Scaling Up Concurrent Analytical Workloads on Multi-Core Servers
Today, an ever-increasing number of researchers, businesses, and data scientists collect and analyze massive amounts of data in database systems. The database system needs to process the resulting highly concurrent analytical workloads by exploiting modern multi-socket multi-core processor systems with non-uniform memory access (NUMA) architectures and increasing memory sizes. Conventional execution engines, however, are not designed for many cores, and neither scale nor perform efficiently on modern multi-core NUMA architectures. Firstly, their query-centric approach, where each query is optimized and evaluated independently, can result in unnecessary contention for hardware resources due to redundant work found across queries in highly concurrent workloads. Secondly, they are unaware of the non-uniform memory access costs and the underlying hardware topology, incurring unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show how these scalability and performance impediments can be solved by exploiting sharing among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data placement strategies in the execution engine. Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and work across concurrent queries at run-time into two categories: reactive sharing, which shares intermediate results across common query sub-plans, and proactive sharing, which builds a global query plan with shared operators to evaluate queries. We integrate the original research prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and show how and when each technique benefits performance. Our most significant finding is that reactive and proactive sharing can be combined to exploit the advantages of both sharing techniques for highly concurrent analytical workloads. Regarding NUMA-awareness, we identify, implement, and compare various combinations of task scheduling and data placement strategies under a diverse set of highly concurrent analytical workloads. We develop a prototype based on a commercial main-memory column-store database system. Our most significant finding is that there is no single strategy for task scheduling and data placement that is best for all workloads. In specific, inter-socket stealing of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data across sockets involves an overhead. For this reason, we implement algorithms that adapt task scheduling and data placement to the workload at run-time. Our experiments show that both sharing and NUMA-awareness can significantly improve the performance and scalability of highly concurrent analytical workloads on modern multi-core servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting faster processing of big data analytical applications, fully exploiting the hardware resources of modern multi-core servers, and for more responsive user experience.
EPFL_TH7222.pdf
openaccess
3.12 MB
Adobe PDF
c673e0b498ccf3995d0fa48a0f4d8760