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Sii avaro di citazioni. Diceva giustamente Emerson:
“Odio le citazioni. Dimmi solo quello che sai tu”.

Hold your quotes. Emerson aptly said: “I hate quotes.
Tell me only what you know”.

Umberto Eco, La bustina di Minerva
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Abstract

The year 2016, in which I am writing these words, marks the centenary of Claude
Shannon, the father of information theory. In his landmark 1948 paper “A Mathe-
matical Theory of Communication”, Shannon established the largest rate at which
reliable communication is possible, and he referred to it as the channel capacity.
Since then, researchers have focused on the design of practical coding schemes that
could approach such a limit. The road to channel capacity has been almost 70
years long and, after many ideas, occasional detours, and some rediscoveries, it has
culminated in the description of low-complexity and provably capacity-achieving
coding schemes, namely, polar codes and iterative codes based on sparse graphs.
However, next-generation communication systems require an unprecedented perfor-
mance improvement and the number of transmission settings relevant in applications
is rapidly increasing. Hence, although Shannon’s limit seems finally close at hand,
new challenges are just around the corner.

In this thesis, we trace a road that goes from polar to Reed-Muller codes and, by
doing so, we investigate three main topics: unified scaling, non-standard channels,
and capacity via symmetry.

First, we consider unified scaling. A coding scheme is capacity-achieving when,
for any rate smaller than capacity, the error probability tends to 0 as the block
length becomes increasingly larger. However, the practitioner is often interested in
more specific questions such as, “How much do we need to increase the block length
in order to halve the gap between rate and capacity?”. We focus our analysis on
polar codes and develop a unified framework to rigorously analyze the scaling of
the main parameters, i.e., block length, rate, error probability, and channel quality.
Furthermore, in light of the recent success of a list decoding algorithm for polar
codes, we provide scaling results on the performance of list decoders.

Next, we deal with non-standard channels. When we say that a coding scheme
achieves capacity, we typically consider binary memoryless symmetric channels.
However, practical transmission scenarios often involve more complicated settings.
For example, the downlink of a cellular system is modeled as a broadcast channel,
and the communication on fiber links is inherently asymmetric. We propose prov-
ably optimal low-complexity solutions for these settings. In particular, we present
a polar coding scheme that achieves the best known rate region for the broadcast
channel, and we describe three paradigms to achieve the capacity of asymmetric
channels. To do so, we develop general coding “primitives”, such as the chaining
construction that has already proved to be useful in a variety of communication
problems.

Finally, we show how to achieve capacity via symmetry. In the early days of
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coding theory, a popular paradigm consisted in exploiting the structure of algebraic
codes to devise practical decoding algorithms. However, proving the optimality of
such coding schemes remained an elusive goal. In particular, the conjecture that
Reed-Muller codes achieve capacity dates back to the 1960s. We solve this open
problem by showing that Reed-Muller codes and, in general, codes with sufficient
symmetry are capacity-achieving over erasure channels under optimal MAP decod-
ing. As the proof does not rely on the precise structure of the codes, we are able to
show that symmetry alone guarantees optimal performance.

Keywords: asymmetric channel, broadcast channel, capacity-achieving codes,
capacity via symmetry, chaining construction, list decoding, polar codes, Reed-
Muller codes, scaling, sparse graph codes.



Abstract

L’anno 2016, in cui scrivo queste parole, segna il centenario della nascita di Claude
Shannon, il padre della teoria dell’informazione. Nel suo fondamentale articolo del
1948 “A Mathematical Theory of Communication”, Shannon stabili il massimo tasso
di informazione che puo essere trasmesso garantendo una comunicazione affidabile e
lo defini capacita di canale. Da allora, i ricercatori si sono concentrati sulla proget-
tazione di sistemi pratici di codifica che potessero avvicinarsi ad un tale limite. Il
cammino verso la capacita & durato quasi 70 anni e, dopo numerose idee, deviazioni
occasionali e qualche riscoperta, ¢ culminato nella descrizione di schemi di codifica a
bassa complessita e capaci di raggiungere la capacita, ossia i codici polari e i codici
iterativi basati su grafi sparsi. Tuttavia, i sistemi di comunicazione di nuova gene-
razione richiedono un miglioramento delle prestazioni senza precedenti ed il numero
di scenari trasmissivi rilevanti nelle applicazioni sta crescendo rapidamente. Quindi,
anche se il limite di Shannon pare ormai raggiunto, nuove sfide sono dietro ’angolo.

In questa tesi, tracciamo un cammino che va dai codici polari a quelli di Reed-
Muller e, cosi facendo, investighiamo tre argomenti principali: leggi di scala unifi-
cate, canali non-standard e capacita attraverso la simmetria.

Innanzi tutto, consideriamo le leggi di scala unificate. Un sistema di codifica
raggiunge la capacita quando, per ogni tasso di informazione trasmesso inferiore
alla capacita, la probabilita di errore tende a 0 all’aumentare della lunghezza di
blocco. Tuttavia, da un punto di vista pratico, si & spesso interessati a rispondere a
domande specifiche quali, “Di quanto dobbiamo aumentare la lunghezza di blocco
in modo da dimezzare la differenza tra tasso di informazione trasmesso e capacita?”.
In questa tesi, ci concentriamo sui codici polari e sviluppiamo una teoria unificata
per analizzare in modo rigoroso le leggi di scala dei parametri fondamentali, ossia
la lunghezza di blocco, il tasso di informazione trasmesso, la probabilita di errore
e la qualita del canale. Inoltre, alla luce del recente successo di un algoritmo di
decodifica con lista per i codici polari, presentiamo dei risultati sulle leggi di scala
che regolano le prestazioni dei decodificatori con lista.

Successivamente, discutiamo i canali non-standard. Quando diciamo che un si-
stema di codifica raggiunge la capacita, consideriamo tipicamente canali binari, privi
di memoria e simmetrici. Tuttavia, in pratica si osservano spesso degli scenari pitt
complicati. Ad esempio, il downlink di un collegamento cellulare viene modella-
to come un canale broadcast e la comunicazione su fibra ottica & intrinsecamente
asimmetrica. In questa tesi, proponiamo e dimostriamo 'ottimalita di una serie di
soluzioni a bassa complessita adatte a questi scenari. In particolare, presentiamo
un sistema di codifica polare che permette di raggiungere i tassi di informazione
trasmessi ottimi noti per il canale broadcast e descriviamo tre paradigmi di codi-
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fica capaci di raggiungere la capacita dei canali asimmetrici. Per ottenere questo
obiettivo, sviluppiamo delle generiche “primitive” di codifica, come una costruzione
a catena che si e gia dimostrata utile in una varieta di problemi di comunicazione.

Infine, dimostriamo come raggiungere la capacita attraverso la simmetria. Nei
primi anni della teoria dei codici, una tecnica popolare consisteva nello sfruttare la
struttura dei codici algebrici per ideare algoritmi pratici di decodifica. Tuttavia,
dimostrare 'ottimalita di tali schemi di codifica rimase un obiettivo sfuggente. In
particolare, la congettura che i codici di Reed-Muller raggiungono la capacita risale
agli anni ’60. In questa tesi, risolviamo questo problema dimostrando che i codici
di Reed-Muller e, in generale, codici dotati di sufficiente simmetria raggiungono
la capacita su canali a erasure con decodifica ottima MAP. Dal momento che la
dimostrazione non dipende dalla struttura precisa dei codici, siamo in grado di
provare che la simmetria da sola garantisce prestazioni ottime.

Parole chiave: canale asimmetrico, canale broadcast, codici che raggiungono
la capacita, capacita attraverso la simmetria, costruzione a catena, decodificatore
con lista, codici polari, codici di Reed-Muller, leggi di scala, codici basati su grafi
sparsi.
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Introduction

Nomina direttamente autori e
personaggi di cui parli, senza perifrasi.
Cosi faceva il maggior scrittore lombardo
del XIX secolo, ’autore del 5 maggio.

Name the authors and characters you
refer to, without using periphrases. So
did the greatest Lombard author of the
19th century, the author of “The 5th of
May”.

On 18 October 1989, the Galileo spacecraft began its journey towards Jupiter
to send off a probe that would accomplish the most difficult atmospheric entry ever
attempted. However, on 11 April 1991, when the antenna for data transmission had
to be deployed, no confirmation signal came back. Despite being a huge setback, this
event did not cause the failure of the mission: the Jet Propulsion Lab reprogrammed
into the spacecraft computers an elaborate coding scheme able to operate with a
2 dB gap to channel capacity and with an error probability of the order of 1077,
which arguably represented the highest-performance and highest-complexity system
for error control existing at the time (see Chapter 3.4 of [1] for more details).

This is possibly the most spectacular case in which coding theory saved the day.
On a more mundane level, each of us uses the fruits of coding theory every day
when we pick up our cell phones, transfer information over the Internet, or store
files on our computers. As a preliminary example, just consider the two classes of
codes that constitute the main focus of this thesis: a first-order Reed-Muller code
was employed in the Mariner Mars 1969 and 1971 spacecraft, and polar codes are
among the most promising candidates for the incoming 5G standard.

To establish the context, we begin with a quick history of coding theory in Section
1.1. Then, we move to the present and, in Section 1.2, we briefly describe the main
research topics investigated in this work. After this general discussion, we present in
some more detail the various components that constitute the title of this thesis: in
Section 1.3, we deal with polar codes; in Section 1.4, we discuss Reed-Muller codes
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and a rather old conjecture (spoiler alert); in Section 1.5, we talk about scaling; in
Section 1.6, we consider coding for non-standard channels. Finally, in Section 1.7,
we briefly summarize the contributions of this thesis.

Right after the title and at the beginning of each chapter, there is a quote
containing a piece of advice on how to write well. Indeed, I spent quite some time
thinking about the appropriate style for this thesis and, after discovering a fairly
long list of recommendations from a witty Italian semiologist, I decided to reproduce
some of them. I have to admit that I did not follow thoroughly all these rules, but
I hope that the reader can find some value in them.

1.1 Channel Coding: The Shortcut to Channel Capacity

In this thesis, we study the problem of communicating through a noisy channel W.
For the moment, let us consider the simplest instance of such a problem: there
is a single transmitter who wishes to communicate with a single receiver, and the
noisy channel is binary, memoryless and symmetric (BMS). In order to be even
more concrete, take the case of the binary erasure channel (BEC). This channel
erases each of the inputs independently with probability € and, otherwise, leaves the
input as is. When the binary input « € {0, 1} is erased, the corresponding output
y is denoted by a question mark “?”. The BEC is perhaps the simplest non-trivial
channel model that can be imagined, and it was introduced by Elias as a toy example
in 1954 [2]. In more recent times, the erasure channel has been promoted to the class
of “real-world” channels, as it can be used to model data networks, where packets
either arrive correctly or are lost due to buffer overflows or excessive delays. Our
interest, however, in the erasure channel is mainly due to the combination of the
following two facts: its simplicity makes the theoretical analysis significantly easier;
and, quite surprisingly, many of the properties that hold for the BEC turn out to be
true in much greater generality. In a nutshell, the idea is to prove a result first for
the BEC and, later on, attack more general scenarios. This philosophy proved to be
extremely successful for the case of low-density parity-check (LDPC) codes and of
polar codes, i.e., for two of the most popular classes of codes today.

More specifically, the transmitter wants to send to the receiver K bits of in-
formation, i.e., a sequence uy.r = (u1,...,ur) € {0,1}. The problem is that the
channel W is noisy; for example, some of the inputs might be erased. Hence, in order
to improve the reliability of the communication, the transmitter adds some redun-
dancy and sends a total of N binary symbols, i.e., a sequence x1.5 = (z1,...,ZN) €
{0,1}". In other words, the information sequence uy.rr is mapped into a code-
word 1.y via the encoder £. The set of codewords that are associated with all
possible information sequences represents the code C. The block length of the
code is N and the rate R is given by the ratio between the number of informa-
tion bits and the block length, i.e., R = K/N. On the receiver side, the sequence
y1.N = (y1,...,yn) € {0,1}" obtained as output from the channel is processed by
the decoder D, in order to obtain an estimate y.x = (41, ..., ux) € {0,1} of the
original information sequence. The block error probability Pg is the probability that
the information sequence is reconstructed correctly. The situation is schematically
represented in Figure 1.1.

In his landmark 1948 paper [3], Shannon defines a fundamental quantity called
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Ul: K T1:N Yi:N Ul K

Figure 1.1 — Basic communication scenario. The information sequence wuq.x is
mapped into the codeword x1.n; by the encoder £. The channel W outputs the
noisy sequence 1.y that is used by the decoder D to obtain the estimate 1.5 of
the actual information sequence.

the channel capacity. This quantity represents the maximum possible rate at which
reliable transmission is possible, when N becomes larger and larger. In formulae, for
any R < C(W), where C (W) denotes the capacity of the channel W, there exists a
family of codes {Cn} with block length N and rates Ry converging to R such that

lim Pg(N,R, W) =0. (1.1)
N—oo

Conversely, for any R > C(W), the error probability tends to 1 for any family of
codes.

Shannon’s achievability argument was based on random coding. The central
idea is to create an ensemble of codes and then to study the error probability of a
typicality decoder. Basically, if the ensemble has pairwise independent codewords,
then the resulting family of codes is capacity-achieving. Classic proofs of Shannon’s
channel coding theorem can be found in [4-7]. A related technique consists in
looking directly at the weight distribution of the codes, i.e., at the distribution of
the number of 1s of the codewords. If this weight distribution is sufficiently close to
the weight distribution of a random ensemble, then it is possible to show that the
family of codes is capacity-achieving [8,9]. Unfortunately, random codes could not
be used in practical applications, as their decoding complexity is exponential in the
block length. As a result, the quest for practical codes that could achieve channel
capacity had officially begun!

An excellent review on the history of coding theory can be found in [10]. As
the most careful readers might have noticed, the survey [10] also inspired the title
of the current section that does not, however, have such an ambitious goal. Indeed,
we will focus only on the three coding paradigms that are connected to the body of
this thesis: algebraic coding, iterative coding (or codes based on sparse graphs) and
polar coding.

The algebraic coding paradigm dominated the first decades of coding theory [11,
12]. The central idea is to take advantage of the algebraic structure and the sym-
metries of the codes, in order to devise efficient encoding and decoding algorithms.
This approach was quite different from Shannon’s original one. Indeed, Shannon’s
argument is probabilistic and it shows that a certain family of codes is good in the
typical case. On the contrary, algebraic codes have a deterministic construction.
For this reason, they are more suitable for a worst-case type of analysis. Instead of
proving that an ensemble of codes is good on average, the purpose is to show that a
code guarantees a reliable transmission up to an assigned noise level in the channel
(e.g., a fixed number of errors or erasures). Hence, the principal objective of alge-
braic coding theory is to maximize the separation between codewords, i.e., to design
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codes with a minimum distance as large as possible. Examples of popular algebraic
codes include Hamming [13], Golay [14], BCH [15,16] and Reed-Solomon [17] codes.
Also the Reed-Muller codes [18,19] mentioned earlier belong to this class of codes.

Iterative coding was born in 1993 at the IEEE International Conference on Com-
munications in Geneva, Switzerland, where Berrou, Glavieux, and Thitimajshima
presented a new class of “turbo” codes capable of achieving near-Shannon-limit per-
formance with reasonable decoding complexity [20]. Shortly thereafter, Gallager’s
LDPC codes [21] were rediscovered independently by MacKay [22] and Spielman [23],
along with a low-complexity iterative decoder. Wiberg, Loeliger, and Kotter showed
in [24,25] that the iterative decoding algorithms of both turbo and LDPC codes are
instances of a general belief-propagation (BP) algorithm, and that turbo and LDPC
codes themselves fall under the umbrella of codes based on sparse graphs. In this
way, they rediscovered several results originally described in Tanner’s largely for-
gotten paper [26]. A generic message-passing algorithm, namely, the sum-product
algorithm, was presented by Kschischang, Frey, and Loeliger [27], in order to com-
pute marginal functions in a Tanner graph or, as it is more commonly called, a
“factor graph”. For a tutorial on factor graphs, the interested reader is referred
to [28]. In 2001, Luby et al. showed that sequences of irregular LDPC codes are
capacity-achieving on the BEC [29]. Furthermore, a new powerful technique, called
density evolution, was developed by Richardson and Urbanke, in order to prove
that error-free performance could be achieved below a certain noise threshold for
long codes and large numbers of iterations [30,31]. Using this approach, it was pos-
sible to optimize the degree distribution of irregular codes. In particular, Chung et
al. designed several rate-1/2 codes for the additive white Gaussian noise (AWGN)
channel, including one whose theoretical threshold approached the Shannon limit
within 0.0045 dB [32]. Convolutional LDPC codes, also known as spatially coupled
LDPC codes, were introduced by Felstrom and Zigangirov in [33]. Lentmaier et al.
introduced a terminated version of convolutional LDPC ensembles, considered their
density evolution analysis, and determined the thresholds for the BEC and for the
binary-input AWGN channel [34]. Eventually, Kudekar, Richardson, and Urbanke
proved in [35,36] that spatially coupled LDPC codes, decoded with low-complexity
belief-propagation algorithms, achieve capacity universally over the class of BMS
channels.

A completely different approach to the problem of achieving channel capacity
is provided by polar coding. In his seminal 2009 paper [37], Arikan discovered the
technique of channel polarization and proved that polar codes are capacity-achieving
for any BMS channel with low encoding and decoding complexity. It was recently
pointed out in [38] that these codes were already considered by Stolte in his 2002
Ph.D. thesis [39], where he focused on codes generated by the Plotkin construc-
tion. However, Stolte did not conjecture that such codes were capacity-achieving.
Contrarily to codes based on sparse graphs, polar codes have a deterministic con-
struction. Contrarily to algebraic codes, this deterministic construction does not
come from any explicit symmetry or structure in the code, rather from the process
of channel polarization. Furthermore, the decoding algorithm for polar codes oper-
ates in a successive fashion with a single pass on the data, as opposed to iterative
decoding. Since their introduction, polar codes have become a very popular subject
both in academia and in the industry, as testified by the ever growing number of
papers and patents based on them.



1.2. What Now? 5

In summary, the main techniques to achieve channel capacity are as follows:

Random coding and weight distribution. If the codewords have a uniform dis-
tribution and are pairwise independent, then the family of codes achieves ca-
pacity. In fact, we only need that the weight distribution of the family of
codes is sufficiently close to the weight distribution of random codes. On the
downside, no efficient decoding algorithm (anything with complexity smaller
than exponential in the block length) is known for the transmission of these
codes over general channels.

Iterative coding on sparse graphs. Spatially coupled LDPC codes achieve the
capacity of any binary memoryless symmetric channel and can be decoded
with a low-complexity belief-propagation algorithm. The idea of the proof
consists in studying the density evolution of the decoding process, in order to
establish the threshold at which reliable communication is possible.

Polar coding. Polar codes achieve the capacity of any binary memoryless symmet-
ric channel and can be decoded with a low-complexity successive cancellation
algorithm. The proof is somehow “baked” into the construction of the codes
and it is based on the general phenomenon of channel polarization. The idea
of polarization is to transform identical copies of the transmission channel
into either completely noisy channels or completely noiseless channels, while
conserving the overall capacity.

1.2 What Now?

Paraphrasing an infamous talk at the first IEEE Communication Theory Workshop
in 1971, the survey [10] ends by asking whether coding theory is finally dead. Un-
surprisingly, the conclusion is that coding theory is alive and quite well. Perhaps,
the best proof of this fact comes from the following observation: the only two classes
of codes that are provably capacity-achieving for any BMS channel with affordable
complexity, i.e., polar codes and spatially coupled codes, were introduced after the
publication of the aforementioned survey.

Despite that Shannon’s limit seems finally close at hand, new questions and
challenges are just around the corner, due to the unprecedented performance im-
provement required by next-generation systems and the increasing number of com-
munication scenarios relevant in practical applications. In this thesis, we provide
several original contributions concerning three main topics, namely, unified scaling,
non-standard channels, and capacity via symmetry.

Unified scaling. When we consider the transmission over a noisy channel by us-
ing a coding scheme, the parameters of interest are as follows: the rate R that
represents the amount of information transmitted per channel use, the block
length N that represents the total number of channel uses, the block error
probability Pg, and the quality of the channel W that can be quantified, e.g.,
by its capacity C(W). We say that a family of codes achieves capacity when,
for any R < C(W), Pg — 0 as N — oo, see also (1.1). This means that, as
we use increasingly longer block lengths, we can communicate with a vanish-
ing error probability at the highest possible rate. However, when designing a
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practical communication system, in principle we would be interested in char-
acterizing exactly the relationship of R, NV, Py, and the quality of the channel
W. Clearly, this is a formidable task. Hence, the problem has been tackled by
studying the scaling of these parameters in various regimes. This would enable
the practitioner to answer questions such as, “How much does the block length
N need to increase, in order to halve the gap to capacity C(W) — R?”, and
“How much does the quality of the channel W need to improve, in order to
make the error probability Pp decrease by a factor of 107”. In Chapter 2, we
present several new results for the scaling of polar codes. In particular, we are
able to provide a unified characterization of the relation between the relevant
parameters in the finite-length analysis of polar codes under successive cancel-
lation decoding. The next natural question is how to improve the scaling of
polar codes. One promising candidate in this regard seems to be list decoding
that yields excellent results in numerical simulations. In Chapter 3, however,
we prove some negative results. We provide bounds on the performance of list
decoders, and we show that a list of finite size does not suffice to improve the
speed at which capacity is approached.

Non-standard channels. In the middle of the iterative coding revolution, dur-
ing his 2001 plenary talk at the IEEE International Symposium on Informa-
tion Theory, McEliece asked: “Are turbo-like codes effective on nonstandard
channels?” [40]. At the time, the excellent performance of such codes on bi-
nary memoryless symmetric channels was already well established. Hence, it
made sense to investigate how to use them in more general scenarios, i.e.,
for the transmission over channels that are non-symmetric, non-binary, non-
memoryless, and multi-user. The basic conclusion of McEliece was that bi-
nary turbo-like codes with graph-based iterative decoding show a great po-
tential on basically all such channels. In the last few years, coding theory
has seen extraordinary advances that have led to the discovery of polar codes
and spatially coupled LDPC codes. These two classes of codes are capable
of provably achieving the capacity of the whole class of BMS channels with
low-complexity algorithms. As a result, today more than ever, it is of fun-
damental importance to investigate to what degree the results on standard
channels can be extended to non-standard ones. Indeed, it is no mystery
that the next-generation communication systems call for order-of-magnitude
increases in connectivity, speed, and data volume. In order to achieve such
an ambitious goal, we need more efficient schemes that can deal not only with
simple point-to-point symmetric channels, but also with non-standard scenar-
ios. In Chapter 4, we show a novel low-complexity construction based on polar
codes that provably achieves the best known rate region for the broadcast chan-
nel, i.e., Marton’s region. In Chapter 5, we present and compare three coding
paradigms for achieving efficiently the capacity of asymmetric channels. We
regard these paradigms as general “meta-schemes”, that provide many specific
coding solutions, some old and some new, suitable to a variety of asymmetric
settings.

Capacity via symmetry. As described at the end of the previous section, the
main techniques for achieving channel capacity involve randomness, polariza-
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tion, and iterative codes on sparse graphs. Whereas, a very popular paradigm
in the first decades of the history of coding theory consisted in exploiting
the algebraic structure of the codes, in order to design low-complexity encod-
ing and decoding schemes. However, proving that such classes of codes were
asymptotically optimal seemed, if not impossible, a rather elusive goal. More
specifically, the conjecture that Reed-Muller codes are capacity-achieving was
first discussed at the end of the 1960s. In more recent times, the interest in
the problem was revived by the similarities between Reed-Muller codes and
polar codes. In Chapter 7, we solve this long-standing open problem: we prove
that Reed-Muller codes and, in general, codes with sufficient amount of sym-
metry are capacity-achieving under MAP decoding for the transmission over
the BEC. In Chapter 8, we discuss some generalizations of this result. In par-
ticular, by carefully bounding the weight distribution, we show how to tighten
results on the bit error probability to the block error probability.

1.3 Channel Polarization and Polar Codes

The purpose of this section is to get an idea of polar codes and of channel po-
larization. In this way, we introduce the notation and the concepts that will be
useful throughout the thesis. As several excellent reviews already exist (see, for
example, [41], Chapter 2 of [42] and Chapter 2 of [43]), we will be quite telegraphic.

1.3.1 Polarization Process

There are two types of binary channels for which it is easy to construct capacity-
achieving codes. On the one hand, consider a completely noisy channel that sends
any input to the same output symbol. This channel has a capacity of 0 bits. As no
reliable communication is possible, sending uncoded bits is optimal. On the other
hand, consider a completely noiseless channel, in which the output is always equal
to the input. This channel has a capacity of 1 bit. As there is no noise, sending
uncoded bits is optimal also in this case. The idea of channel polarization consists in
taking independent copies of the transmission channel and transforming them into a
set of completely noiseless channels and a set of completely noisy channels, in such
a way that the overall capacity is preserved.

In order to formalize this idea, consider first the case of the erasure channel. Let
W be a BEC(z), where z is the erasure probability. The capacity of this channel
is C(W) = 1 — z. Suppose that you want to transmit two information bits and
denote them by u; and wuy. Take two independent copies of W and send as inputs
1 = u1 ® ug and xo = ug, where @ denotes the XOR operator. Once the channel
outputs y; and yo have been received, decode the information bits in a successive
fashion: first, decode u; assuming no information about ug (i.e., by treating us as
noise); then, decode ug assuming that the value of u; is known.

As ug is treated as noise when estimating wuq, it is possible to recover u; if and
only if both the inputs 1 and x5 are not erased. Now, assume that the value of u;
is known. Then, it is possible to recover uo if and only if at least one of the inputs
x1 and x9 is not erased. As a result, the channel W~ “seen” by u; is an erasure
channel with erasure probability 2z — 22, and, given u1, the channel W7 “seen”
by us is an erasure channel with erasure probability z?. Note that W~ is a worse
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W~ = BEC(2z — 2?) W+ = BEC(2?)
Yl o % 1w = BEC(2) —2 41 o W =BEC(z) &
“2 W = BEC(z) 2 Uz 2 W = BEC(z) 22
(a) Synthetic channel W~ “seen” by wu;. (b) Synthetic channel W “seen” by us.

Figure 1.2 — One step of channel polarization: two copies of the original channel
W = BEC(2) are transformed into a worse channel W~ = BEC(2z — 2?) and a
better channel W+ = BEC(22) such that C(W~) + C(W*) = 2C(W).

channel than W, and W is a better channel than W, because 22 < z < 2z — 22.
In addition, the sum of the capacities of the two synthetic channels W~ and W is
equal to the sum of the capacities of the two copies of the original channel W, i.e.,
C(W™)+C(WT)=2C(W). In other words, we have transformed two i.i.d. copies
of the original transmission channel W = BEC(z) into a worse channel W~ =
BEC(2z — 22) and a better channel W+ = BEC(2?), such that the sum of the
capacities stays preserved under this transformation (see also Figure 1.2).

The procedure described above constitutes one step of polarization. In the second
step of polarization, we transform two i.i.d. copies of W™ into a worse channel
W(=7) which is a BEC with erasure probability 2(2z —2%) — (22 —22)? = 1—(1—2)%,
and a better channel W(=%) which is a BEC with erasure probability (2z — 22)2.
Similarly, from W7 we obtain the worse channel W(+~) which is a BEC with
erasure probability 222 — 2%, and the better channel W (1), which is a BEC with
erasure probability z%. It is easy to check that

C’(W(*’f)) + C’(W(i*)) + C(W(ﬁf)) + C(w(ﬁﬂ) =4C(W).

After n steps of polarization, we obtain 2" synthetic channels that can be indexed
as W, for i € {1,---,2"}. The channels {WT(f)} are all erasure channels whose
erasure probabilities are obtained as follows. Consider the random process Z,,
defined recursively as

[ 2Z,—-Z2_,, wp. 1/2,
In = { 7z, w.p. 1/2, (1.2)

with Zy = z. Then, Z, assumes with uniform probability 2" distinct values that rep-
resent the erasure probabilities of the 2" channels {Wr(f)} The situation is schema-
tized in Figure 1.3.

Now, the synthetic channels {WT(LZ)} polarize in the sense that Z, converges
almost surely to Z, € {0,1}, as n — oo. Furthermore,

o
> oWy =2rew).
=1
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Figure 1.3 — n steps of channel polarization: 2" copies of the original channel W =
BEC(z) are transformed into the 2" synthetic channels {W,ﬁ”} that are all erasure
channels such that S2°, C(W,gl)) =2"C(W).

Hence, a fraction C'(W) of the polarized channels is noiseless, i.e., it has capacity 1,
and the remaining fraction 1 — C(W) is completely noisy, i.e., it has capacity 0.

In general, let W be a BMS channel with input alphabet X = {0,1} and output
alphabet Y, and let {W(y | z) : « € X,y € Y} be the transition probabilities.
Denote by C(W) € [0, 1] the capacity of W. In order to quantify the reliability of
channel, we use the Bhattacharyya parameter of W, denoted by Z(W) € [0, 1], that
is defined as

ZW) =Y VW(y[0)W(y|1). (1.3)

yey

Note that if W is a BEC(z), then its Bhattacharyya parameter equals the erasure
probability, i.e., Z(W) = z. The Bhattacharyya parameter Z (W) is related to the
capacity C(W) via

ZW)+C(W) = (1.4)
2

]‘7
ZW) 4+ C(W)? <1,

both proven in [37].

The basis of channel polarization consists in mapping two identical copies of the
channel W : X — Y into the pair of channels W~ : X — VZ2and Wt X = X x y2,
defined as

1
W= (y,ye [ 1) = ) Wy [ 21 @ 22)W(y2 | 22),
ro€X (16)

1
W (y1,y2, 21 | 22) = §W(Z/1 | 21 @ 22)W (y2 | 22).
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Then, W~ is a worse channel, and W7 is a better channel than W. This statement

can be quantified by computing the relations among the Bhattacharyya parameters
of W, W~ and W:

ZWIW2—ZW)2 < Z(W™)<2Z(W) - Z(W)?, (1.7)
Z(WT) = Z(W)?, (1.8)

which follow from Proposition 5 of [37] and from Exercise 4.62 of [44]. As previously
pointed out, if W is a BEC, then also W~ and W are BECs such that (1.8) still
holds and Z(W ™) is as large as possible, i.e.,

ZW™)=2Z(W) — Z(W)>. (1.9)

Given a BMS channel W, for n € N, we define a random sequence of channels
Wi, as Wy = W, and

— Wn_717 W.D. 1/2,
W _{ W, w.p. 1/2. (1.10)

Let Z,(W) = Z(W,,) be the random process that tracks the Bhattacharyya param-
eter of W,,. Then, from (1.7) and (1.8) we deduce that, for n > 1,

=272, w.p. 1/2.

The process Z,, is a bounded super-martingale (see Proposition 9 of [37], or Lemma
2.5 of [42]), which captures the fact that the polarization process preserves the sum
of the capacities of the synthetic channels.

Eventually, the proof of the fact that polar codes are capacity-achieving boils
down to showing that, when n — oo, (see Proposition 10 of [37] and Lemma 2.6
of [42])

0, w.p. C(W),

1, wop. 1—C(W). (1.12)

Zn 2% Zoo = {

Recall that (1.4) and (1.5) imply that C'(W) ~ 1 if and only if Z(W) ~ 0, and

C(W) =~ 01if and only if Z(W) ~ 1. As a result, (1.12) means exactly that a fraction

C (W) of the polarized channels is noiseless, and the remaining fraction 1 — C(W)
is completely noisy.

1.3.2 Transmission over Binary Memoryless Symmetric Channels

Let us now schematize how to achieve the capacity of a BMS channel with polar
codes. We use a format that will be recurrent later on in Chapter 4 and 5. In
what follows, given N € N, the set {1,---, N} is abbreviated as [N] and, given a
set A C [N], we denote by A° its complement. We use Xj.; as a shorthand for
(X, ,Xj), with ¢ < j.

Problem Statement. Consider a BMS channel W with input X and output Y.
The aim is to transmit over W with a rate close to its capacity C(W).
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Design of the Scheme. Letn € N and N = 2". Consider the N x N matrix G
defined as follows,

Gy = ByF®™, F= [ 1 (1) } (1.13)

where F'®" denotes the n-th Kronecker power of F, and By is the permutation ma-
trix defined in Section VII-B of [37]. The matrix By acts as a bit-reversal operator.
This means that, if wi.y = vi.yBn, then w; = v;, where the binary expansion of
1 — 1 over n bits is obtained by reversing the order of the binary expansion of j — 1
over n bits.

Let Xi.n be a vector with N i.i.d. uniformly random components, i.e., X; is a
Bernoulli(1/2) random variable for ¢ € [N], and set

Ui.n = X1.NnGN. (1.14)

The polarization procedure described in the previous section consists in multiplying
by the matrix F®" and the role of By consists in letting us decode the bits U; in
order, i.e., first Uy, then Us, and so on. The output corresponding to the transmission
of X1.n over the channel W is denoted by Y7.n.

Define the sets

Hxyy ={i € [N]: Z(U; | Ur.i—1,Y1.8) = 1 = N},

. (1.15)
Lxyy ={i € [N]: Z({U; | Ur:i—1,Y1:N) < 0N},

where, given (T,V) ~ pry, with T binary and V' taking values in an arbitrary
discrete alphabet V, we define

Z(T|V) =23 Py(0)/Pryy (0| 0)Pryy (1 ] v). (1.16)
veY

Take T to be uniformly distributed and equal to the input of the channel, and V' to
be the corresponding channel output. Then, from (1.16) we recover (1.3). Clearly,
the value of dy in (1.15) affects the performance of the code. At the end of this
section, we discuss the choice of dp.

On the one hand, for i € Hyy, the bit U; is approximately uniformly dis-
tributed and independent of (Uy.;—1,Y7.n). This means that it cannot be decoded
in a successive fashion, given the output of the channel and the previous bits. On
the other hand, for i € Lxy, the bit U; is approximately a deterministic function of
(Ur:i—1, Y1.n). This means that it can be decoded in a successive fashion, given the
output of the channel and the previous bits. In other words, for ¢ € Hx|y, the bit
U; “sees” an almost completely noisy channel, and, for i € Lx|y, the bit U; “sees”
an almost noiseless channel.

From the previous discussion on the polarization process, we have that, as N
goes large, a fraction 1 — C'(W) of the synthetic channels is completely noisy and a
fraction C(W) is noiseless. This translates into the fact that

. 1
Jm [y =1-CW),

. 1

N—oo

(1.17)
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In order to construct a polar code for the channel W, we proceed as follows. The
information bits are placed in the positions indexed by Lx|y, as these positions will
be decodable in a successive fashion given the output. For this reason, the set Lxy
will be usually denoted as Z. The remaining positions are frozen and their values
are shared between the encoder and the decoder. Any choice of the frozen bits is as
good as any other (see Section VI-B of [37]). Hence for the sake of simplicity, we
can simply set these bits to 0.

The code construction requires knowing which synthetic channels are almost
noiseless. This means knowing which positions are in Z or, equivalently, for which
values of 7 the synthetic channel W,(Li) has a Bhattacharyya parameter close to 0. In
practice, given a block length N and a rate R, we have to find the N R synthetic chan-
nels with the smallest Bhattacharyya parameters. Once again, the BEC provides
the simplest possible case. Indeed, for the transmission over an erasure channel, the
Bhattacharyya parameters of all the synthetic channels can be computed in O(N),
as mentioned in [45]. In general, the problem is hard, as the cardinality of the out-
put alphabet of WT(Li) is exponential in N. Hence, computing the exact transition
probabilities of these channels seems intractable. In Arikan’s original paper [37], it
is proposed to estimate these Bhattacharyya parameters by a Monte-Carlo method.
In [46], Tal and Vardy show that, by performing the evaluation approximately, the
construction has only linear complexity. A framework where the algorithms of [46]
and new related algorithms can be analyzed and compared is provided in [47].

Furthermore, in order to communicate close to capacity, the construction of polar
codes has to be tailored to the specific transmission channel. In general, given chan-
nels W and W’ with C(W) = C (W), a polar code designed to be capacity-achieving
for W will not be capacity-achieving for W’. Several techniques for constructing uni-
versal polar codes, i.e., polar codes that can achieve the compound capacity of the
whole class of BMS channels, are presented in [48,49].

Encoding. We place the information into the positions indexed by Z, hence let
{u;}iez denote the information bits to be transmitted. The remaining positions are
filled with all 0s. As Gy = ijl, the vector z1.ny = u1.yG N 18 transmitted over the
channel. As discussed in Section VII of [37], by exploiting the particular structure of
the matrix G, it is possible to perform this matrix multiplication with complexity

O(N logy N).

Decoding. The decoder receives y;.n and computes the estimate 4q.n of ui.n
according to the rule

arg max PU¢|U1;¢71,Y1;N(“ | w11, y1:8), ifi€Z,

;= { uef0,1} (1.18)

Uj, otherwise,

where the probabilities P, 7, v, v (@ | ui:i—1,y1:5) can be computed recursively
with complexity O(N log, N) (see Section VIII of [37]). This is a successive cancel-
lation (SC) decoder, as the estimates are produced one by one with a single pass on
the data (as opposed to iterative decoding).

In order to improve the performance of the successive decoder described above,
several other decoding algorithms have been proposed. Optimal maximum a poste-
riori (MAP) decoders are implemented via the Viterbi algorithm [50] and via sphere
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decoding [51], but they are practical only for relatively short block lengths. A lin-
ear programming (LP) decoder is introduced in [52], and the performance under
belief-propagation decoding is considered in [53]. The stopping set analysis for the
transmission over the BEC is also provided in [54].

A successive cancellation list (SCL) decoder with space complexity O(LN) and
time complexity O(LN logy N) is proposed in [55], where L is the size of the list.
Empirically, the use of several concurrent decoding paths yields an error probability
comparable to that under MAP decoding with practical values of the list size. In
addition, by adding only a few extra bits of cyclic redundancy check (CRC) pre-
coding, the results are comparable with the performance of current state-of-the-art
LDPC codes. Motivated by these empirical observations, in Chapter 3 of this thesis,
we will deal with provable bounds on the performance of list decoders.

Performance. The block error probability Pz can be upper bounded by the sum
of the Bhattacharyya parameters of the channels that are not frozen (see Proposition
2 of [37]). In formulae,

Pg < ZZ(Ui | Uii—1, Y1.n) < Nén. (1.19)
ez

In Arikan’s original paper [37], d is upper bounded by N~%/4, hence Py is O(N~1/4).
This bound is refined in [56], where it is shown that Pg is O(2~N") for any 3 €
(0,1/2). Several new results on the finite-length performance of polar codes will be
presented in Chapter 2.

1.4 Reed-Muller Codes

Unlike polar codes that were discovered by Arikan in 2008, Reed-Muller (RM) codes
are among the oldest known codes. They were introduced by Muller in 1954 [18]

and, shortly thereafter, Reed proposed a majority logic decoder [19]. Given n and
v € N, a Reed-Muller code RM(n,v) is a linear code of block length N = 2" and

rate R, given by
v <n>
Z i
=0

27’1
It is well known that the minimum distance of this code is 2"~ [12].

The relation between polar and Reed-Muller codes was first pointed out in
Arikan’s seminal paper [37]. Indeed, the generator matrix of both polar and Reed-
Muller codes is obtained by taking rows of the matrix F®" defined in (1.13). How-
ever, the rule for selecting such rows is different between polar and Reed-Muller
codes. Performance comparisons were carried out in [57,58]. It was observed in
Section 6.1.2 of [42] that Dumer’s recursive algorithm for Reed-Muller codes [59]
is similar to the successive cancellation decoder for polar codes. List decoding was
used also to improve the performance of Reed-Muller codes [60,61]. Furthermore,
recursive techniques can be employed to decode nested polarized codes, in which
the splitting process ends at various short Reed-Muller codes, instead of the single
information bits used as end nodes in polar codes [62,63]. A hybrid design that

R =
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combines the construction of Reed-Muller and polar codes is introduced in [64].
Numerical simulations and analytical results suggest that Reed-Muller codes have
a bad performance under successive and iterative decoding, but they outperform
polar codes under MAP decoding [37,53]. In Chapter 6 of this thesis, we will have
to say more about the relation between these two classes of codes.

In summary, polar codes are capacity-achieving and Reed-Muller codes seem to
be even better when using an optimal decoder! Hence, it is reasonable to conjecture
that Reed-Muller codes also achieve capacity. Actually, this idea appears to be rather
old. Already at the end of the 1960s, it was discussed privately by Kasami, Lin,
and Peterson. In 1991, at the IEEE Information Theory Workshop, Lin explicitly
mentioned this possibility in his talk entitled “RM Codes Are Not So Bad”. In 1994,
Dumer and Farrell suggested, as an open problem, the evaluation of a quantity that
equals 1 if and only if Reed-Muller codes achieve capacity on the BEC [65]. Since
then, similar ideas have been discussed by several other authors [10,66-69]. Short
Reed-Muller codes with erasures were investigated in [66,67], and it was observed
numerically that the block error probability is quite close to that of random codes.
Costello and Forney conjectured in [10] that the sequence of rate-1/2 self-dual Reed-
Muller codes achieves capacity on the binary-input AWGN channel. The regimes in
which the rate is either very high or very low were studied by Abbe, Shpilka, and
Wigderson in [68,69]: for rates approaching either 0 or 1 with sufficient speed, it
is shown that Reed-Muller codes can correct almost all erasure patterns up to the
capacity limit'; for rates approaching 0 fast enough, it is also proved that Reed-
Muller codes can correct random error patterns up to the capacity limit. However,
the regime that is typically of interest in coding theory requires that the rates of
the codes tend to a constant € (0,1). As promised by the title of this thesis, we will
eventually solve this conjecture in Chapter 7. We will discuss generalizations and
extensions in Chapter 8.

1.5 Unified Scaling

Consider the transmission of a code over a noisy channel. In a wide sense, with
unified scaling, we indicate the study of the relation of the relevant parameters,
i.e., rate, block length, error probability, and quality of the communication channel.
Concretely, consider the plots in Figure 1.4: they represent the performance of
the family of codes C with rate R = 0.5. Different curves correspond to codes of
different block lengths N. The codes are transmitted over a family of channels W
parameterized by z that is represented on the horizontal axis. On the vertical axis,
we represent the block error probability Pg. The error probability is an increasing
function of z, which means that the channel gets “better” as z decreases. The
parameter z indicates the quality of the transmission channel W and, for example,
it could be set to Z(W) or to 1 — C(W). Let us assume that there exists a threshold
z* such that, if z < z*, then Pg tends to 0 as IV grows large, whereas if z > z*, then
Pg tends to 1 as N grows large. For example, if the family of codes C is capacity-
achieving, then we can think of the threshold z* as the channel parameter such that
C(W) = R. In the example of Figure 1.4, we have that z* = 0.5.

!Some effort is required to define capacity for rates approaching 0 or 1. See Definition 16 of [68]
or Section 8.3 of this thesis for further details.
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Figure 1.4 — Performance of the family of codes C with rate R = 0.5, transmitted over
the family of channels W with threshold z* = 0.5. Each curve corresponds to a code
of an assigned block length N. On the z-axis, it is represented the channel parameter
z and, on the y-axis, the error probability Pg. The error exponent regime captures
the behavior of the vertical/blue cut of fixed channel parameter z (or, equivalently, of
fixed gap to threshold z* — z). The scaling exponent regime captures the behavior of
the horizontal/red cut of fixed error probability Pg. The error floor regime captures
the behavior of a single curve of fixed block length N.

The oldest approach for analyzing the performance of the family C is based on
computing the error exponent. We pick any channel parameter z < z*. Then,
by definition of z*, the error probability tends to 0 as N grows large. The error
exponent regime quantifies this statement and computes how the error probability
varies as a function of the block length. This approach is pictorially represented
as the vertical/blue cut in Figure 1.4. The best possible scaling is obtained by
considering random codes that give

Py = e NE(RW)+o(N)
where F(R, W) is the so-called error exponent [7]. For a fairly recent survey on how
to determine the error exponent for various random ensembles, see [70].

Another approach is based on computing the scaling exponent. We pick a target
error probability Pg. Then, by definition of z*, the gap between the threshold and
the channel parameter z* — 2z tends to 0 as N grows large. The scaling exponent
regime quantifies this statement and computes how the gap to the threshold varies
as a function of the block length. This approach is pictorially represented as the
horizontal /red cut in Figure 1.4. From a practical viewpoint, we are interested in
such a regime, as we typically have a certain requirement on the error probability
and look for the shortest code possible. For specific classes of codes, this approach
was put forward in [71,72]. As a benchmark, a sequence of papers that started in the
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early 1960s with [73,74] and recently culminated in [75,76] shows that the smallest
possible block length N required to achieve a gap z* — z to the threshold with a
fixed error probability Py is such that

V(Q~'(Ps))’

(2% —2)2 7

where Q(+) is the tail probability of the standard normal distribution, i.e.,

N ~ (1.20)

1 Foo
Qx) = \/%/x exp (—u?/2)du, (1.21)

and V is referred to as channel dispersion and measures the stochastic variability of
the channel relative to a deterministic channel with the same capacity. In general,
if Nis © (1/(2* — 2)*), then we say that the family of codes C has scaling exponent
w. Hence, by (1.20), the most favorable scaling exponent is p = 2 and it is achieved
by random codes. Furthermore, for a large class of ensembles of LDPC codes and
channel models, the scaling exponent is also p = 2 [77]. However, it has to be pointed
out that the threshold of such LDPC ensembles does not converge to capacity.

In summary, in the error exponent regime, we compute how fast Pg goes to 0
as a function of N when z* — z is fixed; and in the scaling exponent regime, we
compute how fast z* — z goes to 0 as a function of N when Pg is fixed. Then, a
natural question is to ask how fast do both Pp and z* — z go to 0 as functions of N.
In other words, we can describe a trade-off between the speed of decay of the error
probability and the speed of decay of the gap to capacity as functions of the block
length. This intermediate approach is named the moderate deviations regime and is
studied for random codes in [78].

The last scaling approach we consider concerns the so-called error floor regime.
We pick a code of assigned block length N and rate R. Then, we compute how
the error probability Pg behaves as a function of the channel parameter z. This
corresponds to taking into account one of the four curves in Figure 1.4. This is
a notion that became important when iterative coding schemes were introduced.
For such schemes, it was observed that frequently the individual curves Pg(z) show
an abrupt change of slope, from very steep to very shallow, when going from bad
channels to good channels (see, e.g., Figure 1.5). The region where the slope is very
shallow was dubbed the error floor region. More specifically, if we consider a parallel
concatenated turbo code, then there is a fixed number of low-weight codewords,
regardless of the block length N (see Section 6.9 of [44]). The same behavior can be
observed for the ensemble average of LDPC codes, when the minimal variable-node
degree 1, is equal to 2. This means that, in the error floor region, the block error
probability is dominated by a term that is independent of N and scales as 2%, where
w denotes the minimal weight of a non-zero codeword. If the minimal variable-node
degree 1,,i, is at least 3, then the number of low-weight codewords vanishes with N
and the error probability scales as 2z /N w(lmin/2-1) " For a more precise statement,
see Theorem D.32 in Appendix D of [44].

1.6 Coding for Non-standard Channels

A non-standard communication scenario is represented by any model that differs
from the simple point-to-point binary memoryless symmetric setting: the channel
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Figure 1.5 — Performance of the family of (3,6)-regular LDPC codes transmitted
over the BEC with erasure probability z. The waterfall region in which the error
probability decreases sharply is clearly distinguishable from the error floor region in
which the decay is much slower.

might receive g-ary inputs, for ¢ € N, or real-valued inputs, it might be asymmetric,
it might have memory, and there might be several users that want to communicate.

Concerning non-binary models, polar coding schemes were quickly generalized
to arbitrary memoryless symmetric channels. Channel polarization for g-ary input
alphabets is first discussed in [79] and more general constructions based on arbitrary
kernels are described in [80]. In general, various algebraic structures on the input
alphabet were exploited to build polar codes [81-85]. Polar coding schemes that
achieve the capacity of the AWGN channel are developed in [86]. On the contrary,
the capacity-achieving nature of SC-LDPC codes was proved only for binary-input
channels, and it remains an open problem for the transmission over channels with
a non-binary input alphabet. The iterative decoding threshold on the BEC for
non-binary SC-LDPC code ensembles is investigated in [87,88], and the correspond-
ing threshold saturation is proved in [89]. The threshold analysis under windowed
decoding is provided in [90].

Furthermore, the original point-to-point polar coding scheme was extended to
lossless and lossy source coding [91-93] and to many multi-terminal scenarios. Ex-
amples include Gelfand-Pinsker, Wyner-Ziv, and Slepian-Wolf problems [42,94, 95],
multiple-access channels [81, 84, 96-98], broadcast channels [99, 100], interference
channels [101,102], relay channels [103—-106], wiretap channels [103,107-110], write
once memories [111], arbitrarily permuted parallel channels [112], and multiple de-
scription coding [113,114]. Coding solutions for multi-user scenarios based on polar
codes and on commercial off-the-shelf codes are also provided in [115]. The funda-
mental purpose of this line of work is to implement in a low-complexity fashion the
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classic random coding schemes in network information theory, for example, binning,
rate-splitting, superposition coding, decode-forward relaying, compress-forward re-
laying, and so on. We will focus more specifically on broadcast and asymmetric
channels in Chapter 4 and 5, respectively.

1.7 Outline and Contributions of this Thesis

Before digging into the details, let us give a bird’s eye view on the structure of
this thesis. The topic of the first two chapters is scaling: in Chapter 2, we provide
a unified framework for the finite-length analysis of polar codes under successive
cancellation decoding, and, in Chapter 3, we study the scaling exponent of list
decoders. The topic of the next two chapters is coding for non-standard commu-
nication scenarios: in Chapter 4, we deal with broadcast channels and, in Chapter
5, with asymmetric channels. Chapter 6 serves as an interlude to move from more
recent coding techniques, primarily polar codes, towards older and more structured
ones, primarily Reed-Muller codes. The topic of the following two chapters is how
to achieve capacity via symmetry: in Chapter 7, we settle a decade-long conjecture
by showing that any sufficiently symmetric family of codes achieves capacity on the
binary erasure channel and, in Chapter 8, we provide several generalizations of this
result. Eventually, in Chapter 9, we summarize the main contributions of our work
and outline future research directions.

This thesis tells a story that starts with polar codes and ends with Reed-Muller
codes. However, the technical material of each chapter is intended to be self-
contained. A notable exception to this principle is Chapter 8; it contains some
generalizations of the main result of Chapter 7 and, for this reason, should be read
afterwards.

Unified Scaling of Polar Codes

Our first contribution consists in the unified characterization of the finite-length
performance of polar codes. More specifically, we consider the transmission of a
polar code of block length N and rate R over a BMS channel W with capacity C'(W)
and Bhattacharyya parameter Z (W), and we let Pg be the error probability under
successive cancellation decoding. In previous work, two main regimes were studied.
In the error exponent regime, the channel W and the rate R < C(W) are fixed, and
it was proved that the error probability Pp scales roughly as 2-VN_ In the scaling
exponent regime, the channel W and the error probability Py are fixed, and it was
proved that the gap to capacity C(W) — R scales as N —1/1_ Here, p is the scaling
exponent and it depends on the channel W. A heuristic computation for the BEC
gives u = 3.627, and it was shown that, for any BMS channel, 3.579 < p < 5.702.
In Chapter 2, we develop a unified framework to characterize the relationship
of R, N, P, and the quality of the channel W. First, we provide the tighter upper
bound p < 4.714, valid for any BMS W. With the same technique, we obtain the
upper bound g < 3.639 for the case of the BEC; this upper bound approaches very
closely the heuristically derived value for the scaling exponent of the erasure channel.
Second, we consider a moderate deviations regime and we study how fast both the
gap to capacity C(W) — R and the error probability Pg simultaneously go to 0 as
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N goes large. Third, we prove that polar codes are not affected by error floors. To
do so, we fix a polar code of block length N and rate R, we let the channel W vary,
and we show that Pp scales roughly as Z (W)\/N

Scaling Exponent of List Decoding

Compared to random codes that have a scaling exponent of 2, the tight bounds
discussed above enable us to conclude that polar codes possess a less favorable trade-
off between block length and gap to capacity under successive cancellation decoding.
Therefore, the most natural question that comes to mind is how to improve such
scaling exponent. Motivated by the significant performance gains that polar codes
experience under successive cancellation list decoding [55], we study the scaling
exponent of list decoding as a function of the list size.

