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Abstract

We previously introduced a preconditioner that has proven effective for hp-FEM dis-
cretizations of various challenging elliptic and hyperbolic problems. The construc-
tion is inspired by standard nested dissection, and relies on the assumption that the
Schur complements can be approximated, to high precision, by Hierarchically-Semi-
Separable matrices. The preconditioner is built as an approximate LDM t factor-
ization through a divide-and-conquer approach. This implies an enhanced flexibility
which allows to handle unstructured geometric meshes, anisotropies, and discontinu-
ities. We build on our previous numerical experiments and develop a preconditioner-
update strategy that allows us handle time-varying problems. We investigate the
performance of the precondition along with the update strategy in context of topol-
ogy optimization of an acoustic cavity.
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1. Introduction

In this work, we apply the construction introduced in [11] to discretizations of prob-
lems with strong material discontinuities and time-varying coefficients. The core of
the construction rests on the observation that, for a large class of problems, the
dense Schur complement matrices that arise in the nested dissection method display
rank-deficient off-diagonal blocks. In the case of well-behaved elliptic problems, this
property can be traced to the separability of the underlying Green’s function, see,
e.g., [5, 27]. To the contrary, this argument does not apply to wave-propagation
problems, and, in the high-frequency limit, this property indeed ceases to hold, see
[9]. Nevertheless, in the case of moderate frequencies, the off-diagonal blocks of
the Schur complements can, for all practical purposes, be treated as low-rank. The
intuitive explanation of this phenomenon is that, when considered on sufficiently
small subdomains, the solution of wave problems resemble that of elliptic problems.
By exploiting this property, approximate matrix decompositions can be constructed
cheaply, and turn out to be excellent preconditioners.

A number of compressed-rank formats has appeared in the literature. Hierarchical
matrices, orH-matrices, were first defined in the seminal work of Hackbusch, see [17].
Subsequently, the subclass of H2-matrices was introduced in [18]. Those matrices
are attractive because allow traditionally expensive operations to be carried out
within linear complexity, see, e.g., [2] for a detailed discussion. Hierarchically Semi-
Separable (HSS) matrices were proposed by Chandrasekaran et al. in [6], and are
closely related to H- and H2-matrices. Fast algorithms for their manipulation have
been proposed, among others, by Sheng et al. [22], Xia et al. [28], Martinsson [20],
and Gillman and Martinsson [14].

As described in details in [11], the preconditioner construction combines a classical
method, i.e., an LDM t factorization, with an approximation scheme for the resulting
dense Schur complements. In fact, this approach is well established in the literature,
see, e.g., Grasedyck et al. [15], and Xia et al. [26]. While our construction was largely
inspired by the work of Gillman and Martinsson done in the context of finite dif-
ference discretizations, see [13], its main novelty is that we exploited the geometric
flexibility provided by the LDM t factorization to accommodate for finite elements
discretizations and unstructured meshes. In fact, while the main body of the lit-
erature deals with finite difference approximations, in the context of finite element
discretizations we are only aware of the work by Aminfar and Darve, see [1].

In this work we describe the application of the preconditioner to high-contrast, time-
varying Helmoltz problems arising in the context of acoustic Topology Optimization,
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see [4]. Topology Optimization is an iterative method that creates highly optimized
designs by determining a distribution of material that fulfills a specific task. Typi-
cally, the method requires 100 through 1000 iterations to recover a locally optimal
and physically admissible design. Consequently, the governing equations for the
problem under consideration must be solved a large number of times for a slowly
changing material distribution. When systems of several millions of degrees of free-
dom are considered, as is often the case for real world applications, their solutions
through traditional direct techniques becomes infeasible. Naturally, this raises the
interest in using highly scalable parallel iterative techniques. For physical problems
governed by the Helmholtz equation, like acoustic, electromagnetic and structural
vibration problems, no general scalable parallel iterative techniques currently exist.
Therefore it is of interest to investigate the performance of the preconditioner in the
context of Topology Optimization.

The paper is organized as follows. In Section 2 we present an improved analytical
apparatus that allows us to better characterize the Schur complements as solution
operators. In Section 3 we recall the construction of the preconditioner in order to
make this work self-contained. Section 4 is devoted to numerical results. Finally, in
Section 5, we draw conclusions from this work, and point towards future directions
of research.

