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Abstract—Recent sampling results enable the reconstruction of
signals composed of streams of fixed-shaped pulses. These results
have found applications in topics as varied as channel estimation,
biomedical imaging and radio astronomy. However, in many real
signals, the pulse shapes vary throughout the signal. In this pa-
per, we show how to sample and perfectly reconstruct Lorentzian
pulses with variable width. In the noiseless case, perfect recovery
is guaranteed by a set of theorems. In addition, we verify that our
algorithm is robust to model mismatch and noise. This allows us
to apply the technique to two practical applications: electrocardio-
gram (ECG) compression and bidirectional reflectance distribution
function (BRDF) sampling. ECG signals are one dimensional, but
the BRDF is a higher dimensional signal, which is more naturally
expressed in a spherical coordinate system; this motivated us to
extend the theory to the 2D and spherical cases. Experiments on
real data demonstrate the viability of the proposed model for ECG
acquisition and compression, as well as the efficient representation
and low-rate sampling of specular BRDFs.

Index Terms—Finite rate of innovation, variable width, signal
sampling, signal denoising, pulse compression methods, spectral
analysis, electrocardiogram, reflectance function, specularity.

I. INTRODUCTION

SAMPLING theorems provide a bridge between the analog
signals of the real world and their discrete representations.

In the ideal case, they allow perfect reconstruction of a con-
tinuous signal from only a limited number of discrete samples.
The most notable embodiment of this concept is the well-known
Nyquist-Shannon theorem [1]. This states that any signal that
belongs to the shift-invariant subspace of band-limited functions
can be perfectly reconstructed from a set of uniformly spaced
discrete samples, provided that the sampling frequency is at
least twice the bandwidth of the signal. While very powerful,
this result falls short for many classes of signal.

Over the years, sampling results have emerged for signals
belonging to more general classes, including signals that lie
in general shift-invariant subspaces [2] and some other signals
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Fig. 1. Signals with finite rate of innovation: (a) stream of Diracs recoverable
with the original FRI theory; (b) fixed-shaped pulses recoverable using Strang-
Fix theory; (c) variable-width pulses, recoverable by the proposed technique.

with a finite rate of innovation (FRI) [3]—i.e., signals that have
a finite number of degrees of freedom per unit time. This latter
class extends the former to many other types of signals such
as streams of Dirac deltas as depicted in Fig. 1(a), piecewise
polynomials and piecewise sinusoidal signals [4].

All these schemes assume that we only have access to samples
of a filtered version of the signal; that is, the original continuous-
time signal x(t) is filtered with a kernel ϕ(t) before being uni-
formly sampled at time instants t = nT . Typically, ϕ(t) is a
lowpass filter that is either chosen by design, or, as is more
common, is a characteristic of the acquisition system.

Like traditional Nyquist-Shannon sampling, the original FRI
theory was developed for infinite support kernels, such as the
sinc ideal low-pass filter; however, the results have been recently
extended to physically realizable kernels of compact support that
satisfy Strang-Fix conditions [5]. Another benefit of these more
general kernels is that, when applied to streams of Diracs, they
can be used to add more variety to the signals admitted by FRI.
For example, it has enabled FRI theory to be utilised to retrieve
streams of short pulses from ultrasound imaging [6] and action
potentials of neurological data from calcium imaging [7]. Note
that, although this allows more general pulses, as illustrated in
Fig. 1(b), each pulse is still constrained to have the same shape
(up to a multiplicative factor).

The question we address in this article is the following: Can
we find a signal model that allows a different shape for each
pulse? This is motivated by the fact that in nature, several sig-
nals can be parametrized as pulses with various shapes. In what
follows, we show that it is indeed possible by considering signals
that consist of sums of Lorentzian1 pulses with variable width

1A Lorentzian function—also known as Cauchy distribution—is a bell-
shaped curve that looks similar to a Gaussian but with heavier tails.
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Fig. 2. Example of decomposition of a signal into VPW pulses: (a) one period
of a pulse from the MIT-BIH arrhythmia database [19]; (b) its decomposition
into five asymmetric VPW pulses; (c) the VPW approximation (sum of the five
pulses).

and different degrees of asymmetry. While there are numerous
parametric functions — Gaussians, B-splines, or wavelet basis
functions to name a few — that are suitable to model signals
with variable pulse shapes, the choice of Lorentzian functions
is not innocuous; indeed, as we see in the next sections, the
auto-regressive nature of their spectral coefficients enables us to
estimate the parameters of the model using spectral estimation
techniques such as Prony’s method. Other algorithms estimat-
ing the parameters of sums of Lorentzians are described and
analyzed in [8]–[10]; in this paper, we connect these results to
sampling theory.

In addition to FRI techniques, recent extensions of compres-
sive sensing also enable continuous parameter estimation but
attack the problem from a different angle: while FRI theory re-
lies on non-linear methods, these approaches enforce sparsity
with the atomic norm and convex relaxations [11]–[14].

In this paper, we demonstrate, via a set of theorems, that
sums of Lorentzians can be sampled and perfectly reconstructed,
by adapting standard FRI machinery; whereas the core of the
original FRI theory is composed of Diracs, the atoms of our
signal model are called VPW pulses.2 As highlighted in Fig. 1(c),
the VPW model brings more versatility and flexibility to the set
of FRI signals that can be acquired. We apply the VPW-FRI
framework to two natural signals: electrocardiograms (ECGs)
and bidirectional reflectance distribution functions (BRDFs).

ECG signals are composed of five different types of pulses,
each of which corresponds to a particular event in a cardiac
cycle [20]. The width of these pulses can vary greatly, making
fixed-shaped pulse models less suitable; on the other hand, as
illustrated in Fig. 2, a sum of VPW pulses closely approximates
ECG pulse shapes. Other basis functions have been proposed
to compress ECG signals, such as Gaussians [21] and Hermite
polynomials [22]. In [21], nonlinear least square methods are
used to estimate the parameters of the Gaussians, which does
not always converge to a satisfactory solution. In [22], only
the middle part of each heartbeat (the QRS complex) is com-
pressed and, furthermore, it must be sampled at particular non-
uniform locations. Hermite polynomials have also been used
in other contexts, such as the detection of pathologies in ECG
records [23]. During the completion of this manuscript, we also

2Variable pulse width (VPW)-FRI was coined in [15], [16] in the context of
electrocardiogram (ECG) representation. Other notable applications of VPW
on multiple lead ECG signals are reported in [17], [18].

Fig. 3. (a) Example of two dimensions of a measured BRDF and (b) its
representation using a single VPW pulse.

became aware of the work of Ouamri and Naı̈t-Ali [24], in which
a sum of Lorentzian functions is applied to ECG compression
using an SVD-type algorithm. In addition to compression, we
demonstrate accurate reconstruction of natural signals using a
sampling rate that is of the same order as the rate of innovation
of these signals, which is usually below the Nyquist rate.

The other catalyst for our research is the acquisition and rep-
resentation of BRDFs, which are high-dimensional functions
that characterize how light is reflected by surfaces. Usually,
BRDFs contain high frequency components — called specular-
ities — that are difficult to catch with classical sampling theory.
Moreover, their shape varies through space, which makes exist-
ing FRI models inappropriate. The acquisition of BRDFs in the
spherical domain requires dense sampling of the hemisphere,
as can be seen in [25]. More elaborate techniques propose to
perform the acquisition in a transform domain: for example
in [26], the acquisition is done in the spherical harmonics do-
main, which substantially reduces the number of samples. The
disadvantage is that it requires a specialized gantry, with a high
number of light sources that can recreate the spherical harmon-
ics functions. In this article, we leverage FRI theory to reduce
the number of samples directly in the spherical domain. An
example of a specularity approximated with a single spherical
VPW pulse is shown in Fig. 3; here, the direction of outgoing
light is kept fixed. By utilizing a simple parametric model, we
are enforcing a strong prior that is particularly beneficial in cer-
tain scenarios. For example, in the BRDF problem it is typical
to only have a few samples of sharp specularities; it is thus very
challenging to obtain an accurate representation of the under-
lying reflectance function. Despite this, the proposed approach
is able to recover a good approximation of these specularities,
and the continuous representation enables us to later render the
object from any illumination direction. This is in contrast to
super-resolution approaches, where a denser sampling of the
BRDF would only allow us to render the object under certain il-
lumination directions or would force us to apply some other type
of interpolation. In fact, graphics renderers deal with parametric
forms of the reflectance function precisely for these reasons.

