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ABSTRACT: Human urine can be processed into market-attractive
fertilizers like struvite; however, concerns regarding the microbial safety
of such products remain. The present study evaluated the inactivation of in
situ heterotrophs, total bacteria as observed by flow cytometry, and
inoculated Enterococcus spp. and Salmonella typhimurium during the drying
of struvite under controlled temperature (from 5 to 35 °C) and relative
humidity (approximately 40 and 80%) as well as dynamic field conditions.
Bacteria accumulated in the struvite cake during struvite filtration. Despite
the use of sublethal temperatures, all bacteria types were subsequently
inactivated to some degree during struvite drying, and the inactivation
typically increased with increasing drying temperature for a given relative
humidity. Heterotrophic bacteria inactivation mirrored the trend in total
bacteria during struvite drying. A linear relationship was observed between
inactivation and sample moisture content. However, bacteria survivor
curves were typically nonlinear when struvite was dried at low relative humidity, indicating bacterial persistence. Weibull model
survivor curve fits indicated that a shift in the mechanism of inactivation may occur with changing humidity. For increased
efficiency of bacterial inactivation during the production of struvite, initial heating under moist conditions is recommended
followed by desiccation.

■ INTRODUCTION

Struvite (MgNH4PO4·6H2O) has long been known in
wastewater treatment as a scale deposit that causes maintenance
problems and reduces treatment efficiency.1 More recently,
centralized wastewater treatment plants are recognizing the
potential of struvite as a phosphorus-rich fertilizer, simulta-
neously removing scale throughout the treatment works while
offsetting some treatment costs from its sale.2 Recycling of P in
this way is important since modern agriculture depends on the
nutrient, but it is mined from finite global reserves.3 Struvite’s
high P content, low solubility in water and convenience as a
solid, dense and odorless fertilizer contribute to its market
potential as a slow-release fertilizer in agriculture.4,5 While
struvite production from wastewater or dry sanitation systems
has not yet proven economically self-sustaining,2,6 revenue can
be generated alongside meeting waste discharge requirements
by producing increasingly valuable fertilizers, especially as the
market price of P continues to rise.
Many researchers have focused on struvite production from

human urine, for example in Nepal,5,6 Vietnam,7 and Durban,
South Africa.8,9 Human urine is the main source of P in
wastewater. The P in human urine, if collected, could offset

more than 10% of the total global P demand.10 Urine can be
collected and stored separately from solids through urine-
diverting toilets, from which point it can be used directly as a
fertilizer following a minimum of 6 months storage at 20 °C.11

Alternatively, urine can be processed into more manageable,
market-attractive products (e.g., with less foul odor) like
struvite. The high pH and high P levels in stored urine require
only the addition of a magnesium source for spontaneous
precipitation of struvite.12

Struvite precipitation has received much attention due to its
process simplicity, but the hygienic quality of the end-product
generated in field settings has not been thoroughly evaluated.
Source-separated urine collected in Durban, for example,
contains a diversity of pathogens and high concentrations of
locally prescribed pharmaceuticals.13 When struvite is precipi-
tated from urine, pharmaceuticals largely remain in the effluent
of struvite reactors, yielding low concentrations in the struvite
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product.14,15 Viruses are retained in residual urine in the
struvite after filtration, and human virus surrogates ΦX174 were
shown to inactivate in struvite under mild temperature drying
conditions due to reduction in the product moisture content.16

Larger sized helminth ova accumulate in struvite during
filtration and require elevated temperatures and reduced
moisture contents in the struvite to achieve inactivation.16

The fate of bacteria in urine during struvite recovery and
processing has not been previously described.
Here, we evaluate the fate of in situ bacteria in urine as well

as surrogates for human pathogens (Salmonella typhimurium
and Enterococcus spp.) during the production of struvite from
laboratory reactors and a pilot-scale reactor operated in
Durban. Test conditions (5−35 °C, 40 and 80% relative
humidity) were selected to reflect struvite production in the
field without additional energy input to create harsher drying
conditions and corresponded to conditions previously used to
study virus and helminth inactivation.16 Results from isothermal
drying conditions conducted in the laboratory were also
compared to drying struvite under fluctuating relative humidity
and temperature in the field. These studies together were used
to develop recommendations for enhanced struvite production
procedures and to increase the safety of using urine-derived
fertilizers.

■ MATERIALS AND METHODS
Inactivation of bacteria in struvite dried under a range of
controlled and uncontrolled (ambient) conditions was
quantified for heterotrophic bacteria, the Gram-negative
Salmonella typhimurium, and Gram-positive Enterococcus spp.
via plate counts as well as for total bacteria via flow cytometry
(FC). This range of analytical techniques was selected to
provide information on different end-product quality targets
and insight into inactivation processes. The experimental
approach also included the production of struvite from urine
collected from different sources, and drying experiments were
conducted in the laboratory and the field.
Urine Sources and Characterization. Source-separated