2. Analytical Apparatus

We provide an insight into the rank-structure of the Schur complements that arise
in the construction of the preconditioner. Let A be a finite element discretization of
a boundary value problem posed on a domain Ω. Since A is sparse, we can reorder
its degrees of freedom (dof’s) to expose the following block-structure, and define the
(aggregated) sub-matrices A(k):

A =


A(1)

ii A(1)
ib

A(2)
ii A(2)

ib

A(1)
bi A(1)

bb A(1,2)

A(2)
bi A(2,1) A(2)

bb

 , A(k) =

(
A(k)

ii A(k)
ib

A(k)
bi A(k)

bb

)
k = 1, 2

The diagonal blocks in the partitions are square sub-matrices. Since each dof j is
associated to a unique finite element basis function ϕj with localized support, we
define the following subdomains of Ω:

Ω(k)
i = ∪{suppϕj : j ∈ ind(A(k)

ii)} , Ω(k)
b = ∪{suppϕj : j ∈ ind(A(k)

bb)}
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along with Ω(k) = Ω(k)
i ∪ Ω(k)

b. Here ind(A(k)
ii) and ind(A(k)

bb) are the row or,
equivalently, column indices of A that form blocks A(k)

ii and A(k)
bb, respectively. A

geometrical interpretation of this construction is illustrated in Figure 1. In vague
terms, we can think of Ω(k)

i as the portion of subdomain Ω(k) “well contained” in
its interior, and of Ω(k)

b as the portion adjacent to the boundary ∂Ω(k). Hence the
choice of subscripts in the matrix partitioning.

An LDM t factorization of A is immediately obtained as:

A = L


A(1)

ii

A(2)
ii

S(1) A(1,2)

A(2,1) S(2)


D

M t

for suitable factors L and M . The Schur complements S(k) are defined as:

S(k) = A(k)
bb − A(k)

biA
(k)

ii
−1
A(k)

ib

When we restrict the original boundary value problem to Ω(k), complement it with
a homogenous Dirichlet boundary condition on int(∂Ω(k) \Γ), and approximate it in
the same fashion as the original problem, we obtain the discrete operator A(k). A
block-solve yields

u(k)
b = S(k)−1(

f (k)
b − A(k)

biA
(k)

ii
−1
f (k)

i

)
where u(k)

b is the restriction of the solution vector to the dof’s contained in Ω(k)
b,

and, similarly, the load vector has been partitioned as (f (k)
i, f

(k)
b). Thus, S(k)−1

is
the discrete analog of the solution operator of the reduced problem on Ω(k), restricted
to the dof’s in Ω(k)

b.

The factorization proceeds by exploiting the fact that, after a suitable permutation,
the bottom-right super-block of D exhibits the same structure as A. To this end,
we select some dof’s of S(1) and S(2) for elimination, and refer to the associated
subdomain as Ω̂i. We remark that this selection process can be understood under
either a purely algebraic, or geometric point of view. In the the latter case, this is
equivalent to identify new interior dof’s among those pertaining to Ω(1)

b or Ω(2)
b, see
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Figure 2. Up to a permutation, we can repartition the Schur complements as:

S(k) repartition−−−−−−→
(
S(k)

ii S(k)
ib

S(k)
bi S(k)

bb

)
where ind(S(k)

ii) are the indices of the dof’s in Ω(k)
b also associated to Ω̂i, and

ind(S(k)
bb) are all the other indices in Ω(k)

b. Naturally, the indices of the off-diagonal
blocks can be inferred from those of the adjacent diagonal blocks. We manipulate
the bottom-right super block of D as:

(
S(1) A(1,2)

A(2,1) S(2)

)
repartition−−−−−−→


S(1)

ii S(1)
ib A(1,2)

ii A(1,2)
ib

S(1)
bi S(1)

bb A(1,2)
bi A(1,2)

bb

A(2,1)
ii A(2,1)

ib S(2)
ii S(2)

ib

A(2,1)
bi A(2,1)

bb S(2)
bi S(2)

bb



permute−−−−→


S(1)

ii A(1,2)
ii S(1)

ib A(1,2)
ib

A(2,1)
ii S(2)

ii A(2,1)
ib S(2)

ib

S(1)
bi A(1,2)

bi S(1)
bb A(1,2)

bb

A(2,1)
bi S(2)

bi A(2,1)
bb S(2)

bb

 regroup−−−−→
(
Â(0)

ii Â(1,2)

Â(2,1) Â(0)
bb

)

Finally, we obtain the factorization:

A = L


A(1)

ii

A(2)
ii

Â(0)
ii

S(0)

 M t

where L and M are new suitable accumulated Gauss transforms, and the Schur
complement S(0) is defined as:

S(0) = Â(0)
bb − Â(2,1) Â(0)

ii
−1
Â(1,2)

Because of the structure of the factors L and M , when we invert the factorization, it

is easy to see that the bottom-right block of A−1 coincides with S(0)−1
. Thus, if we

define Ωb = ∪{suppϕj : j ∈ ind(Â(0)
bb)}, see Figure 2, we can characterize S(0)−1

as the restriction to Ωb of the solution operator of the original problem posed on
Ω.

