web platform that allows citizens to report and share
information on existing traffic conditions in their city. ma3route publishes all user submissions
on their Twitter channel [6]. As of writing (August 2016), ma3route has more than 495K
followers and has posted 506K tweets that contain in excess of 83K images and videos.

To examine the potential of social media as an alternative medium to obtain road hazard
datasets, we manually coded the most recent 300 tweets from ma3route’s Twitter feed (most
recent date: February 2, 2014). We found that 45% of tweets contained information on traffic
conditions and jams, 7% described road accidents, 8% of tweets reported street protests
and how they were impeding the traffic flow, 2% of tweets reported road hazards, and the
rest 38% discussed other topics (e.g., corruption, high fuel prices, suggestions to improve
infrastructure, etc.) Out of 300 tweets, 81 (27%) of them contained an image. Only seven
tweets in our sample contained information on road hazards, and out of those seven tweets,
only three of them (1%) posted road hazard information with an image. Based on these
findings, even though Twitter as a data collection medium looks promising, but it currently
lacks the spatial coverage and topical focus offered by specialized mobile crowdsensing. We
plan to investigate the role of Twitter to collect road hazards data, as part of future work.

4.8.3 Citizen Engagement

Nairobi residents have been frustrated and lost faith in the city council’s ability to improve
road conditions. The words of few users highlight this sentiment (obtained via online survey
as described in Section 4.3):

“Anything to do with city council would require a major overhaul of the personnel.
Otherwise this would not be possible.”

“And I do not trust that the city council would take our complaints seriously. They first
need to fix the roads properly instead of patching them up year after year!”

“Actual or visible feedbacks would motivate me to report even paying some costs.”
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“I would only report road issues if I thought something would be done about it. I am
not sure that’s currently the case.”

These sentiments are shared among residents in many developing cities. We believe that the
city council could benefit by leveraging the data collected by CommuniSense. The design
of this application provides a channel to gather direct input from citizens on the condition
of urban infrastructure. This would save time and money involved in manually documenting
road hazards, as currently done by government engineers. The platform would also offer
a mechanism to engage users into reporting hazards as well as providing accountability
structures to show residents that their tax money is being used effectively.

4.9 Conclusion

In this chapter, we examined the use of mobile crowdsensing to document Nairobi’s road
quality information. First, we presented the key findings of a road quality survey in Nairobi. The
survey examined key local issues including weekly travel practices, perception of current road
quality conditions and their impact on daily travel experience. Second, we developed a mobile
crowdsensing application to locate, describe, and photograph road hazards. We tested the
application through a two-week field study amongst 30 participants who documented a total
of 254 road hazards from different areas in Nairobi. Third, we demonstrated the use of online
crowdsourcing to verify the authenticity of user-contributed reports i.e., to verify whether
contributed images from the field indeed depicted road hazards. Overall, CommuniSense
advances the research in the domain of citizen-based reporting, by integrating it with online
crowd-based verification for quality control.

To conclude, we believe that the effectiveness of existing governance systems can be
substantially enhanced by applying mobile crowdsensing solutions, which facilitate real-time
data collection, categorization, verification, and dissemination. As developing countries start
looking forward towards improving social welfare and quality of life, it is important to funnel
meaningful feedback from community stakeholders on local needs [34].
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5 Crowdsensing of Urban Nightlife
Patterns

5.1 Introduction

UNDERSTANDING nightlife, i.e., how cities and their inhabitants interact at night, is a
relevant issue to multiple stakeholders including city officials, business associations,

police departments, health and educational authorities, and NGOs. A vibrant nightlife scene
can be simultaneously seen as an urban development strategy, an economic opportunity,
a source of health and safety risks, and a way in which citizens co-create and appropriate
the urban space. [212]. Young people, including older teenagers and young adults, are key
actors of nightlife, and as such become the focus of many of the above stakeholders, with
respect to the design of strategies and policies that encourage the appropriation of the urban
space while promoting healthy behaviors.

We posit that Ubicomp research can contribute to the understanding of nightlife as experi-
enced by young people, who happen to use mobile and social technologies day and night.
This can provide social and health scientists with ecologically valid, in-situ contextual data
that can provide information about venues, mobility, activities, and social patterns, with high
spatial and temporal resolution, and potentially at scale. Moreover, ubiquitous computing
adds the possibility of collecting sensor data and media in addition to more traditional mobile
survey based data (e.g. via experience sampling done in a number of disciplines including
social psychology, epidemiology, etc).

In cities, mobile crowdsensing provides the possibility to study questions related to popula-
tions and their environments that have been elusive in the past. The engagement of mobile
crowds to collect everyday life data using smartphones has followed two main directions
in the literature. One approach relies on crowdsensing, i.e., the use of sensors in mobile
devices to collect data (either at pre-defined regimes or opportunistically) without requiring
human intervention [115, 45]. While many sensor data types (location, accelerometer, WiFi)
can be reasonably processed using data coming from smartphones in pockets or bags,
other sensors like camera and microphones suffer from it. The second trend in the literature
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involves requesting explicit actions from crowdworkers, including photo-taking and audio
recording, where the sensors are unoccluded for data collection [112, 227, 186].

In this chapter, we present the development and implementation of a mobile crowdsensing
study, called Youth@Night, to capture and examine the nightlife patterns of youth populations
(aged between 16–25 years) in Switzerland. The study was funded by the Swiss National
Science Foundation and consisted of a multidisciplinary team from Addiction Switzerland,
Research Institute (Emmanuel Kuntsche and Florian Labhart), Department of Geography
at the University of Zurich (Sara Landolt and Jasmine Truong), and the Social Computing
Group and the development team at Idiap Research Institute (Flavio Tarsetti, Olivier Bornet,
and Hugues Salamin).

For the study, we developed two smartphone applications that captures data on where young
people hang out, their social context, and their activities during night time. The field study
was conducted in two Swiss cities (Zurich and Lausanne), which are recognized as the two
national nightlife hubs among young people in the German and French-speaking regions
of the country, according to city officials [132, 145]. The study served two key objectives.
First, to capture the heterogeneity and complexity of going out behavior during night time:
the places where youth spend their weekend nights (physical mobility), the activities they
perform (consumption of alcohol), and the people they hang out with (social context). Second,
to examine the feasibility of using mobile sensor data to automatically characterize alcohol
consumption behavior of young adults in an urban, in-the-wild nightlife setting. Our research
questions are the following:

RQ5.1: How can mobile crowdsensing be used to study nightlife patterns of urban youth
populations? How can the collection of mobile videos be integrated as part of this
crowdsensing task? (RQ5.1 maps to thesis’s RQ1)

RQ5.2: What are the places and social contexts in which young people hang out? How
is the use of private and public places distributed among youth? (RQ5.2 maps to
thesis’s RQ1)

RQ5.3: Can alcohol consumption be automatically inferred from mobile sensor and log data
in an uncontrolled, real-life setting of youth’s nightlife activity? If so, what sensor
features are more predictive of alcohol consumption? (RQ5.3 maps to thesis’s RQ4)

RQ5.4: To what extent do automatically extracted ambiance features represent the crowd-
sourced annotations by both in-situ observers and external online observers? Do
crowdsourced annotations by external observers correspond to in-situ self-reports?
(RQ5.4 maps to thesis’s RQ2 and RQ3)

The chapter makes the following contributions:

1. We developed two custom Android-based smartphone applications: a survey logger and a
sensor logger application. These applications respectively allowed participants to respond
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to various surveys using a participatory approach, while at the same time collect sensor
and log data in a non-intrusive and privacy-preserving manner. For each place visit (check-
in), the application also requests users to self-report their alcohol consumption (including
type, size and alcohol volume) and capture a video providing a panoramic view of the
checked in place.

2. We conducted an “in-the-wild” study with more than 200 participants aged 16–25 years
old in two Swiss cities (Zurich and Lausanne), which are recognized as the two national
nightlife hubs among young people in the German and French-speaking regions of
Switzerland. Each participant contributed data through the use of the mobile applications
over multiple weekends between 8PM and 4AM on Friday and Saturday nights for three
months (Section 5.3). As part of the design, we used a data-driven approach to define
recruitment zones based on their nightlife activity using Foursquare data, to increase the
likelihood of finding potential study participants.

3. The crowdsensing study resulted in a collection of close to 1,400 place visits accumulating
over 8 million sensor data points over 2,934 user-nights, and 894 videos that spread
across different place categories, and diverse social and ambiance settings. Private places
were self-reported to be more bright, and less crowded compared to public places. Bars
and clubs were reported to be relatively more crowded, louder, and darker compared to
the rest of public place categories.

4. We build a machine learning methodology to infer whether a participant consumed alcohol
in a given night, based on sensor and application logs, and determine what are the most
informative phone-derived cues. We found that accelerometer data is the most informative
single cue, and that a combination of features results in an overall accuracy of 76.7%.

5. Using the video data, we examined the reliability of automatic feature extraction relative to
different crowd-workers (in-situ and ex-situ). Automatic feature extraction was performed
to infer the ambiance (i.e., loudness and brightness) of documented places at scale.
We found that these features were reliable with respect to the video content, but that
the videos did not always reflect the place ambiance reported in-situ. We found that
automatically extracted ambiance features described more accurately the perception of
ex-situ annotators than that of in-situ participants.

We believe that the developed methodology provides an attractive opportunity to improve our
current understanding of patterns of physical mobility, activities, and social context of youth
population, as they experience nightlife.

The chapter is organized as follows: Section 5.2 presents a review of related work along
multiple research axes. Section 5.3 outlines the design of the two mobile applications, the
recruitment of participants, and the protocol as part of the crowdsensing study design. The
mobile application was developed by Flavio Tarsetti and Olivier Bornet, while the recruitment
was carried out by a team of research assistants, led by the partners in Addition Switzerland
and University of Zurich. Section 5.4 introduces the data collection framework to gather
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different data types including questionnaires, in-situ surveys, sensor and media (video)
data. Section 5.5 presents a descriptive analysis of the questionnaire and survey data to
understand the demographics of the participants, the places they visit and the contextual
factors surrounding their place visits. Section 5.6 proposes a machine learning pipeline to
automatically infer a binary state of alcohol consumption for single nights, describing the
various steps including the pre-processing of sensor data, feature extraction and regression
analysis. Section 5.6 was a joint work with Trinh Minh Tri Do of Idiap Research Institute.
Section 5.7 uses the video dataset to investigate the potential of automatically extracted
features to estimate the loudness and brightness of places at scale. Section 5.7 was a
joint work with Joan-Isaac Biel of Idiap Research Institute. Section 5.8 describes the overall
experience of participants during the study including compliance with the video recording
task, and their experiences as shared on the qualitative interviews. Qualitative interviews
were conducted by Jasmine Troung and Sara Landolt. Finally, we discuss and conclude with
a summary of findings in Section 5.9. This chapter outlines some of the research that has
been published here [181].

5.2 Related Work

Given the multifaceted nature of our work, we review the related work along four domains:
mobile sensing for data collection and its applications to pervasive healthcare, mobile crowd-
sourcing, computational modeling of places, the intersection of urban nightlife, youth studies
and alcohol epidemiology.

5.2.1 Mobile Sensing for Data Collection

In mobile sensing, few groups worldwide have collected mobile sensor data that is at the
same time rich, longitudinal, and that covers a large population. One of the earliest work was
done as part of the MIT’s Reality Mining initiative [65]. Another was the Nokia Mobile Data
Challenge in Switzerland, which showed the feasibility of collecting continuous smartphone
data from 200 users over one year [115, 125]. Most mobile sensing studies have focused on
gathering sensor data including accelerometer, GPS, WiFi, Bluetooth. Other studies have
also collected perceptual data including audio and still images for place characterization [46,
214, 130], life-logging [91], visual perception [186], etc. In contrast, fewer crowdsensing
studies have collected visual data in the form of mobile videos. A recent study has proposed
a crowdsourcing framework to acquire and transmit mobile videos under resource constraints
for disaster response scenarios [200].

5.2.2 Mobile Sensing for Ubiquitous Healthcare

Research has also started to examine the role of smartphones and wearable devices to
monitor health-related variables. In these domains, the recognition of stress levels has been
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an area of active research. In StressSense, the authors identified stress rate from human
voice recorded using smartphones with an accuracy of 76% and 81% resp. in outdoor and
indoor environments [129]. Another stress related study was conducted using five days of
data from 18 participants in [180]. Using features derived from a variety of in-built smartphone
sensors including accelerometer, mobile phone usage (call, SMS, location and screen events),
their method achieved an accuracy of 75% in classifying the stress levels of participants
(under stress or not). Recently, the authors have developed a stress model (called cStress),
to establish a gold standard for continuous stress assessment in the mobile environment [92].

Another application which has received attention in ubiquitous healthcare research is the
detection of smoking gestures [196, 19, 156]. In [196], Tang et al. conducted a study with six
participants, all wearing activity monitor devices in their wrists data, to automatically detect
puffing and smoking behavior. The authors developed a detection model incorporating tem-
poral and high-level smoking topographic features. In a similar work, Parate et al. proposed
to capture changes in arm orientations to detect smoking gestures in real-time [156].