II. BACKGROUND

A. Signals with Finite Rate of Innovation

The rate of innovation ρ of a signal is defined as its number
of degrees of freedom per unit time [3]. Ideally, we seek an
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Fig. 4. Sampling operation. The continuous-time signal f (t) is filtered with
the kernel ϕ(t) and then recorded at time instants t = nT (n ∈ Z) to obtain
the discrete-time signal g[n].

algorithm to reconstruct an FRI signal using only ρ parameters
per unit time, in which case sampling at the rate of innovation
allows perfect reconstruction. This is precisely what is achieved
by the Nyquist-Shannon theorem, where the degrees of freedom
are embodied by the expansion coefficients in the orthonormal
basis formed by shifted sinc functions.

Another FRI signal, which is the archetype of the field, is a
τ -periodic stream of K weighted Dirac pulses:

f(t) =
∑

n∈Z

K−1∑

k=0

ck δ(t − tk − nτ), m ∈ Z. (1)

Since a Dirac can be completely described by its position
and amplitude, one period of the signal f(t) has precisely 2K
free parameters (K positions and K amplitudes) and a rate of
innovation of ρ = 2K/τ .

In what follows, we will show how it is possible to reconstruct
f(t) from N ≥ 2K + 1 samples obtained after an ideal low pass
filter. To do this, we will first show how we can calculate some
of the Fourier series coefficients of f from its samples and
then show how these Fourier series coefficients can be used to
calculate the 2K parameters of the signal.

B. From Samples to Fourier Series Coefficients

Although we do not have direct access to the Fourier series
coefficients of f(t), we can obtain a subset of them by taking
the DFT of the samples obtained from the sampling scheme
depicted in Fig. 4, with ϕ(t) equal to an ideal low-pass filter.
This result was first shown as part of [3, Theorem 1], and we
reproduce it here in the following Lemma.

Lemma 1 (Vetterli, Blu and Marziliano 2002): Assume we
take N samples of a τ -periodic function f , according to Fig. 4;
that is, we have

g[n] = 〈f(t), ϕ (t − nT )〉 , n ∈ 0, 1, . . . , N − 1.

Furthermore, assume

ϕ(t) = Bsinc (Bt) = B sin(πBt)/(πBt),

with T = τ/N and B satisfying N = 2�Bτ/2� + 1. Define the
DFT of g[n] as

G[m] =
N −1∑

n=0

g[n]e−2πinm/N

and the Fourier series coefficients of f(t) as

F [m] =
1
τ

∫ τ /2

−τ /2
f(t)e−2πimt/τ dt.

Then, F [m] = NG[m] for |m| ≤ �Bτ/2�.
Proof: See Appendix A. �

C. From Fourier Series Coefficients to Signal Parameters

When f(t) is a τ -periodic stream of K weighted Dirac pulses,
its Fourier series coefficients are given by

F [m] =
1
τ

K−1∑

k=0

cke−2πitk m/τ , (2)

where m ∈ Z.
Thus, our problem is to calculate the parameters ck and

tk from a finite number of Fourier series coefficients, F [m].
This is a common problem in spectral analysis, which can
be solved using, for example, Prony’s method. The idea is to
find a filter A[m] that, when convolved with the signal, pro-
duces a null signal; in other words, A[m] annihilates the signal
F [m]:

(F ∗ A)[m] = 0, ∀m ∈ N. (3)

For this reason, Prony’s method is also referred to as the annihi-
lating filter method. Since F [m] has the form given in Eq. (2),
it is annihilated by the filter whose z-transform is

A(z) =
K∑

k=0

A[k]z−k =
K∏

k=1

(1 − ukz−1), (4)

where uk = e−2πitk /τ .
Therefore, given the roots of the annihilating filter, we can

compute the locations of the Diracs as tk = − τ ∠uk

2π , where ∠uk

is the phase of uk . It remains to show how to find the annihilating
filter coefficients, and thus the roots. To that end, Eq. (3) can be
rewritten in matrix form as

Sh = 0, (5)

where S is a rank deficient Toeplitz matrix (of rank K) formed
by consecutive values of F [m] and h is a vector containing
the K + 1 annihilating filter coefficients A[k]. Observe that we
need at least 2K + 1 consecutive coefficients to solve the sys-
tem of equations given in (5) and fully recover the annihilating
filter; the set of coefficients we choose does not necessarily
need to be located around the DC component, but the most
efficient strategy is to pick F [m] for m = −K − 1, . . . ,K,
as it minimizes the frequency at which the signal is sam-
pled. In this case, the bandwidth B of the low-pass filter ϕ(t)
should be larger than (2K + 1)/ρ, which represents one more
sample per unit of time than the rate of innovation of the
signal.

Finally, we need to show how to retrieve the coefficients
{ck}K−1

k=0 , which, after calculating {tk}K−1
k=0 , is a simpler linear

problem. Taking K consecutive Fourier coefficients (or more)
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Fig. 5. Classical FRI for streams of Diracs: (a) time-domain signal; (b) real
and imaginary parts of the spectrum, which is made of a sum of complex
exponentials; (c) complex roots of the z-transform of the filter annihilating the
spectrum.

and letting

V =

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
u0 u1 · · · uK−1

...
...

. . .
...

uK−1
0 uK−1

1 · · · uK−1
K−1

⎤

⎥⎥⎥⎥⎥⎦
,

f =
[
F [0] F [1] · · · F [K − 1]

]T
,

and c =
[
c0 c1 · · · cK−1

]T
,

Eq. (2) can be written as

1
τ

V c = f . (6)

The Vandermonde matrix V is non-singular since uk �= u� for
any k �= �. Therefore, the amplitudes c can be recovered by
c = τV −1f .

After this brisk review of FRI sampling and reconstruction,
we are ready to extend the model to more general pulses.

III. PULSES WITH VARIABLE WIDTH - THE 1D CASE

This section demonstrates how to generalize the Dirac pulse
model to account for signals with variable width and asymme-
try. More precisely, we show how to sample and reconstruct
variable-width pulses of the form

fk (t) = fs
k (t) + fa

k (t), (7)

where

fs
k (t) = ck

∑

n∈Z

rk

π (r2
k + (t − tk − nτ)2)

, (8)

and

fa
k (t) = dk

∑

n∈Z

t − tk − nτ

π (r2
k + (t − tk − nτ)2)

. (9)

Here, fs
k (t) and fa

k (t) are symmetric and anti-symmetric com-
ponents of the pulse, respectively.

These expressions follow naturally from a simple observation
about the roots of the annihilating filter. In particular, in the
classical FRI theory for streams of Diracs, the roots of the z-
transform of the annihilating filter all have a magnitude of 1
and thus lie on the unit circle, as shown in Fig. 5. Since these
roots are complex numbers, they can potentially carry more

Fig. 6. Continuous line: VPW pulse; dashed line: symmetric pulse; dotted
line: asymmetric pulse. The parameters used are t0 = 0.5, r0 = 0.03 and c0 =
d0 = 0.1. Only one period is shown.

information than just the location of the pulses; indeed, in the
classical case, only the phase is extracted and the information
regarding the magnitude is simply disregarded.

A. Variable Width

To leverage the information about the magnitude of the root
and control the width of the pulses, we introduce a new param-
eter rk called the width and we redefine the roots as

uk = e−2π (rk +itk )/τ . (10)

With this adjustment and for a single root, we can build the
following Fourier series coefficients:

Fs
k [m] =

ck

τ
e−2π (rk |m |+itk m )/τ , m ∈ Z. (11)

The absolute value of m is used to ensure conjugate symmetry of
the spectrum. The corresponding τ -periodic time-domain signal
is precisely the Lorentzian function described in (8).

