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Abstract We address the simulation of dynamic crack

propagation in brittle materials using a regularized phase-

field description, which can also be interpreted as a

damage-gradient model. Benefiting from a variational

framework, the dynamic evolution of the mechanical

fields are obtained as a succession of energy minimiza-

tions. We investigate the capacity of such a simple model

to reproduce specific experimental features of dynamic

in-plane fracture. These include the crack branching

phenomenon as well as the existence of a limiting crack

velocity below the Rayleigh wave speed for mode I prop-

agation. Numerical results show that, when a crack ac-

celerates, the damaged band tends to widen in a direc-

tion perpendicular to the propagation direction, before

forming two distinct macroscopic branches. This transi-

tion from a single crack propagation to a branched con-

figuration is described by a well-defined master-curve of

the apparent fracture energy Γ as an increasing func-

tion of the crack velocity. This Γ (v) relationship can be

associated, from a macroscopic point of view, with the

well-known velocity-toughening mechanism. These re-

sults also support the existence of a critical value of the
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energy release rate associated with branching: a critical

value of approximately 2Gc is observed i.e. the frac-

ture energy contribution of two crack tips. Finally, our

work demonstrates the efficiency of the phase-field ap-

proach to simulate crack propagation dynamics inter-

acting with heterogeneities, revealing the complex in-

terplay between heterogeneity patterns and branching

mechanisms.
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1 Introduction

Understanding the various mechanisms governing the

dynamic propagation of a crack in a brittle medium is

still a challenge. The difficulty lies in the strong inter-

action between stress concentrations at the crack tip,

various non-linear phenomena occurring in the process

zone, material heterogeneities at potentially different

scales and dynamic stress redistribution due to waves

emitted by the moving crack tip and reflections at the

boundaries. For a single propagating crack, linear frac-

ture mechanics relies on the balance between a crack

driving force, the dynamic energy release rate, and a

crack resisting force given by the fracture energy, which

is assumed to be a material property. It also predicts

that the Rayleigh wave speed cR is the limiting velocity

of a mode I propagating crack [63]. However, various ex-

perimental results have shown that this simple picture

of dynamic brittle fracture is far from being complete.

In particular, the existence of limiting velocities below

cR, microscopic and macroscopic crack branching phe-

nomena and a dependence of the fracture energy on the

crack velocity have been observed experimentally.
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1.1 Limiting speed and dynamic instabilities

In the absence of branching or before its occurrence,

experiments have reported the following features of dy-

namic crack propagation [56,14]:

– cracks accelerate to a constant limiting ve-

locity;

– this limiting velocity depends on the experi-

mental setup for a given material;

– the stress intensity factor and surface rough-

ness increase during the constant velocity phase.

Although the limiting velocity may depend on load-

ing, boundary conditions or geometry, it has been mea-

sured to be in the range of 0.5–0.65cR for glass, 0.6–

0.7cR for PMMA and 0.35–0.45cR for Homalite-100 [26].

Experiments have also reported that branching can

be suppressed by constraining the crack path to a weaker

interface or by drilling an array of holes ahead of the

crack [66]. In these cases, crack velocities can reach up

to 90% of the Rayleigh wave speed.

In [23], Gao proposed a principle maximizing the

fracture energy flux (Γ̇a = G(va) · va with G the dy-

namic energy release rate and va the apparent crack

velocity) i.e. the energy being absorbed into the frac-

ture process per unit time per unit length of the crack

front. A wavy-crack model is introduced in which the

crack tip follows a wavy path corresponding to a local

(microscopic) crack tip speed which may be very high

(close to cR) whereas its apparent (macroscopic) speed

va is only a fraction of cR.

Experiments have evidenced different regimes for

crack propagation controlled by dynamic instabilities

[19]. At low velocities, the crack surface appears almost

flat (mirror regime), velocity oscillations and an in-

crease of surface roughening in the form of conic marks

start to appear at higher velocities (mist regime), at

even higher velocities microbranching and important

surface roughening occur (hackle regime). A coalescence

of microcracks in the crack process zone has also been

proposed as a potential mechanism triggering this in-

stability [55]. Recent experiments over a wide range of

crack velocities [25,16] have confirmed that these in-

stabilities are at the origin of the limiting speed: before

attaining cR, such instabilities prevent the crack to fur-

ther accelerate and the picture of a single propagating

crack is not appropriate anymore.

1.2 Branching criterion

Yoffe showed that the circumferential stress at the crack

tip reaches a maximum at a 60◦ angle when the crack

tip speed exceeds 0.6cs [70]. Unfortunately, this argu-

ment cannot explain the critical velocities and branch-

ing angles observed in the experiments.

Crack branching can be viewed as a consequence

of an excess of available energy flowing to the crack

tip which cannot be dissipated by a single crack prop-

agation. Indeed, stress intensity factors (SIF) and en-

ergy release rates (ERR) increase prior to branching

then drop since energy is now used to propagate two

branches (explaining the smooth aspect of the crack

surface just after branching). This suggests the exis-

tence of a critical value of SIF or ERR related to branch-

ing [59,54]. Because of the dependence of SIF on crack

velocity [22], this critical value could also be related to

a critical crack tip velocity. However, there is no uni-

versal relation between dynamic SIF and crack tip ve-

locity [9]. Besides, experiments indicate that branches

propagate at roughly the same speed as the main crack

before branching, therefore weakening the assumption

that the crack tip velocity is the relevant criterion for

crack branching [55].

1.3 Velocity-toughening mechanism of the fracture

energy

Experiments on PMMA for a strip geometry [60] (simi-

lar to the one considered later in this paper) reported a

strong increase of the apparent fracture energy with the

crack velocity, ranging from approximately 1,000 J/m2

for v = 0.2cR up to approximately 8,000 J/m2 for 0.68cR.