In the field of alcohol consumption detection, there have been relatively few works. In [105],
the authors proposed a phone-based system to detect the gait anomalies of walking under
the influence of alcohol. Based on accelerometer data from three participants, the authors
extracted gait features to differentiate intoxicated walking patterns from regular patterns.
In the domain of drunk driving detection, a study on early detection of drunk driving using
a smartphone was described in [51]. Using accelerometer data, the authors developed a
mobile application to detect whether the driving patterns match with the cues for drunk
driving gathered from real driving tests (such as lateral acceleration, lane positioning, speed
control, etc.). To support people with alcohol addiction, Wang et al. proposed SoberDiary, a
phone-based support system to help users monitor and and manage their alcoholic intake
and remain sober in their daily lives [215]. The study was conducted on 11 clinical patients
over 4 weeks, using a bluetooth-enabled breathalyzer that was paired with smartphones. The
authors found SoberDiary system helped patients reduce their alcohol consumption.

5.2.3 Mobile Crowdsourcing Platforms

The wide spread adoption of mobile devices has lead to the emergence of mobile mar-
ketplaces where mobile users are paid to perform tasks in the physical world. In these
marketplaces, mobile users are asked to perform tasks which are characterized by users’
physical mobility (location-based) or their real-time nature (e.g., surveys, performing house-
hold chores, etc). Mobile marketplaces are different from online crowdsourcing platforms like
Mechanical Turk or CrowdFlower, which do not impose these physical constraints. Notable
mobile marketplace platforms include GigWalk [5], TaskRabbit [11], and FieldAgent [15]. Fol-
lowing the rise of these platforms, recent research has examined the practices and dynamics
of mobile marketplaces [141, 197, 198]. On one hand, these platforms provide relatively easy
access to on-demand workforce (both online and mobile), however it is difficult to recruit

95



Chapter 5. Crowdsensing of Urban Nightlife Patterns

crowdworkers using these platforms for a sustained period of time. Consequently, in some
of the large-scale mobile sensing campaigns including in our current work, researchers
themselves recruit participants to gain a more fine-grained control on demographics, location,
study duration, etc. [46, 115, 65].

5.2.4 Automatic Place Characterization

Previous work has modeled places automatically using data obtained from mobile sensors [46,
214]. In [214], the authors used automatically extracted features from audio signals to infer the
level of occupancy, human chatter, music, and noise of places. In [46], the authors addressed
the task of place categorization based on the automatic processing of opportunistically
captured audio signals and still images. In this regard, our work is closely related to work
by Chon et al. [45], who carried out a two month deployment of a crowdsensing platform
to collect 48,000 place visits from 85 participants in Seoul, to examine the coverage and
scalability of place-focused crowdsensing.

Our research differs from prior work in three aspects. First, in addition to capturing similar
mobile sensor modalities, we collected videos of places combined with location and time
based surveys to gain additional context. As we show, videos provide a highly detailed window
into the physical and social experience of the participants, closer to “being there” than what
other sensors can provide. Second, the place data was collected using a mix of opportunistic
and participatory sensing, as opposed to a purely opportunistic approach [46, 214]. Our
methodology facilitated the continuous collection of sensor data in addition to in-situ survey
and media data to enrich the contextual information about places. As we explain later, the
intentionality of our crowdsourcing task also allowed to study issues related to the perception
of social acceptability of mobile video recording in everyday life. Finally, our study covers
a much larger geographic area than [45, 217, 214], including two cities with linguistic and
cultural differences, but also many areas around each city.

5.2.5 Urban Nightlife, Youth and Drinking

In urban studies and human geography, researchers acknowledge that little attention has been
given to understanding the dynamics surrounding youth experiences and urban nightlife [212];
this is certainly so in Ubicomp research [201, 89, 35]. Activities during daytime have often
been the primary source of investigation to understand topics ranging from human mobility
and experiences, to how spaces are used and regulated in urban areas [134, 43, 192, 94,
191]. In these domains, urban public spaces often are seen as ‘adult space’, where young
people and their practices are seen as dangerous, threatening the ‘adult’ order in public
spaces as well as the safety of others [210, 192, 211]. Youth are often stereotyped as “trouble-
makers” creating public disturbance and disorder particularly during night time, resulting in
increased surveillance and regulations [210, 211, 212]. Less attention has been given to
understanding the dynamics surrounding youth experiences in urban spaces at night [212].
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There is a significant body of work at the intersection of youth, drinking, and urban spaces,
where researchers have examined drinking places including pubs and bars [63], house
parties [99] and public spaces [53]. Alcohol use is commonly considered a social activity,
especially among adolescents and young adults, where peers are seen as the most consistent
and strongest factor in the initiation and maintenance of alcohol use in adolescents and
young adults [158]. From the perspective of young people, research has also studied various
aspects of alcohol consumption, ranging from “pre-loading” (a phenomenon where youth
consume alcohol before going out for the night), to health risks associated with excessive
drinking [212]. Recent in situ studies suggest that young adults tend to drink more alcohol
when in company than alone [116], that the number of persons present tended to be higher
in heavier drinking nights [122] and that the higher the number of drinks consumed at a given
time during the course of the evening [199]. Other factors such as gender, composition of the
group, activities, or drinking norms are also known to influence alcohol use among groups
of peers [223, 153]. To our knowledge, no previous study has investigated the link between
engaging in alcohol use and an automatic measure of social context.

Only a few studies have examined the link between alcohol use and the number of drinking
locations visited. For example, in a study of persons arrested for drunk driving, Wieczorek et
al. found that multi-location drinkers had higher blood alcohol levels at arrest than those who
drank at a single location [219]. More recently, Dietze and colleagues reported that about
two third of young adults visited at least 2 different locations, while 39% drank in only one
location on their last big night out [57]. However, since these studies endorsed a public health
perspective, they focused on the potential harms related to the quantity of alcohol consumed
through self-reported data. To the best of our knowledge, ours is a first study which examines
the link between automatically measured mobility and drinking behavior.

Self-reported data is potentially prone to recall biases. In the alcohol research literature, it has
been shown that people forget to report about half of their actual consumption. In Switzerland,
each person drinks about 3.4 liters of pure alcohol annually as per the survey data, while
the alcohol sales data indicate an average of 6.8 liters of alcohol consumption per person
annually [118]. In [118], the authors reported statistically significant differences between
self-reported retrospective alcohol consumption and mobile phone based self-reports among
young people. As a result, the feasibility to automatically characterize drinking behavior using
smartphone data presents unique opportunities to study the urban nightlife of young adults.

In contrast with these works, our work captures the heterogeneity and complexity of the going
out behavior of youth during night time using mobile crowdsensing, which to the best of our
knowledge has not been studied in urban studies and human geography.
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5.3 Mobile Crowdsensing Study Design

In this section, we describe the design of our crowdsensing study, including the development
of two mobile applications, the specific urban context and protocol of the field study, and the
recruitment of participants.

5.3.1 Mobile Application

We developed two custom Android-based smartphone applications: a survey logger and
a sensor logger application. These applications allowed participants to respond to various
surveys, while at the same collect sensor and log data in a non-intrusive and privacy-
preserving manner. We used Android 4.0.3 version as it represents compatibility with over
95% of the total Android-based phones at the time of design [55]. During our recruitment
campaign, we did not encounter any user having an Android phone below this version.
Throughout the chapter, “weekend nights” refer to Friday and Saturday nights between 8PM
until 4AM the following day. Below, we describe these two applications in detail.

Survey Logger: The survey logger application let participants respond to various surveys in
real-time on weekend nights. Surveys include place survey, video survey, and drink survey.
We describe the questions asked in these three surveys in the next section. Figure 5.1 shows
the screenshots of the application. Due to the multilingual Swiss population, the mobile
interface was designed in three languages (English, German, and French), where users
could choose their language of choice.

Sensor Logger: We developed a second application to collect different types of sensor and
log data. It was designed to run as a background process without any user interaction. As
with the survey logger application, all data was recorded only during the weekend nights in a
non-intrusive manner. By design, it did not appear in the list of running applications on the
user’s device. So, if users wanted to close the service, they had to manually terminate the
application. We describe the type of data collected using the sensor logger in Section 5.4.

5.3.2 Study Context

Location: The study was conducted in two cities in Switzerland, namely Zurich (German-
speaking city with population of 400,000) and Lausanne (French-speaking city with population
of 140,000). These cities were chosen to capture regional diversity and because both cities
are the two major hubs for nightlife activities in Switzerland [132, 145]. Switzerland has a
national population of 8 million people, i.e., about the same as New York City. Zurich and
Lausanne are the first and fourth largest Swiss cities. The main nightlife areas in both cities
are walkable, and many of them are in close physical proximity. Both cities provide excellent
public transportation including during night time [187]. Due to these factors, both cities receive
an influx of youth from neighboring towns and even other cantons on weekend nights.
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Figure 5.1 – Screenshots of the survey logger mobile application.

Nightlife and Youth in Switzerland: Nightlife for youth in Switzerland reflects patterns that
are common in other western European countries. First, young people (especially those
living on their own) often spend part or all of the night at home. This is partly related to
the high cost of going out: the typical cost of a night out can easily reach 50 Swiss Francs
(CHF), equivalent to 52 USD. Based on a pre-study survey conducted with 367 potential
study participants (16–25 yo), we found that on average, young people spend 45 CHF per
night when going out, with 17% of respondents reported to be spending more than 75 CHF
per night. Note that unlike the US, the legal alcohol purchase age in Switzerland is 16 years
for beer and wine and 18 years for spirits. Second, youth in Switzerland also spend part of
the night in public spaces other than bars, restaurants, or clubs. This includes public squares,
parks, train stations, but also streets and areas outside nightclubs [53]. It is important to
note that drinking in public spaces (an activity associated with nightlife) is not criminalized
in Switzerland. Third, young people (below 25 years old) are allowed subsidized travel from
7PM on all forms of public transportation, which encourages the use of public transportation
and reduces the risks associated to driving cars.

In summary, this setting provides opportunities to examine the physical mobility, activities,
and social patterns of young Europeans as they experience various aspects of nightlife.

5.3.3 Recruitment of Participants

For our field study, we recruited participants in Zurich and Lausanne, all between 16 and
25 years old. The field study was planned to run from September to December 2014, and
participants were recruited in the month of September 2014. This period was chosen as it
represents the time of the year after the summer holidays and before the Christmas break.
For recruitment, young people on the streets were approached by our recruitment team on
weekend nights between 8PM and midnight. Recruitment was done by a team of research
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assistants in groups of two to four people. Before the first recruitment session, the assistants
got familiar with the smartphone application, practiced their introduction speech, and were
reminded of the recruitment process. An authorization from the city authorities was required
to conduct recruitment on the streets. In order to identify the recruitment zones to help the
assistants, we used a place dataset extracted from Foursquare [182]. Using the Foursquare
data, recruitment areas were identified based on their nightlife activities (e.g., bars, clubs,
public parks, streets, etc.) which were further discussed and validated with local experts
(social workers and police.)

During the recruitment process, teams of research assistants carried a field diary to document
their experiences. We manually coded these notes and found some common themes. First,
our choice to wear a lime-green t-shirt having the study logo, worn by all recruiters, intrigued
passers-by and assisted the team to engage in conversation. Furthermore, it legitimized the
recruiters approaching people on the streets. Second, recruiters observed that the study
payment of 100 CHF was a key factor for participants aged between 16 and 18 years old.
Third, the recruitment team noted that young people were typically going out earlier than
their older counterparts. Fourth, our team noted that many iPhone users appeared frustrated
and even mentioned being “discriminated” as they appeared quite interested to participate
in the study. Fifth, the weather played a role during the second week of recruitment: few
people were going out as it was raining during that week, which reduced the pool of potential
participants. We believe that these findings could be useful to Ubicomp researchers recruiting
participants for similar crowdsensing campaigns.

5.3.4 Study Protocol

We ran our field field study from September to December 2014. Before the study began,
participants downloaded the two mobile applications (survey and sensor logger) and installed
them on their own phones. During a weekend night, whenever participants were in a new
location, they were asked to describe the place, its environment, and record a short 10-
second video to capture their current environment using the survey logger application. While
participants were at a given place, they were also asked to document their drinks (alcoholic
and non-alcoholic), and describe the people they were with. In parallel, sensor data was
continuously collected in the background using the sensor logger app. Note that we did not
perform any real-time place detection on users’ mobile devices, so we had no means to
know if the participant had indeed moved to a new location during the night. It was left to the
participants to self-report if they had moved to a new venue.

Participants were sent hourly prompts to remind them to report new locations. Participants
could stop these prompts for a given evening (e.g., when going to bed) or snooze them
(e.g., if they were in a theater) at any time. At the end of the study, participants were given a
monetary incentive of 100 CHF, if they completed at least 10 weekend nights of participation.
Participants who volunteered for less than 10 evenings were compensated on a pro-rated
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basis, with a minimum of three nights. All participants were informed of the type of data
collected as part of the study, as well as on all other aspects of the data collection. Our study
was approved by the ethical review board of Vaud and Zurich cantons, respectively, for the
cities of Lausanne and Zurich in Switzerland.