urine was obtained from the men’s urine storage tank at the
Swiss Federal Institute of Aquatic Science and Technology
(Eawag, Switzerland) to produce struvite at a laboratory-scale
and evaluate the inactivation of spiked Enterococcus spp. and S.
typhimurium as well as in situ heterotrophic bacteria under
controlled struvite drying conditions. Additionally, source-
separated urine was obtained from mixed-gender urine storage
tanks maintained by eThekwini Water and Sanitation (EWS)
and from household storage tanks and a community ablution
block in eThekwini Municipality (the municipality in the
Durban region) to evaluate variability in the inactivation of in
situ heterotrophs in urine or struvite produced at a laboratory-
scale. Struvite was also produced from pilot-scale reactors at
EWS using urine obtained from the EWS mixed-gender urine
storage tanks; these bags of struvite were dried under ambient
(uncontrolled) conditions. A subset of urine samples were
characterized for ammonium, phosphate, conductivity, chemical
oxygen demand and pH as described in the Supporting
Information (Table S1).
Struvite Production. For laboratory-scale experiments,

each struvite cake was produced in sterile reactors as previously
described from 1 L of urine by adding 1.5 g MgCl2·6H2O
(Acros Organics, Geel, Belgium), gently stirring for 10 min, and
filtering through a nylon filter (pore diameter ≅ 18−240 μm)
cut to fit the filtration unit (45 mm diameter) using a manual

pump.16 For pilot-scale experiments, four struvite batches were
produced from reactors built and maintained by EWS.9 Urine
storage tanks were mixed with a peristaltic pump prior to being
pumped into the reactor. For a single struvite batch, up to 320
L of urine was dosed with industrial grade magnesium sulfate
heptahydrate (MgSO4·7H2O, Strathmore Mine, Malelane,
South Africa), filtered sequentially through cotton filter bags
(∼100 μm pore size), and air-dried following previously
described procedures.9

Controlled Struvite Drying. Struvite cakes were dried by
evaporation under a combination of various controlled
temperature and relative humidity conditions. The temper-
atures were 5 °C, 20 °C, or 35 °C, and the low and high relative
humidity levels were approximately 40% or 80%, respectively.
Relative humidity was maintained using 150 mm × 150 mm
desiccators (Nalgene, Thermo Fisher Scientific, Waltham, MA)
containing 50 mL LiCl or NaBr saturated salt solutions (88 g/
mL and 95 g/mL, respectively) and a water-soaked tissue for
low and high relative humidity conditions, respectively. The
relative humidity stabilized after about 6 h. The temperature
and relative humidity were observed using an Irox Piccolo
indoor thermometer/hygrometer (OS Technology AG/SA,
Gümligen/Bern, Switzerland) placed inside the desiccator for
each experiment.
Controlled drying experiments were conducted in duplicate,

such that two struvite cakes were dried in the same desiccator
with the same temperature and humidity conditions. The
effective moisture content of struvite cakes (θg) is reported as

θ =
−M M

M
(%)g

ww dw

dw

where Mww and Mdw are the wet weight (ww) and dry weight
(dw) masses of struvite, respectively. The dw was measured as
the stable weight of struvite when dried at reference laboratory
conditions (20 ± 3 °C and 30 ± 5% RH).

Ambient Struvite Drying. A total of nine struvite cakes were
dried outside at EWS facilities in Durban, South Africa. Four of
these struvite cakes were produced from the pilot-scale reactors
with cloth filters and dried under cover to prevent exposure to
direct sunlight, four were produced at laboratory-scale with
nylon filters and dried under cover, and one was produced at a
laboratory-scale and dried under natural sunlight. The temper-
ature and relative humidity were monitored with a HOBO Pro
v2 external temperature/relative humidity data logger (Onset
Computer Corporation, Bourne, MA) during the drying of
pilot-scale struvite cakes and with a TFD 128 temperature/
relative humidity data logger (Conrad Electronic, Berlin,
Germany) for the laboratory-scale struvite cakes.

Bacteria Enumeration by Plate Count. Urine and struvite
samples were enumerated for heterotrophic bacteria, Salmonella
typhimurium, and Enterococcus spp. Details regarding the source
and enumeration of the organisms are described in the
Supporting Information. Concentrations are reported as colony
forming units (cfu) per mL urine or cfu per g dw struvite,
unless otherwise stated.

Bacteria Enumeration by Flow Cytometry. Flow cytometry
with appropriate cell staining procedures provides a culture-
independent method of evaluating the inactivation of all
bacteria, including viable and culturable bacteria, viable but
nonculturable bacteria and nonviable bacteria. An FC viability
assay was conducted on a subset of struvite suspensions to
provide insight into the mechanisms of bacterial inactivation
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and to evaluate the robustness of the simple plating procedures
to reflect overall trends in bacterial inactivation. Total cell
counts (total bacteria), total intact cell counts (live bacteria),
and membrane-compromised cell counts (dead bacteria) were
measured in urine and dissolved struvite samples using a
CyFlow CL flow cytometer (Sysmex Partec GmbH, Görlitz,
Germany), applying a live/dead staining procedure (e.g., Figure
S1−S3). The SYBR Green and propidium iodide (PI) staining
procedure was adapted from Berney et al.,17 as described in the
Supporting Information.
Data Analysis. The Weibull model in the form presented by

Mafart et al.18 was selected to model survivor curves and was
applied to log-transformed data using Microsoft Excel and the
add-on tool Ginafit.19 This model allows for a dispersion of
resistance toward inactivation described by the Weibull
distribution.20 The concentration of surviving organisms (C,
CFU/g struvite or counts/g struvite) is modeled as a function
of time (t) by the equation:

δ
= − ⎜ ⎟

⎛
⎝

⎞
⎠C C

t
log ( ) log ( )

p

10 10 0

where C0 is the initial concentration, δ is the time for first
decimal (90%) reduction, and p is a shape parameter. The
Weibull model has the advantage of describing nonlinear
survival curves that have a shoulder (p > 1) or tail (p < 1)
without substantial additional empirical complexity. Because
the δ and p parameters in the Weibull model are
autocorrelated, the model is sometimes applied with a fixed p
value, usually the average p from several survivor curves
evaluated at different temperatures. The special case of p = 1
simplifies to the classic log−linear inactivation equation, and δ
becomes D, the time for decimal reduction that is independent
of elapsed experimental time. Weibull model parameters were
determined without a fixed p for each experimental condition
using the average bacterial concentrations in two side-by-side
struvite cakes. In addition, an average p was calculated for
struvite dried in field conditions (p = 0.38), and the model was
rerun with this fixed value on those curves.
Nondetect data were excluded from the fits, except for the

first data point below the detection limit when available, which
was set to the limit of quantitation (see Supporting
Information) as a conservative estimate of the extent of

inactivation. HPC and total bacteria were never observed below
the detection limit. The slope of the linear regression was
considered significantly different from zero if p < 0.05 by
ANOVA.

■ RESULTS AND DISCUSSION

Viable Bacteria Content in Stored Urine Is Highly
Variable. Heterotrophic plate count (HPC) bacteria were
detected in all urine samples tested, ranging from 4 × 102 to 3
× 108 CFU/mL in urine collected from different sources and at
different times. The range of in situ heterotrophic bacteria
concentrations reflects the variability of contamination of the
urine from fecal matter or other sources as well as variability in
the storage times and temperatures of the urine before sampled.
Flow cytometry results confirm the presence of a large number
of live bacteria in stored urine (Figure S1). The approximate
residence time of urine in the sampled tank was between 37
and 47 days.21 As expected, HPC detected only a small fraction
of the total bacteria present in the urine. In side-by-side
measurements, concentrations of heterotrophic bacteria in
urine ranged from 4 × 102 to 2 × 104 CFU/ml (n = 8), while
total intact cell counts (live bacteria) ranged from 1 × 107 to 7
× 108 counts/mL.
While Gram-negative bacteria inactivate rapidly in urine,22

our data indicate that some in situ HPC bacteria are expected
to persist and remain detectable. Bacterial communities in
source-separated urine from two locations in the United States
were dominated by Clostridiales and Lactobacillales after 80 days
of storage.23 Spore forming Gram-positive bacteria such as
Clostridium perf ringens are known to resist inactivation in stored
urine.24 Therefore, source-separated urine should not be
considered sterile, even after long-term storage. A reduction
in the live bacteria content during urine processing to fertilizer
is thus desirable.

Bacteria Accumulate in Struvite during Filtration. An
accumulation of heterotrophic bacteria and total bacteria in
struvite was observed for struvite produced from either the
nylon or the cloth filters used for laboratory and pilot-scale
production, respectively (Figure 1). An expected concentration
of bacteria in the struvite was calculated based on the residual
urine present in the struvite, determined from the effective
moisture content of struvite samples taken immediately after

Figure 1. Accumulation of bacteria during struvite formation. The concentration expected in struvite (CFU/g dw) was calculated from the urine
influent concentration (CFU/g) and the initial sample moisture content in the struvite sample. Error bars here are 95% confidence intervals.
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production, and the measured concentration of bacteria in the
source urine. The measured concentrations of bacteria in the
struvite were greater than these expected concentrations by up
to 2 orders of magnitude, suggesting additional mechanisms of
bacterial retention besides the residual moisture. This was true
for HPC (ratios of measured/expected concentrations ranged
from 31 to 250, n = 16), total intact cells detected by FC (ratios
from 30 to 340, n = 4), and total cells (ratios from 20 to 350, n
= 4) in struvite produced using nylon filters. Struvite produced
using cloth filter bags at the pilot-scale also retained
heterotrophic bacteria, with the ratios of measured to expected
concentration ranging from 10 to 61 (n = 4). The nylon and
cloth filters used for drying have similar pore sizes, so the
reduced accumulation of bacteria in the field setting relative to
the laboratory may be due to the reactor configuration and field
struvite production protocol, in which elevated pressure is
manually applied to increase urine flow rates through the filter.
The observed accumulation of bacteria in struvite from urine

indicates that at least two-log reduction in live bacteria

concentration following struvite production is required to
achieve a net benefit in microbial quality as compared to that
required for urine (on an equivalent mass basis). The
inactivation of bacteria during struvite drying is subsequently
evaluated, first in controlled conditions followed by field
settings.

Inactivation of in Situ Heterotrophic Bacteria during
Controlled Drying of Struvite. The inactivation curves for
HPC bacteria during the drying of struvite under controlled
temperature and relative humidity are displayed in Figure 2a
(lowest panels). In some struvite batches, up to approximately
3-log inactivation was achieved in less than 100 h drying.
However, the extent of inactivation ranged widely for different
drying conditions and often did not reach this level, even after
almost 200 h drying. Struvite was also produced from urine that
originated from different sources, either eThekwini (South
Africa) or Eawag (Switzerland), to evaluate the variability of in
situ heterotrophic bacteria inactivation under repeat controlled
drying experiments with emphasis on the extreme conditions

