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Abstract—We study a generalization of Wyner’s Common
Information to Watanabe’s Total Correlation. The first minimizes
the description size required for a variable that can make two
other random variables conditionally independent. If indepen-
dence is unattainable, Watanabe’s total (conditional) correlation
is measure to check just how independent they have become.
Following up on earlier work for scalar Gaussians, we discuss
the minimization of total correlation for Gaussian vector sources.
Using Gaussian auxiliaries, we show one should transform two
vectors of length d into d independent pairs, after which a reverse
water filling procedure distributes the minimization over all these
pairs. Lastly, we show how this minimization of total conditional
correlation fits a lossy coding problem by using the Gray–Wyner
network as a model for a caching problem.

Index Terms—Source Coding, Gray–Wyner network, Common
Information, Total Correlation, Caching

I. INTRODUCTION

The Gray–Wyner network, depicted in Figure 1, is a coding
problem that quite elegantly offers a discussion on the trade-off
between jointly and separately coding information [1], [2]. The
encoder has access to two sources, X and Y , and is in contact
with two decoders, each of which is only interested in one of
the two sources. The encoder sends one joint message to both
decoders and then two individual messages. Consequently,
only on the common branch does the encoder benefit from
the correlation between X and Y to reduce communication
rates.

This network motivated Wyner to introduce his notion of
common information between two random variables as

CW (X,Y ) = inf
X−V −Y

I(X,Y ;V ), (1)

and he proved that this entity (for discrete sources) equals the
minimum rate required on the common branch such that the
sum-rate does not exceed the joint entropy of the source [1],
[2]. Work in the last five years extended this notion to lossy
sources. Viswanatha, Akyol and Rose [3], as well as Xu, Liu
and Chen [4], [5] have introduced lossy common information:

CW (X,Y,Dx, Dy) = inf R0 ∈ RW (Dx, Dy), (2)

where RW (Dx, Dy) is the set of all common rates R0 such
that R0 + R1 + R2 ≤ RX,Y (Dx, Dy) + ϵ ∀ϵ > 0 and
(R0, R1, R2) is an achievable tuple in the rate-distortion region
of the Gray–Wyner network. In words, what is the minimum
amount of rate required on the common branch such that the
sum-rate does not exceed the joint rate-distortion function?

E

D1

D2

(Xn, Y n)

X̂n
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Fig. 1. A Gray–Wyner network for a source of two random variables.

For two scalar Gaussian sources, a full and closed-form
characterization of CW (X,Y,Dx, Dy) was presented in [3].

The interpretation of all these results is that one can
distribute the rate required by the joint rate-distortion function
over a common and two individual branches if one spends at
least enough rate on the common branch so as to make the
samples of X and Y conditionally independent. But what if
the common rate is limited and one cannot make these streams
conditionally independent? How does the rate trade-off on the
Gray–Wyner network behave then?

In our previous work [6], we stumbled over this question
when we explored a caching problem for Gaussian sources
for which we used the Gray–Wyner network as a model.
The model first appeared for discrete sources in [7], [8].
We viewed upon the common branch as a cache message,
and the individual branches as update messages in case the
samples of either X or Y were requested. Wyner’s common
information provided only one point on the boundary of the
cache-update rate trade-off. If R0 > CW (X,Y ), we knew the
sum-rate could not exceed the joint rate distortion function.
The difficulty was found in the low cache rate regime. It
required an auxiliary for the common branch that could make
X and Y conditionally “as independent as possible”. The latter
is measured by Watanabe’s total (conditional) correlation [9]:

TC(X,Y |V ) = h(X |V ) + h(Y |V )− h(X,Y |V ). (3)

Whereas finding the common information is surprisingly a
convex problem for Gaussians, minimizing total conditional
correlation is not. Therefore we focused on auxiliaries V
that are jointly Gaussian with the source. For two Gaussian
sources, it turned out one can minimize the total conditional
correlation by coding the contribution of X,Y along the dom-
inant eigenvector of their correlation (not covariance) matrix
and send that on the common branch [6]. By increasing R0

one can capture more of this correlation until R0 = CW (X,Y )



and X,Y become conditionally independent. Surprisingly, for
more than two sources the eigenvalue decomposition of the
correlation matrix does not seem to be related to this measure
of total correlation. What is instead, remains an open problem.