5.4 Mobile Data Collection Framework

In this section, we describe the mobile data collection framework together with the different
types of data collected, data transmission, and privacy.

5.4.1 Data Types

Pre-Study and Exit Questionnaires

After the recruitment phase and before the study, participants were asked to complete a
questionnaire about their demographics, weekend nightlife habits, smartphone usage, and
social media usage. After the field study concluded, participants were also asked to complete
an exit questionnaire about their experiences during the study.

Survey Data

Place Survey: This survey was designed to document the functional attributes of the place
and its in-situ atmosphere. Participants could answer the survey only when they reported to
be in a new location during a night. If participants decided not to answer the survey when
getting to a new place, they could have answered it any time while they were in that place.
The place survey had two goals. First, to capture the place attributes including its city and
place category (e.g., bar, restaurant, nightclub, public spaces, homes, etc.). We chose nine
high-level categories adapted from Foursquare’s place category hierarchy [3], as previously
done in the literature [45]. Second, users were also asked to document the environment
along three dimensions: occupancy, loudness, and brightness. These ratings were given
on a five-point Likert scale, ranging from very low (1) to very high (5). For the place survey,
we received a total of 1,394 responses from 206 participants (Table 5.1). In our data, public
places refer to all places that are not private, including bars, restaurants, cafes, clubs and
other outdoor public spaces (e.g., parks, plazas, lakeside, etc.). To avoid confusion, we refer
to this later category as PBS (PuBlic Space) in the rest of the chapter.

Video Survey: In this survey, participants were asked to record a short 10-second video
capturing the environment of their current place. Participants were instructed to capture
a panorama by slowly recording a video turning from left to right with the phone in the
landscape (horizontal) mode. Participants could take the video survey only after completing
the place survey. If participants were unable or reluctant to take a video, we asked them
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Dataset # Records # Users
Place Survey 1,394 206
Video Survey 1,323 204
Drink Survey 2,532 218
Combined Survey 1,323 204

Sensor Data 8 million 241

Interviews 40 40

Table 5.1 – Summary of the collected data during the Youth@Night study.

to specify the reasons in form of a multiple-choice questionnaire. We gave participants the
following five reasons to choose from: 1) Ethical (“It is not appropriate to record a video
now”); 2) Legal (“Recording a video is not allowed in this place”), 3) Safety (“I don’t feel safe
recording a video now”), 4) Social (“I was asked by someone not to record a video”), and 5)
Other. Participants were allowed to choose multiple reasons (and at least one) if they decided
not to record a video. We obtained a total of 1,323 responses to the video survey from 204
participants (Table 5.1).

Drink Survey: This survey was designed to log participants’ nightlife activities and social
context of their place visits. Users were asked to describe their activities in form of drink
consumption, both alcoholic and non-alcoholic beverages. Drink attributes included informa-
tion on their current drink, including the type of drink (beer/cider, wine/champagne, whisky,
tea/coffee, fruit juice, water, etc.), the size of the drink (small, medium and big), and the
alcohol quantity (light, medium, strong, and alcohol-free). All these attributes were selected
based on existing literature on alcohol consumption [152]. To inform their social context,
users reported the people they were with, including friends, colleagues, or family members.
Participants were asked to answer this survey any time during a weekend night, with an
automatic reminder every hour prompting users if they wanted to report a new drink. For this
survey, we received a total of 2,532 responses from 218 participants (Table 5.1).

It is common for users to forget reporting every consumed drink. As a result, we designed an
additional survey for users to report any forgotten drinks, which otherwise should have been
reported using the drink survey. As with the drink survey, this survey could be answered any
time during the weekend night, with an automatic reminder every hour prompting users to
add their unreported drinks. While answering this survey, users were asked to indicate only
the number of forgotten drinks for each drink type, so we have no information of the drink
attributes (such as size of the drink, alcohol quantity, etc.), as was the case with the drink
survey. For this survey, we received a total of 942 responses from 163 participants. Note that
the responses to the forgotten drink survey was used only to complement the information
of alcohol consumption for automatic recognition (Section 5.6), and not considered for the
descriptive analysis (Section 5.5).
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Combined Survey Dataset: During the study, we received a variable number of responses
for each of the survey as reported in Table 5.1. For some place visits, participants responded
to the place survey, but not to the video survey, while for other visits participants only
responded to the drink survey, but did not provide answers to the place or video survey. This
is inevitable given the “in-the-wild” nature of our study; similar trends have been reported
in previous mobile data campaigns [115]. Due to these missing records, we combined the
survey responses to include only those check-ins for which all the three surveys have been
answered, resulting in a total of 1,323 check-ins from 204 participants. Consequently, for
each check-in in the combined dataset, we have the complete information about the place
functional attributes, activities (social and alcohol consumption), and the responses to the
video survey. In the rest of the chapter, a “check-in” refers to the act of recording place
information (via the place survey) and responding to the video and drink survey.

Sensor Data

In addition to collecting participants’ self-reported survey data, we also collected data from
various mobile sensors and recorded application usage using the sensor logger. The data
types included accelerometer, application, battery, bluetooth, location, screen and wifi logs.
Table 5.2 lists all data types, along with their respective sampling rate. Sampling rate for vari-
ous sensors was optimized using rigorous experimentation to optimize battery life, following
prior work [115]. During the field study, we gathered over 8 million sensor data records from
241 participants (Table 5.1). Note that due to the automated nature of sensor data collection
in the background, we obtained sensor data from more participants relative to those who
responded to different surveys i.e., not every participant who contributed sensor data equally
responded to different surveys (see last column of Table 5.1).

Interviews

After the data collection study was concluded, we conducted semi-structured interviews with
40 participants. While conducting these interviews, participants’ recorded videos were used
as stimuli to talk about their going out practices during weekends. Participants were also
asked about their video-taking experience. The purpose of these interviews was to gain
personal insights about the way young people engage in urban nightlife as a complex way of
enjoying themselves while negotiating the dangers of the city at night [95].

5.4.2 Data Transmission

To preserve users’ cellular data and optimize battery life, data transmission from phones
to the backend server was performed when the device was connected to a WiFi access
point. Automatic data upload was scheduled for every Monday at a random time between
midnight and 6AM. When the data was successfully transmitted it was deleted from the
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Sensor Data
Group

Description Sampling Rate

Accelerometer
Set of acceleration values

along three axes
10 seconds continuously

every minute at 50Hz

Application
List of all background

applications
Once per minute

Battery Battery charging status
Whenever a change in

battery status is detected

Bluetooth
List of bluetooth devices in

range
Once every 5 minutes

Location
Set of location estimates

using GSM or GPS
1 minute continuously every

2 minutes

Screen
Status of the phone screen

(on/off)
Whenever the screen state

is changed

WiFi
List of all visible WiFi

hotspots
Once every 5 minutes

Table 5.2 – List of all types of sensor and log data collected during the study.

device. Participants were provided an option to force a manual upload, if automatic uploads
did not succeed.

5.4.3 Data Privacy

As stated before, the study was approved by the ethical review board of Vaud and Zurich
cantons in Switzerland. Given the potentially sensitive nature of the collected dataset, we
requested the consent of participants to share their data only within the research team. This
restriction has implications on who can view and analyze the data, in addition to how the
data can be manually coded.

5.5 Descriptive Analysis of Survey Data

In this section, we first introduce the descriptive statistics of the study questionnaires, then
we list the findings and insights from the survey data.

5.5.1 Analysis of Pre-Study Questionnaires

Participants Demographics: Of the total study participants, 201 of them responded to the
study long questionnaire. Using the demographic information, we observe a fairly balanced
gender ratio (52% male, 48% female). We found that the majority of participants (62%) are
below the age of 20, as shown in Figure 5.2a. From an occupational point of view, 62%
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Figure 5.2 – Plots showing the barplots for a) Age, and b) Photo taking tendency when going
out at night for study participants.

of participants reported being students, 24% reported apprenticeship as their occupation,
while 4% declared to be working full-time. Over 83% of participants reported to be living
with their parents, while only 10% reported to be living in either shared housing or a student
residence. From these findings, it is clear that the demographics of participants are inclined
towards teenage students and young adults living with their parents. During recruitment,
our aim was to have a nightlife population as representative as possible. This population is
significantly different than those reported in previous Ubicomp research, e.g., undergraduate
and graduate students in Korea [45] or the US [217].

Smartphone Devices and Usage: Now we examine the diversity of mobile devices used by
participants. The device information indicates eight different mobile manufactures and 51
model versions, with Samsung being the dominant phone manufacturer (63%), followed by
HTC (18%) and Sony (9%). Samsung Galaxy S4 and Galaxy S3 (released in 2014 and 2013
respectively) are the two most popular model versions.

In terms of usage, more than 92% of participants reported to be using a smartphone for at
least two years. 90% of them rated themselves as either a heavy or medium smartphone
user. Over 81% of respondents send text messages more than half of the time when gone
out during the night. When asked about the frequency of photo-taking when going out at
night, 31% of respondents reported to take photos often or always (Figure 5.2b). It is clear
that the demographics of the participants align with their aggregated smartphone use.

Home Location and Going Out Behavior: 63% respondents reported going out at least
once per weekend while spending an average of 42 CHF (equivalent to 43 USD) a night.
Participants were asked to list the postal code of their residence as well. After geo-coding
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Figure 5.3 – Plots showing the histograms for a) Number of contributed check-ins per user,
b) Distribution of categories for public places, c) Number of submitted videos every weekend
night, and d) Distribution of categories for Foursquare check-ins for night time (In the inset,
the overall distribution is shown).

a total of 128 unique postal codes, we found that participants live in 11 different cantons
(Switzerland has 26 cantons), with 52% of participants reported living in the canton of
Vaud, 37% in the canton of Zurich, while the rest (11%) resides in the neighboring cantons.
Interestingly, only 40% reported living within the city limits of either Lausanne or Zurich, while
the rest of participants commute from neighboring towns for nightlife. As argued before, these
findings confirm that both cities receive an influx of youth from neighboring cities and cantons
on weekend nights. The spatial coverage of our data spans the main east-west corridor of
Switzerland (distance between Lausanne and Zurich is 226 km), which differs from previous
works (typically limited to one city.)

5.5.2 Analysis of Survey Data

In this subsection, we analyze the combined survey data consisting of 1,323 check-ins
from 204 participants to better understand the different places participants visited and the
contextual factors surrounding their place visits.

User Contributions

We received a total of 1,323 check-ins from 204 participants. On average, a participant
contributed 6.5 place check-ins, with one participant submitting a maximum of 29 check-ins.
Users’ place check-ins follows a typical long tail distribution (Figure 5.3a). Similar heavy tail
characteristics have been previously reported in the literature [45]. From 1,323 check-ins,
participants submitted a total of 894 videos, while for the rest 429 check-ins participants
did not to take a video. Figure 5.3c shows the distribution of submitted videos for the study
duration. Note that the video dataset, discussed in Section 5.7, is different than [200] in that
it is intentional, focused on nightlife patterns, and spans a variety of places.
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Place Analysis

Now, we examine the diversity and coverage of places visits: (a) How well are different place
types represented in our study? (b) How well the distribution of check-ins compare with the
check-ins distribution from social media data? In this subsection, we report the results using
the semantic location data gathered via the survey logger, and not the physical location
inferred via GPS (collected via the sensor logger). To examine the spatial coverage of mobility
patterns, as inferred via GPS traces, refer to Figure 5.6.

As reported earlier, participants recorded place information including the city of the check-in
and place category using the place survey. We use the place category information to infer
whether participants were at a public or a private place. When participants checked into a
private place, we further asked them to specify whether the check-in was at their own homes,
a friend’s home, or other private venues.

Of all the 1,323 check-ins, 626 (47.3%) were at private places, and the rest (52.7%) at public
places (Table 5.3). Of the 626 check-ins at private venues, 62% were reported from their own
home, 30% from their friends’ home, while the rest (8%) occurred at either their workplace or
other private venues (e.g., student hostel, someone else’s home while baby-sitting, etc.). A
large number of check-ins at private venues might be due to two factors: a) the majority of
participants (83%) reported living with their parents (Section 5.5.1), and b) spending a night
outside is relatively costly given the demographics and income earning status of participants.
After manually browsing through some of the videos taken in private places, we found that
some videos indeed show young people in large family homes (with a large living room and
kitchen), but also studios and small apartments that correspond to living alone and shared
accommodation. Videos recorded at homes clearly have an intimate, unfiltered flavor. One
can observe personal items, bedrooms, presence of friends, without the beautification often
found in social media content. The video dataset offers a novel way to conceptualize such
places. The variety of private places captured on video is novel in and of itself, as previous
studies have focused on college students (who in the US typically do not live with parents.)