B. Asymmetry

Pulses such as (8) are symmetric; in many practical applica-
tions however, asymmetric pulses are desirable. The symmetric
formulation can be generalized by considering the following
Fourier series coefficients:

Fa
k [m] = − idk

τ
sgn(m)e−2π (rk |m |+itk m )/τ , m ∈ Z, (12)

where dk ∈ R. The signal Fa
k is essentially the Hilbert trans-

form of Fs
k and its (τ -periodic) time-domain representation is

given in (9). The combination of the symmetric and asymmetric
pulses (7) is the main building block of our signal model and
we call it variable pulse width (VPW) pulse. An example of a
VPW pulse and its decomposition into symmetric and asym-
metric components is shown in Fig. 6. An alternative formula
for fk (t) that avoids the infinite sum is given by3

fk (t) =
ck

τ

1 − |zk (t)|2
(1 − zk (t))(1 − z∗k (t))

+
dk

τ

2 Im{zk (t)}
(1 − zk (t))(1 − z∗k (t))

, (13)

where zk (t) = e2π (−rk +i(t−tk ))/τ .
VPW pulses are in essence a generalization of Diracs; by

setting dk = 0 and taking the limit of fk (t) when rk goes to zero,
we obtain a Dirac delta with amplitude ck located at time tk .

3The details of the derivations are provided in Appendix B.
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Fig. 7. VPW pulses: (a) time-domain signal; (b) real and imaginary parts of
the spectrum, which is made of a damped sum of complex exponentials; (c)
complex roots of the z-transform of the filter annihilating the spectrum.

As shown in Fig. 7, several VPW pulses can be combined to
form a VPW signal:

f(t) =
K−1∑

k=0

fk (t) (14)

F [m] =
K−1∑

k=0

Fk [m], m ∈ Z. (15)

C. Recovery of VPW Pulse Parameters

We now show how to sample and reconstruct a sum of
Lorentzian pulses.

Theorem 1: Let f be the sum of K continuous τ -periodic
asymmetric Lorentzians as described in (14). Assume we take
N samples of f , according to Fig. 4; i.e., we obtain

g[n] = 〈f(t), ϕ (t − nT )〉 , n ∈ 0, 1, . . . , N − 1.

Furthermore, assume ϕ(t) is such that the Fourier series coef-
ficients of f , denoted F [m], can be obtained from the samples,
for 0 ≤ m ≤ �(N − 1)/2�. For example, if ϕ(t) = Bsinc (Bt),
with T = τ/N and B satisfying N = 2�Bτ/2� + 1, this is
achieved by Lemma 1.

Then, if N ≥ 4K + 1, the samples, {g[n] : n ∈
0, 1, . . . , N − 1}, are sufficient to recover f .

Proof: To prove the theorem, we first show how to construct
the unique annihilating filter for the Fourier series coefficients
of f . We then show how the 4K parameters of f can be retrieved
from this filter.

Let

A(z) =
K∑

k=0

A[k]z−k =
K−1∏

k=0

(1 − ukz−1), (16)

and F [m] be the Fourier series coefficients of f . Then,

(A ∗ F )[m] =
K∑

�=0

A[�]F [m − �]

=
K∑

�=0

K−1∑

k=0

(ck − idk )A[�]um−�
k

=
K−1∑

k=0

(ck − idk )

(
K∑

�=0

A[�]u−�
k

)
um

k = 0.

Algorithm 1: VPW-FRI Parameters Estimation.

Input: N ≥ 4K + 1 discrete samples x[n] (n = 0, 1, . . .
N − 1) of a VPW-FRI continuous-time signal x(t) and
K its number of pulses.

Output: The locations, widths and (complex) amplitudes
{tk , rk , ck}K−1

k=0 of x(t).
1: Compute X[m] the FFT of x[n]
2: Build the Toeplitz matrix S from X[m] for the positive

part of the spectrum
3: Optionally denoise S or x[n] according to one of the

strategies of Section III-E
4: Find the annihilating filter coefficients by solving

Sh = 0
5: Compute uk , the roots of h
6: tk = − τ ∠uk

2π

7: rk = τ log |uk |
2π

8: Build the Vandermonde matrix V from the roots uk

9: Solve 1
τ V c = x, where x contains the FFT coefficients

X[m] and c ∈ C the amplitudes ck

10: return {tk , rk , ck}K−1
k=0

Note that we have restricted ourselves to positive indices
(m ≥ 0). This is because, due to its decaying nature, the VPW
spectrum has a cusp at m = 0, which prevents us from perform-
ing the annihilation on both positive and negative values of the
spectrum.

Finding the unique filter A requires at least 2K + 1 Fourier
series coefficients corresponding to non-negative frequencies.
By Lemma 1, this can be achieved with N ≥ 4K + 1 samples
of f .

As in the case of streams of Diracs, the locations {tk}K−1
k=0 can

be retrieved from the K roots of A(z): uk = e−2πitk /τ . More-
over, the widths {rk}K−1

k=0 are given by rk = τ log |uk |/(2π).
Finally, the parameters {ck}K−1

k=0 and {dk}K−1
k=0 are retrieved by

solving (6) with

c =
[
c0 + id0 c1 + id1 · · · cK−1 + idK−1

]T
. �

The VPW-FRI estimation procedure is summarized in
Algorithm 1. Since the algorithm requires 4K + 1 samples to
retrieve 4K parameters, it is only one sample away from the
rate of innovation.

D. Sampling Kernels

Although in this paper we concentrate on the ideal low-pass
filter or Dirichlet sampling kernel, VPW signals are fully com-
patible with the more general kernels presented in the FRI lit-
erature. In particular, as outlined in Theorem 1, we can use any
kernel that allows us to retrieve enough Fourier series coeffi-
cients of the continuous-time signal. In [5], it is shown that this
can be achieved with kernels that satisfy the generalized Strang-
Fix conditions, such as cardinal exponential splines [27] or sum
of sinc kernels [6].

Moreover, even if the sampling kernel does not meet these
conditions, we can relax the requirement of perfect reconstruc-
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Fig. 8. Comparison of the effect of different denoising approaches on the estimation of the location of (a) one and (b) two VPW pulses: 10 Fourier coefficients
are used in the estimation procedure and the experiment has been repeated 5,000 times and averaged. For the single pulse case, the Cramér-Rao bound for the
estimation of the location t0 has been computed (dashed line).

tion and achieve accurate approximations using either the cor-
rection filter proposed in [28] or the framework set out in [29].

E. Denoising Techniques

In practice, it is unlikely that a signal perfectly matches the
VPW-FRI model. Even if this is the case, the acquisition device
might introduce some noise in the process. This justifies the
need for a denoising block before the estimation of the param-
eters. Here, we review a few methods borrowed from spectral
estimation theory [30] and evaluate their performance on our
estimation procedure.

We model the noise εn as i.i.d. additive Gaussian with zero
mean and covariance matrix σ2I . Furthermore, we assume that
it is introduced after sampling; that is, the noisy measurements
are

f̃ [n] = f [n] + εn n = 0, 1, . . . N − 1. (17)

We denote the noisy Toeplitz matrix built from the samples
f̃ [n] as S̃. Several denoising strategies have been introduced
in the classical FRI framework and they are directly applicable
to the VPW-FRI model. We summarize and compare the main
techniques below.

1) Cadzow: Cadzow’s algorithm [31] is an iterative method
that alternatively enforces rank K and a Toeplitz structure for
S̃. The low rank approximation is performed by computing the
SVD of S̃ and keeping only its K largest singular values. To
ensure that S̃ is Toeplitz, we simply average across diagonals.
In practice, the method seems to converge to a solution that
satisfies both properties, but it should be noted that this has not
been proven theoretically. Furthermore, there is no guarantee
that the final solution is close, in any way, to S.

2) The Matrix Pencil: Another widely used technique is the
matrix pencil method [32] — also known as ESPRIT [33] —
which exploits the rotational invariance property of the under-
lying signal subspace. Unlike Cadzow, it is a non-iterative algo-
rithm.