In the case of discretizations of elliptic boundary value problems, it is well-established
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that the solution operator exhibits low-rank long-range interactions, see, e.g., [3], [17],
and [6]. On the other hand, in the case of a wave-propagation Helmholtz problem,
the underlying Green’s function exhibits low-rank long-range interactions only for
low frequencies, see [9] for an extensive discussion. Nevertheless, in special cases,
a directional low-rank property holds, and the separability of the Green’s function
can still be attained, see [21], [10]. We only provide a heuristic explanation of the
rather encouraging numerical results attained by our construction. Anticipating the
discussion in Section 3, let us suppose that we have reparationed subdomains Ω(k)

into smaller subdomains, and so on. As the subdomains become smaller and smaller
in terms of wavelengths, the ranks of the solution operator of the Helmholtz problem
approach those of the Laplace problem. At the same time, when we consider larger
and lager subdomains, the boundary domains Ω

(k)
b increasingly approach elongated

structures, which enjoy separability of the associated Green’s function.

3. Preconditioner Construction and Update

The construction relies on a variant of the well-known nested dissection algorithm,
see George [12], and extends the work of Gilmann and Martinsson, see [13], developed
in the context of finite difference approximations.

3.1. Matrix Reordering

Let A be a sparse matrix of dimension N arising from the discretization of a differen-
tial operator, and partition its dof’s into two boxes, σ1 = Iσ1∪Bσ1 and σ2 = Iσ2∪Bσ2 ,
so that the following connectivity graph holds:

Bσ1 Bσ2

Iσ1 Iσ2

(1)

The boxes are connected to each other through their boundaries dof’s B1 and B2,
while the interior dof’s I1 and I2 do not interact with each other. We repartition
each box into a pair of sibling boxes, in fact creating a binary tree of boxes, see
Figure 3, and identify boundary and interior dof’s, in the sense of graph (1), for each
new pair of sibling boxes. For illustration, the connectivity graph of boxes on the
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second tree level, i.e., ` = 2, is:

Bσ3 Bσ4 Bσ5 Bσ6

Iσ3 Iσ4 Iσ5 Iσ6

The construction terminates at tree level ` = L, when the newly created boxes, which
we shall refer to as “leaf-boxes,” contain a number of dof’s m such that 2L O(m3) =
O(N). When this is the case, we say that the leaf-boxes are sufficiently small to
allow for dense linear algebra operations at a negligible cost.

We establish an ordering for the dof’s Iσ and Bσ of each box σ, and define the
following sub-matrices of A:

A(σ)
ii = A(Iσ, Iσ) σ-box interior-to-interior

A(σ)
bb = A(Bσ, Bσ) σ-box boundary-to-boundary

A(σ)
bi = A(Bσ, Iσ) σ-box boundary-to-interior

A(σ)
ib = A(Iσ, Bσ) σ-box interior-to-boundary

A(σ,τ) = A(Bσ, Bτ ) σ-box to τ -box (boundary interaction only)

Here the Matlab R©-like notation A(I, J) indicates the restriction of matrix A to
row-index vector I and column-index vector J . Let n = 2 + 22 + · · ·+ 2L = 2L+1− 2
be the total number of boxes, and let n` be the index of the first box belonging to
tree level `, with the convention that nL+1 − 1 = n. Henceforth, when no confusion
arises, to simplify notation, we shall identify a box to its index. Thus, {n, . . . , nL}
are the leaf boxes, listed in reversed order. We order the dof’s by grouping together
the interior dof’s {In, . . . , InL} and the boundary dof’s {Bn, . . . , BnL}, so that the
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following block-structure emerges:

A =



A(n)
ii A(n)

ib

. . . . . .

A(nL)
ii A(nL)

ib

A(n)
bi A(n)

bb · · · A(n,nL)

. . .
...

. . .
...

A(nL)
bi A(nL,n) · · · A(nL)

bb


(2)

Here, as common practice, we have omitted the null blocks.

Ideally, grid information, in conjunction with information about the nature of the
differential operator, should be employed to produce a competitive ordering of the
dof’s. The advantage of describing the construction in algebraic, rather than ge-
ometric, terms is twofold: on one hand it allows to handle virtually all types of
discretization techniques (finite differences, CG and DG finite elements, high order
elements, high smoothness IGA discretizations, etc.); on the other, when no grid
information is available, it allows for the use of a graph partitioner, e.g., METIS, see
[19].