For check-ins at public places, 30% were at bars, followed by 27% at PBS as shown in
Figure 5.3b. Restaurants and travel each contributed around 10% of all check-ins. We
observe that a significant portion of check-ins happened at PBS, which suggests that youth
spend a considerable amount of time hanging out in these spaces away from mainstream
nightlife areas. Recall that PBS refers to outdoor public spaces e.g., parks, plazas, lakeside,
etc. (Section 5.4.1). This provides support for the qualitative work done with youth in the US
context [35]. The PBS videos are specially interesting as they are unfiltered. Videos in dark
parks or squares where people hang out, and video taken on streets outside commercial
venues, are commonly found in our data. These places also provide support for qualitative
work on the practices of Swiss youth in these venues [53]. Note that both Lausanne and
Zurich have a scenic lakeside used often for recreational activities. Overall, these findings
reflect that the study indeed captured different patterns of participants’ nightlife behavior.
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Context
Attributes Private Public
(Features) N=626 N=697

Social
Alone 149 51

At most 5 people 325 403
More than 5 people 152 243

Ambiance
Crowdedness 1.88 3.0

Loudness 2.14 3.19
Brightness 3.14 2.84

Activity
Consumed Alcohol 299 560

Not Consumed Alcohol 327 137

Videos
# Videos Taken 416 478

# Videos Not Taken 210 219

Table 5.3 – Summary statistics for public and private places.

Comparison with Foursquare: Independent of the Youth@Night study, we collected geo-
localized Foursquare check-ins from Switzerland. This dataset was collected in addition to
the data for 300 places across six cities (Chapter 2). For the two studied cities (Zurich and
Lausanne), we obtained a total of 54,184 publicly available check-ins between December
2011 and February 2014. For all Foursquare check-ins for which place type information
was available, we plot the distribution across 10 Foursquare categories, temporally filtered
between 8PM to 4AM in Figure 5.3d. In the inset of the same figure, we plot the overall
Foursquare check-in distribution (i.e., without any temporal filtering). For both the temporally
filtered and overall distribution, food places received the most number of check-ins, which is
in contrast with the findings from Youth@Night survey data. Similar to the previous work [45],
we observe that places visited during night were more represented in our crowdsensing
study compared to Foursquare e.g., events category did not contain a single check-in for
temporally filtered Foursquare data. For some of the categories, the check-in distribution of
our study (Figure 5.3b) is similar to the temporally filtered Foursquare check-ins; however it
is significantly different with respect to the overall Foursquare check-in distribution. These
findings point towards limitations of social media in terms of representativeness and temporal
resolution at least in the context of Switzerland [206].

Activities and Social Context

We now examine the activity and social context of participants at night, i.e., with whom and
how many people participants were at the time of reporting their check-ins. For 24% (resp.
7%) of check-ins to private (resp. public) places, participants reported to be spending the
night alone (see Table 5.3). For 24% of private place check-ins, participants reported to be
with more than five people. Digging further into these cases, we found that for 72% of these
check-ins, alcohol was reported to be consumed, potentially suggesting social occasions or
house parties [99, 72]. Manually browsing through videos confirmed this point.
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Figure 5.4 – Plots showing the histograms for a) Social Context, b) Loudness, c) Brightness,
d) Alcohol Consumption across all public place category types.

For check-ins to public places, we found that for most of the categories (except events
and other), the majority of check-ins were reported to be with fewer than three people
(Figure 5.4a). By investigating further, we found that for bars and clubs participants reported
to be with more than five people for 34% and 52% of check-ins respectively. Not surprisingly
for event spaces, participants reported to be with more than 10 people for 36% of event
check-ins; while for the travel category, 35% of check-ins were reported to be alone. The
travel category corresponds to situations when people were either walking, traveling in public
transportation or using their personal vehicles.

Overall for 65% of place check-ins, participants reported consuming alcohol. We found that
for check-ins at private venues, users reported drinking alcohol for 48% of cases (Table 5.3),
suggesting the trend of home drinking [72]. For check-ins at public venues, we found that
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users reported drinking alcohol for 80% of cases. Digging further into public place categories,
we found that 84% of check-ins were reported with alcohol consumption in the PBS category
(see Figure 5.4d). This finding provides support for qualitative work on the prevalence of
“street square” drinking amongst Swiss youth [53]. Note that consuming alcohol in public
places including public transportation is not criminalized in Switzerland.

Ambiance Context

In the place survey, participants were also asked to judge the environment in-situ along
three dimensions: place occupancy, loudness, and brightness. All ratings were given on a
five-point Likert scale (1-very low, 5-very high). Using this data, we observe that public places
are in general more crowded, louder, and darker relative to private places (see Table 5.3).
These findings are not surprising. Figure 5.4b and 5.4c plots the distribution of loudness and
brightness across all public place categories. On average, bars and clubs were reported to
be relatively more crowded, louder and darker, compared to other categories.

Overall, the survey data captured diverse places during night including private homes, public
squares and public transportation, which potentially suggests that youth spend a considerable
amount of time hanging out away from mainstream nightlife areas. Furthermore, irrespective
of place type, the study captured places along the full spectrum of social and ambiance
variables, i.e., check-ins to public places alone, and house parties at private homes; or,
consuming alcohol alone, and staying sober in the company of more than 10 people; or public
places which were reported to be quiet, and private places which were reported to be very
loud. This poses interesting challenges towards automatic analysis of youth’s social activity
(Section 5.6) and videos (Section 5.7), as the places covered are diverse in terms of overall
social and physical ambiance dimensions.

5.6 Automatic Recognition of Social Activity

In the previous section, we demonstrated the heterogeneity of youth going out behavior using
self-reported survey data. We also we provided a detailed account of participants’ alcohol
consumption habits, and the specific places where they drink, using the survey data. In this
section, we focus our attention towards automatically classifying their alcohol consumption
using mobile sensor data.

While alcohol consumption is one of the key social activities of youth going out behavior,
it is the number one risk factor for morbidity and mortality among young people in many
countries. Heavy drinking and related incidents in public on weekend nights are a concern
for city councils, policy makers, and a nuisance for the general public [135, 221]. There is a
recent push to study alcohol consumption patterns using mobile phones [119] to increase
research validity and reliability and to widen the understanding of contextual factors. In
this section, we propose a machine learning pipeline to automatically infer a binary state
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Figure 5.5 – Temporal distribution of participants contributing data to the field study. Numbers
in red indicate users who reported consuming alcohol on a specific night, while in blue we
show the participants who had reported no consumption of alcohol throughout the night. Best
viewed in color.

of alcohol consumption for single nights, describing the various steps including the pre-
processing of sensor data, feature extraction and regression analysis. Our objective is
to study the discriminative power of smartphone-derived cues related to physical motion,
location, connectivity, and application usage for alcohol consumption in an “in-the-wild”
nightlife setting.

5.6.1 Data Filtering

For automatic classification, we conducted our analysis on a user-night. A user night indicates
a night-out per user. If the field study run for m nights, where for each night we have n

participating users contributing sensor data, the total number of user-nights will be mn. In our
study, we obtained data for 2,934 user-nights from 241 participants (Table 5.1). On average,
a participant contributed sensor data for 12 nights, with more than half contributing 14 nights
or more. The maximum number of nights contributed by a single user is 30.

However, we observe that many user-nights missed one or more sensor data type. This
is inevitable given the real-time and in-situ nature of our study; similar trends have been
reported in previous large-scale mobile data campaigns [124]. Table 5.4 lists the number
of user-nights with missing records for all sensor data types. Due to inherent sparsity, we
filtered the data to select only those user-nights for which sufficient sensor data is available.
Consequently, for our analysis and inference framework, we selected only those user-nights
which satisfied the following three criteria: a) the participant had responded to either the
drink or the forgotten drink survey at least once during a given night (Section 5.4.1); b) the
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Sensor Data Group
% User Nights with
Available Records

in Raw Data

% User Nights with
Available Records in

Filtered Data
Accelerometer 76.18% 99.51%

Application 38.24% 99.31%
Battery 76.24% 100%

Bluetooth 75.66% 98.52%
Location 55.69% 100%
Screen 69.33% 92.78%

WiFi 65.13% 93.67%

Table 5.4 – Percentage of user-nights with available data in the raw and filtered datasets.

participant had at least one data sample for any sensor data type during the night; and c) the
participant had at least one stay-point based on location sensor logs. (A stay-point is a stable
location defined later in Section 5.6.2.)

As a result of filtering, we were left with a total of 1,011 user-nights from 160 users consisting
of 12 Fridays and 11 Saturdays nights between September and December 2014. In Figure 5.5,
we show the temporal distribution of participants for each night, in addition to showing the
overall participation rate. We observed 12 weekend nights where we had more than 50
participants contributing data with drinking events to our study. Figure 5.6 shows the spatial
movement of the participants based on their accumulated GPS traces and stay-points,
plotted at the country level. The study participants restricted their movements mostly to the
two studied cities – Lausanne and Zurich; but sometimes they also spent their nights in
neighboring cities as a reflection of real-life mobility. These mobility plots also corroborate
the self-reported data on participants’ home location as reported in Section 5.5.1.

Even after filtering, the data contains user-nights with missing data for some of the sensor data
types. In Table 5.4, we show the percentage of user-nights with available data in the raw and
filtered data respectively. For instance, 64 user-nights have missing WiFi sensor logs in the
filtered dataset. It points towards the challenges of in-situ studies. For the subsequent analysis
in this section (pre-processing, feature extraction, regression analysis and classification tasks),
we used the filtered 1,011 user-nights dataset, unless otherwise stated.

5.6.2 Feature Extraction and Analysis

In this subsection, we describe the pre-processing of data and the procedure for extraction
of features. As mentioned in the previous subsection, our unit of analysis is a user-night.
Consequently, we aggregated all the data informing different aspects of phone usage per user
on a nightly level. Table 5.6 lists all the different features extracted. Features were selected
based on prior work [121, 163, 228, 140, 180, 60]. In addition, we generated features that
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(a) Raw GPS Traces (b) Stay Points

Figure 5.6 – Heatmap showing spatial distribution of raw GPS traces (left) and stay-points
(right) of participants. Zurich (north-east of the country) and Lausanne (south-west) are
clearly represented in the map. Many other places in the country were also visited. Red color
indicates high density of stay-points, while blue represents low density. Best viewed online in
color and high-resolution.

could potentially characterize levels of drinking activity. Below, we describe each data type
and list all the extracted features.

Accelerometer Logs: We obtained accelerometer data every minute for 10 seconds, with a
sampling rate of 50Hz resulting in a total of 500 readings per minute. Each individual reading
contained the raw acceleration values along the three axes (xi, yi, zi). Given the raw readings,
we computed basic features including signal magnitude area (SMAi), raw acceleration (ai),
resultant acceleration (ari ), and relative resultant acceleration with respect to the previous
reading (arri ), as shown below (feature names are taken from previous literature):

x̄ =

500∑
i=1

(xi), ȳ =

500∑
i=1

(yi), z̄ =

500∑
i=1

(zi),

SMAi =
500∑
i=1

|x(i)|+ |y(i)|+ |z(i)|, ai =
√
x2i + y2i + z2i ,

ari =
√
(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2,

arri =
√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2.

We defined each scan per minute as a segment. Our data contains a total of 391,717
segments. To transform the raw readings per segment, we further computed basic summary
statistics (mean, standard deviation, min., max.) over each segment, in addition to calculating
the angle between the g vector and the vector containing the average acceleration value
for each axis ([x̄ ȳ z̄]). To obtain the aggregated features per user-night, we generated
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Figure 5.7 – Plots showing the histograms for a) Acceleration, b) Resultant Acceleration, and
c) Relative Resultant Acceleration for both night types.

histograms of segment features, as pointed in Table 5.6. In total, we generated a total of 79
acceleration features (all variants of five basic features.) Most of the features extracted from
accelerometer logs are derived and adapted from prior work [121, 163, 28]. For instance, the
SMA feature is designed to distinguish between static and dynamic activities, while the angle
provides cues to inform the tilt and orientation of the mobile device. In Figure 5.7, we the
distribution of raw acceleration, resultant acceleration and relative resultant acceleration for
both alcoholic and non-alcoholic user-nights.

Accelerometer data has widely been used to recognize physical activities of users ranging
from standing, sitting, walking, jogging, and climbing [28, 121, 163]. We are not inferring
categories of physical activity, as we did not collect activity labels as part of the field study.

Application Logs: There have been numerous studies which have examined mobile ap-
plications logs to understand user context ranging from location, temporal and social con-
text [59, 58, 32]. In this work, we extracted features to explore the role of mobile application
usage (in terms of spatial and social context) on alcohol consumption. Application usage
might be informative of drinking-related activity as it has been shown that differentiated usage
of apps occur in real life depending on where and with whom the phone users are.