3) Pisarenko: Pisarenko’s method [34] estimates the annihi-
lating filter by simply extracting the last column of the matrix V
of the SVD of S̃ = UΛV ∗. Indeed, the last columns of V pro-
vide an orthogonal basis for the nullspace of S̃ and in our case,

the nullspace of S is one-dimensional. Note that Pisarenko’s
method or the matrix pencil can actually be used sequentially
after Cadzow.

4) Pan: The last method we survey is inspired by IQML [35]
and has been recently introduced to the FRI framework by Pan
in [36]. The annihilating filter h is found iteratively and its
computation is formulated as

min
f̂ ,h

‖f̃ − Bf̂‖2
2

subject to h ∗ f̂ = 0 (18)

where B is a linear transformation that maps the signal that can
be annihilated to the measurements. Unlike the other techniques,
this approach is not applied to S̃ but directly to the measured
signal: this can result in significant performance improvements
since the transformation operation from the signal measure-
ments to the signal to be annihilated sometimes dramatically
alters the structure of the noise.

The main ingredient of the algorithm is the matrix B, which
is different for every FRI problem. In the case of VPW-FRI,
B is the transform that maps the denoised DFT coefficients
f̂ (corresponding to positive frequencies) to the discrete-time
(noisy) measured signal f̃ .

In Fig. 8, we compare the performance of the different denois-
ing methods under various levels of noise for one and two VPW
pulses. We observe that the matrix-pencil and Cadzow have a
similar performance. Furthermore, we see that Pan’s method
outperforms all other methods by a fairly large margin.

For one pulse, we also derive and display the Cramér-Rao
bound (CRB), which provides a theoretical lower bound on the
best possible performance achievable by any unbiased estimator.
The details of the computations of the CRB are provided in
Appendix C. We see that, for a pulse with width r0 = 0.02,
the VPW-FRI estimation procedure is fully efficient down to
SNRs of about 0 dB. Interestingly, the quality of estimation
depends on the width parameter: the wider the pulse, the better
the performance. This effect is showcased in the supplementary
material provided with the paper.
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Fig. 9. Example of a 2D VPW signal composed of three pulses. The
parameters used are (xk , yk ) = {(0.6, 0.7), (0.7, 0.2), (0.3, 0.5)}, rk =
{0.035, 0.02, 0.085}, ck = {0.75, 0.7, 5} and τ = 1.

IV. PULSES WITH VARIABLE WIDTH - THE 2D CASE

Before discussing the spherical case, we describe how the
VPW model generalizes to 2D, by extending results on 2D
streams of Diracs [37]. The added dimension introduces more
flexibility in the model, allowing us to reproduce several dif-
ferent shapes. In what follows, we discuss four different pulse
shapes, each offering different properties such as asymmetry or
radiality. We also demonstrate how to estimate the parameters
using the FRI algorithm.

We use the pair of variables (x, y) to index 2D spatial mea-
surements and (m,n) to index 2D Fourier series coefficients.
We also assume that the 2D sampling kernel is a separa-
ble kernel given by the tensor product of two 1D functions:
ϕ(x, y) = ϕx(x)ϕy (y). Therefore, the natural 2D extension of
our model is given by the tensor product of two 1D VPW pulses,
say fk,x(x) and fk,y (y). The Fourier series coefficients are
given by

Fk [m,n] =
1
τ

Fk,x [m]Fk,y [n]

=
1
τ

e−
2 π
τ i(xk m+yk n)e−

2 π
τ rk (|m |+ |n |) , (19)

Similarly, we define a VPW signal as a linear combination of
K pulses; that is,

F [m,n] =
K−1∑

k=0

Fk [m,n], m, n ∈ Z. (20)

An example of a 2D VPW signal composed of three pulses is
shown in Fig. 9.

A. Estimation of the Parameters

Observe that if we fix one of the frequency indices, say m,
the expression (20) reduces to

F [n] =
1
τ 2

K−1∑

k=0

c̃k e−
2 π
τ iyk n e−

2 π
τ rk |n |, (21)

where c̃k = cke−i 2 π
τ xk m e−

2 π
τ rk |m |. Now that we have reduced

the problem to the 1D case, we can invoke Lemma 1 and The-
orem 1 to connect the DFT coefficients with the Fourier se-
ries coefficients and guarantee the uniqueness of reconstruction
of the continuous-space signal. As in the 1D case, we cannot

exploit the full spectrum for annihilation; due to the singular-
ity at the DC component, we restrict ourselves to the positive
indices m and n. We refer to the sets of positive n for a fixed
m as half-columns and to the sets of positive m for a fixed n
as half-rows. The coefficients used are part of what we call the
annihilation region. The spectrum and the annihilation region
of the signal described in Eq. (20) is shown in Fig. 10(a).

Following Eq. (21), we see that each half-column of the spec-
trum can be annihilated independently by the same filter. More
precisely, we can build Toeplitz matrices with each of these
half-columns and stack them on top of each other to obtain the
matrix Sc :

Sc =

⎡

⎢⎢⎢⎢⎣

Sc
0

Sc
1

...

Sc
�M/2�−1

⎤

⎥⎥⎥⎥⎦
, (22)

where Sc
m is the Toeplitz matrix corresponding to the mth half-

column of the spectrum. Similarly, by fixing n, the half-rows
of the spectrum can be annihilated and we can create the ma-
trix Sr . Both Sc and Sr are block Toeplitz and can be used
independently to recover the locations along the x and y axes,
respectively, following the procedure presented in Section III-C.

To solve the annihilation equation, each half-column and
half-row of the spectrum must have at least K + 1 elements.
Therefore, we need at least (2K + 1)2 samples to recover 4K
parameters; unlike in the 1D case, we need to sample the sig-
nal at a significantly higher rate than the rate of innovation to
achieve perfect recovery.

Another detail needs to be taken care of in 2D. Since we re-
formulate the estimation of the parameters as two 1D problems,
we obtain two sets of locations {xk}K−1

k=0 and {yk}K−1
k=0 but we

do not know the corresponding pairs of these recovered loca-
tions. If K is small, we can solve this issue by combinatorial
search over all the possible pairs; for each combination of lo-
cations, we compute the amplitude of the corresponding pulses
and compare the reproduced signal with the original. We then
select the pair whose reproduction corresponds (or, in the noisy
case, is closest) to the measured signal.

Unfortunately, this brute-force approach quickly becomes
impractical as K gets larger. To cope with this issue, we use
the following heuristic. Instead of searching through all pairs
of K pulses, we suppose that all combinations are valid, that
is, we have K2 potential pulses. We then compute the am-
plitude of each of these pulses by solving Eq. (6). Finally,
the correct pairs of locations are revealed by the K largest
pulse amplitudes. This simple approach has no proven cor-
rectness, but experiments have shown that it performs well in
practice.

B. Radial Formulation

Observe that the 2D Lorentzian pulse described in Eq. (20)
has heavy tails along the two main axes. Perhaps a more suitable



2636 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 10, MAY 15, 2017

Fig. 10. Family of 2D VPW pulses and their spectrum: (a) original formulation, (b) radial formulation, (c) original anisotropic formulation, and (d) radial
anisotropic formulation. The area of annihilation is represented by a black overlay.

model is given by

F [m,n] =
1
τ 2

K−1∑

k=0

cke−
2 π
τ i(xk m+yk n)e−

2 π
τ rk

√
m 2 +n2

, (23)

for m,n ∈ Z. The difference with Eq. (20) resides in the damp-
ing factor: in (20), the exponent is the �1-norm of the Fourier
indices, while in (23), the �2-norm is used. As a result, the spec-
trum of (23) does not exhibit the sharp transitions of the original
representation; this corresponds to radial pulses in the primal
domain.

The disadvantage of this representation is that its region of
annihilation is not as large as in the previous model. Such a
signal can be annihilated along the DC components, that is,
when we set either m or n equal to zero, but also along the
diagonal line defined as m = n. More generally, the spectrum
can be annihilated along the line defined as m = an or n = bm
for a, b ∈ N, as long as we have a sufficient number (at least
K + 1) of coefficients on that line. The annihilation region of
this signal can be seen in Fig. 10(b).