3.2. Approximate Factorization

In a nutshell, the factorization is achieved by sweeping over all boxes, starting from
the leaf-boxes, and decoupling the interior dof’s from the boundary dof’s through
Gauss transforms. For each box σ, we define L(σ) and M (σ) as the unit-lower-
triangular matrices such that

L(σ)(Bσ, Iσ) = A(σ)
bi Â

(σ)
ii

−1
, M (σ)(Bσ, Iσ) =

(
Â(σ)

ii

−1
A(σ)

ib

)t
They are called, respectively, the left and right Gauss transform associated to σ.
Here we set Â(σ)

ii = A(σ)
ii for the leaf-boxes, while the definition of Â(σ)

ii for non-
leaf boxes is given in equation (4) and there discussed. For each tree level `, we
define the accumulated Gauss transforms

L(`) = L(n`+1−1) · · ·L(n`) , M(`) = M (n`+1−1) · · ·M (n`)
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and employ L(L) and M(L) to decouple the top-left super-block of A:

L(L)
−1AM(L)

−t =

A(n)
ii

. . .

A(nL)
ii

S(n) A(n,n−1) · · · A(n,nL)

A(n−1,n) . . . . . .
...

...
. . . . . . A(nL+1,nL)

A(nL,n) · · · A(nL,nL+1) S(nL)


(3)

The top-right and bottom-left super-blocks vanish, while Schur complements S(σ) =

A(σ)
bb−A(σ)

biA
(σ)

ii
−1
A(σ)

ib appear on the diagonal of the bottom-right super-block.

We exploit the box hierarchy to recursively proceed in the factorization. For each
pair of sibling boxes {µ, ν} with common ancestor σ, we define

Îσ = (Bµ ∪Bν) ∩ Iσ , B̂σ = (Bµ ∪Bν) ∩Bσ

which can be interpreted, respectively, as the residual interior and boundary dof’s.
Note that {Îσ, B̂σ} is a partition of the aggregated boundary Bµ ∪Bν , while {Bµ ∩
Îσ, Bµ ∩ B̂σ} is a partition of Bµ and {Bν ∩ Îσ, Bν ∩ B̂σ} is a partition of Bν .
Consequently, up to a permutation, we can partition the Schur complement S(µ)

as:

S(µ) =

(
S(µ)

ii S(µ)
ib

S(µ)
bi S(µ)

bb

)
where the blocks are defined as:

S(µ)
ii = S(µ)(Bµ ∩ Îσ, Bµ ∩ Îσ)

S(µ)
bb = S(µ)(Bµ ∩ B̂σ, Bµ ∩ B̂σ)

S(µ)
bi = S(µ)(Bµ ∩ B̂σ, Bµ ∩ Îσ)

S(µ)
ib = S(µ)(Bµ ∩ Îσ, Bµ ∩ B̂σ)

Let us define matrices:

Â(σ)
ii =

(
S(µ)

ii Â(µ,ν)

Â(ν,µ) S(ν)ii

)
; Â(σ)

ib =

(
S(µ)

ib Â(µ,ν)

Â(ν,µ) S(ν)
ib

)
; Â(σ)

bb =

(
S(µ)

bb Â(µ,ν)

Â(ν,µ) S(ν)
bb

)
(4)

9



and matrix Â(σ)
bi analogously to Â(σ)

ib. In order to simplify the notation, Â(µ,ν)

indicates a generic sub-matrix of A(µ,ν) whose row and column index vectors can
be inferred from the context, namely the adjacent Schur complement blocks. Thus,
distinct instances of the symbol should be regarded a priori as different matrices. We
reorder the dof’s {Bn, . . . , BnL} of the bottom-right super-block of L(L)

−1AM(L)
−t

as {ÎnL−1, . . . , ÎnL−1 , B̂nL−1, . . . , B̂nL−1}. In practice, this corresponds to apply a
permutation to the rows and columns of L(L)

−1AM(L)
−t. However, since it is well

understood how Gauss transforms and permutations commute with each other, we
systematically drop to latter ones from the exposition. Thus, we can rewrite equation
(3) as:

L(L)
−1AM(L)

−t =



?

Â(nL−1)
ii Â(nL−1)

ib

. . . . . .

Â(nL−1)
ii Â(nL−1)

ib

Â(nL−1)
bi Â(nL−1)

bb · · · Â(nL−1,nL−1)

. . .
...

. . .
...

Â(nL−1)
bi Â(nL−1,nL−1) · · · Â(nL−1)

bb


where the symbol ? indicates an omitted non-zero block.