In [10], Satpathy and Cuff found en passant a closed-form
expression for Wyner’s common information of two Gaussian
vectors by a transformation that turns two vectors (X,Y)
of length d into d independent Gaussian pairs (X̃i, Ỹi). The
common information equals the sum of that of all the pairs:

CW (X,Y) =
d

∑

i=1

CW (X̃i, Ỹi).

In this paper, we ask ourselves if this transform of Satpathy
and Cuff is also useful for the Gray–Wyner network on
points on the rate trade-off other than R0 = CW (X,Y). The
answer is affirmative. We first introduce a notion similar to
common information to capture this sense of “as independent
as possible”, i.e., to minimize total conditional correlation:

TX,Y(γ) = inf
V

I(X,Y;V) s.t. h(X|V) + h(Y|V) ≤ γ.

Even though the objective function is convex, its constraint
is not; this is also part of the reason why the trade-off on
the Gray–Wyner network becomes hard when the common
branch has a small communication rate. We therefore focus
our attention to auxiliaries V which are jointly Gaussian with
X,Y.

The assumption of Gaussianity does not solve the trade-off
being non-convex, but we can show that indeed it suffices to
transform the vectors (X,Y) into d pairs. The problem then
splits into two: a convex part to distribute the minimization
of total correlation over all the pairs, and a non-convex part
of the minimization within a pair. The latter was thus solved
by hand before [6]. The most efficient way to minimize total
conditional correlation is by minimizing the correlation of each
pair separately in a reverse water filling fashion. This is the
topic of Section III. Afterwards, we fit this building block into
our caching coding problem on the Gray–Wyner network and
show it fits if the end distortion constraints on X̂ and Ŷ are
not too large. The latter will be discussed in Section IV.

II. PRELIMINARIES

Considering notation, capital letters will indicate random
variables, e.g. X , while boldface characters are for multivariate
vectors, e.g., X. Also matrices will be denoted by boldface
letters, while the normal typesetting will refer to an element
of the matrix, e.g., D versus D11. To avoid confusion with
the vectors, the end of the alphabet is reserved for random
variables.

The bulk of this paper will be about two Gaussian vectors
X,Y of equal length d and covariance

Σ =

[

ΣX ΣXY

ΣT
YX

ΣY

]

.

No subscript indicates the 2d×2d matrix corresponding to the
joint random vector (X,Y), whereas a subscript is to refer to a

corner of that matrix. Straight bars, | · |, denote the determinant
of a matrix, or the absolute value if the argument is a scalar.
RX,Y (Dx, Dy) denotes the joint rate-distortion function.

For two unit-variance scalar Gaussians and symmetric mean
squared distortions Dx = Dy this function equals

RX,Y (D,D) =

⎧

⎨

⎩

1
2 log

(

1−ρ2

D2

)

if 0 < D ≤ 1− ρ,

1
2 log

(

1+ρ
2D−1+ρ

)

if 1− ρ ≤ D ≤ 1.

For two vectors X,Y with joint covariance Σ under trace-
constraints one has

RX,Y(Dx, Dy) = min
D

1

2
log

|Σ|
|D|

s.t.

⎧

⎪

⎨

⎪

⎩

0 ≼ D ≼ Σ,

tr(DX) ≤ Dx,

tr(DY) ≤ Dy.

The above is a direct consequence from [11]; their proof
for the rate-distortion function of scalar Gaussians under
individual distortion criteria generalizes to Gaussians with any
distortion metric d(·) that respects semidefinite ordering, i.e.,
D1 ≼ D2 ⇒ d(D1) ≤ d(D2).

A. Vectors to Pairs Decomposition

The key operation of this paper is a set of operations to turn
two vectors (X,Y) into a set of d independent unit-variance
pairs (X̃i, Ỹi). Satpathy and Cuff [10] used these operations as
a transform, whereas we -for convenience later on- will rather
decompose (X,Y). To start, one can pull out the variance:

X = Σ1/2
X

X̄,

Y = Σ1/2
Y

Ȳ.

The random vectors X̄, Ȳ are unit-variance independent Gaus-
sians, but their cross-correlation has not disappeared:

Σ̄ =

[

I Σ−1/2
X

ΣXYΣ−1/2
Y

Σ−1/2
X

ΣXYΣ−1/2
Y

I

]

.