Through the sensor logger, we scanned the list of all running applications every minute
(Table 5.2). For each scan, we obtained a list of up to 50 applications. As opposed to
dedicated apps designed to monitor application usage [32], the sensor logger was designed
to gather only the list of currently running apps. As a result, our analysis of application logs is
limited to examine fine-grained application usage behavior (e.g., time spent on Facebook,
number of messages and pictures shared using WhatsApp, etc.). In our dataset, we observed
a total of 1,299 unique applications, with WhatsApp being the most frequently used application.
Running applications can either be native (i.e., pre-installed by the device manufacturers),
default Android apps or user-installed apps. As noted earlier, due to the multi-region nature
of our study, the mobile interface was designed in three different languages. Consequently,
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Id Category Total Apps Top-3 Apps

C1 Systems/Native 39
Contacts, Accueil

TouchWiz, Parametres

C2 Communication 12
Messages, InCallUI, S

Voice

C3 Entertainment 8
Youtube, Musique,

Shazam

C4 Social 5
WhatsApp, Facebook,

Snapchat

C6 Travel 5
Maps, Mobile CFF, SBB

Mobile

C5 Other 28
Chrome, Internet,

Recherche Google

C7 Below100 1,200
Alben, Applications,

Actives

C8 Y@N 3
Y@N-Enquete,

Y@N-Studie, Y@N-Study

Table 5.5 – Categorization of mobile applications. Note that apps in multiple languages
appear due to the multi-region nature of the study.

apps having the same functionality appear in different names due to the translated interface
e.g., Telephone and Telefon both refer to the Android application handling the call activity in
English and French interface respectively.

Application Categorization: To deal with the diversity of applications, we manually coded the
top 100 applications (based on their usage frequency) into eight categories (Table 5.5) which
are: System/Native, Communication, Entertainment, Social, Travel, Other, Below100, and
Youth@Night (in short Y@N, our app for this study). Similar app categorization systems has
been used to group mobile apps in the literature [58, 32]. In Table 5.5, we show the total
number of applications classified in a given category, besides showing the Top-3 apps for
that category. The Below100 category contains applications that were not frequently used by
the participants in the study, while Y@N denotes applications designed for our study. Note
that the Y@N category contains only the survey logger application; the sensor logger app,
being a daemon service, did not appear in the list of running applications. Applications falling
under Y@N category also belongs to the Top 100 applications. Note that each application
was assigned to the closest possible category, though an application in principle could belong
to multiple categories.

For each user-night, in addition to the basic features (e.g., number of records or scans, count
of unique applications, duration), we generated a set of three additional count features using
the categorized applications. First, for all the applications obtained per scan, we incremented
their respective category count (Count 1). Second, we examined the top-3 applications
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(based on their recency order) in a scan and incremented their respective category count
(Count 2). It is important to note that while returning the list of running apps, the Android API
returns the list in order of recency, i.e., the most recently app used is returned first, and so
on. Using the Android API, we have no means to examine for how long an app has been
used, thus we used the recency order as a proxy to understand temporal app usage. For the
last and third count feature (Count 3), we count the number of times an app category had
improved its rank (based on the recency order), with respect to the previous scan. For Count
3, we looked at only the top-3 applications and their respective categories. We incremented
the count only if there was an improvement in the rank with respect to the previous rank.
For each count feature, we also added their normalized count version as features. Count
normalization was performed based on the number of scans in a user-night. In total, we
generated a set of 52 features using application logs (Table 5.6).

For all eight categories, we do not observe any significant differences for all count features
between alcohol and non-alcohol user-nights. To illustrate it, in Figure 5.8b, we show the
distribution of normalized count (Count 1) for “Social” applications (C4 category) across
several bins for both types of user-nights.

Battery Logs: The battery sensor returns a set of values whenever a change in the battery
status is detected. From this sensor, we obtained features including battery status, level,
temperature, and whether the phone was plugged to a power source. The battery can be in
one of five states (charging, discharging, full, not charging, and unknown), depending on its
power status [54]. A total of 10 features were generated using the battery logs.

Bluetooth and Wifi Logs: From the Bluetooth and WiFi sensors, we obtained the list of the
nearby Bluetooth (BT) devices and WiFi access points (APs) respectively. For these sensors,
the scan was performed every 5 minutes. For every scan, we computed the list of features as
described in Table 5.6. All the generated features are self-explanatory and were computed
based on prior work [228], and correspond to a total of 6 features.

Bluetooth device density has often been used as a proxy to the social context of the user’s
environment e.g., being alone or in the vicinity of a nearby group of people [64, 58]. When
a large number of BT devices are detected, it likely signals the presence of people in
the surrounding. Analysing BT logs becomes relevant to our work as we are interested in
understanding the social context of participants and how it might potentially impact their
drinking behavior. In our study, participants encountered an average of 9.6 unique BT devices
and 128 WiFi APs in a typical user-night. For alcohol user-nights, 12.3 BT devices and 162
WiFi APs were encountered, while for non-alcohol user-nights only 3.95 devices and 59.3
WiFi APs were detected on average. Figure 5.8c and Figure 5.8d shows the distribution of
BT devices and WiFi APs, respectively for both alcoholic and non-alcoholic user-nights.

Location Logs: The location sensor returns the set of location estimates using either GPS
or GSM based on Android API calls. Location data was collected continuously for one minute,
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Feature
Group

Features (Dimensionality) β

Accelerometer

Number of records (1) +2.43× 10−4

Histogram of angle between g vector and X, Y, and
Z-axis (6x3)

−14.17× 10−2

Histogram of std. dev. of acceleration along X, Y
and Z-axis (6x3)

+69.75× 10−2

Histogram of mean, median and max resultant
acceleration (6x3)

−17.98× 10−2

Histogram of mean, median and std. of relative
resultant acceleration (6x3)

−16.08× 10−2

Histogram of signal magnitude area (SMA) (6) . . .

Application

Number of records (1) −2.39× 10−6

Count of apps in different categories (8x2) +1.24× 10−2

Count of Top-3 apps per category (8x2) +1.45× 10−1

Relative ranking of Top-3 apps per category (8x2) +1.70× 10−1

Duration between the first and last scan (1) −6.3× 10−6

Count of unique and total apps (2) . . .

Battery

Number of records (1) −2.74× 10−5

Count of various battery status (5) +3.57× 10−3

Min. and Max. level of battery (2) −7.75× 10−6

Diff. between min. and max. battery levels (1) −5.04× 10−4

Plug time (1) −3.8× 10−3

Bluetooth (BT)

Number of records (1) −5.2× 10−4

Number of BT IDs in range (1) . . .
Number of unique BT IDs (1) +9.55× 10−3

Percent of empty BT scans (1) . . .

Location

Number of stay-points (1) +2.92× 10−2

Sum of duration at stay-points (1) . . .
Sum of travel distance between consecutive

stay-points (1)
+4.5× 10−8

Sum of travel time between consecutive
stay-points (1)

. . .

Hist. of computed speed (8) +1.21

Screen

Number of records (1) +4.3× 10−4

Percent of time screen was on (1) −0.41
Screen count after midnight (1) . . .

Duration of screen events (on/off ) (2) +0.65

WiFi
Number of records (1) −6.73× 10−5

Number of unique visible WiFi hotspots (1) +8.9× 10−4

Table 5.6 – List of all features extracted (organized by feature group) for each user-night. For
each feature, β refers to the coefficient estimate of the penalized logistic regression (PLR)
model. All β values are statistically significant at p−value < 0.001.
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Figure 5.8 – Plots showing the histograms for a) Percent of times the phone was in the vertical
position inferred using accelerometer logs, b) Normalized Count 1 of “Social” applications
(C4 category), c) Number of unique Bluetooth devices in range, d) Number of unique WiFi
access points, e) Total number of stay-points, and f) Percent of times the phone screen was
on inferred using screen logs for both alcoholic and non-alcoholic user-nights.

every two minutes. For each data point, we collected the location coordinates (longitude
and latitude) and provider information (GSM-based or GPS-based). We also computed user
speed using the location data.

In addition, for each user-night, we extracted the sequence of stay-points using location pairs
(longitude and latitude). A stay-point is a region (radius of d meters) where one stays for a
given duration of time (t minutes). It is a standard unit of analysis for place extraction [140].
In our analysis, we have used d = 200 meters and t = 5 minutes, which is similar to the
ones reported in prior work [60]. Stay-points are extracted independently for each user. Using
stay-points, we extracted a series of features such as the duration of stay at stay-points,
travel distance, and time between consecutive stay-points, as reported in Table 5.2. The total
number of extracted location-related features is 12.

Mobility using Location Logs: In a user-night, on average a participant had stayed on 3.8
stay-points, with the mean stay duration of 2.1 hours in a given stay-point. For alcohol user-

118



5.6. Automatic Recognition of Social Activity

Time of the Day
21:00 00:00 03:00

A
lc

oh
ol

 U
se

r 
N

ig
ht

s

0

1

2

3

4

5

6

7

8

9

10

Time of the Day
21:00 00:00 03:00

N
on

-A
lc

oh
ol

 U
se

r 
N

ig
ht

s
0

1

2

3

4

5

6

7

8

9

10

Figure 5.9 – Stay-points for a random selection of 10 alcoholic (left) and non-alcoholic (right)
user-nights. A rectangle bar indicates a stay-point, and black dots indicate the raw location
traces.

nights, a participant spent an average of 1.6 hours per stay-point, while for nights where
alcohol was not consumed, a user spent an average of 3 hours per stay-point. We also
observe significant differences with respect to the number of stay-points between nights
spent consuming alcohol (4.5) and otherwise (2.5). Figure 5.8e shows the distribution of
total number of stay-points across several bins for both alcoholic and non-alcoholic user-
nights, which highlights the role of mobility on alcohol consumption. To contextualize these
results and further understand the role of mobility, we examined the distance traveled
between consecutive stay-points. We found that on average, a participant traveled a distance
of 3.7 kms (resp. 1.4 kms) in an alcoholic user-night (resp. non-alcoholic nights). These
findings suggest potential links between mobility and drinking behavior. Besides, these results
complement our understanding of the physical mobility of participants with respect to what
was observed using self-reported check-in data (Section 5.5)

Figure 5.9 shows the stay-points for a random selection of 10 alcoholic and non-alcoholic
user-nights. In the figure, a rectangle bar indicates a stay-point, and black dots indicate the
raw location traces. It was not always the case that we continuously obtained location traces
for the entire user-night, as evident in Figure 5.9. For most user-nights, we observe missing
location data for parts of the night. For some user-nights, the data was received only for few
minutes (see non-alcoholic user-nights 7 and 10). These findings point towards the inherent
missing data in our collected dataset as provided by the Android API and the subsequent
challenges involved in using this data for an inference task.
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Screen Logs: Using the screen logs, we measured any change in the state of the screen
i.e., whether the screen was on or off. Using these logs, we computed a set of five features
following previous work [180], as highlighted in Table 5.6. The Android API only provides the
information when the state of the mobile screen changes from on to off and vice-versa. Using
this information, we computed the percent of time the screen was on (or off ) by normalizing
it based on the time difference between the first and last screen events in a given user-night.

We found that on average, participants had their mobile screen on for 15.6% of the time,
indicating some form of interaction with their mobile devices. When examining differences
between user-nights, we found that for alcohol user-nights (resp. non-alcoholic nights), a
participant kept their screen on for an average of 14.4% (resp. 18.3%) of times (see Figure 5.8f
for a visual comparison).

Ground-truth Alcohol Consumption: In order to obtain the ground-truth data on alcohol
consumption i.e., whether a participant had drunk alcohol during a user-night, we used the
responses on the drink and forgotten drink survey (Section 5.4.1). Participants reported
their drinks or forgotten drinks using the drink logger application. Participants reported both
alcoholic and non-alcoholic beverages. If a participant reported consuming both types of
drinks, we considered the night as alcoholic user-night. If a participant had not reported a
drink using the drink survey i.e., while consuming it in-situ, but instead reported it the next
day using the forgotten drink survey, we considered those user-nights in our analysis as well.

In total, 67% of user-nights had reported alcohol consumption, while 33% of user-nights
had no alcohol consumption. This imbalance signals potential biases of the participants
towards reporting mostly alcohol-related activities. After the in-situ data collection was over,
we conducted a series of qualitative interviews with 40 participants to gain insights of their
nightlife experience (Section 5.4.1). During the interviews, some participants mentioned
perceiving the study as an “alcohol study” where they did not consider reporting consumption
of non-alcoholic beverages (e.g., water, juice, etc.). This is interesting given the fact, that the
instructions given to participants clearly stated them to report both alcoholic and non-alcoholic
drinks (i.e., without any bias). Few other interviewees concluded that they were only allowed
to report if they had bought the drinks themselves. Such narrations provide insights into the
ways a “drink” was contextualized by participants during the data collection. Moreover, they
offer a starting point to reflect on the observed reporting bias. Qualitative analysis of the
interviews is presented in detail in Section 5.8.

5.6.3 Regression Analysis

In this section, we perform regression analysis using different feature groups. To examine the
relationship between alcohol consumption and feature groups, we used penalized logistic
regression (PLR) [74]. PLR measures the relationship of a binary response variable (consum-
ing alcohol or not) as a function of the explanatory predictor variables (feature sets derived
from sensors and log data). In contrast with traditional logistic regression, PLR guards against
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Figure 5.10 – Plots showing the histograms for a) Stationary, and b) Walking inferred using
location logs for both night types.

collinearity amongst features via regularization. Regularization is implemented using the
lasso technique, which performs feature selection by forcing some of the coefficient estimates
to zero, thereby increasing the model interpretability. When fitting the model, we scaled the
parameters and performed a 10-fold cross-validation to find the best regularization parameter
(λ), that minimizes the error function.