The factorization strategy recursively decouples interior dof’s from boundary dof’s
through Gauss transforms, starting from the leaf-boxes, all the way up to the top
tree level. It exploits the fact that the structure of the bottom-right super-block is
identical to that of the original matrix A, cf. equation (2). The Schur complements
that arise in the process are treated through accelerated linear algebra techniques.
More specifically, the complement associated to a box is obtained by a fast merge of
the complements of its child-boxes. We shall refer to this action as “processing the
box.” Its most delicate step is the fast inversion of Â(σ)

ii through the block-solver
described in Algorithm 1. The crucial point, see [11], is that, once the Schur comple-
ments of the child-boxes are in HSS form, then the action of the Schur complement
of the parent box can be determined within linear complexity. This is a sufficient
condition to compress the Schur complement to HSS form within linear complexity
as well, see [20].

10



input : z1, z2, S(µ), S(ν), Â(µ,ν), Â(ν,µ)

output: x1, x2, S(µ)
ii
−1

, S̃(ν)
ii
−1

-- STEP 1 --

determine permutations Pµ : Bµ → Bµ ∩ Îσ, and Pν : Bν → Bν ∩ Îσ;

define S(µ)
ii = P t

µ S
(µ) Pµ, and S(ν)

ii = P t
ν S

(ν) Pν ;

compute S(µ)
ii
−1

through fast inversion;

-- STEP 2 --

compress S̃(ν)
ii = S(ν)

ii − Â(ν,µ) S(µ)
ii
−1
Â(µ,ν) to HSS form;

compute S̃(ν)
ii
−1

through fast inversion;

-- STEP 3 --

compute x2 = S̃(ν)
ii
−1

(z2 − Â(ν,µ) S(µ)
ii
−1
z1) through fast application;

compute x1 = S(µ)
ii
−1
z1 − S(µ)

ii
−1
Â(µ,ν) x2 through fast application;

Algorithm 1: Construction of a fast block-solver for Â(σ)
ii.

When the decoupling process terminates, we obtain the following factorization:

L−1AM−t =


Â(n)

ii

. . .

Â(1)
ii

S(2) A(2,1)

A(1,2) S(1)

 (5)

where the matrices L and M are the accumulated Gauss transforms:

L = L(L) · · ·L(1) = L(n) · · ·L(1) ; M = M(L) · · ·M(1) = M (n) · · ·M (1)

Finally, by setting

Â(0) =

(
S(2) A(2,1)

A(1,2) S(1)

)
; D = diag{Â(n)

ii, . . . , Â
(1)

ii, Â
(0)} (6)

we obtain the desired LDM t factorization.
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3.3. Construction and Application Cost

Let us start by analyzing the construction cost. In order to make the discussion
precise, let us consider a finite element discretization on a structured 2D grid, see
Figure 4. When the size of the problem is increased through h-refinements, the
dimension of each Schur complement is proportional to N1/2. On the other hand,
in the case of pure p-enrichments, the dimension is proportional to N . Since pure
p-enrichments are not a realistic refinement strategy1, we limit our analysis to the
case of h-refinements.

In [11], we described a procedure that allows to process a non-leaf box on level
` within O(n` k`) operations. Here n` = O((N/2`)1/2) is the number of boundary
dof’s of the box, and k` is the rank of the off-diagonal block of the associated Schur
complement. We hypothesize an asymptotic dependency of the type:

k` = k`(n`) = O(n`
α logβ(n`))

for some parameters α, β. Thus, the construction cost across the tree levels is

level L 2L O
(
m3
)

= O
(
N
)

. . .

level ` 2` O
(
(N/2`)

α+1/2
log2β(N)

)
= 2`(1/2−α) O

(
Nα+1/2 log2β(N)

)
which implies a total cost

α = 1/2 cost = O
(
N log2β+1(N)

)
α = 1/2 + ε cost = O

(
N1+ε log2β(N)

)
In the case β = 0 and α < 1/2, the construction cost reduces to linear, since it is
dominated by the cost of processing the leaf-boxes. Numerical studies presented in
[11] show that k` ∼ C(p) for the Laplace operator, while k` ∼ n`

1/2 log n` for the
Helmholtz operator, with no clear dependency on p for low orders. We conclude

1Industrial level applications employ either h-refinements on a linear mesh or, at best, h-
refinements on a p-mesh.
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that

2D Laplace: cost = O
(
N
)

2D Helmholtz: cost = O
(
N log3(N)

)
Finally, the application of LDM t x = y is equivalent to the three solves:

Ly2 = y , D y1 = y2 , M t x = y1

Each Gauss transform is an atomic matrix and, consequently, its inversion is trivial.
The action of the factorization can be computed efficiently because of the ability
to determine the action of each inverse of Â(·)

ii and Â(0) as described in Step 3 of
Algorithm 1. Let us recall that the action of an HSS matrix of size n and off-diagonal
rank k can be computed within O(nk) complexity. Let σ be a box on level ` with
chid-boxes {µ, ν}. Under assumption that all sub-matrices of Â(µ,ν) and Â(ν,µ) are
sparse with band b, the cost of Step 3 is O