In Chapter 3, we prove that, by adding a list of finite size to the MAP decoder,
the scaling exponent stays unaffected for any BMS channel and for any sequence of
linear codes such that their minimum distance is unbounded as N — oo. To do so,
we develop a Divide and Intersect (DI) procedure, in order to lower bound the error
probability under MAP decoding with list size L. In particular, the result applies
to polar codes, as their minimum distance tends to infinity as N — oo.

The DI technique is rather general. Indeed, when the transmission takes place
over the BEC, we prove a similar result for genie-aided SC decoding: the scaling
exponent remains constant for any fixed number of helps from the genie.

How to Achieve Marton’s Region for Broadcast Channels

With Chapter 4, we move to the second main topic of this thesis, i.e., coding tech-
niques for non-standard channels. In particular, we consider the two-user discrete
memoryless broadcast channel (DM-BC) and we present a polar coding scheme that
achieves Marton’s region with both common and private messages. This is the best
achievable rate region known to date, and it is tight for all classes of two-user DM-
BCs whose capacity regions are known. To accomplish this task, we first construct
polar codes for both the superposition, as well as the binning strategy. By combining
these two schemes, we obtain Marton’s region with private messages only. Finally,
we show how to handle the case of common information. The proposed coding
schemes possess the usual advantages of polar codes, i.e., low encoding complexity,
low decoding complexity, and super-polynomial decay rate of the error probability.

We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar
codes emulating the superposition and binning schemes [100]. In order to align the
polar indices, for both schemes, their solution involves some degradation constraints
that are assumed to hold between the auxiliary random variables and the channel
outputs. To remove these constraints, we guarantee the proper alignment of the po-
larized indices by means of a chaining construction. This technique was originally
introduced in [48] to construct universal codes and in [110] to achieve strong security
guarantees on degraded wiretap channels. The idea is as simple as it is powerful: by
transmitting several code blocks and by repeating suitable parts of the information
bits in neighboring blocks, we construct polar codes that are good for the transmis-
sion over more than one channel at the same time. Because of its generality, the
chaining construction has been applied by different authors to various other multi-
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terminal scenarios [116-119]. Another non-standard setting in which this technique
proves useful is the transmission over asymmetric channels, as we will see in the
chapter that immediately follows.

How to Achieve the Capacity of Asymmetric Channels

In the previous chapter, we have described low-complexity polar coding schemes
for the broadcast channel. In Chapter 5, we consider the transmission over an
asymmetric channels and survey capacity-achieving coding techniques. In partic-
ular, we take the point of view of modern coding theory and discuss how recent
advances in coding for symmetric channels help provide more efficient solutions for
the asymmetric case. We consider, in more detail, three basic coding paradigms.

The first one is Gallager’s scheme [120] that consists of concatenating a linear
code with a non-linear mapper so that the input distribution can be appropriately
shaped. We explicitly show that both polar codes and spatially coupled codes can
be employed in this scenario. Furthermore, we derive a scaling law between the gap
to capacity, the cardinality of the input and output alphabets, and the required size
of the mapper.

The second one is an integrated approach in which the coding scheme is used
both for source coding, in order to create codewords distributed according to the
capacity-achieving input distribution, and for channel coding, in order to provide
error protection. Such a technique has been recently introduced by Honda and
Yamamoto in the context of polar codes [121], and we show how to apply it also to
the design of sparse graph codes.

The third paradigm is based on a chaining construction similar to the one in-
troduced in the previous chapter. The idea is to separate the two tasks of source
coding and channel coding by chaining together several codewords, and it is origi-
nally due to Bocherer and Mathar [122]. Here, we show that this technique yields
provably capacity-achieving coding schemes. In particular, we present conditions
for the source code and the channel code, and we describe how to combine any
source code with any channel code that fulfill those conditions, in order to achieve
the capacity of asymmetric channels. Furthermore, we prove that polar codes, spa-
tially coupled codes, and arithmetic codes are suitable as basic building blocks of
the proposed approach.

Rather than focusing on the exact details of the schemes, the purpose of this
chapter is to present different coding strategies that can then be implemented with
many variants. There is no absolute winner and, in order to understand the most
suitable technique for a specific application scenario, we provide a detailed compar-
ison that takes into account several performance metrics.

Interlude — from Polar to Reed-Muller Codes

Chapter 6 marks the transition towards the third and last topic of this thesis, as
it ideally connects the families of polar and Reed-Muller codes. In particular, we
explore the relationship between these two coding techniques and, by doing so, we
present a new coding scheme that significantly improves upon the performance of
polar codes at practical block lengths.
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Our starting point is the experimental observation that Reed-Muller codes have
a smaller error probability than polar codes under MAP decoding. This motivates
us to introduce the family of codes {Cq}, for a € [0, 1]. Such a family “interpolates”
between Reed-Muller and polar codes, in the sense that Ca}azl is the original polar
code, and Co“a:O is a Reed-Muller code. Using numerical observations, we remark
that the error probability under MAP decoding is an increasing function of . As
MAP decoding has in general exponential complexity, we also consider practical
decoding schemes, such as the belief-propagation or the successive cancellation list
decoder. The result is that, even under these low-complexity decoding algorithms,
the performance of polar codes is boosted by moving along the family {C,}. We
demonstrate this performance gain via numerical simulations for the transmission
over the BEC and the binary-input AWGN channel. Such a gain could be substan-
tial in the sense of the reduction of the scaling exponent: according to numerical
simulations performed for N = 219 over the BEC, the error probability under MAP
decoding for the transmission of C, for « sufficiently small is very close to that of
random codes that have the best possible scaling exponent. As a result, the use
of codes from the family {C,} potentially improves the speed at which capacity is
reached.

Capacity via Symmetry I: A Proven Conjecture

Eventually, in Chapter 7, we give the proof of the conjecture that has been promised
since the very title of this thesis: Reed-Muller codes achieve capacity for the trans-
mission over the BEC under MAP decoding. Actually, we prove a much more gen-
eral result: any sequence of linear codes with doubly transitive permutation group
achieves capacity for the transmission over the BEC under MAP decoding. In other
words, we show that symmetry alone implies asymptotically optimal performance.

The proof exploits three main ingredients coming from different areas of infor-
mation theory and computer science:

e the code symmetry, coming from algebraic coding theory;

e the sharp threshold framework applied to the measure of monotone symmetric
sets, a very powerful and popular tool in theoretical computer science;

e the area theorem for extrinsic information transfer functions, coming from
iterative coding theory.

Capacity via Symmetry Il: Generalizations

In the previous chapter, we have proved one basic, yet fundamental, result: codes
with sufficient symmetry achieve capacity on the BEC under bit-MAP decoding for
any rate in (0,1). In Chapter 8, we provide some generalizations: we consider
the limiting regimes in which the rate of the code is either very low or very high,
and we show how to strengthen the results regarding the bit-MAP threshold to the
block-MAP threshold.

It has been recently proved that Reed-Muller codes can correct almost all erasure
patterns up to the capacity limit for rates approaching either 0 or 1 with a specific
speed [68,69]. By exploiting the proof technique developed in the previous chapter,



22 Introduction

we show that Reed-Muller codes achieve capacity in another non-overlapping regime,
i.e., for a different speed of convergence of the rate.

For the comparison between bit-MAP and block-MAP thresholds, let us point
out that the result in the previous chapter holds under bit-MAP decoding. Thus,
a natural question is what happens under block-MAP decoding. By exploiting
further symmetries of the code, it is possible to show that the bit-MAP threshold is
sharp enough that the block erasure probability also converges to 0. However, this
technique relies heavily on the fact that the transmission is over an erasure channel.

Our main technical contribution in this chapter consists in presenting a more gen-
eral approach to passing from the bit-MAP error probability to the block-MAP error
probability. This approach is based on the careful analysis of the weight distribution
of Reed-Muller codes. In particular, our result has the following flavor: assume that
the bit-MAP error probability for the transmission over any BMS channel decays as
N9, for some § > 0; then, the block-MAP error probability also converges to 0. Let
us highlight that the proposed technique does not apply only to the special case of
the erasure channel, but it is valid for the transmission over any binary memoryless
symmetric channel. Hence, this result can be thought of as a first step in extending
the proof that Reed-Muller codes are capacity-achieving to the general case.

Conclusions and Perspectives

In Chapter 9, we summarize the main contributions of this thesis, discuss open
questions, and describe how the novel technical tools developed so far have already
proved useful for other problems. We conclude by presenting three fairly wide re-
search directions, one for each of the main topics considered in this thesis:

1. boost the performance of polar codes at practical block lengths, by devising a
coding scheme with a provably better scaling exponent;

2. consider a multi-user setting, and transmit with a low-complexity technique
in a rate region that was not previously known to be information-theoretically
achievable;

3. find a low-complexity algorithm to decode Reed-Muller codes with a perfor-
mance close to that of the MAP decoder.



Unified Scaling of Polar Codes

C’e davvero bisogno di domande
retoriche?

Do you really need rhetorical questions?

In this chapter!, we provide a unified view on the performance analysis of polar
codes and present several results about the scaling of the parameters of interest,
namely, the rate R, the block length N, the block error probability under SC de-
coding Pp, and the quality of the channel W.

In Section 2.1, we review the existing literature on finite-length scaling of polar
codes. In Section 2.2, we summarize our main contributions and, in the following
three sections, we describe them in detail: in Section 2.3, we present the new upper
bound on the scaling exponent; in Section 2.4, we address the moderate deviations
regime; and in Section 2.5, we show that polar codes are not affected by error floors.
We defer some of the proofs to the appendix in Section 2.6.

2.1 Related Work

Since the introduction of polar codes in the seminal paper [37], their performance has
been extensively studied in different regimes. The error exponent, scaling exponent,
moderate deviations, and error floor regimes have been described in Section 1.5.
However, we will quickly recall their definitions when presenting the existing results
for polar codes.

In the error exponent regime, the rate R < C'(W) is fixed, and it is studied how
the error probability Pg scales as a function of the block length N. As pointed out
at the end of Section 1.3.2, in [56] it is proved that the block error probability under

SC decoding behaves roughly as 2-VN_ This result is further refined in [125], where

!The material of this chapter is based on joint work with S. H. Hassani and R. Urbanke [123,124].
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it is shown that log,(—logy Pg) scales as

logy N @ Q! <R> + o(y/logy N), (2.1)

2 W)

where Q(-) is the tail probability of the standard normal distribution defined in
(1.21). This last result holds both under SC decoding and under optimal MAP
decoding.

In the scaling exponent regime, the error probability Pg is fixed, and it is studied
how the gap to capacity C(W)—R scales as a function of the block length N. In [126],
the scaling exponent is defined as the value of p such that

lim Pg(N,R, W) = f(z), (2.2)
N—o00,N/1(C(W)—R)=2

for some function f(z), that is called mother curve.

It is an open question to prove that the limit (2.2) exists. Note that the value of
i depends on the particular channel taken into account. The authors of [126] provide
a heuristic method for computing the scaling exponent for the transmission over the
BEC under SC decoding; this method yields pu &~ 3.627. Furthermore, in [127] it is
shown that the block length scales polynomially fast with the inverse of the gap to
capacity, while the error probability is upper bounded by 2=V % Universal bounds
on p, valid for any BMS channel under SC decoding, are presented in [128]: the
scaling exponent is lower bounded by 3.579 and upper bounded by 6. In addition,
it is conjectured that the lower bound on g can be increased up to 3.627, i.e., up
to the value heuristically computed for the BEC. The upper bound on g is further
refined to 5.702 in [129].

In the moderate deviations regime, neither the rate nor the error probability are
fixed, but it is studied how the gap to capacity C'(W) — R and the error probability
Pg jointly scale as functions of the block length N. There is no prior work on this
regime for polar codes.

In the error floor regime, the code is fixed, i.e., the rate R and block length N
are fixed, and it is studied how the error probability Pg scales as a function of the
channel parameter. In [54] it is proved that the stopping distance of polar codes
scales as v/N, which implies good error floor performance under BP decoding. The
authors of [54] also provide simulation results that show no sign of error floor for
transmission over the BEC and over the binary-input AWGN channel.

2.2 Main Results

Our contributions in this chapter address the scaling exponent, the moderate devia-
tions, and the error floor regimes, and they can be summarized as follows.

New universal upper bound on scaling exponent. We show that y < 4.714
for any BMS channel and that p < 3.639 for the BEC. Basically, this re-
sult improves by 1 the previous upper bound valid for any BMS channel and
approaches closely the value 3.627 that has been heuristically computed for
the BEC. The proof technique consists in relating the scaling exponent to the
supremum of some function and, then, in describing an interpolation algorithm
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to obtain a provable upper bound on this supremum. The values 4.714 for any
BMS channel and 3.639 for the BEC are obtained for a particular number of
samples used by the algorithm and they can be slightly improved simply by
running the algorithm with a larger number of samples.

Moderate deviations. We unify the two perspectives of the error exponent and
the scaling exponent by letting both the gap to capacity C(W) — R and the
error probability Pg go to 0 as functions of the block length N. In particular,
we describe a trade-off between the speed of decay of P and the speed of
decay of C(W) — R. In the limit in which the gap to capacity is arbitrarily
small but independent of NV, this trade-off recovers the result of [56], where it
is shown that Pg scales roughly as 9-VN,

Absence of error floors. We prove that polar codes are not affected by error
floors. To do so, we consider a polar code of block length N and rate R
designed for the transmission over a channel W’. Then, we look at the per-
formance of this fixed code over other channels W that are “better” than W’;
and we study the error probability Pg as a function of the Bhattacharyya
parameter Z(W). Note that the code is fixed and the channel varies, which
means that we do not choose the optimal polar indices for W. In particular,
we prove that Pp scales roughly as Z (T/V)‘/N7 and this result is in agreement
with the error exponent regime.

2.3 New Universal Upper Bound on Scaling Exponent

In this section, we propose an improved upper bound on the scaling exponent that
is valid for the transmission over any BMS channel W. First of all, we relate the
value of the scaling exponent p to the supremum of some function. Secondly, we
provide a provable bound on this supremum, which gives us a provably valid choice
for p, i.e., p = 4.714 for any BMS channel and p = 3.639 for the BEC.

2.3.1 Statement and Discussion

Theorem 2.1 (From Eigenfunction to Scaling Exponent). Assume that there exists
a function h(z) : [0,1] — [0,1] such that h(0) = h(1) = 0, h(z) > 0 for any
x € (0,1), and, for some u > 2,

2
sup M <9 1n, 2.3)
se(0)yelovi—a? 2o—a?  2M(T)

Consider the transmission over a BMS channel W with capacity C(W) by using
a polar code of rate R < C(W). Fiz pg € (0,1) and assume that the block error
probability under successive cancellation decoding is at most pg. Then, it suffices to
have a block length N such that

N < B

= o) - A 24

where B1 is a universal constant that does not depend on W, but only on pg. If W is
a BEC, a less stringent hypothesis on u is required for (2.4) to hold. In particular,
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the condition (2.3) is replaced by
h(z?) + h(2z — 2?)

<2 n, 2.5
z€(0,1) 2h(x) (25)

Theorem 2.2 (Valid Choice for Scaling Exponent). Consider the transmission over
a BMS channel W with capacity C(W') by using a polar code of rate R < C(W). Fiz
pB € (0,1) and assume that the block error probability under successive cancellation
decoding is at most pg. Then, it suffices to have a block length N upper bounded by
(2.4) with p = 4.714. Furthermore, if W is a BEC, then (2.4) holds with p = 3.639.

Before proceeding with the proofs, it is useful to discuss two points. The first
remark focuses on the role of the function h(x) and heuristically explains why the
value of the scaling exponent is linked to the existence of a function that fulfills
condition (2.3) (condition (2.5) for the BEC). Note that the remark contains just
a heuristic discussion and the proofs of Theorems 2.1 and 2.2 do not depend on
this explanation. Hence, we will not be concerned with mathematical rigor and,
in particular, with the existence of the discussed eigenfunctions/eigenvalues. The
second remark points out that we can let the error probability tend to 0 polynomially
fast in N and maintain the same scaling between gap to capacity and block length.

Remark 2.1 (Heuristic Interpretation of Function h(z)). First, let W be a BEC
and consider the linear operator Tgrc defined as

g(2) + (22 — 2)

2 )
where g(x) is a bounded and real valued function over [0,1]. The relation between
the Bhattacharyya process Zy, and the operator Tggc is given by

Terc(g) = (2.6)

n times
E[g9(Zyn) | Zo = x] = Teec © Irc © - - - © Trc(9) = Thrc(9), (2.7)

where the formula comes from a straightforward application of (1.2). A detailed
explanation of the dynamics of the functions Thpc(g) is provided in Section III
of [128]. In short, a simple check shows that A =1 is an eigenvalue of the operator
Tepc with eigenfunctions vo(x) =1 and vi(z) = x. Let \* be the largest eigenvalue
of Tggc other than X = 1 and define pu* as p* = —1/logy \*. Then, the heuristic
discussion of [128] leads to the fact that p* is the largest candidate that we could plug
in (2.5). For this choice, the function h(x) represents the eigenfunction associated
with the eigenvalue \*, namely,

h(z?) + h(2x — 2?)
2
A numerical method for the calculation of this second eigenvalue was originally pro-
posed in [126] and yields p* = 3.627. Furthermore, in Section III of [128] it is also
heuristically explained how p* = 3.627 gives a lower bound to the scaling exponent
of the BEC.
Now, let W be a BMS channel and consider the operator Tpmsc defined as

z?) +
Temsc(g) = sup glz’) +5w) )2 g(y)‘
yElzv2—a2 2x—22]

=27V h(x). (2.8)

(2.9)
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Note that, differently from Tgrc, the operator Temsc s not linear, as it involves
taking a supremum. The relation between the Bhattacharyya process Z, and the
operator TpMmsc s given by

Elg(Zn) | Zo = 2] < Tgnsc(9), (2.10)

where the formula comes from a straightforward application of (1.11). Similarly,
as in the case of the BEC, A = 1 is an eigenvalue of Tpysc and we write the
largest eigenvalue other than A\ = 1 as 27" Then, the idea is that w* is the
largest candidate that we could plug in (2.3), and, for this choice, the function h(x)
represents the eigenfunction associated with the eigenvalue 27" namely,

sup W — 2 UK By, (2.11)

yE[zv2—a2,2x—22]

In Section IV of [128], it is proved that the scaling exponent u is upper bounded
by 6. This result is obtained by showing that the eigenvalue is at least 271/°, i.e.,
pw* <5, and that p* + 1 is an upper bound on the scaling exponent p. Furthermore,
it is conjectured that p* is a tighter upper bound on the scaling exponent wu. In
[129], a more refined computation of u* is presented, which yields p* < 4.702, hence
p < 5.702. In this chapter, we solve the conjecture of [128] by proving that, indeed,
W is an upper bound on the scaling exponent . In addition, we show an algorithm
that guarantees a provable bound on the eigenvalue, thus obtaining p < 4.714 for
any BMS channel and p < 3.639 for the BEC. We finally note from (2.10) that
Temsc provides only an upper bound on the (expected) evolution of Z,. As a result,
although p < 4.714 holds universally for any channel, this bound is certainly not
tight if we consider a specific BMS channel.

Remark 2.2 (Polynomial Decay of Pg). With some more work, it is possible to
prove the following generalization of Theorem 2.1. Assume that there ezists h(z) as
in Theorem 2.1 and consider the transmission over a BMS channel W with capacity
C(W) by using a polar code of rate R < C(W). Then, for any v > 0, the block
length N and the block error probability under successive cancellation decoding Pg
are such that

1
PB S A

N 5 (2.12)
N=teown e

where B9 1s a universal constant that does not depend on the channel W. A sketch
of the proof of this statement is given at the end of Section 2.3.2. The result (2.12)
1s a generalization of Theorem 2.1 in the sense that, instead of being an assigned
constant, the error probability goes to 0 polynomially fast in 1/N, and the scaling
between block length and gap to capacity, i.e., the value of u, stays the same. On the
contrary, as described in Section 2.4, if the error probability is O(Z_Nﬁ) for some
B € (0,1/2), then the scaling between block length and gap to capacity changes and
depends on the exponent [3.
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2.3.2 From Eigenfunction to Scaling Exponent

The proof of Theorem 2.1 relies on the following two auxiliary results: Lemma
2.1, proven in Appendix 2.6.1, relates the number of synthetic channels with a
small enough Bhattacharyya parameter to an expected value over the Bhattacharyya
process; and Lemma 2.2, proven in Appendix 2.6.2, relates the expected value over
the Bhattacharyya process to the function h(z).

Lemma 2.1 (From Expectation to Scaling Exponent). Let Z,(W') be the Bhat-
tacharyya process associated with the channel W and defined in (1.11). Pick any
a € (0,1) and assume that, for n > 1 and for some p < 1/2,

E[(Z,(1—Z,))Y] <127, (2.13)
where c1 is a constant that does not depend on n. Then,
P(Z, <pp2™") > C(W) — cp27 P~ (2.14)

where ca = \/2ppg + 2¢1 pg”.

Lemma 2.2 (From Eigenfunction to Expectation). Let h(z) : [0,1] — [0,1] such
that h(0) = h(1) =0, h(z) > 0 for any z € (0,1), and

2

<277 (2.15)
2€(0,1),y€[xv2—22 20— 12] 2h(z)

for some p1 < 1/2. Let Z,(W) be the Bhattacharyya process associated with the
channel W and defined in (1.11). Pick any o € (0,1). Then, for any 6 € (0,1), and
forn € N,

E[(Z,(1—2Z,))] < % <2m + \/51 f 6c3)n, (2.16)

with c3 defined as

c3 = sup M7 (2.17)
ve(er(a)l—es(a))  N(T)

where €1(a), €2(a) denote the only two solutions in [0,1] of the equation

1 o (3 —
5 ((:c(l-i—:c)) +(2-a)(1 - )3 ):2 28 (2.18)
If W is a BEC, a less stringent hypothesis on p1 is required for (2.16) to hold. In

particular, the condition (2.15) is replaced by

h(z?) + h(2x — 22
qp 1)+ R — )

<o (2.19)
2€(0,1) 2h(x)

At this point, we are ready to put everything together and prove Theorem 2.1.

Proof of Theorem 2.1. Let us define

p1 = min | —, —logy sup M ’ (2.20)
2 2€(0,1),y€[zV2—a2 20—22] 2h(x)
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where h(x) is the function of the hypothesis.

Set
9—1/nw _9—m

By using (2.3) and the fact that p > 2, we immediately realize that 2= /#—2-1 > (),
hence that o > 0. In addition, it is easy to check that o < 1.
Set
o=/ _ 9—p1

T 225 + 2 — g

(2.22)

where c3 is defined in (2.17). As 27 1/# — 27,1 > 0, we have that § € (0,1).

In addition, p; < 1/2 and the condition (2.15) clearly follows from the definition
(2.20). Consequently, we can apply Lemma 2.2, which yields formula (2.16).

Set

p = —logy (2_/’1 + \@1 i 5c3> . (2.23)

Then, p < p; < 1/2, and we can apply Lemma 2.1 with ¢; = 1/0, which yields
P(Z, <ps2™") > C(W)—c2 27U — (W) — 27 ™/H, (2.24)

where ¢ = \/2pp + 2p5“ /6 and the last equality uses the definitions (2.23), (2.21)
and (2.22).

Consider the transmission of a polar code of block length N = 2" and rate
R = C(W) — ¢327"/# over W. Then, by combining (1.19) and (2.24), we have that
the error probability under successive cancellation decoding is upper bounded by
pp. Therefore, the result (2.4) follows with 81 = db.

A similar proof holds for the specific case in which W is a BEC.

O

Now, let us briefly sketch how to prove the result stated in Remark 2.2. First, we
need to generalize Lemma 2.1 by showing that, under the same hypothesis (2.13),
we have that, for any v > 0,

P (Zn < 2*"(”“)) > O(W) — ¢ 2=+ 1a), (2.25)

where ¢4 = v/2 + 2¢;. Then, we simply follow the procedure described in the proof
of Theorem 2.1 with the difference that « is a factor 1 4+ v smaller than in (2.21).

2.3.3 Valid Choice for Scaling Exponent

Let W be a BMS channel. The proof of Theorem 2.2 consists in providing a good
candidate for the function h(z) : [0, 1] — [0, 1] such that h(0) = k(1) =0, h(z) >0
for any x € (0,1) and (2.3) is satisfied with a value of u as small as possible. In
particular, we will prove that u = 4.714 is a valid choice.

The idea is to apply repeatedly the operator Tpysc defined in (2.9) until we
converge to the function h(x). Hence, let us define hy(z) recursively for any k > 1
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B fi()
(@) = SUPye(0,1) fr(Y)’ (2.26)
Jr(x) = sup P (22) + P (9) (2.27)

)
yE[zv2—a? 2z —2?] 2

with some initial condition hg(z) such that ho(0) = ho(1) = 0 and ho(z) > 0 for any
x € (0,1). Note that the normalization step (2.26) ensures that the function hg(x)
does not tend to the constant function 0 in the interval [0, 1].

However, even if we choose some simple initial condition hg(x), the sequence
of functions {hy(z)}ren is analytically intractable. Hence, we need to resort to
numerical methods, keeping in mind that we require a provable upper bound for any
x € (0,1) on the function

r(x) = sup (2.28)

yElzv2—x2,20—x2] Qh(:l?) '

To do so, first we construct an adequate candidate for the function h(z). This
function will depend on some auxiliary parameters. Then, we describe an algorithm
to analyze this candidate and present a choice of the parameters that gives u = 4.714.

Let us underline that, although the procedure is numerical, the resulting upper
bound and the value of p are rigorously provable. Indeed, as we will see at the end
of this section, the algorithm requires to compute the maximum of rational powers
of rational numbers and this operation can be performed with arbitrary precision.

For the construction part, we observe numerically that, when k is sufficiently
large, the function hy(z) depends weakly on the initial condition hg(x), and it does
not change much after one more iteration, i.e., hxy1(x) ~ hi(x). In addition, let
us point out that the goal is not to obtain an exact approximation of the sequence
of functions {hi(z)}ren defined in (2.26)-(2.27). The actual goal is to obtain a
candidate h(z) that satisfies (2.3) with a value of u as low as possible.

Pick a large integer Ny and let us define the sequence of functions {hy(z) bren
as follows. For any k € N, hy, (x) is the piece-wise linear function obtained by linear
interpolation from the samples hy(x;), where z; = i/Nj for i € {0,1,--- , N;}. The
samples hy(z;) are given by

~ r xz
hk(l‘z) = fk( ) _ ,
man€{0717...7Ns} fk(l“]) (229)
; hie—1 ((2:)%) + ; oy b1 (i
Folan) = ko1 ((24)?) + maxjc o1, ary he-1(y 7])’

2
where M is a large integer, and, for j € {0,1,---, M}, v; ; is defined as

yig = @iy/2 — 2 + o, <2 - xg) . (2.30)
S

The initial samples ho(z;) are obtained by evaluating at the points {2;} Y, some
function ho(x) such that ho(0) = ho(1) = 0 and ho(z) > 0 for any x € (0,1) (see
Figure 2.1 for a plot of ho(z) and hy(z)).
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0 0.2 0.4 0.6 0.8 1
x

Figure 2.1 — Plot of ho(x) (black circles) and hg(z) (red line) after k = 100 steps
of the recursion (2.29) with Ny = 105, M = 10*, and the initial condition fo(z) =
(2(1 —a))*/%.

It is clear that, by increasing Ny and My, we obtain a better approximation of
the sequence of functions (2.26)-(2.27). In addition, by increasing k we get closer to
the limiting function limy_, o hx(x). Set

X hie((24)%) + maxje (o1, 1y e (Yirg)
Tk = max

i€{1,+,No—1} 2hpe ()

. (2.31)

We observe from numerical simulations that, when k increases, the sequence 7, tends
to the limiting value 0.86275 for any k. Furthermore, this limit depends very weakly
on the particular choice of the initial conditions {Bo(a:i)}f\/:so.

Note that, by using the samples {ﬁk(azl)}fv:so, 7 gives an indication of the
smallest value of p that we could hope for, ie., p = —1/log,0.86275 = 4.695.
Indeed, if we obtain h(z) by interpolating the samples {ﬂk(x,)}f\’;o, then 7 =
maxX;e(1,... N,—1} 7(i/Ns), where r(z) is defined in (2.28). Hence, 7 < sup,¢ (1) 7(2),
i.e., 7 is a lower bound on the desired supremum, whereas we are looking for an
upper bound to that quantity.

Fix a large integer k and, before computing a provable upper bound on the
quantity sup,e (1) 7(2), let us describe the interpolation method for obtaining the
candidate h(z) from the samples {ﬁk(xz)}f\fgo

For x close to 0 and for = close to 1, linear interpolation does not yield a
good candidate h(z). Indeed, assume that h(z) = hg(z) for € [0,1/N;]. Then,
lim, o+ r(x) = 1, hence sup,¢1)r(¥) > 1. Similarly, if h(z) = hi(x) for z €
[1 —1/Ng, 1], then lim, ;- 7(x) = 1. On the contrary, if h(z) grows as 2 in a
neighborhood of 0 for n € (0,1), then, it is easy to see that lim, o+ r(z) = 2771,
Similarly, if h(z) grows as (1 — x)" in a neighborhood of 1 for n € (0,1), then
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lim,_,;- r(z) = 277!, Consequently, the idea is to choose 7 slightly smaller than
1 —1/4.695, where 4.695 constitutes a good approximation to the target value of i
that we want to achieve. Based on this observation, we set

bo(x) = iy <;;> (?) o (2.32)
b(z) = iy <1 - ;\’;) <]”Vl> Ty (2.33)

for some integer m > 2. Then, sample bo(x) for z € [1 /Ny, m/Ny], sample hyz(z) for
x € [m/Ns,1 —m/Ng|, and sample by (z) for x € [1 —m/Ns, 1 —1/Ng]. Note that
it is better to not have a uniform sampling, but to choose the number of samples
according to the rule that follows. Pick some dg small enough. Then, for each couple
of consecutive samples, the/; bigger one has to be at most a factor 1 + ds larger than

the smaller one. Let {x;}fvzsl denote the set of sampling positions and {ﬁz}f\[;’l denote
the set of samples obtained with this procedure, where N/ is the number of such
samples. Eventually, we define the candidate h(z) as

bo(x), forzx € [0, ]\1@] ,
h(z) = (2.34)
bi(z) forx e [1—;@,1} ,

and, for x € [1/Ns,1—1/Ng|, h(x) is obtained by linear interpolation from the
samples {h;}.

Concerning the analysis of h(x), let us remind that the goal is to find a provable
upper bound on sup,¢ (g 1) 7(z). First, consider the values of x in a neighborhood of
0. The following chain of inequalities holds for any x € [0,1/Ng],

(@) h(2?) + h(2x
CES 2)h(m)( |
(2) bo(z%) + bo(2x)
2bo() (2.35)
n g1

r
>
gy e N7
>

—
~

+2771,

IN

where the inequality (a) uses that h(y) < h(2z) for any y € [2v2 — 22,22 — 27,
as h(z) is increasing for x € [0,2/Ng]; the inequality (b) uses that h(z) = bo(x)
for z € [0,1/Ng] and h(z) < bo(z) for x € [1/Ng,2/Ng], as, in that interval, h(x)
is the linear interpolation of samples taken from by(z) and by(x) is concave for any
n € (0,1); and the equality (c) uses the definition (2.32) of by(z).

Second, consider the values of x is a neighborhood of 1. The following chain of
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inequalities holds for any = € [1 — 1/Ng, 1],

(2) h(z?) + h(zV2 — 22)
r@) < 2h(z)
®) b (2?) + by (xv2 —2?)
B 21)1(27)
© (Lt oy 1(1%?) (2:36)

5 T3 1—x

(d) 1 2 Y
< H, £ on1 N, — (N, — 1)1+ — —
= +2< ( )¢‘+Ng (Ne)? )

where the inequality (a) uses that h(y) < h(zv2 — 2?) for any y € [xvV2 — 22,22 —
2?], as h(z) is decreasing for x € [1 — 1/Ng, 1]; the inequality (b) uses that h(x) =
bi(x) for x € [1 — 1/Ng, 1] and h(z) < bi(x) for x € [1/Ng, 2/Ng], as, in that interval,
h(z) is the linear interpolation of samples taken from b;(z) and by (z) is concave for
any n € (0,1); the equality (c) uses the definition (2.33) of b;(x); and the inequality
(d) uses that (1 — 2v/2 — 22)(1 — x)~! is decreasing for any = € (0, 1).

Finally, consider the values of z in the interval [1/Ng, 1 —1/Ng]. For any i €
{1,---, N/ — 1}, define

Jit = {5+ 2 € (20, (a10)°),

T = {5 € lly/2 = ()2, 2004 — (el )]}

Then, as h(x) is piece-wise linear in the interval [1/Ng, 1 — 1/Ng], we have that, for
any T € [x;,x;H],

up h(y)ghiémax@ (/2= (ap2).
yElzv2—x2,22—x22]

h(2e7, — (2711)%) ’?613‘_’5 (h($;‘))>’

7

which implies that, for any = € [}, 2] ],

ht +ho
r(z) < o— ZT TR (2.37)
2 min (h(xi), h(xi_H))
As a result, by combining (2.35), (2.36), and (2.37), we conclude that
h +h;
sup r(x) <max | Ho, H1, max —t L , 2.38
2€(0,1) (@) ( ie{l,-,N!—1} 2min (h(xg), h($;+1))> ( )

which implies that (2.3) holds for any p such that 2~ %/# is an upper bound on the
RHS of (2.38).
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Figure 2.2 — Plot of ho(z) (black circles) and hg(z) (red line) after k = 100 steps of
the recursion obtained by applying the operator Tgrc defined in (2.6) with Ny = 106,
M, = 10*, and the initial condition fo(z) = (2(1 — x))?/3. In this case, unlike in
Figure 2.1, higo(x) remains symmetric and very similar to the initial condition hq(z).

Let us choose ds, 7, the sampling positions {:E;}Z]\El, and the samples {I:Lz}fvzsll to
be rational numbers. Then, the RHS of (2.38) is the maximum of either rational
numbers or sums of rational powers of rational numbers. Consequently, we can
provide a provable upper bound on the RHS of (2.38), hence on p. In particular, by
setting Ny = 109, M, = 10%, fo(z) = (z(1 — x))*/4, k = 100, ds = 1074, 5 = 78,/100,
and m = 13, we obtain p = 4.714.

For the BEC the idea is to apply repeatedly the operator Tppc defined in (2.6).
Hence, by adapting the procedure described above and by setting Ny = 106, My =
104, fo(z) = (z(1 — 2))?/3, k = 100, §s = 1074, = 72/100, and 7m = 5, we obtain
1= 3.639 (see Figure 2.2 for a plot of hg(z) and hg(z)).

2.4 Moderate Deviations

The scaling exponent describes how fast the gap to capacity, as a function of the
block length, tends to 0, when the error probability is fixed. Hence, it is natural to
ask how fast the gap to capacity, as a function of the block length, tends to 0, when
the error probability tends at a certain speed to 0. The discussion of Remark 2.2 in
Section 2.3.1 points out that we can let the error probability go to 0 polynomially
fast in N, and maintain the same scaling exponent. In this section, we show that,
if we allow a less favorable scaling between gap to capacity and block length (i.e., a
larger scaling exponent), then the error probability goes to 0 sub-exponentially fast
in N.
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2.4.1 Statement and Discussion

Theorem 2.3 (Joint Scaling: Exponential Decay of Pg). Assume that there exists a
function h(z) that satisfies the hypotheses of Theorem 2.1 for some p > 2. Consider
the transmission over a BMS channel W with capacity C(W) by using a polar code
of rate R < C(W). Then, for any v € (1/(1+4 p),1), the block length N and the
block error probability under successive cancellation decoding Pg are such that

7,hgfl) (v(u;r;)—1>

Pg<N-27V ,

B3
(C(W) — R)u/(lfv) ’

(2.39)

N <

where B3 is a universal constant that does not depend on W or on vy, and hé_l) is the
inverse of the binary entropy function defined as ha(x) = —xlogy x—(1—x) logy(1—1x)
for any x € [0,1/2]. If W is a BEC, the less stringent hypothesis (2.5) on p is
required for (2.39) to hold.

In short, formula (2.39) describes a trade-off between gap to capacity and error
probability as functions of the block length N. Recall from Remark 2.2 that, if the
scaling exponent is the u given by Theorem 2.2, then the error probability decays
polynomially fast in 1/N. Theorem 2.3 goes one step further and proves that, in
order to have a faster decay of the error probability, e.g., a sub-exponential decay,
it suffices to take a larger scaling exponent.

More specifically, let v go from 1/(1+ u) to 1. On the one hand, the error prob-
ability goes faster and faster to 0, since the exponent = - héﬁl) (v(p+1)=1)/(vp))
is increasing in ; on the other hand, the gap to capacity goes slower to 0, since the
exponent /(1 — =) is increasing in ~.

Before proceeding with the proof, it is useful to discuss three points. The first
remark concerns the possible choices for p in (2.39). The second remark shows how
to recover from Theorem 2.3 the result [56] concerning the error exponent regime.
The third remark adds the Bhattacharyya parameter Z (W) to the picture outlined
in Theorem 2.3 and, in particular, it focuses on the dependency between Pp and

Z(W).

Remark 2.3 (Valid Choice for i in (2.39)). By constructing a function h(x) as in
the proof of Theorem 2.2 contained in Section 2.3.3, we immediately have that valid
choices of p in (2.39) are p = 4.714 for any BMS channel and p = 3.637 for the
special case of the BEC.

Remark 2.4 (Error Exponent Regime and Theorem 2.3). By picking v close to
1, we recover the result [56] concerning the error exponent regime: if we allow the
gap to capacity to be arbitrary small but independent of N, then Pg is O(Q_NB)
for any 5 € (0,1/2). Furthermore, Theorem 2.3 contains as a particular case also
the stronger result in [127], where the authors prove that the block length scales
polynomially fast with the inverse of the gap to capacity and the error probability can
be upper bounded by 2-N" " On the contrary, note that it is not possible to recover
from Theorem 2.3 the result of Theorem 2.1 concerning the scaling exponent regime.
Indeed, choose v close to1/(14u). Then, the exponentfy-hg_l) (v(p+1)=1)/(vp))



36 Unified Scaling of Polar Codes

tends to 0. This means that we approach a regime in which the error probability is
independent of N, but N is O (1/(C(W) — R)**1), instead of O (1/(C(W) — R)")
as in (2.4). We believe that this is only an artifact of the proof technique used to
show Theorem 2.3 and that it might be possible to find a joint scaling that contains
as special cases the error exponent and the scaling exponent regimes.

Remark 2.5 (Dependency between Py and Z(W)). Consider the transmission over
a BMS channel W with Bhattacharyya parameter Z(W). Then, under the hypothe-
ses of Theorem 2.3, it is possible to prove that

q,_héfl) ('v(u;rllb)%)

Py < N-Z(W)zN ;

B
(C(W) — R)r/(1=7)"

(2.40)

N <

where By is a universal constant that does not depend on W or on ~v. A sketch of
the proof of this statement is given in Appendiz 2.6.3. This result means that the
error probability scales as Z(W) raised to some power of N, where the exponent
follows the trade-off of Theorem 2.3. To see that this bound is meaningful, consider
the case of the transmission over the BEC in the error exponent regime. On the
one hand, formula (2.40) gives that Pg scales roughly as Z(W)*/N On the other
hand, Pg > max;ct Z,(f), where I denotes the set of information positions and Zr(li)
is a polynomial in Z(W) with minimum degree that scales roughly® as VN. The
scaling between the error probability and the Bhattacharyya parameter will be further
explored in Section 2.5.

2.4.2 Proof of Theorem 2.3

Proof. Let Z, (W) be the Bhattacharyya process associated with the channel W and
defined in (1.11). Then, by following the same procedure that gives (2.24), we have
that, for any ng € N,

P (Zny <2770) > C(W) — c527 ™0/, (2.41)

where c5 is a constant that does not depend on n and is given by c¢5 = /2 + 2/,
with § defined in (2.22).
Let {By}n>1 be a sequence of i.i.d. Bernoulli(1/2) random variables. Then, by
using (1.11), it is clear that, for n > 1,
Z2 if B, =1
< no+n—17 n ’
Znotn < { 2Znosn—1, if By =0.

Therefore, by applying Lemma 22 of [128], we obtain that, for ny > 1,

ni

"1 B,
P (Zno-‘rnl < 27221:1 ‘ Zno - .’L’> >1- 061'(1 - log2 l‘), (2'42)

“Note that the minimum degree of 25 seen as a polynomial in Z (W) is equal to the minimum
distance of the code and that the minimum distance scales roughly as v/ /N according to Lemma 4
of [53].
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with cg = 2/(v2 — 1)2.
Consequently, we have that

"B,
P (Zn0+n1 < g—22i=1 ) =P (Zy, <27™)

22?:11 B;

P <Zno+n1 < 2- | Zno < 2—71())

(a)
> P (Zng <27) - (1— 627" (1 +np)) (2.43)

b
2 en-aa)-(1-aie )

(c)
> C(W) — <C5 + ¢ ln@) 2—n0/,u?

where the inequality (a) uses (2.42) and the fact that 1 —cg2z(1—log, ) is decreasing
in z for any x < 27" < 1/2; the inequality (b) uses (2.41) and that 1 — ¢g27™0(1 4+
ng) > 1—¢g27"0/24/2/1n2 for any ng € N; and the inequality (c) uses that p > 2.

Let ho(x) = —zlogyx — (1 — x)logy(1 — ) denote the binary entropy function.
Then, for any € € (0,1/2),

FEee e

b
(S) g—m1(1=ha(e))

where the inequality (a) uses formula (1.59) of [44]; and the inequality (b) uses that
ho(x) is increasing for any x < 1/2.

Note that, for any two events A and B, P(AN B) > P(A) +P(B) — 1. Hence, by
combining (2.43) and (2.44), we obtain that

n1€ 2
P <Zn0+m <2 % ) > C(W) — <c5 + c6f> g~mo/m _g=m(1=ha(c)) (2 45)
In2
Let n > 1. Set ny = [yn], np = n—[yn], and e = hg_l) ((y(p+1)=1)/(vu)), where
hg_l)(-) is the inverse of ha(x) for any = € [0,1/2]. Note that if v € (1/(1 + p), 1),
then € € (0,1/2). Consequently, formula (2.45) can be rewritten as

n’yhgfl) (’Y(MJrl)*l

P (Zn0+m <272 " )> > CW) —er2 "0, (2.46)
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with ¢c; =1+ \/5(05 +06\/§/1n2).
Consider the transmission of a polar code of block length N = 2™ and rate R
given by the RHS of (2.46). Then, the result (2.39) holds with 5 = cf.
O

2.5 Absence of Error Floors

In the discussion of Remark 2.5 in Section 2.4.1, we study the dependency between
the error probability and the Bhattacharyya parameter, and we consider a setting
in which, as the channel varies, the polar code used for the transmission changes
accordingly. In this section, we consider a different scenario in which the polar code
stays fixed as the channel varies, and we prove a result about the speed of decay of
the error probability as a function of the Bhattacharyya parameter of the channel.
By doing so, we conclude that polar codes are not affected by error floors.

2.5.1 Statement and Discussion

Let C be the polar code with information set Z designed for the transmission over the
BMS channel W' with Bhattacharyya parameter Z(W’). Then, the actual channel
over which the transmission takes place is the BMS channel W with Bhattacharyya
parameter Z(W). In the error floor regime, the code C is fixed and W varies. The
aim is to study the scaling between the error probability under SC decoding and the
Bhattacharyya parameter Z(W).

Denote by ZS)(W) the Bhattacharyya parameter of the synthetic channel of
index ¢ obtained from W after n steps of polarization. The main result is presented
in Theorem 2.4 and it relates Z,(f)(W) obtained from W to ZS)(W’ ) obtained from
W'. From this, in Corollary 2.1, we relate the sum of the Bhattacharyya parameters
at the information positions obtained from W, i.e., Pg(W) £ DoieT Z,(LZ)(W), to the
sum of Bhattacharyya parameters obtained from W, i.e., Pg(W’) £ Y ieT Z%) (W').
Note that the indices of the information positions are the same in both sums, since
the information set 7 is fixed. The proof of Theorem 2.4 is in Section 2.5.2, and the
proof of Corollary 2.1 naturally follows.

Theorem 2.4 (Scaling of Z,(f)(W)) Consider two BMS channels W and W' with
Bhattacharyya parameter Z(W) and Z(W'), respectively. For n € N and i €
{1,---,2"}, let Zfli)(W) be the Bhattacharyya parameter of the channel Wi ob-
tained from W wia channel polarization and let qui)(W’ ) be similarly obtained from
W' If ZW) < Z(W'")?%, then

' ' log, Z (W)
ZOW) < ZzO(W')logx ZW7) (2.47)

If W and W' are BECs, then (2.47) holds if Z(W) < Z(W').

Corollary 2.1 (Scaling of Pg(W)). Let W’ be a BMS channel with Bhattacharyya
parameter Z(W') and let C be the polar code of block length N = 2" and rate R for the
transmission over W'. Denote by Pg(W') the sum of the Bhattacharyya parameters

at the information positions obtained from W', i.e., Pg(W') £ Y icT Zy(f)(W'), where
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T is the information set of the polar code C. Now, consider the transmission over
the BMS channel W with Bhattacharyya parameter Z(W) by using the polar code
C and let Pg(W) be the sum of the Bhattacharyya parameters at the information

positions obtained from W, i.e., Pg(W) & Y et Zy(f)(W). If ZW) < Z(W')2, then

~ ~ logy Z(W)
Pa(W) < Pg(W')log2 2Z(W') (2.48)

If W and W' are BECs, then (2.48) holds if Z(W) < Z(W').

Now, let us discuss how the results above imply that polar codes are not affected
by error floors. Denote by Pg(W) the error probability under SC decoding for
transmission of C over W and recall from (1.19) that Pg(W) < Pg(W). Hence,
formula (2.48) implies that

logy P (W)
Po(W) < Z(W) 1082 2007 | (2.49)

Note that the upper bound (2.40) on Pg comes from an identical upper bound on
the sum of the Bhattacharyya parameters Pg. Thus, by choosing 7 &~ 1 in (2.40), we

have that Pg(W’) scales roughly as Z(W’ )\/N Therefore, from (2.49) we conclude

that Pg(W) scales roughly as Z (W)‘/N This fact excludes the existence of an error
floor region.

Furthermore, in the discussion of Remark 2.5, we pointed out that Pg(W) scales
as Z (W)\/N This result holds when W is fixed and the polar code can be constructed
according to the actual transmission channel. Whereas, in the error floor regime,
we fix a polar code and we let the transmission channel vary, which means that the
code cannot depend on the transmission channel. Hence, from the discussion above,
it follows that the dependency between the error probability and the Bhattacharyya
parameter of the channel is essentially the same as in the case in which we design the
polar code for the actual transmission channel. As a result, in terms of this particular
scaling, nothing is lost by considering a “mismatched” code. However, considering
a “mismatched” code yields a loss in rate. Indeed, if W and W' are BECs, then
(1.4) holds with equality and Z(W) < Z(W’) implies that C(W) > C(W'). If W
and W’ can be any BMS channels, by using (1.4) and (1.5) we easily deduce that
Z(W) < Z(W')? implies C(W) > C(W'). Recall that the rate of a polar code for W’
is such that R < C'(W’), and the rate of a polar code for W is such that R < C(W).
As C(W) > C(W'), by constructing a polar code for W, we can transmit reliably
at larger rates.

Before proceeding with the proof of Theorem 2.4, let us make a brief remark
concerning the case Z(W) € (Z(W')?, Z(W")].

Remark 2.6 (The Case Z(W) € (Z(W")2, Z(W")]). If W and W' are BECs, then
(2.47) and (2.48) hold for any Z(W) < Z(W'), i.e., for the whole range of pa-
rameters of interest, as we think of W as a “better” channel than W'. On the
contrary, if W and W' can be any BMS channels, we require that Z(W) < Z(W')2.
If there is no additional hypothesis on W and W', the main result (2.47) cannot
hold in the case Z(W) € (Z(W')2, Z(W")]. Indeed, if ZW) = Z(W'), we can
choose W and W' such that C(W) < C(W'). If C(W) < C(W'"), then the num-
ber of indices i1 such that lim, Z,(L“)(W) = 0 is smaller than the number of
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indices i such that lim, Zy(LZQ)(W’) = 0. Hence, (2.47) cannot hold for any
i € {1,---,2"}. A natural additional hypothesis consists in assuming that W' is
degraded with respect to W, i.e., W = W'. In this case, we can at least ensure that
ZT(Li)(W) < Z,(li)(W’). However, it is possible to find W and W' such that (2.47)
is violated for n = 1 when Z(W) € (Z(W")2, Z(W")]. We leave as open questions
whether the bound (2.48) is still valid and what kind of looser bound holds, when
W = W' and ZW) € (Z(W")?2, Z(W")].

2.5.2 Proof of Theorem 2.4
Proof. Assume that, for any j € {1,---,2""'} and for some € R,
20w < 2, (W), (2.50)

Then, let us study for what values of n we have that (2.50) implies that, for any
ie{l,---,2"},

ZO(wW) < ZWOmwn. (2.51)
First, consider the case in which the last polarization step is a “+” step, i.e.,
, S\
wi = (wit)) (2.52)
for some index it € {1,---,2""1}. Hence, the following chain of inequalities holds
for any BMS channel W:
i (@) (6 2
zPw) = (25 w)
(b) it 2n
< (z25m) (2:53)
© (i m
< (zhw)”

where the equality (a) uses (1.8); the inequality (b) uses the assumption (2.50) with
j =14"; and the equality (c) uses again (1.8). Consequently, if the last polarization
step is a “+” step, then (2.51) holds for any BMS channel W without any restriction
on 1.

Then, consider the case in which the last polarization step is a “—” step, i.e.,
wi = (wi)) (2.54)
for some index i~ € {1,---,2""!}. Hence, the following chain of inequalities holds
for any BMS channel W:
, (a) ,.— _
20wy < 22w (2= 25 w))
(d) , - U i "
< (Zn—l)(W/)) (2 - (Zn—l)(W/)> )
9 (2.55)
(C) Z—) / n i_) , 2 77/
< <Zn71(W )) 2- (anl (W ))
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where the inequality (a) uses (1.7); the inequality (b) uses the assumption (2.50)
with j = i~; the inequality (c) uses that 2 — 27 < (2 — 22)"? for any = € [0,1] if
and only if > 2; and the inequality (d) uses again (1.7). Consequently, if the last
polarization step is a “—” step, then (2.51) holds for any BMS channel W, provided
that n > 2. If W is a BEC, a less restrictive condition on 7 is necessary. Indeed,
the following chain of inequalities holds when W is a BEC:

20w 2 20wy (2 20 o)

2 (Z0w)" (2~ (2 30))
(A0 w) (2- 2mm)

< (z0m)",

(2.56)

where the equality (a) uses (1.9); the inequality (b) uses the assumption (2.50) with
J =i~ ; the inequality (c¢) uses that 2 — 27 < (2 — )" for any = € [0, 1] if and only if
n > 1; and the equality (d) uses again (1.9). Consequently, if the last polarization
step is a “—” step and W is a BEC, then (2.51) holds provided that n > 1.

By combining (2.53) and (2.55), we have that if (2.50) holds for n > 2 after
n — 1 steps of polarization, then the same relation holds for n > 2 after n steps of
polarization. This means that the inequality stays preserved after one more step of
polarization. Clearly, as the Bhattacharyya parameter is between 0 and 1, a smaller
value of 1 gives a tighter bound. As Zél)(W) = Z(W) and Z(()l)(W’) = Z(W’), the
smallest choice for 7 is logy Z(W')/logy Z(W'). The condition n > 2 is equivalent to
Z(W) < Z(W')? and, for the case of the BEC, the condition > 1 is equivalent to
Z(W) < Z(W'). Eventually, the result (2.47) follows easily by induction.