Results

For each feature group, we fit the penalized logistic model involving all features of that group
against the binary alcohol consumption. Table 5.6 shows the results of the PLR model,
which report the coefficient estimates (β) for each feature group. All β values are statistically
significant at p−value < 0.001. For feature sets involving multiple dimensions (e.g., histogram
of mean relative acceleration), we report the maximum β value for that feature set. As a
result of regularization, features with zero coefficients are reported blank in the Table 5.6. We
found that, while most features have either a positive or negative relationship with alcohol
consumption, some features have zero β values (e.g., number of BT devices in range, sum of
duration at stay-points, etc.). Features with zero β values suggest that either these features
do not possess any predictive relationship with alcohol consumption or these features are
correlated with other significant predictive feature(s) within the same feature group.

Most of the regression results in Table 5.6 corroborates the exploratory analysis reported in
Section 5.6.2. For acceleration logs, the standard deviation of raw acceleration values (ai)
along the Y-axis has a positive relationship, while the maximum of the resultant acceleration
values (ari ) has a negative association with alcohol consumption. When examining the
features extracted using location logs, we found that the number of stay-points (Figure 5.8e)
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and computed user speed are positively associated with alcohol consumption. The percent
of time the mobile screen was on is negatively associated with alcohol consumption with
β-value of −0.41 (Figure 5.8f).

Amongst all features within all feature groups, user speed computed using location logs has
the highest positive β value (1.21). To contextualize this finding, we examined the distribution
of user speeds for both alcoholic and non-alcoholic nights. A participant was considered
stationary if the computed speed was below 1 km/h, and a participant was assumed to
be walking if the speed was in the range of 2–5 km/h [69]. In Figure 5.10, we show the
percentage of time (as a fraction of a user-night duration) when the user was stationary or
walking. For more than 65% (resp. 33%) of non-alcoholic (resp. alcoholic) user-nights, a
participant was stationary throughout the night, shown in Figure 5.10a.

5.6.4 Inference of Drink Status

Classification Method: We formulated the inference of drink status as a binary classification
task using Random Forests [36]. In our experimental setup, we set the number of trees
to N = 500. We experimented with different values of N , but the classification accuracy
remained fairly stable.

Performance Evaluation: Each user-night was represented by a feature vector from one or
multiple feature groups. Since the user-nights were imbalanced (67% of user-nights reported
alcohol consumption), we randomly sub-sampled the majority class (i.e., alcohol consumption
user-nights) to build 10 different balanced datasets. By training and evaluating the classifiers
on balanced datasets, we built a classifier to predict binary alcohol consumption. For each
balanced set, we used the 10-fold cross-validation approach. To guard against the case
where the data of one user was distributed between both the training and the test sets,
the 10-folds were created based on disjoint users (as opposed to the user-night). The final
classification accuracy was computed using the cross-validation accuracy averaged over 10
balanced sets. Using this experimental setting, the baseline accuracy for the classification
task is 50% (i.e., random guess).

Results

To highlight the contribution of each feature group, we first report the classification accuracy
using each feature group separately in Table 5.7. As can be seen, accelerometer data is the
most informative feature among all features types, with 75.8% accuracy. Features extracted
using location logs are the second best feature with an accuracy of 68.5%. Next, we see that
Wifi and Bluetooth logs are also discriminant with the number of unique wifi access points
and nearby bluetooth devices observed during a user-night selected as the most important
features (see Figure 5.8d and Figure 5.8c). Furthermore, features extracted using screen,
application, and battery logs are relatively less good features.
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Feature Group Accuracy Feature Combination Accuracy
Accel. 75.8%
Location 68.5% A+L 76.3%
Bluetooth 64.2% A+L+B 76.4%
WiFi 65.2% A+L+B+W 76.7%
Apps 61.1% A+L+B+W+Ap 76.2%
Battery 58.8% A+L+B+W+Ap+Ba 76.4%
Screen 61.1% A+L+B+W+Ap+Ba+S 76.2%

Table 5.7 – Classification accuracy of alcohol consumption using each and different combina-
tion of sensor data types.

Table 5.7 also reports the classification accuracies of alcohol consumption using a combina-
tion of different feature groups. Using all the feature groups, we obtained an overall accuracy
of 76.2%, which is a modest increase over the accuracy achieved using just accelerometer
features (75.8%). Accelerometer features, when combined with location, bluetooth and wifi
features achieve the highest overall accuracy of 76.7%. In summary, these results demon-
strate the feasibility to automatically classify drinking behavior with promising accuracy using
smartphone data.

5.6.5 Role of Going Out and Gender on Drinking Events

To contextualize and reflect on the regression and inference results, in this section we discuss
the role of two potential confounding variables – going out and gender – on the reported
alcohol consumption.

Role of Going Out on Drinking Behavior

For many people, consuming alcohol is inherently a social activity [116, 117], which typically
happens outside the home environment in pubs, bars, restaurants, nightclubs, etc. In the
previous sections (Sections 5.6.3 and 5.6.4), it has been shown that accelerometer, location,
bluetooth, and wifi are the top predictive groups for alcohol consumption. Accelerometer
features are associated with users’ physical activities (e.g., standing, sitting, etc.); location
features inform the physical mobility of users; bluetooth and wifi features can be related to
the social context of users’ environment (e.g., alone or in a group). Given the discriminative
nature of these feature groups to characterize alcohol consumption, it can be argued that
the list of features extracted for the regression and inference model are in reality capturing
participants’ social and physical activity, and only indirectly informing drinking behavior. As a
result, we examine the role of going out behavior (i.e., going away from home) together with
alcohol consumption.
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Alcohol Consumption
Negative Positive

Not Gone Out 104 84
Gone Out 76 365

(a) Going Out Behavior

Alcohol Consumption
Negative Positive

Female 190 317
Male 141 361

(b) Gender

Table 5.8 – Role of a) Going out behavior, b) Gender on alcohol consumption.

As part of the study protocol when the participants documented their drinks, we also asked
them to report the place (e.g., home, bar, restaurant, etc.) where they were having their
drink (Section 5.4). As a result, using this self-reported information, we knew the type of
place where the participants were at the time of reporting drinks. A participant could be at
multiple venues during a night. To handle this case, if participants had reported at least one
place outside their home during a night, they were considered as gone out for the night; and
if participants had reported staying at home through out the night, they were considered
as staying at home. Of all 1,011 user-nights, participants self-reported place information
for 629 (62.2%) user-nights. Note that using the place survey, we received a total of 1,394
check-ins (Table 5.1), but due to sensor data filtering (Section 5.6.1), we were left with only
629 check-ins for which self-reported place information was available.

Table 5.8a shows the total number of user-nights of drinking contrasted with going out
behavior. Out of 629 user-nights, participants had gone out for 441 (70%) user-nights, while
they had stayed at home for 30% of nights. If a participant had gone out, it was highly
likely that they had consumed alcohol (82.8% of user-nights). On the other hand, for 44.7%
of user-nights, participants stayed at home and consumed alcohol there, supporting the
increasing trend of home drinking [72]. In [72], using focus groups spanning different age
segments, the authors reported that cost, convenience, safety, and social occasions are
the key reasons of drinking at home. In the same study young people aged 16–25 years
old (the age group of our study participants) reported social occasions to be the principal
reason for home drinking. Given that the likelihood of consuming alcohol at home (44.7%)
and not consuming alcohol away from home (17.2%) is not negligible, it is fair to say that the
extracted features might be capturing more nuanced notions of drinking behavior, and not
just informing the social and physical context of users.

Role of Gender on Drinking Behavior

As stated before, it is known that gender plays a determinant role in alcohol use. In [223],
using 16 population surveys across 10 countries, the authors found that males drank more
frequently and consumed more alcohol relative to females. Similar findings were reported in
another large-scale study conducted amongst an adolescent population in Europe [120]. To
inspect the gender differences on alcohol consumption, in this section we present results of
reported alcohol consumption differentiated by gender as observed in our study.
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From a total of 160 participants who contributed sensor data for 1,011 user-nights (Sec-
tion 5.6.1), gender information was available for 159 participants. We observed a fairly
balanced gender ratio with 85 males (53.45%) and 74 females (46.55%). Males contributed
a total of 502 user-nights, and females provided slightly higher number of 507 user-nights.
Table 5.8b reports the total number of user-nights by each gender and their reported alcohol
(and non-alcohol) consumption. Of all the user-nights reported by the female cohort, 62.5%
(resp. 37.5%) of them were reported with alcohol (resp. non-alcohol) consumption. On the
other hand, males reported 72% of nights with alcohol consumption, which is higher relative
to the female population. These results show that gender alone cannot explain the patterns
observed in Sections 5.6.3 and 5.6.4.

In summary, Table 5.6 and 5.7 provide evidence of the feasibility to characterize and classify
drinking behavior using smartphone data. These results highlight the discriminative power
of physical activity (accelerometer), physical mobility (location) and social context (wifi and
bluetooth) features as partly predictive of alcohol consumption. From an alcohol epidemiology
point of view, we believe it is a promising result. Smartphones, which can collect a wide range
of sensor data (activity, location, proximity), event logs (including all phone applications),
and media (photos, audio, video), offer a promising alternative to improve the way in which
drinking-related phenomena can be studied. Furthermore, the recurrent use of retrospective
surveys, which induces recall biases, can be potentially reduced using smartphones.

With the increasing availability and acceptability of wrist-worn wearable devices (like Jawbone,
Fitbit, Apple Watch), which typically embed accelerometers inside them, our findings point to
interesting ways to track drinking behavior and promote self-reflection based on behavioral
data. As potential applications, near real-time information on consumption could potentially
influence alcohol intake and could assist them in their decision-making to drink more or
not. It has been shown that self-monitor and real-time feedback can help reduce alcohol
consumption and heavy drinking [215].

5.7 Video Content Analysis

In the previous sections, we have presented a detailed statistical and inference analysis
using survey and sensor data. In this section, we turn our attention to examine the video
dataset to answer RQ5.4. Concretely, we explored the use of signal processing to measure
two dimensions of place ambiance – loudness and brightness – automatically from collected
videos. The automatic processing and characterization of place ambiance is a scalable
alternative to manual data labeling. In contrast with prior work on computational modeling of
places [46, 214], we study to what extent automatically extracted features represent the in-situ
levels of loudness and brightness of nightlife places, as perceived by both study participants
and external observers of videos. Furthermore, we also compared in-situ self-reports with
the crowdsourced annotations by external online observers.
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To answer these questions, we formulated the problem in terms of Brunswik’s lens model [38],
a model often used in human perception research [82]. The model requires computing cue
utilization, cue validity and observer accuracy of different features. In Brunswik’s terms and
as described here [82], cue validity (rv) is the correlation between automatically extracted
ambiance and perceived in-situ ambiance (via self-reports); cue utilization (rv) refers to
the correlation between automatically extracted ambiance and manually coded perceived
ambiance by external observers after watching the videos; and, observer accuracy (racc) is
the correlation between perceived in-situ and manually coded ambiance. Higher rv and ru is
obtained if what was perceived by the machine was equally perceived by both in-situ and
external observers respectively; while, higher racc indicates that the visual cues were both
utilized and valid resulting in similar perceptions by both in-situ and ex-situ observers.

On one hand, in-situ self-reports may be closer to the ground-truth, but they also include
individual biases from participants, in part due to the explicit context of nightlife and potential
alcohol use. On the other hand, manual coding may resemble automatically processed video
content. Manual coding is also affected by individual biases, but these biases are smoothed
by aggregating annotations by multiple coders. Our hypothesis was that cue utilization would
be higher than cue validity in our data.

We believe it is important to examine the reliability of different crowd-workers (in-situ and
ex-situ) in comparison with automatic feature extraction to better understand their strengths
and biases to inform various aspects of nightlife. Are in-situ self-reports reliable when self-
reporting itself might be affected by the situation being studied (e.g., nightlife and potential
alcohol use)? In these situations, what can be considered the “ground-truth”? To the best of
our knowledge, this kind of analysis has not been reported earlier in the Ubicomp community.

5.7.1 Video Dataset

In our study, participants recorded a total of 894 videos, 51 of which were either corrupted or
had null size. The remaining 843 (94%) videos had a mean duration of 9.4 seconds. 73%
of the videos lasted exactly 10 seconds (the default setting while capturing videos via the
app). In what concerns this analysis, the duration of videos limits the amount of information
captured in videos, and thus, how accurate they may represent nightlife places and their
ambiance. For the rest of the analysis, we use the collection of 843 videos.

5.7.2 Manual Coding and Agreement

To annotate the video corpus, we asked two research assistants to rate the ambiance dimen-
sions (i.e., occupancy, loudness, and brightness) after watching the videos. Annotators were
also asked assign categories to places documented in the videos, as was done for the place
survey. We measured the inter-annotator agreement of external observers and their agree-
ment with in-situ self-reports. For ordinal ratings, we used intraclass correlation coefficients
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(ICC(1, k)) [189], and for categorical responses, we used Fleiss’ Kappa coefficients (κ) [70].