The next step is to note that also this cross-correlation can be
diagonalized by a singular value decomposition:

ΣX̄Ȳ = Σ−1/2
X

ΣXYΣ−1/2
Y

= BXΛBY,

which gives

X = Σ1/2
X

BXX̃,

Y = Σ1/2
Y

BYỸ.

The elements of both X̃ and Ỹ are also independent and of
unit-variance, because BX,BY are orthonormal matrices. The
covariance of (X̃, Ỹ) equals

Σ̃ =

[

I Λ
Λ I

]

, (4)

and features diagonal matrices in all its four corners. Thus
(X̃, Ỹ) = (X̃1, Ỹ1), · · · , (X̃d, Ỹd); two Gaussian vectors of
length d have been decomposed into d independent pairs.
Throughout this paper, a tilde over a random variable implies
the above decomposition.



Lastly, we attend the reader that even though mutual infor-
mation is invariant to one-to-one transformations, entropy is
not. Therefore:

h(X,Y) =
1

2
log(2πe)2d|Σ|

=
1

2
log(2πe)2d|ΣX||ΣY||Σ̃|

=
d

∑

i=1

h(X̃i, Ỹi) +
1

2
log |ΣX||ΣY|. (5)

B. Gray–Wyner Network

The inspiration of Wyner’s common information came from
an operational perspective, the Gray–Wyner network of Figure
1 [1]. The encoder observes two sequences (Xn,Yn) drawn
in an iid fashion; in our case each sample is a length-d vector.
The encoder then maps these sequences to three messages
M0,M1,M2 drawn from an alphabet of size 2nR0 , 2nR1 and
2nR2 , respectively. Decoder 1 reconstructs a lossy X̂n using
only (M0,M1), whereas decoder 2 tries to do the same for
Ŷn with (M0,M2). A code is defined by an encoder f to map
(Xn,Yn) into these three messages, two decoders gX and gY
to produce the lossy estimates (X̂n, Ŷn) and two distortion
metrics dX(·, ·), dY(·, ·).

A tuple (R0, R1, R2, Dx, Dy) is said to be achievable if
there exist such encoders and decoders and if furthermore

1

n

n
∑

i=1

dX(Xi, X̂i) ≤ Dx,

1

n

n
∑

i=1

dY(Yi, Ŷi) ≤ Dy.

The region of achievable rate-distortion tuples on the Gray–
Wyner network is the union of all (R0, R1, R2, Dx, Dy)
satisfying

R0 ≥ I(X,Y;V)

R1 ≥ I(X; X̂|V)

R2 ≥ I(Y; Ŷ|V)

Dx ≥ E[dX(X, X̂)]

Dy ≥ E[dY(Y, Ŷ)],

over joint densities p(X,Y,V, X̂, Ŷ) [5]. Working with
Gaussian vector sources, let us choose for the distortion metric
a trace-constraint, i.e.,

dX(X, X̂) = tr
(

E[(X− X̂)(X− X̂)T ]
)

≤ Dx,

the same for Y.

III. COMMON INFORMATION AND TOTAL CORRELATION

We begin by a lossless discussion on independence and total
correlation.

A. Common Information

First, we would like to add one comment to the work of
Satpathy and Cuff on the common information for Gaussian
vectors [10]. For scalars, a closed-form solution of CW (X,Y )
is known, but there is no analytic expression of how to make
three or more random variables conditionally independent.
The problem is, however, surprisingly convex and can be
solved efficiently by linear programming numerically [6]. For
Gaussian vectors, it turns out to be the same.

For two scalar jointly Gaussian random variables, the com-
mon information equals

CW (X,Y ) = min
X−V−Y

I(X,Y ;V ) =
1

2
log

1 + |ρ|
1− |ρ|

,

where ρ is the correlation between X and Y [4], [5]. For two
Gaussian vectors, it is the following:

Lemma 1 (Satpathy and Cuff [10]). For jointly Gaussian

X,Y ∈ Rd, Wyner’s common information is given by

CW (X,Y) = min
X−V−Y

I(X,Y;V) =
1

2

d
∑

i=1

log
1 + |ρi|
1− |ρi|

,

where {ρi} are the singular values of Σ−1/2
X

ΣXYΣ−1/2
Y

.