Figure 2. Inactivation of bacteria (Enterococcus spp., S. typhimurium, and heterotrophic bacteria) during the drying of struvite with controlled
temperature and relative humidity (a). Linear regression when plotting the relative concentration of bacteria (log10 C/C0) in struvite against sample
moisture content (log10 θg), shown with regression standard error in gray (b). Heterotrophic bacteria inactivation was evaluated in repeat controlled
drying experiments for struvite produced from different urine sources, with emphasis on the extreme conditions (low humidity/35 °C and high
humidity/5 °C). Concentrations of bacteria are reported as CFU/g struvite (dry weight); the moisture content was calculated on a dry weight basis.
Results were marked with “°” if at least one of the samples had no measurable residual moisture; results were marked with “*” if at least one of the
concentrations was below the limit of detection.
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(low humidity/35 °C and high humidity/5 °C). Heterotrophic
bacteria from different sources exhibited variable susceptibility
to inactivation (Figure 2, Table 1 and Table S2). At a given
relative humidity and within the same urine batch, inactivation
was generally more efficient at higher temperatures. Conversely,
the effect of relative humidity on inactivation at a given
temperature was less clear. At the low temperature condition,
increased relative humidity increased the time for 1-log
reduction, but this effect was not observed during higher
temperature storage. Elsewhere it has been observed that
heterotrophs are more sensitive to heating in wet soil than dry
soils.25 In all cases, HPC bacteria were not reduced below the
detection limit over the time period monitored.
Decrey et al.16 found that the reduced moisture content of

struvite during drying was the primary cause of inactivation of
bacteriophage and helminth ova. Reduction in moisture content
is also known to inactivate bacteria, such as during the drying of
wastewater sludge.26 Inactivation may stem from changes in
porewater solution conditions and from cellular changes during
desiccation. In the porewater, parameters of interest are the pH,

ionic strength and the concentration of NH3, which is a known
biocide. Decrey et al.16 performed a simulation of these
parameters as a function of moisture reduction in struvite (at 35
°C, Low RH). The NH3 concentration declines rapidly with
moisture, and the pH approaches neutral. Therefore, after
about 20% moisture loss, these two parameters are not
expected to contribute to inactivation. The ionic strength
does increase at low moisture (after about 80% moisture loss).
Such low moisture conditions were achieved rapidly in most
struvite drying tests (Figure S4); thus ionic strength may
promote inactivation in our samples.
Changes in conditions at the cellular level during desiccation,

including increased ionic strength, changes in cellular compart-
ment volumes, increased viscosity, the crowding of macro-
molecules, damage to external layers, and changes in
physiological processes, contribute to inactivation.27 Reduced
stability of DNA under such altered conditions is also known as
a major contributor to cell death during dehydration.28 In our
data, a linear relationship was observed independently of the
drying condition between heterotrophic bacteria inactivation

Table 1. Weibull Model Parameters for Inactivation of Heterotrophic Plate Count (HPC) Bacteria Sourced from Eawag,
Switzerland or Durban, South Africa as well as Enterococcus spp., S. typhimurium, Total Intact Cells (TIC) and HPC Measured
alongside TIC in Struvite Dried at Controlled Temperature and Relative Humidity

drying condition bacteria RMSEa R2 δ (h)b pc log10(C0) t4D (d)d

35 °C/low RH HPC (Eawag) 0.91 0.76 8 ± 26 0.33 ± 0.30 6.6 ± 0.9 23
0.50e 0.94 2 ± 4 0.41 ± 0.19 7.4 ± 0.5 3

HPC (eThekwini) 0.11 0.98 10 ± 7 0.20 ± 0.04 6.5 ± 0.1 415
0.43 0.92 2 ± 4 0.24 ± 0.10 7.9 ± 0.4 24
0.23 0.97 2 ± 3 0.25 ± 0.06 7.7 ± 0.2 25

Enterococcus spp. 0.41 0.94 6 ± 5 0.50 ± 0.12 6.0 ± 0.4 4
S. typhimurium 0.43 0.96 4 ± 2 0.85 ± 0.21 6.3 ± 0.4 1
TIC 0.23 0.95 18 ± 6 0.84 ± 0.25 10.6 ± 0.2 4
HPC (alongside TIC) 0.27 0.94 33 ± 5 2.4 ± 0.9 6.1 ± 0.1 2

35 °C/high RH HPC (Eawag) 0.87e 0.88 13 ± 20 0.64 ± 0.41 7.9 ± 0.8 5
Enterococcus spp. 0.03 1.00 44 ± 1 1.11 ± 0.03 6.01 ± 0.02 6
S. typhimurium 0.19 0.99 14 ± 3 2.0 ± 0.8 4.8 ± 0.1 1

20 °C/low RH Enterococcus spp. 0.41 0.84 20 ± 28 0.35 ± 0.15 6.0 ± 0.4 47
S. typhimurium 0.72 0.89 4 ± 6 0.41 ± 0.16 6.0 ± 0.7 4
TIC 0.26 0.83 82 ± 55 0.46 ± 0.23 10.8 ± 0.2 68
HPC (alongside TIC) 0.25 0.80 119 ± 65 0.53 ± 0.30 6.4 ± 0.2 66

20 °C/high RH Enterococcus spp. 0.14 0.99 123 ± 10 1.5 ± 0.1 5.9 ± 0.1 13
S. typhimurium 0.38 0.97 32 ± 12 1.1 ± 0.3 5.8 ± 0.3 5