]
2.6 Appendix
2.6.1 Proof of Lemma 2.1
Proof. First of all, we upper bound P(Z,, € [pp2~",1 — pg2™"]) as follows:
B(Zo € [pp2 " 1 —pp2]) DB ((Zu(1 - Z,)" > (pp27"(1 — pp2™))")
(2) E [(Zn(l - Zn))a]
~ (p27"(1 —p27"))*
(©) €127
<
~ (p27"(1 —pp27"))*
(d) o
< 2¢1pp*27 07,
(2.57)

where the equality (a) uses the concavity of the function f(x) = (z(1 — x))%; the
inequality (b) follows from Markov inequality; the inequality (c) uses the hypothesis
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E[(Z,(1 — Z,))*] < ¢127; and the inequality (d) uses that 1 — pg2™" > 1/2 for
any n > 1.
Let us define
A=P(Z, € [0,ps27")),
B=P(Z, € [pg2 ", 1-p27"]), (2.58)
C=P(Z,e(1-ps27"1]),

and let A’, B’, and C’ be the fraction of A, B, and C, respectively, that will go to
0 as n — oo. More formally,

A" =liminfP (Z, € [0,p827"), Zntm <27™),

m—00

B =1liminfP (Z, € [pp2™", 1= pp2™"], Znim <27™), (2.59)

m—r00

C' =liminfP (Z, € (1 —ps2 ", 1], Znpm <277).

m—r0o0

Note that we only need that Z,4,, goes to 0 as m goes large, and we do not have
any requirement on the speed at which it does so. Hence, we could substitute 27"

in (2.59) with any other function that goes to 0 as m — oo and that is ©(272"")
for some § € (0,1/2), see [56].
It is clear that
A+ B 4 C =lminf P (Zym < 27™) = C(W). (2.60)
m—0o0
In addition, from (2.57), we have that
B' < B < 2¢pg®27 P9, (2.61)

In order to upper bound C’, we proceed as follows:

C'=lminf P (Zp4m <27™ | Zp € (1—p27 ", 1]) - P(Z, € (1 —pp2",1])

m—0o0

<UminfP (Zpym <277 | Zp € (1—pp27",1]).

m—0o0

(2.62)

The last term equals the capacity of a channel with Bhattacharyya parameter in the
interval (1 —pg27",1]. By using (1.5), we obtain that

C'<V/1—(1—pp27")2 < /2pp2~" (2.63)
As a result, we have that
P(Zn, € [0,pg27")) =A> A

(b)
> C(W) = 2e1pg®2 "0~ — \/2pp2—7,
(©
> C(W) = (v2ps + 2e1p5%) 270,

where the equality (a) uses (2.60); the inequality (b) uses (2.61) and (2.63); and
the inequality (c) uses that p < 1/2. This chain of inequalities implies the desired

result.

O]
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2.6.2 Proof of Lemma 2.2

Proof. Let o = min(1/2, p1/logy(4/3)). As E [(Zn(1 — Zn))a] is decreasing in «,
we can assume that o < o without loss of generality. As h(xz) > 0 for any x € [0, 1]
and Z,, € [0,1] for any n € N, we have that

E [(Z0(1 ~ Z0))"] < SE[(1 = 0)h(Z2) +6(Za(1 ~ Z))°] = SE[0(Z0)],  (264)
with
g(z) = (1 — O)h(z) + 8(z(1 — 2))°. (2.65)
Let

2
L, = sup 9(z°) +9(y)
2e(0,) yelova—a? 20— 29(%)
Then, by definition (1.11) of the Bhattacharyya process Z,,, we have that

E [g(Zn) | anl] < g(anl)Lg'
Consequently, by induction, we can readily prove that
Elg(Zn)] < (Lg)" g(Z(W)) < (Lg)", (2.66)

where the last inequality follows from the fact that g(x) <1 for z € [0, 1].
Now, by combining (2.64) with (2.66), we obtain that

E[(Zn(1 = Zn))"] < <(Lg)" (2.67)

Hence, to conclude the proof it remains to find an upper bound on Ly, i.e., to show
that L, < 27P! + 24/28c3. By using (2.15), after some calculations, we have that

g(l,z) + g(y) (1 — 5)h(x)2_p1 + g((ﬂ§2(1 — l‘)(l + x))a -+ (y(l — y))a)

29(e) (1= 8)h(e) + (a1 —2))° (268)
For any y € [xv/2 — 22,22 — 22|, we obtain
y(1—y) < 22— 2)(1 — 2v/2 - 22). (2.69)
In addition, for any x € (0,1),
1—azv2— 22 < (1-—a)"3 (2.70)

In order to prove (2.70), one strategy is the following: elevate the LHS and the RHS
to the third power; isolate on one side the terms that multiply v/2 — 22; and square
again the LHS and the RHS. In this way, we have that (2.70) is equivalent to

(1 —2)*(2 4 8z + 32 + 42> — 42t — 42 — 2%) > 0,

which is clearly satisfied when z € (0,1).
Therefore, by combining (2.68), (2.69), and (2.70), we obtain that

9(2*) +9(y) _ (1= 0)h(2)27" +d(x(1 — 2))*¢(x)
29(z)  — (A =0)h(x) +6(x(1—x))*

(2.71)
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with

Ha) = % (e +2)" + (2 21— 2)Y%)") (2.72)

First of all, we upper bound the expression on the RHS of (2.71) when z is small.
Clearly, t(0) < 277t and ¢(1/2) > 271, as p; < 1/2 and a < o*. In addition, some
passages of calculus show that the second derivative of ¢(z) is given by

o (z(1 +2))
2 22(1+x)?
a (2-2)(1—2)/3)
18 (2— 32+ 22)2
As a < 1/2, we have that

(-1 -2z —22° + a(1 + 22)?)

(=21 + 30z — 122% + a(5 — 42)?) .

(1 4 22)
2

(5 — 4x)?
2

Hence, t(x) is concave for any x € (0,1). This implies that there exist € (), e2(a) €
(0,1) such that

—1 -2z 22+ ol +22)* < -1 — 2z —22° + <0,
(2.73)

—21 430z — 1222 + a(5 — 42)> < -1 — 22 — 222 + < 0.

t(x) <271, Vo el0,e(a)U[l—e(a),l] (2.74)

Indeed, the precise values of € (a) and e2(cv) can be found from (2.18). By combining
(2.71) with (2.74), we have that, for any = € [0,¢1(a)] U [1 — e2(), 1] and for any
y € [zV2 — 22,22 — 27,
9@*) +9W) _ 5p
29(x) T
Then, we upper bound the expression on the RHS of (2.71) when z is not too
small, namely, € (e1(a),1 — e2()):

(1= §)h(@)2=* + d(w(1 — 2))*tx) @) (1 = §)h(2)27 + d(a(1 - 2))*2°
1-0)h(z)+o(xl—=z) =  (1-0)h(z)+ ol —x))e

(2.75)

(b) 2 (z(1—x))*

o1 2.76
S S (2.76)
(2 2P 4V/2
> + 1— 6637

where the inequality (a) uses that t(xz) < 2% for any x € (0,1); the inequality (b)
uses that h(z) > 0 and (z(1 — x))® > 0; and the inequality (c) uses that oo < 1/2,
and the definition of ¢3 in (2.17). By putting (2.75) and (2.76) together, we have
that

Ly<27” (2.77)

6
By combining (2.67) and (2.77), the result for a general BMS channel follows.
Finally, consider the special case in which W is a BEC. Clearly, (2.64) still holds,
and, by using the definition (1.2) of the Bhattacharyya process Z,, for the BEC, in
analogy to (2.66), we obtain that
1

E[(Zn(l - Zn)) ] 5

(L))", (2.78)
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where we define

2 2
L=y S E0C =)
z€(0,1) 29(33)

By using (2.19), after some calculations, we have that

g0(2?) +g0(2x — %) _ (1= 0)h(z)27" +é(a(1 — 2))*t'(z)

<

290(x) (1= 0)h(x) +6(x(1 —z))*
with )

t'(z) = 3 ((z(1+2)" + (2—2)(1—2))%).
As (1 —z) < (1 —2)'/3 for any z € (0,1), we obtain that t'(z) < t(z), with t(x)
defined in (2.72). Therefore, the result for the BEC naturally follows. O

2.6.3 Sketch of the Proof of (2.40)

Eventually, let us briefly sketch how to prove the result stated in Remark 2.5. The
dependency on the Bhattacharyya parameter Z (W) first appears in formula (2.66).
Hence, under the hypothesis of Lemma 2.2, we can easily prove that

E[(Zn(1 - Z,))%] < Q(ZgW)) (z—m + \/51 f 5c3>n, (2.79)

where g(z) is defined in (2.65). Consequently, by following passages similar to those
in the proof of Lemma 2.1 in Appendix 2.6.1 and of Theorem 2.1 in Section 2.3.2,
we conclude that

P (Zpy < Z(W)-272%0) > C(W) — cg 27 "0/1, (2.80)

where cg is a constant. Note that in formula (2.42) Z, 1, is upper bounded by a
quantity that does not depend on x. In order to make this dependency appear, we
use a procedure similar to that of the proof of Lemma 22 in [128]. As a result, we
obtain that

P (Zno_ml < zx2 | Zny = az) >1—cgv/z(1l —logy ), (2.81)

where c¢g is a constant. By combining (2.80) and (2.81), the result follows by using
arguments similar to those of the proof of Theorem 2.3 in Section 2.4.2.






Scaling Exponent of List Decoding

Non usare mai il plurale majestatis.
Siamo convinti che faccia una pessima
impressione.

Never use plurale majestatis. We believe
it too pompous.

After developing, in the previous chapter, tight bounds on the scaling exponent
of polar codes under SC decoding, we now investigate whether it is possible to
improve such a scaling exponent by using a better decoding algorithm. Despite the
excellent performance reported in [55], in this chapter!, we provide some negative
results for list decoding.

After reviewing some existing work in Section 3.1, we summarize our main con-
tributions in Section 3.2: the scaling exponent does not change under MAP decoding
with any finite list and, for the transmission over the BEC, also under genie-aided
SC decoding for any finite number of helps from the genie. In Section 3.3, we discuss
the result for MAP decoding with a list and, in Sections 3.4 and 3.5, we prove it for
the special case of the BEC and for general BMS channels, respectively. In Section
3.6, we discuss the analysis for genie-aided SC decoding when the transmission takes
place over the BEC. We defer some of the proofs of the intermediate lemmas to the
appendix in Section 3.7.

3.1 Related Work

List decoding was introduced independently by Elias and Wozencraft [132,133] and it
enables the receiver to collect L possible transmitted messages. An error is declared
only if the correct message does not appear in the list.

The error exponent of list decoding schemes has been widely studied in the
literature [134,135], and, for random coding, it has been proved that the introduction

!The material of this chapter is based on joint work with S. H. Hassani and R. Urbanke [130,131].
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of a list with finite size L does not yield any change in this asymptotic regime,
provided that the rate is close enough to capacity [120]. Improved bounds suitable for
both random and structured linear block codes have been recently investigated [136].

As for the scaling exponent, for a random ensemble transmitted over a BEC with
erasure probability e, namely a BEC(e), it can be shown that the error probability
Pp(N, R e, L) scales as

logy L +\/N(1—€—R)>7 (3.1)

VNe(l—¢) Vel —e)

PB(N,R,S,L) %Q<

where Q(-) is defined in (1.21).

To prove (3.1), consider a random matrix with NR rows and N — E columns
whose elements are i.i.d. random variables taking the values 0 and 1 with equal
probability and where F is a binomial random variable with mean Ne and variance
Ne(1—¢). Then, Pg(N, R, ¢, L) is the probability that this matrix has rank < NR—
log, L. After some calculations and the application of Theorem 3.2.1 of [137], we
obtain that the dominant term in Pg(N, R, ¢, L) is given by P(E > N(1—R)+log, L),
which is expanded in (3.1).

As a result, the scaling exponent of random codes remains equal to 2 and even
the mother curve? stays unchanged, namely f(z) = Q(z//e(1 — ¢)), for any L € N.

3.2 Main Results

The contributions of this chapter can be summarized as follows.

MAP decoding with a list. We show that the scaling exponent does not improve
for any finite list size, for any BMS channel W, and for any family of linear
codes whose minimum distance grows arbitrarily large when the block length
N tends to infinity. By proving that the minimum distance of polar codes
is unbounded in the limit N — 400, we deduce that these conclusions also
hold for polar codes. In particular, by means of a Divide and Intersect (DI)
procedure, we show that the error probability of the MAP decoder with list
size L, namely PYAP(N, R, W, L), is lower bounded by PYAP(N, R, W, L =
1) raised to an appropriate power times a suitable constant, both of which
depend only on L. As a result, we see that list decoding has the potential
of significantly improving the involved constants, but it does not change the
scaling exponent.

Genie-aided SC decoding. Consider genie-aided SC decoding of polar codes for
the transmission over the BEC. This decoder runs the SC algorithm and it
can ask the value of a certain bit to the genie for a maximum of k times. The
k-genie-aided SC decoder performs slightly worse than the SCL decoder with
list size 2%, but it is easier to analyze. We show that the scaling exponent
does not improve for any finite number of helps from the genie. The proof
technique is similar to that developed for MAP decoding and it is based on a
DI bound.

For a definition of the mother curve, see (2.2).
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3.3 Analysis for MAP Decoding with a List

Let Cin be a set of linear codes parameterized by their block length N and rate
R. For each N and R, let dyin(N, R) denote the minimum distance. Consider the
transmission over a BMS channel W with capacity C'(W) € (0, 1) and Bhattacharyya
parameter Z € (0,1), defined in (1.3). Let PYP(N, R, W, L) be the block error
probability for the transmission over W under MAP decoding with list size L. In
addition, denote by C,q the set of polar codes when the transmission takes place
over the BMS channel W.

The case of the BEC is handled separately. Indeed, for the transmission over an
erasure channel, MAP decoding is reduced to solving a linear system over the finite
field Fo. Therefore, the number of codewords compatible with the received message
is a power of 2. Let us assume that the MAP decoder with list size L declares an
error if and only if the number of compatible codewords is strictly bigger than L.
Consider a first MAP decoder with list size L, and a second MAP decoder whose
list size Lo is the biggest power of 2 smaller than L1, i.e., Ly = 2U1°82L1) Then, the
performance of these two decoders are identical (the first one declares error if and
only if the second one does). As a result, we can restrict our analysis to list sizes
that are powers of 2, hence the bounds can be tightened. In addition, when dealing
with a BEC, the proof is considerably simpler and it keeps the same flavor as the
one valid for general channels.

3.3.1 Divide and Intersect (DI) Bounds

Theorem 3.1 (DI Bound - Cy,). Consider the transmission using elements in Cy
over a BMS channel W with Bhattacharyya parameter Z and set Pg € (0,1). For
any N and R so that

PYAP(N R, W,L) > Pg, (3.2)
In(Pg/8)
dmin N7 y .
(N,R) > — — (3.3)

the performance of the MAP decoder with list size L + 1 (2L, if W = BEC(e)) is
lower bounded by

PYAP(N, R, W, L4 1) > - (RYAP(N, R, W, 1)),
(3.4)
PYAP(N, R, e,2L) % (PYAP(N, R,e, L))",

Theorem 3.2 (DI Bound - C,q1). Consider the transmission using elements in Cpol
over a BMS channel W. Fiz Pg € (0,1) and pick any N such that

N > 2MZCW).F) (3.5)

where

A(Z,C(W), Pg) = 2m(Z, Pg) — In(1 — C(W))

+/—4m(Z, Pg) - In(1 — C(W)) + (In(1 — C(W)))2, (3.6)
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with

m(Z7 PB) = ]"OgQ(

41n(Pg/8)

mmﬁy&-mu—2)>7 (3.7)
an-ln(l—Z InZ )

and any sufficiently large R so that
PYAY(N, R, W, L) > Pg. (3.8)
Then, the bounds (3.4) hold.
The corollary below follows by induction.

Corollary 3.1 (DI Bound - Any L). Consider the transmission using elements in
Ciin over a BMS channel W. Fix Pg € (0,1) and define the following recursion,

3
Py(m+1) = 7(Pa(m))”,  meN, (3.9)
with the initial condition Pg(1) = Pg. Pick any N and R such that (3.2) and (3.3)
hold with Pg(L) instead of Pg, or, if the code is in Cyol, any N satisfying (3.5)
and any sufficiently large R satisfying (3.8) with Pg(L) instead of Pg. Then, the
performance of the MAP decoder with list size L + 1 is lower bounded by
MAP 3\ 1A 2k
PYAP(N, RW, L +1) > <E> (PYAP(N, R, W, L =1))". (3.10)
If W = BEC(e), consider the recursion (3.9) with the initial condition Pg(0) = Pg.
If (3.2)-(3.3) and (3.5)-(3.8) are satisfied with Pg(logy L) instead of Py for codes in
Ciin and Cpo1, respectively, then the performance of the MAP decoder with list size
2L is lower bounded by

3\ 2L-1
PMAP(N R, ¢.2L) > <E) C(PYAP(N Re, L=1)". (311

3.3.2 Scaling Exponent

An immediate consequence of the DI bounds is that the scaling exponent does not
change as long as L is fixed and finite. The theorem below bounds the scaling
behavior of the MAP decoder with any finite list size L, and its proof is easily
deduced from Corollary 3.1.

Theorem 3.3 (Scaling Exponent - MAP Decoding with a List). Consider the set
of polar codes Cpo transmitted over a BMS channel W. Assume that the limit (2.2)
exists under MAP decoding, i.e.,

lim PYAP(N R, W) = f(2),
N—oo: NYVr(C(W)=R)==2

where p is the scaling exponent and f the mother curve. Then, for any L € N,

lim sup PYAP(N, R, W, L) < f(2), (3.12)
N—oo: NYr(C(W)—R)=2

2L71

(f(2))

5 )2“_1 : (3.13)

lim inf PYMAP(N R W, L) > (7
N-soo: NUR(C(W)-R)=z ( )2 16
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In words, if a scaling law holds for the MAP decoder with list size L, the scaling
exponent i is the same as that for the original MAP decoder without list. Therefore,
the speed at which capacity is approached as the block length grows large does not
depend on the list size, provided that L remains fixed. Notice that, in general,
Theorem 3.3 holds for any set of linear codes whose minimum distance is unbounded
as the block length grows large.

3.4 Proof of DI Bounds for BEC

As the name suggests, the DI procedure has two main ingredients: the Intersect
step is based on the correlation inequality stated in Section 3.4.1; the Divide step
is based on the existence of a suitable subset of codewords, which is discussed in
Section 3.4.2. We prove the bound for the simple case L = 1 for linear and polar
codes in Sections 3.4.3 and 3.4.4, respectively. We present the generalization to any
list size in Section 3.4.5.

3.4.1 Intersect Step: Correlation Inequality

As the BEC is a symmetric channel, we can assume that the all-zero codeword has
been transmitted. As the BEC does not introduce errors, the MAP decoder outputs
all the codewords compatible with the received message. An error is declared if and
only if the all-zero codeword is not the unique candidate, i.e., there is more than
one candidate codeword.

Let us map the channel output into the erasure pattern y = (y1,--- ,yn) €
{0,1}V, with y; = 1 meaning that the i-th BEC has yielded an erasure symbol
and y; = 0, otherwise. Let G, be the part of the generator matrix G' obtained by
eliminating the columns corresponding to the erased symbols, i.e., all the columns
of index ¢ such that y; = 1. It is easy to check that the MAP decoder outputs the
information vector u = (u1,--- ,ung) if and only if uG, = 0. Define E, to be the
set of all the erasure patterns such that u solves uG, = 0, i.e.,

E, = {y € {0,1}" |uG, = 0}. (3.14)
Let I, be the set of positions ¢ in which (uG); equals 1, namely,
I, ={i € [N]| (uG); = 1}. (3.15)

Since P%AAP(N ,R,e, L =1) is the probability that there exists a non-zero infor-
mative vector u that satisfies uG, = 0, we have

P(| ) Bu) = PY"F(N,R,e,L =1), (3.16)
uelU

with
U =TFYE\ 0p.nr, (3.17)
where 01.5r denotes a sequence of NR 0s.

We start with two simple lemmas that compute P(E,,) and that show the positive
correlation between the events (3.14).
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Lemma 3.1. Let u € FY® and let E,, be defined in (3.14). Then,
P(E,) = el (3.18)
where I, is given by (3.15).

Proof. Observe that u solves uG, = 0 if and only if all the positions ¢ such that
(u@); = 1 are erased by the BEC(g). Therefore, P(FE,) equals the probability that
|I,,| independent erasures at those positions occur, which implies (3.18). O

Lemma 3.2. Let u,u € FéVR. Then,
P(E,NE;) > P(E,) - P(Eg). (3.19)
Proof. By definition (3.15), we obtain
P(E, N Ey) = elluVlal = lultlal—llunlal > Lt — p(E,) - P(Ey), (3.20)
which gives (3.19). O
Let us now generalize Lemma 3.2 to unions of sets.

Lemma 3.3 (Positive Correlation - BEC(¢), L = 1). Let Uy, Uy C FYE. Then,
P(|J Eun | Ea) 2P(|J Ew)-P(|J Ea). (3.21)
ueUy uels uely uels

The proof of this result can be found in Appendix 3.7.1 and comes from an
application of the FKG inequality, originally proposed in [138].

3.4.2 Divide Step: Existence of a Suitable Subset of Codewords

The purpose of this part is to show that there exists Uy C U such that P({,cy, Eu)
is slightly smaller than %Pg[AP(N, R,e,L = 1). To do so, we first upper bound
P(E,) for all u € U.

Lemma 3.4 (No Big Jumps - BEC(¢)). Let Pz € (0,1) and € € (0,1). Then, for
any N and R so that

In(Pg/8)
dmin N7 ~ .22
(N, R) > (322)
the probability of E, is bounded by
P
P(E,) < gB Vuel. (3.23)

Proof. From Lemma 3.1 and the definition of minimum distance, we obtain that
P(E,) = ellul < gdmin, (3.24)
Using (3.22), the thesis follows. O

The existence of a subset of codewords with the desired property is an immediate
consequence of the previous lemma.



3.4. Proof of DI Bounds for BEC 53

Corollary 3.2 (Existence of Uy). Let Pg € (0,1) and € € (0,1). Then, for any N
and R so that (3.22) and PEIBVIAP(N, R,e,L = 1) > Pg hold, there exists Uy C U that
satisfies

3
P(|J E.) > §P§4AP(N, R,e,L=1),

uet (3.25)

1
B({J Eu) < 5PE (N, Ree, L= 1),
uelU;

3.4.3 DI Bound for Linear Codes

At this point, we are ready to present the proof of Theorem 3.1 for the BEC and for
a list size L = 1. Recall that the Bhattacharyya parameter of a BEC(¢) is Z = e.

Proof of Theorem 3.1 for BEC(e), L = 1. Pick U; that satisfies (3.25) and let Uy =
U \ U;. Consequently,

3

. PYP(N,R,e, L =1) <P(| ] E.).
ueUy

1

5 PYP(N,R,e,L=1) <P(| ] Ea).
aeUs

Hence,

3
o (PYAP(N,R.e,L=1))* <P(|J E.)-P(|J Ea)
uelU ucUsz

In addition, the following chain of inequalities holds,

P(|J B2 Ea) <P(| B0 | Ea)

ucUy acUsy uecU; ucUs
=P( |J EBE.NE)<P( |J E.nEa),

uelUy,ueUs u, €U, uu

where the first inequality comes from the application of Lemma 3.3 and the last
passage is a direct consequence of Uy N Us = (). Noticing that

P( |J E.nE:) =P (N,Re L=2),
u,a€Uu#u

we obtain the desired result. O

3.4.4 DI Bound for Polar Codes

In order to apply the bound to polar codes, it suffices to prove the lower bound on
the minimum distance, as required in (3.22).

Lemma 3.5 (dwin of Polar Codes - BEC(g)). Consider a polar code in Cpo for a
BEC(¢). Let Pg € (0,1), € € (0,1), and N > 2™&F8) yhere

ii(e, Pg) = 2im(e, Pg) — Ine + \/—4mn(e, Pg) - Ine + (In¢)2, (3.26)
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with

_ 2In(Pg/8) - In(1 —¢)
m(e, Pg) = log2< (P2/8) QIS(PB/S) ) (3.27)
lneln(].—g Ine )

Then, the lower bound on dyi, (3.22) holds.

The proof of Lemma 3.5 is in Appendix 3.7.2. Due to this result, Theorem 3.2
follows from Theorem 3.1. Comparing (3.7) with (3.27), we notice that, for the
BEC, the constraint on N is less tight than the one required for any BMS channel.

3.4.5 Generalization to Any List Size

Set | = logy L and define Esp(u<1),--- )y to be the set of all erasure patterns y such
that the set of solutions of the linear system uG, = 0 contains the linear span
generated by {uV), ... u}, ie.,

Esp(u(l)f" vu(l)) - m Eu
u€span(u) ... u®)) (328)

={ye {0, 1} |uG, =0 Vuespan(ul, - uD)}.

Consider the set LS; containing all the linear spans of FY# with 2! elements. In
formulae,

LS, = {span(u(l), e ,u(l)) ]u(i) € IF%VR Vi € [l], |span(u(1), e ,u(l))] = 21}. (3.29)

Since P%AAP (N, R,¢e, L) is the probability that the solutions to the linear system
uGy = 0 form a linear span of cardinality strictly greater than L, we have

PP( U By, guiny) = PR (N, R, L), (3.30)

span(u(®) - w(+))eLS;

For the Intersect step, we need now the generalization of Lemma 3.3, which is
contained in Lemma 3.6.

Lemma 3.6 (Positive Correlation - BEC(g), Any L). Let P1, P, C LS;. Then,

]P)( U ESP(U<1>a“' 7u(l>) n U ESp(aU)f“ 77:‘([)))

span(u® - u)eP; span(a() - a(M)ePy

Z P( U Esp(u(l)’ 7u(l))) ’ ]P)( U Esp(ﬁ‘(l)7 712([)))‘
span(u(D) ... u)ePy span(@(D) ... a())ePy

(3.31)

The proof of Lemma 3.6 is given in Appendix 3.7.3. We are going to need also
the subsequent simple result concerning the intersection of events (3.28).

Lemma 3.7. For any span(uV),---  u®) and span(aV, - a®),

B e ) N Egyaq . a0y = Egyu) o @ a0 .. g0y (3.32)



3.4. Proof of DI Bounds for BEC b5

Proof. Note that
span(u®, -+ w® M ... 4Oy 5 gpan(u®, - u®D)Uspan(a®,-- - a®).

Then,

Esp(u(1)7“' 7u<l)) ﬁ Esp(ﬂ(1)7 711(”) 3 ESP(U<1)7 7u(l>7ﬂ/(1)7'“ 7a(l>).
On the contrary, by linearity of the code, for any u € span(u(l), e ,u(l)) and any
v € span(a), .- al®), if uGy = 0 and vGy = 0, then wGy =0 for all w € {u+v:
u € span(u, - u®), v € span(a®, .- aW)}. As a result,

Esp(u(l)v“' 7U<l)) m Esp(ﬂ(1)7 711(”) C Esp(U’<1)7 7u(l>7’a<1)7'“ 7/&(”)7
and the thesis follows. O

For the Divide step, Corollary 3.3 generalizes the result of Corollary 3.2 to any
list size L.

Corollary 3.3 (Existence of P;). Let Pg € (0,1) and ¢ € (0,1). Then, for any R
and N satisfying

PYAY(N R,e,L) > Pg, (3.33)
In(Pgs/8
dmin n( B/ )7 (334)
Ine

there exists Py C LS; 11 such that
3
P( U B . qt41))) = §P§4AP(N, R,e, L),
span(u(1) ... w(+1))e Py

1
P U B e gti1)y) < §P113\4AP(N’ R.e, L).
span(u(1)7... ,u(l+1))gpl

(3.35)

At this point, we can prove Theorem 3.1 for the BEC and for any list size L.

Proof of Theorem 3.1 for BEC(g), any L. Pick P; that satisfies (3.35) and let P =
LS;y1 \ Pi. Consequently, applying Lemma 3.6 and 3.7, we have

3 MAP 2
E(PB (N,R,€,L))
<P( U B oo wry) - P( U Eop @ .. qt1)y)
span(u®) .. w(+D)epy span(@) - @(+))eP,
S P( U ESp(U(1>7”' 7u(l-‘rl)) N U Esp(ﬁ,(l),m ’ﬂ(l+1)))
Span(u(1>7--~ 7u(l+1>)6P1 span(ﬂ(l)’..- 7r,](l+1))6132
= P( U Esp(u(1>7... aal+1) g(1) L. 711(l+1)))

span(u®) ... w(+1))ep,
span(@(D) ... a(+1))e Py

< PMAP(N, R,¢,2L),
where the last inequality is due to the fact that
lspan(u®, - @D g oo gUEDY > 242 — 4 > 2L,

as PLN Py, =10. O
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3.5 Proof of DI Bounds for BMS Channels

3.5.1 Case L =1

Since the information vectors are equiprobable, the MAP decision rule is given by

@ = arg max p(y|).
u

Define E!, as the set of all y such that p(ylu) > p(y|01.nyr). Simple algebraic
manipulations show that

—{yGyN!ZI “|0G)))_ 0} ={yeI¥| Y m? Zy/:ég 0}, (3.36)
sy m v

where ) is the output alphabet of the channel and I,, is defined in (3.15).
Note that PYAP(N, R,e, L = 1) is the probability that there exists a non-zero
informative vector u such that p(y|u) > p(y|01.xr). Then, we have

P(| ) E,) = PY""(N,R,W,L =1). (3.37)
uelU

For the Intersect step, we generalize the inequality of Lemma 3.3 with the cor-
relation result of Lemma 3.8.

Lemma 3.8 (Positive Correlation - BMS Channels, L = 1). Let Uj, U} C FYE.

Then,
P(|J E.n | ED) =P ED-P( EH. (3.38)

uelUy uel) uelU] IS

The proof of Lemma 3.8 can be found in Appendix 3.7.4.

For the Divide step, we need to show that P(E!) can be made as small as we
want, as done in Lemma 3.4 for the events (3.14). This result is provided by Lemma
3.9, stated and proven below.

Lemma 3.9 (No Big Jumps - BMS Channels). Let Pz € (0,1) and Z € (0,1).
Then, for any N and R so that

ln(PB/S)
dmin N, — 3.
(N,B) > =2 (3.39)
the probability of E!, can be bounded as
P
P(E!) < gB Vuel. (3.40)

Proof. By applying Lemma 4.66 of [44], it is possible to relate the probability of E!,
and the Bhattacharyya parameter Z of the BMS channel W as

P(E!) < zWl, (3.41)

Since |I,| > dmin > In(P/8)/In Z, the thesis easily follows. O
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From Lemma 3.9 we deduce a result similar to that of Corollary 3.2. Then,
by using also Lemma 3.8 and by following the same procedure seen at the end of
Section 3.4.3, the proof of Theorem 3.1 with L = 1 for any BMS channel is readily
obtained.

Lemma 3.10 generalizes the result of Lemma 3.5, showing that for N big enough
the required lower bound on the minimum distance holds. Hence, the DI bound and
the subsequent scaling result are true for sequences of polar codes.

Lemma 3.10 (dp;, of Polar Codes - BMS Channels). Let Pg € (0,1), Z € (0,1),
and N > 2M&CW).PB) yhere n(Z, C(W), Pg) is given by (3.6). Then, the lower
bound on duyin (3.39) holds.

The proof of Lemma 3.10 is in Appendix 3.7.5.

3.56.2 Generalization to Any List Size

Denote by E’ZL(l),'“,’U,(L) be the set of all y such that p(ylu) > p(y|01.nxr) for all
we {u®, .. uB} e,

B . g0 = N E,={yeI"|
we{u - u(L)}
N (3.42)
p(yil(uG)i) ) (L)
In————=>0 VYue{u’, -, u .
2 ) { H

Consider the set SS;, containing all the subsets of L distinct elements of F)'%. In
formulae,

SSr = {{fuM, - uPY D e FYE vi e (L], u® £ u0) vi £ j}). (3.43)
Since PIIB\/IAP(N ,R,W, L) is the probability that there are at least L distinct
non-zero information vectors u"), .- u(") such that p(ylu) > p(y|0.ng) for all

we {u®, - uB)} we have
P( U E;(1)7... 7u(L)) = PIQAAP(Nv R, W, L) (3.44)

{u@® - u)}essy

In order to prove Theorem 3.1 for any fixed list size L and for any BMS channel,
we can follow similar steps to those of Section 3.4.5 and the result is readily obtained.
The only part that requires some further investigation consists in the generalization
of Lemma 3.8 with the result below, which is proved in Appendix 3.7.6.

Lemma 3.11 (Positive Correlation - BMS Channel, any L). Let Pj,P; C SSy.
Then,

/ /
P( U By N U B aw)
{u@)... 7u<L)}ep1/ {a@),... ,a(L>}eP2’

> IP( U ), () P U EL),.. aw)-

{u) o () }e P (@), @) }e Py

(3.45)
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3.6 Analysis for Genie-Aided SC Decoding

Consider a polar code in Cp, transmitted over a BEC(e). In accordance with the
notation defined in Section 1.3, let n = log, N and denote by T(Lz) the i-th synthetic
channel, which is a BEC of Bhattacharyya parameter Z,(Li). Let PSC(N, R,e, k) be
the block error probability under SC decoding aided by a k-genie. More precisely, a
k-genie-aided SC decoder runs the usual SC algorithm with the following difference:
when we reach a synthetic channel associated with an information bit that is erased,
i.e., we cannot decide on the value of a certain information bit, the genie tells the
value of the erased bit, and it does so a maximum of k times. An error is declared
if and only if the decoder requires more than k helps from the genie.

Consider now SCL decoding for the transmission over the BEC. The SCL decoder
also runs the usual SC algorithm and, when we reach a synthetic channel associated
with an information bit that is erased, say W,gi), it takes into account both the
possibilities, namely u; = 0 and u; = 1, and it lets the two decoding paths evolve
independently. In addition, when we reach a synthetic channel associated with a
frozen bit, the SCL decoder gains new information, i.e., it learns the value of the
linear combination of some of the previous bits. Therefore, some of the existing
decoding paths might not be compatible with this extra information and they are
removed from the list. An error is declared if and only if at any point during the
decoding process the decoder requires to store more than L decoding paths.

Note that a k-genie-aided SC decoder and an SCL decoder with list size 2F
behave similarly but not identically. When we reach a synthetic channel associated
with an information bit that is erased, the former uses one of the helps from the
genie, and the latter doubles the number of decoding paths. However, when we
reach a synthetic channel associated with a frozen bit, the SCL decoder can reduce
the number of decoding paths, whereas it is not possible to gain new helps from the
genie. Therefore, the SCL decoder always succeeds when the genie-aided decoder
succeeds, but it might also succeed in some cases where the genie-aided decoder
fails.

3.6.1 DI Bound and Scaling Exponent

Theorem 3.4 (DI Bound - Genie-Aided Decoding). Consider the transmission of
a polar code in Cpo over a BEC(e) and fix Pg € (0,1). Pick N big enough and any
R that ensures

1> PSC(N,R,e,k) > Pg. (3.46)
Then, the performance of the k + 1-genie-aided SC' decoder is lower bounded by

PSC(N,R,e,k+1) > — - (P§C(N, R, ¢, k). (3.47)

3

16
By induction, the corollary below easily follows.

Corollary 3.4 (DI Bound - Genie-Aided Decoding, Any k). Consider the trans-

mission of a polar code in Cpol over a BEC(e). Fiz Pg € (0,1) and consider the
recursion (3.9) with the initial condition Pg(0) = Pg. Pick N big enough and R
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such that (3.46) holds with Pg(k) instead of Pg. Then, the performance of the
k 4 1-genie-aided SC' decoder is lower bounded by

ok+1_1q

PSC(N, Rye,k +1) > <1%) ((PSC(N, Rye k= 0)2 . (3.48)

Roughly speaking, Theorem 3.4 implies that the scaling exponent cannot change
under SC decoding for any fixed number of helps from the genie. This statement
can be formalized as follows.

Theorem 3.5 (Scaling Exponent - Genie-Aided Decoding). Consider the set of
polar codes Cpol transmitted over a BEC(e). Assume that the limit (2.2) exists
under SC decoding, i.e.,

lim PSC(N,R,W) :f(z)’
N—oo: NVH(C(W)—R)=z

where p is the scaling exponent and f the mother curve. Then, for any k € N,

lim sup PSC(N,R,e,k) < f(2), (3.49)
N—soo: NY/(C(W)—R)=2

lim inf PYAP(N R, e, k) > ( 5 >2k_1 (F? (3.50)

N—oo: NYu(C(W)—R)=z B TG

3.6.2 Proof of DI Bound

Let 3 € {0,1}" denote the erasure pattern of the channel and, for i € {1,---, N},
let F; be the set containing all y such that WT(LZ) erases, i.e.,

Fy={y e {0, 1} | W) erases}. (3.51)
Denoting by F¢ the set of unfrozen positions, it is clear that
P(|J Fi) = P§°(N, R, &,k = 0). (3.52)
ieFe

The Intersect step is based on the correlation inequality below, whose proof is
similar to that of Lemma 3.3.

Lemma 3.12 (Positive Correlation for Erasures - k = 0). Let I1,Io C [N]. Then,
P Fn U B = F) P B (3.53)
i€ly €1z i€l 1€l
In general, define Fj, ... ;, to be the set of all the erasure patterns such that Wni)
erases for all i € {ig,--- ,ix}, L.e.,

Fiyooin = {y € {0, 13N | WD erases Vi € {ig, - ,ix}}, (3.54)

and consider the set of positions SPj containing all the subsets of k distinct elements
of F¢,

SPy, = {{io,- -+ yig} tim € FVmM € {0, k},im £ in Vm#n}.  (3.55)



60 Scaling Exponent of List Decoding

It it clear that
P( |J  Foou) =P8N, R k). (3.56)
{i0, ,ix }ESPy,

In addition, with a small effort we generalize the result of Lemma 3.12 by following
the line of thought exposed in the proof of Lemma 3.6.

Lemma 3.13 (Positive Correlation for Erasures - Any k). Let Ry, Ry C SPy. Then,

P |J Fe-an U Foean)

{ig, ir}ERL {70, i }ER2

>P( |J  Foa) PO U B

{i0, ik }ER1 {20, ik }ER2

(3.57)

For the Divide step, we need to prove that there exists R; C SPj, such that
P(Ugio,- ixyers Fio,- i) is slightly less than PSC(N, R,e,k)/2. To do so, we show
that, by choosing a suitably large block length, P(F;) can be made as small as
required. The proof of the lemma below is in Appendix 3.7.7.

Lemma 3.14 (No Big Jumps for Erasures). Let Pg € (0,1) and € € (0,1). Then,
for N > Ny(Pg,¢) and for any R such that

1

1> PSC(N,R, e,k =0) > Pg, (3.58)

the probability of F; is upper bounded by
Vie Fe. (3.59)

Corollary 3.5 (Existence of Ry). Let Pg € (0,1) and ¢ € (0,1). Then, for N big
enough and R ensuring (3.58), there exists Ry C SPy such that

3
P( U EO7"',ik) > gPSC(N, R>€7k)v
{10, ik }ER
1
PO |J  Fea)< 5P]§C(N, R, k).
{10, ix}ER1

(3.60)

Eventually, the proof of Theorem 3.4 is obtained by using Lemma 3.13 and
Corollary 3.5 and by following a procedure similar to that outlined at the end of
Section 3.4.5.

3.7 Appendix

3.7.1 Proof of Lemma 3.3

Proof. Consider the Hamming space {0, 1}". For y, z € {0,1}V define the following
partial order,
y<z=y <z, Vi € [N]. (3.61)
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Define y V z and y A z as

0 ify; =2,=0
(y \/ Z)l _ 1 y’L Z’L )
1 else,

(3.62)
1 if Yi = 2 = 1,
(yAz)i= {0

else.

Just to clarify the ideas, think of y € {0,1}"V as an erasure pattern, as specified
at the beginning of Section 3.4.1. Since the N copies of the original BEC(¢) are in-
dependent and each of them is erased with probability e, we consider the probability
measure defined by

€ )wH(y)

T (1—¢e)V, (3.63)

P(y) = (

where wy denotes the Hamming weight.
As wi(y V z) + wa(y A z) = wn(y) + wi(z), we have

P(y)-P(z) =P(y V z) - P(y A 2). (3.64)

For any U; C FYE, consider the function f : {0,1}" — {0,1}, defined as

f)=1- 1] 0= Lyepy)

ueUy

where E, is defined in (3.14) and 14 cp,y = 1 if and only if y € E,. Consequently,
if there exists v € Uy such that uG, = 0, then f(y) = 1; f(y) = 0, otherwise. Hence,

E[f(y)] = 1-P(f(y) =1) +0-P(f(y) = 0) =P( | Ew).

uely

If f(y) < f(z) whenever y < z, then f is said to be monotonically increasing. If
y < z, then the erasure pattern z contains all the erasures of y (and perhaps some
more). Thus, if f(y) = 1, then f(z) = 1. Since f can be either 0 or 1, this is enough
to show that the function is increasing.
Analogously, for any Us C FN consider the function g : {0,1} — {0,1}
defined as
gw) =1- [ 0= Tyep,y).

ucUs

The function g is increasing and its expected value is given by

In addition,

Elf()gw)] =P(|J E.n | Ea)

uely ueUs

The thesis thus follows from the version of the FKG inequality presented in Lemma
40 of [139). O
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3.7.2 Proof of Lemma 3.5

Proof. Consider the matrix F®" defined in (1.13). Let G = [g1,92,- - ,gng]’ be the
generator matrix of the polar code of block length N and rate R for the BEC(e).
The matrix G is obtained by selecting the NR rows of F®" that minimize the
corresponding Bhattacharyya parameters. Then, by Lemma 3 of [53],

dmin = min _ wg(g;
min 1<i<NR H(gz)a

where dnin, denotes the minimum distance.
We need to show that for n > n(e, Pg),

wH(gz) > C(PB,€), 1= ]-a 2a e ,NRa (365)
where |
C(Pg,e) = In(P/8)
Ine

Suppose, by contradiction, that (3.65) does not hold, i.e., there exists a row g;
such that for n > n(e, Pg),
wH(gi) S C(PB,&“). (3.66)

Since G is obtained from F®" by eliminating the rows corresponding to the frozen
indices, g; is a row of F'®" say row of index ¢’. Then, by Proposition 17 of [37],

wi(gs) = 2280 — 95t

)

where b(1) = (bgi/), béil), e ,(fl)) is the binary expansion of i — 1 over n bits, bgi/

being the most significant bit and bgf/) the least significant bit. Consequently, (3.66)

implies that

Db < Mog C(Py. )] = e(P.e)
j=1

i.e., the number of 1s in the binary expansion of ' — 1 is upper bounded by ¢(Pg, ¢).

Now, let us compute the Bhattacharyya parameter Z,(f) of the ¢'-th synthetic
channel. Notice that each 1 in the binary expansion of ¢/ — 1 corresponds to a “+”
transform and each 0 to a “—” transform. Hence,

where o denotes function composition and the expressions for fy and f; are deduced
from (1.2),

fo(z) =2z —2?=1—(1—2)% (3.68)
fi(z) = 2% (3.69)
Notice that fy and f; are increasing functions V x € [0,1], and that f o fo(z) >

foo fi(x) ¥z € [0,1]. Consequently, if we set m = wy (b)), the minimum Bhat-
tacharyya parameter Zyi,(m) is obtained by applying first the function fi(z) m
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times and then the function fo(z) n —m times. The maximum Bhattacharyya pa-
rameter Zpmax(m) is obtained if we apply first the function fo(z) n — m times and
then the function fi(x) m times. Observing also that for all ¢t € N,

foo foo-fo(z) =1— (1 —x)%, (3.70)
t times
fiofio-- fi(z) = :I:Qt, (3.71)
t times
we get,
Zinin(m) < Zy") < Zynax(m), (3.72)
with

Qn—m

Zmin(m) =1—(1—&*") ;
Zmax(m) = (1 — (1 =) ™)%",
Since fi(x) < fo(z) ¥V z € [0,1] and m < ¢, we obtain that
Zmin(m) > Zin(c). (3.73)
At this point, we need to show that for k sufficiently large,
Zmin(€) 2 Zmax(c + k). (3.74)
As1—(1—2)2""" <1, the condition (3.74) is satisfied if
11— >1-(1-e> ",

which after some simplifications leads to

k > log, <hlln((11__;))> (3.75)

Notice that the RHS of (3.75) is an increasing function of ¢. As ¢ < logy(C) 41,
we deduce that the choice

_ In(1 — In(1 —
"= {lo&(ln(l(—sgg)ﬂ - {10g2<1n(1 —(52“];3/8)))} )

also satisfies (3.74).

An immediate consequence of inequalities (3.72), (3.73), and (3.74) is that Z) >
Zmax(c+ k). Therefore, we can conclude that every channel of index j with > ¢+ k

ones in the binary expansion b\) of j — 1 has Bhattacharyya parameter Zﬁbj ) < Z,(Li/).
Consequently, all these channels have not been frozen and, as R < C(W) =1 —¢,

ct+k—1 n
“1_-R— # frozen channels ZZ; (Z>
°= N # channels - 2n
—(n—2(c+k— 1))2>
2n '

<exp (
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where the last inequality is a consequence of Chernoff bound [140].
After some calculations, we conclude that for n > n(e, Pg), where n(e, Pg) is
given by (3.26),

—m—2%:k—nf><&

which is a contradiction. O

exp (

3.7.3 Proof of Lemma 3.6

Proof. As in the proof of Lemma 3.3 presented in Appendix 3.7.1, consider the
Hamming space {0,1}" with the partial order (3.61). For y, z € {0,1}"V define y Vv z
and y A z as in (3.62) and take the probability measure (3.63) that satisfies (3.64).
For any Py, P> C LC;y, pick f:{0,1}" — {0,1} and g : {0,1}" — {0, 1}, defined as

fly)=1- H (1 - ]l{yGEspm(l),.“M(l))})’

span(u(l) ... u)e Py

g(y) =1- H (1 — ﬂ{yEEsp(a(l),...’ﬁ(l))})’
span(a(D - .a)ep,

where Eg,,q) ... ,0) is given by (3.28) and Tycp = 1 if and only if

SP(U(I),“- ,u(l))}
Y € Egyu,... w0y Hence,

E[f(y)] = P( U B e u0))s

span(u® ... uM)eP;

Elg(y)] = P( U Esp(a(1>,...,a<l)))7
span(a(1) - aD)ePy
E[f(y)g(y)} = ]P)( U Esp(u(l),n- ) N U Esp(ﬁ“),... ,ﬂ(l)))'
span(u() . u®)eP span(@() - .aD)eP,
Since f and g are increasing, the thesis follows by Lemma 40 of [139]. O

3.7.4 Proof of Lemma 3.8

Proof. Assume for the moment that the output alphabet ) of the channel is finite
Yy
and consider the binary relation <, defined for all y;, z; € ) as

Y p(yill) _ p(zi1)
yi < zj < )
p(%il0) ~ p(zi]0)

(3.77)

Yy Yy
The relation < is transitive and total. As for the antisymmetry, < satisfies the
property if the following implication holds for all y;, z; € Y,

plyill) _ p(ll) P (3.78)

p(y:il0)  p(z0)

Note that, without loss of generality, we can assume that the channel output iden-
tifies with the log-likelihood ratio, see [44, Section 4.1.2]. With this assumption of
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Yy
using the canonical representation of the channel, (3.78) is also fulfilled. Hence, <
is a total ordering over ).

Set £ = YN and for any y = (y1,--- ,yn) and z = (z1,--- ,2y) in £ define the
L
binary relation < as
L Yy
y<z<=vy; <z, VielN]. (3.79)

L
It is easy to check that < is a partial order over the N-fold Cartesian product Y.
For any y, z € £, denote by y V z their unique minimal upper bound and by y A z
their unique maximal lower bound, defined as

(yV2); = max(y;,z),  Vié€[N],

max
Y
<

(y A 2); = min(y;, 2;), Vie [N].

IN<

Since the distributive law holds, i.e.,

yA(zvVw)=(yAz)V(yArw), VyzweLl,

the set £ with the partial ordering é is a finite distributive lattice. Observe that
in the proof of Appendix 3.7.1 the finite distributive lattice £ is replaced by the
Hamming space {0, 1}%.

Let p: £ — R be defined as

1(y) = p(y|01:NR)- (3.80)

In words, u represents the probability of receiving the N-tuple y from the channel,
given that the all-zero information vector 0i.nyrp was sent. We say that such a
function is log-supermodular if, for all y, z € L,

u(y) - p(z) S plyAz)-plyVez). (3.81)

An easy check shows that (3.81) is satisfied with equality with the choice (3.80). No-
tice that in the proof of Appendix 3.7.1 the log-supermodular function p is replaced

by the probability measure (3.63).
For any U] C FY® consider the function f : £ — {0,1}, defined as

Fy) =1- [T 0= 1yemy),

uel;

where Ej, is given by (3.36) and 1yycpy = 1 if and only if y € Ej,. If f(y) < f(2)

L
whenever y < z, then f is said to be monotonically increasing. Since f can be either
L

0 or 1, we only need to prove the implication f(y) =1 = f(z) = 1, whenever y < z.
If f(y) =1, there exist u* € U] such that

p(yill)

0< In
Z yz|0

ZEI *
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Yy
As y; < z; for all ¢ € [N], by definition (3.77) we obtain

p(yill) p(zi]1)
2 ) S 2 Gy

1€, * i€, *

which implies that f(z) = 1. As a result, f is increasing.
Analogously, for any U C FY® consider the function g : £ — {0, 1} defined as

gw)=1— ] O —Tgepy)-

wel}

Using the same argument seen for the function f, we realize that ¢ is an increasing
function.
By the FKG inequality [141],

ST f @) > nway) <3 uw) few) > uy).

yeL yeL yeL yeL

Observing that

> uly) =1,

yeL

S u) ) =P E).

yel uel;

> umgy) =P(J Ep),

yel ael}

> nw)fwaly) =P E.n | E),
yeL uel] acl,

we obtain the thesis (3.38).
When the output alphabet of the channel is infinite, the proof is very similar and
follows from the generalization of the FKG inequality to a finite product of totally

ordered measure spaces [142].
O

3.7.5 Proof of Lemma 3.10

Proof. Following the approach of Appendix 3.7.2, suppose, by contradiction, that
there is an unfrozen index i/ of F®" such that the number of 1s in the binary
expansion of 7/ — 1 is upper bounded by ¢(Pg, Z), defined as

c(Pp,Z) = {logQ ln(lfBZ/S)—‘ .

The Bhattacharyya parameter Zr(f,) of the i’-th synthetic channel can be written as

7)) _ y o fun(2),
o =Sy o fygn o fyin(Z)
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where the expressions for fy and f; are deduced from (1.11),

VI—(A =222 = fP(@) < fole) < £ (@) =1 - (1 - 2)?,

fi(z) =
Since fi(x) and f(gL) (x) are increasing and f(L)( ) < fo(x), we have
Z{) > L) & fw) of< o 11 (2),

b

where, for the sake of simplicity, we have defined fl(L) () = fi(x). Setting m =
wir (b)) and remarking that f(L) o féL) () > féL) o fl(L) (x), a lower bound on Lgf/)
is obtained by applying first the function fl(L) () m times and then the function
féL) (x) n —m times. Using (3.71) and observing that for all ¢ € N,

f o f$ o P (2) = (1= (1 - a2)?

t times

we get

L( ) > Lnin(m \/1 — (1= z2mthy2er
Since fl(L) (x) < féL) (x) and m < ¢, we obtain that
Lmin(m> > Lmin(c)-

On the contrary, let ZT(Lj ) be the Bhattacharyya parameter of the synthetic chan-
nel of index j with > ¢+ k ones in the binary expansion /) of j — 1. Since f; and
féU) are increasing and fo(z) < féU) (x), we have

zy) <U) & f(m)ofbm flfg)()

where we have defined for the sake of simplicity f1 (:U) = fi(x). Setting m’ =
wy(bY)) and remarking that f1 o f(U (x) > f () & flU) (x), an upper bound on
Ué) is obtalned by applying first the function fo ( ) n —m’ times and then the
function f1 ( ) m/ times. Using (3.70) and (3.71), we get
U < Unax(m) 2 (1= (1= 2)7 72"
Since fl(U)(w) < féU) (x) and m’ > ¢+ k, we have that
Umax(m/) < Umax(c + k)
At this point, we need to pick k such that the following inequality holds,
Lmin(c) > Umax(c + k)

After some calculations, we obtain that

~ In(1-2)
k= |710g2< 41n(Pg/8) >-‘
In(1—Z""wz )
fulfills the requirement.

As a result, every channel of index j with > ¢+ k ones in the binary expansion
b of j — 1 cannot be frozen. By Chernoff bound [140], we get a contradiction for
n > n(Z,C(W), Pg), where n(Z,C(W), Pg) is given by (3.6). O
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3.7.6 Proof of Lemma 3.11

Proof. Assume at first that the output alphabet ) of the channel is finite and

consider the finite distributive lattice £ = YV with the partial ordering é defined
in (3.79). Let p: £ — R be the log-supermodular function (3.80).