In short, the vector common information equals the sum of
the common information of all (X̃i, Ỹi)-pairs obtained by the
vector-to-pairs decomposition described in Section II-A. Un-
fortunately, such a transformation becomes harder to develop
when there are more than two vectors to make independent.
However, at least numerically finding the common information
is not a hard problem.

To that end, define:

CW (X(1), · · · ,X(M))
def
= inf

V
I(X(1), · · · ,X(M);V),

such that h(X(1), · · · ,X(M)|V) =
M
∑

i=1

h(X(i)|V).

Theorem 1. For jointly Gaussian X(1), · · · ,X(M) ∈ Rd with

joint covariance Σ, the common information is given by

CW (X(1), · · · ,X(M)) = min
K

1

2
log

|Σ|
|K|

(6)

such that

{

0 ≼ K ≼ Σ,

K is block-diagonal.

Proof. Consider any V that is jointly distributed with
X(1), · · · ,X(M) and that makes all X(i) conditionally inde-



pendent. Then,

I(X(1), · · · ,X(M);V)

= h(X(1), · · · ,X(M))− h(X(1), · · · ,X(M)|V)

= h(X(1), · · · ,X(M))−
M
∑

i=1

h(X(i)|V)

=
M
∑

i=1

(

h(X(i))− h(X(i)|V)
)

+

h(X(1), · · · ,X(M))−
M
∑

i=1

h(X(i))

≥
1

2
log

∏M
i=1 |ΣX(i) |

∏M
i=1 |K(i)|

+
1

2
log

|Σ|
∏M

i=1 |ΣX(i) |

=
1

2
log

|Σ|
∏M

i=1 |K(i)|
,

where K(i) = E[(X(i) − E[X(i)|V])(X(i) − E[X(i)|V])T ], is
the MMSE matrix of X(i) based on V. Let K be the block-
diagonal matrix formed like K = diag

(

{

K(i)
}M

i=1

)

. The one

inequality follows from Lemma 2 from [11] and is -in fact-
just the Gaussian rate-distortion function. The lower bound
is met with equality for any jointly Gaussian V yielding a
block-diagonal distortion matrix K that satisfies K ≼ ΣX.
The block-diagonal structure emphasizes that zero correlation
between any (X(i),X(j))-pair is necessary for conditional
independence, but for Gaussians also happens to be sufficient.

The Theorem in itself is not so much a revelation as is
the insight that the problem of common information is strictly
convex and constrained by only linear constraints; it is a so-
called MaxDet problem [12]. Consequently, as we argued in
[6] for scalar Gaussians, the common information and the
distortion matrix that attains it can be found efficiently by
linear programming.

Using the popular CVX package for Matlab [13], one can
easily see for oneself that for M = 2 the above optimization
problem leads to the analytically found result by Satpathy and
Cuff. For M > 2 we know no analytic expression for the
optimal distortion matrix K, though numerically the problem
remains tractable.

B. Total Conditional Correlation

We concentrate ourselves again on only two Gaussian
vectors and on the problem we started off on: If one cannot
make X and Y conditionally independent, how can they
be made “as independent as possible”? This problem is,
unlike finding Gaussian common information, non-convex.
The hypothesis is that one should still apply the vectors-to-
pair decomposition (Section II-A) and treat the vectors (X,Y)
as d pairs (X̃i, Ỹi). This claim turns out to be true if one
restricts his attention to jointly Gaussian auxiliaries. Moreover,
Theorem 2 will show that a reversed water filling procedure

minimizes the correlation of these (X̃i, Ỹi) in the most efficient
and distributed manner.

First, let us define this sense of “as independent as possible”,
which is motivated by Watanabe’s notion of total (conditional)
correlation [9]:

TC(X,Y|V) = h(X|V) + h(Y|V) − h(X,Y|V).

Regarding the Gray–Wyner network (Figure 1), this gap be-
tween the sum of marginal entropies and the joint entropy
characterizes the loss incurred by first sending an (insufficient)
common message followed by two individual updates. On the
individual branches, the encoder does not benefit from jointly
coding (X,Y). Hence, any correlation left unused by the
common branch is essentially a wasted opportunity to reduce
communication rates. At best, TC(X,Y|V) = 0, meaning
that (at least) all the common information was captured by
the auxiliary V.