5−6 °C/low RH HPC (Eawag) 0.17e 0.98 15 ± 8 0.41 ± 0.09 7.5 ± 0.2 18
Enterococcus spp. 0.13 0.93 325 ± 59 0.63 ± 0.15 6.1 ± 0.1 123
S. typhimurium 0.35 0.85 114 ± 70 0.56 ± 0.21 6.0 ± 0.2 57

5−6 °C/High RH HPC (Eawag) 0.22 0.94 144 ± 31 1.1 ± 0.3 7.4 ± 0.2 22
HPC (eThekwini) 0.11 0.90 265 ± 33 2.3 ± 1.1 6.4 ± 0.1 20

0.29 0.95 23 ± 16 0.50 ± 0.15 7.9 ± 0.3 15
0.36 0.93 36 ± 26 0.62 ± 0.25 7.9 ± 0.3 14

Enterococcus spp. 0.08 0.99 275 ± 11 1.7 ± 0.1 5.92 ± 0.03 25
S. typhimurium 0.20 0.98 170 ± 21 1.3 ± 0.1 5.9 ± 0.1 21
TIC 0.07 0.54 784 ± 1096 1.2 ± 1.2 10.62 ± 0.04 101
HPC (alongside TIC) 0.07 0.85 217 ± 17 6.3 ± 3.7 6.34 ± 0.03 11

aRMSE, Root mean sum of squared errors. bδ, time for first decimal reduction. cp, Weibull model shape parameter. dt4D, time for 4-decimal
(99.99%) reduction projected from model fit. eFive observations used for model fit. A minimum of at least six observations is preferable for Weibull
model parametrization.
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(log10 C/Co) and the effective moisture content (log10 θg,
Figure 2b). The correlations of residual moisture content with
bacteria inactivation, however, were often weak (Table 2).
Therefore, the reduction in sample moisture content could be
used as a rudimentary proxy for estimating the log reduction of
bacteria during struvite drying over a range of drying
temperatures and relative humidity. However, concentrations
of in situ heterotrophic bacteria in struvite may stabilize during
drying, as indicated by the tailing inactivation curves at low

relative humidity (Figure 2a), thereby limiting the utility of this
proxy at low water contents.

Inactivation of Human Pathogen Surrogate Bacteria
during Controlled Drying of Struvite. While HPC have
been used historically to provide an indication of the overall
microbial status of an environment, HPC bacteria include
mostly nonpathogenic organisms. Evaluation of fecal indicator
bacteria and Salmonella were conducted to assess the
agreement of the findings using HPC with human health

Table 2. Linear Regression Results for Inactivation (Log10 C/C0 or C/C0) versus Effective Moisture Content (Log10 θg or θg)

log10 C/C0 vs Log10 θg
a C/C0 vs θg

b

bacteria group drying condition R2 slope ± SEc intercept ± SE R2 slope ± SE intercept ± SE

heterotrophic bacteria field drying in cloth bag filters 0.28 0.60 ± 0.14 −0.39 ± 0.11 0.11 0.82 ± 0.33 0.22 ± 0.30
heterotrophic bacteria field drying on nylon filters 0.68 0.71 ± 0.07 −0.30 ± 0.10 0.11 0.60 ± 0.23 0.33 ± 0.26
heterotrophic bacteria controlled drying on nylon filters 0.50 0.65 ± 0.05 −0.27 ± 0.08 0.34 0.48 ± 0.05 0.20 ± 0.05
Enterococcus spp. controlled drying on nylon filters 0.45 0.66 ± 0.08 −0.14 ± 0.08 0.77 0.73 ± 0.04 0.12 ± 0.04
S. typhimurium controlled drying on nylon filters 0.53 1.04 ± 0.11 −0.47 ± 0.11 0.74 0.65 ± 0.04 −0.003 ± 0.03

aExcludes data where θg = 0. bIncludes data where θg = 0. cSE, standard error

Figure 3. Concentrations (log10 C) of in situ heterotrophic bacteria (CFU/g struvite) monitored side-by-side with total intact cells (counts/g
struvite) by flow cytometry in struvite dried at different temperature and relative humidity conditions (a). Representative FL1 (green) vs FL3 (red)
fluorescence emission dot plots from struvite drying experiments conducted at 35 °C and low relative humidity (∼40%) (1000-fold dilution of
struvite sample) demonstrate the transition of cells from intact (right side gated region) to membrane compromised (left side gated region) with
time (b). Each dot on the plot represents a detection event (256 channels per axis), and the color gradient represents the z-axis with a single event
shown in blue and greater than 16 events shown as black.
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relevant bacteria. The inactivation of inoculated Enterococcus
spp. and S. typhimurium was monitored during struvite drying
under controlled temperature and relative humidity for
comparison to results for heterotrophic bacteria (Figure 2a).
In a study of thermal resistance to eight nonspore forming
bacteria in mild heating conditions, Enterococcus faecalis and
Salmonella typhimurium represented extreme responses (most
resistant and least resistant, respectively).29 In the present
study, both bacteria were partly inactivated during struvite
drying, and the inactivation typically increased with increasing
drying temperature (from 5 to 35 °C) for a given relative
humidity, with a more pronounced increase with temperature
for S. typhimurium relative to Enterococcus spp.
As observed for heterotrophic bacteria, the varied behaviors