For any Pj, P, C SSp,, consider the functions f: £ — {0,1} and g : £ — {0, 1},
given by

fly) =1~ H (1- ]l{yEE;u),‘,,u(L)})’
{u®,- wD}e P
9(y) =1- H (1- ]l{yeE;(1)7.._7a(L)})’

{aM, @) }eP}

where £ ) ) is defined in (3.42) and Lyyep = 1if and only if y €

W)
EL(U,--- oL For analogous reasons to those pointed out in Appendix 3.7.4, f and g

are monotonically increasing.
Noticing that

Z n(y)f(y) =P( U E;u)’... M(L))u

yer {u) o D) }eP]
> ulw)aly) =P( U El . aw);

yeL {aM, @) }eP]

S ) fwew) =P | EL ). N U By, aw);
yeLl {u(l)’ ’u(L)}GP{ {q](U} 7ﬂ(L)}€P2’

the thesis follows from the FKG inequality [141]. To handle the case of an infinite
output alphabet, it is enough to apply the generalization of the FKG inequality
in [142].

O
3.7.7 Proof of Lemma 3.14
Proof. Suppose that the thesis does not hold, i.e.,
P
maxP(F;) =max Z; = a > =5
ieFe ieFe 8
Consider a,b € (0,1) that satisfy
Va<1l—+1-b. (3.82)

Then, for any ¢ € (0,1) and for N sufficiently large, by Corollary 6 of [128] the
number of channels N.(a,b, N,e) whose Bhattacharyya parameter is contained in

the interval [a, b] is lower bounded by NH)‘g)EC, where )‘](QEC > —0.279. Since the
choice b = o and a = («/2)? satisfies (3.82), we obtain

2
N((‘;‘) ,a, N, s) > A= |[N"bc|. (3.83)
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Let B; be the erasure indicator of the ¢-th synthetic channel of Bhattacharyya param-
eter Z( ) Then, B; € {0, 1} is a binary random variable such that P(B; = 1) = z0.
Denote by p; ; the correlation coefficient between the erasure indicators of the i-th
and the j-th channel. This correlation coefficient can be expressed as
_ E(BiBj) — E(Bi)E(B))
Pid = var(B;)var(B;)

By Corollary 2 of [143], we have that

Z pij < N3—loga(3) (3.84)

Z»JE{I’ ’N}
Let Amax be the set of indices of the unfrozen channels with the highest Bhat-
tacharyya parameters such that |A.x| = A. Notice that the Bhattacharyya param-
eters of these channels are contained in the interval [(a/2)2, a] by (3.83). Denote

by RA the associated A x A matrix of the correlation coefficients. We are going to
show that for any M € N, there exists S}, C Amax, with [S},| = M, such that

M\ N3—loga(3)
Jnggx pfu] < 92 >A2 (385)
7]

Since 3 — logy(3) — 2(1 + )\1(3%0) < 0, the previous relation implies that, if we fix
M and we choose N suitably large, then the correlation coefficients of the channels
with indices in S}, can be made arbitrarily small.

To prove (3.85), first observe that (3.84) clearly implies that >, ;. 4 = pi; <

N3-108:3) " Hence, the average of all the elements of the matrix R4 is upper bounded
by N3-1082(3) /A2 As R, is symmetric and its principal diagonal is made up by 1s,
the average of the strictly upper triangular part of R4, i.e., the average of the (‘;‘)
elements of R4 that are above the principal diagonal, is also upper bounded by
N3-108203) /A2 n formulae,

<2> 2, s

,] EAmax
1<j

N3 log,(3)

Let Sy be a subset of Apax with cardinality |Sys| = M. We can associate with Sy,
the (1\24 ) elements of the strictly upper triangular part of R4, which represent the
correlation coefficients of the channels whose indices are in Sp;. By symmetry, when
we consider all the subsets of cardinality M of Apax, we count each element of the
strictly upper triangular part of R4 the same number of times, i.e., ( J\‘L/‘[__%). As a

result, by noticing that there are ( A‘L/l[) distinct subsets of cardinality M of Apax, we

have 5 log, (3)
1 N=7082
A) Z (M) Z Pij < ’
M CAm 2/ 4,j€Sm
1<J
Consequently, there exists SX/I C Amax, such that
N3— log,(3)
@ D pii S
27 4,5€Sy,

1<j
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which implies (3.85).
With the choice M = [128/P2], it is easy to see that there exists S* C S3, that

satisfies 1 1
s () > =
2+a22Zn > o (3.86)
1€5*
Indeed, Zz‘eS;‘w z0 > M(a/2)? > 1/2 and max;ess, z¥ < a.
An application of Bonferroni’s inequality (see [144, Section 4.7]) yields
1
SC _ . N\ . .
PSC(N,R, e,k =0) > IP’({U E) > Z P(F) - 3 | Z P(F; N F}). (3.87)
1€S* 1€S* 1,J€SY,
i
The term P(F; N F}j) can be upper bounded as
P(FN Fy) = 29025 + i/ 28290 - 2801 - 29)
@ o M\ N3—loga(3)
2020 (2 ) T (3.88)
b
(S) AQUALEE LMv
8(2)

where the inequality (a) comes from (3.85) and the fact that Z0 e [0,1]; and the
inequality (b) is easily obtained by picking N large enough.
Using (3.87) and (3.88), we have

PEC(N.Ryek=0)> >z - é(Z Z};’)Z ~ %. (3.89)
€5* 1€S5*

Note that 1
a < PSC(N,R,e,k) < T

where the last inequality comes from the hypothesis of the Lemma. Hence, by using

(3.86), we deduce that
; 3
(i) » 2
Z Zy) <5<l
1€5*
Since the function h(z) = 2 — 2?/2 is increasing in [0,1] and 1/2 < 3, . zV < 1,
we can conclude that
N | N2 1 1
(Z)_,( (O] I
24 =3 Z%) 2 (3.90)
1€S* 1€S*

which is a contradiction and gives us the thesis.
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The second topic of this thesis concerns the design of practical coding techniques
for non-standard communication scenarios. In this chapter®, we focus on polar codes
for the broadcast channel.

In Section 4.1, we introduce two fundamental transmission strategies for the
broadcast setting, i.e., superposition coding and binning. Then, in Section 4.2,
we state our main result: we present polar coding schemes that achieve with low-
complexity the best inner bound known to date, i.e., Marton’s region. To achieve
this goal, we build on the polar coding solution proposed in [100], and we develop
a chaining construction that enables us to remove the degradation assumptions
of [100]. In Section 4.3, we characterize explicitly the rate regions obtained with
the classic information-theoretic schemes, i.e., the superposition region, the binning
region, and Marton’s region. We also review the rate regions achievable by the
polar constructions of [100] and provide an explicit example of a case in which
the extra degradation assumptions do not enable us to obtain the full information-
theoretic region. In Section 4.4, we describe two crucial polar “primitives”: polar
coding schemes for lossless compression with and without side information, and for
transmission over binary memoryless channels, either symmetric or asymmetric. In
Sections 4.5 and 4.6, we present our new polar coding schemes to achieve the entire
superposition and binning regions, respectively. Finally, in Section 4.7, we combine
these two constructions in order to achieve the whole Marton’s region, both with
private and common messages.

The material of this chapter is based on joint work with S. H. Hassani, I. Sason, and R.
Urbanke [145,146].

71
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4.1 Related Work

Goela, Abbe, and Gastpar recently introduced polar coding schemes for the m-user
deterministic broadcast channel and for the noisy discrete memoryless broadcast
channel (DM-BC) [100]. For the second scenario, they considered two fundamental
transmission strategies: superposition coding, in the version proposed by Bergmans
[147], and binning [148]. In order to guarantee a proper alignment of the polar
indices, in both the superposition and binning schemes, their solution involves some
degradation constraints that are assumed to hold between the auxiliary random
variables and the channel outputs.

Originally, two superposition coding schemes were proposed by Bergmans [147]
and by Cover [149], and they both achieve the capacity region of the degraded
broadcast channel. However, it has recently been proved that under MAP decoding,
Cover’s strategy always achieves a rate region at least as large as Bergmans’, and
this dominance can sometimes be strict [150].

The original work by Marton on binning [148] covers the case with only private
messages, and the introduction of common information is due to Gelfand and Pinsker
[151]. Hence, we will refer to this region as the Marton-Gelfand-Pinsker (MGP)
region. This rate region is tight for all classes of DM-BCs with known capacity
region, and it forms the best inner bound known to date for a two-user DM-BC
[152,153]. Note that the MGP region also includes Cover’s superposition region.

4.2 Main Result

The contribution of this chapter consists in showing how to achieve Marton’s
region with both common and private messages, i.e., the MGP region, with a
practical low-complexity scheme.

In order to extend the polar schemes of [100] that will be denoted as AGG
constructions, the crucial point consists in removing the degradation conditions on
auxiliary random variables and channel outputs. Note that, in general, such kind of
extra conditions make the achievable rate region strictly smaller, see [154]. The ideas
that make it possible to lift the constraints come from recent progress in constructing
universal polar codes that are capable of achieving the compound capacity of the
whole class of BMS channels [48,49]. A similar technique has also been used to
achieve strong security on degraded wiretap channels [110].

In short, first we describe polar codes for the superposition and binning strate-
gies. Then, by combining these two techniques, we achieve Marton’s rate region with
private messages only. Finally, by describing how to transmit common information,
we achieve the whole MGP region. The proposed schemes possess the standard
properties of polar codes: the encoding and decoding complexity is (N logy N),
2-N%)

where N is the block length, and the block error probability scales as O( , for

any € (0,1/2).

4.3 Achievable Rate Regions

In this section, we review the regions achieved by the classic information-theoretic
schemes and by the recent AGG polar coding constructions. We also provide an
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example of a simple case in which the AGG superposition region is strictly smaller
than the one obtainable by information theoretic arguments. This motivates us to
build low-complexity codes capable of transmitting reliably at any rate pair inside
the larger information-theoretic regions. To simplify such a task, we show that,
in order to achieve the full information-theoretic regions, it suffices to achieve few
specific rate pairs.

4.3.1 Information-Theoretic Schemes

Let us start by considering the rate region that is achievable by Bergmans’ super-
position scheme and that provides the capacity region of degraded DM-BCs (see
Theorem 5.1 of [152]).

Theorem 4.1 (Superposition Region). Consider the transmission over a two-user
DM-BC py, y,x, where X denotes the input to the channel, and Y1, Y denote the
outputs at the first and second receiver, respectively. Let V' be an auxiliary random
variable. Then, for any joint distribution py x such that V — X — (Y1,Y2) forms a
Markov chain, a rate pair (Ry, R2) is achievable if

R <I(X;Y1 ’ V),
Ry < I(V;Y3), (4.1)
Ry + Ry <I(X;Y1).

Note that the above only describes a subset of the region actually achievable
by superposition coding. We get a second subset by swapping the roles of the two
users, i.e., by swapping the indices 1 and 2. The actual achievable region is obtained
by the convex hull of the closure of the union of these two subsets.

The rate region, which is achievable by the binning strategy, is described by the
following result (see Theorem 8.3 of [152]).

Theorem 4.2 (Binning Region). Consider the transmission over a two-user DM-
BC py, v, x, where X denotes the input to the channel, and Y1, Y2 denote the outputs
at the first and second receiver, respectively. Let Vi and Vo denote auziliary random
variables. Then, for any joint distribution py, v, and for any deterministic function
¢ such that X = ¢(V1,Va), a rate pair (R, Ra) is achievable if

Rl <I<‘/17Y1)7
Ry < I(Va;Y3), (4.2)
Ry + Ry < I(Vy; Y1) + I(Va; Ya) — I(Vi; Vo).

Note that the achievable rate region does not become larger by considering gen-
eral distributions py|y, v,, i.e., there is no loss of generality in restricting X to be
a deterministic function of (Vi,V3), as shown in Remark 8.4 of [152]. Furthermore,
for deterministic DM-BCs, the choice V; = Y] and V5 = Y5 in (4.2) provides their
capacity region, as shown in Example 7.1 of [153].

The rate region in (4.2) can be enlarged by combining binning with superposition
coding. This leads to Marton’s region for a two-user DM-BC where only private
messages are available, see Theorem 2 of [148] and Proposition 8.1 of [152].
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Theorem 4.3 (Marton’s Region). Consider the transmission over a two-user DM-
BC py, y,|x, where X denotes the input to the channel, and Y1, Y2 denote the outputs
at the first and second receiver, respectively. Let V, Vi, and Vy denote auxiliary
random variables. Then, for any joint distribution py,v, v, and for any deterministic
function ¢ such that X = ¢(V, Vi, Va), a rate pair (R1, Rg) is achievable if

Ry <I(V,V; 11
Ry < I(V,Vo; Yy
Ri+ Ry < I(V, V1311
Ri+ Ry < I(V,Va; Yy

)

’ (4.3)
+1(Vo; Yo [ V) = I(Vi; Vo | V),
+ 1

(Vi;Yi [ V) = I(Vi;Va | V).

~— ~— ~—

Note that the binning region (4.2) is a special case of Marton’s region (4.3) where
the random variable V' is set to be a constant. As for the binning region in Theorem
4.2, there is no loss of generality in restricting X to be a deterministic function of
(V, V1, Vo).

In a more general set-up, the users can transmit also common information. The
generalization of Theorem 4.3 to the case with a common message yields the MGP
region. We denote by Ry the rate associated with the common message, and Ry, Ra
continue to indicate the private rates of the first and the second user, respectively.
Then, under the hypotheses of Theorem 4.3, a rate triple (Ry, Ry, R2) is achievable
if

Ry <min{I(V;Y1),I(V;Y32)},
R() + Rl < I(VY, Vl; Yl),
Ry + Ry < I(V, VQ;YQ), (4.4)
Ro+ R+ Ry <I(V,Vi; Y1) + I(Va; Y2 [ V) = I(Vi; Vo | V),
Ro+ Ri+ Ry < I(V,Va; Ya) + I(Vi; Y3 | V) = I(Vi: Va | V).
An equivalent form of this region was derived in [155-157] (see also Theorem 8.4
and Remark 8.6 in [152]). Note that the MGP region (4.4) is specialized into Mar-
ton’s region (4.3) when Ry = 0, i.e., if only private messages are considered. The
evaluation of Marton’s region in (4.3) and of the MGP region in (4.4) for DM-BCs
was studied in [158-160]. Furthermore, the optimality of these regions was proved
in [161,162] for some interesting models of broadcast channels.

4.3.2 Existing Polar Constructions

Let us now compare the results of Theorems 4.1 and 4.2 with the superposition and
binning regions that are achievable by the polarization-based constructions in [100].
We write p > ¢ to indicate that the channel ¢ is stochastically degraded with respect
to the channel p.

Theorem 4.4 (AGG Superposition Region). Consider the transmission over a two-
user DM-BC py, y,|x with a binary-input alphabet, where X denotes the input to the
channel, and Y1, Yo denote the outputs at the first and second receiver, respectively.
Let V' be an auziliary binary random variable and assume that py,|v > py,v. Then,
for any joint distribution py x such that V —X —(Y1,Y3) forms a Markov chain and
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for any rate pair (R, Rg) such that

Ry <I(X;Y1|V),

Ry < I(V;Y3),
there exists a sequence of polar codes with an increasing block length N that achieves
this rate pair with encoding and decoding complezxity ©(N logy N), and with a block
error probability that decays like O(2~N") for any B € (0,1/2).

Theorem 4.5 (AGG Binning Region). Consider the transmission over a two-user
DM-BC' py, y, x, where X denotes the input to the channel, and Y1, Y denote
the outputs at the first and second receiver, respectively. Let Vi and Vi denote
auziliary binary random variables and assume that py,|v, > pv,|v,- Then, for any
joint distribution pv, v, for any deterministic function ¢ such that X = ¢(V1,Va),
and for any rate pair (Ry, Ra) such that

Ry <I(V1;Y1), (4 6)

Ry < I(Va;Ya) — I(V1; Va), ‘
there exists a sequence of polar codes with an increasing block length N that achieves
this rate pair with encoding and decoding complexity ©(N logy N), and with a block
error probability that decays like 0(2*Nﬁ) for any B € (0,1/2).

The rate regions (4.5) and (4.6) describe a subset of the regions actually achiev-
able with polar codes by superposition coding and binning, respectively. We get a
second subset by swapping the roles of the two users. However, in some cases it is
not possible to achieve this second subset, as, by swapping the indices 1 and 2, we
might not be able to fulfill the required degradation assumptions.

4.3.3 Comparison of Superposition Regions

For motivation, before proceeding with the new code constructions and proofs, let
us consider a specific transmission scenario and compare the information-theoretic
superposition region (4.1) and the AGG superposition region (4.5) where the latter
requires the degradation assumption py, | > py,v-

In the following, let the channel between X and Yj be a binary symmetric channel
with crossover probability p, namely, a BSC(p), and the channel between X and Y3
be a binary erasure channel with erasure probability e, namely, a BEC(g). Let us
recall a few known results for this specific model (see Example 5.4 of [152]).

1. For any choice of the parameters p € (0,1/2) and ¢ € (0,1), the capacity
region of this DM-BC is achieved using superposition coding.

2. For 0 < € < 2p, Y7 is a stochastically degraded version of Y.

3. For 4p(1—p) < e < ha(p), Yz is more capable than Y7, i.e. I(X;Y2) > I(X; Y1)
for all distributions px, where ha(p) = —plogyp — (1 — p) logy(1 — p) denotes
the binary entropy function.
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Let V and X denote the alphabets of the auxiliary random variable V' and of the
input X, respectively. Then, if the DM-BC is stochastically degraded or more
capable, the auxiliary random variables satisfy the cardinality bound |V| < |X| [163].
Consequently, for such a set of parameters, we can restrict our analysis to binary
auxiliary random variables without any loss of generality. Furthermore, from Lemma
7 of [164], we can assume that the channel from V' to X is a BSC and that the binary
random variable X is symmetric.

First, pick p = 0.11 and ¢ = 0.2. In this case, the DM-BC is stochastically
degraded and, as can be seen in Figure 4.1a, the two regions (4.1) and (4.5) coincide
despite of the presence of the extra degradation assumption. In addition, these two
regions are non-trivial, in the sense that they improve upon the simple time-sharing
scheme in which one user remains silent and the other employs a point-to-point
capacity-achieving code. Then, pick p = 0.11 and € = 0.4. In the latter case, the
DM-BC is more capable and, as can be seen in Figure 4.1b, the information-theoretic
region (4.1) strictly improves upon the AGG region (4.5) that coincides with a trivial
time-sharing.

The example above shows that the degradation conditions needed by the existing
polar constructions strictly shrink the achievable rate region. This motivates us to
achieve the information-theoretic regions described in Section 4.3.1 by a means of a
practical low-complexity coding scheme.

4.3.4 Equivalent Description of Achievable Regions

When describing our new polar coding schemes, we will show how to achieve certain
rate pairs. The following propositions state that the achievability of these rate pairs
is equivalent to the achievability of the whole rate regions described in Theorems 4.1—
4.3.

Proposition 4.1 (Equivalent Superposition Region). In order to show the achiev-
ability of all points in the region (4.1), it suffices to describe a sequence of codes with
an increasing block length N that achieves each of the rate pairs

o (R, R2) = (I(X;Y1 | V),min(I(V;Y1),[(V;Y2))),

o (Ri,Ry) = (I(X;Y1)—1(V;Y2),I(V;Y3)), provided that I(V; Y1) < I(V;Ys) <
I(X511),

with a block error probability that decays to zero as N — co.

Proof. We first assume that I(V;Y2) < I(V;Y7). Since V — X —Y; forms a Markov
chain, by the chain rule, the first two inequalities in (4.1) imply that
Ri+ Ry <I(X;Y1|V)+I(V;Y3)
<I(XY | V) + (Vi)
=I(V,X:1)
=I(X;Y1).
Hence, the region (4.1) is a rectangle and it suffices to achieve the corner point
(I(X;Y1 [ V), I(V;Y2)).
Now, suppose that I(V;Y7) < I(V;Y3). Let us separate this case into the fol-
lowing two sub-cases:
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Figure 4.1 — Comparison of superposition regions when the channel from X to Y;
is a BSC(0.11) and the channel from X to Y3 is a BEC(g). When ¢ = 0.2, the
information-theoretic region (in blue) coincides with the AGG region (in red) and
they are both strictly larger than the time-sharing line (in black). When ¢ = 0.4,
the information-theoretic region is strictly larger than the AGG region that reduces
to the time-sharing line.
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1. If I(X; Y1) > I(V; Ya), the region (4.1) is a pentagon with the corner points

(I(X;Y1) = I(V; Ya), I(V; Ya)), (I(X; Y1 | V), (V5 Y1)).

The reason for the first corner point is that I(V:;Y; | X) = 0. Thus, if
Ry = I(V;Y3), the satisfiability of the equality Ry + Ro = I(X;Y)) yields that

Ry =1(X;Yy) — I(V;Ya)

=I(V,X;V1) — I(V;Y2)
I(V,X:Y1) — I(V; Y1)
I(X:Y1 | V).

The reason for the second corner point is that Ry = I(X;Y; | V), Ry =
I(ViYh) < I(V; Y3), and

Ri+ Ry =1(V,X;11)
=1(V;Y1 | X) +1(X; Y1)
— I(X:Y)).

. Otherwise, if I(X;Y1) < I(V;Y3), the region (4.1) is a right trapezoid with

corner points (I(X;Y1 | V), I(V;Y1)) and (0,1(X;Y7)). As V — X — Y5 forms
a Markov chain, by the data processing theorem and the last condition, it
follows that I(X;Y1) < I(V;Y2) < I(X;Y2). Hence, the second corner point
(0,I(X;Y1)) is dominated by the point achievable when the first user is kept
silent and the second user adopts a reliable point-to-point code with rate close
to I(X;Ys).

O]

Proposition 4.2 (Equivalent Binning Region). In order to show the achievability
of all points in the region (4.2), it suffices to describe a sequence of codes with an
increasing block length N that achieves the rate pair

(Ra, R2) = (I(V1; Y1), L(Va; Ya) — I(VA; V2)),

assuming that 1(Vy; Vo) < I(Va;Ys), with a block error probability that decays to zero
as N — oo.

Proof. Assume that

I(Vi;V2) < min(1(V1; Y1), 1(Va; Y2)).

Then, the region (4.2) is a pentagon with corner points

(I(Vi; Y1), I(Va; Ya) — I(Vi; Vi), (I(Va; Y1) — 1(Vi; Va), I(Va; Y2)).

Since the region (4.2) and the above condition are not affected by swapping the
indices 1 and 2, it suffices to achieve the first corner point. In order to obtain the
other corner point, we simply exchange the roles of the two users.
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Next, suppose that I(Va;Ys) < I(Vi; V) < I(V1;Y1). Then, the region (4.2) is a
right trapezoid with corner points

(I(V1;Y1) = I(V1;V2), I(Va; Y2)), (1(V1; Y1) + 1(Va; Ya) — I(VA;V32),0).
Note that
I(Vi;Yh) 4+ I(Va; Ya) — I(Vi; Vo) < I(Vi; Y1) < I(X; V),

where the last inequality follows from the data processing theorem for the Markov
chain V; — X — Y;. Hence, the rate pair (I(V1;Y1) + I(Va;Ys) — I(V4;V43),0) is
dominated by the point (I(X;Y1),0) that is achievable when the first user adopts a
reliable point-to-point code with rate close to I(X;Y7) and the second user is kept
silent.

The case where I(V1;Y1) < I(Vi;Va) < I(Va;Y3) is solved by swapping the
indices of the two users, and by referring to the previous case.

Finally, assume that I(Vy;V2) > max(I(Vi;Y1),1(Va;Y2)). Then, the region
(4.2) is a triangle with corner points that are achievable when one user is kept
silent, whereas the other user adopts a reliable point-to-point code. O

Proposition 4.3 (Equivalent Marton’s Region). In order to show the achievability
of all points in the region (4.3), it suffices to describe a sequence of codes with an
increasing block length N that achieves each of the rate pairs

(R1, R2) = (L(V,Vi; Y1), [(Va; Yo | V) = I(V1; V2 | V),

(Bu, Ro) = (I(V,Vis Y1) — I(Vis Vo | V) — I(ViYa), IV, Vs Vo)), )

assuming that I(V;Y1) < I(V;Y3), with a block error probability that decays to zero
as N — oo.

Proof. Since the region (4.3) is not affected by swapping the indices 1 and 2, we can
assume without loss of generality that I(V;Y7) < I(V;Y3). Then,

IV, Vi; i) + I(Va; Yo | V) = I(V; Vi) + I(Vi; YA V) + I(Va; Ya | V)
<IV;Y2)+ I(VisYi|V) + I(Va; Yo | V)
=1(V,Va; Yo) + I(V1; Y1 | V),

which means that the fourth inequality in (4.3) does not restrict the rate region
under the above assumption.

Now, we can follow the same procedure outlined in the proof of Propositions 4.1
and 4.2. Suppose that

I(Vo; Yo [ V) = I(Vi; Vo | V) >0,

4.8
I(V,Vis Y1) — I(Vi: Va | V) — I(V;Y) > 0. (4.8)

Then, the rate region (4.3) is a pentagon with the corner points in (4.7).

If one of the inequalities in (4.8) is satisfied and the other is violated, then the
region (4.3) is a right trapezoid whose corner points can be obtained as follows: the
first corner point is given by (4.7); and the second corner point is obtained when
one user remains silent and the other uses a point-to-point reliable code.

If both inequalities in (4.8) are violated, then the region (4.3) is a triangle with
corner points that are achievable with reliable point-to-point codes. ]
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4.4 Polar Coding Primitives

The AGG constructions, as well as our extensions, are based on two polar coding
“primitives”. Therefore, before discussing the broadcast setting, let us review these
basic scenarios.

The first such primitive is the lossless compression, with or without side infor-
mation. In the polar setting, this problem was first discussed in [42,53]. In Section
4.4.1, we consider the point of view of source polarization, described in [91,92].

The second such primitive is the transmission of polar codes over a binary mem-
oryless channel that can be either symmetric or asymmetric. We will consider this
problem in detail in the next chapter, where we will present three different coding
paradigms to solve it. For the moment, let us just point out that the basic issue
consists in the fact that linear codes impose a uniform input distribution, whereas
the capacity-achieving input distribution is in general not uniform when the channel
is asymmetric. A solution that makes use of the concatenation of two polar codes
was proposed in [165]. However, a more direct polar scheme is implicitly considered
in [100], and it is independently and explicitly presented in [121]. We will briefly
review this last approach in Section 4.4.2.

4.4.1 Lossless Compression

Problem Statement. Consider a binary random variable X ~ px. Then, given
the random vector Xi.ny = (Xi,---,Xx) consisting of N i.i.d. copies of X, the
aim is to compress X1.n in a lossless fashion into a binary codeword of size roughly
NH(X), which is the entropy of Xi.y.

Design of the Scheme. Let Uy.xy = (Uy,---,Un) be defined as
Uiy = X1.nGh, (4.9)

where Gy is defined in (1.13). Then, U;.y is a random vector whose components
are polarized in the sense that, with high probability, either U; is approximately
uniform and independent of Uy.;_1, or U; is approximately a deterministic function
of Uy.j—1. Formally, for g € (0,1/2), let iy = 2=V and set

HX = {Z € [N] Z(UZ‘ ’ Ul:z’—l) >1-— 5]\[}, (4 10)

Lx ={i€[N]: Z({U; | Ur;i—1) < 0N}, '
where Z denotes the Bhattacharyya parameter defined in (1.16). Hence, for i € Hy,
the bit U; is approximately uniformly distributed and independent of the past Uy.;—1;
and, for ¢ € Lx, the bit U; is approximately a deterministic function of Uj.;_1.
Furthermore,

1
lim — =H(X
Jim x| = H(X),

N (4.11)
lim — =1—H(X).
am o 1£x] (X)

For a graphical representation of this setting, see Figure 4.2.
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Hx Lx

Figure 4.2 — A simple graphical representation of the sets Hx and Lx for the lossless
compression scheme. The whole square represents [N]. The sets Hx and Lx almost
form a partition of [N] in the sense that the number of indices of [N] that are neither
in Hx nor in Lx is o(N).

Let LS be the complement of Lx, and note that
lim —|C5%| = H(X) (4.12)
im — = ) .
N—oo N X

In addition, given {Ui}ieﬁg( , we can recover the whole vector Uy.ny in a successive
manner, since U; is approximately a deterministic function of Uy,; 1 for i € Lx.
Consequently, we can compress Xi.y into the sequence {Ui}ieg} that has a size
roughly of NH(X).

Encoding. Given the vector x1.x that we want to compress, the encoder computes
ur.y = 21.vGn and outputs the values of uy.x in the positions LS, i.e., it outputs

{Ui}iGLS(-

Decoding. The decoder receives {u; }ie 5 and computes an estimate 1.5 of ui.n
using the rule

B Uy, if ¢ € Eg(

Ui =4 arg max Py (u Ul.i—1), ifi€ Lx
{ gue{m} UZ\Um_l( | u1i-1),

(4.13)

Note that the conditional probabilities Py;,¢,, (v | u1:-1), for u € {0,1}, can be
computed recursively with complexity O (N logy N).

Performance. As explained above, for ¢ € Ly, the bit U; is almost deterministic
given its past Uy.;_1. Therefore, for i € Lx, the distribution PUz‘|U1:i—1(u | uii—1) is
highly biased towards the correct value u;. Indeed, the block error probability Pg
can be upper bounded by

Po=P(Uun #Uin) < Y Z(U; | Uic1) =027Y"), Y€ (0,1/2). (4.14)
€Ly

Addition of Side Information. This is a slight extension of the previous case,
and it is also discussed in [91]. Let (X,Y) ~ pxy be a pair of random variables,
where we think of X as the source to be compressed and of Y as a side informa-
tion about X. Given the vector (Xi.n,Y1.n) of N independent samples from the
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Hxyy| Lxpy

Figure 4.3 — A simple graphical representation of the sets Hx|y and Lyy for the
lossless compression scheme with side information. The whole square represents
[N]. The sets H x|y and Ly|y almost form a partition of [N] in the sense that the
number of indices of [N] that are neither in H x|y nor in Lxy is o(V).

distribution px y, the problem is to compress Xi.y into a codeword of size roughly
NH(X |Y), so that the decoder is able to recover the whole vector X;.y by using
the codeword and the side information Y7.y.

Define Uy.y = X1.4Gn and consider the sets

’Hx‘y = {’L S [N] Z(Ul ’ Ul:i—bYl:N) >1-— (5]\[}, (415)

representing the positions such that U; is approximately uniformly distributed and
independent of (Uy.;—1,Y7.n), and

,Cx|y = {Z c [N] Z(UZ ‘ Ul:i—la}/i.:N) < (5]\[}, (4.16)

representing the positions such that U; is approximately a deterministic function of
(U1.i—1, Y1.n). The situation is schematically represented in Figure 4.3.

Note that lossless compression without side information can be considered as
lossless compression with side information Y, where Y is independent of X (say,
e.g., that Y is constant). Therefore, Y does not add any information about X and
it can be regarded as a degraded version of Y. Therefore, the following inclusion
relations hold:

H C Hx,
Ay = TEx (4.17)
Lx C Lx)y.
A relationship analogous to (4.11) holds, namely,
1
lim — [Hxy|=H(X|Y),

1
lim — =1-H(X|Y).
Jim (L] (X|Y)

Given a realization of Xi.n, namely x1.y, the encoder constructs u1.xy = 1. yG N
and outputs {u;}iec Ly 88 the compressed version of x1.y. The decoder, using the
side information y;.nx and a decoding rule similar to (4.13), is able to reconstruct
x1.n reliably with vanishing block error probability.

Note that we have already defined? the sets H x|y and Lxy in Section 1.3.2,
when describing how to achieve the capacity of a binary memoryless symmetric

2Compare (4.15), (4.16), and (4.18) with (1.15) and (1.17).
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channel with polar codes. Hence, it is not surprising that we can use ideas from
lossless compression to achieve the capacity of a general (hence, possibly asymmetric)
binary memoryless channel.

4.4.2 Transmission over Binary Memoryless Channels

Problem Statement. Let W be a binary memoryless channel with input X and
output Y. Fix a distribution px for the random variable X. The aim is to transmit
over W with a rate close to I(X;Y).

Design of the Scheme. Let Uy.xy = X1.yGn, where Xi.y is a vector of N i.i.d.
components drawn according to px. Consider the sets Hx and Lx defined in (4.10).
From the discussion about lossless compression, we know that, for ¢ € Hx, the bit
U; is approximately uniformly distributed and independent of Uy.;—1 and that, for
1 € Lx, the bit U; is approximately a deterministic function of the past Uy.;_1. Now,
assume that the channel output Y7.n is given, and interpret this as side informa-
tion on Xj.y. Consider the sets Hx|y and Lx|y as defined in (4.15) and (4.16),
respectively. To recall, for ¢« € Hyy, U; is approximately uniformly distributed
and independent of (Uy.;—1,Y7.n) and, for i € £ x|y, Ui becomes approximately a
deterministic function of (Uy—1, Y1.n).

To construct a polar code for the channel W, we proceed as follows. We place
the information in the positions indexed by 7 = Hx N Lxy. Indeed, if i € Z, then
U; is approximately uniformly distributed given Uj.;—1, as ¢ € Hyx. This implies
that U; is suitable for containing information. Furthermore, U; is approximately a
deterministic function if we are given U1.,_1 and Y1.n, as i € EX|y. This implies that
it is also decodable in a successive manner, given the channel output. Furthermore,
we have that

R S R |
N T iy Vo A £

(®)

1 1
2 lim — — lim — 4.19
]\}lm N]EXD/\ A}lm |Lx| (4.19)

D H(X) - H(X | V) = 1(X;Y),

where the equality (a) uses that the number of indices in [N] that are neither in Hx
nor in Ly is o(N); the equality (b) uses (4.17); and the equality (c) uses (4.11) and
(4.18). As a result, our requirement on the transmission rate is met.

The remaining positions are frozen. More precisely, they are divided into two
subsets, namely F, = Hx N E}‘Y and Fq = HS. For i € F;, U; is independent
of Uy.;—1, but cannot be reliably decoded using Y7.n. Hence, we fill these positions
with bits chosen uniformly at random, and this randomness is assumed to be shared
between the transmitter and the receiver (i.e., the encoder and the decoder know
the values associated with these positions). For ¢ € Fy, the value of U; has to be
chosen in a particular way. Indeed, almost all these positions are in Lx, hence U; is
approximately a deterministic function of Uy.;_1. Below, we discuss in detail how to
choose the values associated with the positions in Fyq. The situation is schematically
represented in Figure 4.4.
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Hx Lx Hxyy| Lxpy

Figure 4.4 — Graphical representation of the sets associated with the channel coding
problem. The two images on top represent how the set [N] (the whole square) is
partitioned by the source X (top left), and by the source X together with the output
Y assumed as a side information (top right). Since Hxyy € Hx and Lx C Lxyy,
the set of indices [N] can be partitioned into three subsets (bottom image): the
information indices Z = Hx N Lx|y; the frozen indices F; = Hx N EE(‘Y filled with
bits chosen uniformly at random; and the frozen indices 74 = HS chosen according
to either a “randomized rounding” rule or an “argmax” rule.

Encoding. We place the information into the positions indexed by Z, hence let
{u;}ier denote the information bits to be transmitted. Then, we fill the positions
indexed by JF; with a random sequence that is shared between the transmitter and
the receiver, hence let {u;};cx be the particular realization of this sequence.

Let us now consider the encoding of the positions in F4q. An analogous problem
was first considered in Section III of [93], where polar codes were used for lossy
source coding. There are at least two possible approaches for solving this issue.

On the one hand, we can use a “randomized rounding” rule that consists of
setting the value of bit ¢ according to the distribution Py, y, ;. In formulae,

0, W.p. IP)U|U1~~ 1(0 | Ul:i—l)
L UL 4.20
' { L wp. Py, (1] viie1) 2

The random number generator used to construct this sequence is shared between
the transmitter and the receiver. The “randomized rounding” rule yields a provable
result [121].

On the other hand, we can use an “argmax” rule that consists of setting bit i to
the value that maximizes Py, 7, , . In formulae,

w; = arg max Py ... (u| urs—1). 4.21
i g max, Uil Ui (U | u1:-1) (4.21)

The “argmax” rule seems to perform slightly better in numerical simulations, but
proving rigorous results under the “argmax” rule remains an open problem.
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Eventually, the elements of {u;}icr, are computed in successive order by us-
ing either a “randomized rounding” or an “argmax” rule, and the probabilities
Py, 0., (w | u15-1) can be obtained recursively with complexity ©(N logy V). As

Gy = Gg;l), the vector x1.ny = u1.yGn is transmitted over the channel.

Decoding. The decoder receives y1.5y and computes the estimate uq.n5 of ui.n
according to the rule

. arg max Py, (u | ui.i-1), if i € F,
- R i (1.2)
arg max Py . ul|uri—1,y1.8), ifi€eL
gue{()’l} U’LlUl:zflle:N( ‘ lu—1 le)

where Py, vy (@ | u1:i-1,91.8) can be computed recursively with complexity
©(Nlogy N). In (4.22), we assume that the “argmax” rule is used to encode the
positions in Fg. If the “randomized rounding” rule is used, then the decoder can
still correctly recover u;, since the random sequence used in (4.20) is shared between
the transmitter and the receiver.

Performance. The block error probability Pg can be upper bounded by

(a)
P €320 | Ui, Vi) 20N, whe(0,1/2).  (4.23)

1€T

Let us briefly comment on how to obtain formula (4.23). The inequality (a) comes
from the union bound: the error probability under SC decoding is upper bounded by
the sum of the probabilities of making a mistake while decoding each of the informa-
tion bits (the remaining bits are frozen, hence known at the decoder). Furthermore,
the probability of decoding incorrectly the i-th synthetic channel (i € Z) is upper
bounded by its Bhattacharyya parameter, namely, Z(U; | U1.;—1, Y1.n). Finally, the
equality (b) comes from the definition of the set Z, that contains positions ¢ such
that Z(U; | Uy.i—1, Y1.n) is small enough.

4.5 Polar Codes for Superposition Region

The following theorem provides our main result about the achievability of Bergmans’
superposition region for DM-BCs with polar codes (compare with Theorem 4.1).

Theorem 4.6 (Polar codes for Superposition Region). Consider a two-user DM-
BC py, y,|x with a binary-input alphabet, where X denotes the input to the channel,
and Y1, Yo denote the outputs at the first and second receiver, respectively. Let
V' be an auxiliary binary random variable. Then, for any joint distribution py,x
such that V. — X — (Y1,Y3) forms a Markov chain and for any rate pair (Ry, R2)
satisfying the constraints in (4.1), there exists a sequence of polar codes with an
increasing block length N that achieves this rate pair with encoding and decoding
complezxity ©(N logy N) and a block error probability decaying like O(Q*Nﬁ) for any
B e (0,1/2).
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Problem Statement. Let (V,X) ~ py,x = pypx|y. We will show how to trans-
mit over the two-user DM-BC py, y;|x achieving the rate pair

(R1, Ro) = (I(X; Y1) — I(V;Y2), [(V;Y2)), (4.24)

when I(V;Y1) < I(V;Ys) < I(X;Y1). Once we have accomplished this, we will see
that a slight modification of this scheme enables us to achieve, in addition, the rate
pair

(Ri, Re) = (I(X3Y1 | V), min I(V;Y))). (4.25)

le{1,2}

Therefore, by Proposition 4.1, we can achieve the whole region (4.1) and Theo-
rem 4.6 is proved. Note that if polar coding achieves the rate pairs (4.24) and (4.25)
with complexity ©(N logy N) and a block error probability O(2~V ﬁ), then for any
other rate pair in the region (4.1), there exists a sequence of polar codes with an
increasing block length N whose complexity and block error probability have the
same asymptotic scalings.

Design of the Scheme. Set Ul(?, = Vi.nGy. As in the case of the transmission
over a general binary memoryless channel with V' in place of X and ¥; (I € {1,2}) in
place of Y, define the sets Hy, Ly, Hyy;, and Ly y,, analogously to Section 4.4.2,

as follows:
IN: (U2 | U )) > 1 - on},

Ly ={ic[N]: 20?1 UP ) <on),

v ={i € [N] | Ui q) < 6n} (4.26)
[N]: Z
[V]

(
(U;
(
2P U@, v < onl,

(2

U2 |02 ) > 16w},

where Yl(l])v denotes the vector of length N received by the [-th user. These sets

satisfy, for [ € {1,2},
. 1

1
lim — |Ly|=1-H(V),
NN (4.27)
lim — =H Y;
A = Hypy, | (VI Y),
1
lim — |£ =1-H(V|Y).
NgﬂooN| Vvl (V|v)
Set Ul(lj)\, = X1.vGx. By thinking of V' as side information on X and by considering
the transmission of X over the memoryless channel with output Yi, define also the
sets Hx v, Lxv, Hx|vy;, and Lx vy, as follows:

NI Z(U ULy Vi) > 1= o),
N: zw™M | UL Vi) < on),
Uz'(l) ’ Ul(:li)—17V15N’Y1(:1)) >1- 5N}v

Nz 2D U Vi, Vi) < 6w

(4.28)
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which satisfy

. 1
lim N Hxy|=H(X|V),
—00

N

1
lim — [Lyy|=1—H(X|V
Nl_rgoN’XW’ (X V),

1 (4.29)
]\}gnoo N Hxvy,| = H(X |V, Y1),

1
lim — £ =1-H(X |V, Y7).
Ngnoo N | X|V,Y1| (X |V.n)

First, consider only the point-to-point communication problem between the
transmitter and the second receiver. As discussed in Section 4.4.2, for this sce-
nario, the correct choice is to place the information bits in those positions of U1(21)v
that are indexed by the set Z(2) = Hy N Ly |y, If, in addition, we restrict ourselves

to the positions in Z(?) that are contained in L(,l) = Hy N Ly)y,, also the first re-
ceiver will be able to decode this message. Indeed, recall that in the superposition
coding scheme, before decoding its own message, the first receiver needs to decode
the message intended for the second receiver. Consequently, for sufficiently large N,

the first receiver knows the vector UI(QK, with high probability, hence also the vector

Vi.n = Ul(:zjszN (recall that G’J_\,1 = Gp).

Now, consider the point-to-point communication problem between the transmit-
ter and the first receiver, given the side information Vj.y (following our discussion,
as we let NV tend to infinity, the vector Vi.n is known to the first receiver with
probability that tends to 1). From Section 4.4.2, we know that the information has
to be placed in those positions of Ul(ljz, that are indexed by Z(1) = Hx v N Lxvy; -

The cardinalities of these information sets are given by

1
lim — [Z®)] = I(V;Y-
Mim S [T = 1(V3 Ya),
1
im — |ZV| = I(V; 4.30
1
lim — [ZW] = (XY .

Let us now get back to the broadcasting scenario and see how the previous
observations can be used to construct a polar coding scheme. Recall that Xi.y is
transmitted over the channel, the second receiver only decodes its intended message,
but the first receiver decodes both messages.

We begin by reviewing the AGG scheme [100]. This scheme achieves the rate
pair

(B1, Ro) = (I(X; Y1 | V), I(V;Y2)), (4.31)

assuming that py,|y > py,|v. Under this assumption, we have Ly |y, C Ly)y; and

therefore Z(?) C L(,l). Consequently, we can in fact use the point-to-point solutions
outlined above, i.e., the second user can place his information in Z? and decode,
and the first user will also be able to decode this message. Furthermore, once the
message intended for the second user is known by the first user, the latter can decode
his own information placed in the positions of Z(}),
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Let us now see how to eliminate the restriction imposed by the degradation
condition py,|y; = py,|v. Recall that we want to achieve the rate pair (4.24) when
I(V;Y1) < I(V;Ys) < I(X;Y1). The set of indices of the information bits for the
first user is exactly the same as before, namely the positions of Ul(ljz, indexed by
ZM . The only difficulty lies in designing a coding scheme in which both receivers
can decode the message intended for the second user.

First of all, observe that we can use all the positions in L()l) NZ®@), since they

are decodable by both users. Let us define
D@ =73\ (b, (4.32)

If py,jv = Py,|v, as before, then D@ = ( (i.e., all the positions decodable by the
second user are decodable also by the first user). However, in the general case,
where it is no longer assumed that py,|yy > py,y, the set D@ is not empty and
those positions cannot be decoded by the first user.
Note that there is a similar set, but with the roles of the two users exchanged,
call it D), namely,
P =7\ 72, (4.33)

The set D) contains the positions of Ul(?, that are decodable by the first user, but
not by the second user. Observe further that |DM)| < |D?)| for sufficiently large N.
Indeed, since the equality

[A\ B| = |B\ A = |A] - [B] (4.34)

holds for any two finite sets A and B, it follows from (4.30)—(4.32) that for sufficiently
large N

(Ip®] - [pW]) = % (1| = 1ZM)) (4.35)
= I(V;Ya) — I(V; Y1) + o(1) > 0. (4.36)

1
N

Assume at first that the two sets are of equal size. The general case will require
only a small modification.

Now, the idea is to consider the “chaining” construction introduced in [48] in
the context of universal polar codes. Recall that we are only interested in the mes-
sage intended for the second user, but that both receivers must be able to decode
this message. Our scheme consists in transmitting k& polar blocks, and in repeating
(“chaining”) some information. More precisely, in block 1 fill the positions indexed
by DM with information, but set the bits indexed by D® to a fixed known se-
quence. In block j (j € {2,--- ,k—1}), fill the positions indexed by D) again with
information, and repeat the bits contained in the positions indexed by DM of block
4 —1 into the positions indexed by D of block j. In the final block k, put a known
sequence in the positions indexed by DWW and repeat in the positions indexed by
D) the bits in the positions indexed by D) of block k — 1. The remaining bits are
frozen and, as in Section 4.4.2, they are divided into the two subsets fc(iz) = Hy and

r(2) =Hy N £§/|Y2 C Hy. In the first case, U 2 s approximately a deterministic

K2
function of Ul(?ill, whereas in the second case Ui(2) is approximately independent of
Uy
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Note that we lose some rate, as at the boundary we put a known sequence into
some bits that were supposed to contain information. However, this rate loss decays
like 1/k. Hence, by choosing a sufficiently large k, we can achieve a rate that is
arbitrarily close to the intended rate.

We claim that in the above construction both users can decode all blocks, but
the first receiver has to decode “forward”, starting with block 1 and ending with
block k, whereas the second receiver decodes “backwards”, starting with block k& and
ending with block 1. Let us discuss this procedure in some more detail. Look at the
first user and start with block 1. By construction, information is only contained in
the positions indexed by DW as well as Z,(Jl) NZ®), whereas the positions indexed by
D) are set to known values. Hence, the first user can decode this block. For block
j (j €{2,---,k—1}), the situation is similar: the first user decodes the positions

indexed by DM and L(,l) N Z®), whereas the positions in D) contain repeated
information that has been already decoded in the previous block. An analogous
analysis applies to block k, in which the positions indexed by D) are also fixed to
a known sequence. The second user proceeds exactly in the same fashion, but goes
backwards.

To get to the general case, we need to discuss what happens when |[DM| < |D(?)]
(due to (4.35), in general |[D(M| < |D@)| for sufficiently large N, but the special case
where the two sets are of equal size has been already addressed). In this case, we do
not have sufficiently many positions in DM to repeat all the information contained
in D). To get around this problem, we pick sufficiently many extra positions out
of the vector Ul(ljz, indexed by ZW), and repeat the extra information there.

In order to specify this scheme, let us introduce some notation for the various
sets. Recall that we “chain” the positions in DY) with an equal amount of positions
in D@ Tt does not matter what subset of D) we pick, but call the chosen subset

R®). Now, we still have some positions left in D@ call them B2, More precisely,
B® =D\ RA). Since R € D@ and |[RP)| = |DW)|, it follows from (4.35) that

1 1
N B2 = N (IDP] =R

1
— L (1p®@| _ 1pM (4.37)
- (D®] D)
=I(V;Yy) = I(V;Y1) + 0o(1) > 0.
Let B be a subset of Z(M) such that |[BM)| = [B(?)|. Again, it does not matter what
subset we pick. The existence of such a set B, for sufficiently large N, is ensured

by noticing that from (4.30), (4.37) and the Markovity of the chain V — X — Y] we
obtain

(X;v1 [ V) = I(V;Ya) + I(V; Y1) + o(1)
(X;Y1) = I(V;Y2) +o(1) > 0. (4.38)

1

—(TO BN =T
S(Z®] - |5
=17
Indeed, recall that we need to achieve the rate pair (4.24) when I(V; Y1) < I(V;Y2) <
I(X;Y1).

As explained above, we place in B the value of those extra bits from D) that
will help the first user to decode the message of the second user in the next block.
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Figure 4.5 — Graphical representation of the sets associated with the first user for the
superposition scheme. The set [N] is partitioned into three subsets: the information

indices Z(); the frozen indices .7-}(1) filled with bits chosen uniformly at random; the

- 1 . . . .
frozen indices F, (g ) chosen according to either a “randomized rounding” rule or an

“argmax” rule.

Operationally, we repeat the information contained in the positions indexed by B()
into the positions indexed by B of the previous block. By doing this, the first user
pays a rate penalty of I(V;Ys2) —I(V;Y1)+0(1) compared to his original rate given
by £ |ZW] = I(X;Y1|V) + o(1).

To summarize, the first user puts information bits at positions Z(!) \B (), repeats

in BY the information bits in B for the next block, and freezes the rest. In the

last block, the information set is the whole Z(). The frozen positions are divided

into the usual two subsets ]-"r(l) = HXW N ﬁS{IVYl and f(gl) = S(W that contain

positions such that Ui(l) is or is not, respectively, approximately independent of
(Ul(:li)—lv Vi.n). The situation is schematically represented in Figures 4.5-4.7.

Suppose that, by applying the same scheme with k — oo, we let % |B@)| shrink
from I(V;Y2) — I(V;Y1) + o(1) in (4.37) to o(1). Then, we obtain the whole line
going from the rate pair (I(X;Y1) — I(V;Y2),I(V;Y2)) to (I(X;Y1 | V), I(V;Y7))
without time-sharing.?

Finally, in order to obtain the rate pair (I(X;Y1 | V), I(V;Y3)) when I(V;Ys) <
I(V:Y1), it suffices to consider the case where B®) = () and switch the roles of Z(?)
and L(,l) in the discussion concerning the second user.

3The reader will be able to verify this property by relying on (4.41) and (4.44); this property is
mentioned, however, at this stage as part of the exposition of the polar coding scheme.
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Ly iy,
HV »CV ’Hv\yl £V|Y1

Hy |y,
D3
£
IONI@
pM

Figure 4.6 — Graphical representation of the sets associated with the second user
for the superposition scheme: L()l) NZ® contains the indices that are decodable by
both users; D) = L()l) \I(Q) contains the indices that are decodable by the first

user, but not by the second user; D@ = 72 \L(,l) contains the indices that are
decodable by the second user, but not by the first user.

Encoding. Let us start from the second user, and encode block by block. For

block 1:

o Let {fug?)}igél) denote the information bits.

e Denote by {uz@)}z‘ef@)

shared between the transmitter and both receivers.

a particular realization of a random sequence that is

e As discussed in Section 4.4.2, for i € F, 52), we can either use a “randomized
rounding” rule, i.e.,
0, wp. P 0| uﬁ)fl)

@) (4.39)

v (Llui )

(2 _ U¢(2) |U1(:2i)71

u,” = )
, w.p. P

or an “argmax” rule, i.e.,

u§2) = arg max P u | u§2271) (4.40)

(2))7,(2
ue{0,1} U; ‘Ul(:i)—l (

In case the “randomized rounding” rule is employed, the random sequence in
(4.39) is shared between the transmitter and the receiver.

For block j (j € {2,--- ,k —1}):

e Let {u§2)}. denote the information bits.

ZGL(,UUB(Q)
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USER 1
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Figure 4.7 — Graphical representation of the chaining construction for the superpo-
sition scheme with k& = 3: the set D) is repeated into the set R(2) of the following
block; the set B2 is repeated into the set BY) of the previous block (belonging to
a different user).

° {uZ(Q)}ieR(2> contains a copy of the sequence {“1(2)}ieD<1) of block j — 1.
e The frozen sequences {ugg)}ief(z) and {UZ(Q)}ief(2> are chosen as in block 1.
r d
For block k (the last one):

o Let {u§2)} denote the information bits.

ie(Z$VNT@)uB@
(2) . (2) _

o {u;,”};cre contains the sequence {u;”’},cpa) of block k — 1.

e The frozen bits are chosen with the usual rules.