With the Gray–Wyner network in mind, the goal is to find
a formulation similar to that of common information (1):
A minimization over a cost-function to make two random
variables not completely independent, but to bring down their
total correlation to an acceptable level. To that end, let us
rewrite the notion of total correlation into a minimization:

TX,Y(γ)
def
= inf

V
I(X,Y;V) s.t. h(X|V) + h(Y|V) ≤ γ.

TX,Y(γ) is convex and non-increasing in γ, however, the
constraint-function is concave in V. So far, it is still unclear
whether X,Y being Gaussian implies it suffices to also
take V Gaussian. We shall therefore take Gaussianity as an
assumption, and show an attainable smooth bound on the
problem.

Let K be a conditional covariance matrix associated to the
distribution p(X,Y|V) and let KX, KY be the top-right and
bottom-left corner of that matrix. Then:

h(X|V) + h(Y|V) =
1

2
log(2πe)2d|KX||KY|.

For convenience, one can redefine the Gaussian TX,Y(γ) to
not worry about the constants, and focus on this conditional
covariance K:

TX,Y(γ) = min
K

1

2
log

|Σ|
|K|

s.t.

{

0 ≼ K ≼ Σ,

|KX||KY| ≤ γ,
(7)

for which now γ ∈ [0, |ΣX| · |ΣY|].
Since I(X,Y;V) = h(X,Y) − h(X,Y|V), the mini-

mization of TX,Y(γ) is actually a maximization of the joint
conditional entropy. This objective and the constraint are
bounds to each other,

h(X,Y|V) ≤ h(X|V) + h(Y|V), (8)

and TX,Y(γ) tries to close this inequality by maximizing the
left-hand side, while bounding the right. For Gaussians, the
same bound is expressed by the Hadamard inequality for block
matrices:

|K| ≤ |KX||KY|. (9)



At best, the inequality is met with equality, which happens
if and only if X and Y become conditionally independent.
Consequently, there is a close relationship between our objec-
tive and Wyner’s common information:

Lemma 2. For jointly Gaussian X,Y ∈ Rd,

TX,Y (γ′) = CW (X,Y),

for γ′ = |ΣX||ΣY|
∏d

i=1(1 − |ρi|)2 and where {ρi} are the

singular values of Σ−1/2
X

ΣXYΣ−1/2
Y

.

Proof. Conditional independence is equivalent to the condition
h(X|V)+h(Y|V) = h(X,Y|V). For Gaussian distributions,
this equality means that the covariance matrix associated
to p(X,Y|V) satisfies |K| = |KX||KY|. For minimizing
total conditional correlation, this equality is the best one can
achieve, as can be seen in (7). Filling equality in (9) into (7)
gives:

TX,Y(γ) =
1

2
log

|Σ|
γ

.

The V that achieves common information corresponds to a
matrix K that is diagonal after the transformation of Section
II-A, and is of the form K̃X = K̃Y = diag({1 − |ρi|}di=1).
So the V that achieves CW (X,Y) yields:

h(X|V) + h(Y|V) =
1

2
log(2πe)2d|KX||KY|

=
1

2
log(2πe)2d|ΣX||ΣY|

d
∏

i=1

(1 − |ρi|)2.

Hence, choosing γ equal to the argument of the expression
above gives TX,Y(γ) = CW (X,Y).

For γ < |ΣX||ΣY|
∏d

i=1(1 − |ρi|)2 there is still equality
in both (9) and (8), which implies that the choice of picking
V jointly Gaussian with X,Y is not just an assumption, it is
optimal in general. Note, however, that for small γ one does
have that TX,Y(γ) > CW (X,Y). Another implication is that
this regime of small γ and conditional independence is not as
challenging as large γ, where the total conditional correlation
remains strictly positive. As shown later, minimizing the total
conditional correlation between two Gaussian vectors will
require one to decompose those vectors into d pairs and then
minimize the correlation of those pairs separately, in a cleverly
distributed way. To that end, one must understand how to
most effectively minimize total correlation between two scalar
Gaussians, for which we cite an older result from us:

Lemma 3 (Op ’t Veld and Gastpar [6]). For Gaussian X,Y
of unit variance and correlation ρ we have

TX,Y (γ) = RX,Y (
√
γ,

√
γ) .