C. Anisotropic Pulses

We can further generalize the 2D pulse shape and introduce
anisotropy in the model by using a different width parameter for
each axis. For instance, the radial formulation can be rewritten as

F [m,n] =
1
τ 2

K−1∑

k=0

cke−
2 π
τ i(xk m+yk n)e−

2 π
τ

√
r 2

m , k m 2 +r 2
n , k n2

,

where rm,k and rn,k are the respective widths along the main
axes. Examples of anisotropic pulses for both the original and
radial formulations are illustrated in Fig. 10(c) and 10(d).

V. PULSES WITH VARIABLE WIDTH - ON THE SPHERE

Recently, FRI theory has been developed for spherical signals
by Deslauriers-Gauthier and Marziliano [38], and the spectrum
usage has been further improved by Dokmanić and Lu [39].
Building on their work, we show that the VPW framework can
also be applied to the spherical domain.

A. Preliminaries

We start by reviewing a few definitions on spherical signal
processing. We refer the interested reader to [39], [40] for a
more thorough introduction.

Functions on the sphere S2 = {x ∈ R3 : ‖x‖ = 1} are usu-
ally characterized by elevation and azimuth angles, denoted θ
and φ. The spherical Dirac delta is defined as

δ(θ, φ; θ0 , φ0) = δ(cos θ − cos θ0)δ(φ − φ0), (24)

where (θ0 , φ0) denotes its location. A sum of weighted Diracs
is then defined as

f(θ, φ) =
K−1∑

k=0

ckfk (θ, φ) =
K−1∑

k=0

ck δ(θ, φ; θk , φk ). (25)

On the sphere, the spherical harmonic (SH) decomposition pro-
vides the analog to the Fourier series expansion. As shown
in [39], for the signal f(θ, φ), it is given by4

f̂�,m = N�,m

K−1∑

k=0

ckP�,|m |(cos θk )e−imφk , (26)

4In some of the spherical harmonics related literature, indices are expressed
with a superscript/subscript notation, e.g. fm

� . We choose to include both indices
in the subscript, to avoid confusion with powers.
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Fig. 11. Two possible sampling schemes on the hemisphere: (a) equiangular
and (b) spherical Fibonacci sampling. Each of these hemispheres contains 300
samples.

with � = 0, 1, . . . and |m| < �. Here, N�,m is a normalization
constant, and P�,m denotes the associated Legendre polynomial,
defined as

P�,m (cos θk ) = (−1)m (sin θk )|m | dm

d(cos θk )m
P�(cos θk ),

where P�(·) is the Legendre polynomial. Since P� is of degree
�, the degree of Pm

� is at most � − m.

B. Sampling the Hemisphere

Several strategies can be employed to sample a hemisphere;
the simplest one is equiangular sampling, i.e. uniform sam-
pling along the azimuth and elevation angles. The draw-
back of this approach is that it results in non-uniform sam-
pling of the hemisphere, as illustrated in Fig. 11(a): the area
around the pole has a higher density than the area near the
equator.

Another simple technique that leads to almost uniform sam-
pling is spherical Fibonacci sampling and can be seen in
Fig. 11(b). In the remainder of the paper, we nevertheless use
the former strategy since in practice it allows for a faster and
more natural scanning of the hemisphere.

C. From Samples to Spherical Harmonics Coefficients

We define the bandwidth L of a spherical signal as the small-
est L such that f̂�,m = 0 for all � ≥ L. In [41, Theorem 3], it
is proved that the SH coefficients of a spherical band-limited
function can be exactly computed given a minimum number of
equiangular samples. For completeness, we restate this result
below.

Theorem 2 (Driscoll and Healy 1994): Let g be the result of
convolving the spherical signal f with an ideal lowpass filter
ϕ with bandwidth L. Assume we further sample g at points
(θn , φn ′), where θn = πn

2L for n = 0, 1, . . . , 2L − 1 and φn ′ =
πn ′
L for n′ = 0, 1, . . . , 2L − 1. Then the SH coefficients of g are

given by

ĝ�,m =
√

2π

2L

2L−1∑

n=0

2L−1∑

n ′=0

αng(θn , φn ′)Y ∗
�,m (θn , φn ′), (27)

where Y ∗
�,m (θn , φn ′) are the SH basis functions evaluated at

(θn , φn ′) and {αn}2L−1
n=0 is the unique solution to

2L−1∑

n=0

αnP�(cos θn ) =
√

2δ�0 ,

for � = 0, 1, . . . , 2L − 1.
Proof: See [41]. �
Other sampling theorems exists for different sampling strate-

gies: for example, if we choose N samples uniformly at random
on the sphere, we can retrieve the SH coefficients of g when
N ≥ L2 , with probability one [42]. Finally, remark that if we
have fewer samples, the spectrum often decays fast enough
for (27) to yield a good approximation.

D. Retrieving Diracs from Sectoral SH Coefficients

In [38], the locations and amplitudes of the Diracs are
retrieved from the sectoral spherical harmonics coefficients,
which are the coefficients where m = �:

f̂�,� = Ñ�,�

K−1∑

k=0

ck (sin θk )�e−i�φk . (28)

Here, Ñ�,� is a constant that encompasses N�,� as well as the ap-
propriate associated Legendre coefficient. Since Ñ�,� is known
and nonzero, we can divide the expression in (28) by it to obtain

g� =
f̂�,�

Ñ�,�

=
K−1∑

k=0

cku�
k , (29)

where uk = sin θke−iφk . We recognize in (29) the familiar ex-
pression of a sum of complex exponentials, which can be an-
nihilated using Prony’s method to recover the roots {uk}K−1

k=0 .
To find the annihilating filter, we need the bandwidth L of the
signal to be at least 2K.

E. Retrieving VPW Pulses from Sectoral SH Coefficients

We now extend the result of [38], adding width to the Diracs.
Like the Cartesian case, we can introduce a damping factor
0 ≤ rk ≤ 1, which reduces the magnitude of the signal at higher
frequencies. The spherical VPW pulses are thus defined as

f̂�,m = N�,m

K−1∑

k=0

ckP�,|m |(cos θk )e−imφk e−rk (�+ |m |) . (30)

An example of a spherical VPW signal composed of two pulses
is shown in Fig. 12. The following theorem shows how to retrieve
the parameters of this new signal model.

Theorem 3: Let f be the sum of K continuous spherical
VPW pulses as in (30). The spherical harmonics coefficients
f̂m

� with m = 0, 1, . . . , 2K − 1 and |�| < m are sufficient to
recover f .

Proof: As in [38], we can compute

g� =
f̂�,�

Ñ�,�

=
K−1∑

k=0

cku�
k , (31)
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Fig. 12. Example a spherical VPW signal composed of two pulses. There are
different ways to display (hemi)spherical signals: (a) a plot of a unit hemisphere
where the brightness of colors represents the intensity, and (b) a projection of
the same signal onto the xy plane with the intensity represented on the z axis.

where we now have

f̂�,� = Ñ�,�

K−1∑

k=0

ck (sin θk )�e−i�φk e−2rk � . (32)

The roots, which can be found via the annihilating filter
method, become uk = sin θke−iφk e−2rk . We can extract the
azimuth φk from the phase of uk , but the magnitude of uk de-
pends on both θk and rk and at this point we cannot resolve the
ambiguity. What we can do however is find the amplitude ck by
solving the linear system in Eq. (31).

Furthermore, for m = � − 1 and � ≥ 1, we have

f̂�,�−1 = Ñ�,�−1

K−1∑

k=0

cke−rk cos θku�−1
k , (33)

g�−1 =
f̂�,�−1

Ñ�,�−1
=

K−1∑

k=0

ck bku�−1
k , (34)

where bk = e−rk cos θk . Note that, since we know f̂ �−1
� and

u�−1
k , we can compute bk . Moreover, the knowledge of the az-

imuth φk enables us to calculate

ak =
uk

e−iφk
= sin θke−2rk . (35)

Finally, combining ak and bk and assuming ak is nonzero, we
compute the width

rk =
1
2

log
(
−b2

k +
1

2a2
k

√
4a2

k + b4
k

)
(36)

by keeping only the positive solution to the square root. Observe
that bk is raised to the 4th power and ak is squared. Furthermore,
in the noiseless case,5 both terms are real, so the expression
under the square root is always positive. Using this result, we
calculate the elevation as θk = arccos

(
bk

er k

)
. �

Like [38], our method suffers from a relatively poor spec-
trum usage. Indeed, only a small number of the spherical har-
monics coefficients are used for the parameters’ estimation.6 In

5In the noisy case, it is possible that bk and ak are complex. To prevent
negative terms in the square root, we project them onto the real axis.