The rate of the second user is given by

Ry = % [\zgv\ + (k= 2)[ZM UBD| + () nT?)u B ”
- : (4.41)

(PN vy + Lz Az
< - )I(V,Y2)+kN|I,U NZ@|+o(1),

where the second equality follows from (4.30) and (4.37), and from the fact that the

sets L(,l) and B® are disjoint. From (4.41), we obtain that, as k tends to infinity, Ry

approaches the required rate I(V;Ys). Then, the vector v1.y = u&QJ)\,G N is obtained.
The encoder for the first user knows v1.5 and proceeds block by block:
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e Let {ugl)}iez(l)\lg(l) denote the information bits, except for block k, in which

. . . 1
the information sequence is {ug )}iGI(U'

e For block j (j € {1,--- ,k —1}), {ugl)}ieg(l) contains a copy of the sequence
{UEZ)}ies(z) in block j + 1.

(1) . oo
e The frozen sequence {u } contains a realization of a random sequence

cFM
shared between the encoder and the first decoder.

. . . . 1 . .
e As discussed in Section 4.4.2, for i € .7-"5 ), we can either use a “randomized
rounding” rule, i.e.,

(1)
) O Ppopo (0 e, ve) 449
“TY 1, wp P (1 o) (4.42)
) p U,L(l)|U1(1)7 aVI 1:2—1> 1:N
or an “argmax” rule, i.e.,

(1) (1)
= argurer}[%ﬁ}ﬂ” Wy (u | uy.)_q,vi:N). (4.43)

In case the “randomized rounding” rule is employed, the random sequence in
(4.42) is shared between the transmitter and the receiver.

The rate of the first user is given by

1
Ry = — (k=12 \ BV + \zﬂ)\]
(4.44)

= 1 V) = P (1) — 1V v) o),

where we use (4.30), (4.38), and the fact that B(") is a subset of Z() such that
IBD| = [B@)|. From (4.44), we obtain that, as k tends to infinity, Ry approaches the
required rate I(X;Y7) — I(V;Ys). Finally, the vector z1.ny = uSZ)VGN is transmitted
over the channel. The encoding complexity per block is © (N logy N).

(1)

Decoding. Let us start from the first user that receives the channel output ;.-

(2)

The decoder acts block by block and reconstructs first u;.y, computes vy =

ugzj)VG ~, and then decodes uglz)v, thus recovering his own message. For block 1,

the decision rule is given by

(-2) if i € F?
. (2) arg max P (3 @ (u ] u'? ), if i € F?
u: = uef0,1} U~ Uy 1ii—1 d (445)
e 1
g max By v, (Lo i), i €
and
ulh, itie 7Y
(1) e )
ﬁgl) ] arg max IP’U<1 W, Sl g, o), ifi e F) (4.46)

(1) (1) e (1)
are ulgFlX}PU<1 ‘Ul(lz) 17V1:N7Y1(:11\)7 (u ’ Y11 Ul:N’yIZN% itiez
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where we assume that the “argmax” rule is employed to encode the positions in
F ((11) and F, 0(12). If the “randomized rounding” rule is used, then the decoder can still
correctly recover ugl) and uz@, since the random sequences used in (4.39) and (4.42)
are shared between the transmitter and the receiver.

For block j (j € {2,--- ,k—1}):
~(2) . (1) .
o {0,”},cp is deduced from {; ' };.pa) of block j — 1.
o {0\?} is deduced from {a.”) f block j —
. tier@ is deduced from {@;”'},cpay of block j — 1.

e For the remaining positions of 7:‘1(2)7 the decoding follows the rule in (4.45).

(1)

e The decoding of @, ’ proceeds as in (4.46).

This decoding rule works also for block k, with the only difference that the frozen

~(2) (2) (1)

set ]-"r( ) is bigger, and ;" = arg max,e 9,1} IPU'(z)lUl(?')—l’Yl('ljgl(u | uysi_1,yy.p) only for

i e TV N7®,
Let us consider now the second user that reconstructs ugz})\[ from the channel

()

output y;’ As explained before, the decoding goes “backwards”, starting from
block k and ending with block 1. For block k, the decision rule is given by
uz@)? if 7 € fr(2)
L (2) arg max P 2 (2 (u] u? ), ifi e F?
U; "= ue{0,1} Ui U L=l d
(2) (2) :
arg ug%ﬁ} PU;2)|U1(3)717Y1(:2J\)}' (w|u) yn), ifie (ZWNI@)uRE UBA

(4.47)
Once again, we assume that the “argmax” rule is employed to encode the positions
in F f). Clearly, correct recovery is also possible under the “randomized rounding”
rule.
For block j (j € {2,--- ,k —1}), the decoder recovers {u§2)}iep<1> from {uz('Q)}iER(Q)
of block j + 1; for the remaining positions, the decision rule in (4.47) is used.
For block 1, the reasoning 1S the same, except that the information set is smaller and

the information bits are {u } The complexity per block, under successive

ezt Nz
cancellation decoding, is ©(N logy N).

Performance. The block error probability P]g) for the I-th user (I € {1,2}) can
be upper bounded by

( <kZZU(2)|U1(22)17 1(N +kZZ ‘Ulz 1 (2)20(27NB)7
ZEI<1) 16_’[()
2 8
P< 3z Ul YR = oY),
1€Z(2)
(4.48)

for any 3 € (0,1/2).
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4.6 Polar Codes for Binning Region

The following theorem provides our main result regarding the achievability of the
binning region for DM-BCs with polar codes (compare with Theorem 4.2).

Theorem 4.7 (Polar Codes for Binning Region). Consider a two-user DM-BC
Pyi,va|x s where X denotes the input to the channel, taking values on an arbitrary set
X, and Y1, Yo denote the outputs at the first and second receiver, respectively. Let Vi
and Vo denote auziliary binary random wvariables. Then, for any joint distribution
PViVa, for any deterministic function ¢: {0,1}> — X such that X = ¢(V1,Va), and
for any rate pair (R1, R2) satisfying the constraints (4.2), there exists a sequence
of polar codes with an increasing block length N that achieves this rate pair with
encoding and decoding complexity ©(N logs N) and a block error probability decaying
like O(Q_Nﬁ) for any B € (0,1/2).

Problem Statement. Let (Vi,V2) ~ pvi v, = pviPuyjvy, and let X be a deter-
ministic function ¢ of (Vi,V2). The aim is to transmit over the two-user DM-BC
Pyi,vs|x achieving the rate pair

(B1, Ry) = (I(Vi; Y1), 1(Va; Y2) — 1(V1;V2)), (4.49)

assuming that I(V3; V) < I(Va;Ys). Consequently, by Proposition 4.2, we can
achieve the whole region (4.2) and Theorem 4.7 is proved. Note that if polar cod-
ing achieves the rate pair (4.49) with complexity ©(N logy N) and a block error
probability 02~V B), then for any other rate pair in the region (4.2), there exists
a sequence of polar codes with an increasing block length N whose complexity and
block error probability have the same asymptotic scalings.

Design of the Scheme. Set Ul(:l) = Vf%GN and Ul(?, = Vl(:?\),GN. As in the case

of the transmission over a binary memoryless channel with V; in place of X and Y]
in place of Y (I € {1,2}), define the sets Hy;, Lv;, Hyy|y;, and Ly;y; for I € {1,2},
similarly to (4.26) (except that we replace Uy with U; and V' with V). These sets
satisfy

. 1

. 1
lim N\EVZ| =1-H((V)),

N—oo

. (4.50)
Jim [Hy v | = H(V, | Y1),

. 1
Jim Lyl = 1— H(Vi | ),

By thinking of V1 as a side information for V5, we can further define the sets Hy;1,
and Ly, that satisfy

lim
N—o0

) 1
lim — Ly | =1 - H(V2 [ ).

N—oo

1
N |/HV2\V1’ =H(Va | W),
(4.51)
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First, consider only the point-to-point communication problem between the
transmitter and the first receiver. As discussed in Section 4.4.2, for this scenario,
the correct choice is to place the information in those positions of Ul(ljz, indexed by
the set ZM = Hy, N Ly, |y, that satisfies

ngnooN ZM] = 1(Vi; 7). (4.52)
For the point-to-point communication problem between the transmitter and the
second receiver, we know from Section 4.4.2 that the information has to be placed
in those positions of Ul(?, that are indexed by Hy, N Ly,y,-

Let us get back to the broadcasting scenario and note that for binning, unlike
superposition coding, the first user does not decode the message intended for the
second user. Consider the following scheme. The first user adopts the point-to-point
communication strategy: it ignores the existence of the second user, and it uses Z(!)
as an information set. The frozen positions are divided into the two usual subsets
}'((11) = Hj, and fr( ) = =Hy, N EV i that contain positions such that, respectively,

Ui(l) can or cannot be approximately inferred from Ul(lzll Whereas, the second
user does not ignore the existence of the first user by putting his information in
Hvy N Ly,|y,- Indeed, Vi and V; are, in general, correlated. Hence, the second user
puts his information in Z(3) = Hyyvy N Ly, i € 7@, then, since Z(*) C AT

the bit Ui( ) is approximately independent of (U1( Z) 1> V1( ]\),) This implies that U( )
(2 )

is suitable to contain information. Furthermore, since i € Lyy,, the bit U;

approximately a deterministic function of (Ul(i-)_l, Yl(i),) This implies that it is also

decodable given the channel output Yl(:%\),. The remaining positions need to be frozen
and can be divided into the four subsets described below.

e For i € ]:r(Q) = Hyyv, N £§/2|Y2, Ui(2) is chosen uniformly at random, and this
randomness is shared between the transmitter and the second receiver.
(2)

e Fori ¢ .7:52) = Ly,, Ul-(2) is approximately a deterministic function of U}/,

hence its value can be deduced from the past.

e For i € .7:(5121% = Hy, v N LY, N Ly, U,L-(z) is approximately a deterministic

function of (U1(:2i)—1’ V(l)) but it can be deduced also from the channel output
2)
Yi:N'

e Fori e fc(f) = NLy, NLY, v, = H€/2|V1 NLY, Valva’ U-(z) is approximately a

V V1
deterministic function of (Ul(:i)—l’ V(l)) but it cannot be deduced either from

U 1(21)_1 or from Yl(j\),.

The positions belonging to the last set are critical, since, in order to decode them,
the receiver needs to know Vlg\),. Indeed, recall that the encoding operation is
performed jointly by the two users, whereas the first and the second decoder act
separately and cannot exchange any information. The situation is schematically

represented in Figure 4.8.
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Hvy v,
Hy, Ly, Hv,wvi|  Lvw

Ly, v,

F(2)

Cr,

72)

Figure 4.8 — Graphical representation of the sets associated with the second user
for the binning scheme: Z() contains the information bits; fé? ) contains the frozen
positions that are critical in the sense that they cannot be inferred either from the
past UI(QZ)_1 or from the channel output Yl(i),.

We start by reviewing the AGG scheme [100]. This scheme achieves the rate pair
in (4.49), assuming that the degradation relation py,y, = py;|y, holds. Note that,

under this assumption, we have £V2|V1 - £V2\Y2- Therefore, ]:C(E ) C LS N H€/2|V1'

Va|Vi
Since |£%/2\V1 N H%QM\ = o(N), it is assumed in [100] that the bits indexed by
(\?/2\% N /H%/g\vl are “genie-given” from the encoder to the second decoder. The

price to be paid for the transmission of these extra bits is asymptotically negligible.
Consequently, the first user places his information in ZW | the second user places his
information in Z(®), and the bits in the positions belonging to £$/2\V1 N 7—[;}2“/1 are
pre-communicated to the second receiver.

Our goal is to achieve the rate pair (4.49) without the degradation condition
PYa|Va = Pvi|v,- As in the superposition coding scheme, the idea consists in trans-
mitting k£ polar blocks and in repeating (“chaining”) some bits from one block to the
following block. To do so, let R be a subset of Z() such that |R| = |]-'C(r2)| As usual,
it does not matter what subset we pick. Since the second user cannot reconstruct
the bits at the critical positions ]—"ér? ), we use the set R to store the critical bits of
the previous block. This construction is schematically represented in Figure 4.9.

Let us explain the scheme in detail. For block 1, we adopt the point-to-point
communication strategy: the first user puts his information in Z, and the second
user in (). For block j (j € {2,---,k—1}), the first user places again his informa-
tion in ZM). The second user puts information in the positions indexed by 73 \R
and repeats in R the bits that were contained in the set ]:C(rQ) of block 7—1. For block
k, the second user does not change his strategy, putting information in Z(2) \ R and
repeating in R the bits that were contained in the set ]:C(r2 ) of block k — 1. However,
for block k, the first user does not convey any information and puts in Z(!) a fixed
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7 7

1(2) ................

Figure 4.9 — Graphical representation of the chaining construction for the binning
scheme with k = 3: the set .7-"&2 ) is repeated into the set R of the following block.

sequence that is shared between the encoder and both decoders. Indeed, in the last
block, the positions indexed by Férz ) are not repeated anywhere. Consequently, the
only way in which the second decoder can reconstruct the bits in féf ) consists in
knowing a priori the value of V&\),.

Note that with this scheme, the second user has to decode “backwards”, starting
with block k and ending with block 1. In fact, for block k, the second user can
compute Vl(:l]\),, hence the critical positions indexed by .7-"0(3 ) are no longer a problem.
Then, for block j (j € {2,--- ,k — 1}), the second user knows the values of the bits
in .7-"0(? ) from the decoding of the set R of block j + 1.

Suppose now that the second user wants to decode “forward”, i.e., starting with
block 1 and ending with block k. Then, the set R is used to store the critical bits
of the following block (instead of those ones of the previous block). In particular,
for block k, we adopt the point-to-point communication strategy. For block j (j €
{k—1,---,2}), the first user places his information in Z(!), the second user places
his information in the positions indexed by Z(?) \ R and repeats in R the bits that
were contained in the set ]-}g ) of block j + 1. For block 1, the second user does not
change his strategy, and the first user puts in Z(!) a shared fixed sequence. Note
that in this case the encoding needs to be performed “backwards”.

Encoding. Let us start from the first user. For block j (j € {1,--- ,k—1}):
e Let {Ugl)}iez(n denote the information bits.

e Denote by {ugl)}i.E F1) & particular realization of a random sequence that is

shared between the transmitter and the first receiver.

. 1 . . . .
e Foric F\ ), we can either use a “randomized rounding” rule, i.e.,

(1)
1 0, w.p. PU,~<1)\U1(;1¢)71(0 | 1) (4.53)
e 1, wp P w,q (1] u(l) ) '
’ Ui 1014 L=l
or an “argmax” rule, i.e.,
n _ (1)
Ui T Ug}%v}i} IP)Uz‘(1>|U1<:1i)71(u | ul:i—l)' (4.54)
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In case the “randomized rounding” rule is employed, the random sequence in
(4.53) is shared between the transmitter and the receiver.

For block k:

. . 1 .
e The user conveys no information, and {uf )}iez(l) contains a fixed sequence
known to the second decoder.

e The frozen bits are chosen according to the usual rules with the only difference
that the sequence {ul(-l)}ie F1) is shared also with the second decoder.

The rate of communication of the first user is given by
kE—1 kE—1
R, = (kN > IzMW| = <k )I(Vl;Yl) +o(1), (4.55)

where we use (4.52). From (4.55), we obtain that, by choosing a large value of k,
Ry approaches I(V7;Y7). Then, the vector ng)v = ug])VGN is obtained.
Let us now move to the second user. For block 1:

o Let {ul@)}ieﬂg) denote the information bits.

e Denote by {ul(?)}iE F2) 8 particular realization of a random sequence that is

shared between the transmitter and the second receiver.

. 2 . . . .
e Fori e F (g ), we can either use a “randomized rounding” rule, i.e.,

(2)
W= 1, wp. P o, @ (1] u(2-) ) '
’ U7 N0 Li—1
or an “argmax” rule, i.e.,
2 2
ug ) — arg uggﬁ}PUf2>\Ufi)_1(u | ug:i)_l). (4.57)

In case the “randomized rounding” rule is employed, the random sequence in
(4.56) is shared between the transmitter and the receiver.

. 2 2 : : . :
e For i ¢ féu)t U ]:ér), once again, we can either use a “randomized rounding”

rule, i.e.,
2 1
07 Wp ]P)U(Q) U(2> V(1> (0 | u:([l)—l’ UEZ)V)
(2) — i | 1—1"1:N <4 58)
. 1, wp P (1] W' ) ) .
) -P- Ui(2)|U1<:2z‘)717V1<:11\>7 1::—1° Y1:N
or an “argmax” rule, i.e.,
(2 _ (2) (1)
Ui = a8 ug%ﬁ} PUz‘(2)|U1(:2i)f1vV1(zlz\)1 (u ‘ Y-t vl:N)' (4.59)

(1)

Observe that the encoder has an access to vy.5, hence it can compute the
probabilities above. In case the “randomized rounding” rule is employed, the
realization of the random sequence in (4.58) is shared between the transmitter
and the receiver.
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For block j (j € {2,--- ,k}):
e Let {%(2)}1'61(2)\73 denote the information bits.

e The sequence {u§2)}i€7g contains a copy of the sequence {uZ@)} of block

j—1.

ieF?

e The frozen bits are chosen as in block 1.

In order to compute the rate achievable by the second user, first observe that

(12— [R) 2 T (v, 0 Lual — M0, 0 L8, 1 L5y
o % (\(Hvz N Lyyvy) \ (Hvy N HY, )|
(s N H0) \ (s 0 Lyl ) + (1)
9 (1, 0 Lol = My, 1 41) 4 0() (4:60)
) % <\7‘lv2 N Lyyy,| — [Hyy N £V2|V1|) +o(1)
D (v \ £l — 1L \ £3al) + (1)

= I(Va;Y2) = I(V1;V2) + o(1),

where equality (a) holds since |R| = |]-"<§r2 )|; equality (b) follows from Hy,y, € Hy,
and |[[N]\ (Hw, U Ly,)| = o(N); equality (c) follows from the identity in (4.34)
for arbitrary finite sets; equality (d) holds since |[N]\ (Hy,; U Lyyy)| = o(N);
equality (e) holds since |[N]\ (Hy, U Ly,)| = o(N); and equality (f) follows from the
second and fourth equalities in (4.50), as well as from the second equality in (4.51).
Consequently,

1
Ry = W\R|+](%;ﬁ)—l(m;%)+0(l)' (4.61)

Hence, as k tends to infinity, Re approaches the required rate I(Va;Ys) — I(Vy; V).

Then, the vector vgzj)\, = ug?])VGN is obtained. Finally, the vector z1.5 = qb(vgl])v, vﬁ)v)

is transmitted over the channel. The encoding complexity per block is ©(N logy N).

Decoding. Let us start from the first user that reconstructs uglj)v from the channel

output yglj)\, For each block, the decision rule is given by

utt ifie FY

7 )

(1) e ()
i) = {28 o oo, (), ez (4.62)

arg max P (u| u&-)_l,yg) ), ifiezm

1) 77(1) 1)
ue{0,1} Ui( )|U£' 1’Y1<:N

11—

The second user reconstructs u%ZJ)V from the channel output yﬁ)\, As explained

before, the decoding goes “backwards”, starting from block k& and ending with block
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(1)

1. For block k, the second decoder knows v;.5,. Hence, the decision rule is given by

[ W?), ifti e F?
s By L), e A
~(2) _ “
% =Y arg max IP’U W v (u | ugzz) 1> Uglj)v) ifi € féui U .7-"6(3) (4.63)
ue{0,1} Lii—1
2 e
arguggx}P ) @) (u | ull) 1,y§ ])V) if i € 7

In (4.62) and (4.63), we assume that the “argmax” rule is employed to encode the
positions in f(gl), ff) and F2 U .7-"(;( ), Clearly, correct recovery is also possible

out
under the “randomized rounding” rule.

For block j (5 € {2,--- ,k}), the decision rule is the same as (4.63) for i & F, Ou{u]-“c(r).

Indeed, {u(2)}ieF§2) of block j can be deduced from {uZ }ieR of block j + 1, and,
for i € ]:(Eu%, we set
(2) 2 @2 ).

=arg max P ) o (w | uyl_
gue{o } U( )‘Ul(z) 17y()( | 1 ]_7le

The complexity per block, under successive cancellation decoding, is © (N logy N).

Performance. The block error probability Pél) for the I-th user (I € {1,2}) can
be upper bounded by

V< Y 2w ol v =0,
ieZ(1)

2 2 2 2 _NB

<k Y zw® v v = 0@,

’L'EEVQ|Y2

(4.64)

for any 3 € (0,1/2).

4.7 Polar Codes for Marton’s Region

4.7.1 Only Private Messages

Consider first the case where only private messages are available. The following
theorem provides our main result regarding the achievability with polar codes of
Marton’s region that forms the tightest inner bound known to date for a two-user
DM-BC without common information (compare with Theorem 4.3).

Theorem 4.8 (Polar Codes for Marton’s Region). Consider a two-user DM-BC
Pyi,yz|x» where X denotes the input to the channel, taking values on an arbitrary set
X, and Y1, Yo denote the outputs at the first and second receiver, respectively. Let V.,
Vi, and Vs denote auziliary binary random variables. Then, for any joint distribution
PV Vs, for any deterministic function ¢ : {0,1}% — X such that X = ¢(V, V1, V),
and for any rate pair (Ry, Ra) satisfying the constraints (4.3), there exists a sequence
of polar codes with an increasing block length N that achieves this rate pair with
encoding and decoding complezity ©(N logy N') and a block error probability decaying
like O(2=N") for any B € (0,1/2).
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The proposed coding scheme is a combination of the techniques described in
detail in Sections 4.5 and 4.6, and it is outlined below.

Problem Statement. Let (V,Vi,V2) ~ py py, v pvijvsv, and let X be a determin-
istic function of (V,V1,Va), i.e., X = ¢(V,V1,Va). Consider the two-user DM-BC
Py, v|x such that I(V;Y1) < I(V;Ys). The aim is to achieve the rate pair

(Ri, Re) = (I(V, Vi Y1) = I(Vi; Vo | V) = I(V; Y2), I(V, V2; Y2)). (4.65)

Once we have accomplished this, we will see that a slight modification of this scheme
enables us to achieve, in addition, the rate pair

(R, Re) = (I(V,Vi; Y1), I(Va; Y2 | V) = I(Vi; V2 [ V). (4.66)

Therefore, by Proposition 4.3, we can achieve the whole rate region in (4.3) by using
polar codes. Note that if polar coding achieves the rate pairs (4.65) and (4.66)
with complexity ©(N log, N) and a block error probability O(2~V ﬁ), then for any
other rate pair in the region (4.3), there exists a sequence of polar codes with an
increasing block length N whose complexity and block error probability have the
same asymptotic scalings.

Sketch of the Scheme. Set Uy = VinGn, U} = VNGy, and UZ =
Vﬁ\),G ~- Then, the idea is that Ul(ljz, carries the message of the first user, whereas
Ul(% and Ul( ]i, carry the message of the second user. On the one hand, the first
user will decode both his message, namely, Ul(:lji,, and a part of the message of the
second user, namely, U;. (0) . On the other hand, the second user will be able to decode

(2) . The random variable V' comes from the

)

superposition coding scheme, because U1( ~ is decodable by both users, but carries
information meant only for one of them. The random variables V; and V5 come from

only his message, namely, Ul( ]i, and U,

the binning scheme, since the first user decodes Ul(ljz, and the second user decodes
U1(;2]2f7 i.e., each user decodes only his own information.

Let the sets Hy, Ly, Hyy,, and Lyy, for [ € {1,2} be defined as in (4.26),
where these subsets of [IV] satisfy (4.27). In analogy to Sections 4.5 and 4.6 let us
also define the following sets (I € {1,2}):

A
A

U UL U > 1= dn ),

)

D | 0
U | UG- U < ow),

)

£V1|V - {’L S
. l l l
Hyjvy = fi € vl Ul 1,Ul“’}V,Y(U >1— 6},
<dén},

[N]: 2(
[N]: 2(
[N]: 2(
Ly = e [N]: zw® vl o, v (4.67)
iN: zw® | v, v, (2)>>1_5N},
[N]: Z( v

HVl\V,VQ = {’L & 7 i
. l l 0)
Lvivy, = {i e [N]: 20 |0, U9, < on ),

)
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which satisfy
. 1
i Hyvl=H(V, | V),

. 1

A Ly =1 - H(V [ V),
1

lim — [Hyjvyl=HWV [V, Y),

N (4.68)

dm Ly vy | =1-H(\V | V,Y),

. 1
dim = [Hyg | = H(Vi |V, V),

1
lim —

A Ly v, | =1 - H(VL [V, Va).

First, consider the subsets of positions of Ul(oji, The set Iﬁ; = Hv N Lyy,
contains the positions decodable by the second user, and the set Lgl) =Hy N Lyy,
contains the positions decodable by the first user. Recall that Ul(:ojz[ needs to be
decoded by both users, but contains information only for the second user.

Second, consider the subsets of positions of Ul(?) . The set Igr)l = Hy,v N Ly, vy,

contains the positions decodable by the second user. Recall that U1(2]2, needs to be
decoded only by the second user, and it contains part of his message.

Third, consider the subsets of positions of Ul(ljz, The set (D) = Hy,v,vea VLviviy

contains the positions decodable by the first user. Recall that Ul(ljzf needs to be
decoded by the first user, and it contains only his message. However, the first user

cannot decode Ul(a,, hence it cannot infer V1(3\)7- Consequently, the positions in the
set ]:C(rl) = 7_[(‘:/1“/7‘/2 N ‘C%/1|V N £€/1\V,Y1 are critical. Indeed, for i € ]:C(rl), the bit Ui(l)
is approximately a deterministic function of (Ul(:li)_l, Ul(:%, Ul(zjzf), but it cannot be
deduced from (Ul(:li)_l, Ul(:%, Yl(é\),).

In order to achieve the rate pair (4.65), we consider the transmission of k polar
blocks and use three different “chaining” constructions. The first and the second
chaining come from superposition coding, and the last one comes from binning.

First, define D(?) = Is(1211)3 \L(,l) and D) = L(,l) \Is%)), as in (4.32) and (4.33),
respectively. The former set contains the positions of Ul(?l)\, that are decodable by
the second user but not by the first, whereas the latter contains the positions of
Ul(:% that are decodable by the first user but not by the second. Let Rgyp be a
subset of D?) such that [Reup| = |PM]. In block 1, fill DY) with information for
the second user, and set the bits indexed by D@ to a fixed known sequence. In
block j (j € {2,--- ,k—1}), fill D) again with information for the second user, and
repeat the bits contained in the set D) of block j — 1 into the positions indexed by
Rsup of block j. In the final block £, put a known sequence in the positions indexed
by DU, and repeat in the positions indexed by Rsup the bits contained in the set

DM of block k£ — 1. In all the blocks, fill L(,l) 025(1211)0 with information for the second
user. In this way, both users will be able to decode a fraction of the bits of Ul(%

that is roughly equal to I(V;Y7). The bits in these positions contain information
for the second user.
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Second, define B2 = p® \ Rsup, and let BY be a subset of Z(M such that
IBU| = |B®)|. Note that B2 contains positions of Ul(:%, and B contains positions
of Ul(ljz, For block j (j € {2,---,k}), we fill B® with information for the second
user, and we repeat these bits into the positions indexed by B®) of block j — 1. In
this way, both users will be able to decode a fraction of the bits of Ul(g)\, that is
roughly equal to I(V;Y3) (recall that I(V;Y7) < I(V;Y3)). Again, the bits in these
positions contain information for the second user.

Third, let Ry, be a subset of Z(M) such that |Rbin| = y.r&l )]. Since the first

user cannot reconstruct the bits at the critical positions .7:6(1«1 ), we use the set Ry,
to store the critical bits of the following block. For block k, the first user places all
his information in Z(M). For block j (5 € {1,---,k — 1}), the first user places all his
information in Z(W \ (Rpin U BM), repeats in Ry, the bits in ]-"C(rl) for block 5 + 1,
and repeats in BY) the bits in B®) for block j + 1. The second user puts part of
his information in Igr)l (a subset of the positions of Ul(QJi,) for all the blocks except

for the first, in which Ibii contains a fixed sequence shared between the encoder

and both decoders. Indeed, for block 1, the positions indexed by .7:&1 ) are not

repeated anywhere, and the only way in which the first decoder can reconstruct those
bits consists in knowing a-priori the value of Vl(j\),. The situation is schematically
represented in Figures 4.10 and 4.11.

The encoding of Ul(:ojzj is performed “forward”, i.e., from block 1 to block k;

the encoding of Ul(lj)\, is performed “backwards”, i.e., from block k to block 1; the

2]1, can be performed in any order. The first user decodes Ul(% and

encoding of Ul( :
0)

N backwards” and can decode Ul(zjz, n

Ul(ljz, “forward”; the second user decodes Ul(
any order.
With this polar coding scheme, by letting k tend to infinity, the first user decodes

a fraction of the positions of Ul(ljz, containing his own message, given by

1
R, = N(]I(l)] — [Rbin| — [BY)) (4.69)
=I(Vi;Y1 | V) =I(Vi; Vo | V) = (I(V;Y2) — I(V;Y1))
=I1(V,Vi;Y1) = I(Vi;Va | V) = I(V; Ya). (4.70)

The information for the second user is spread between the positions of Ul(ol)\, and the

positions of U1(2]2, for a total rate that, as k tends to infinity, is given by

1 2
Ry = - (ZQ)] + 1Z3) (4.71)
=1(V;Y2) + I(Vy; Y2 | V) (4.72)
= I(V,V3; Ya). (4.73)

It is possible to achieve the rate pair (4.66) with a scheme similar to the one
described above by swapping the roles of the two users. Since I(V;Y71) < I(V;Y3),
only the first and the third chaining constructions are required. Indeed, the set that
has the role of B is empty in this scenario.

As our schemes consist in the repetition of polar blocks, the encoding and de-
coding complexity per block is ©(N logy N), and the block error probability decays
like O(2=N") for any 3 € (0,1/2).
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Figure 4.10 — Graphical representation of the sets associated with the three auxiliary
random variables in the scheme that achieves Marton’s region with only private
messages (4.3).
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Figure 4.11 — Graphical representation of the chaining constructions for Marton’s
region with only private messages with k = 3: the set D) is repeated into the set
Rsup of the following block; the set B® is repeated into the set B of the previous

block; the set Férl ) is repeated into the set Ry;n of the previous block.

4.7.2 Private and Common Messages: MGP Region

Finally, consider the case of a two-user DM-BC with both common and private
messages. Our most general result consists in the construction of polar codes that
achieve the MGP region (4.4).

Theorem 4.9 (Polar Codes for MGP Region). Consider a two-user DM-BC py, y,|x,
where X denotes the input to the channel, taking values on an arbitrary set X, and
Y1, Ys denote the outputs at the first and second receiver, respectively. Let Ry, Ry,
and Ro designate the rates of the common message and of the private messages
of the two users, respectively. Let V, Vi, and V5 denote auziliary binary random
variables. Then, for any joint distribution pyv, v,, for any deterministic function
¢: {0,133 — X such that X = ¢(V,V1,Va), and for any rate triple (Ro, Ry, Ra)
satisfying the constraints (4.4), there exists a sequence of polar codes with an in-
creasing block length N that achieves this rate triple with encoding and decoding
complezity ©(N logy N) and a block error probability decaying like O(Z_Nﬁ) for any

B e (0,1/2).

The polar coding scheme follows the ideas outlined in Section 4.7.1. Recall

that Ul(% is decoded by both users. Then, we put the common information in the

positions of Ul(?]z, that previously contained private information meant only for one
of the users. The common rate is clearly upper bounded by min{7(V; Y1), I(V;Y2)}.
The remaining four inequalities of (4.4) are equivalent to the conditions in (4.3) with
the only difference that a portion Ry of the private information for one of the users
has been converted into common information. This suffices to achieve the required

rate region.



How to Achieve the Capacity of
Asymmetric Channels

Sii sempre pitt 0 meno specifico.

Always be somehow specific.

In the previous chapter, we have presented low-complexity polar coding schemes
for the broadcast channel. Our constructions are based on two polar “primitives”,
namely, lossless compression and transmission over an asymmetric channel. In this
chapter!, we focus specifically on asymmetric channels, and we survey three gen-
eral capacity-achieving paradigms that provide a variety of provably optimal coding
solutions.

In Section 5.1 we review the existing literature and summarize our main con-
tributions. In Section 5.2 we discuss two coding “primitives”, specifically, how to
achieve the symmetric capacity of an asymmetric channel and how to perform error
correction using biased codewords. The solutions to these problems will be later used
as basic building blocks to devise coding schemes for asymmetric channels. Note
that this modular strategy is very much similar to the one presented in the previous
chapter for broadcast channels. Then, we describe in the next three consecutive
sections the coding paradigms for achieving the capacity of an arbitrary (hence,
possibly asymmetric) discrete memoryless channel (DMC): Gallager’s mapping in
Section 5.3, the integrated scheme in Section 5.4, and the chaining construction in
Section 5.5. In Section 5.6, we provide a comparison between these three differ-
ent approaches. The metrics taken into account are the error probability, the rate
penalty, the computational complexity, the universality, the delay, and the use of
common randomness. We defer the proofs of some results to the appendix in Section
5.7.

!The material of this chapter is based on joint work with S. H. Hassani and R. Urbanke [166,167].
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Figure 5.1 — Schematic representation of the Z-channel with parameter ¢.

5.1 Related Work and Main Results

The simplest example of asymmetric DMC is the Z-channel that is schematically
represented in Figure 5.1: the input symbol 0 is left untouched by the channel,
whereas the input symbol 1 is flipped with probability . The basic problem that
we face when transmitting over this channel is that (proper) linear codes impose
a uniform input distribution, whereas the capacity-achieving input distribution for
an asymmetric channel is, in general, non-uniform. Indeed, for the case of the Z-
channel, the capacity-achieving distribution assigns to the symbol 1 a probability
£°/%.(14-2¢%/%)~1, where we set & = 1—¢, see formula (5.10) of [44]. This mismatch in
the input distribution bounds the achievable transmission rate away from capacity.

It is worth pointing out that, at least for binary inputs, the optimal distribution
is not too far from the uniform one, in the sense that the capacity-achieving input
distribution always has a marginal in the interval (1/e,1 —1/e) [168]. In addition,
a fraction of at most 1 — 1eln(2) &~ 0.058 of capacity is lost if we use the uniform
input distribution instead of the optimal input distribution [168]. This result was
later strengthened in [169], where the Z-channel is proved to be extremal in this
sense. As for channels with more than 2 inputs, the upper bound 1 — 1/e to the
range of the capacity-achieving distribution still holds [170], but the lower bound
1/e is false.

Given that the loss incurred by using a uniform input distribution is relatively
modest, why do we care about the problem of achieving the full capacity of asym-
metric channels? First of all, it is an interesting theoretical question. Second, over
time, all communication systems are increasingly optimized to take full advantage
of their capabilities, and even small gains become significant.

The classic solution to the problem of coding over asymmetric channels goes back
to Gallager and consists of concatenating a linear code with a non-linear mapper
so that the input distribution becomes biased [120]. In [40], McEliece described
how this can be done successfully with iterative codes. We refer to this approach
as Gallager’s mapping and we discuss how any capacity-achieving coding scheme
can be used for this setting. In particular, by combining either polar codes or
spatially coupled codes with suitable non-linear mappers, we can approach capacity
arbitrarily closely. More specifically, we derive a scaling law that relates the gap
to capacity to the mismatch in the actual input distribution and to the size of the
channel alphabets.

More recently polar codes have been used to achieve the capacity of binary-input
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asymmetric DMCs. In particular, in [165] the authors propose a solution that makes
use of the concatenation of two polar codes: one of them is used to solve a source
coding problem, in order to have codewords distributed according to the capacity-
achieving input distribution; the other is used to solve a channel coding problem, in
order to provide error correction. However, such a scheme requires polarization for
both the inner and the outer codes, therefore the error probability scales roughly as
2~ N 1/4, where N is the block length of the code. Thus, in order to obtain the same
performance as standard polar codes, the square of their block length is required.
A very simple and more efficient solution for the transmission over asymmetric
channels is presented in [121] and we have reviewed this idea in Section 4.4.2. More
specifically, in order to transmit over channels whose optimal input distribution is
non-uniform, the polar indices are partitioned into three groups: some are used for
information transmission; some are used to ensure that the input distribution is
properly biased; and some carry random bits shared between the transmitter and
the receiver. The purpose of this shared randomness is to facilitate the performance
analysis. Indeed, as in the case of LDPC codes, the error probability is obtained by
averaging over the randomness of the ensemble. In short, the methods in [121,165]
exploit the fact that polar codes are well suited not only for channel coding but
also for lossless source coding [91,92]. Clearly, this is not a prerogative only of
polar codes as, for example, sparse graph codes have been successfully used for both
channel coding and source coding purposes [171]. Motivated by this fact, we describe
a scheme based on spatially coupled codes that achieves the capacity of asymmetric
DMCs by solving both a source coding and a channel coding problem at the same
time. As it will be explained in detail later, this last solution still does not have a
formal proof. We refer to this approach as the integrated scheme, because we use
one code for both source and channel coding.

This brings us to the third coding paradigm. By “chaining” together several
codewords, we can decouple the problem of source coding (creating a biased code-
word from unbiased bits) from the problem of channel coding (providing error cor-
rection). The idea is based on [122], where the authors refer to it as the bootstrap
scheme. We prefer to use the name chaining construction that was introduced in [48],
where a similar approach was used to design universal polar codes. The chaining
construction is a general method and we have already used it to devise polar coding
schemes for the broadcast channel in Chapter 4 of this thesis. Here, we show how to
chain any suitable source coding solution with any suitable channel coding solution,
in order to transmit over an asymmetric channel. We give explicit conditions on the
source and the channel code so that the overall scheme is capacity-achieving, and
we prove that both polar codes and spatially coupled codes satisfy these conditions.

In summary, this chapter surveys three different paradigms to achieve the
capacity of asymmetric channels and, as such, it is of tutorial nature. Moti-
vated by the recent advances in coding for symmetric channels, we show that it is
now possible to construct efficient schemes also for the asymmetric case. As a result,
we demonstrate that perhaps what was once considered as a difficult problem is in
fact quite easy to solve with existing “primitives”. The three paradigms presented
are quite general and should be regarded as “meta-schemes” that can then be made
more specific by using a certain class of codes (e.g., polar codes or spatially coupled
codes) according to the particular scenario of interest. For this reason, the interest
of this chapter is more in describing generic coding ideas rather than in presenting
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formal proofs and providing all the details for each scheme. With the objective
of highlighting the pros and cons of these coding approaches, we present them in
a unified manner and provide a detailed comparison with a focus on several fea-
tures crucial in applications, such as, error probability, rate penalty, computational
complexity, universality, delay, and access to common randomness.

5.2 Two Coding Primitives

First of all, we establish the notation and review some known concepts. Part of
this notation has been already introduced, but, for the sake of clarity, we define
again all the symbols that we use in the rest of the chapter. Then, we consider two
problems that will be regarded as useful primitives. In particular, in Section 5.2.2,
we discuss how to achieve the symmetric capacity of an asymmetric binary-input
DMC (B-DMC), and in Section 5.2.3 we describe how to transmit reliably a biased
binary codeword.

5.2.1 Notation and Prerequisites

Throughout this chapter, we consider the transmission over a DMC W : X — Y
with input alphabet X and output alphabet ). If the channel is binary-input, we
usually take X = Fy = {0,1} and we say that X is a Bernoulli(«) random variable
if P(X =1) = a for some a € [0, 1]. However, for the analysis of LDPC ensembles,
it is convenient to consider the standard mapping 0 <— 1 and 1 +— —1. It will
be clear from the context whether the input alphabet is {—1,1} or {0,1}. The
probability of the output being y given an input z is denoted by W(y | =) and
the probability of the input being z given an output y is denoted by px|y (= | y).
We write C(W) and Cs(WW) to indicate the capacity and the symmetric capacity
of W, respectively. Given the scalar components X;,---, X; and X0 o x0) we
use X;.; as a shorthand for the row vector (X;,---,X;) and, similarly, X%/ as a
shorthand for the row vector (X, ... X()) with i < j. The index set {1,---, N}
is abbreviated as [N] and, given a set A C [N], we denote by A its complement.
We denote by log, and In the logarithm in base 2 and base e, respectively. For
any ¢ € [0,1], we define z = 1 — z. The binary entropy function is given by
ho(x) = —xlogyx — Zlogy . When discussing sparse graph coding schemes, we
denote the parity-check matrix and its transpose by P and P, respectively. We do
not use H to denote the parity-check matrix, as it is done more frequently, because
the symbol H(-) indicates the entropy of a random variable. When discussing polar
coding schemes, we assume that the block length N is a power of 2, say N = 2" for
n € N, and we denote by Gy the generator matrix defined in (1.13).

Let us recall some basic facts concerning B-DMCs. This part is telegraphic and
the reader is referred to [44] for more details. First, consider a symmetric B-DMC
with X = {—1,1}. Assume that X is transmitted, Y is the received observation,
and L(Y') the corresponding log-likelihood ratio, namely for any y € Y,

Wiy [1)

L(y) =In Wiy -1

(5.1)

Let us denote by a the density of L(Y) assuming that X = 1 and let us call it an
L-density.
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We say that an L-density a is symmetric if

a(y) = e’a(—y). (5.2)

Since the log-likelihood ratio constitutes a sufficient statistic for decoding, two sym-
metric B-DMCs are equivalent if they have the same L-density. A meaningful choice
for the representative of each equivalence class is W (y | 1) = a(y) and, by symmetry,
W(y | —1) = a(—y). Indeed, by using the assumption (5.2), we can show that this
choice of W (y | x) yields an L-density equal to a(y) (see Lemma 4.28 of [44]).

As a final reminder, the capacity C'(W) can be computed as a function of the
L-density a according to the following formula (see Lemma 4.35 of [44]),

C(W) = / a(y) (1 — logy(1 + ¢ ¥)) dy. (5.3)

5.2.2 How to Achieve the Symmetric Capacity of Asymmetric
Channels

Problem Statement. Let W be a (not necessarily symmetric) B-DMC. The aim
is to transmit over W with a rate close to Cs(W).

Design of the Scheme. The original construction of polar codes directly achieves
the symmetric capacity of any B-DMC [37].

For sparse graph codes, some more analysis is required. Here, we will follow
a line of reasoning inspired by Section 5.2 of [44]. A similar approach was first
introduced in [172] and an alternative path that considers the average of the density
evolution analysis with respect to each codeword, is considered in [173]. All these
techniques lead to the same result.

The codebook of a code of block length NV and rate R with parity check matrix
P e }FglfR)NXN is given by the set of 1.5 € IF‘%V such that z1.yPT = Ora-R)N>
where 01,1 pg)n denotes a row vector of (1 — R)N zeros. In words, the transmitter
and the receiver know that the results of the parity checks are all zeros. Let us
consider a slightly different model in which the values of the parity checks are chosen
uniformly at random and this randomness is shared between the transmitter and
the receiver: first, we pick the parity checks uniformly at random; then, we pick a
codeword uniformly at random among those that satisfy the parity checks. Clearly,
this is equivalent to picking directly one codeword chosen uniformly at random from
the whole space IFQ] . As a result, we can model the codeword as a sequence of N
uniform i.i.d. bits. Note that, in [172], instead of randomizing the cosets, the authors
add a random scrambling vector to the entire codeword before transmission and then
subtract it afterwards. The random scrambling and de-scrambling is absorbed into
a normalized channel that is automatically symmetric, hence the standard density
evolution equations hold. The concentration theorem (for a random code, scrambling
vector, and channel realization) also follows by absorbing the scrambling bit into the
randomness of the channel. This scrambling idea is also used in [174], where the
authors explore the connection between symmetric channel coding, general channel
coding, symmetric Slepian-Wolf coding, and general Slepian-Wolf coding.

As the channel can be asymmetric, we need to define two distinct L-densities
according to the transmitted value. For simplicity, let us map the input alphabet Fy



112 How to Achieve the Capacity of Asymmetric Channels

into {—1,1} and denote by a*(y) and a~(y) the L-density for the channel assuming
that X = 1 and X = —1 is transmitted, respectively. Let us now flip the density
associated with —1, i.e., we consider a~(—y), so that positive values indicate “cor-
rect” messages. By the symmetry of the message-passing equations (see Definition
4.81 in [44]), the sign of all those messages that enter or exit the variable nodes with
associated transmitted value —1 is flipped as well. Therefore, the density evolution
analysis for a particular codeword is equivalent to that for the all-1 codeword, pro-
vided that we initialize the variable nodes with associated value 1 and —1 to a™(y)
and a~(—y), respectively. Now, each transmitted bit is independent and uniformly
distributed. Thus, we pick a variable node with L-density a*(y) with probability
1/2 and with L-density a~ (—y) with probability 1/2. As a result, the density evolu-
tion equations for our asymmetric setting are the same as those for the transmission
over the “symmetrized channel” with L-density given by

1

2°(y) = 5@ (=y) +a"(y)): (5.4)

This channel is, indeed, symmetric and its capacity equals the symmetric capacity
of the actual channel W over which transmission takes place. These two results are
formalized by the propositions below that are proved in Appendix 5.7.1.

Proposition 5.1. Consider the transmission over a B-DMC and let a*(y) and
a~(y) be the L-densities assuming that X = 1 and X = —1 is transmitted, respec-
tively. Then, the L-density a®(y) given by (5.4) is symmetric.

Proposition 5.2. Consider the transmission over a B-DMC W with symmetric
capacity Cs(W) and let a*(y) and a=(y) be the L-densities assuming that X = 1
and X = —1 is transmitted, respectively. Define the L-density of the “symmetrized
channel” a°(y) as in (5.4). Then,

CL(W) = / 2*(y) (1 - logy(1 + V) dy. (5.5)

Consequently, in order to achieve the symmetric capacity Cs(WW) of the (possibly
asymmetric) channel W, it suffices to construct a code that achieves the capacity
of the symmetric channel with L-density a®. Indeed, the density evolution analysis
for the transmission over W is exactly the same as for the transmission over the
symmetrized channel. Furthermore, the capacity of the symmetrized channel equals
the symmetric capacity Cs(W) of the original channel W. As a result, in order to
solve the problem, we can employ, for instance, an (1, r)-regular SC-LDPC ensemble
with sufficiently large degrees.

In short, the problem of achieving the symmetric capacity of any B-DMC can
be solved by using codes (e.g., polar, spatially coupled) that are provably optimal
for symmetric channels.

5.2.3 How to Transmit Biased Bits

Let us consider a generalization of the previous problem in which the bits of the code-
word are biased, i.e., they are not chosen according to a uniform distribution. This
scenario is an important primitive that will be used in Sections 5.4 and 5.5, where
we describe coding techniques that achieve the capacity of asymmetric channels.
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Problem Statement. Let W be a B-DMC with capacity-achieving input distri-
bution {p*(x) },e(0,1} such that p*(1) = «a for some v € [0, 1]. Let Xj.x be a sequence
of N i.i.d. Bernoulli(a) random variables. Denote by Y7.x the channel output when
X1.n is transmitted. Furthermore, assume that the transmitter and the receiver are
connected via a noiseless channel of capacity roughly NH(X |Y). Given Y7,y and
with the help of the noiseless channel, the aim is to reconstruct Xi.ny at the receiver
with high probability as N goes large.

Design of the Scheme. Let P be a parity-check matrix with NH(X | Y) rows
and N columns. Hence, P represents a code of length NV and rate 1 — H(X | Y). Let
SLNH(X|Y) = X1.yPT and assume that S1.NH(X|y) 1s sent over the noiseless chan-
nel to the receiver. Given Yi.y and Si.np(x|y), we will prove that the receiver can
reconstruct Xi.y, assuming that the code represented by P is capacity-achieving un-
der belief-propagation decoding for the symmetric channel described in the following
(see (5.7)).

For the sake of simplicity, let us map the input alphabet into {—1,1}. Since the
input distribution is non-uniform, the belief-propagation (BP) algorithm needs to
take into account also the prior on X and it is no longer based on the log-likelihood
ratio L(y) defined in (5.1). Let L,(y) denote the log-posterior ratio, defined as

pxpy(L]y) — L)+ 2 (5.6)

Lol =t 1Ty a

Following the lead of Section 5.2.2, let us define the densities of L,(Y) assuming
that X =1 and X = —1 is transmitted and let us denote them as a/ (y) and a; (y),
respectively. If we flip the density associated with X = —1, i.e., we consider a; (—y),
then, by the symmetry of the message-passing equations, the sign of the messages
that enter or exit the variable nodes with associated transmitted value X = —1 is
flipped as well. Therefore, the density evolution analysis for a particular codeword
is equivalent to that for the all-one codeword provided that we initialize the variable
nodes with associated value 1 to a;; (y), and the variable nodes with value —1 to
a, (—y), respectively. As P(X = —1) = «, the density evolution equations for our
asymmetric setting are the same as those for the transmission over the “symmetrized
channel” with L-density

al(y) = oay, (—y) + aa; (y). (5.7)

The propositions below show that this channel is, indeed, symmetric and establish
the relation between the conditional entropy H(X | Y) and a}(y). The proofs of
these results can be found in Appendix 5.7.2.

Proposition 5.3. The L-density a;(y) given by (5.7) is symmetric.

Proposition 5.4. Consider the transmission over a B-DMC W with capacity-
achieving input distribution p*. Let X ~ p* and Y be the input and the output
of the channel. Denote by af(y) and a, (y) the densities of Ly(Y) assuming that
X =1 and X = —1 is transmitted. Let a;(y) be the density of the “symmetrized
channel”, as in (5.7). Then,

H(X|Y) = / a3 (y) Joga (1 + V) dy. (5.8)
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Let us now see how these two propositions imply that we can reconstruct Xi.n
with high probability. Since the channel with density af)(y) is symmetric by Propo-
sition 5.3, its capacity is given by

/af‘)(y) (1 —logy (1 + efy)) dy=1-— /a;(y) logo(l+e ¥)dy=1—H(X |Y),

where the last equality comes from Proposition 5.4. Recall that the receiver is given
the channel output Y3,y and the error-free vector Sy.np(x|y) = X1. ~PT. Hence, we
can think of this setting as one in which Xi.y is a codeword of a sparse graph code
with syndrome vector Sy.nyp(x|y) shared between the transmitted and the receiver.
As previously stated, the density evolution analysis for this case is the same as
when we transmit over the symmetric channel with density a}(y) and the syndrome
vector is set to 0. By assumption, the matrix P comes from a code that achieves
capacity for such a symmetric channel, hence the transmitted vector Xi.n can be
reconstructed with high probability.

We can employ, for instance, an (1,r)-regular SC-LDPC ensemble with suffi-
ciently large degrees. Another option is to use spatially coupled MacKay-Neal (MN)
and Hsu-Anastasopoulos (HA) LDPC codes that, compared to (1, r)-regular codes,
have bounded graph density. In particular, in [175] it is proved that MN and HA
codes achieve the capacity of B-DMCs under MAP decoding by using a parity-check
matrix with bounded column and row weight. Furthermore, the authors of [175]
give empirical evidence of the fact that spatially coupled MN and HA codes achieve
the capacity of the BEC also under iterative decoding. These results are extended
to the additive white Gaussian noise channel in [176].

In summary, so far we have discussed how to achieve the symmetric capacity of a
B-DMC and how to transmit biased bits. Now, let us move to the main topic of this
paper and describe three approaches for achieving the actual capacity of any DMC.
While doing so, we will regard the solutions to the two problems of this section as
useful primitives.

5.3 Paradigm 1: Gallager’'s Mapping

The solution proposed by Gallager in page 208 of [120] consists of using a standard
linear code and applying a non-linear mapper to the encoded bits in such a way that
the resulting input distribution is appropriately biased. More recently, Gallager’s
mapping was used in [40] to approach the capacity of nonstandard channels via
turbo-like codes. Furthermore, in [177], the authors applied this shaping idea to
finite-state channels and described how to construct an explicit invertible finite-
state encoder. Before moving on to a general description of the scheme, to convey
the main ideas, let us start with an example.

5.3.1 A Concrete Example

Let X = {0, 1,2} and suppose that we want to transmit over a channel W : X — )
with a capacity-achieving input distribution of the following form: p*(0) = 3/8,
p*(1) = 3/8, p*(2) = 2/8.

Let V = {0,1,---,7} and consider the function f : ¥V — X that maps three
elements of V into 0 € X', three other elements of V into 1 € X, and the remaining
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two elements of V into 2 € X'. In this way, the uniform distribution over ¥ induces
the capacity-achieving distribution over X'. Define the channel W’ :V — ) as

Wiy |v)=W(y| f(v)). (5.9)

Take a code that achieves the symmetric capacity of W’. Then, we can use this code
to achieve the capacity of W via the mapping f.