Relying on a Gaussian auxiliary V , we showed in [6]
that for two scalars TX,Y (γ) (7) is solved by choosing a K

that is a rank-1 correction along the dominant eigenvector of
the correlation matrix until X and Y become conditionally

independent. This dominant eigenvector is either 1√
2
[1 1]T if

ρ > 0 or 1√
2
[1 − 1]T if ρ < 0. Either how, consequently

KX = KY (though we note this choice is no longer unique if
TX,Y(γ) > CW (X,Y )).1

This brings us to our main result: The total conditional
correlation of two Gaussian vectors is minimized by a reverse
water filling procedure on the common information of each
pair found by the decomposition of Section II-A:

Theorem 2. For jointly Gaussian X,Y ∈ Rd, the total

conditional correlation is minimized by a reverse water filling

procedure until X,Y become conditionally independent, i.e.

TX,Y(γ) =

{

1
2 log

|Σ|
γ TX,Y(γ) ≥ CW (X,Y)

∑d
i=1 Ri TX,Y(γ) ≤ CW (X,Y)

where

Ri = max(CW (X̃i, Ỹi)− θ, 0),

and θ is a positive constant chosen such that

|ΣX||ΣY|
d
∏

i−1

(

2−2Ri(1 + |ρi|) + (1 − |ρi|)
)2

= γ.

Proof. First, for γ small such that TX,Y(γ) ≥ CW (X,Y),
conditional independence and hence equality in (9) (and, as a
matter of fact, also (8)) is attainable, see Lemma 2. Hence,

1

2
log

|Σ|
|K|

≥
1

2
log

|Σ|
|KX||KY|

≥
1

2
log

|Σ|
γ

,

can be met with equality.
For large γ (and thus small TX,Y(γ)), conditional inde-

pendence is not attainable. In principle, the problem is this
optimization:

max
K≼Σ

|K|,

s.t. |KX||KY| ≤ γ.

Without loss of generality, one can do a change of variable by
applying the vectors-to-pairs decomposition of Section II-A
to the source and the same transformation to the variable K.
Since this decomposition scales out the variance, which are not
orthonormal matrices, the objective and constraint are affected:

max
K̃≼Σ̃

|ΣX||ΣY||K̃|,

s.t. |ΣX||ΣY||K̃X||K̃Y| ≤ γ.

Both are, however, affected equally and we can restrict our
attention to finding a suitable K̃ ≼ Σ̃.

Note the very special structure of Σ̃ (4): there only exists
correlation between (X̃i, Ỹi)-pairs. Our hypothesis is that
the optimal K̃ has the same eigenbasis that generates a

1For non-unit variance scalar Gaussians, the optimal K is a rank-1 cor-
rection along a scaled version of the dominant eigenvector of the correlation
matrix, e.g., 1/

√

tr(Σ)[σ1 σ2]T instead of 1/
√

2[1 1]T .



block-matrix with diagional matrices in all its four corners.
If K̃ would introduce correlation between an (X̃i, Ỹj)i̸=j -
pair, then |K̃| would decrease, while |K̃X||K̃Y| observes no
improvement. If K̃ would introduce correlation between a
(X̃i, X̃j)i̸=j -pair (or Ỹ respectively), the gain on the constraint
can never exceed the drop on the objective, because of the
Hadamard inequality |K| ≤ |K̃X||K̃Y|. Hence, there is no
added value in a K̃ with a different eigenbasis than Σ̃.

Hence, one arrives at the modular approach of looking for
a 2× 2 distortion matrix K̃(i) for each (X̃i, Ỹi)-pair, i.e.,

K̃
(i) ≼ Σ̃(i) =

[

1 ρi
ρi 1

]

,

where again {ρi} are the singular values of Σ−1/2
X

ΣXYΣ−1/2
Y

.

For a pair of Gaussians, Lemma 3 states that K̃(i) should
be a rank-one correction along the dominant eigenvector of
the correlation matrix of (X̃i, Ỹi). That leaves the question of
which pairs (X̃i, Ỹi) have the biggest impact on minimizing
the total conditional correlation of the vectors X and Y. This
problem turns out to be convex, but it requires the proper
variable to expose so. To that end, let

Ri
def
= I(X̃i, Ỹi;Vi) =

1

2
log

1− ρ2i
|K̃(i)|

.