(
(N/2`)1/2(b + k`)

)
. This is also the

application cost of A(σ)
bi or A(σ)

ib. As previously, let us assume a dependency of the
type

k` = k`(n`) = O(n`
α logβ(n`))

for some parameters α and β. The application at the leaf level is

2L O
(
m2) = O

(
N
)

while the for level ` is

2` O
(

(N/2`)
1/2(

b+ (N/2`)α/2 logβ(N)
))

= 2`/2 O
(
N1/2b

)
+ 2`

1−α
2 O

(
N

α+1
2 logβ(N)

)
If we sum over all levels, the total application cost is:

α = 1 cost = O
(
N
)

+ O
(
Nb
)

+ O
(
N logβ+1(N)

)
α < 1 cost = O

(
N
)

+ O
(
Nb
)

+ O
(
N logβ(N)

)
3.4. Preconditioner Update

Let us suppose that we are given a sequence of discrete operators {Ai}i≥0 which, in
vague terms, are “slowly varying.” While a rigorous argument would involve matrix
perturbation theory, we keep this discussion informal. A typical example of this
situation arises for subsequent discretizations of a boundary value problem, subject
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to small modifications of its coefficients. When this is the case, instead of computing
the factorization of Ai directly, we would like to simply update the factorization of
Ai−K for some K, hopefully large.

An updating strategy can be pursed as follows. Let A0 be the seed matrix for which
we have computed the factorization LDM t. Then a factorization of A := A0 + ∆ is
immediately obtained as:

A = A0 + ∆ = LDM t + ∆ = L
(
D + L−1∆M−t)M t

and, proceeding formally, we obtain

A−1 = M−t(D + L−1∆M−t)−1
L−1 = M−t(I +D−1L−1∆M−t)−1

D−1L−1

Under the assumption %(D−1L−1∆M−t) < 1, where %(·) indicates the spectral radius,
the term in parenthesis is indeed invertible, and we can carry out such inversion
through a Neumann series:

A−1 = M−t(I −D−1L−1∆M−t + (D−1L−1∆M−t)2 − · · ·
)
D−1L−1

= P0 − P0∆P0 + P0∆P0∆P0 − · · ·

Here we set P0 = M−tD−1L−1. For d ≥ 1, we define:

Pd =
d∑
i=0

(−)iP0(∆P0)i

The action of Pd can be evaluated as described in Algorithm 2. It is important to
notice that Pd is fully determined once P0 has been constructed. Furthermore, since
∆ is the difference of two sparse matrices, the cost of applying Pd is approximately
d + 1 times the cost of applying P0. We indicate the construction of P0 with the
notation P0 = prec(A, ε, k,m,mHSS). Here k = k(n) is the anticipated rank of an off-
diagonal block of dimension n of any Schur complement, ε is its compression threshold
in the Frobenius norm, and mHSS is the maximum dimension of an uncompressed
diagonal block, see [11] for more details.

4. Numerical Results

As anticipated in Section 1, Topology Optimization is an iterative method, used
mainly for PDE’s constrained optimization problems, to create highly optimized de-
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input : P0, ∆, z, d
output: y

Store x = z;
for i = 1, . . . , d do

update z = x−∆P0 z;
end
compute y = P0 z;

Algorithm 2: Computation of the action y = Pd z.

signs for specific purposes. The objective is to determine a distribution of material
that fulfills a specific task in a locally optimal manner, without the need to enforce
any a priori restriction on the design topology, see [4]. Although the use of gradient-
based techniques results in a significant reduction in the number of iterations needed
[23], for many problems the method still requires around 100 to 1000 iterations with
a slowly varying design field to recover a locally optimal and physically admissible
design. Consequently, the governing equations for the problem under consideration
must be solved a large number of times for a slowly changing material distribution.
When PDE problems of several millions of degrees of freedom are considered, as it
is often the case for actual industrial-scale applications, their solutions through tra-
ditional direct techniques become infeasible. This raises the interest in using highly
scalable parallel iterative techniques. For physical problems with rapidly varying
high contrast material parameters governed by the Helmholtz equation, like acous-
tic, electromagnetic and structural vibration problems, apart from the preconditioner
proposed in [11], we are not aware of any effective iterative technique. Therefore it
is of interest to investigate the performance of this preconditioner in the context of
Topology Optimization.