The above scheme works under the assumption that we can construct codes that
achieve the symmetric capacity for any given input alphabet size. Note that this
can be done, e.g., with g-ary polar codes [79]. Sometimes it is more convenient to
achieve this goal indirectly by using only binary codes. Indeed, suppose that the
channel changes for some reason. Then, the optimal input distribution also changes,
and we might have to change the alphabet V. If we code directly on V, we will also
have to change the code itself. If the code needs to be implemented in hardware, this
might not be convenient. However, if we manage to use the same binary code and
only modify some preprocessing steps, then it is easy to accomplish any required
change in the input distribution.

Let us now describe this approach in detail. Observe that V has cardinality
8 = 23. Rather than considering the set of integers from 0 to 7, it is more convenient
to consider the set of binary triplets. Let 4 = {0,1}3 and consider the function by
g:U — X. As before, g maps three elements of U into 0 € X, three other elements
of U into 1 € X, and the remaining two elements of U into 2 € X. In this way,
the uniform distribution over &/ induces the capacity-achieving distribution over X'.
Note that any u € U can be written as u = (v, u® u®), where v € {0,1}
for i € {1,2,3}. Define the channels W/’ : {0,1} — Y, W3 : {0,1} — Y x {0,1},
Wi :{0,1} - Y x {0,1} x {0,1} as

u<2 w(3)
W3 (g, u® | u®) = Z Wy | g(u®, u® o)), (5.10)
w(3)

W (g u,ul® | u®) = W (y | gu),u®, ul)).

4
Take three binary codes that achieve the symmetric capacities of W{', W4, and WY

By the chain rule of mutual information, the sum of these capacities equals C'(W).
Hence, we can use these codes to achieve the capacity of W via the mapping g.

5.3.2 Description of the General Scheme
Problem Statement. Let W be a DMC with capacity-achieving input distribu-

tion {p*(z)}zex. The aim is to transmit over W with rate close to C(W).

Design of the Scheme. Pick § > 0 and find a rational approximation p(x)
that differs from p*(z) by at most ¢ in total variation distance. In formulae, take
p(z) = Ng/d with Ny, d € N for all x € X such that

5 Z p*(x z)| < 0. (5.11)

xeX
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Take an extended alphabet V with cardinality equal to d and consider the function
f:V — X that maps N, elements of V into z € X. Define the channel W' :V — Y
as in (5.9). Denote by X and Y the input and the output of the channel W,
respectively. Let V' be uniformly distributed over V and set X = f(V'). Since the
uniform distribution over V induces the input distribution p(x) over X, we have
that X ~ p(x). Construct a code C that achieves the symmetric capacity of W’.
Therefore, by using the code C and the mapping f, we can transmit at rate R
arbitrarily close to
Cs(W" =1(V;Y)=I(X;Y) 630 c(W).

As 6 goes to 0, the distribution p tends to p* and I(X;Y") approaches C(W).

If we want to restrict to binary codes, select a rational approximation of the form
p(x) = N, /2! for t, N, € N. Pick Y = {0,1}* and consider the function g : L/ — X
that maps NV, elements of U into x € X. The set U contains binary vectors of
length ¢ that can be written in the form u'* = (u™®, ... u®), where u0) € {0,1}
for j € [t]. Define the synthetic channels W}’ : {0,1} — ¥ x {0,1}77, similarly to
(5.10), i.e.,

WY T ) = ST Wy | g(a). (512

Wit
Let Uy be a sequence of ¢ i.i.d. random variables uniform over {0,1}. Set X =
g(U1.). Since the uniform distribution over I induces the input distribution p(z)
on X, we have that X ~ p(x). Construct ¢ codes Cy, - - - ,C; such that C; has rate R;
that is arbitrarily close to the symmetric capacity of the channel WJ{’. Therefore, by
using these codes and the mapping g, we can transmit at rate R arbitrarily close to

t
Y IUYLY | Uj) =I(X;Y) = C(W), (5.13)
= t—o00

where the first equality comes from the chain rule and I(X;Y") approaches C (W)

as 0 goes to 0.

Let us now explain formally how the encoding and decoding operations are done
for the schemes mentioned above (see also Figure 5.2). Then, we will consider the
performance of this approach by relating the gap C(W) — I(X;Y) to ¢ and to the
cardinalities of the input and the output alphabets.

Encoding. First, consider the scheme based on a single non-binary code. Let M be
the information message that can be thought of as a binary string of length nR and

let € be the encoder of the code C. The output of the encoder is v1.xy = (v1,- -+ ,vN),
where v; € V for ¢ € [N]. Then, v1.x is mapped component-wise by the function f
into z1.xy = (x1,--- ,zN), with z; € X such that z; = f(v;).

Second, consider the scheme based on ¢ binary codes. Let M = (My,---, M)
be the information message divided into ¢ parts so that M; can be thought of as a
binary string of length nR; for j € {1,--- ,t}. Let & be the encoder of the code C;

that maps M; into ugjj)v = (ugj), e ,u(j))T, where ugj) € {0,1} for i € [N]. Then,
UH\/ is mapped component-wise by the function g into z1.x = (21, - ,2n), with

z; € X given by x; = g(ul?).
Finally, we transmit the sequence x1.y over the channel W.
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(a) Solution based on a single non-binary code: the message M is encoded by £ and decoded
by D.
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(b) Solution based on t binary codes: the message M = (Mj,---,M,;) is encoded by
&1,--+,& and decoded successively by Dy,---,D;. Note that D; is the decoder of the
synthetic channel Wj{’ and it is fed with the output of the actual channel W together with
the previous re-encoded estimates.

Figure 5.2 — Coding over asymmetric channels via Gallager’s mapping.

Decoding. First, consider the scheme based on a single non-binary code. Let D
be the decoder of the code C, that accepts as input the channel output y;.5 and
outputs the estimate M.

Second, consider the scheme based on t binary codes. Let D; be the decoder
of the code C;. It accepts as input the channel output yi.x and the previous re-

encoded estimates (ﬁglj)\,, e ,17(1{;,1)). It outputs the current estimate M ;- To make
the use of the previous estimates possible, the decoding occurs successively, i.e., the
decoders Dy, --- ,D; are activated in series.

The situation is schematically represented in Figure 5.2.

Performance. The codes C and C; can be used to transmit reliably at rates R and
Rj. Then, M = M and M; = M; (j € [t]) with high probability. As a result, we can
transmit over W with rate close to I(X;Y'), where the input distribution is p(z).
Also, as the mutual information is a continuous function of the input distribution,
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if § gets small, then I(X;Y) approaches C'(W). This statement is made precise by
the following proposition that is proved in Appendix 5.7.3.

Proposition 5.5. Consider the transmission over the channel W : X — Y and
let 1(p) be the mutual information between the input and the output of the channel
when the input distribution is p. Let p and p* be input distributions such that their
total variation distance is upper bounded by §, as in (5.11), for § € (0,1/8). Then,

[1(p") — I(p)| < 301log, [V] + ha(9), (5.14)

[I(p*) — I(p)| < 7dlogy |X| + ha(d) + ho(40). (5.15)

Note that the bounds (5.14) and (5.15) depend separately on the input and
the output alphabet. Therefore, we can conclude that, under the hypotheses of

Proposition 5.5,
1) = 1) = 0 (5108, ("L ),

5.4 Paradigm 2: Integrated Scheme

The basic idea of this approach is to use a coding scheme that is simultaneously
good for lossless source coding and for channel coding. The source coding part is
needed to create a biased input distribution from uniform bits, whereas the channel
coding part provides reliability for the transmission over the channel.

A provably capacity-achieving scheme was first proposed in [121] in the context
of polar codes. We reviewed such a scheme in Section 4.4.2, because we used it as a
primitive to design polar codes for the broadcast channel. Let us now briefly clarify
how the scheme of [121] solves both a source coding and a channel coding problem.

As for source coding, we consider the sets Hy and Lx defined in (4.10): for
1 € Hx, the bit U; is approximately uniformly distributed and independent of
Ui.;—1; and, for i € Lx, the bit U; is approximately a deterministic function of
Uy.;—1. Consequently, we can compress Xi.ny into the sequence {Ui}ieﬁg( that has
size roughly NH(X) (for a more detailed explanation, see also Section 4.4.1).

As for channel coding, we interpret the channel output Yi.ny as side information
for X1y and consider the sets H x|y and Lx|y defined in (4.15) and (4.16): for i €
Hx|y, Ui is approximately uniformly distributed and independent of (Ur:i—1, Y1.N);
and, for i € £X|y, U; is approximately a deterministic function of (Uy.;—1,Y7.n).

To construct a polar code, we place the information in the positions indexed by
T =MHxNLxy. Indeed, if i € Z, U; is approximately uniformly distributed given
U1.;—1, which implies that U; is suitable to contain information. Furthermore, U; is
approximately a deterministic function given Uj.;_1 and Yi.n, which implies that U;
is decodable. From (4.19), we obtain that Z has size roughly N1(X;Y"). Hence, by
choosing X to be distributed according to the capacity-achieving input distribution
p*, we can transmit over W with rate close to C'(W).

In the remaining part of this section, we describe how to extend this approach
to sparse graph codes.
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Problem Statement. Let W be a B-DMC with capacity-achieving input distri-
bution {p*(z)} (0,1} such that p*(1) = « for some a € [0, 1]. The aim is to transmit
over W with rate close to C(W).

Design of the Scheme. Consider a linear code with parity—check matrix P with
NH(X) = Nha(«) rows and N columns, namely P € IFNhZ( XN et X1y € Fé\f be

a codeword and denote by Yi.n the corresponding channel output. Let Si.npya) €

F;th(a) be the vector of syndromes defined as Si.np,(a) = X.nyPT.

Recall that, in the integrated scheme, we need to achieve the source coding and
the channel coding part at the same time. To do so, we divide Si.yp,(q) into two
parts, i.e.,

S1:Nha(a) = = (st

(2)
LNC(W) S ), (5.16)

NH(X|Y))

where this decomposition is possible because hy(a) = H(X) =C(W)+ H(X | Y).
Similarly, it is convenient to write the parity-check matrix P as

P =[P, P], (5.17)

NC(W)xN NH(X|Y)xN

where Py € Fy and P, € I,
(1)

The first part of the decomposition (5.16), namely S NO(W) contains the infor-
mation bits. This is quite different from what happens in a standard parity-check
code, in which the values of the parity checks are shared between the encoder and
the decoder (and typically fixed to 0). In the proposed scheme, the parity checks
contain the transmitted message.

The second part, namely Sﬁ)v HX|Y)’ is chosen uniformly at random, and this
randomness is assumed to be shared between the transmitter and the receiver. Note
that Si ])VH(X‘Y) does not depend on the information bits.

The choice of the parity-check matrix P, concerns the channel coding part of the
scheme. Recall the problem considered in Section 5.2.3: given the channel output
Y1.n and the parity bits Sl NH(X|Y the receiver can reconstruct Xi.y, as long as
the parity-check matrix corresponc{s to a code that achieves the capacity of the

“symmetrized channel” with density given by (5.7). For example, we can set P» to
be the parity-check matrix of an (1, r)-regular SC-LDPC ensemble with sufficiently
large degrees.

The choice of the parity-check matrix P; concerns the source coding part of
the scheme. In particular, we choose P; in order to fulfill the following require-
ment: we want to associate with each syndrome Si.np,() @ codeword Xi.n with
Xi.n[PL, P = S1:Nho(a) so that the uniform i.i.d. distribution on the syndromes
induces a Bernoulli(«) i.i.d. distribution on the codewords.

Before moving on with the description of the scheme, let us review how to use
sparse graph codes to accomplish lossless source coding. We are given a vector
X1.n of N ii.d. Bernoulli(«) random variables and the aim is to compress it into a

binary sequence of size roughly N hg(a). We want to solve the problem by using the

parity-check matrix P € JFNh2( XN of g sparse graph code as the linear compressor

and the BP decoder as the decompressor7 respectively [171]. More specifically, given
r1.N to be compressed, the encoder computes s1.np, () = 71 ~PT. The task of the
decoder can be summarized as follows:
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Task 1. Given the syndrome vector xy. NPT, recover the biased vector x1.y by
using the BP algorithm.

Les us now relate this task to a channel coding problem. Let c¢1.5 be a codeword
of the code with parity-check matrix P, i.e., c;.vPT = 01:Nho(a)- Consider the
transmission of ¢1.y over the binary symmetric channel with crossover probability
«, i.e., the BSC(«), and let y1.5 be the channel output. Denote by y1.8PT the
syndrome computed by the decoder, and note that y;. N15T = €. NPT, where ¢; = 1
if the i-th bit was flipped by the channel, and 0 otherwise. Consider the following
two tasks:

Task 2. Given the syndrome vector ey, N]5T, recover the error vector ej.y by
using the BP algorithm.

Task 3. Given the received vector 1.y, recover the transmitted codeword ci.n
by using the BP algorithm.

Let us briefly show that these three tasks are, in fact, equivalent. First of all,
note that Task 1 and Task 2 are clearly identical. Furthermore, it is shown in [171]
that Task 2 succeeds if and only if Task 3 succeeds. The idea is to write down
the message-passing equations in the two cases, and to observe that the messages
obtained in Task 2 can be put in one-to-one correspondence with the messages
obtained in Task 3. More specifically, on the one hand, in Task 2 we initialize
all the received values at variable nodes by In(a/«) and the check nodes have an
associated sign given by the vector (—1)611NPT. On the other hand, in Task 3, we
initialize the received values at variable nodes by the vector (—1)¥:¥ -In(a/«), and
all the check nodes have an associated sign of +1. The crucial observation is that,
for each iteration of the BP algorithm, the modulus of the received values at variable
nodes stays the same for the two tasks, and the sign is flipped according to the value
of y1.n.

Note that Task 3 is the standard channel coding problem for the transmission
over the BSC. Hence, we can use the parity-check matrix of a code that achieves
capacity over the BSC to compress N ii.d. Bernoulli(a)) random variables into a
binary sequence of size roughly Nha(«).

Let us come back to our original problem of achieving the capacity of a B-DMC.
The source coding part of our approach is basically the inverse of source coding.
Indeed, given the uniform vector of syndromes Sy, (q), We want to obtain a biased
codeword Xi.n.

Let P; be the parity-check matrix of a regular SC-LDPC ensemble with suf-
ficiently large degrees. This implies that also P is the parity-check matrix of a
regular SC-LDPC ensemble. First, suppose that the vector of syndromes to be ful-
filled has size m slightly larger than Nha(«), say m = N(ha(a) + €) for some small
e > 0. Consequently, suppose that the matrix P has m rows. From the argument
above, if Xi.x is a vector of N i.i.d. Bernoulli(a)) random variables, then, with
high probability, there exists a vector of syndromes Si.,, such that Xi.yPT = Si.m.
However, only for a vanishing fraction of possible Si.,,, there exists X.n such that
X1.yPT = 81.,,. This means that, for a randomly chosen Si.,,, with high probability
the BP algorithm will not succeed.

Suppose now that the vector of syndromes to be fulfilled has size m no larger
than Nho(a). Then, with high probability, there are exponentially many X;.ny with
i.i.d. Bernoulli(er) distribution such that Xj. NPT = Si.,. This implies that the



5.4. Paradigm 2: Integrated Scheme 121

BP algorithm does not converge, as a message-passing decoder operating locally can
easily get confused when there are many feasible solutions.

Perhaps a more apt approach is to frame the source coding part of our scheme
as a lossy compression problem, where the distortion between the distribution of
X1.y and an ii.d. Bernoulli(a) distribution tends to 0 as N goes large. It was
observed in [178] that using a standard BP algorithm is not effective for lossy com-
pression, and that this issue can be overcome by introducing a decimation process.
An encoding scheme for lossy compression based on spatially coupled low-density
generator-matrix (LDGM) codes and belief-propagation guided decimation is pre-
sented in [179], where it is shown with numerical simulations that the spatially cou-
pled ensemble approaches the Shannon rate-distortion limit for large check degrees.
This technique is extended to the Wyner-Ziv and Gelfand-Pinsker problems in [180],
where it is shown empirically that spatially coupled compound LDGM/LDPC codes
with belief-propagation guided decimation achieve the optimal rates. In particular,
the solution to the Gelfand-Pinsker problem presents some similarities to our ap-
proach: the information bits are placed in a vector of syndromes, and the compound
LDGM/LDPC codes are simultaneously good for rate distortion and channel coding.
The need for a scheme that is good both for source and channel coding is due to the
fact that, in the Gelfand-Pinsker setting, there is a constraint on the average weight
of the transmitted codeword. This is analogous to our requirement that Xi.y has
a Bernoulli(«) i.i.d. distribution. Another solution to the Gelfand-Pinsker problem
that adopts a framework similar to the one considered in this section is provided
in [181]. Here, the authors use LDPC matrices with logarithmic column weight and
maximum likelihood decoding. This approach provably achieves the optimal rate
by introducing the notion of a hash property. However, the decoding algorithm
has exponential complexity. The results of [181] are extended in [182], where codes
for general (thus, possibly asymmetric) channels and sources are constructed. It
is interesting to point out that the problem of generating the codeword Xi.y is
solved in [182] with a constrained-random-number generator, instead of resorting to
a belief-propagation type of algorithm.

Our solution follows the lead of [179,180] and uses belief-propagation guided
decimation at the encoder. Note that this approach works well in practice, as
testified by the simulation results in [179,180], but we currently have no theoretical
guarantees on its performance. Let us now get down to the details of the proposed
encoding scheme. Given the syndrome vector Si.yp,(a), We run the standard BP
algorithm and, after every ¢ iterations, for some fixed ¢t € N, we decimate a small
fraction of the codeword bits. This means that we set each decimated bit to its
most likely value. Furthermore, we fix the modulus of the received values at the
corresponding variable nodes to +o0o. Consequently, the decimated bits will not
change during the next iterations of the algorithm. The procedure ends when all
the codeword bits have been decimated.

The algorithm described above outputs the codeword Xi.5. Recall that SSJ)VC(W)
(1)

contains the information bits. Hence, if X;. NPlT differs from 51: NCw)s even if the
decoder correctly reconstructs the transmitted codeword Xi.y, it will not correctly
reconstruct the information sequence. However, the idea is that the fraction of
positions in which X1:NP1T differs from SSJ)VC(W)
intuition is confirmed by the numerical simulations in [179,180]. Hence, in order to

tends to 0 as IV goes large. This
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(1)

1:1NC(W) with a negligible loss in rate.

cope with this issue, we pre-code S

Encoding. First, we pre-code the NC (W) information bits with a code C,, of rate
close to 1. We can use, for instance, an SC-LDPC code or a polar code designed for
the transmission over the BSC. The output of this pre-coding operation is the se-
quence sﬁ)\,( C(W)+e) for some small € > 0. Then, we fill sgzj)v HX|Y) with a realization
of a sequence chosen uniformly at random and shared between the transmitter and
the receiver. Let P be the parity-check matrix of an SC-LDPC code with sufficiently
large degrees. From the syndrome vector si.n(g(x)+e) = (SSJ)V(C(W)JK), sf])VH(XW))
and the parity-check matrix P, we obtain the codeword zi.ny by running the BP
algorithm with decimation steps.

Let P; be obtained by decomposing P as in (5.16). Let us now check that we
can recover correctly the initial information bits from x. NP1T by decoding Cp,. If
this is not possible, then the overall procedure is repeated with a different choice
for the code Cp,. Once the decoding of C}, succeeds, we transmit the vector x1.x over

the channel.

Decoding. The decoder receives y1.ny and runs the BP algorithm using also the

vector of syndromes 5(2) shared with encoder. Let Z1.n5 be the output of the

LNH(X|Y)
BP algorithm. Eventually, we recover the information bits from 2. NP1T by decoding

Cp.

Performance. There are two possible types of errors. First, the encoder might
fail to produce a codeword z;.n for which the decoding of C, succeeds. Second,
the decoder might not estimate correctly the transmitted vector, i.e., T1.y # Z1.N-
Note that, by construction, if Z1.ny = z1.n, then the decoder recovers correctly the
information bits.

The second error event occurs with vanishing probability, and this result is prov-
able by following the argument of Section 5.2.3. Concerning the first error event,
we only need that it does not happen with probability 1, because the encoding
operation can be attempted several times. As we previously pointed out, from nu-
merical simulations we observe that x;. NP1T agrees with SSZ)V(C(W) +o) in almost all
the positions. We remark that, to the best of our knowledge, this last statement is
not provable, because of the decimation steps introduced in the BP algorithm. If
r1.ny Pl and SSJ)V(C(W) 4oy are sufficiently close, then, with high probability, we can
recover the information bits by decoding C,.

5.5 Paradigm 3: Chaining Construction

In the integrated approach, discussed in the preceding section, the idea was to use a
single code to accomplish both the source and the channel coding part. The chaining
construction, on the contrary, enables us to separate these two tasks. In this way, we
can combine any solution to the source coding part with any solution to the channel
coding part. This idea was first presented in [122]. Here, we prove that it can be
used to achieve the capacity of any asymmetric DMC.
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The problem statement is the same as in Section 5.4. Our main idea is formalized
by the following theorem.

Theorem 5.1 (Chaining Construction for Asymmetric Channels). Let W be a B-
DMC with capacity-achieving input distribution {p*(z)}zeq0,1y such that p*(1) = «
for some a € [0,1]. Denote by X and Y the input and the output of the channel,
respectively. Let N,m,{ € N, where m is roughly Nha(«), and £ is roughly NH (X |
Y). Denote by U, a sequence of m i.i.d. uniform random variables, and by X1.n a
sequence of N i.i.d. Bernoulli(a)) random variables. Let Y1.n be the channel output
when X1.n is transmitted. Assume that, for any § > 0, there exists N € N and there
exist maps f: {0, 1}V — {0,1}™, g : {0,1}™ — {0,1}¥", and h : {0,1}V — {0,1}*
that satisfy the following properties.

1. Upm = f(9(Ur.m)), i-e., the map f is invertible, with probability 1 — 4.

2. The total variation distance between the distribution of g(Ui.m) and the distri-
bution of X1.N is upper bounded by §.

3. Given Y1.ny and h(X1.n), it is possible to reconstruct Xi.n with probability
1-6.

Then, we can use f, g, and h to transmit over W with rate close to C(W).

In the following, we will prove this theorem and we will provide choices of f, g,
and h that fulfill the required properties.

Design of the Scheme. First, we consider the source coding part of the scheme.
Recall that in the previous section we framed this task as the inverse of source coding
and we described a solution that uses sparse graph codes and belief-propagation
guided decimation. Let us now consider this problem from a more general point of
view.

In the traditional lossless compression setting, the input is a sequence Xi.y with
ii.d. Bernoulli(e) distribution, and the encoder consists of a map from the set
{0,1}" of source sequences to the set {0,1}* of finite-length binary strings. Let
f:{0,1}"¥ — {0,1}* be the encoding map, so that U = f(Xj.y) is the compressed
description of the source sequence Xi.n. For a good source code, the expected
binary length of U is close to the entropy of the source, i.e., Nha(«). In addition,
the decoding function ¢ : {0,1}* — {0,1}" is such that Xi.y = g(f(X1.n)) with
high probability over the choice of Xi.5. Several solutions to this problem have
been proposed to date, such as, Huffman coding, arithmetic coding, Lempel-Ziv
compression [183], polar codes [91,92], and LDPC codes [171], just to name a few.

In our setting, the input is the compressed sequence Uq.,, with i.i.d. uniform
distribution, instead of the biased sequence Xi.n. Note that Uj., contains the
information bits. Furthermore, we consider maps from {0,1}" to {0,1}™ and vice
versa, where m is a fixed integer of size roughly Nhy(«), instead of maps from
{0,1}" to {0,1}*. More specifically, the encoder and the decoder implement the
maps ¢ : {0,1}™ — {0,1}V and f: {0,1}¥ — {0,1}™, respectively. For the source
coding part of our scheme, we require that the maps f and g satisfy the first two
properties stated in Theorem 5.1. Let us justify such requirements.
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The first property ensures that, given g(Uj.y), it is possible to recover Uy,
with high probability. This requirement is crucial because g(Ui.,) represents the
codeword transmitted over the channel. Hence, at the decoder, given the channel
output, we estimate g(Uy.y,) and, from this, we deduce the information vector Uy.,.

The second property ensures that the error probability for the transmission of
9(U1.m) is upper bounded by the error probability for the transmission of N i.i.d.
Bernoulli(a) random variables plus §. This statement can be proved as follows.
Recall that, by definition of total variation distance, the second property can be

written as 1

5 O [Py (@) —Px, (@) <6, (5.18)

ze{0,1}N

where X1,y has an i.i.d. Bernoulli(«r) distribution. Then, by using that

Z IP Ulm Z PXlN =1,

2€{0,1}N z€{0,1}N
we obtain
Z maX(Pg(Ul:m)(x) - ]P)XLN (x)7 0) < (5 (519)
ze{0,1}N

Denote by Pg and ]5]3 the block error probabilities when the transmitted codeword
is distributed according to g(Uy.n,) and X;.x, respectively. Then,

Py = Z P(error | )Py, ()

= Z P(error | x)(IP)g(Ul:m)(az) —Px, () + Z (error | x)Px, .\ (2)
ze{0,1}N z€{0,1}N

< Z ]P’(error | {L‘) ) maX(Pg(U1:m)($) - PXl:N (l’),())
z€{0,1} N

+ Z P(error | z)Px,. ()
ze{0,1}V

<0+ PB,
(5.20)

where the last inequality uses (5.19) and that P(error | ) < 1. The requirement
(5.20) is crucial because, in the channel coding part of the scheme, we assume that
the transmitted codeword has an i.i.d. Bernoulli(a) distribution.

Let us now describe how to construct maps f and g such that these maps satisfy
the desired properties. One possible solution is based on polar codes, and the idea
follows closely the scheme described in Section 4.4.2. Given Ui, as input, we
put it into the positions indexed by Hx defined in (4.10), and set the remaining
positions according to the “randomized rounding” rule (4.20). Then, we multiply
this vector with the matrix Gy, and define g(Uy.p,) as the result of this last operation.
Given X1.y as input, we multiply it with the matrix G, and extract the positions
indexed by Hyx. We define f(X7.n) as the result of this last operation. It is clear
that Uy., = f(9(U1.m)), hence the first property of Theorem 5.1 is satisfied. By
following the proof of Theorem 3 of [121], we also obtain that the total variation
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distance between the distribution of g(Uj.n,) and the i.i.d. Bernoulli(a) distribution
is upper bounded by 2=V ? for B < 1/2. Hence, the second property of Theorem 5.1
is satisfied.

An alternative solution is based on arithmetic coding. Let us start by defining
the map g. We partition the interval [0, 1) into 2™ sub-intervals of size 2. Given
Ui.m as input, we interpret this sequence as the integer K € {0,---,2™ — 1}, and
we pick a point U uniformly at random in the sub-interval [K27™ (K + 1)27™).
The output sequence g(Uy.,) is obtained from U as follows. Given an interval [ =
[istarts tend ), We partition it into the sub-intervals Iy = [igtart, istart + @(fend — %start))
and Iy = [istart + @(lend — Ustart)s tend). Note that |I1| = a|I| and |I2] = (1 — a)|1],
where |I], |I1], and |I2| denote the sizes of I, I, and I3, respectively. We initialize
I to be the interval [0,1). If U € I, then we output a 1 and redefine I to be Iy;
otherwise, we output a 0 and redefine I to be I>. By repeating this procedure N
times, we obtain the sequence g(Uq.p,).

Let us define the map f. Given Xi.n as input, we evaluate the interval I ac-
cording to the following iterative procedure. We initialize I to be the interval [0, 1).
If the input is 1, we redefine I to be I1; otherwise, we redefine I to be Iy. As the
input sequence Xip.n has length N, we repeat this operation N times. Then, we
pick a point X uniformly at random in the resulting interval I. Let K be such that
X € [K27™, (K +1)27™). We define f(Xj.y) to be the sequence associated to the
integer K.

Let us prove that the maps f and g defined above satisfy the desired properties.
As Uy, is a sequence of m i.i.d. uniform random variables, the point U is uniformly
distributed in [0, 1). Hence, the sequence g(Uj..,) obtained with the aforementioned
procedure is exactly a sequence of N ii.d. Bernoulli(ar) random variables. As a
result, the second property of Theorem 5.1 holds. Let us prove that also the first
property holds. Given a sequence g(u) € {0,1}", denote by I(g(u)) the interval
associated with it. Then, for any € > 0,

P(f(g(Ur:m)) # Ur:m) = > Py (9(u))
u€{0,1}™:f(g(u))#u

= > Pyt (9(1)) + 3 Pyt (9(1))-

ue{0,1)™: f(g(u)) #u ue {0,137 (g(u)#u
[E(g(w))|>2~ N ha() =0 |(g(u)) <2~ N (h2(@)-9

(5.21)

Note that [I(g(u))| = a®n@®) (1 — q)N-wn(9(w)  where wy denotes the Hamming
weight. In addition, recall that ¢(Ui.,) has an ii.d. Bernoulli(a) distribution.
Hence, if |I(g(u))] > 2~ V"2(®)=9) then the sequence g(u) cannot be typical because
of its Hamming weight. Consequently, we can make the first term of the RHS of
(5.21) arbitrarily small. Furthermore, by observing that Py, y(g(w)) = [I(g(u))l,
we have that

D Py (U1.m) (9(1)) = > I(g(u))| < 272~ Nha(e)=e)

u€{0,1}:f(g(u))Fu ue{0,1}: f (g(u))F#u
[1(g(u))|<2~ Nh2()=e) [1(g(u))|<2~N(h2(@)—e)

(5.22)
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as there are at most 2™ possible sequences u. Hence, by taking m = N (ha(a) — 2€),
we can make also the second term of the RHS of (5.21) arbitrarily small. This
suffices to prove that the first property of Theorem 5.1 holds.

Another possible solution is based on sparse graph codes, and the idea follows
closely the scheme described in Section 5.4. Let P € IF';”XN be the parity-check
matrix of, e.g., an SC-LDPC code with sufficiently large degrees. Given Uj.,,, we
use it to initialize the values of the check nodes, and run belief-propagation guided
decimation. Then, we define g(Uj.,) as the output of the algorithm. Given Xi.y,
we define f(X1.y) as X1.vP?. As pointed out in Section 5.4, Uy, differs from
f(g(U1.m)) in a vanishing fraction of positions, but we can cope with this issue by
pre-coding Uj.,,, with a negligible loss in rate. Note that this solution works well in
practice, but, to the best of our knowledge, it is not provable.

Note that the second property of Theorem 5.1 is rather stringent. In fact, a
weaker condition is sufficient, provided that the transmitter and the receiver have
shared randomness. Let us describe this weaker condition in detail. Given a binary
sequence ri.y € Fév, let 7(x1.5) denote its type, i.e., the number of 1s contained in
the sequence. Then, for Theorem 5.1 to hold, rather than requiring that the distri-
butions of g(Uy.,) and Xi.y are roughly the same, it suffices that the distributions
of 7(9(U1.m)) and 7(Xi.n) are roughly the same and that a permuted version of
9(Urm), call it w(g(Uy.p)), is transmitted over the channel. We require shared ran-
domness, as the random permutation 7 needs to be shared between the transmitted
and the receiver. These concepts are formalized by the following proposition, whose
proof immediately follows.

Proposition 5.6. Denote by X1.ny a sequence of N i.i.d. Bernoulli(a)) random
variables for some « € [0,1]. Let g(Uy.) be such that the total variation distance
between the distribution of T(g(U1.m)) and the distribution of T(X1.n) is at most §.
Let w : [N] — [N] be a random permutation. Then, the total variation distance
between the distribution of w(g(U1.m)) and the distribution of Xi.n is at most §.

Proof. Note that the type of a sequence is equal to the type of any permutation of
such a sequence. By using this fact and the definition of type 7, we have that

N
1 1
5 2 Praonn@ —Pry@I=53 0 > [Prin) @)~ Pxin (@)
x€{0,1}V 1=0 zc{0,1}V
7(x)=1
1 N
= 5 2 Pra(oamm (©) = Prixin ()]
=0
1 N
- 5 Z “PT(Q(U“"))(Z.) o ]P)T(XlzN)(i)‘
=0

(5.23)

On the one hand, the LHS of (5.23) represents the total variation distance between
the distribution of 7(g(U1.m)) and the distribution of X;.5. On the other hand, the
RHS of (5.23) represents the total variation distance between the distribution of
7(g(U1:m)) and the distribution of 7(X;.x). Hence, the claim readily follows. O
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As a result, by simply using an extra shared random permutation, if g(Uj.y,)
and Xi.nx have roughly the same type, then we fulfill the rather stringent second
property of Theorem 5.1.

In summary, in the source coding part of the scheme, we are given as input
the vector Uy., with ii.d. uniform distribution, and we generate the codeword
9(U1.m) that is transmitted over the channel. The distribution g(Uj.,) is close in
total variation distance to an i.i.d. Bernoulli(«) distribution. Hence, by paying a
negligible price in terms of the error probability, we can assume that the transmitted
codeword is the sequence Xi.ny with i.i.d. Bernoulli(cr) distribution. The channel
coding part of the scheme consists in transmitting reliably Xi.n over the channel.
A similar problem has been considered in Section 5.2.3. There, we have proved that
X1.n can be reconstructed with high probability, given the channel output Y7.n and
NH(X | Y) additional bits of information. Recall that h : {0,1}V — {0,1}¢, with
¢ roughly equal to NH(X | Y), hence the mapping h(Xi.n) provides these extra
NH(X | Y) bits. This means that, if we were able to share the vector h(Xi.n)
between the transmitter and the receiver, we would be done. However, h(Xi.xy)
obviously depends on Xi.n, hence on the information vector Uy.,,. Thus, it is not
immediately clear how to share this vector.

To solve this issue, we draw inspiration from the “chaining” construction in-
troduced in [48,122] and used in Chapter 4 of this thesis to devise polar coding
schemes for the broadcast channel. We consider the transmission of k£ blocks of
information, and use a part of the current block to store the parity-check vector of
the previous block. More specifically, in block 1, we fill Uj.;, with information bits,
compute X1.x = g(U1.n), and h(Xi.n). In block j (j € {2,--- ,k—1}), we fill Uy,
with the vector h(X7.x) of the previous block, and store the information bits in the
remaining positions. Note that the vector h(Xi.n) has roughly size NH(X | Y),
and recall that m is close to Nha(«). Hence, the transmission rate is approximately
ho(a) — H(X | Y) = C(W). Then, we compute X1.ny = g(Ur.p) and h(X1.y). In
block k, we transmit only the vector h(X1.y) of the previous block at rate Cs(WW),
by using a code that achieves the symmetric capacity of W (see Section 5.2.2 for
polar coding and sparse graph coding schemes that achieve such a goal). Note that,
in the last block, we suffer a rate loss, as we are limited to a rate of Cs(W) < C'(W).
However, this rate loss decays as 1/k and, by choosing k large, we achieve a rate
arbitrarily close to C'(W).

At the receiver, we perform the decoding “backwards”, by starting with block
k and ending with block 1. More specifically, block k can be easily decoded, as
the underlying code achieves the symmetric capacity of the channel. For block j
(je{k—1,---,1}), the decoder can recover X;.n by using the channel output and
h(X1.n). Indeed, this last vector is obtained from the next block that is already
decoded. Finally, from Xi.n5 we deduce Uy, = f(X1.n).

Let us now describe how to construct a map h that fulfills the desired prop-
erty. One possible solution is based on sparse graph codes. Let P € IE‘gXN be the
parity-check matrix of an SC-LDPC code with sufficiently large degrees. Then,
we set h(X1.y) = X1 NPT, and conclude that the third property of Theorem 5.1
holds by following the argument of Section 5.2.3. An alternative solution is based
on polar coding techniques. We multiply X;.5 with the polarizing matrix G and
extract the positions indexed by the complement of the set Lx|y defined in (4.16).
Then, we define h(X3.y) as the result of this last operation. Furthermore, by ap-
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plying (4.18), we easily verify that the vector h(Xj.n) has the correct size, i.e.,
roughly NH(X | Y). Furthermore, by definition, the set Ly contains the posi-
tions that are approximately a deterministic function of the previously decoded bits
and the output. Hence, we can reconstruct Xi.y with high probability given Yi.n
and h(X1.n), and the required property of A holds.

Encoding. Let Cg be a code that achieves the symmetric capacity of the channel
W and denote by & its encoder. We consider the transmission of £ blocks and

encode them in order, starting from block 1 and ending with block k.

In block 1, we place the information into uglgn, compute the codeword :):(11])\, =

g(uglzn) and the vector sglg = h(a:glj)v) The codeword xglj)v is transmitted over the

channel W and the vector sgg is stored into the next block.

In block j (j € {2,---,k — 1}), we place sV~ e Y and NC(W) information bits
into u(j) Note that this is possible, as £ ~ NH(X | Y), m ~ Nha(«a), and

H(X |Y)+ C(W) = ha(a). Then, we compute the codeword xgjj)\, = g(ugjzn) and

the vector sgjz = h(:z:gjj)v) Once again, the codeword x(])

channel W and the vector sgjz is stored into the next block.

In block k, we place sglfe_l) into u(k) Then, we map ugkg into the codeword acgk])\,,
via the encoder &. Note that N’ is an integer roughly equal to £/Cs(W), as the
code Cg has rate close to Cs5(W).

The overall rate of communication is given by

is transmitted over the

Nha(a) + N(k — 2)C(W)
Nk—1)+ NH(X | Y)/Cs(W)’

R= (5.24)

that, as k goes large, tends to the required rate C'(W).

Decoding. Denote by D the decoder of the code Cs and by D the decoder that
recovers the codeword x1.n given the channel output yi.n and the vector h(z1.n).
The decoding process begins after all the k blocks have been received, and it operates
“backwards”, starting from block k£ and ending with block 1.

In block k, the decoder Dy accepts as input the received message yik])\,, The

output is the estimate ﬁgkg on the payload ugkg of block k. This immediately yields

the estimate §SZ_1) on the vector sg ) 1 of block k — 1.

In block j (j € {k —1,---,2}), the decoder D accepts as inputs the received
() 5()

message 3/1 -y and the previously obtained estimate 51 - The output is the estimate

xgjj)v on the codeword wgg\, of block j. Then, we compute u =f (az:1 N) which

yields an estimate on the information bits transmitted in block j and on the vector
571 of block j — 1.

For block 1 the decoding process is the same as that for block j (j € {k —
(1)

,2}). The only difference consists in the fact that ..,
estimate on information bits.

The situation is schematically represented in Figure 5.3.

contains solely an

Performance. There are four possible types of errors.
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Figure 5.3 — Coding over asymmetric channels via the chaining construction. We
consider the transmission of k = 3 blocks, and store the vector of parity checks of
block j — 1 into block j (j € {2,3}).

1. In block j (j € {1,--- ,k —1}), given that :i:gjgv = :E%JJ)V, we might have that
~(J) ()
UTim, # Ui -

2. In block j (j € {1,---,k —1}), the encoder might fail to produce a codeword

azgjj)v with the correct distribution (namely, with roughly Na 1s).

3. In block j (7 € {1,--- ,k —1}), we might have that jgjj)v # x%\,
4. In block k, we might have that @gk])v #* mgk])\,

By hypothesis, the map f fulfills the first property stated in Theorem 5.1. Hence,
by the union bound, the probability that the first error event takes place is at most
(k — 1)¢. Similarly, the map ¢ fulfills the second property stated in Theorem 5.1.
Hence, by the union bound, the probability that the second error event takes place
is at most (k — 1)d. Furthermore, the map h fulfills the third property stated in
Theorem 5.1. Hence, by the union bound, the probability that the third error event
takes place is at most (k — 1)d. As the code Cs achieves the symmetric capacity of
the channel W, the last event occurs with probability at most §. As a result, the
error probability of the proposed scheme is upper bounded by 3k6. Recall that k is
large but fixed (it only depends on the rate we want to achieve), hence, by choosing
0 sufficiently small, the proof of Theorem 5.1 is complete.

5.6 Performance Comparison between the Three
Paradigms

5.6.1 Error Probability

First, consider Gallager’s mapping. Recall that in Section 5.3 we describe two
schemes: one based on a single non-binary code C, and the other based on t binary
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codes {Cj}cpq- Let W be the transmission channel and let W' be defined as in (5.9).
Then, for the scheme based on a single non-binary code, the error probability is the
same as that of the transmission of C over W’. For j € [t], let W be defined as in
(5.12). Then, for the scheme based on ¢ binary codes, the error probability is upper
bounded by the sum over j of the error probabilities of the transmission of C; over
WJ(’ . This means that we need to multiply the error probability by a factor of ¢.

Second, consider the integrated scheme. In [121] the authors provide a com-
parison between the second-order error exponent of Gallager’s mapping and of the
integrated scheme with polar codes reviewed in Section 4.4.2. In particular, let p be
the input distribution induced by Gallager’s mapping. Then, if the transmission rate
R is sufficiently close? to I(p), the integrated scheme achieves a better second-order
error exponent than Gallager’s mapping.

Third, consider the chaining construction. Recall that in Section 5.5 we have
divided the transmission in k£ blocks and performed the decoding “backwards”. This
method suffers from error propagation, in the sense that an error occurring in block
t propagates to all the previous blocks from ¢ — 1 to 1. Hence, we need to multiply
the error probability by a factor of k. Note that such a behavior occured also in
Chapter 4. More specifically, in formulae (4.48) and (4.64) there is a factor of k in
the expression of the error probability. However, in the case of polar codes, this fact
does not influence much the scaling of the error probability. Indeed, for a fixed rate
R < C(W), the error probability under successive cancellation decoding scales as

2-VN [56], and the number of blocks & is a constant independent of N.

5.6.2 Rate Penalty

First, consider Gallager’s mapping. In this case, the rate penalty comes from the
fact that the distribution p induced by the map might not be exactly equal to the
capacity-achieving input distribution p*. We quantify the rate penalty in Proposition
5.5 in terms of the total variation distance between p and p*, and of the cardinalities
of the input and output alphabets. The rate penalty is also studied in [121] for the
special case of binary-input alphabet. Note that the bound obtained in formula
(25) of [121] is tighter® than our bound of Proposition 5.5, but it is significantly less
general as it crucially uses the fact that the input alphabet is binary.

Second, consider the integrated scheme. In this case, the rate penalty comes from
the fact that we need to pre-code the syndrome vector, as the output of the belief-
propagation guided decimation algorithm does not coincide exactly with the given
syndrome vector. In Section 5.4, we have observed that the fraction of unfulfilled
syndromes tends 0 as N goes large. Hence, also the rate penalty can be made
arbitrarily small. However, the rigorous proof of these statements remains an open
problem.

Third, consider the chaining construction. In this case, the rate penalty comes
from the fact that the rate in the last block is Cs(W) < C'(W), where C(W) and
Cs(W) denote the capacity and the symmetric capacity of the channel W, respec-

2The exact condition is R > I(p) — I(p*)(I(p*) — I(p)), where p* is the capacity-achieving input
distribution.

3Let 6 be the total variation distance between p and p*. Then, formula (25) of [121] gives that
the rate penalty is O(5?), whereas Proposition 5.5 gives that the rate penalty is O(81log,(1/6)).
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tively. From formula (5.24), we immediately obtain that the rate penalty is O(1/k),
where £ is the number of blocks.

5.6.3 Computational Complexity

First, consider Gallager’s mapping. The computational complexity of this scheme
scales as a linear function of the cardinality® of the domain of the map. Furthermore,
note that the total variation distance between p and p*, call it I, scales with the
inverse of this cardinality. Hence, the computational complexity scales as 1/4.

Second, consider the integrated scheme. This approach has the same computa-
tional complexity as the standard channel coding solution for the transmission over
a symmetric channel.

Third, consider the chaining construction. The computational complexity of this
scheme scales as a linear function of the number of blocks k, as there are k blocks
to be encoded and decoded.

5.6.4 Universality

We say that a coding scheme achieves capacity universally over a class of channels
if it achieves the capacity of each channel in the class at the same time. This means
that the coding scheme is not tailored to the specific channel, rather it can be used
for the transmission over any channel in the class. SC-LDPC codes universally
achieve capacity over the class of B-DMCs [36]. Polar codes, on the contrary, are
not universal, as the sets defined in (4.15) and (4.16) depend on the transmission
channel. Therefore, several “polar-like” schemes have been developed to solve this
issue [48,49].

First, consider Gallager’s mapping. This scheme is not universal, as different
transmission channels require different capacity-achieving distributions, hence dif-
ferent mappings. On the contrary, the integrated scheme and the chaining construc-
tion are universal, provided that the underlying component codes are universal (e.g.,
we use either SC-LDPC codes or the “polar-like” schemes described in [48,49]).

5.6.5 Delay

Gallager’s mapping and the integrated scheme have the same delay as the standard
channel coding solution for the transmission over a symmetric channel. The chaining
construction, on the contrary, suffers a delay that scales as a linear function of the
number of blocks k. Indeed, as described in Section 5.5, the decoding process starts
after that all the k£ blocks have been received.

5.6.6 Common Randomness

First, consider Gallager’s mapping. This scheme does not require common random-
ness, as the maps f and ¢ defined in Section 5.3 are deterministic.

Second, consider the integrated scheme. This approach requires common ran-
domness both in the version based on polar codes and in the version based on

4Recall from Section 5.3.2 that, for the scheme based on a single non-binary code, this cardinality
is [V|, and that, for the scheme based on ¢ binary codes, this cardinality is || = 2°.
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sparse graph codes. More specifically, in the polar version reviewed in Section 4.4.2,
we fill the positions in F; with a sequence chosen uniformly at random and shared
between the transmitted and the receiver. Furthermore, we encode the positions in
Fq via the random map defined in (4.20) that also needs to be shared. In the sparse
graph version described in Section 5.4, the syndrome vector Sﬁ)\, HX|Y) is chosen
uniformly at random and shared between the transmitter and the receiver.

Third, consider the chaining construction. By separating the source coding and
channel coding parts of the scheme, this approach does not require common random-
ness, hence it can be interpreted as a derandomized version of the integrated scheme.
This establishes another connection between information theory and the theory of
derandomizing algorithms. Several applications of derandomization to coding the-
ory can be found in [184], i.e., information-theoretically secure schemes for the wire-
tap channel, nearly optimal explicit measurement schemes for combinatorial group
testing, design of ensembles of capacity-achieving codes, and construction of codes
arbitrarily close to the Gilbert-Varshamov bound. Furthermore, the link between
polarization and randomness extraction is investigated in [185], where applications
to the Slepian-Wolf problem and to secret key generation are provided.

Assume that we want to substitute the stringent condition on the distance be-
tween the distributions of g(Uj.,) and Xi.x with the relaxed condition on the dis-
tance between the distributions of their types. Then, as detailed in Proposition 5.6,
the transmitter and the receiver need to share k£ random permutations, where k is
the number of blocks used for the transmission. We will now show that no shared
randomness is in fact necessary.

As a starting point, recall that the error probability under the stringent con-
dition with no random permutation is the same as the error probability under the
relaxed condition with random permutations. Furthermore, this probability is upper
bounded by 3k4.

The error probability is an average over all channel realizations and all permu-
tations. Hence, for any v > 0, at least a fraction 1 — v of the permutations have
an error probability of at most 3kd/~. By picking v = V/3kd, we have that, with
probability at least 1 — v/3kd, a randomly chosen permutation has an error proba-
bility of at most v/3kd. Hence, no shared randomness is needed, as a fixed set of k
permutations will work with high probability.

5.7 Appendix

5.7.1 Proof of Propositions in Section 5.2.2

Proof of Proposition 5.1. By definition, we have that

2t (y) Ay ~ / Wt 1) dt = / O (| —1) dt
teL=1([y,y+Ay]) teL=1([y,y+Ay])
~ e / W(t|—1) dt = e¥a(y)Ay,

te L= ([y,y+Ay])
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where L~! is the inverse of the log-likelihood ratio defined in (5.1). By taking
Ay — 0, we obtain that

Ty) = e¥a” (y). (5.25)

With the change of variable y — —y, we also obtain that

a

a”(—y) = ea’(—y). (5.26)

As a result, condition (5.2) is fulfilled for the L-density a®(y) defined in (5.4) and
the statement follows. O

Proof of Proposition 5.2. Since the log-likelihood ratio constitutes a sufficient statis-
tic, two B-DMCs are equivalent if they have the same L-densities given that X = +1
is transmitted. As a representative for the equivalence class, we can take

Wy |1)=a"(y),

Wiy | -1) =2 (y). (5.27)

By definition of log-likelihood ratio and by using (5.25), we have

LWl et
M= Ty Ty T

Therefore,

lim =a

P(LY) € [y,y + Ay] | X = £1) £(
Ay—0 Ay

which means that (5.27) is a valid choice.
Let X be uniformly distributed. Then, after some calculations we have that

2W(y | 1)
Cs\W)=H(Y)-H(Y | X) /W 1)lo d
Wiyl -1

Wi(y|—-1)lo dy.

#3 WWlDlos g T
(5.28)

By applying (5.27) and (5.25), the first integral simplifies to
1

2/a+(y) (1 —logy(1+e7Y)) dy. (5.29)

By applying (5.27), doing the change of variables y — —y and using (5.26), the
second integral simplifies to

1

5 /a_(—y) (1 —logy (1 + e_y)) dy. (5.30)

By combining (5.28), (5.29), and (5.30), the result follows.
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5.7.2 Proof of Propositions in Section 5.2.3
Proof of Proposition 5.3. By definition, we have that
aal (y) Ay ~ / aw(t|1) dt = / aelOW (¢ ] —1) dt
teLy ([y.y+Ay)) teLy ' (lyy+Ay))
~ e’ / aW(t| 1) dt = e’aa, (y)Ay,
teLy ' ([y.y+Ay))

where L; !is the inverse of L, defined in (5.6). By taking Ay — 0, we obtain that

aal (y) = eYaay (). (5.31)

With the change of variable y — —y, we also obtain that
aa, (—y) = &eyag’(fy). (5.32)
As a result, condition (5.2) is fulfilled for aj,(y) and the statement follows. O

Proof of Proposition 5.4. Since the log-likelihood ratio constitutes a sufficient statis-
tic, two B-DMCs with non-uniform input distributions are equivalent if they have
the same densities of the log-posterior ratio given that X = =£1 is transmitted. As
a representative for the equivalence class, we can take

W(y|1)=al(y),
Wy | -1) =a, ().
By definition of log-posterior ratio and by using (5.31), we have

(5.33)

1 nal
Ly(y) = In PX|Y( | y) —1n «Q E(y) _
pxy(=11y) aap (y)
Therefore,
o P(Lpy(Y) €[y y+ Ayl | X =41) 4
1 L ’ =
A% Ay % ()

which means that (5.33) is a valid choice.
Let X € {—1,1} be such that P(X = —1) = a. Then, after some calculations
we have that

HXY) = [aw(y | Dlog, e SV LD

yTD +aW (5] -1)
oWy | 1)
- oW 1 —oms S G T

By applying (5.33) and (5.31), the first integral simplifies to
/da;(y) (1 —logy(1+e7Y)) dy. (5.35)

By applying (5.33), doing the change of variables y — —y and using (5.32), the
second integral simplifies to

/aap(—y) (1 —logy(1+e7Y)) dy. (5.36)

By combining (5.34), (5.35), and (5.36), the result follows.

dy
(5.34)

O]
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5.7.3 Proof of Proposition 5.5

Before starting with the proof of the proposition, let us state the following useful
result [186] that is a refinement of Lemma 2.7 of [187].