6A better spectrum usage was proposed in [39], but we have been unable to
generalize their method to variable width pulses.

Fig. 13. An ECG recording from the MIT-BIH arrhythmia database and the
P, Q, R, S, and T pulses annotated.

Section VII, we address this shortcoming by adding a nonlinear
optimization routine that uses the entire spectrum to refine the
VPW estimation.

VI. APPLICATION I: ECG COMPRESSION

Several signals can be approximated using VPW pulses; in
the next two sections, we show two practical cases where VPW
pulses can be used. In the first example, we consider the problem
of sampling and representing electrocardiogram (ECG) signals.
ECG signals are composed of five types of pulses, labeled P, Q,
R, S, T in the medical literature (see also Fig. 13). Each of these
pulses represents a different stage in the activity of the heart
and each has a different width and amplitude; while the P and T
pulses are fairly wide, the Q,R,S pulses are narrow and close to
each other. Throughout this section, we use ECG records from
the MIT-BIH database [19].

A. Practical Considerations

There are a number of details to pay attention to in order to
bridge the gap between theory and practice and implement the
VPW algorithm on real ECG records.

First, even though real ECG signals are not periodic, they
exhibit a cyclic behavior since the heart goes through the same
states during each heart beat. We propose therefore to estimate
each heart beat independently; this requires the segmentation of
ECG records via the detection of the QRS complex [43]: the
segmentation is performed between the T and P wave, where
the activity of the heart is minimal. Each heart beat is then
processed by Algorithm 1. Since VPW pulses are periodic, we
only extract one period of each before concatenating them. To
allow for a smoother transition between two consecutive re-
constructed beats, we make the extracted beats slightly overlap
and connect their reconstructed versions together using pairs of
cosine-shaped windows.

Second, we need to choose a value for K, the number
of VPW pulses. Since a heart beat is naturally composed
of 5 waves, it is tempting to represent them with K = 5
pulses. Practical experiments however have shown that 6 or
7 pulses give more flexibility to the model. More pulses can
be added, at the expense of a lower resulting compression
ratio.

Finally, to counteract noise and model mismatch, we make
use of one or more of the denoising techniques discussed in
Section III-E.



BAECHLER et al.: SAMPLING AND EXACT RECONSTRUCTION OF PULSES WITH VARIABLE WIDTH 2639

B. Acquisition at Low Sampling Rates

In many applications, power consumption is critical and it is
thus beneficial to reduce the sampling frequency at the point
of acquisition. While our framework guarantees perfect recon-
struction when sampling at or above the rate of innovation in
the noiseless case, noise and model mismatch induce inaccura-
cies in the estimation of the parameters. Furthermore, as high
frequency information is lost during the sampling procedure, a
strong prior is needed to recover the original signal from low
sampling rates. To demonstrate the validity of our approach, we
now compare the VPW-FRI algorithm to sinc interpolation.

We use the signal-to-residual ratio (SRR) to quantify the
quality of the reconstruction:

SRR = 20 log10

(
‖f − μf ‖2

‖f − f̂‖2

)
,

where μf is the average value of f .7

We run our algorithm on the 48 different records from the
MIT-BIH arrhythmia database. These measurements are orig-
inally sampled at 360 Hz. To simulate different acquisitions
at lower sampling rates, we lowpass filter and downsample
the original signal. From the subsampled signals, we try to
reconstruct the original signal with both VPW-FRI (using 5
pulses per heart beat) and sinc interpolation. Since a 5 pulse
model requires at least 20 samples per beat and the heart
rate of the ECG records varies between 60 and 80 beats per
minute, the lowest sampling rate we can theoretically achieve is
around 25 Hz.

We observed two distinct regimes: on ECG records com-
posed of broader pulses and containing most of the energy in
the low frequency part of the spectrum, sinc interpolation sur-
passes VPW-FRI. On the other hand, on records having sharper
pulses with a spectrum not only concentrated around the low
frequencies, VPW-FRI outperforms sinc interpolation at low
sampling rates. To stress this behavior, we split the database
into two sets: the first one — called the high frequency set and
containing 12 records with higher frequency components —
and the second — denoted the low frequency set and containing
all other records. The results on these two sets are illustrated
in Fig. 14. For the sake of completeness, we also show results
on the set of all records. As expected from a nonlinear para-
metric estimation technique, we attain very good performance,
provided that the data is well fit by the model.

As a final remark, notice that the error rate for VPW-FRI
is achieved using only a limited number of coefficients (about
25 per second), while sinc interpolation uses up to 60 coefficients
per second. This suggests that the model could be particularly
suited to compression.

C. Compression

In compression, the goal is to minimize both the reconstruc-
tion error as well as the number of parameters needed per
second.8 The difference with the previous experiment is that we

7The mean is subtracted from f to avoid artificially large SRR values.
8We do not discuss here quantization of the parameters.

Fig. 14. SRR for acquisition of ECG signals at low sampling rates on the
first 20 seconds of the records of the MIB-BIH database: (a) average score on
records containing higher frequency components; (b) average score on all the
records; (c) average score on records containing less high frequencies.

Fig. 15. SRR for ECG compression on the first 20 seconds of all records of
the MIB-BIH database for three compression algorithms: VPW-FRI, Gaussian
pulses and downsampling operation.

have access to the original signals, which means better param-
eter estimation. We compare the VPW-FRI pulse model with
a Gaussian model, as is for example described in [21]. Each
Gaussian pulse is expressed with 3 parameters: location, scale
and amplitude. We fit them to the original signal using nonlinear
optimization techniques. Additionally, we compare the results
with ideal lowpass filtering followed by downsampling. Fig. 15
shows that VPW-FRI is superior in terms of robustness and
precision and Fig. 16 shows an example of a compressed recon-
struction. On the single record of Fig. 16, VPW-FRI achieved
an SRR of 22.3 dB compared to 14.0 dB for the Gaussian pulse
model. We also observe that the Gaussian model sometimes
fails to identify narrow pulses. Another disadvantage of this
technique is that it is difficult to initialize the nonlinear opti-
mization. In fact, in the results presented here, we initialized
it with the VPW-FRI estimated values, since this led to faster
convergence and a significant improvement in the estimation.

Finally, we compare our results to [44], where a wavelet-based
compressed sensing algorithm is applied to a selection of four
records from the MIT-BIH arrhythmia database. For example,
to achieve a compression ratio of 10 on the first 10 minutes on
record 107, an SRR marginally below 22 dB is reported in [44],
while our approach achieves an SRR of 25.4 dB.

VII. APPLICATION II: BRDF ACQUISITION

We demonstrate in this section how the VPW pulse model
can be exploited to acquire and estimate the bidirectional
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Fig. 16. ECG compression on the first 10 seconds of record 123 from the
MIT-BIH database: (a) original ECG signal; (b) VPW estimation with 5 pulses
for each heart beat (16 parameters/sec); (c) estimation with 7 Gaussian functions
(16.8 parameters/sec).

reflectance distribution function (BRDF). In particular, we focus
on the specularity, which is a narrow peak that can be challeng-
ing to sample. We start with a brief review of the BRDF defini-
tions and existing models and then describe three experiments
to justify the use of VPW-FRI; each of them focuses on a dif-
ferent domain (1D, 2D and spherical) and makes use of several
data sources: synthetic data, real data from a publicly-available
dataset, as well our own acquired data using a custom-made
gantry.