We observed fairly high agreement between external observers for all ambiance and
place attributes including occupancy (ICC = 0.90), loudness (ICC = 0.86), brightness
(ICC = 0.75), and place category (κ = 0.75). The aggregated annotation scores for external
observers also achieved high agreement with self-reports for place category (κ = 0.72);
moderate agreement for occupancy (ICC = 0.50) and loudness (ICC = 0.55); and, no
agreement for brightness (ICC = −0.07). For brightness (resp. loudness), 50% (resp. 55%)
of the videos had an ordinal scale difference of 1 or 2 points with respect to self-reports and
17% (resp. 8%) of them had a difference larger than 2 points, on a five-point scale. These
findings suggest that external observers annotated some ambiance attributes differently from
in-situ self-reports. We investigate these differences further in Section 5.7.4.

5.7.3 Feature Extraction and Analysis

We computed the loudness and brightness of videos using standard features from audio and
image processing, as described below:

Automatically Extracted Loudness (AEL): We extracted the loudness of places as the
audio power (AP) using the audio channel of videos [110]. The AP coefficients are computed
as the average square of digital audio signal s(n) within successive non-overlapping frames.
For each lth frame, AP is computed as: AP (l) = 1

Nhop

∑Nhop−1
n=0 |s(n+ lNhop)|2, where L is

the total number of time frames (each of time duration Lw) and Nhop is the number of time
samples corresponding to the time interval between consecutive frames. For each video,
AEL was the mean AP (l) values across all frames, with Lw set to 128ms. The higher the
value of AEL, the louder the video.

Automatically Extracted Brightness (AEB): We computed the average brightness of a
video using a typical measure in image processing [80]. The brightness of a frame B is
determined as the average intensity of the luminance channel Y (x, y) computed across
all N image pixels in the YUV color space, i.e. B = 1

N

∑
(x,y) Y (x, y). For each video, we

computed B for every frame, and then take the mean to obtain AEB. The higher the value of
AEB, the brighter the video.

Figure 5.11 shows the boxplots of AEL and AEB for each place type. Overall, we observe that
private places are quieter compared to public places, which is consistent with the findings
reported earlier using self-reported data (Table 5.3). When comparing the median values of
AEL across public place categories, clubs, events, and bars were found to be the loudest
places with low statistical dispersion (Figure 5.11a). In contrast, for the videos taken in private
places, the distribution of AEL shows a wide spread with varying loudness profiles. The
diversity in loudness of home environments may reflect different social settings e.g., private
parties, family dinners, or being alone at home (see Table 5.3).
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Figure 5.11 – Boxplots of AEL and AEB by place category. AEL values are normalized with
respect to the loudest place and log-scaled. AEB is measured in byte images, a 8-bit integer
ranging from 0 (dark) to 255 (bright). PBS refers to public spaces.

When comparing the median values of automatically extracted brightness, we found clubs
and bars to be the darkest places together with PBS across all place types (Figure 5.11b).
These findings are not surprising as clubs and bars at night are naturally expected to be
darker than other indoor places such as restaurants (see Figure 5.4c). Among public places,
restaurants have comparable distributional spread as private places. Finally, videos taken
in the travel category have the highest median brightness, which mostly reflects on public
transportation vehicles or stations that tend to be well-lit during night.

To validate these findings, we conducted a series of pairwise Kolmogorov-Smirnov test [133]
across all place categories for AEL and AEB. For loudness, all the tests were significant at
p < 0.01, except pair-wise tests between restaurant, travel and PBS. Similar results were
obtained for AEB – all the tests were statistically significant at p < 0.01 except tests between
bar and PBS, and between restaurant, private and travel categories.

5.7.4 Feature Reliability

To measure the reliability of different features, we first measured the cue validity (rv) and
cue utilization (ru) of AEL and AEB by computing their pair-wise Pearson’s correlations with
self-reports and manual coding of loudness and brightness, respectively. Table 5.9 shows
these measures for each place type. Using these statistics, we observe the following trends.
First, both AEL and AEB show significant cue utilization with moderate to high effect sizes
(0.48 ≤ ru ≤ 0.83) for all places types. Second, we obtain significant cue validity with
moderate effect sizes (0.25 ≤ rv ≤ 0.48) for both AEL and AEB for some of the categories.
Third, cue utilization effect sizes are overall higher than for cue validity for both AEL and
AEB, i.e., automatic ambiance features describe more accurately the perception of ex-situ
annotators than that of participants in-situ. Fourth, the effect sizes of public and private places
are comparable. Finally, AEB values are generally higher than AEL for cue utilization.
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Place Type rv p−value ru p−value racc p−value

Loudness (AEL)
Bar 0.34 2.26e-04 0.54 3.34e-08 0.24 1.88e-02
Club 0.31 4.65e-02 0.62 1.89e-04 0.24 2.01e-01
Restaurant 0.44 6.27e-03 0.53 8.05e-04 0.56 2.23e-04
PBS 0.44 1.99e-07 0.48 1.68e-07 0.46 2.53e-07
Events 0.06 7.33e-01 0.61 2.62e-04 0.19 3.07e-01
Travel 0.29 4.24e-02 0.62 8.31e-06 0.32 3.46e-02
Public 0.48 8.03e-26 0.67 7.83e-50 0.50 8.19e-26
Private 0.45 5.77e-19 0.82 9.66e-82 0.47 1.21e-21

Brightness (AEB)
Bar 0.25 5.56e-03 0.71 2.03e-15 0.19 6.77e-02
Club 0.01 5.35e-01 0.60 4.09e-04 0.02 9.16e-01
Restaurant 0.34 3.7e-02 0.83 3.08e-10 0.42 7.59e-03
PBS 0.38 8.08e-06 0.78 5.72e-23 0.38 3.25e-05
Events 0.25 1.63e-01 0.83 8.38e-09 0.33 6.76e-02
Travel 0.31 3.2e-02 0.72 3.94e-08 0.45 1.99e-03
Public 0.43 1.00e-20 0.80 5.63e-82 0.42 4.62e-18
Private 0.35 7.85e-12 0.73 2.78e-56 0.31 1.16e-09

Table 5.9 – Cue validity (rv), cue utilisation (ru), and observer accuracy (racc) for AEL and
AEB (N=843). Values marked in bold are not statistically significant at p < 0.01.

Table 5.9 also reports the observer accuracy (racc) which was computed by correlating
perceived in-situ and manually coded ambiance for each place type. Overall, public places
obtained higher racc relative to private places for both loudness and brightness. Of all place
types, bars, clubs, and events obtained the lowest racc which were not statistically significant
at p < 0.01. These results indicate that the experience of physically present in those places
was not perceived in the same manner after watching the video of those places.

Apart from these findings, we observe that for place types with no significant cue validity,
both AEL and AEB show statistically significant cue utilization (e.g., events, clubs). For these
places, we watched a sample of videos where manually coded ratings were different from
self-reports. While watching these videos, we did not find any obvious explanation for the
difference in ratings, yet we found manual coding to be more reliable (i.e., correcting for biases
and mistakes while self-reporting). For some other videos, we found that the presence of
flashy lighting (common in clubs and events) may alter the perception of brightness between
what is experienced in-situ and what is perceived manually. In general, we noted that videos
tend to capture more diversity of content compared to audio content, which may explain
higher cue utilization of AEB than AEL.

Overall, the analysis confirms the diversity of our video dataset, and the value of under-
standing data quality using a combination of automatic and manual methods. In the field
of Ubicomp research and mobile crowdsensing studies, it is important to examine the reli-
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ability of different crowd-workers (in-situ and ex-situ) in comparison with automatic feature
extraction to better understand their strengths and biases to inform various aspects of places
and people. Our findings advances the research in this direction. We believe that the video
dataset will open the door to additional research questions.

5.8 Participants Experiences of Mobile Crowdsensing Study

In this subsection, we first report the overall experience of participants, then we list the
results on participants’ compliance with the video recording task, and finally highlight a few
observations from the qualitative interviews.

5.8.1 Overall Experience

After the field study concluded, participants were asked to complete an exit questionnaire
about their experiences during the study (Section 5.4). For the exit questionnaire we received
responses from a total of 201 users. From an overall usability point of view, more than 80%
of participants agreed or strongly agreed that the mobile application (i.e., survey logger)
was intuitive and easy to use. For 49% of participants, the use of the application became a
routine after a while that participants did without having to think about it too much. From the
perspective of answering in-situ questionnaires, 34% of participants found them hard as the
app interfered with their night outs. Using the application, 38% of participants reflected on
the place ambiance for the first time. When asked whether the mobile application affected
their alcohol consumption, 79.6% of participants stated that the app did not had any effect on
how much they drank compared to their usual consumption. Overall, these findings suggest
that most of the participants had an acceptable experience with the study.

5.8.2 Compliance of Video Crowdsourcing

Now, we report the results on participants’ compliance with the video recording task. We
refer to compliance as the extent to which participants carried out the assigned task (video
taking). We measured compliance on two aspects: 1) participants recording the video after
check-in to a place, and 2) participants following the instructions given for video recording.

Recorded Videos: As stated before, participants recorded a total of 894 videos. Of all
check-ins to public (resp. private) places, 68% (resp. 66%) resulted in a video (Table 5.3),
suggesting that the video taking was not significantly different based on participants’ location.
When participants did not take a video, they had to specify one or more of the five predefined
reasons. Of all the 429 check-ins with no video, safety, ethical, and social were the top three
cited reasons (around 30% each). Only for 5% of cases, legal reasons were indicated for not
recording a video, which in itself points towards ways in which participants perceived and
conceptualized video taking in public and private places. When comparing the differences

130



5.9. Conclusion

across place types, we found that social reason was specified more frequently in private
places than in public (χ2 = 16.56; p− value = 4.7e− 05); while safety reason was specified
more in public places than in private (χ2 = 5.69; p− value = 0.017).

Video Attributes: Participants were instructed to take a 10-second video capturing a
panorama with the phone in landscape (horizontal) mode. We used manual coding to
annotate: 1) video orientation, and 2) if the video was captured with the camera panning.
Based on the aggregated ratings, we found that 72% of the videos were recorded vertically,
and 76% of videos captured a panoramic scene. Overall, we observe low to moderate
compliance for these video attributes.

5.8.3 Qualitative Experience of Participants

To conclude this section, we report some key observations of participants’ video-taking
experience as shared on the qualitative interviews (Section 5.4). One participant felt awkward
taking videos in indoor and dark environments, but felt comfortable in outdoor places: “It
was somewhere indoor, and it was quite dark and it was pretty calm ... I can’t just pull out
my phone and film with a strong flash. I think people would have wondered what I was
doing. But when I was simply outdoor, I didn’t care”. Interestingly, some other participants did
not differentiate between places to record, which could be interpreted as their indifference
towards place type for video capturing. When asked about how recording a video made them
feel unsafe, one participant noted: “Because people don’t like it. It could have led to conflicts.
For example, people I don’t know, they would have the feeling I film them, then they go nuts”
Apart from the stated reasons, few participants reported being too drunk, forgetful, or low
battery for not taking a video.

5.9 Conclusion

In this chapter, we presented a mobile crowdsensing study to capture and examine the
nightlife patterns of young people in Switzerland. The study resulted in a collection of 1,394
place visits accumulating over 8 million sensor data points and 894 videos over three months.
Using place visits, we gained insights into the heterogeneity of youth hangouts during night,
which were diverse from the perspective of social and physical ambiance dimensions. Using
features extracted from sensor data, we demonstrated the feasibility to automatically classify
drinking behavior with an overall accuracy of 76.7%. Finally, using the video corpus, we
concluded that automatically extracted loudness and brightness features describe more
accurately the perception of ex-situ annotators than that of in-situ participants. To conclude,
we believe that the developed methodology demonstrated the promise of collecting rich data
to improve our current understanding of patterns of physical mobility, activities, and social
context of youth populations, as they experience nightlife.
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6 Conclusion and Future Work

Understanding the psychological dimensions of urban spaces – the feeling associated with a
particular place – under the construct of visual perception is an emerging subject in social
and multimedia computing. The growth of mobile and social technologies are providing new
opportunities to document, characterize, and gather impressions of urban environments at
scale with high spatial and temporal resolution. In this thesis as a first contribution, we took a
multidisciplinary approach to quantify the perception of indoor and outdoor environments,
which until recently had largely remained unexplored. Urban impressions were elicited using
images as visual stimuli along several psychological and physical dimensions that included
and extended those studied in recent literature. Using recent advancements in deep learning,
we proposed a methodology to automatically infer urban perception using state-of-the-art
visual cues extracted from images. Our results advance the research of visual perception of
places and raise interesting possibilities to conduct global studies of urban perception.

As a second contribution, the thesis proposed a mobile crowdsensing methodology to collect
rich contextual data to deepen our current understanding of youth nightlife practices in
Switzerland. Adopting a mix of participatory and opportunistic sensing, we examined the
physical mobility, activities, and social context of urban nightlife behavior of over 200 young
people for three months in two Swiss cities. Using automatically derived cues from mobile
sensor and logs data, we introduced an inference framework to classify the binary state
of alcohol consumption for single nights in an urban “in-the-wild” nightlife setting. Overall,
the Youth@Night project filled the research gaps towards capturing and examining the the
heterogeneity and complexity of the youth going out behavior during night time.