Lemma 5.1. Consider two distributions p and p* over the alphabet X such that
their total variation distance is equal to 8, i.e., > 1 |p*(x) — p(z)| = 5. Take
X ~pand X* ~ p*. Then,

[H(X*) = H(X)| < 610gy(|X] — 1) + hs(6) < Slogy |X| + ha(0).  (5.37)

Proof of Proposition 5.5. Let X ~ p, X* ~ p* and denote by Y ~ py and Y* ~ pj,
the outputs of the channel when the input is X and X*, respectively. Denote by
W (y | x) the probability distribution associated with the channel W. In order to
prove (5.14), we write

(") = Ip)| < [H(Y™) = HY)[+ [HY™ | X7) = H(Y [ X)], (5.38)

and we bound both terms as functions of § and |)|. For the first term, observe that

S W) oy )] < 5 30 S0 W | )l (@) — o) < 8 (5.39)

yey yey zeX

where it is used the fact that > ., W(y | #) = 1 for any € X. Then, by using
Lemma 5.1 and the fact that ho(9) is increasing for any § € (0,1/2), we obtain that

[H(Y") = H(Y)| < 0logy [ V] + ha(6). (5.40)

For the second term, observe that the conditional distribution of Y* given X* =
and the conditional distribution of Y given X = z are both equal to W(y | z).
Therefore,

H(Y | X =2) = H(Y* | X* = 1) < log, |V,

Consequently,

HY* | X7) = HY [ X)| < 3 " (@)~ p(a) [H(Y | X =) < 20log V. (5.4
TEX

By combining (5.38) with (5.40) and (5.41), we obtain the desired result.
In order to prove (5.15), we write

[1(p") = I(p)| < [H(X") = HX)| + [H(X" [ Y") = H(X [ Y)], (5.42)

and we bound both terms with functions of § and |X|. The first term is easily
bounded by using Lemma 5.1 and the fact that hg(d) is increasing for any 6 €
(0,1/2),

|H(X™) — H(X)| < dlogy |X| + ha(9). (5.43)

For the second term, consider the conditional distribution of X* given Y* =y, i.e.,
p}‘y(l‘ | y) = p*(x)W(y | =)/pj (y), and the conditional distribution of X given
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Y =y, ie, pxyy(e|y) =p(x)W(y | z)/py(y). Then,

HX|Y) = HX | Y)| =Y sy HXY =y) —py () HX]Y =y)|

yey
<D Py WHXY" =y) — py () HX*[Y* =y)|
yey
+1D oy WHXY* =y) - py () HX|Y =y)|.
yey

(5.44)

In order to bound the first term of (5.44), observe that H(X*|Y* = y) < log, | X|
for any y € Y. Therefore, by using (5.39), we obtain
| P HX Y = y) = py (9 H(X|Y" = y)| < 20logy | X|. (5.45)
yey

For the second term of (5.44), let us denote by d(y) the total variation distance
between p}‘y(x | y) and pxy (z | y), namely,

]' >k
dy) = 5 > Ik @ v) = pxy (@ | )l
zeX

Then, by Lemma 5.1,
[H (XY™ =y) — HX|Y = y)| < d(y)logy |X] + ha(d(y)),
which implies that

> oy WHXIY =y) = py () HX]Y =y)| <logy |X| Y py(y)d(y)

vey vey (5.46)
+ > py(y)ha(d(y))
yey
Now, let us focus on the quantity > .y, py (y)d(y):
S oovdy) =D > by W)y (zly) — py (v)px )y (2]y)]
yey yeYy zeX
<IN Iy Wpkpy (@ly) — by )Py (21))]
yeY zeX
+ ) P Wpky (@ly) — py ()px )y (2]))|
yeYzekX
=> v w) — oy W) Y Pk @ly) + Y (@) —p(@)| Y Wy | 2) < 40
yey reEX TeEX yey

Observe that hy(t) is concave for any ¢ € (0,1) and increasing for ¢ < 1/2. Then, as
0<1/8,

> p)ha(d(y)) < ha(d | p(y)d(y)) < ha(46).

yey yey

By combining (5.42) with (5.43), (5.44), (5.45), and (5.46), the result follows. [



Interlude — from Polar to
Reed-Muller Codes

Non fare frasi di una sola parola.
Eliminale.

Don’t write one-word sentences. Ewver.

This chapter! connects the seemingly different families of polar codes and Reed-
Muller codes, thus serving as an interlude before the last part of this thesis. More
specifically, we present an interpolation method between the polar code of block
length NV and rate R and a Reed-Muller code of the same block length and rate.
The result is relevant in practice because the codes from this new interpolating fam-
ily boost the finite-length performance of polar codes under low-complexity
decoding algorithms, such as belief propagation and the successive cancellation list
decoder proposed in [55].

In Section 6.1, after pointing out similarities and differences between the polar
and the Reed-Muller construction, we describe explicitly the interpolating family
{C.} for the special case of the BEC. In Section 6.2, by starting from the analy-
sis of the two extreme cases of MAP and SC decoding, we show how to improve
significantly the finite-length performance of polar codes under practical decoding
algorithms (e.g., BP and SCL) by using codes from the family {C,}. In Section 6.3,
we generalize the interpolation method to the transmission over any BMS channel
and, for a case study, we present the simulation results for the binary-input Gaussian
channel.

6.1 Interpolation Method for the BEC

Let us first recall some definitions and concepts that we previously introduced in
Section 1.3 and 1.4. Let n € N and N = 2. Consider the N x N matrix F®",
10

given by n-th Kronecker power of F' = [ 11

} Then, the generator matrices of

!The material of this chapter is based on joint work with S. H. Hassani and R. Urbanke [188,189].
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both polar and Reed-Muller codes are obtained by suitably selecting rows from the
matrix F®" = (g1,--- ,gn)7 (cf. formula (1.13), where By is a permutation matrix,
hence it simply changes the order of the rows of F®").

On the one hand, the Reed-Muller rule consists in choosing the rows of F®"
with the largest Hamming weight. Recall that, given n, v € N, a Reed-Muller code
RM(n,v) is obtained by picking all the rows of F'®" with weight at least 2"V, This
code has block length N = 2", rate R = Y7  ("")/N and minimum distance 2"~*.
In general, if we require a Reed-Muller code with fixed block length N and rate R
such that NR cannot be written as a sum of binomial coefficients, then we take as
generator matrix any subset of N R rows of F®" with the highest Hamming weights.
Notice that this criterion is channel-independent, in the sense that it does not rely
on the particular channel over which the transmission takes place.

On the other hand, the polar rule is channel-specific. Indeed, the N synthetic
channels W,gi), i € [N], are obtained from N independent copies of the original chan-
nel W. The row g; is associated with qui) and the synthetic channels (hence the
rows) with the lowest Bhattacharyya parameters are selected. In general, different
channels W yield different choices of rows. Consider the simple case of the trans-
mission over the BEC(g), for ¢ € (0,1). In order to compute the Bhattacharyya
parameter ZT(Li) associated with W,(Li) (hence with g;), it is easy to check that each 1
in the binary expansion of ¢ — 1 corresponds to a “+” transform and each 0 to a “—”
transform (cf. formula (3.67) in the proof of Lemma 3.5 in Section 3.7.2). Thus,

ZW(e) = Fyw o fygr 0 fy ), (6.1)

where fo(z) =1 — (1 — )2, fi(x) = 22, o denotes function composition, and b =
(bgi), bg), e ,bg))T is the binary expansion of 7 — 1 over n bits, bgi) being the most
significant bit and bg) the least significant bit. In order to construct a code of block
length N and rate R, we select the NR rows that minimize the expression (6.1).
The link between the Reed-Muller rule and the polar rule is clarified by the

following proposition.

Proposition 6.1. The polar code of block length N and rate R designed for the
transmission over a BEC(g), when ¢ — 0, is a Reed-Muller code.

Proof. Suppose that the thesis is false, i.e., that we include g;+, but not g;«, with
wh(gi<) > wu(gj), where wy(-) denotes the Hamming weight. Since wp(g;) =
X ko1t = un(b®) for any i € [N] from [37, Proposition 17]), then wg (b)) >
wH(b(j*)).

From formula (6.1), we deduce that A% (¢) is a polynomial in € with minimum
degree equal to gun () Hence,

7(i%)
e—0 Z’r(L] )(8)
which means that there exists § > 0 such that for all € < 6, Z,(f*)(e) < Zﬁbj*)(a).
Consider a polar code designed for the transmission over a BEC(¢g), with € < §.
Then, if this code includes g;«, it must also include g;«, which is a contradiction. []
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Recall that the transmission takes place over W = BEC(¢). Let C, be the polar
code of block length N and rate R designed for a BEC(ag). When a = 1, C,
reduces to the polar code for the channel W, whereas, when o — 0, C, becomes a
Reed-Muller code by Proposition 6.1. Now, the codes of the family {C,} provide an
interpolation method for passing smoothly from a polar code to a Reed-Muller code
of the same rate and block length. Indeed, consider the generator matrices of the
codes {C,} that are obtained by reducing « from 1 to 0. We start from the generator
matrix of the polar code, and the successive matrices are obtained by changing one
row at a time. In particular, numerical simulations show that the row included in
the next code (associated with a smaller o) has a Hamming weight higher than the
row removed from the previous code (associated with a higher «). Heuristically,
this happens for the following reason. The row indices chosen by C, are those
that minimize the associated Bhattacharyya parameters Z,(f)(as) given by (6.1). As
fi(z) < fo(x) for any x € [0, 1], applying f1 instead of fy makes the Bhattacharyya
parameter decrease. However, also the order in which the functions are applied is
important, since fo o fi(z) < fi o fo(z) for any x € [0,1]: if we fix wy(b®), Z0 s
minimized by applying first all the functions f; and then the functions fy. Therefore,
the goodness of the index 7 depends both on the number of 1s in its binary expansion
b and on the positions of these 1s. Whereas, when designing a Reed-Muller code
only wH(b(i)) matters and, for o small enough, C, tends to a Reed-Muller code. As

a result, as o goes from 1 to 0, the value of Zr(f) (ce) depends more and more on
wy (b)) rather than on the position of the 1s in b(®).

6.2 Finite-Length Performance Improvement

The focus of this section is on the performance of the codes in the family {C,}
when the transmission takes place over the BEC(g). We start by considering the
MAP decoder, then we move to the SC decoder originally introduced by Arikan. By
taking into account low-complexity suboptimal decoding schemes that outperform
the original SC algorithm (e.g., SCL and BP), we highlight the advantage of em-
ploying codes of the form C,. The simulation results of this section refer to codes of
fixed block length N = 2'° and rate R = 0.5. The number of Monte Carlo trials is
M = 10°.

6.2.1 Motivation: MAP Decoding

It has been observed that, under MAP decoding, picking the rows of F®" according
to the Reed-Muller rule significantly improves the performance with respect to the
polar choice [53]. Hence, it is interesting to analyze the error probability PYF (o, ¢)
under MAP decoding for the transmission of the code C, over the BEC(e). Although
MAP decoding is in general an NP-complete task, for the particular case of the BEC
it is equivalent to the inversion of a suitable matrix, hence it can be performed in
O(N?).

First of all, fix the value of £ and consider how varies as a function of a.
As it is shown in Figure 6.1 for four distinct values of ¢, P]g/[AP(Oé, g) is increasing in
«. In short, the proposed interpolation method to pass from the polar code Ca‘a:l

MAP
B B

to a Reed-Muller code Ca‘a:O yields a family of codes with decreasing MAP error
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Figure 6.1 — Error probability Pg[AP under MAP decoding for the transmission of

Cq over the BEC(g), when « varies from 0 to 1 with a step of 0.05 and ¢ is given
four distinct values. The block length is N = 2!0 and the rate is R = 0.5. Observe
that P]Q/IAP is increasing in « for all values of €, which means that the minimum
error probability is achieved by the Reed-Muller code CO“a:O'

probability. Note that a proof of this fact would imply that Reed-Muller codes
are capacity-achieving for the BEC, which is a long-standing conjecture in coding
theory. We will eventually prove that Reed-Muller codes achieve capacity on erasure
channels and solve this open problem in Chapter 7.

Another evidence in support of the numerical observation that PYAF(a,¢) is
increasing in « can be described as follows. As it has been pointed out in Section
6.1, the polar rule differs from the Reed-Muller rule in the fact that not only the
number, but also the position of the 1s in (¥ matters in the choice of the row indices.
In particular, polar codes prefer to set the 1s in the least significant bits of the binary
expansion of ¢ — 1. However, if one is concerned with achieving the capacity of the
BEC under MAP decoding, the specific order of the 1s in the binary expansions of
the row indices does not play any role. Indeed, denote by F the set of row indices of
F®™" that are not chosen for the generator matrix of the polar code (these indices are
frozen, since they are not used for the transmission of information bits) and let F°
be its complement. Then, it is possible to arbitrarily permute the binary expansions
b (i € F°) and still get a set of row indices that yields a capacity-achieving family
of codes under MAP decoding. This fact is formalized in the following proposition.

Proposition 6.2. Denote by F€ the set of row indices chosen by polar coding. Let
7 : [n] — [n] be a permutation and let Py be the associated permutation matriz. Con-
struct the code Cy by taking the rows of F®™ whose indices have binary expansions
Pb) fori € Fe. Lete € (0,1) and denote by PE(Cx) the error probability under the
decoder D for the transmission of Cr over the BEC(g). Then, PévIAP(CW) < PEC(CL),
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C, being the original polar code.

Proof. As observed in [53], there exist n! different representations of the polar code
C, of block length N = 2" obtained by permuting the n layers of connections.
Let us apply the permutation 7 to these layers and then run the SC algorithm,

denoting by PSC’T(CL) the error probability for the transmission over the BEC(e).
)

associated with the synthetic channel WS). This Bhattacharyya parameter is now
given by

The application of the permutation 7 affects the Bhattacharyya parameter Z,(f

(B (=) — , . . .
Zn (8) fT(bgl)) o fT(bé”) © fT(bSp)(s)'

On the contrary, the generator matrix (consequently, the set F¢) does not change,
because the code stays the same. Therefore, the probability that the SC decoder fails
when applying the permutation 7 to the layers of the code C, equals the probability
that the SC decoder fails when the code C; is employed. In formulae, for any
permutation T,

P37 (c,) = P§C(C,).

Denote by OSC the algorithm that runs SC decoding over all the n! possible
overcomplete representation of a polar code. When the transmission takes place
over the BEC, the OSC decoder fails if and only if there exists an information bit
that cannot be decoded by any of these n! SC decoders. Let PY5C(C:) be the
error probability under OSC decoding for the transmission of the code C; over the
BEC(g). Then, P$5€(C,) < PSC’T(CW) for any 7. Taking 7 = 7! and recalling that
MAP decoding minimizes the error probability, we obtain that

PYAP(Cr) < BPSC(Cr) < B9 (C) = PEE(C).
which gives us the desired result. O

In Figure 6.2, we fix the value of @ and we analyze P]Q/IAP as a function of e.
It is interesting to remark that, already for o = 0.3, the error probability for the
transmission of C, is very close to that of random coding. Recall from Section 1.5
that random codes have a scaling exponent = 2, whereas the scaling exponent of
polar codes for the BEC is around 3.6 (see Section 2.2 for more details). Hence,
the proposed interpolating family {C,} has the potential to improve the trade-off

between the block length and the gap to capacity. Note also that, in principle, there
is no conflict between the following two facts:

1. the error exponent of Reed-Muller codes under MAP decoding cannot be as
good as that of random codes because of their minimum distance [53];

2. the scaling exponent of Reed-Muller codes can match that of random codes.

Indeed, the error exponent and the scaling exponent concern two different limits.
For example, an error probability of the form 9—aVN 4 9=bN(C—=R)? {51 some constants
a and b yields the error exponent of polar codes and, at the same time, the scaling
exponent of random codes.
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Figure 6.2 — Error probability under MAP decoding for the transmission of
Cq over the BEC(g), when e varies from 0.30 to 0.49 with a step of 0.005 and « is
given four distinct values. The block length is N = 2! and the rate is R = 0.5.
Remark that already for e = 0.3 the error performance of C, is comparable to that
of random codes.

MAP
I B

6.2.2 SC Decoding

After dealing with optimal MAP decoding, let us analyze the performance of the
codes {C,} under SC decoding. As can be seen in Figure 6.3 for four distinct values
of e, the error probability ch (ar,€) under SC decoding for the transmission of the
code C,, over the BEC(¢) is a decreasing function of o. Hence, the best performance
is obtained using the polar code Ca‘a:l' The theoretical reason for this behavior
lies in the fact that ch can be well approximated by the sum of the Bhattacharyya
parameters of the synthetic channels that are selected by the polar code for the
transmission of the information bits [143]. Formally, let F°(«) be the set of indices
selected by the polar code C,. Then,

P < Y 20 (6.2
1€FC(ev)

The bound (6.2) is tight when the RHS is not very large (smaller than 10~! suffices)
and > ~,c re(q) A% (¢) is minimized for a = 1.

6.2.3 Something between the Extremes: List Decoding and Belief
Propagation

Consider the SCL scheme introduced in [55] and denote by PS“*(a,¢, L) the error
probability under SCL decoding with list size L for the transmission of the polar
code C,, over the BEC(g). Clearly, if L = 1, this scheme reduces to the SC algorithm
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Figure 6.3 — Error probability PSC under SC decoding for the transmission of C,
over the BEC(g), when « varies from 0 to 1 with a step of 0.05 and ¢ is given four
distinct values. The block length is N = 2!9 and the rate is R = 0.5. Observe
that ch is decreasing in «, which means that the minimum PEC is achieved by the
original polar code Ca‘azl'

originally proposed by Arikan, whereas for L > 2V% the SCL decoder is equiva-
lent to the MAP decoder, as the list is big enough to contain all the possible 2VE
codewords. Therefore, as L increases, we gradually pass from SC decoding to MAP
decoding.

If we fix @ and we let L grow, PgCL(a,E, L) monotonically decreases from
PSC(a,e) to PY"AP(a,e). Recall that, as o goes from 1 to 0, PS%(a,€) increases
and PP (a, ) decreases. Values of a close to 1 imply that PSY(a, ¢, L) gets close
to the MAP error probability for small values of the list size. If « is reduced, a big-
ger list size is required to obtain performance comparable to MAP decoding as the
underlying SC algorithm gets worse, but Pév[AP (v, €) becomes significantly smaller.
In other words, a smaller « implies a slower convergence (in terms of L) toward a
smaller error probability. This trade-off between MAP error probability and the list
size required to reach it is illustrated in Figure 6.4 for a = 0.9 and a = 0.4, where,
for a benchmark, we represent also the error probability under MAP decoding for
the transmission of random codes. Observe that if « is big (upper plot), ECL con-
verges to PQAAP already for small values of the list size. On the contrary, if « is
small (lower plot), bigger list sizes are required to get to the error probability of
MAP decoding that in return becomes much smaller in value, hence much closer
to the error probability of a random code. The fact that some curves are not al-
ways increasing in € is not caused by a problem in the simulation. Indeed, the code
changes with ¢ and, for a small variation of the channel parameter, this can lead to
such unexpected effects that can be noticed also in Figures 6.5 and 6.6.

In order to show that the use of codes in {C,} significantly improves the finite-
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Figure 6.4 — Error probability PSCL
over the BEC(e) for different values of the list size L, when e varies from 0.30 to
0.49 with a step of 0.005. The block length is N = 2! and the rate is R = 0.5. For
a benchmark, we represent also the error probability under MAP decoding for the
transmission of C, (in black) and for the transmission of a random code (in red).
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under SCL decoding for the transmission of C,
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Figure 6.5 — Error probability PSCL under SCL decoding for the transmission of
Cqo over the BEC(e), when ¢ varies from 0.30 to 0.49 with a step of 0.005 and for
different values of a. The block length is N = 210 and the rate is R = 0.5. Already
when L = 8 (upper plot), a performance improvement is obtained by reducing «
with respect to the original polar code CQLXZI. If the list size is increased to L = 32
(lower plot), the advantage in considering codes C, with a smaller value of the tuning
parameter « is even more evident.
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Figure 6.6 — Error probability P]?P under BP decoding for the transmission of C,
over the BEC(e), when ¢ varies from 0.30 to 0.49 with a step of 0.005 and « is given
four distinct values. The block length is N = 2! and the rate is R = 0.5. Remark
that the optimal performance is obtained with the code Ca’a:0.8'

length performance of polar codes for practical values of the list size, fix L and
consider the transmission of C, for different values of o. The results for L = 8 and
L = 32 are represented in Figure 6.5. The code Ca‘a:(” outperforms the original
polar scheme already when L = 8. For L = 32, the improvement in performance is
even more significant and, for example, the target error probability Py = 103 can
be obtained for ¢ = 0.385 if we employ CQ‘QZO.S, whereas € = 0.325 is required if we
employ the original polar code C,, |a:1. Remark that if the target error probability to
be met is very low, it is convenient to consider codes C, with small o, as they will be
able to achieve it for higher erasure probabilities of the BEC. Indeed, observe that
in the case L = 32, Ca’a:O.iS outperforms the original polar code for PSCL <1073,
This effect is due to the fact that polar codes are not affected by error floors, as
proven in Section 2.5 of this thesis.

In general, it is convenient to consider codes of the form C, whenever the de-
coding algorithm yields better results than the SC decoder. As another example,
consider the case of the BP decoder. It has been already pointed out that the po-
lar choice of the row indices to be selected from F®" is not optimal for the BP
algorithm [53, 54], but no systematic rule capable of outperforming polar codes is
known. As can be seen in Figure 6.6, the interpolating family {C,} contains codes
that achieve a smaller error probability than that of the original polar code Co“azl
for an appropriate choice of the parameter a.
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6.3 Generalization to Any BMS Channel

In this section, we generalize the previous ideas to the transmission over a BMS
channel W. In particular, first we propose a method for constructing the family of
codes {C,}, then we analyze the performance for the transmission over a binary-
input AWGN channel.

6.3.1 Construction of Interpolating Family

Suppose that the transmission takes place over the BMS channel W and let Z (W) be
its Bhattacharyya parameter. In order to construct the interpolating family {C,},
we consider the family of channels W ordered by degradation [44] such that the
element of the family with the biggest Bhattacharyya parameter is W itself and
the element of the family with the smallest Bhattacharyya parameter is the perfect
channel W°P', in which the output is equal to the input with probability 1. There
are many ways of performing such a task. In particular, we can set

W= {Wa:ael01]}, (6.3)

where W, = W with probability a, W, = WP with probability 1 — «, and the
receiver knows which channel has been used. In formulae, W, = aW + (1 — «)W°Pt,

As the convex combination of BMS channels is a BMS channel, W, is also a
BMS channel with Bhattacharyya parameter Z, = aZ. Denote by C, the polar
code for the transmission over W,. This is a reasonable choice for the interpolating
family {C,} because of the following result that extends Proposition 6.1.

Proposition 6.3. Let W be a BMS channel, W°P* be the perfect channel and o €
[0,1]. Denote by C, the polar code of block length N and rate R designed for the
transmission over the BMS channel W, = aW + (1 — a)W°Pt. Then, when o — 0,
Cq is a Reed-Muller code.

Proof. When the transmission takes place over the BMS channel W,, the Bhat-
tacharyya parameter ZT(Li)(Wa) of the i-th synthetic channel Wo(le (i € [N]) has the
form (6.1), where ¢ is replaced by Z, = aZ, fi(z) = 2%, and fo(z) can be bounded
as

x < folz) < 2z — 22, (6.4)

which is simply a looser version of the bound in (1.7).

Suppose that g;- is included in the generator matrix of the code, but not g;+, with
wy (gix) > wr(gj+). Then, using (6.4), 7 can be upper bounded by a polynomial
in o with minimum degree wy(g;+) and Z7(lj ") can be lower bounded by a polynomial

in o with minimum degree wy(g;+). Thus, for o small enough Z,(f*) < Z7(1j ") and we
reach a contradiction. O

Remark that if W = BEC(¢), then W, = BEC(a¢). In general, there might be
more natural ways to obtain the family of codes {C,}, according to the particular
choice of the channel W. Indeed, in Section 6.3.2 where we deal with the case of the
binary-input AWGN channel, the interpolating family is constructed in a different
way.
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Figure 6.7 — Error probability P§CY under SCL decoding for the transmission of
C, over the BAWGNC(0?), where 02 = 0.6309, the SNR varies from 1 to 3 with a
step of 0.125 and o € {0.4,0.6,0.8,1}. The block length is N = 2! and the rate is
R = 0.5. The plots show the remarkable performance gain achievable by codes of
the form C,, with respect to the original polar code C, ‘oc:l'
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In summary, the family of codes {C,} defined above is such that Ca‘a:l is the
polar code designed for the transmission over the channel W and Ca}a:ﬂ is a Reed-
Muller code. Numerical simulations show that the error probability under MAP
decoding is an increasing function of . However, under SC decoding, the optimal
performance is still achieved by using Ca‘a:l' If we consider low-complexity de-
coding algorithms that get close to the error probability under MAP decoding, the
finite-length performance of polar codes is significantly improved by using the code
C,, for a suitable choice of the parameter .

6.3.2 Case Study: Binary AWGN Channel

Let W be a binary-input AWGN channel with noise variance o2, in short W =
BAWGNC(0?), and define C, as the polar code designed for the transmission over
W, = BAWGNC(ao?). As a — 0, W, tends to the perfect channel W°P' and C,
becomes a Reed-Muller code.

In order to show the performance improvement guaranteed by the use of codes
in the interpolating family {C,}, consider the SCL decoder. To be coherent with
the simulation setup of [55], the numerical simulations refer to codes of fixed block
length N = 2! and rate R = 0.5. The number of Monte Carlo trials is M = 10°.
The codes are optimized for an SNR = 2 dB, namely, 02 = 0.6309 (recall that SNR
= 1/0?%). The results of Figure 6.7 are qualitatively similar to those represented in
Figure 6.5 for the BEC. More specifically, for the target error probability Pg = 1073
an improvement > 0.5 dB can be noticed by using the code Ca’a:0.8’ rather than
the original polar code Ca}azl when L = 32.
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Since the landmark 1948 paper by Shannon [3], theorists have been fascinated
by the challenge of constructing codes that achieve capacity, i.e., the maximum
possible asymptotic rate that allows reliable communication. As discussed in Sec-
tion 1.1, random coding and weight distribution, iterative coding on sparse graphs,
and polarization constitute the main known techniques for proving that a family
of codes is capacity-achieving (see also Figure 7.1). In this chapter, we show that
also symmetry alone guarantees asymptotically optimal performance. A
corollary of this fact is that Reed-Muller codes are capacity-achieving for the
transmission over the BEC under MAP decoding, which settles a decade-long open
problem.

The beauty of these results also lies in the simplicity of the proof, based on
the interplay between three quite different ingredients: (i) double transitivity of the
permutation group of the code, (ii) sharp thresholds for the measure of monotone
symmetric sets, and (iii) area theorem for extrinsic information transfer (EXIT)
functions.

Before moving on, let me say a few words about the genesis of this work. The
fact that Reed-Muller codes achieve capacity on the BEC under MAP decoding was
listed as an open problem during the 2015 Simons Institute program, “Information
Theory”. During my visit at the Simons Institute, I had the opportunity to work on
this topic with Shrinivas Kudekar, Eren Sagoglu, and Riidiger Urbanke. Simultane-
ously, another group formed by Santhosh Kumar and Henry D. Pfister, who was also
visiting the Simons Institute, independently worked on this same problem. Both the
groups managed to prove the conjecture with the same technique and the two proofs
were independently posted on http://arxiv.org/ at the same time [190,191]. As
both the main result and the proof were the same, we decided to merge the submis-
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Figure 7.1 — Pictorial representation of the three main techniques for achieving
capacity: (a) the number of codewords A(w) with weight w is close enough to that
of an ensemble of uniformly distributed and pairwise independent codewords, i.e.,
+ logy A(w) = R—1+ha(w); (b) the threshold for reliable transmission is determined
by studying the density evolution of the iterative decoding process; (c) copies of the
transmission channel are polarized into synthetic channels that are either completely
noisy or completely noiseless.

sions into a common joint work [192,193]. This material also appeared in the Ph.D.
thesis of Santhosh Kumar [194]. Even if the content is inevitably similar, the style
of this chapter differs from [192-194]. Indeed, in order to underline the simplicity
of our approach, the focus is more on the description of the proof ingredients and
on how they interact to prove the conjecture, rather than on the generality of the
results.

In Section 7.1, we present the main result. We introduce the three main ingre-
dients, i.e., symmetry, sharp thresholds, and EXIT functions, in Sections 7.2, 7.3,
and 7.4, respectively. Eventually, we give the proof in Section 7.5. We defer one of
the proofs to the appendix in Section 7.6.

7.1 Main Result

The fundamental contribution of this chapter is given by the following theorem.

Theorem 7.1 (Doubly Transitive Codes Achieve Capacity). Let {C,,} be a sequence
of codes with block lengths N, — oo, rates R, — R, for R € (0,1), and such that
the permutation group of C,, is doubly transitive for each n. Then, {C,} is capacity-
achieving for the transmission over the BEC under bit-MAP decoding.

As it will be defined more rigorously in Section 7.2, the permutation group of a
linear code is the set of permutations on code bits under which the code is invariant.
By proving that Reed-Muller codes are doubly transitive, we are eventually able to
show that they achieve capacity.
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Corollary 7.1 (RM Codes Achieve Capacity). Any sequence of Reed-Muller codes
with block lengths N, — oo, and rates R,, — R, for R € (0,1), is capacity-achieving
for the transmission over the BEC under bit-MAP decoding.

These results are perhaps surprising. Until the discovery of polar codes, it was
unclear whether or not codes with a simple deterministic structure could be optimal
in any sense [195,196]. Furthermore, even though both polar and Reed-Muller
codes derive from the Hadamard matrix F'®" defined in (1.13), the proof that polar
codes achieve capacity appears unrelated to the inherent symmetry of this matrix.
In contrast, the performance guarantees obtained here are a consequence only of
linearity and of the structure induced by the doubly transitive permutation group.

7.2 Ingredient 1: Symmetry

Unsurprisingly, the first ingredient is symmetry. First of all, let us define the terms
doubly transitive and permutation group. Denote by Sx the symmetric group on N
elements and recall that, for N € N, [N] is a shorthand for {1,--- , N},

Definition 7.1 (Permutation Group). The permutation group G of a binary code
C C {0, 1}N is defined as

G2 {reSy|m(x)eC foralxzcCl. (7.1)

With an abuse of notation, we denote by m(x) the vector of length N that is
obtained by permuting the positions of x according to . In words, the permutation
group of a code is the set of permutations that map the code into itself.

Definition 7.2 (Transitivity). Let G be a permutation group. Then,
a) G is transitive if for any i,j € [N], there exists m € G such that (i) = j;

b) G is doubly transitive if for distinct i, j, k € [N], there exists m € G such that
(i) =1, w(j) = k.

The following is a classic result for Reed-Muller codes by Kasami, Lin, and
Peterson [197, Corollary 4]. For the sake of completeness, its proof is in Appendix
7.6.1 and follows closely Appendix III-A of [192].

Lemma 7.1 (RM Codes Are Doubly Transitive). The permutation group G of the
Reed-Muller code RM (n,v) is doubly transitive for any n,v € N.

This is the only property of Reed-Muller codes that we need in this chapter.
Indeed, by using Theorem 7.1 and Lemma 7.1, the proof of Corollary 7.1 easily
follows.

7.3 Ingredient 2: Sharp Thresholds

The second ingredient consists in the study of functions that experience a sharp
threshold, i.e., a very quick transition from 0 to 1. On a historical note, the general
method was pioneered by Margulis [198] and Russo [199]. Later, it was significantly
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generalized by Talagrand in [200] and [201]. This approach has been applied to
many problems in theoretical computer science with remarkable success [202-204].
In the context of coding theory, the technique was first introduced by Zémor in [205],
refined further in [71], and also extended to AWGN channels in [206].

In general, threshold phenomena have been widely studied and play an impor-
tant role in several fields, e.g., probability theory, statistics, physics, and computer
science [207,208]. In this section, we simply state and briefly comment on a result by
Tillich and Zémor in [71], as it specifically concerns coding theory, and on a general
result by Friedgut and Kalai in [202], as we will use it for the proof in Section 7.5.

Consider a family of binary linear codes {C,} and let Pg(N,e) be the error
probability for the transmission of a code of block length N over a channel with
parameter €. The parameter € represents the quality of the transmission channel and,
to be concrete, we can think of the binary erasure channel with erasure probability
e € [0,1], i.e., the BEC(¢), and to the binary symmetric channel with crossover
probability € € [0,1/2], i.e., the BSC(e).

For any reasonable decoding algorithm, Pg(V,¢) is increasing in ¢, as we expect
that the error probability increases when the channel introduces more erasures or
errors. Define ¢*(V, J) as the channel parameter such that the error probability for
the code of block length N is equal to 4, i.e., Pg(N,e*(N,d)) = §. We say that the
error probability experiences a sharp threshold when

lim e*(N,1—9)—¢e"(N,0) =0. (7.2)
N—o00
In words, (7.2) means that the error probability passes from ¢ to 1 — ¢ in a window
whose size vanishes with V.
The following result restates Theorem 2.3 and 5.2 of [71] in our notation.

Theorem 7.2 (Sharp Threshold for Block-MAP Decoder). Consider the transmis-
sion of a binary linear code with block length N and minimum distance duyi, over the
BEC(e) or over the BSC(e). Let Pg(N,¢) be the error probability under block-MAP
decoding. Then,

c1(9)

Vv dmin ’

where ¢1(9) is a universal constant depending only on §.

e (N,1 - 8) — £*(N,§) < (7.3)

Note that the block-MAP decoder outputs the most likely codeword, as opposed
to the bit-MAP decoder that outputs the most likely value for each bit position.
We will discuss extensively how to pass from the error probability of the bit-MAP
decoder to the error probability of the block-MAP decoder in Sections 8.4 and 8.5.

The result above essentially says that the error probability under block-MAP
decoding experiences a sharp threshold for any family of codes such that d,;, tends
to infinity, as N grows large (see also Figure 7.2). In addition, it gives a tight
upper bound on the size of the window in which the transition takes place. The
upper bound is tight in the following sense. If the code sequence has a minimum
distance that is linear in the block length (up to logarithmic factors), then the
transition occurs in roughly O(1/v/N). This is as sharp as it can be, since the
random variations of the channel are already of order 1/v/N: the number of erasures
and errors tends to a Gaussian distribution with mean Ne and standard deviation

VNe(l—e).
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O(l/ \% dmin)

Figure 7.2 — Tllustration of the result of Theorem 7.2: the error probability under
block-MAP decoding Pg passes from § to 1 — ¢ in a window of size O(1/v/dmin)-

However, Theorem 7.2 does not let us to establish the location of the threshold.
This happens quite frequently in theoretical computer science. On the one hand,
we can apply the sharp transition framework in order to deduce that the transition
width of certain functions goes to 0. On the other hand, establishing that the
threshold exists, i.e., that the limit (7.2) exists, and determining its precise location
is notoriously difficult [209-211].

In order to overcome these difficulties, we do not consider directly the error prob-
ability under MAP decoding, but a function closely related to it, i.e., the extrinsic
information transfer (EXIT) function, as detailed in the next section. Furthermore,
to show that the EXIT function exhibits a sharp transition, we resort to a more gen-
eral result valid for Bernoulli product measures of monotone symmetric sets. Before
stating this result, let us give some definitions. For w, w’ € {0,1}M, we write w < o’
when w; < w/ for all ¢ € [M].

Definition 7.3 (Monotonicity). Let Q C {0,1}™. We say that Q is monotone if
w € Q and w <X W' imply that ' € Q.

In words, a subset 2 of the Hamming hypercube is monotone when, by adding
more 1s to one of the elements of {2, we remain in ).

Definition 7.4 (Symmetry). Let Q C {0,1}™. We say that Q is symmetric if it
transitive in the sense of Definition 7.2.
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In words, a subset {2 of the Hamming hypercube is transitive when, for any pair
of indices i, j € [M], there exists a permutation that maps i into j and that keeps
) invariant.

Definition 7.5 (Bernoulli Product Measure). Let Q C {0,1}. The Bernoulli
product measure of Q with parameter € is denoted by pu-(Q) and it is defined as

pe() =) v (1 —g)Menl) (7.4)
weN

where wy denotes the Hamming weight.

In words, the Bernoulli product measure of a subset 2 of the Hamming hypercube
is the probability that a vector whose components are i.i.d. Bernoulli(¢) random
variables is contained in . At this point, we are ready to state Theorem 2.1 of [202]
in our notation.

Theorem 7.3 (Sharp Threshold for Monotone Symmetric Sets). Let Q C {0,1}M be
monotone and symmetric and consider the Bernoulli product measure pc(£2). Define
€*(2,0) as the parameter such that p.- (o5 (2) = 6. Then,

In(1/6)
InM "’

(1 —68) — (0 6) < e (7.5)

where ¢g 1s a universal constant.

In words, consider the Bernoulli product measure p.(£2) as a function of €. Then,
if 2 is monotone and symmetric, u-(€2) passes from § to 1 — ¢ in a window of size
O (In(1/6)/In M).

7.4 Ingredient 3: EXIT Functions and Area Theorem

The third ingredient is the extrinsic information transfer (EXIT) function. EXIT
charts were introduced by ten Brink in the context of turbo decoding as a visual tool
for understanding iterative decoding [212]. For a given input bit, the EXIT function
is defined to be the conditional entropy of the input bit, given the outputs associated
with all other input bits. The average EXIT function is formed by averaging all of
the bit EXIT functions. We note that these functions are also instrumental in the
design and analysis of LDPC codes [44]. The crucial property we exploit is the so
called area theorem, originally proven by Ashikhmin, Kramer, and ten Brink in [213]
and further generalized by Méasson, Montanari, and Urbanke in [214]. This result
says that the area under the average EXIT function equals the rate of the code.

For the remaining part of the chapter, we will consider the transmission over the
BEC(¢e). For this channel, we can define EXIT functions as follows.

Definition 7.6 (EXIT Functions). Consider the transmission of a binary linear
code C of block length N over the BEC(g). Denote by X = (X1, ---,Xn) and
Y = (Y1, -+ ,Yn) the input and the output, respectively, of the channel and let Y.;
be a shortcut for the vector (Y1,---,Y;i—1,Yit1, -+, YN) that contains all outputs
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except the one at position i. Then, the EXIT function associated with bit i, denoted
by hi(e), and the average EXIT function, denoted by h(e), are defined by

hi(e) = H(X; | Yi),

N 7.6
he) = 5 S hile). o
=1

Let us now investigate the relation between the error probability and the average
EXIT function. We say that an erasure pattern covers a codeword of the code C
when all the positions in which the codeword is 1 are erased. Let P, be the error
probability of the bit-MAP decoder. Clearly, for i € [N], the bit-MAP decoder
recovers bit i from the output y = (y1,---,yn) if and only if the erasure pattern
does not cover any codeword where bit i is non-zero. In this case, H(X;|Y =y) = 0.
Whenever bit i cannot be recovered uniquely, the linearity of the code implies that
the set of codewords matching the unerased channel outputs has an equal number
of Os and 1s in bit position ¢ [44, Section 3.2.2]. In this case, H(X;|Y = y) = 1.
Thus, the probability F;,; that the bit-MAP decoder cannot recover position i is
equal to H(X; | Y). Since the average EXIT function can also be written in terms
of entropies, it is not surprising that it is closely related to P, as proven by the
following lemma (see also Lemma 3.76 of [44]).

Lemma 7.2 (EXIT Function and Bit-MAP Error Probability). Consider the trans-
mission of a code C of block length N over the BEC(e). Let h(e) be the average
EXIT function and let Py, be the error probability under bit-MAP decoding. Then,

P, =c¢-he). (7.7)

Proof. Recall that the BEC(e) outputs a “?” with probability £ and, otherwise,
leaves the input unchanged. Thus, a simple calculation shows that

H(X; |Y)=PY, = X)H(X; | Yo, Yi = X;) + P(Y; =0)H(X; | Yo, Vi =7) (7.8)
=(1—¢)-0+¢c-hie). '

Since P, ; = H(X; | Y), by taking the average over the position ¢, the thesis follows.
O

We consider the EXIT function rather than the error probability because there
is a conservation law that says the area under the average EXIT function is always
equal to the rate of the code. Therefore, the area under h(e) is an invariant for any
code of a given rate: changing the code just modifies the shape of the average EXIT
function, while keeping fixed the area under the curve. These considerations are
formalized by the so called area theorem, stated and proven below (see also Lemma
3.76 and Theorem 3.82 of [44]).

Theorem 7.4 (Area Theorem). Consider the transmission of a code C of block
length N and rate R over the BEC(g) and let h(e) be the average EXIT function.

Then,
€ _H(X|Y)
/0 h(zx)dr = —~ (7.9)
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where H(X | Y') is the conditional entropy of the codeword X given the observation
Y at the receiver. In particular,

/1 h(z)dx = R. (7.10)
0

Proof. Although all bits are sent through the same channel BEC(¢), it is convenient
to imagine that bit ¢ is sent through a BEC(g;), where ¢; = € for all ¢ € [N]. Then,
the derivative of the conditional entropy H(X | Y) can be written as

H(X‘Y(El)"'v ii X|Y517 ,5N))
de n 85@ .
i=1 gj=¢,VYj€[N]

O§ OHE | Y(en:wew)) | OH (X X Yier, - 1en)

: Oe; Oei )

i=1 gj=¢,Vj€[N]
(_)i OH(Xi | Y(e1, - en))

; Oe; .

=1 ej=¢,Vj€[N]
(:)i\f: (e H(X; | Yo, Yi =7))

; Oe; )

1=1 ej=¢,VjE[N]
(©) v
SN T H(X; | Yo, Yi =7)

i=1
O Nne),

(7.11)

where (a) comes from the definition of total derivative, (b) comes from the chain
rule for the conditional entropy, (c) uses that H(X.; | X;,Y) does not depend on
gi, (d) follows by expanding H(X; | Y) as in (7.8), (e) uses that H(X; | Y.;,Y; =7)
does not depend on ¢;; and (f) follows from the definition (7.6) of average EXIT
function.

By applying the fundamental theorem of calculus to (7.11), the result (7.9) im-
mediately follows. In order to obtain (7.10), note that, when e = 1, Y is independent
from X, hence H(X |Y) = H(X) = NR. O

7.5 Grand Finale: The Proof

As described in the previous section, the EXIT function h;(e) associated with bit 4
is the entropy of the input bit ¢ given the outputs associated with all other input
bits. This corresponds to the indirect recovery of x; given the N — 1 received bits
y~i. We denote an erasure pattern by a binary vector w € {0,1}V~! that indicates
the locations of the erased positions: a 1 denotes an erasure and a 0 denotes a
non-erasure. The central object of our study is the set €2; of “bad” erasure patterns
covering a codeword of C equal to 1 at position i. These erasure patterns are bad
in the sense that they do not allow indirect recovery of the input bit i, i.e., the
bit-MAP decoder cannot recover z; from y.;. Consequently, h;(¢) is encoded by
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Q;, as it is equal to the Bernoulli product measure of this set. These concepts are
formalized by the definition and the lemma that immediately follow.

Definition 7.7 (€;). Consider the transmission of a binary linear code C of block
length N over the BEC(e). Then, Q; is defined as the set of all erasure patterns
covering a codeword of C equal to 1 at position i, i.e.,

Q;, ={w € {0, 1}N_1 | i S w, x; =1 for some x € C}. (7.12)

Lemma 7.3 (Q; Encodes hi(g)). Consider the transmission of a binary linear code
C of block length N over the BEC(c). Then, the set Q; defined in (7.12) contains
all the erasure patterns such that it is not possible to recover the input bit x; from
the outputs y~; corresponding to all other positions. Furthermore, let hi(e) be the
EXIT function associated with bit i and pe(-) the Bernoulli product measure defined
in (7.4). Then,

hi(e) = pe(£2;). (7.13)

Proof. As the code is linear and the channel is memoryless and symmetric, we
can assume that the all-zero codeword was transmitted. Given an erasure pattern
w € {0,1}¥ 1 let C" denote the set of all codewords x that are compatible with the
observation y., i.e., all codewords for which z.; < w.

As the code is linear, so is C’. This implies that if there exists an z € C’ with
x; = 1, then half of all codewords in C’ have a 0 at position 4, and the other half
have a 1, which means that the indirect recovery of z; given y.; fails. Whereas, if
there is no z € C’ with x; = 1, then all compatible codewords have a 0 at position %,
which means that the indirect recovery of z; succeeds. This argument proves that
Q; is the set of all the erasure patterns that do not allow the indirect recovery of x;
from y-;.

Since the channel is memoryless, an erasure pattern w occurs with probability
e (w). Hence, the claim (7.13) immediately follows. O

As the discussion of Section 7.3 focuses on Bernoulli product measures of mono-
tone symmetric sets, it is not surprising that the next step consists in proving that
Q); is monotone and symmetric. The monotonicity follows basically by definition,
whereas the symmetry comes from the fact that the code has a doubly transitive
permutation group.

Lemma 7.4 (Q; Monotone). Consider the transmission of a binary linear code C
of block length N over the BEC(g). Then, the set §; defined in (7.12) is monotone
for any i € [N].

Proof. By Definition 7.3, we need to prove that if w € Q; and w < &', then W’ € Q;.
If w € Q;, then there exists x € C so that ; = 1 and z.; = w. Since, by
assumption, w =< ', it follows that x.; < w’, which implies that w’ € Q;. O

Lemma 7.5 (; Symmetric). Consider the transmission of a binary linear code C
of block length N with doubly transitive permutation group over the BEC(e). Then,
the set §; defined in (7.12) is symmetric for any i € [N].
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Proof. By Definition 7.4, we need to prove that €); is transitive.

As C has a doubly transitive permutation group, for any ji,jo € [N]\ {i}, there
exists a permutation 7 : [N] — [N] such that 7 (i) = i, 7(j1) = jo2, and 7(z) € C for
any x € C.

Consider the permutation 7 obtained by viewing the restriction of 7 to [N]\ {¢}
as a permutation from [N —1] to [N —1]. More formally, let Sy : [N—1] — [N]\{i} be
defined as S1(k) =k for k € {1,--- ,i—1} and S1(k) =k+1for k € {i,--- ,N —1}.
Let So : [N]\ {i} — [N — 1] be defined as Sa(k) = k for k € {1,---,i — 1} and
Sg(k) =k—1forke {Z +1,--- ,N}. Then, fr(k) = SQ(T['(Sl(k)))

Note that, by changing the choice of j; and jo, we generate the transitive group
of permutations on [N — 1]. Hence, in order to prove the claim, it suffices to show
that if w € Q;, then 7(w) € Q.

Recall that w € Q; if there exists a codeword x € C so that z; =1 and z; < w.
By construction of m, we have that w(x) € C and (7(z)); = x; = 1. By construction
of 7, we have that 7(x) < 7(w). Asaresult, 7(w) € ; and the proof is complete. []

Then, we show that the EXIT functions associated with the various bits of a
transitive code are all identical.

Lemma 7.6 (h; Independent of 7). Consider the transmission of a transitive binary
linear code C of block length N over the BEC(e). Let hi(e) be the EXIT function
associated with bit i. Then, hi(e) = hj(e) for alli,j € [N], i.e., hi(€) is independent
of 1.

Proof. Since C is transitive, there exists a permutation 7 : [N] — [N] so that
(1) = j, and w(z) € C for any = € C. The idea is that m maps the elements of €,
into the elements of (2;.

More specifically, pick w € ;. Note that w comes from an erasure pattern on
the transmitted codeword, call it @ € {0, l}N , from which we have removed the
observation 4. Define 7(w) € {0,1}V~! as the erasure pattern obtained by removing
the observation j to m(@w). Since w € €);, there exists a codeword x so that x; = 1 and
Z~i = w. By definition of 7 and 7, we have that (7(z)); = 1 and (7(x))~; < T(w).
As a result, 7(w) € Q.

As w € §; implies that 7(w) € €}, we can think of the map 7 as going from ;
to ;. This map is injective and it preserves the Hamming weight, i.e., wg(w) =
wy(7(w)) for any w € €;, which implies that p-(€;) < p-(£2;). By repeating the
same argument with the indices 7 and j exchanged, we conclude that . (£2;) = p1c(;)
and the thesis follows from (7.13). O

Finally, we are ready to prove our main result, i.e., Theorem 7.1. In a nutshell,
the proof follows by assembling correctly the ingredients that we have described
so far and, at a high level, it can be summarized by Figure 7.3. On the left side,
we show that the average EXIT function becomes steeper and steeper as the block
length increases, i.e., it experiences a sharp transition as predicted by Theorem 7.3.
On the right side, we show that the threshold must occur at capacity from the area
theorem, i.e., Theorem 7.4.

Proof of Theorem 7.1. Let {C,} be a sequence of codes with doubly transitive per-
mutation groups such that their block lengths N,, — oo and rates R,, — R. Consider
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Figure 7.3 — Proof by pictures of Theorem 7.1: in the left figure, we plot the average
EXIT function of a sequence of codes with doubly transitive permutation group,
e.g., of Reed-Muller codes, as the block length N increases; in the right figure, we
indicate that the area under the average EXIT function is equal to the rate of the
code.

the transmission over the BEC(e) and bit-MAP decoding. We say that the family
{C,} achieves capacity if the error probability tends to 0 for any R < 1 — e.

By Lemma 7.2, it suffices to show that the sequence of average EXIT functions
tends to 0 for any ¢ < 1 — R.

By Lemma 7.4 and 7.5, the set €2; of Definition 7.7 is monotone and symmetric.
Furthermore, by Lemma 7.3, its Bernoulli product measure p.(€2;) is equal to the
EXIT function hl(-n) (¢) associated with the bit i of the code C,. Therefore, Theo-

rem 7.3 bounds the window size in which hgn)

specifically, we have that if hgn) (€) =1 — 9y, then hz(»n) (e) < 6y, for

n(1/5,)
In(N,, — 1)’

(¢) passes from 0, to 1 — d,,. More

E=¢c+cy

where ¢y is a universal constant.
Lemma 7.6 implies that hgn) (¢) is independent of i, thus it is equal to the average
EXIT function h(™(g) of the code C,. By definition of &, we have that

' _ In(1/5,)
/0 KM (e) de > (1—28)(1—6y,) > (1 —e— CQIH(Nn_l)> (1—6,). (7.14)

Furthermore, Theorem 7.4 gives that
1
/ h™(e) de = R,,. (7.15)
0

Combining (7.14) and (7.15), we obtain

_ R. In(1/d,)
1-0, (N, 1)

e>1 (7.16)

As n — oo, we have that N,, = oo and R, — R. Thus, we can have §, — 0 and, at
the same time, ¢ arbitrarily close to 1 — R, which suffices to prove the claim. O
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7.6 Appendix

7.6.1 Proof of Lemma 7.1

Proof. Take any distinct 4, j, k € [N]. In order to prove that G is doubly transitive,
we will produce a m € G such that (i) =i and 7(j) = k.
It is well known that for any vector space with two ordered bases with m elements

(u®, - u™) and (v, . v(™), there exists an invertible m x m matrix T such
that u() = Tv® for all i € [m).
Let the elements of the vector space {0,1}" be enumerated by eM . @),

with N = 2" and denote by P(n,v) the set of multivariate polynomial with n
binary variables of degree at most v. Then, by definition of Reed-Muller code,
the codewords of the code RM(n,v) are of the form (f(e), ... f(e(N))), with
f € P(n,v). Note that, as i, j, k are distinct, e?) — e(?) £ 0y.,, and e(k D) % 01,
where 07., is a shorthand for the sequence of n 0s. Therefore, there exists an
invertible n x n binary matrix 7 such that T'(el?) — e()) = () — (),

Let us construct 7w: [N] — [N] by defining 7(¢) as the unique ¢’ such that

As T is invertible, it follows that m € Sy, i.e., the permutation 7 is bijective. Also,
by construction, (i) =i and 7(j) = k.

It remains to be shown that m € G. Consider a codeword i 1n RM(n7 v) given by
f € P(n,v). It suffices to produce a g € P(n,v) such that g(e(™(©)) = e(g for all
¢ € [N]. Let

g(wl, e ’xn) — f(Til[.Z'l, e 7$n]T _ Tﬁle(i) + 6(7’))

Then, degree(f) = degree(g), and g(e(™®)) = f(e®) for all £ € [N]. Therefore,
g € P(n,v) and 7 € G. O
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Generalizations

Non generalizzare mai.

Never generalize.

In the previous chapter, we proved that doubly transitive codes achieve capacity
on the BEC under bit-MAP decoding for any rate in (0,1). In this chapter, we focus
on several extensions of this theorem.

In Section 8.1, we briefly review most of the generalizations described in [192].
In Section 8.2, we outline the results presented in this chapter. In particular, in
Section 8.3, we analyze Reed-Muller codes in the low-rate and high-rate regimes.
The discussion on rates converging to 0 is in Section VI-E of [192], whereas the part
on rates converging to 1 is new and unpublished. Then, we study how to strenghten
results regarding the bit-MAP decoder to the block-MAP decoder. For the sake of
completeness, in Section 8.4 we revise the proof by Kumar and Pfister that Reed-
Muller codes achieve capacity under block-MAP decoding [192]. In Section 8.5,
we present the main technical contribution of this chapter!': we describe a general
framework for passing from the bit-MAP error probability to the block-MAP error
probability. We defer the proofs of two intermediate results to the Appendix in
Section 8.6.

8.1 Related Work

In addition to Reed-Muller codes, several families of codes of great interest are
doubly transitive, hence capacity-achieving. Specifically, affine-invariant codes, BCH
codes, and quadratic-residue codes are analyzed in detail in Section V of [192].
Furthermore, as pointed out in Section VI-D of [192], it is straightforward to extend
the results for binary linear codes to linear codes on F, transmitted over the g-ary
erasure channel.