observed for Enterococcus spp. and S. typhimurium dried under
different conditions do approximate into a linear relationship
when inactivation (log10 C/Co) is plotted against the effective
struvite moisture content (Figure 2b). Therefore, the moisture
content of the struvite cake can be a useful parameter to
evaluate the extent of microbial inactivation. Gram positive
Enterococcus spp. responded to drying at similar rates to
heterotrophic bacteria, while Gram-negative S. typhimurium was
inactivated more efficiently than both, resulting in a steeper
inactivation vs moisture content relationship (Table 2). This
suggests that results from HPC provide a good indicator of
treatment processes efficiency for Enterococcus spp. and a
conservative indicator for S. typhimurium.
Inactivation of the Total Bacterial Population. FC

measurements of in situ total bacterial population were taken
alongside HPC measurements for a series of controlled struvite
drying conditions (Figure 3) to evaluate the ability of the
cultivation-dependent method to reflect total bacteria behavior
during struvite drying and to explore the mechanism of
inactivation. The ease of use and comprehensive detection
capabilities of FC render this method favorable for rapid and
extensive data collection.
Similar to HPC bacteria, total cell counts and total intact cells

from FC analysis were consistently detected above the
detection limit throughout the drying experiments. Total intact
cells declined over time during drying (Figure 3), indicating
loss of the cytoplasmic membrane integrity of detected cells,
while total cell counts remained stable throughout the
experiments (Figure S5). A strong correlation between HPC
and total intact cells in the same samples was observed (Figure
S6) independently of drying condition, suggesting that HPC
does serve as a useful proxy for following the progression of
overall bacterial inactivation, as characterized by membrane
integrity, during struvite drying. The strong correlation
observed may be a result of a relatively homogeneous starting
bacterial population in the stored urine.23 Storage of urine prior
to use for production of struvite is known to rapidly inactivate
some bacteria, while those remaining must be tolerant of the
high ammonia levels and elevated pH typical of stored urine
(2.6−3.3 g/L N-NH4

+ and 8.5−9.4, respectively).30
Despite the benefits of using FC, our cultivation-independent

assessment of viability just mirrored the inactivation trends as
captured via HPC under a range of conditions. The Gram-
positive bacteria Enterococcus spp. also followed a progression
similar to heterotrophic bacteria during drying. Therefore, our
results suggest that HPC continue to be a useful method for
assessing struvite end-product quality, especially in low-
resource field settings.

Nonlinear Inactivation Kinetics and Bacterial Persis-
tence during Drying at Low Relative Humidity. At low
relative humidity, heterotrophic bacteria in urine from different
sources as well as Enterococcus spp. and S. typhimurium tended
to be inactivated rapidly initially but stabilized with time. Such
tailing of the inactivation curve was typically not observed in
the higher relative humidity drying condition in the time frame
monitored, though inactivation was generally slower at higher
relative humidity. The tailing feature observed at lower relative
humidity implies the need for a nonlinear inactivation model,
such as the Weibull model, to predict the time to achieve
desired inactivation (e.g., the time for 4-log reduction). Weibull
model parameters determined for all test organisms are listed in
Table 1, and corresponding first-order inactivation rate
constants (from the application a Weibull model with fixed p
= 1) for each are listed in Table S2.
For heterotrophic bacteria, the time for first log reduction

(δ) in struvite was 1 day or less when dried at low humidity and
35 °C, but δ ranged from 1 to 11 days when struvite was dried
at high humidity and low temperature. Conversely, extrap-
olation of the Weibull model predicted a longer time on
average for 4-log reduction at low humidity/high temperature
compared to the high humidity/low temperature conditions.
This is attributable to the occurrence of tailing (p < 1) at low
humidity and shouldering (p > 1) at high humidity. Notably,
applying a simple first-order inactivation model would either
under- (low humidity) or overpredict (high relative humidity)
the required 4-log inactivation times, highlighting the need for a
more complex inactivation model. Similar results were observed
for both Enterococcus spp. and S. typhimurium in which the
average p was greater than one when struvite was dried under
high relative humidity but less than one when dried at low
relative humidity. Consistent with the previous discussion, this
indicates that it is beneficial to dry struvite at higher
temperature but not reduced relative humidity. Further, the
relatively consistent change in curve shape with relative
humidity may be indicative of a shift in the primary inactivation
mechanism under different drying conditions.
Nonlinear microbial inactivation curves are commonly

observed during mild heat treatment, though the causes of
this behavior, whether physical, chemical or biochemical, are
still debated.31 For example, the appearance of a shoulder, or a
lag-time before inactivation, has been attributed to an
accumulation of sublethal injury prior to inactivation, repair
of cellular damage and aggregation of cells.32,33 Tailing of heat-
driven inactivation curves has been proposed as a consequence
of the decrease in the probability of a collision between a water
molecule that carries sufficient thermal energy to be lethal and a
microbial particle as microorganisms are inactivated.34 In a
study of bacterial inactivation in soils, evaporation of moisture
during heating in low relative humidity cooled the wetted
inoculum relative to external temperatures and reduced
inactivation.35 This could explain tailing observed in the
present study at low relative humidity. An alternative
explanation for tailing is the presence of a resistant
subpopulation. Removing water from cells causes damage to
cellular components, leading to death in most organisms. For
example, DNA double strand breaks are high under desiccation
conditions in Escherichia coli.36,37 However, organisms that
experience frequent droughts, such as in soils, are known to
exhibit mechanisms for protection against desiccation or to
repair ensuing damage.27 Desiccation resistant microorganisms
such as the pathogen Staphylococcus aureus tend to be Gram-
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positive and small.27,28,38 However, Gram-negative Salmonella
has also been shown to survive in low moisture content
conditions26 due at least in part to the water-retaining capacity
of expressed lipopolysaccharides.39 This is consistent with
observed tailing of the S. typhimurium survivor curves at low
relative humidity in the present study.
Dynamic processes during struvite drying, such as rates of