Then if K̃(i) is indeed only an update along the dominant
eigenvector, then equivalently:

|K̃X||K̃Y| =
d
∏

i=1

(K̃(i)
Xi

K̃
(i)
Yi

)

=
d
∏

i=1

(

2−2Ri(1 + |ρi|) + (1− |ρi|)
)2

.

Applying logarithms, also the constraint-function is convex
and one can use Lagrangian multipliers to construct:

J =
d

∑

i=1

Ri + λ
d

∑

i=1

1

2
log

(

(

2−2Ri(1 + |ρi|) + (1− |ρi|)
)2
)

,

giving

∂J

∂Ri
= 1− 2λ

(1 + |ρi|)2−2Ri

2−2Ri(1 + |ρi|) + (1− |ρi|)
= 0.

Rewriting the above expression leads to

Ri =
1

2
log

1 + |ρi|
1− |ρi|

−
1

2
log (2λ− 1)

= CW (X̃i, Ỹi)− θ.

Each Ri is ideally the common information of its (X̃i, Ỹi)-
pair minus a constant θ. However, Ri must be non-negative.
Incorporating also this extra constraint leads to the reverse
water filling procedure as stated in the Theorem.

The rate–distortion function of a Gaussian vector
X subject to a trace distortion constraint, i.e.

tr
(

E[(X − X̂)(X− X̂)T ]
)

≤ D, is a classic result

that also admits a reverse water filling procedure [14,

R1

R2

(X̃1, Ỹ1) (X̃2, Ỹ2) (X̃3, Ỹ3)

CW (X̃1, Ỹ1)

CW (X̃2, Ỹ2)

CW (X̃3, Ỹ3)

θ

Fig. 2. Example of the reverse water-filling procedure of Theorem 2. The
bars represent the common information of each (X̃i, Ỹi)-pair and the shaded
area equals Ri. In this example, d = 3 and θ is such that R3 = 0.

Theorem 10.3.3]. We attend the reader to a subtle difference:
the Gaussian vector rate-distortion function applies reverse
water filling to the eigenvalues of the covariance matrix Σ,
whereas the minimization of total conditional correlation
uses Ri = I(X̃i, Ỹi;Vi) as the variable. Consequently, one
will not observe similar thresholding behavior by plotting
the evolution of the eigenvalues. The right way to plot the
water filling of total conditional correlation is by plotting the
common information of each (X̃i, Ỹi)-pair as a bar graph. An
example is shown in Figure 2.

IV. CACHING: AN APPLICATION OF TOTAL CORRELATION

ON THE GRAY–WYNER NETWORK

This section is to serve as an example of how the essentially
lossless definition of TX,Y(γ) applies to a lossy coding prob-
lem on the Gray–Wyner network. Viswanatha et al. proved
in [3] that their lossy interpretation of common information
(2) matched Wyner’s lossless one (1) if and only if the end
distortion constraints on X̂ and Ŷ were sufficiently small, i.e.:

CW (X,Y,Dx, Dy) = CW (X,Y ) if max(Dx, Dy) ≤ 1− |ρ|.

For larger distortion constraints, the lossy common informa-
tion is different and in some regimes even equals the entire
rate-distortion function.

In the introduction we stated our motivation came from a
caching model we studied earlier, based on the Gray–Wyner
network [6]: Imagine a user is interested in the samples
produced by either X or Y. Before revealing her preference,
the encoder sends a cache message. The user then announces
her request after which the encoder sends an update tailored to
either X or Y to complement the cache message such that both
messages together provide the user with an acceptable lossy
representation of the samples requested. The cache message
can be viewed upon as the common message in the Gray–
Wyner network, whereas the individual branches stand for the
events of the user asking for either X or Y.

If the user makes her choice uniformly at random, the
statistics of her choice cannot be leveraged to reduce com-
munication rates. The update rate needed on average would
simply be the sum-rate of the individual branches in the Gray–



Wyner network divided by two. So referring to Section II-B,
one finds:

Rcache ≥ I(X,Y;V),

Rupdate ≥
1

2

(

I(X, X̂|V) + I(Y, Ŷ|V)
)

.