!This material is based on joint work with S. Kudekar, S. Kumar, H. D. Pfister, and R. Urbanke
[215].
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Finally, as stated in Section VI-C of [192], it is possible to link the performance
of Reed-Muller codes over the binary erasure channel to their performance over
the binary symmetric channel. More specifically, Theorem 8 of [68] proves that if
the code RM(n,n — (¢t + 1)) can correct a certain erasure pattern, then the code
RM(n,n — (2t + 2)) can correct an error pattern with the same support. These
error patterns can even be corrected efficiently: by Corollary 14 of [216], there
exists a deterministic algorithm that runs in time at most n* and is able to correct
(1/2 — 0(1))2™ random errors in the code RM(n, o(y/n)) with probability 1 — o(1).

8.2 Main Results

Our contributions in this chapter can be summarized as follows.

Low-rate and high-rate regimes. A key result of [68,69] is that Reed-Muller
codes can correct almost all erasure patterns up to the capacity limit for rates
approaching either 0 or 1 with sufficient speed. With the proof technique
introduced in Chapter 7, we can prove that Reed-Muller codes are capacity-
achieving in strictly different regimes, i.e., for different speeds of convergence.

From bit-MAP to block-MAP. We describe in detail how to strengthen results
regarding the bit-MAP error probability to the block-MAP error probability.
First, we present the proof by Kumar and Pfister that Reed-Muller codes
achieve capacity over the BEC under block-MAP decoding [192]: by using
additional symmetries of the code, one can prove a stronger result on the
transition speed of the bit-MAP error probability, hence a simple union bound
enables us to conclude that also the block-MAP error probability vanishes.
This approach relies on the fact that the transmission occurs over an erasure
channel.

One of the main open problems consists in proving that Reed-Muller codes
(and, in general, codes with sufficient symmetry) are capacity-achieving for
the transmission over any BMS channel. We present some progress towards
such a goal by describing a general framework to pass from the bit-MAP error
probability to the block-MAP error probability. The crucial idea consists in
showing that, even if Reed-Muller codes have a minimum distance that scales
as the square root of the block length, the codewords that actually yield errors
under MAP decoding have almost linear weight. To prove such a fact, we need
to provide a careful bound on the weight distribution.

8.3 Low-Rate and High-Rate Regimes

8.3.1 Rates Converging to 0

Let {RM(n,v,)} be a sequence of Reed-Muller codes with block lengths N,, = 2"
and rates R, — 0 sufficiently fast. Assume that the code RM(n,v,) is transmitted

over a BEC(e,,) and let Pén) be the error probability under block-MAP decoding.
Then, we say that the family of codes achieves capacity if, for any ¢ > 0,

P 0, forany 0<e, <1—(1+ ()R (8.1)
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In Corollary 44 of [68], it is proved that (8.1) holds for v, < nn withn = O(1/1In(1/()).
Therefore, a necessary condition for this result is that R, = O(N,,; ") for some arbi-
trarily small and fixed x > 0. With the proof technique developed in the previous
chapter, we can show that Reed-Muller codes achieve capacity for a different decay
rate of R,,.

Theorem 8.1 (Rates — 0). Let {RM(n,v,)} be a sequence of Reed-Muller codes
with block lengths N, = 2" — oo and rates R, — 0 and consider the transmission
over the family of channels { BEC(e,,)}. Assume that

R,In N, — 0. (8.2)
Then, {RM(n,v,)} achieves capacity under bit-MAP decoding.

Proof. Let Pén) be the error probability under bit-MAP decoding for the transmis-
sion of the code RM(n,v,) over the BEC(g,,). From the argument in the proof of

Theorem 7.1, we have that Pén) < g,0,, for

R, In(1/4,)
=1 - , :
: =6, (N, —1) (®.3)
where ¢y is a universal constant.
We can now rewrite (8.3) as
en=1-— (1 + Cn)Rn,
with
On In(1/6,,)
Cn = C2 .
1— 0, R, -In(N, — 1)
Set 0, = 1/In(R,, - In(NV,, — 1)). Then, by applying the hypothesis (8.2), we obtain
that Pén) — 0 and ¢, — 0, which implies the desired result. O

Remark 8.1 (Comparison between Theorem 8.1 and Corollary 44 of [68]). Note
that if R, = O(N, "), then (8.2) does not hold. Hence, the regimes considered by
Corollary 44 of [68] and by Theorem 8.1 of this thesis do not overlap. In particular,
we consider a case in which R, converges to 0 much slower than in [68].

To make more clear the comparison between these two regimes, let us rewrite the
condition (8.2) in terms of the parameters v, and n of the Reed-Muller code. As
R, — 0, we have that v, < n/2. Thus, by Lemma 4.7.2 of [217], we can bound the

rate R, by
>(7)
onha (L) — \i onha(SE)
<R,=%E < 8.4
my2n T " P T 8.4)

where ha(z) = —xlogyx — (1 — x)logy(1 — ). Furthermore, recall that the Taylor
expansion of the function hy(-) around 1/2 is given by

ho <2—1:> —1—1n2x + o(x?).
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Hence, after some manipulations, we finally obtain that the condition (8.2) is equiv-

alent to n
Un =5 o(y/nlogyn). (8.5)

Recall also that the regime in which R, — R, for any R € (0,1), corresponds to

v, =n/2+0(y/n).

8.3.2 Rates Converging to 1

Let {RM(n, v,,)} be a sequence of Reed-Muller codes with block lengths V,, = 2" and
rates R, — 1 sufficiently fast. Again, assume that the code RM(n, v,,) is transmitted

over a BEC(e,,) and let Pén) be the error probability under block-MAP decoding.
Then, we say that the family of codes achieves capacity if, for any ¢ > 0,

PYY =0, forany 0<e, < (1—Ry)(1—0). (8.6)

In Corollary 45 of [68], it is proved that Reed-Muller codes are capacity-achieving
for n — v, = O(y/n/logyn). With the proof technique developed in the previous
chapter, we can show that Reed-Muller codes achieve capacity for a different decay
rate of R,.

Theorem 8.2 (Rates — 1). Let {RM(n,vy,)} be a sequence of Reed-Muller codes
with block lengths N, = 2™ — oo and rates R_n — 1 and consider the transmission
over the family of channels {BEC(e,)}. Fiz R, =1 — R,, and suppose that

R, In N,
! , 8.7
m(l/ Ry (87)

Then, {RM(n,v,)} achieves capacity under bit-MAP decoding.

Proof. From the argument in the proof of Theorem 7.1, we deduce that the bit-MAP
error probability Pén) is upper bounded by &,,0,, where &, is given by (8.3).
We can now rewrite (8.3) as

En = (1 - Rn)(l - Cn),

with
R, 5 In(1/6,)
TR, T=0, A= Ry (N, —1)
0 Ry In(1/6,)
"R, 1-6, R, (N, 1)

where R, = 1 — R,. Set 6, = R,/In(R, - In(N,, — 1)). Then, by applying the
hypothesis (8.7), we can verify that Pén) — 0 and ¢, — 0, which implies the desired
result. ]

Remark 8.2 (Comparison between Theorem 8.2 and Corollary 45 of [68]). Let
us apply (8.4) to R,, rather than to R,. Then, after some further calculations, we
verify that if n—v, = O(y/n/logyn), then the condition (8.7) does not hold. Hence,
the regimes considered by Corollary 45 of [68] and by Theorem 8.2 of this thesis do
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not overlap. In particular, we consider a case in which R, converges to 1 much
slower than in [68].

To make more clear the comparison between these two regimes, let us rewrite the
condition (8.7) in terms of the parameters v, and n of the Reed-Muller code. By
using a procedure similar to that of Remark 8.1, we conclude that (8.7) is equivalent

to
n
Un =g + o(y/nlogyn). (8.8)

8.4 From Bit-MAP to Block-MAP via Sharper Thresholds
for BEC

First of all, let us recall the difference between bit-MAP and block-MAP decoding.

e The bit-MAP decoder outputs the most likely bit value for each position, and
its bit error probability is denoted by B,.

e The block-MAP decoder outputs the most likely codeword, and its block error
probability is denoted by Pg.

Note that P, is the bit error probability of the bit-MAP decoder and Pg is the
block error probability of the block-MAP decoder. To avoid being verbose, we will
simply refer to P, and Pp as the error probabilities of the bit-MAP and block-MAP
decoders, respectively, without specifying whether it is a bit error probability or a
block error probability.

The main result of this section consists in showing that Reed-Muller codes
achieve capacity over the BEC also under block-MAP decoding and it is stated
as follows.

Theorem 8.3 (From Bit-MAP to Block-MAP for BEC). Any sequence of Reed-
Muller codes with block lengths N, — oo, and rates R, — R, for R € (0,1), is
capacity-achieving for the transmission over the BEC under block-MAP decoding.

The idea of the proof consists in providing a stronger bound on the window size
in which the average EXIT function transitions from § to 1 —4. Recall that Theorem
7.3 yields a window size that is O (In(1/§)/In N). This implies that P, can decay
as N77 for a fixed and arbitrarily small v > 0. In order to speed up the decay of P,
to, for example, N2, it would suffice to show that the size of the transition window
is O (In(1/0)/(wn - In N)), where wy — 0o as N — oo.

To prove such a fact, we resort to the framework developed by Bourgain and
Kalai in [218], where additional properties of the permutation group are exploited
in order to provide stronger results on threshold intervals. Analogously to Definition
7.1, the permutation group of a set 2 is defined as the group of permutations that
leave §2 invariant. The result that we need is stated below and it is proved in
Appendix 8.6.1.

Theorem 8.4 (Sharper Threshold for More Symmetric Sets). Let Q C {0,1}M be
a monotone symmetric set. In addition, assume that the permutation group of €1 is
isomorphic to the general linear group GL(m,Fs) of degree m in Fo, where M = 2.
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Consider the Bernoulli product measure p.(2) and define €*(2,6) as the parameter
such that pie«(q5)(2) = 0. Then, there erists a universal constant Cy such that

In(1/9)
In(ln M) -In M’
provided that €*(Q,0)(1 —*(Q,1 —9)) is bounded away from 0.

e (Q,1—-0)—e"(Q,0) <Cy (8.9)

Luckily enough, Reed-Muller codes have the additional symmetries required by
Theorem 8.4.

Lemma 8.1 (More Symmetries for RM Codes). For the code RM(n,v), consider
the set Qn of Definition 7.7 and let Gy be its permutation group. Then, Gy contains
a transitive subgroup isomorphic to GL(n,Fs).

The proof of the lemma above follows closely Appendix III-B of [192] and it is
reproduced with our notation in Appendix 8.6.2. Eventually, we are ready to show
the main result of this section.

Proof of Theorem 8.3. Let {RM(n,v,)} be a sequence of Reed-Muller codes with
block lengths N,, = 2" — oo and rates R, — R, for R € (0,1). Consider the
transmission over the BEC(¢) and block-MAP decoding. We say that the family

{RM(n,v,)} achieves capacity if the error probability P}gn) tends to 0 for any R <
1—e.

The proof is similar to the one of Theorem 7.1 at the end of Section 7.5. The set
Qn is monotone and symmetric and its Bernoulli product measure is equal to the
EXIT function hg\?) (e) associated with the last bit. Furthermore, as Reed-Muller

codes are transitive, hg\?) (¢) is equal to the average EXIT function h(™(e).

By Lemma 8.1, the permutation group of 2y contains a transitive subgroup
isomorphic to GL(n, F2). Therefore, by Theorem 8.4, we have that if h%) () =1-0p,
then h{(¢) < 6, for

In(1/4,)
"In(In(N, — 1)) - In(N,, — 1)’
provided that (1 — &) is bounded away from 0.

By using the same argument based on the area theorem, i.e., Theorem 7.4, we
conclude that

e=e+C

In(1/6,)
In(In(N,, — 1)) - In(N,, — 1)

As n — oo, we have that N,, — oo and R,, — R. Thus, we can take §,, = 1/N? and,
at the same time, ¢ arbitrarily close to 1 — R. As a sanity check, note that £(1 — &)
is bounded away from 0, since R € (0, 1).

As a result, the thesis follows from the chain of inequalities below:

(a)
P < N, P

® N, e h(e)

SNn'g'(sn
¢) e

<— =0
_Nn bl

e>1—R,—6,—C (8.10)

—
~
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where the inequality (a) comes from the fact that, for the transmission over the BEC,
if the bit-MAP decoder cannot decode at least one of the bits, then the block-MAP
decoder cannot decode; the equality (b) comes from Lemma 7.2; and the inequality
(¢) by our choice of d,,. O

8.5 From Bit-MAP to Block-MAP via Weight Distribution
for BMS Channels

8.5.1 Statement and Proof of Main Theorem

Theorem 8.5 (From Bit-MAP to Block-MAP for BMS Channels). Consider a
sequence of Reed-Muller codes with block lengths N, — oo and rates R, — R,
for R € (0,1). Assume that each code is transmitted over a BMS channel with
Bhattacharyya parameter z € (0,1) and that the error probability of the bit-MAP
decoder is O(Ny, "), for a fivzed v > 0. Then, the error probability of the block-MAP
decoder tends to 0.

Consider the special case of transmission over the BEC. As pointed out in the
previous section, Theorem 7.1 implies that B, is O(N~7), for a fixed v > 0. Thus,
the result above immediately implies that Reed-Muller codes achieve capacity under
block-MAP decoding without resorting to the framework of [218].

In order to prove Theorem 8.5, it is useful to introduce a randomized version of
the bit-MAP and block-MAP decoders.

e The randomized bit-MAP decoder outputs each bit value according to its pos-
terior probability, and its bit error probability is denoted by F, ;.

e The randomized block-MAP decoder outputs each codeword according to its
posterior probability, and its block error probability is denoted by Pg .

The error probabilities of the MAP decoders are related to the error probabilities
of their randomized counterparts by the following lemma that is proved in Section
8.5.2.

Lemma 8.2 (MAP vs. Randomized MAP). Consider the transmission of a code C
over a BMS channel and let P,, Pg, P, and Pg, be the error probabilities of the
bit-MAP, block-MAP, randomized bit-MAP and randomized block-MAP decoders.
Then, the following inequalities hold:

b, <P,<2 B, (8.11)

Pg < Pg, <2 Ps. (8.12)

A crucial point in the proof of the main result of this section is that for any
Reed-Muller code of sufficiently large block length and any 3 > 0, the codewords at
distance at most N'~7 from the transmitted codeword have a negligible effect on the
block error probability under randomized block-MAP decoding. This means that,
even if Reed-Muller codes have only a minimum distance of ©(v/N), the codewords
that really produce errors under MAP decoding have almost linear weight. These
concepts are formalized by the following lemma.
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Lemma 8.3 (Small Distances Do Not Count). Consider a sequence of Reed-Muller
codes with block lengths N, — oo and rates R, — R, for R € (0,1). Assume
that each code is transmitted over a BMS channel with Bhattacharyya parameter

€ (0,1) and fix any B > 0. Then, the probability that the randomized block-MAP
decoder outputs an incorrect codeword at Hamming distance at most N}f’g from the
transmitted codeword tends to 0.

The proof of Lemma 8.3 is deferred to Section 8.5.2 and relies on an upper bound
on the weight distribution of Reed-Muller codes. Recall that the codewords of the
code RM(n,v) are given by the evaluations of the polynomials in n variables of
degree at most v over Fo. With an abuse of notation, we can think of RM(n,v) as
the collection of such polynomials f : 5 — Fo. The normalized weight of a function
f : F§ — Fy is the normalized number of 1s in it, i.e.,

wi(f) = oul{e € B < (@) = 1)1

The cumulative weight distribution of RM(n, v) at a normalized weight o € [0,1] is
denoted by W, ,(a) and is defined as the number of codewords whose normalized
weight is at most «, i.e.,

Who(a) = [{f € RM(n,v) : wt(f) < a}l. (8.13)

The study of the weight distribution of Reed-Muller codes is a classic problem
in coding theory [219-221] and it culminated in the asymptotically tight bounds
for fixed order v and asymptotic n by Kaufman, Lovett, and Porat [222]. These
bounds were further improved in [68,69]. More specifically, we need an additional
refinement of Theorem 3.1 of [222], stated below and proven in Section 8.5.2.

Lemma 8.4 (Upper Bound on Weight Distribution). Consider the code RM(n,v).
Pick an integer £ € [v — 1] and € € (0,1/2]. Set a = 274(1 —€). Then,

v—~0 (n—L
Wiw(a) < (1/6)02(”+2)2(””Zi:0 (" )),
where Cy is a universal constant.

Finally, we can proceed with the proof of Theorem 8.5.

Proof of Theorem 8.5. The quantities N, B,, P, B, and Py, that appear in this
proof are all indexed by n, but we drop the index to avoid cluttering. Furthermore,
let P, be the probability that the randomized block-MAP decoder outputs an
incorrect codeword whose Hamming distance from the transmitted codeword is at
most N'=7/2. Similarly, let P]gr be the probability that the randomized block-
MAP decoder outputs an incorrect codeword whose Hamming distance from the
transmitted codeword is at least N'=7/2. Then,
Py SPB,r:Pé,r—'_P]%,r’

where the inequality comes from (8.12). By Lemma 8.3, we have that ]3]137r tends to
0. Hence, in order to prove the claim, it suffices to show that also Pgr tends to 0.
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To do so, we first upper bound P]g . as a function of B, , by adapting the proof of
(13.51) in [223]. Let x = (xq,--- .z ) denote a codeword and y the channel output.
By definition, the randomized bit-MAP decoder outputs the value in position 4
according to the distribution p(z; | y). However, we can also draw a sample from
p(z; | y) by first sampling from the joint distribution p(x | y) and then by discarding
all positions except position ¢. Now, let A be the event in which the Hamming
distance between 2 and the transmitted codeword is at least N1=7/2. Thus,

B, =P(A) - P(bit error | A) + P(A®) - P(bit error | A°)

| ) (8.14)
> P(A) - P(bit error | A) > Ph - N7/2,

where A° denotes the complement of A. To prove the last inequality, note that
P(A) = Pg}r and that, since z has Hamming distance at least N'=7/2 from the

transmitted codeword, at least a fraction N ~7/2 of the bits in z is decoded incorrectly
by the randomized bit-MAP decoder. Finally,

(a)
Py <P, N7/2

(b)
<2.-B,-N/2,

where the inequality (a) is obtained from (8.14), and the inequality (b) from (8.11).
Since, by hypothesis, P, is O(N~7), the result is readily proved. O

8.5.2 Proof of Auxiliary Lemmas and Further Remarks
We start by proving Lemma 8.2.

Proof of Lemma 8.2. The inequalities P, < B, and Pg < Py, follow from the fact
that the MAP decoder is, by definition, an optimal decoder in the sense that it
minimizes the error probability.

In order to prove the other inequality in (8.12), let € C denote a codeword,
y € Y the channel output, and Zp(y) the estimate provided by the block-MAP
decoder given the channel output y. Then, we can rewrite Pp as

Py =Y p(z)) ply| 2)P(Ep(y) # )

zeC yey
= Zp(y) Zp(x ’ y)P(jB(y) 7& x)
yey zeC
(a)
=> py) (1 —pEs) | v)
yey
1= S ) i) ),
yey

where the equality (a) comes from the fact that the estimate Zp(y) provided by
the block-MAP decoder is equal to a fixed codeword (more specifically, to the most
likely one) with probability 1; and the equality (b) uses that > ), p(y) = 1.
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Similarly, let Z,(y) be the estimate provided by the randomized block-MAP
decoder, given the channel output y. Then, the following chain of inequalities holds

= (@)Y ply | 2)P(ip,(y) # )

zeC yeY
= Zp Zp X | y 1’B r( ) )
yey zeC
WS 05) S pl | 9)(1 - p( | )
yey zeC
(b) ?
<> py) (1 — <r£gg<p(a; | y)> )
yey (8.16)
=> p) is(y) | y)?)
yey
© > o) -plEs(y) | y)’
yey )
Zp Y) | y)
yey

@1—(1—PB)2 < 2. Pg.

To prove the equality (a), we use that the estimate 2, (y) provided by the random-
ized block-MAP decoder is equal to x with probability p(z | y). To prove inequality
(b), we use that, given m real numbers 1 > p; > -+ > p,, > 0 with Z;”Zl pj =1,
then

dopil=p)=(=p) Y piy—
j=1 = - h

=1 =p) | +§;p31
J

1

<(L—p1)m +Zp31

=2
:(1—p1)(p1+1):1—p§.

To prove the equality (c), we use that 3 -y, p(y) = 1. Inequality (d) follows from
Jensen’s inequality and equality (e) uses (8.15).

In order to prove the analogous inequality F,, < 2 - B, one possibility is to
write expressions similar to (8.15) and (8.16) for the bit error probability of position
7 under bit-MAP decoding and under randomized bit-MAP decoding, respectively.
Otherwise, we can follow the simpler argument used to prove (13.50) in [223]. We
reproduce this argument here for the sake of completeness.

Consider first the case of a single bit with posterior probability {po,p1}. Then,
Py, = min(pg, p1). Furthermore, the probability that the randomized bit-MAP de-
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coder makes a correct decision is pg + p?, since its output and the ground truth
follow the same distribution. Thus,

Py = 2pop1 < 2min(pg,p1) =2 B, (8.17)

In general, B, and B, , are just the averages of many such error probabilities. There-
fore, (8.17) holds for the transmission of any number of bits. O]

Now, let us state some more definitions and intermediate results that will be
useful in the following.

Let f : F§ — Fy be a function. The derivative of f in direction y € F3 is denoted
by Ay f : Fy — Fo and it is defined as

Ay f(x) = flz+y)+ flx).

Similarly, the k-iterated derivative of f in directions Y = (yi,---,yx) € (FH)* is
denoted by Ay f : Fy — Fy and it is defined as

Ayf($) = AZ/1Ayz T Aykf(x)

A simple manipulation yields

Ayfe)=Yf <x+ Zyz) :
IC[K]

il

from which it is clear that the order of y1,--- ,y; is irrelevant in the computation
of Ay f(x). Hence, we can think of Y as a multi-set of size k.

Note that, if f is a polynomial of degree v, then its derivatives have degree
at most v — 1. Consequently, its k-iterated derivatives have degree at most v — k.
Furthermore, as pointed out in Section III of [68], we have that A, f(x) = A, f(z+y).
Thus, in general, Ay f(z) is determined by its values on the quotient space F4 \ (Y'),
where (V) denotes the space spanned by the vectors in Y.

The following lemma plays a central role in the proof of the upper bound on the
weight distribution.

Lemma 8.5 (Lemma 2.1 in [222]). Pick an integer £ > 1 and € € (0,1). Consider
a function f : FY — Ty such that wt(f) < 2741 —€). Pick any 6 > 0. There exists
a universal algorithm A (which does not depend on f) with the following properties:

1. A has two inputs: x € F} and Y1,---,Y; € (F})’.
2. A has oracle access to the l-iterated derivatives Ay, f, -+, Ay, f.

Then, fort < Cy(logy(1/8)logs(1/€)+1ogy(1/5)?), where Co is a universal constant,
there exists a choice of Y1,---,Y; such that

P(A(z; Y1, Y, Ay fo - Ay f) = fa) > 1 =6, (8.18)

where the probability distribution is over x € Fy chosen uniformly at random.
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In words, Lemma 8.5 says that any function of small normalized weight can be
approximated arbitrarily well, given a sufficient amount of its derivatives. For a
proof of this result, we refer the interested reader to Section II of [222].

At this point, we are ready to prove Lemma 8.4.

Proof of Lemma 8.4. Pick § = 27v~1. Apply the universal algorithm A to all the
codewords f € RM(n,v). Denote by H the family of functions obtained by doing so.
In other words, H is the set of outputs of A when the input is a degree v polynomial
in n variables.

By Lemma 8.5, for any f € RM(n,v) such that wt(f) < «, there exists h € H
that differs from f in a fraction < § of points of 7.

Suppose now that there exists h € H obtained by applying the algorithm A to
two distinct codewords fi, fa € RM(n,v) such that wt(f;) < a and wt(f2) < a.
Then, h differs from f; in a fraction < § of points and A differs from f5 in a fraction
< ¢ of points. Therefore, fi; and f5 can differ in a fraction < 2§ = 27" of points. As
the minimum distance of the code is 2”77, we conclude that f; = fy. Consequently,
we can associate a unique h € H with each f € RM(n,v) such that wt(f) < a. This
implies that

Wio(e) < [H]. (8.19)

The remainder of the proof consists in upper bounding the cardinality of H.
Recall that the algorithm A takes as input

1. thet directions Y1, - - - ,Y; € (F3)¢ with t < Co(logy(1/6)logy(1/€)+logy(1/6)2);
2. the t f-iterated derivatives of the input.

The number of different possibilities for each Y; (with i € [t]) is 2*. Given Y, the
number of possible functions Ay, f is upper bounded by the number of polynomials
of degree at most v — ¢ defined in the space F4 \ (Y;). As this space has dimension
v—Ll (n—4L
n — ¢, the number of possible functions Ay, f is 2+7=0 (" )
By putting everything together, we conclude that

] < 21 Ei= (5

(@) Cal(v+1) logy (1/0)+ (04 1) (ne4 35328 (7))

y) 9C2((v+1)dogy (1/e)+(v-+1)% logs (1/€) (nt+ 5 =5 ("))

—
=

J

(1 /E)cg(v+1)(v+2)(ne+z§;g n)

J

IN

(1)) o2 e zizo (7)),

IN

where the inequality (a) combines the upper bound on ¢ with the choice § = 27V~1;
and the inequality (b) uses that logy(1/€) > 1 for e € (0,1/2]. O

As previously pointed out, Lemma 8.4 is a refinement of Theorem 3.1 of [222].
More specifically, the upper bound (8.19) comes from the proof of Theorem 3.1
of [222], and our refinement consists in an improved upper bound on |H|. Note that
this improvement is necessary to obtain the desired result on the error probability of



8.5. From Bit-MAP to Block-MAP via Weight Distribution for BMSCs 175

the randomized block-MAP decoder, as the upper bound on the weight distribution
presented in Theorem 3.1 of [222] is not tight enough for this purpose.
Let us proceed with the proof of Lemma 8.3.

Proof of Lemma 8.3. Let {RM(n,v,)} be a sequence of Reed-Muller codes with
block lengths N, = 2" — oo and rates R, — R, for R € (0,1). Since the claim to
be proved is stronger when [ is smaller, we can assume without loss of generality
that 5 € (0,1/2).

Suppose now that, for n large enough,

n p
on > 5 <1 + 2) . (8.20)

Then, by applying Lemma 4.7.2 of [217], we obtain that

as n — v, — 1 < n/2. This means that, for any g € (0,1/2), if v, satisfies (8.20),
then the rate R,, tends to 1.
Similarly, it is easy to see that if

n p
'Un<2<1—2>,

then the rate R, tends to 0. Since R,, converges to R € (0, 1), we have that, for n

large enough,
n B\ n 15}

Let x denote a codeword and y the channel output. Then, the posterior proba-
bility p(x | y) can be written as

_ plylople) ply| o)
P ) = S Ta @)~ Sap(y] 3

where the last equality comes from the fact that the codeword is chosen uniformly
from the codebook. From (8.22) we deduce that, by adding codewords, the posterior
probability p(z | y) decreases. Then, the probability that the randomized block-
MAP decoder outputs a specific codeword z increases if we remove all codewords
except = and the codeword that was actually transmitted. By using (8.12), we can
upper bound such a probability by 2 times the block error probability of the non-
randomized block-MAP decoder. Eventually, by applying Lemma 4.67 of [44], this
last probability is upper bounded by %zw, where w is the Hamming weight of z.
The argument above proves that the probability that the randomized block-MAP
decoder outputs a codeword of weight w € [2"] is upper bounded by 2. Hence, by
applying the union bound, the probability that the randomized block-MAP decoder
outputs a codeword of normalized weight at most 2="? is upper bounded by

(8.22)
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where ¢,, denotes the number of codewords of weight w. As the minimum distance
of the code RM(n,vy,) is 2" ", we deduce that ¢, = 0 for w € {1,--- ,2"7¥» — 1}
For w € {27 ... [2"1=A)]} we have that

(a) »
logy (cw) < logy (Wip, (w2™™))

(b)
< log, (Wn,vn (gﬂogz(wﬂ—n))

(c) v —n+[logy (w)]+1 oo (w
< Ca(vn +2)° (n(n — [logy(w)] = 1) + 3 <“ 8l i )1+ 1>>

=0

d Un —n 0, w
(g) 2 <n2 N Qmogz(wmlm(W))

nB/4—n/2+logo (w)+2
(%) CQ n? <n2 + 2(10g2(w)+2)'h2< log;(wg)2 - >> ,
(8.23)

where the inequality (a) comes from the definition (8.13) of cumulative weight distri-
bution; the inequality (b) comes from the fact that W), ,, («) is increasing in «; the
inequality (c) comes from the application of Lemma 8.4 with £ = n — [logy(w)] — 1
and € = 1/2; the inequality (d) comes from the application of Lemma 4.7.2 of [217]
(or, equivalently, of formula (1.59) of [44]); and the inequality (e) comes from the
fact that ho(z) is increasing for x € [0, 1/2] and v, is upper bounded by (8.21). Note
that we fulfill the hypotheses of Lemma 8.4 since w > 2"~%» implies that ¢ < v, — 1.
In addition, we can apply Lemma 4.7.2 of [217] since (8.21) and w < [2"(=#)] imply
that v, — n + [logy(w)] + 1 < ([logy(w)] + 1)/2 for n large enough.
Thus, the logarithm of the desired probability is upper bounded as follows:

[2"(1*5)] "2n(17ﬁ)‘|
log2< Z z“’cw> (i)log2< Z zwcw)

w=1 w=2""Yn

(b)

<n+ max logs(2%cy) < n + max loo. (2% ¢
- weNN[2n—vn, [2n(1=A)]] Ba(=ew) < we2n—vn,[2n(1=A)]] 82" cw)
(2) n + Co nt 4+ max —logy(1/2) - 9logs (w)

B 1ogs (w)€[n—vp,n(1—B)+1] 2

nB/4—n/2+logo (w)+2
+ Cy n22(1°g2(“’)+2)'h2( Toga () >>

(d)
<n+Con'+ (—logQ(l/z)‘Qm

max
v€[1/2-6/4,(1=B)+1/n]
+ Oy n2n @t/ he (W))

()

- B/3—1/2+x
<n+Con'+ (—logQ(l/z)-an+4Czn22 zh?( @ )))

(8.24)

max
z€[1/2—B/4,1-78/8]
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where the equality (a) uses that ¢,, = 0 for w € {1,---,2"%» — 1}; the inequality
(b) uses that the number of terms in the sum is upper bounded by 2"; the inequality
(c) uses (8.23); to obtain the inequality (d), we set x = logy(w)/n and we use the
upper bound (8.21) on vy,; and the inequality (e) uses that

ha(t) <1,

1
1_@21_ﬁ+*7
8 n

" (5/4_ 1/2+x+2/n) “, (5/3 —i/2+x> |

x

where the last two inequalities hold for n large enough.
In order to conclude, it suffices to observe that, for any 8 € (0,1/2) and any
x € [1/2—3/4,1—"7/3/8], we have

hy <5/3—1/2+f0) <1

x

which implies that the upper bound in (8.24) tends to —oo, hence the desired prob-
ability goes to 0. O

The following two remarks discuss how to tighten the main result by making the

hypothesis on the decay rate of B, less restrictive and by evaluating the decay rate
of PB.

Remark 8.3 (Looser Condition on Py,). Consider a sequence of Reed-Muller codes
{RM(n,v,)} with block lengths N,, = 2" — oo and rates R, — R, for R € (0,1).
In order to have that Pg — 0, Theorem 8.5 requires that Py, is O(N, ') = O(27"7)
for some v > 0. With some more work, we can conclude that Pg — 0 even under

the less restrictive hypothesis that Py, is 0(2*"1/2+7l) for some v' > 0. The proof of
this tighter result is based on a stronger version of Lemma 8.3 that is outlined in the
next paragraph.

Consider the same transmission scenario of Lemma 8.3 and fix any 3 > 0.
Then, the probability that the randomized block-MAP decoder outputs an incorrect

nl/2+p'

codeword at Hamming distance at most 2"~ tends to 0 as n tends to infinity.

In other words, codewords with distances up to 2”*"1/2“3/, for any B’ > 0, do not
count, as opposed to distances up to 2"Y=P) | for any B > 0, in the original statement.
In order to prove this stronger claim, first we need the following tighter bound for
the range of vy, (compare to (8.21)):

<n nt/2 8y n1/2+5/>
Unp €| = — -+ .

2 4 72 4

Indeed, from simple manipulations we have that vy, > n/2 + n1/2+5//4 yields rates
R, — 1 and v, <n/2— n1/2+ﬁ,/4 yields rates R, — 0. Then, we obtain this bound
on logy(cw) (compare to the last inequality in (8.23)):

1/2+p'
n — 2 tlogy (w)+2
(logy (w)+2)h2 ( . 1og§<w>g2 )

logy(cw) < Cyn? | n?42

)
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which yields the following upper bound on the logarithm of the desired probability
(compare to the last inequality in (8.24)),

n+ Co n4+ max _ 1Og2(1/z) . ona
z€[1/2—nP —1/2 /4 1-TnB —1/2/8]

/ 8.25
s
2N .

FEventually, when n — oo, we can show that the above quantity tends to —oo, which
suffices to prove the claim. Note that the result of Theorem 8.5 cannot be further
improved by using a better upper bound on the weight distribution. Indeed, a simple

counting argument gives that W, ,(27) > ont+(170) (see also Section III of [68]).

Remark 8.4 (Decay Rate of Pg). The decay rate of Pg is given by the slowest
between the decay rates of ]3]13,]r and P§7r, defined in the proof of Theorem 8.5.

First, assume that Py, is O(27™7), for some v > 0, as in the hypothesis of the
theorem. Note that (8.24) is minimized when x = 1/2 — /4 and we can pick any
B < ~/2, since 3 is set to /2 in the proof of Theorem 8.5 and the claim of Lemma
8.3 is stronger when 3 is smaller. Therefore, we obtain that Pllgr is O(272""), for
any 7 € (0,1/2). This bound essentially comes from the fact that the minimum
distance of Reed-Muller codes scales as N, with N = 2". From the argument in
the last paragraph of the proof of Theorem 8.5, we have that Pgr is O(27"), for
any p € (0,7). Thus, when Py, is O(27™7), we conclude that Pgr is O(27") for any
fized p < .

Now, assume that Py, is O , for some v >0, as in Remark 8.3. From
(8.25), we obtain again that Pé%r is O(272""), for any T € (0,1/2). From the ar-

(2,n1/2+w’)

gument in the proof of Theorem 8.5, we have that P]gr 18 0(2*‘“"1/2+v ), for any

a € (0,1), which also gives the overall decay rate of Pg. In conclusion, these argu-
ments show that the decay rates of Py, and Py are essentially the same.

8.6 Appendix

8.6.1 Proof of Theorem 8.4

Proof. By applying Theorem 1 and Corollary 4.1 of [218], we have that there exists
a universal constant C] such that

Q
B > O in(in M) (M) ()1 — o (40), (3.26)
provided that (1 — ¢) is bounded away from 0.
Define @
He
g)=In———F"——.
9(e) 1— pe(92)
Then,
d 1 dps (£
9(e) _ () - ol n M n(M), (8.27)

de pe(Q)(1 - pe(Q))  de
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where the last inequality comes from (8.26) and we assume that (1 —¢) is bounded
away from 0.
By integrating dg(e)/de from *(2,6) to €*(£2,1 — 0), we obtain that

/8*@71‘” dg(e) ., _ g(e*(Q,1 = 8)) — g(e*(,6))

*(975) d€
1-9§ 19
=1 —1
S R
1-96 1
— < -
21n 5 _21116

Furthermore, the application of (8.27) yields that

e (2,1-5)
/ 99C) 4o > O min MIn(M) - (5@, 1 - 6) — £*(%2,6)).
£*(Q,0) €

Hence, the desired result follows by setting C; = 1/(2C1). O

8.6.2 Proof of Lemma 8.1

Proof. As in the proof of Lemma 7.1 in Appendix 7.6.1, the elements of the vector
space {0,1}" are enumerated by e, .. () where N = 2" and e(") is associated
with the sequence of n 0s, namely, eWN) = 0;.,. Recall also that P(n,v) denotes
the set of multivariate polynomial with n binary variables of degree at most v and
that the codewords of the code RM(n, v) are of the form (f(e™),---, f(eN))), with
f € P(n,v).

Let us associate with a given T' € GL(n,F3) the permutation 7p € Sy_1 such
that

mp(l) =0, where ) = Tel®,

Note that 7p is well-defined since T is invertible. Moreover, it is easy to check that
7, o T, = Ty, for 11, Ty € GL(n,Fa). As such, the collection of permutations

H={mr€Sy_1|T € GL(n,F)}

is a subgroup of Sy_1 isomorphic to GL(n,Fs).

For i,j € [N — 1], there exists T' € GL(n,Fy) such that e) = Te(® and, thus,
mr(i) = j. Consequently, H is transitive.

In order to finish the proof, it remains to show that H C Gy. To do so, associate
nr € H with 7/, € Sy where

mp(0) = 7r(¢) for £ € [N —1], 7n(N) = N.

Let us prove that 7/, belongs to the permutation group G of the code RM(n,v).
Consider a codeword given by f € P(n,v) and let g be defined as

9($1a o amn) = f(T_l['Tla e axn]T)-
Then, degree(g) = degree(f) and g(e™r)) = f(e)) for £ € [N —1], as el¢) = Te®.
Furthermore, g(e™)) = f(T7'01.,) = f(e™)), which implies that /. € G.
Since Gy is the permutation group of the set {2y of Definition 7.1, it is clear
that if 77, € G, then mp € Gy, which concludes the proof. O






Conclusions and Perspectives

Una frase compiuta deve avere.

A complete sentence must comprise.

In this concluding chapter, we summarize our most important findings, we high-
light that the methods and proof techniques developed so far can also be helpful
for other problems, and we describe some future research directions. In particular,
each of the first three sections covers one of the three main themes of this work, i.e.,
unified scaling, non-standard channels, and capacity via symmetry.

At the beginning of the thesis, after a brief historical introduction, we addressed
directly the reader and asked “What Now?”. As we talked extensively about sym-
metry, it seems appropriate to conclude by asking another question that is, “What’s
Next?”.

9.1 Unified Scaling

In Chapter 2, we present a unified view on the scaling of polar codes by studying
the relationship of the fundamental parameters at play, i.e., the block length N, the
rate R, the block error probability under successive cancellation decoding Pg, the
capacity of the transmission channel C'(W) and its Bhattacharyya parameter Z(W).

First of all, we prove a new upper bound on the scaling exponent valid for any
BMS channel W. The setting is the following: we fix the error probability Pg and
we study how the gap to capacity C(W) — R scales with the block length N. In
particular, N is O (1/(C(W) — R)*), where p is the so-called scaling exponent whose
value depends on W, and we show a better upper bound on g valid for any BMS
channel W. The proof technique consists in relating the value of p to the supremum
of a function that fulfills certain constraints. Then, we upper bound the supremum
by constructing and analyzing a suitable candidate function. We underline that the
proposed bound is provable and that the analysis of the algorithm is not affected
by numerical errors, as all the computations can be reduced to computations over
integers, thus they can be performed exactly. The proposed proof technique yields
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1 < 4.714 for any BMS channel, which improves by 1 the existing upper bound. If W
is a BEC, then we obtain p < 3.639, which closely approaches the value previously
computed with heuristic methods. These bounds can be slightly tightened simply
by increasing the number of samples used by the algorithm.

Second, we consider a moderate deviations regime and we prove a trade-off be-
tween the speed of decay of the error probability and that of the gap to capacity.
The setting is the following: we do not fix either the error probability Pz or the gap
to capacity C(W) — R, but we study how fast both Pg and C(W) — R, as functions
of the block length IV, go to 0 at the same time. In particular, we show that, if the
gap to capacity is such that

N=0 <<c<w> —1R>u/<1—v>>’ o€ (i)

then the error probability is given by

PB:()(N-2—N

4 RS (’v(u:i)—l)>

Note that, as the exponents u/(1 —~) and ~ - hgﬁl) ((v(p+1)—1)/(yp)) are both
increasing in 7, if the error probability decays faster, then the gap to capacity decays
slower. This trade-off recovers the existing result for the error exponent regime, but
it does not match the new bound on the scaling exponent. An interesting open
question consists in finding the optimal trade-off that would provide the fastest
possible decay of the error probability, given a certain speed of decay of the gap to
capacity. Note that this optimal trade-off would match the existing results for both
the error exponent and the scaling exponent regimes.

Third, we prove that polar codes are not affected by error floors. The setting
is the following: we fix a polar code of block length N and rate R designed for a
channel W', we let the transmission channel W vary, and we study how the error
probability Pg(W) scales with the Bhattacharyya parameter Z (W) of the channel
W. In particular, we show that

logy P (W)
Pe(W) < Z(W) logy Z(W')

where Pg(W’) denotes the sum of the Bhattacharyya parameters at the information
positions obtained by polarizing W’. In addition, logy Pg(W’)/logy Z(W') scales
roughly as v/N and this is the best possible scaling according to the error exponent
regime. Hence, the scaling between Pg and Z (W) would have been the same, even if
we “matched” the code to the channel. However, when W and W’ can be any BMS
channel, the result holds only if Z(W) < Z(W’)2. An interesting open question is to
explore further the case Z(W) € (Z(W')?, Z(W’)], in order to see whether a similar
but perhaps less tight bound still holds.

Let us highlight that the technical tools developed in this chapter have proved
useful also in different scenarios. Indeed, the analysis of Section 2.3 is the start-
ing point for the characterization of the scaling exponent of binary-input energy-
harvesting channels [224] and of g-ary polar codes based on ¢ x ¢ Reed-Solomon
polarization kernels [225].
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Why are we interested in ¢ x ¢ kernels? Such kernels have the potential to
improve the scaling behavior of polar codes. For the error exponent, in [226] it is
proved that, as ¢ goes large, the error probability scales roughly as 27V. For the
scaling exponent, in [227] it is observed that u can be reduced when ¢ > 8. In the
recent paper [225], it is shown that, for the transmission over the erasure channel,
the optimal scaling exponent 1 = 2 is approached by using a large kernel and a large
alphabet. Furthermore, in [43], the author gives evidence supporting the conjecture
that, in order to obtain pu = 2, it suffices to consider a large random kernel over a
binary alphabet. Hence, providing a rigorous proof of such a conjecture is a very
interesting open problem.

Another approach to improving the scaling exponent consists in acting on the
decoding algorithm. In particular, the successive cancellation list decoder proposed
in [55] provides a significant performance improvement. However, in Chapter 3,
we present a negative result: the introduction of any finite list cannot improve the
scaling exponent under MAP decoding. The proof technique is based on a Divide
and Intersect (DI) procedure that lower bounds the error probability under MAP
decoding with list size L for any BMS channel. The result that we obtain is very
general, as it applies not only to polar codes but to any family of linear codes with
an unbounded minimum distance.

A similar DI bound is proved for the genie-aided successive cancellation decoder,
when the transmission takes place over the BEC. Consequently, the scaling exponent
under genie-aided decoding does not change for any fized number of helps from the
genie. Note that, as genie-aided SC decoding might be strictly worse than successive
cancellation list decoding, the problem of establishing the scaling exponent of the
latter remains open.

These results suggest that an improvement only in the decoding algorithm might
not be enough to change the scaling exponent. Hence, in Chapter 6, we address
the issue of boosting the finite-length performance of polar codes by modifying jointly
the code and the decoding algorithm. In particular, we construct the family of codes
{Cu}, for a € [0, 1], of fixed block length and rate; this family interpolates from the
original polar code Ca‘a:1 to the Reed-Muller code CQ‘a:O' Numerically, the error
probability under MAP decoding decreases as a goes from 1 to 0. As MAP decoding
is not practical for the transmission over general channels, we develop a trade-off
between complexity and performance by considering low-complexity decoders (e.g.,
belief propagation, list decoding). As a result, we show the significant benefit coming
from the adoption of codes from the family {C,} via numerical simulations for the
BEC and the binary Gaussian channel. Note that this performance improvement
comes at no additional cost: C, is simply a polar code for a mismatched channel,
hence the encoding and decoding algorithms are the same as for the original polar
code Ca‘a:l' In addition, we provide experimental evidence of the fact that the
error probability under MAP decoding for the transmission over the BEC of C, for
« sufficiently small is very close to the error probability of random codes. As random
codes achieve the optimal scaling exponent p = 2, the family {C, } has the potential
to improve the scaling behavior of polar codes.
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0.2 Non-standard Channels

In Chapter 4, we consider the two-user discrete memoryless broadcast channel
and we show how to construct polar codes that achieve the superposition and bin-
ning regions. By combining these two strategies, we achieve any rate pair inside
Marton’s region with both common and private messages. This rate region is tight
for all classes of broadcast channels whose capacities are known and, in general,
it constitutes the best existing inner bound. The described coding techniques pos-
sess the usual advantages of polar codes, i.e., encoding and decoding complexity of
O(N logy N) and block error probability decaying like O(2V B) for any 8 € (0,1/2).

The current exposition is limited to the case of binary auxiliary random variables
and, for Bergmans’ superposition coding scheme, also to binary inputs. However,
there is no fundamental difficulty in extending our schemes to the g-ary case, building
on the existing polar constructions for channels with arbitrary input alphabets [79-
84]. Tt is also easy to extend the proposed polar coding techniques to obtain inner
bounds for the K-user broadcast channel in a low-complexity fashion.

It is worth pointing out that the chaining construction used to align the polarized
indices does not rely on the specific structure of the broadcast channel. Indeed, this
method was later used to design polar coding schemes for many other communica-
tion settings, e.g., noisy write-once memories [116], general wiretap channels [117],
broadcast and wiretap channels with confidential messages [118,119]. Actually, the
chaining construction is a general coding primitive whose applicability is not re-
stricted to polar codes, as we demonstrate in the following chapter.

In particular, in Chapter 5, we consider another non-standard setting and
survey three paradigms for achieving the capacity of asymmetric channels.

The first approach is based on Gallager’s mapping. The idea was first described
in [120], and it consists of employing a non-linear function in order to make the
input distribution match the capacity-achieving one. In this way, we can achieve
the capacity of asymmetric channels by using either g-ary or binary codes that are
capacity-achieving for suitably defined symmetric channels.

The second approach consists in an integrated scheme that simultaneously per-
forms the tasks of source coding and of channel coding. The idea was first presented
for polar codes in [121], and here we extend it to sparse graph codes. Indeed, sparse
graph codes can be effectively used to create biased codewords from uniform bits
(source coding part) and to provide error correction (channel coding part). Given
the vector of syndromes, we generate the codeword by running a belief-propagation
algorithm with decimation steps. This technique works well in practice, but the
proof that the scheme is capacity-achieving remains an open problem.

The third approach consists in a chaining construction, where we consider the
transmission of k blocks and use a part of the current block to store the syndromes
coming from the previous block. The idea was first proposed in [122], and here
we show how to use it to provably achieve the capacity of asymmetric channels.
By decoupling completely the source coding from the channel coding task, we can
employ an optimal scheme to reach each of these two objectives separately. Thus,
many combinations are possible: for example, we can use polar codes or arithmetic
codes for the source coding part, and polar codes or spatially coupled codes for the
channel coding part.

As for the integrated scheme and the chaining construction, we restrict our
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discussion to the case of binary-input channels. In order to extend our results
to channels with an arbitrary finite-input alphabet, we require schemes that solve
the source coding and the channel coding tasks in the non-binary case. For the
source coding part, several papers have focused on the construction of polar codes
for arbitrary input alphabets [79-84]|. Furthermore, we can also easily generalize
the solution based on arithmetic coding to non-binary alphabets. For the channel
coding part, recall that in Section 5.3 we have converted a non-binary channel into
several binary channels by using the chain rule of mutual information (see formula
(5.13)). Here, the same idea can be applied as well. Alternatively, we can use
directly non-binary spatially coupled codes [87-90] or non-binary polar codes.

9.3 Capacity via Symmetry

In Chapter 7, we prove that binary linear codes with doubly transitive permuta-
tion groups achieve capacity over the BEC for any rate R € (0,1) under bit-MAP
decoding. Consequently, we are able to show that Reed-Muller codes are capacity-
achieving, thus settling a long-standing conjecture.

By taking advantage of the symmetry of the code, we obtain that the extrinsic
information transfer (EXIT) functions associated with the various positions are all
equal to the average EXIT function, and they can be written as the measure of
monotone and symmetric sets. According to an important result in theoretical com-
puter science, the functions of this type experience a sharp threshold. Ultimately,
this approach is successful because the transition point of the average EXIT func-
tion, closely related to the error probability under bit-MAP decoding, is known a
priori from the area theorem. One remarkable aspect of our method consists in its
simplicity. In particular, we do not use in any way the precise structure of the codes.
This means that symmetry alone suffices to give optimal performance.

One natural question is to what extent the hypothesis of double transitivity can
be relaxed, while keeping the capacity-achieving property. Some progress on this
point is provided by the recent work [228], where it is proved that a large family
of cyclic codes, whose permutation groups satisfy a condition weaker than double
transitivity, achieves capacity on erasure channels. The extension of these ideas to
the quantum erasure channel is provided in [229], where it is proved that Reed-Muller
codes are capacity-achieving also in this scenario.

In Chapter 8, we discuss several other generalizations. In particular, we con-
sider the case of rates R — 0 and R — 1, and we present two methods for extending
results on the bit-MAP error probability to the block-MAP error probability. For
the first topic, we prove that Reed-Muller codes are capacity-achieving in a new
regime that does not overlap with the one previously considered in [68,69]. For
the second topic, we start by presenting the proof in [192] that Reed-Muller codes
achieve capacity under block-MAP decoding. This approach relies on the sharp
threshold framework developed in [218] and, as such, it applies only to the case of
the transmission over an erasure channel. The main contribution of the chapter con-
sists in the presentation of a general method for strengthening results on the bit-MAP
threshold to the block-MAP threshold via the careful analysis of the weight distri-
bution of Reed-Muller codes. In particular, we show that, if the error probability
under bit-MAP decoding tends to 0 with sufficient speed, then the error probability
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under block-MAP decoding also tends to 0. This result applies to the transmission
over any BMS channel. Therefore, it can be considered as a first step towards the
generalization of the ideas in [192,193] beyond the erasure channel.

Indeed, one of the main open questions consists in showing that codes with suffi-
cient symmetry and, more specifically, Reed-Muller codes are capacity-achieving for
the transmission over any memoryless symmetric channel. In such a general setting,
the EXIT function can be replaced by the generalized EXIT (GEXIT) function [214].
The area theorem still holds but, in order to apply the sharp transition framework,
new ideas will certainly be required, because the straightforward approach leads to
the analysis of functions that cannot be written as measures of monotone sets.

9.4 What’s Next?

We conclude our journey from polar to Reed-Muller codes by suggesting three re-
search directions, one for each of the three main themes that are the basis of this
work.

In regard to scaling, the behavior of polar codes under successive cancellation de-
coding is well understood. In order to boost their performance, some improvements
to the decoding algorithm and to the code have also been proposed. However, none
of these improvements has led to a coding scheme with a provably better scaling
exponent. Hence, the challenge is to design a polar-like code that shows a signif-
icant performance gain at the block lengths typically considered in applications
and that achieves the optimal scaling exponent p = 2.

In regard to non-standard channels, many of the rate regions previously obtained
with random coding arguments have been recently achieved in a low-complexity
fashion. To do so, new coding primitives have been devised and these techniques are
quite different from the classic schemes of network information theory. For example,
in this thesis we have exploited the so-called chaining construction. However, to the
best of the author’s knowledge, all these low-complexity schemes can only transmit
at rates that were already known to be information-theoretically achievable. Hence,
the challenge is to exploit the novelty of these building blocks designed specifically
for a practical coding system, in order to achieve a new and tighter inner
bound on the capacity region of a multi-user scenario.

In regard to capacity via symmetry, we have discovered a new paradigm to achieve
capacity and we have already mentioned that an interesting open direction is to
generalize our approach to the transmission over any BMS channel. In addition, let
us point that our results hold under optimal MAP decoding. For the case of the
erasure channel, MAP decoding is equivalent to the inversion of a linear system and,
as such, can be performed in polynomial time. However, for general channels, this
task has exponential complexity and, for this reason, it is impractical. Hence, the
challenge is to find a low-complexity decoding algorithm for Reed-Muller
codes with near-optimal performance.

As a final note, recall that, in Chapter 6, we have pointed out how the perfor-
mance of Reed-Muller codes over the BEC under MAP decoding is close to that of
random codes. As random codes achieve the optimal scaling exponent, the optimist
would say that the same argument can solve both the first and the third problem
stated above.
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