heating and dehydration or changes in struvite porewater
chemical composition with time, may also influence inactivation
kinetics. Struvite porewater ionic strength increases rapidly in
laboratory-produced struvite when the moisture content is
reduced by more than approximately 80%.16 Drying struvite at
higher relative humidity could reduce the drying rate and affect
microbial inactivation. For example, survival of Salmonella may
be greater when dehydration is gradual.39 Poirier et al.40

showed that decreasing the rate of change in water potential
increased the viability of several bacterial cells likely due to
associated reductions in water flow rates across cell
membranes.40 Down- or upregulation of biological processes,
such as metabolic rates, DNA repair capabilities, or systems to

scavenge reactive oxygen species, during slow dehydration can
influence bacterial survival.37,41 However, high relative humidity
can also lead to more efficient inactivation of dehydration
tolerant bacteria, as shown for Deinococcus radiodurans cells.36,37

With regards to struvite, initial retention of moisture during
thermal treatment may aid in achieving inactivation objectives.
Because struvite cannot be dried at high temperatures
(approximately >55 °C) without some reduction of fertilizer
quality due to loss of ammonia,42 low levels of moisture are
likely present in the final product in any case. For long-term
storage of sludge, maintaining a moisture content of 15% was
recommended to encourage inactivation of bacteria while also
preventing regrowth of enteric bacteria.26 Lower moisture
contents (<10%) protected bacteria from inactivation while
higher moisture content promoted regrowth.26 The precise
optimum moisture content to promote inactivation during
long-term storage of struvite was not evaluated in the present
study. Reduced moisture of struvite is important nevertheless
for viral and helminth inactivation.16

Figure 4. Replicate struvite cakes produced from cloth filters (a) or nylon filters (b) and dried at ambient conditions, as outlined in Table S3.
Relative concentrations of heterotrophic bacteria in replicate struvite cakes (log C/C0, top) and relative moisture content (θg /θg0, middle) were
monitored with time. Error bars represent the range of results for duplicate samples taken at the same time from different locations in the struvite
cake. Relative heterotrophic bacteria concentrations from individual samples are shown separately with their corresponding moisture content to
evaluate the relationship between these variables (bottom).
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Persistence of Heterotrophic Bacteria in Struvite
Dried under Field Conditions. Struvite produced in the
field is exposed to dynamic, rather than constant drying
conditions. It is known that bacterial inactivation during
isothermal drying does not necessarily predict behavior under
fluctuating temperature and relative humidity.43,44

To evaluate the effect of dynamic environmental conditions
(Figure S7−Figure S10) on the efficiency of inactivation of
heterotrophic bacteria relative to controlled drying conditions,
we air-dried struvite produced from both 1 L on nylon filters
and 320 L batches captured in cloth bags (Table S3) in the
field. The mass of struvite on nylon filters (1 to 4 g initial ww)
was much lower, and the thickness of the cakes was more
homogeneous (Figure S11), compared to struvite mass
captured in cloth filter bags (600−1200 g initial ww). The
average temperature for the period in which struvite was dried
outside on nylon filters was 21 ± 2 (SD) °C, ranging from 17
to 34 °C. Over this time, the relative humidity averaged 72 ±
11% and ranged from 44 to 91%. The average measured
temperature for struvite dried in cloth filter bags was 16 ± 6
(SD) °C and ranged from 5 to 43 °C. The plastic cover used to
protect the cloth filters from rain may have increased the
temperature measured nearby the struvite bags relative to
ambient daily temperatures, which reach a maximum of 35 °C
in Durban during the drying period.45 Average relative humidity
was 64 ± 22% over the drying period for cloth filter bags and
ranged from 12 to 98%.
Despite diurnal fluctuations in temperature and relative

humidity, the moisture content of struvite cakes decreased
rapidly (Figure 4), and the decline was within the range of the
drying rates from controlled drying tests (Figure S4). As
expected from the differences in struvite mass captured by each
filter, the moisture content declined more rapidly for struvite
dried on nylon filters than for struvite in cloth bags, and
remained low in both following the declines. However, HPC
concentrations declined slowly, and slopes of the log−linear
inactivation curves were frequently not significantly different
from zero, especially for struvite dried in larger batches in the
cloth filter bags (Table S3). Similarly to controlled tests,
heterotrophic bacteria remained detectable throughout the
experiments. The time for first log reduction (δ) of
heterotrophs in the field was generally greater than that
determined in the laboratory. From the application of the
Weibull model (fixed p = 0.38), δ ranged from 9 to 48 days in
struvite filtered and dried on nylon filters and from 26 to 201
days for heterotrophs in struvite captured and dried in cloth
filter bags (Table S4). This is in contrast to δ values of 11 days
or less for HPC bacteria inactivation in struvite dried under any
controlled condition in the laboratory (Table 1).
Notwithstanding some differences in the inactivation rates

between the laboratory and the field, the relation between
inactivation and moisture content was rather consistent. For
comparison to inactivation in isothermal conditions, a linear
regression was also performed to assess the relation between
inactivation (log10 C/C0) and moisture content (log10 θg) in the
field (Figure 4). While the coefficients of determination are
low, as may be expected for environmental conditions, the
slopes of the log inactivation vs log moisture plots are
consistent for HPC bacteria in struvite dried in the laboratory
or field conditions and similar to that of both HPC bacteria and
Enterococcus spp. in struvite dried under isothermal conditions
(Table 2). Therefore, while average drying temperature or
relative humidity in field conditions do not reflect inactivation

observed during similar isothermal controls, the moisture
content of struvite samples served as a rough indicator of
bacteria inactivation in the fertilizer.