Applying Gaussian distributions to these equations, the Gaus-

sian achievable cache-rate-distortion region is the union of
(Rcache, Rupdate, Dx, Dy) satisfying

Rcache ≥
1

2
log

|Σ|
|K|

(10)

Rupdate ≥
1

4
log

|KX||KY|
|DX||DY|

(11)

Dx ≥ tr(DX)

Dy ≥ tr(DY),

over positive semidefinite matrices DX,DY ∈ Rd×d and K ∈
R2d×2d satisfying DX ≼ KX,DY ≼ KY, and K ≼ Σ.

One can observe the same trade-off as in the lossless
discussion of Section III: |K| ↔ |KX||KY|. However, if
the end distortion constraints become too large, the K that
optimizes the trade-off between Rcache and Rupdate necessarily
depends on Dx, Dy . Hence, like for common information, the
distortion constraints cannot be large for the minimization of
total conditional correlation TX,Y(γ) to be directly applicable
to a coding problem on the Gray–Wyner network.

Corollary 1. Let KCW (X,Y) be the distortion matrix that

attains the common information CW (X,Y). Then, the Gaus-

sian trade-off between Rcache (10) and Rupdate (11) can be
controlled by a parameter γ such that

Rcache ≥ TX,Y(γ),

Rupdate ≥
1

4
log

γ

|DX||DY|
,

for the regime of end distortion constraints satisfying:

Dx ≤ d · λmin(K
CW (X,Y)
X

),

Dy ≤ d · λmin(K
CW (X,Y)
Y

).

Proof. The Gaussian rate region (10)-(11) features the same
trade-off as TX,Y(γ), i.e., |K| ↔ |KX||KY|. The rate-
distortion theorem for Gaussian multivariates under a trace-
constraint dictates the update phase is most efficiently coded
via a reverse water filling procedure on the eigenvalues of KX

and KY [14, Theorem 10.3.3]. Hence, for large Dx, Dy the
optimal choice of a K not only depends on the determinants,
but also the specific spectra of the submatrices in its top-left
and bottom-right corner, KX and KY . If Dx ≤ d ·λmin(KX),
the distortion matrix DX that minimizes the update rate does
not depend on the spectrum of KX, but equals DX = (Dx

d )·I.
If, specifically, Dx ≤ d · λmin(K

CW (X,Y)
X

) then the choice
of K and DX,DY that minimize Rcache and Rupdate decouple.
Namely, in the regime Rcache ∈ [0, CW (X,Y)] the trade-
off |K| ↔ |KX||KY| solved by TX,Y(γ) produces a K′ that

Rcache

0 2 4 6 8 10 12

R̄
u
p
d
a
te

0

2

4

6

8

Fig. 3. Example of the caching trade-off with d = 4 and ρ1 = 0.9, ρ2 = 0.8,
ρ3 = 0.6 and ρ4 = 0.4. The diamonds correspond, from left to right, to
the points were respectively R1, R2 and R3 become positive, following the
waterfilling of Theorem 2. The circle corresponds to Rcache = CW (X,Y).
The dotted line is the straight line connecting Rcache = RX,Y(Dx,Dy) and

Rupdate = 1
2RX,Y(Dx, Dy).

satisfies K′ ≽ KCW (X,Y), a consequence of Theorem 2. Con-
sequently, the optimal choice of DX remains DX = (Dx

d ) · I.
The same for Y. In the regime Rcache ≥ CW (X,Y), X and
Y can become conditionally independent and the trade-off
between cache and update rate comes without rate loss.

The Corollary implies that also in the coding problem on
the Gray–Wyner network, for a small common rate one should
apply the reverse waterfilling of Theorem 2, given the end dis-
tortion constraints are not too large. An example of this trade-
off is plotted in Figure 3 for two vectors of length d = 4. The
diamonds mark the points where the waterfilling procedure hits
a new threshold and starts including another (X̃i, Ỹi)−pair
into the coding process. Once Rcache ≥ CW (X,Y), it is
large enough to make X,Y conditionally independent. Conse-
quently, the trade-off between Rcache and Rupdate coincides with
the straight line connecting the points of

(

Rcache, Rupdate

)

=
(RX,Y(Dx, Dy), 0) and

(

0, 12RX,Y(Dx, Dy)
)

.
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