A. Background

The illumination has a strong influence on the appearance
of objects: for example, a shiny material might look brighter
if light is directed at it from a particular angle and darker oth-
erwise. The role of the BRDF [45] is precisely to describe the
reflective characteristics of materials; it enables us to decou-
ple the reflectance properties of objects from the illumination.
The full knowledge of the BRDF also allows the rendering of
realistic scenes under new illuminations and views.

More formally, the BRDF ρ(wi ,wo) is a four-dimensional
function that measures the amount of light that is reflected in
the viewing direction wo = (θo , φo) given a light source with
incoming direction wi = (θi, φi) (see Fig. 17). The BRDF is
specific to the wavelength, and in practice we often use a sepa-
rate reflectance function for each spectral band; for the sake of
clarity, we focus here on a single channel.

Acquisition of BRDFs is performed using a goniophotometer
— a device that takes several photographs of a material under
different illuminations; for instance in [25], almost 3 million
BRDF samples have been acquired for 100 different materials
that now compose the publicly available MERL BRDF database.

Fig. 17. Vectors involved in the BRDF function: ωi is the incoming light
direction, ωo is the outgoing light direction, and n is the surface normal. The
vectors �x and �y represent the projection of ωi onto the xy plane.

The high dimensionality of BRDFs often results in huge
datasets, and it motivates the need for lower-dimensional ap-
proximations and reparametrizations. To this end, it is common
to represent the incoming and outgoing light directions in the
half-angle coordinate system [46]. With this parametrization,
the BRDF is expresed in terms of the half-angle h and the dif-
ference d: h = (θh , φh) = ωi +ωo

‖ωi +ωo ‖ is the angle that is half way
between ωi and ωo , while d = (θd, φd) is the angle between h
and ωi . The advantage of this representation is that it is inde-
pendent of φd for isotropic materials. This is the approach taken
in [25] to reduce the dataset size to three dimensions. Other sim-
plifications consist of fixing the viewing angle or projecting the
vector ωi onto the xy plane, as in [47]: in Fig. 17, this projection
is illustrated by the two components �x and �y . For each of these
representations, we demonstrate usages of the VPW model.

B. Modeling Glossy Materials

First, we show that a VPW pulse is adequate to model glossy
materials. In its elementary form, a BRDF is decomposed into
two parts: the diffuse (or Lambertian) part – a constant term
that represents the amount of light that is equally reflected in
all directions — and the specular component — a peak whose
direction has the same angle as the incoming light with respect
to the surface normal. In mathematical terms,

ρ(wi ,wo) =
kd

π︸︷︷︸
diffuse

+ ksρs(wi ,wo)︸ ︷︷ ︸
specular

, (37)

where kd is the diffuse albedo, ks the specular albedo, and ρs

is a function of a few arguments that represents the shape of
the specular peak. A wide range of parametric models have
been proposed to represent ρs [25]; one of the most flexible and
accurate [48] being the Cook-Torrance model [49], also known
as the microfacet model. It is given by

ρs(wi ,wo) =
F (ωo ,h)G(ωi ,ωo ,h)D(h)

4〈ωi ,n〉〈ωo ,n〉 , (38)

where the function F is called the Fresnel factor, G is the
geometry term, and D is the microfacet distribution. While F
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Fig. 18. Modeling of a few glossy materials from the MERL BRDF database
using a GGX distribution, Beckmann distribution and a VPW pulse.

and G are fairly constant throughout the range of values of
θh (except near grazing angle, where they exhibit a particular
behavior), D is the factor we are most interested in since it
describes the global shape of the specularity. Again, several
shapes have been proposed for D; two of the most widely used
are the Beckmann [50] and the GGX [51] distributions:

DBeckmann (h) =
1

πα2〈n,h〉4 exp
(
− tan(θh)2

α2

)
,

DGGX (h) =
α2

π〈n,h〉4(α2 + tan(θh)2)2 ,

where θh is the angle between h and n, and α is a roughness
parameter, analogous to r0 in the VPW model. Observe that
the microfacet distribution is 1-dimensional in these models: it
depends only on tan(θh).

We show that a single VPW pulse is appropriate to model the
specularity ρs ; indeed, we observe that if we formulate it with
respect to tan(θh), its shape is similar to the GGX distribution,
up to a normalization factor and a square root term.9 We compare
in Fig. 18 the fitting of these models to a few measured BRDFs
from the MERL BRDF database [25]. In this experiment, and as
we neglect the Fresnel and geometry terms, we focus on θh in the
range [0◦, 60◦]. Within this range, we see that the VPW model
compares favorably to the Beckmann and GGX distributions and
presents a good trade-off between the heavy tails of the GGX
distribution and the relatively narrow Beckmann distribution.

C. Specularity Localization on the Plane

Next, we demonstrate on synthetic data how our algorithm
and model can be used to estimate the width and location of a
specular peak projected onto the xy plane. For this experiment,
we fix the viewing angle and only study the variation with
respect to the incoming light angle. The pulse in Fig. 19(a) is
a specularity generated according to a Beckmann distribution
with α = 0.003 and ks = 0.005; we fit a VPW pulse to it and
estimate its parameters using the FRI procedure coupled with
a 2D version of Cadzow’s algorithm. As we can see, a single

9To account for this difference, we actually fit the square root of the mea-
surements to the VPW pulse.

Fig. 19. 2D fit of a specularity: (a) Beckmann distribution and (b) VPW pulse.
For this experiment, we used all DFT coefficients corresponding to positive
frequencies — in this case 50 in each dimension — in the estimation algorithm.

Fig. 20. (a) Photograph of our light dome for BRDF acquisition; (b) closeup
of an artwork from which we captured the BRDF.

VPW pulse — see Fig. 19(b) — provides a good approximation
of its shape.

D. Specularity Localization on the Sphere

Finally, we propose to perform a practical acquisition with a
custom-made gantry: a light dome that consists of an extensible
motorized arm with a light source at its extremity [52]. The arm
can be rotated around the center, where a camera is installed
(see Fig. 20). This enables us to position the incoming light
at almost any location on the hemisphere and densely sample
the two dimensions of the BRDF representing the incoming
light (the viewing angle is fixed). Depending on the number
of angular samples, the acquisition process can be lengthy and
tedious. Moreover, most light domes are composed of a limited
number of lights at fixed positions; this motivates the need for
a method that can faithfully estimate the BRDF from as few
samples as possible.

Using a Nikon D810 full-frame DSLR camera, we acquired
samples of the reflectance field of the artwork shown in Fig. 20
using N = 18 different light positions; we discretized the az-
imuth into 6 uniform bins and the elevation into 3 uniform
bins.10 In practice the light source is not perfectly pointwise;
this fact, combined with the acquisition system, acts as a low-
pass filter that eliminates the high frequency components. Using

10Our dataset is available at http://rr.epfl.ch/paper/BSB2016
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Fig. 21. Specularity estimation using spherical VPW-FRI algorithm: (a) 18 samples of the acquired BRDF; (b) the spectrum computed from the 18 samples; (c)
the spectrum estimated using VPW-FRI with K = 1; (d) the corresponding reconstructed spherical signal; (e) the same BRDF acquired at a higher sampling rate
(450 samples) for comparison.

Theorem 2, we can approximate the SH coefficients from the
spatial samples.

We then use spherical VPW-FRI to estimate the parameters of
the pulses from these coefficients; for most BRDFs, one or two
pulses suffice to represent the specularity. As a consequence,
we can obtain a good approximation of the specular peak even
with a relatively low number of samples on the sphere. This
idea is illustrated in Fig. 21: from only 18 spherical samples,
we can approximate the spectrum of the reflectance field —
see Fig. 21(b) — using Eq. (27). Moreover, from these SH
coefficients, the FRI algorithm allows us to estimate the spec-
trum, as illustrated in Fig. 21(c). Since VPW-FRI is a paramet-
ric model, its spectrum can have infinite support. This enables
a continuous representation of the reflectance function in the
spherical domain; Fig. 21(d) shows the estimated VPW pulse
sampled at 450 locations on the hemisphere. For the sake of
comparison, we also acquired a denser version of the reflectance
field — shown in Fig. 21(e); we observe that the VPW-FRI ap-
proximation from 18 samples is extremely close to the ground
truth.