Recommendations for Enhanced Struvite Production.
Struvite moisture content may be a more useful parameter than
elapsed time to evaluate bacterial inactivation during struvite
production because linear relationships were observed between
inactivation and moisture content irrespective of drying
condition. The moisture content relationship for HPC was
similar in struvite dried under isothermal conditions in the
laboratory and under dynamic environmental conditions in the
field. However, greater variability in inactivation was observed
in struvite produced from pilot-scale struvite reactors under
fluctuating temperature and relative humidity drying con-
ditions. Further, the relationship between inactivation and
moisture content did not reflect the change in inactivation
mechanism observed between high and low relative humidity
drying conditions in the laboratory. Tailing of the survivor
curves occurred at low relative humidity despite attainment of
low moisture content, and low levels of heterotrophic bacteria
persisted in all drying conditions. The relationships between
inactivation and moisture content also differed by bacterial
type. Consequently, the moisture content relationship may fail
at low moisture contents and under dynamic drying conditions.
Increased homogeneity of struvite cakes produced in the field

could reduce variability in observed inactivation. This could be
achieved, for example, through the application of flat cotton
filters in an automated pilot-scale struvite reactor developed in
eThekwini.46 Such a reactor yields a thinner struvite cake
relative to the cloth filter bags and likely more consistent
moisture across the retained struvite during treatment.
Conversely, increased homogeneity of the struvite cake may
affect the accumulation of bacteria from urine into struvite via
modified straining of bacteria in the struvite cake during its
formation.
While the utilization of nonlethal temperatures for struvite

drying provided a treatment benefit, drying at elevated
temperature was beneficial in terms of bacterial inactivation.
It may be possible to treat struvite at elevated temperatures
without reducing the struvite quality. Mass loss of struvite
heated to 55 °C may be minimal, for example, if the rate and
time of heating is controlled.42,47 This increased temperature is
likely to have significant treatment benefits. Heating to 55−60
°C, for example, was recommended to inactivate eight
nonspore forming bacterial pathogens in water.29 For thermal
treatment of sewage sludge, the U.S. EPA requires a minimum
temperature of 50 °C as time−temperature relationships at
lower temperatures are uncertain; a minimum of 55 °C must be
maintained for three consecutive days for within-vessel
composting of sewage sludge.48 Additionally, given the
observation of sustained inactivation at higher relative humidity,
it may be beneficial to treat struvite with elevated moisture
levels prior to desiccation. Low temperature, short duration
steaming (e.g., at 50 °C for 3 min) has been recommended as a
nonchemical alternative for soil pasteurization that also requires
less energy than a typical procedure of 30 min treatment at 70
°C.49 Elevated temperature treatment with moisture retention
can be achieved with little additional cost: temperatures of 45−
60 °C are common in soil solarization in Mediterranean
regions.35,49

Because some bacteria are more susceptible to dehydration,
and desiccation is important for inactivation of viruses and
helminths in struvite, reducing the moisture content of the solid
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following any wet treatment remains important. As observed in
biosolids, regrowth of pathogens may occur when moisture
content is high (or when solids are rewetted) and other bacteria
that inhibit regrowth due to competition are absent.50 Proper
storage of struvite following drying should be therefore
conducted to prevent later fluctuations in moisture content.
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Kohn, T.; Strande, L.; Zöllig, H.; Hug, A.; Oberson, A.; Etter, B.
Technologies for the Treatment of Source-Separated Urine in the
eThekwini Municipality. Water SA 2015, 41, 212−221.
(47) Frost, R. L.; Weier, M. L.; Erickson, K. L. Thermal
Decomposition of Struvite − implications for the Decomposition of
Kidney Stones. J. Therm. Anal. Calorim. 2004, 76, 1025−1033.
(48) U.S. Environmental Protection Agency. Environmental Regu-
lations and Technology: Control of Pathogens and Vector Attraction in
Sewage Sludge, 1999; p EPA/625/R−92/013.
(49) van Loenen, M. C. A.; Turbett, Y.; Mullins, C. E.; Feilden, N. E.
H.; Wilson, M. J.; Leifert, C.; Seel, W. E. Low Temperature-Short
Duration Steaming of Soil Kills Soil-Borne Pathogens, Nematode Pests
and Weeds. Eur. J. Plant Pathol. 2003, 109, 993−1002.
(50) Zaleski, K. J.; Josephson, K. L.; Gerba, C. P.; Pepper, I. A. N. L.
Survival, Growth, and Regrowth of Enteric Indicator and Pathogenic
Bacteria in Biosolids, Compost. Soil, and Land Applied Biosolids 2005,
2, 49−63.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b03555
Environ. Sci. Technol. 2016, 50, 13013−13023

13023

http://weatherarchive.ru/Temperature/Durban/June-2014/en
http://weatherarchive.ru/Temperature/Durban/June-2014/en
http://dx.doi.org/10.1021/acs.est.6b03555