We consider the optimization problem of a 2D acoustic cavity Ω containing an ar-
ray of square sub-domains, whose union Ωd is denoted as the design domain. The
formulation is based on [8] and [7]. The resulting optimization problem is highly
non-convex. The objective is to minimize the average sound pressure in a small tar-
get sub-domain Ωop ⊂ Ω, by introducing, or removing, material acting as a hard wall
in Ωd. The boundary of the cavity ∂Ω is taken to be perfectly reflecting, except for
a small section δP where a pure tone with vibrational velocity U is excited through
a non-zero Neumann condition, see Figure 5. The pressure field p is governed by the
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following Helmholtz problem:

div

(
1

ρ
∇p
)

+
ω2

κ
p = 0 in Ω (7a)

1

ρ
∇p · n = 0 on int(∂Ω \ δP ) (7b)

1

ρ
∇p · n = −iωU on δP (7c)

Here i denotes the imaginary unit, and ω is the angular frequency. As for the pres-
sure, both the density ρ and bulk modulus κ depend on the spatial position. In fact,
the physics of the problem dictates that a given spatial position contains either solid
or void. When the contrast in material parameters is chosen such that no transverse
waves of significant amplitude are excited in the solid regions, the boundary of the
material acts nearly identically to a perfectly reflecting boundary, i.e., a hard wall re-
flecting the sound wave with insignificant transmission. The parameters for the void
regions are taken to be those of air at standard conditions2, i.e., ρair = 1.204 kg m−3,
κair = 141.921 · 103 Pa, while the parameters for the solid regions are taken to be
those of aluminum, i.e., ρalu = 2643 kg m−3, κalu = 6.87 · 1010 Pa. The excitation
frequency f = 2750 Hz corresponding to the wave number k = 2πf/c, c =

√
κair/ρair

and U = 0.01 m/s are used.

In order to employ a continuous optimization approach, an auxiliary field ξ, such
that 0 ≤ ξ(x) ≤ 1 when x ∈ Ωd, and ξ(x) = 0 when x ∈ Ω \ Ωd, is introduced to
interpolate between the inverse material parameters of solid and air. Thus, a location
where ξ = 1 consists of solid material, while a location where ξ = 0 is occupied by
air. Since a straightforward application of this strategy often results in fragmented
and physically inadmissible designs, we apply a smoothing and a projection operator
to the auxiliary field, along with a continuation scheme on the projection strength,
see [16, 25, 7]. For ease of notation, let ξ indicate the auxiliary field after smoothing
and projection. The minimization of the average of p over Ωop may be stated as the
continuous optimization problem,

ξ̄ = argmin
ξ

{
Φ(ξ) :=

∫
Ωop

∣∣p(x, ξ(x)
)∣∣2}

where p is obtained by solving (7) for a given realization of ξ. Adjoint sensitivity

20 % humidity, 20 ◦C temperature, and 1 atm background pressure
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analysis is applied to obtain the gradient of the objective function with respect to ξ,
see e.g. [24].

The PDE model problem is discretized using a structured quadrilateral mesh con-
sisting of 150 × 150 linear finite elements, which yields 22801 dof’s. Similarly, the
auxiliary field ξ is approximated by a piecewise-constant function, so that each finite
element is associated to a single variable, termed “design variable.” The process
involves 100 optimization iterations, and the evolution of the design variables and
pressure field is illustrated for three iterations in Figure 6. The preconditioner is
constructed or updated using the strategy described in Algorithm 3. We remark
that such algorithm terminates, provided that n ≤ nmax when A = Aseed. We set
k ∼ n1/2 log n, m = 100, mHSS = 10, ε = 10−6 for the preconditioner construction,
and use nmax = 40, and d = 2 for the updating strategy. For comparison, we also
ran the same experiment with d = 0, 1. Since the compression to HSS format relies
on Gauss matrices, simulations for different seeds of the random number generator
were performed. The results are illustrated in Figure 7. The behavior is qualita-
tively similar for different instantiations of the random number generator. In terms
of GMRES iterations, the updating strategy is working convincingly. In fact, as
compared to d = 0, namely no update, the choice d = 2 results in a substantial
decrease of iterations needed by the solver. Nevertheless, given the increased cost
in the application of the preconditioner for higher values of d, we shall remark that
the choice d = 2 does not necessarily lead to a faster execution time. A rigorous
investigation would require to compare the construction and application time. Since
at the moment we do not have an aggressively optimized implementation available,
we postpone this discussion to future work. Finally, we observe that, in order to
process 100 optimization steps, only 6 or 7 recomputes of the preconditioner were
needed.