The chapter is structured as follows. Section 6.1 summarizes the main conclusions of each
chapter of the thesis. Section 6.2 discusses the limitations of our work and suggests potential
future research directions.

133



Chapter 6. Conclusion and Future Work

6.1 Conclusion

In Chapter 2, we presented a study on perception and inference of psychological dimensions
of indoor places from social media content under the construct of ambiance. Using about
50,000 Foursquare images collected from 300 popular indoor places across six cities, we first
assessed the suitability of social media images as data source to convey place ambiance,
and found that images with clear views of the environment were perceived as being more
informative of ambiance than other image categories. Second, we demonstrated that reliable
estimates of ambiance can be obtained for several dimensions using Foursquare images,
suggesting the presence of visual cues to form place impressions. We further found that
most aggregated impressions of places were similar across cities. Third, we demonstrated
the feasibility to automatically infer ambiance impressions using visual cues extracted from
images. Using pre-trained convolutional neural network models, we extracted visual features
and obtained a maximum R2 of 0.53 and lower root-mean-squared errors for all dimensions
relative to the baseline method.

In Chapter 3, we presented the design and implementation of the SenseCityVity project
co-designed with over 200 young volunteers contributing over 7,000 geo-localized images,
and 380 first-person perspective videos documenting three cities in Mexico. The collected
images describe outdoor scenes and views of each city’s built environment. Using a subset
of 1,200 images, we presented a computational analysis and automatic characterization of
urban perception of outdoor places for three cities in central Mexico. Using the aggregated
annotations, we concluded that outdoor environments can be reliably assessed with respect
to most urban dimensions. We further demonstrated the feasibility to automatically infer
human perceptions of outdoor places using a variety of low-level image and deep learning
features with promising accuracy. To demonstrate the additional value of collecting images
via crowdsensing relative to street-level imagery, we investigated the perception of urban
environments during different times of the day and found that places in the evening were
perceived as less happy, pleasant and preserved relative to the same place in the morning.
Overall, our findings are promising that could potentially provide urban designers and city
planners a data-driven and scalable approach to examine the physical appearance of cities
and help design urban policies informed by urban perception. As a final note, SenseCityVity
project was carried out in a developing country, but we believe some of the findings are
equally transferable to the developed cities.

In Chapter 4, we examined the use of mobile crowdsensing to document Nairobi’s road quality
information. First, we presented the key findings of a road quality survey in Nairobi. The
survey examined key local issues including weekly travel practices, perception of current road
quality conditions and their impact on daily travel experience. Second, we developed a mobile
crowdsensing application to locate, describe, and photograph road hazards. We tested the
application through a two-week field study amongst 30 participants who documented a total
of 254 road hazards from different parts of Nairobi. Third, we demonstrated the use of online
crowdsourcing to verify the authenticity of user-contributed reports i.e., to verify whether
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contributed images from the field indeed depicted road hazards. Overall, CommuniSense
advances the research in the domain of citizen-based reporting, by integrating it with online
crowd-based verification for quality control.

In Chapter 5, we presented a mobile crowdsensing study to capture and examine the nightlife
patterns of young people in Switzerland. The study resulted in a collection of 1,394 place
visits accumulating over 8 million sensor data points and 894 videos over three months.
Using place visits, we gained insights into the heterogeneity of youth hangouts during night,
which were diverse from the perspective of social and physical ambiance dimensions. Using
features extracted from sensor data, we demonstrated the feasibility to automatically classify
drinking behavior with an overall accuracy of 76.7%. Finally, using the video corpus, we
concluded that automatically extracted loudness and brightness features describe more
accurately the perception of ex-situ annotators than that of in-situ participants. To conclude,
we believe that the developed methodology demonstrated the promise of collecting rich data
to improve our current understanding of patterns of physical mobility, activities, and social
context of youth populations, as they experience nightlife.

6.2 Limitations and Future Work

In this section, we discuss the potential limitations of our work and possible future research
directions along three main research themes presented in this thesis: mobile crowdsensing,
urban perception of places, and youth nightlife patterns.

6.2.1 Mobile Crowdsensing

In this subsection, we highlight potential research directions to address two fundamental
challenges in mobile crowdsensing studies.

Incentives Mechanisms: Except the SenseCityVity project, in both the Youth@Night and
CommuniSense studies participants were given monetary incentives for data collection. In
SenseCityVity, participating volunteers were altruistically motivated to contribute their time
and resources for the study. To get longitudinal data over months and possibly years, active
volunteer participation is a must for the crowdsensing study to succeed. Future work could
investigate the design of incentive mechanisms – social, financial, reputation or a combination
– to maximize sustained user participation. There is a growing body of work which have
looked into incentive schemes under different settings [188, 114, 131]. One could incorporate
the findings from these works towards the design of future crowdsensing studies. In mobile
crowdsensing research and to the best of our knowledge, incentive mechanisms have been
less studied for participant recruitment. A significant amount of effort, time and resources
were spent during the recruitment process in all our crowdsensing studies. Future work could
also design effective incentive strategies (e.g., hierarchical referral scheme [42, 213]) to enroll
a large and diverse population.
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Crowdsourced Data Verification: In Chapter 4, we demonstrated the potential of using a
crowdsourcing approach to verify the authenticity of the crowdsourced data. We used an
online crowdsourcing platform for verification, but future work could integrate these quality
control techniques in citizen-based mobile reporting applications, such as SenseCityVity
or Youth@Night mobile apps. This would also involve designing appropriate incentives, as
proposed above, to maximize user participation.

6.2.2 Urban Perception of Places

In this subsection, we highlight the potential limitations and future directions for the work on
urban perception of indoor and outdoor places, as described in Chapter 2 and Chapter 3.

Lack of Ground Truth: As a first limitation, we believe that the lack of ground-truth or
“gold standard” on perceptual ratings makes it difficult to contextualize some of the findings
reported in this thesis. Perceptual ratings are inherently subjective in nature, and there are
no objective measures to quantify and evaluate them. This can be regarded as one of the
main limitations of our work.

For most of the psychological dimensions (e.g., romantic, happy, pleasant, etc.) studied in
this thesis, there exist no unique ground-truth, while for some of the physical dimensions
(e.g. dangerous, polluted, loud, etc.), there might be proxy measures to quantify them.
Previous studies in outdoor places have examined the relationship between the perceptions
of safety and class and homicides rates in New York City [176]. However, due to the lack
of publicly available data in the studied cities in Mexico, such analysis was not feasible on
the SenseCityVity images. Future work could include partnerships with the city or police to
investigate whether this information could be available for research purposes.

Furthermore, to contextualize some of the findings or evaluate the applications of the per-
ception work, an interesting analysis would be to gather impressions by domain “experts”
(e.g., designers, architects, city planners), who are responsible for designing these urban
spaces. This would facilitate creation of a “gold standard” for visual perception research in
urban places, in addition to comparing and quantifying the predictive validity of some of the
proposed techniques presented in this thesis.

Examination of “Other” Places: For indoor places, our analysis showed that popular
places in the studied cities evoked similar perceptions for most of the ambiance dimensions.
This result is interesting in itself as it might suggest that popular places in social media in
cosmopolitan cities have many points in common, potentially suggesting a “uniformization of
taste” in globalized cities [50]. However, any possible interpretation would have to be further
validated with more data and qualitative studies. These results also highlight the need to study
other venues, including the long tail of not so popular places and venues not represented
on Foursquare because of well-known socio-economic biases in social media [206, 175].
The intrinsic biases of social media result in few places being well represented (as the ones
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studied in this thesis), but the majority of urban indoor venues that are poorly represented
(if at all) could be also studied under the ambiance lens. Could significant differences in
impressions between popular and non-popular venues be quantified? Could one devise
transfer learning approaches that could be used to learn from popular places and adapted for
non-popular ones? These are just a couple of research questions that could be investigated
as part of future work. The ability to automate the image selection process (as demonstrated
in Section 2.7.4) provides potential avenues to pursue these research directions by increasing
the number and diversity of places.

With respect to outdoor places, due to the nature of our data collection, the spatial coverage
of our approach can be seen as a potential limitation. Spatial coverage includes two aspects.
The first one is the spatial sampling of regions to select urban areas. We did not perform any
uniform sampling to select places for the SenseCityVity study, which we plan to do as future
work for comparison purposes. The second aspect is the spatial scalability, which involves
reaching to diverse geographical regions. Even though SenseCityVity images were visually
diverse, our data collection methodology was limited to areas that could be reached by the
participant community. Having said that, in the context of development, it is more relevant for
people to explore the urban area where they live and work in order to realize solutions to the
problems they face on a daily basis. We plan to engage other communities in the future to
collect diverse datasets in other developing cities.

Modeling Crowdworkers: While aggregating annotations from multiple workers, we did not
take into account either the (hidden) quality of workers (i.e., different annotators have different
work qualities), or the inherent difficulty of certain images for annotation. Both of which might
affect the consensus score [218, 164]. To guard against noisy and (possibly) adversarial
annotations, a promising future direction could involve application of probabilistic methods
to learn these latent worker and task attributes and weigh their relative importance during
aggregation [218, 164, 106]. It would also be worth investigating the effect of worker quality
and task difficulty on the automatic inference of urban perception.

Besides these latent attributes, the demographics (age, gender, socio-economic status)
including the “locality” of the worker population also plays an important role. By locality, we
mean if the observer population is external (as is the case in our study) or locals who are
familiar with the indoor/outdoor environments. It can be argued that the collected assessments
by external observers induce bias in the ratings and thus limit the generalizability of our
findings. We acknowledge this is one of the limitations of our work. Future work will investigate
the impressions elicited by various demographics segments.

Machine Perception of Places: In this thesis, we established that it is feasible to automati-
cally infer human perceptions of places using visual cues. However, the understanding of
what specific visual cues raters used to judge a place and form ambiance impressions is an
open issue. For indoor places, these cues could be subtle including color, lighting scheme,
spatial layout, flooring and carpeting, wall decorations or patrons [24, 208, 90]). For outdoor
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places environmental cues could include architectural and landscape elements such as
wall color, greenery, trees and hedgerows, corporate buildings, residential houses, street
signs, graffitis, to mention a few [61, 22, 162]. Future work could investigate these specific
connections.

Furthermore, a holistic study of place perception would involve the analysis and interpretation
of multiple modalities including images, videos, sound, and text. Each of these modalities
involve real challenges. In this thesis, we have used visual cues from images. However,
there is a variety of potentially other informative cues e.g., visual cues from videos, acoustic
cues that could be collected in-situ [214], text from user-generated comments, and metadata.
The specific connections of these features with ambiance still need to be established. With
respect to cues extracted from images, future work could also investigate fusion of other
visual features such as presence of faces, demographics of patrons, image quality, or
computational aesthetics features to deepen our understanding and improve the predictive
performance [85, 166, 108].

For extracting deep learning features, we have used a pre-trained CNN model. Future work
could fine-tune an existing pre-trained CNN or train a CNN model from scratch to see if
improvements can be made relative to the reported results [159, 52]. From a machine learning
perspective, we presented early results on the effect of the amount of data and image types
used on learning ambiance (Section 2.7.4), but future work could inspect their roles in more
depth. Future work could also examine the role of the inherent data bias caused due to an
unbalanced distribution of annotation scores [102].

6.2.3 Urban Crowdsourcing of Nightlife Patterns

In this subsection, we highlight two promising research directions for the Youth@Night study.

Contextualizing Alcohol Consumption: The data collected as part of the Youth@Night
study provides numerous opportunities to explore different angles of drinking behavior. In
this thesis, we studied one aspect of drinking behavior. Alcohol use is context dependent,
so from a scientific point of view, understanding the temporal aspects of consumption and
how it affects intake is an interesting area of future exploration. One could also explore how
the social context and mobility cues affect drinking behavior e.g., does increased mobility or
large social groups increase the likelihood of alcohol consumption? The Youth@Night data
would allow to empirically test these hypotheses, some of which have been analyzed in the
literature using questionnaires [116, 122].

Besides mobility and social context, does the socially perceived ambiance of a place affect
alcohol consumption? Do people drink more in dark and dingy places? To address these
questions, the automatic identification of place ambiance as being ‘dark’, ‘dingy’, ‘trendy’,
or ‘formal’ from smartphone sensor data and images (as demonstrated in this thesis) could
provide an entirely new type of insights for alcohol research [96].
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Computational Characterization of Places and Other Nightlife Activities: In Chapter 5,
we found that 47% of check-ins and video recordings occurred in private venues including
personal homes. The rich data generated in a private setting (survey questionnaires, videos,
and mobile sensor data) provides a unique opportunity to study private places. Using a
combination of mobile sensor and visual data, future work will propose a computational
methodology to automatically discriminate private vs. public places at night. Moreover, we
could infer certain activities of nightlife, other than alcohol consumption, like dancing in a
club.
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