To summarize, the algorithm allows us to accurately estimate
the specularity from a few samples; this reduces the acquisition
time as well as storage requirements. Furthermore, given this
continuous VPW representation, we can render objects under
virtually any new illumination.

E. Practical Considerations

We already mentioned in Section V that the method does not
exploit the entire spectrum but only uses its two outer diagonals,
i.e. the SH coefficients for m = � and m = � − 1. Furthermore,
as depicted in Fig. 21(b), the energy of a typical BRDF signal is
concentrated along the central column of the spectrum, and these
coefficients are unfortunately not used by the currently proposed
algorithm. To achieve better spectrum usage, we add a nonlinear
optimization routine that minimizes the squared error between
the model and the measurements over the full spectrum. As
the objective function is non-convex, this method relies on the
VPW-FRI parameters to provide a good initialization. Moreover,
to make the VPW-FRI estimation more robust, we first denoise
the SH coefficients with Cadzow’s algorithm.

Another limitation is model mismatch. While our experiments
have demonstrated that VPW pulses are adequate to represent
specular peaks, there are other components in the BRDF that are

Fig. 22. Example of model mismatch: (a) a measured BRDF composed only
of a Lambertian part, and (b) its spherical VPW approximation. Simpler models
such as (c) a cosine can be used instead.

not easily approximated by VPW pulses: the Lambertian com-
ponent and hard cast shadows are such examples. The mismatch
between the Lambertian component and its VPW approxima-
tion is illustrated in Fig 22. Fortunately, the Lambertian part is
much less challenging to detect and represent than the specular
part, since it can easily be approximated using a constant value
modulated with the cosine of the azimuth of the incoming light
angle θi . Hard shadows are more difficult to cope with, as they
also contain high frequency components, and thus provide an
interesting topic of investigation for future work.

VIII. CONCLUSION

We have presented VPW pulses, a new model that fits within
the FRI framework and allows for a wider range of pulse shapes.
We also proposed a method for estimating the parameters and
quantified its performance on noisy signals.

Moreover, we showed that VPW can be extended to 2D and
spherical signals. In 2 dimensions, we proposed several pulse
shapes and discussed their characteristics. Unlike in 1D, the
spectrum usage is not optimal in both 2D and on the sphere; we
need to sample at a rate higher than the rate of innovation to
ensure perfect recovery. Another limitation is that the spherical
case allows only radial pulses.

We demonstrated that a small number of VPW pulses are ad-
equate to acquire, represent and compress ECG signals. Finally,
we applied our signal model to the estimation of the BRDF,
with emphasis on the detection of specularities; we showed that
with the VPW-FRI framework we can accurately retrieve and
represent the shape of specularities from just a handful of mea-
surements. In both applications, we stressed the importance of
the data matching the underlying parametric model: when this
condition was satisfied, results were very convincing.
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APPENDIX

A. Proof of Lemma 1

Proof: Since f(t) is periodic, with period τ , it has the fol-
lowing Fourier series expansion:

f(t) =
∑

m∈Z

F [m]e2πimt/τ .

From the sampling scheme in Fig. 4,

g[n] = 〈f(t), ϕ (t − nT )〉

=
∑

m∈Z

F [m]
〈
e2πimt/τ , Bsinc (B(t − nT ))

〉

=
∑

m∈Z

F [m]e2πimnT /τ

∫ ∞

−∞
sinc (t) e2πimt/(Bτ )dt

=
�Bτ /2�∑

m=−�Bτ /2�
F [m]e2πimn/N .

This is a system of N equations in 2�Bτ/2� + 1 unknown
Fourier series coefficients F [m], which can be inverted when
N ≥ 2�Bτ/2� + 1. When N = 2�Bτ/2� + 1, the system is, up
to a 1/N factor, the N × N inverse-DFT of F [m]. Therefore,

F [m] = NG[m],

for |m| ≤ �Bτ/2�. �

B. Time-domain Formulae for VPW Pulse

We show here the details of the derivation of the time-domain
formulae for the VPW pulse. The time-domain representation
of Fs

k — cf. Eq. (11) — is computed as

fs
k (t) =

∞∑

m=−∞
Fs

k [m]ei2πmt/τ

=
1
τ

( ∞∑

m=0

zm
k (t) +

∞∑

m=0

(z∗k (t))m − 1

)

(a)
=

1
τ

(
1

1 − zk (t)
+

1
1 − z∗k (t)

− 1
)

=
1
τ

1 − |zk (t)|2
(1 − zk (t))(1 − z∗k (t))

,

where zk (t) = e2π/τ (−rk +i(t−tk )) . Note that (a) assumes that
rk > 0, which only holds when the annihilating filter is stable
(i.e., when its roots are inside the unit circle).

We can do the same reasoning for the asymmetric component
Fa

k of the signal, whose time-domain representation is

fa
k (t) =

∞∑

m=−∞
Fa

k [m]ei2πmt/τ

=
i

τ

( ∞∑

m=0

zm
k (t) −

∞∑

m=0

(z∗k (t))m + 1

)

(d)
=

i

τ

(
1

1 − zk (t)
− 1

1 − z∗k (t)

)

=
1
τ

2 Im{zk (t)}
(1 − zk (t))(1 − z∗k (t)

.

Again, (d) only holds for rk > 0.

C. Computation of the Cramer-Rao Bound for VPW Signals

Let Θ =
[
t0 , r0 , c0

]T
be the vector of unknown parameters.

The CRB relies on the Fisher information matrix, which is given
by (cf. [53] for more details)

I(θ) = E

⎡

⎣
(

∂ log f̃ [n])
∂θ

)(
∂ log f̃ [n])

∂θ

)T
⎤

⎦

=
1
σ2

ε

N −1∑

n=0

∇f [n]∇f [n]T .

Note that f [n] and f̃ [n] also depend on θ, but we have omitted
it to simplify the notation.

Given any unbiased estimate θ̂ of the parameters, the CRB
provides a lower bound on the covariance matrix of θ̂:

cov (θ̂) � I−1(θ).

Let our signal f =
[
f [0], f [1], . . . , f [N − 1]

]T
and its DFT

f̂ =
[
F [0], F [1], . . . , F [N − 1]

]T
. Since f = W×f̂ — where

W is the DFT matrix of size N — and we have a closed-
form formula for F [m], we choose to first compute the deriva-
tives for the gradient in the frequency domain and then per-
form the inverse DFT to get ∇f [n]. If we restrict ourselves to
positive m and a single VPW pulse, we have, given F [m] =
c0e

−2πm (r0 +it0 )/τ ,

∂F [m]
∂t0

= −c0
2πim

τ
e−2πm (r0 +it0 )/τ

∂F [m]
∂r0

= −c0
2πm

τ
e−2πm (r0 +it0 )/τ

∂F [m]
∂c0

= e−2πm (r0 +it0 )/τ .

ACKNOWLEDGMENT

The authors would like to thank Ivan Dokmanić for the fruit-
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pression of QRS complexes using Hermite expansion,” IEEE Trans. Signal
Process., vol. 60, no. 2, pp. 947–955, Feb. 2012.

[23] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo,
“Clustering ECG complexes using Hermite functions and self-organizing
maps,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 838–848, 2000.

[24] A. Ouamri and A. Naı̈t-Ali, “ECG compression method using Lorentzian
functions model,” Digit. Signal Process., vol. 17, no. 1, pp. 319–326, 2007.

[25] W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A data-driven re-
flectance model,” ACM Trans. Graph., vol. 22, p. 759, 2003.

[26] B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and
P. Debevec, “Acquiring reflectance and shape from continuous spherical
harmonic illumination,” ACM Trans. Graph., vol. 32, no. 4, Jul. 2013.

[27] M. Unser and T. Blu, “Cardinal exponential splines: Part I - Theory
and filtering algorithms,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1425–1438, 2005.

[28] T. Blu and M. Unser, “Quantitative fourier analysis of approximation
techniques. i. Interpolators and projectors,” IEEE Trans. Signal Process.,
vol. 47, no. 10, pp. 2783–2795, Oct 1999.
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