5. Conclusions and Outlook

In this work, we review the construction of the preconditioner proposed in [11],
sharpen our theoretical understanding of the methodology, and provide accurate
cost estimates for different scenarios. The main novel contribution is a strategy to
apply the preconditioner to time-varying discretizations. Specifically, we discuss an
application to Topology Optimization of an acoustic cavity, which requires multi-
ple solutions of a notoriously challenging Helmholtz problem with strong material
discontinuities. Although we confined our numerical results to one case of modest
size, they show the robustness of the preconditioner and the updating strategy. As
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for future directions of research, we would like to investigate the interplay between
partitioning schemes and distributions of material. As the size of the problem grows,
we expect this issue to become increasingly important. At the same time, we be-
lieve that it could be addressed in a black-box fashion through the use an algebraic
partitioner and weighted graphs.
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b

(a) domain Ω (gray path), subdomain Ω(1) (black path), and
subdomain Ω(1)

b (color); solid dots identify basis function
with support fully contained in Ω(1)

b.

Ω

Ω(2)

Ω(2)
b

(b) domain Ω (gray path), subdomain Ω(2) (black path), and
subdomain Ω(2)

b (color); solid dots identify basis function
with support fully contained in Ω(2)

b.

Ω(1)

Ω

Ω(1)
i

(c) Domain Ω (gray path), subdomain Ω(1) (black path), and
subdomain Ω(1)

i (color).

Figure 1: Subdomains Ω(·), Ω(·)
b, and Ω(·)

i in the case of a first order, conforming finite element
approximation. Each degree of freedom, or basis function, is uniquely identified with a mesh node.
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Ω(1)

Ω

(a) Newly identified interior degrees of freedom of Ω(1)
b

(solid dots), and union of supports of corresponding basis
functions (color).

Ω(1)

Ω

(b) Newly identified boundary degrees of freedom of Ω(1)
b

(solid dots), and union of supports of corresponding basis
functions (color).

Ω

Ωb

(c) Newly identified boundary degrees of freedom of Ω(1)
b

and Ω(2)
b (solid dots), and union of supports of correspond-

ing basis functions Ωb (color).

Figure 2: Interior and boundary degrees of freedom of subdomain Ω(1)
b, and merging of boundary

degrees of freedom of subdomain Ω(1)
b and Ω(2)

b. A first order, conforming finite element approxi-
mation is considered. Each degree of freedom, or basis function, is uniquely identified with a mesh
node.
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level L. . .σnL σn

level `. . .σn`
σn`+1−1

. . . . . .

level 2σ3 σ4 σ5 σ6

. . . . . . . . . . . .

level 1σ1 σ2

Figure 3: Enumeration of binary tree of boxes for dof’s partition
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Ω

(a) A structured quadrilateral finite element grid. For a first order
approximation, each degree of freedom is uniquely identified with
a mesh node, indicated by a solid dot.

σ1 σ2

σ4

(b) Repartitioning into 2 subdomains.
Each boundary contains ∼ (N/2)1/2

degrees of freedom, indicated by solid
dots.

σ3 σ5

σ4 σ6

(c) Repartitioning into 4 subdomains.
Each boundary contains ∼ (N/4)1/2

degrees of freedom, indicated by solid
dots.

Figure 4: Partitioning of a first order finite element approximation on a structured quadrilateral
mesh with N degrees of freedom.
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Figure 5: TopOpt problem setup. Acoustic cavity Ω = [0, 1]2, optimization domain Ωop, design
domain, Ωd. Problem is driven by a forced vibration imposed on δP . The remaining portion of the
boundary is treated as a reflecting boundary.
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input : ε, k, m, mHSS, {A0, . . . , AK}, {b0, . . . , bK}, nmax, d
output: {x0, . . . , xK}
step = 0;
load = 0;
comp = 0;
xguess = b0;

/* Do until last optimization step */

while step ≤ K do

/* Load new matrix */

if load = 0 then
load A = Astep, b = bstep;
set load = 1;

end

/* Compute preconditioner */

if comp = 0 then
construct P0 = prec(A, ε, k,m,mHSS);
set Aseed = A;
set comp = 1;

end

/* GMRES solve */

compute [x, n] = gmres(A, b, Pd, xguess);

/* Unsuccessful solve */

if n > nmax then
set comp = 0;

else
store xstep = x;
set xguess = x;
set load = 0;
increment step = step + 1;

end

end

Algorithm 3: Preconditioner recompute/update strategy for topology opti-
mization.
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(a) iteration 1.

(b) iteration 50.

(c) iteration 100.

Figure 6: Evolution of design variables (left) and pressure distribution [dB SPL ref 20µPa] (right)
at selected iterations for a topology optimization problem with 100 iterations. The physics is
discretized using 150× 150 quadrilateral first order finite elements.
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(a) seed = 1.
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(b) seed = 2.
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(c) seed = 3.
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(d) seed = 4.
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(e) seed = 5.
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Figure 7: Behavior of preconditioned-GMRES (k ∼ n1/2 log n, m = 100, mHSS = 10, ε = 10−6) for
100 steps of a topology optimization problem, for 5 seeds of the random number generator.
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