However, this strong increase is attributed to an impor-

tant increase of relative surface area created by a crack

advance through branching instabilities. The amount of

fracture surface is shown to be linearly related to the

energy flux into the crack tip so that the local frac-

ture energy can still be considered as constant (equal

to 1,100 J/m2) for v ≥ vc = 0.35cR, where vc was iden-

tified as the critical velocity associated with the micro-

branching instability.

In contrast to these dynamic measurements of PMMA

fracture energy, quasi-static experiments usually report

values in the range of 300–400 J/m2. In [25,16], a wedge-

splitting experimental setup enabled to measure frac-

ture energy at very low velocities. Between 0.11cR and

0.18cR, the fracture energy increases abruptly between

400 J/m2 and 1,200 J/m2 i.e. from a value consistent

with quasi-static measurements to a value consistent

with the results of [60]. Interestingly, in the slow crack
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regime, a single propagating front is observed whereas,

for v ≥ va = 0.18cR nucleations of microdefects propa-

gating at va ahead of the main crack are observed. The

collective dynamics of the main crack and microdefects

yield an apparent crack velocity higher than va.

These different results highlight the fact that the

dynamic behaviour of crack propagation in PMMA is

extremely complex, resulting from microdefects nucle-

ation, microbranching instabilities, an increase of rela-

tive surface area and maybe a thickening of the damage

zone. Experiments have also shown that microcrack-

ing and surface roughening are complex 3D phenomena

[24] and that geometrical non-linearities at the crack tip

may have to be taken into account to overcome LEFM

deficiencies [39].

1.4 Finite element models of dynamic crack

propagation

Unfortunately, an exhaustive modeling of all the pre-

viously mentioned phenomena would certainly require

very fine 3D computations in a heterogeneous medium,

which are still out of reach. Different classes of models

have been proposed to simulate some of these dynamic

crack features in brittle materials at a macro-scale.

Cohesive zone models [5,17,69] represent the crack

propagation process by considering a potential opening

between two bulk elements. The cohesive law defines

the constitutive relation between the surface traction

and the relative opening displacement. By constraining

the crack propagation along the element edges, this ap-

proach suffers from a mesh dependency at small scales

but seems able to capture some features of crack branch-

ing patterns [69,18,73] and the existence of a limiting

velocity.

The extended finite element method (XFEM) en-

riches the finite element interpolation by adding either

singularities or strong discontinuities for elements cut

by the crack [46]. The level-set is an efficient method

to describe the crack path, and is now widely used [62].

Although XFEM enables to have a discrete representa-

tion of the crack, one main drawback is that additional

branching criteria and velocity toughening models are

needed as input of the crack propagation algorithm to

be able to obtain branched configurations [6,68].

Non-local approaches regroup a wide range of mod-

els which represent the discrete crack by a continu-

ous damage field and a regularization length to remove

any mesh dependency. One can mention the non-local

integral approach [53,31,67], gradient-enhanced mod-

els [51], eigenerosion [49], peridynamics [7], thick-level

sets [47] and phase-field approaches, which will be de-

scribed later in more details. Generally, such non-local

approaches do not require additional criteria to obtain

branched patterns [34,27,29,30].

In [28], the Karma-Kessler-Levine phase-field model

[33] is used to study crack branching in 3D and its rela-

tion to fractographic patterns induced by the instabil-

ity. Depending on the simulation parameters, 2D crack

fronts or complex 3D patterns have been obtained. It

is highlighted that crack velocities for 3D patterns are

usually smaller than those observed for 2D patterns and

are also associated with a higher total fracture surface.

Dynamic crack propagation using the phase-field

approach has also been investigated in [8,30,36,37]. In

some cases, branching angles and crack velocities have

been reported to be close to experimental observations

whereas strange patterns have also been observed in

other situations. In particular, the choice of the tension-

compression splitting has been shown to have an im-

portant influence on the observed pattern [37]. In [30],

crack branching is associated with a critical value of the

crack surface velocity.

In [7], mode I crack branching has been investigated

using a peridynamic formulation of brittle fracture. Re-

sults have shown a dependence on loading conditions

and sample geometry of branching angles and crack tip

velocities. The authors proposed a stress-wave pile-up

mechanism and damage spreading to the crack faces as

the origin of crack branching.

It is to be noted that peridynamics rely on the same

mechanical ingredients as phase-field modeling of brit-

tle fracture, namely a linear elastic continuum model,

a dissipation mechanism controlled by a material frac-

ture energy and an intrinsic regularization length. It

is therefore quite interesting that both approaches are

able to reproduce characteristic aspects of crack branch-

ing without any additional criterion.

1.5 Objectives and organization of the manuscript

The purpose of the present work is to address the sim-

ulation of dynamic crack propagation using variational

phase-field models. These models have emerged in the

last decade as a promising tool for brittle fracture sim-

ulation as they do not require any a priori knowledge of

the crack path or topology while being much less sen-

sitive to the mesh discretization compared to cohesive

zone models for instance. A large number of previous

works on phase-field approaches for dynamic fracture
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mostly concentrated on numerical issues and qualitative

aspects of the branched patterns. To our knowledge, a

close inspection of the physical mechanisms at the ori-

gin of dynamic crack propagation has not been realized

yet in the phase-field framework, especially regarding

the conditions leading to crack branching. We aim here

at demonstrating that such models can reproduce ex-

perimentally observed features of brittle dynamic frac-

ture such as the existence of a limiting velocity and an

increase of apparent fracture energy with the velocity.

In section 2, the general formulation of the phase-

field model used in this work is briefly recalled. Consti-

tutive modeling choices as well as numerical aspects are

also discussed. In section 3, the numerical simulation of

dynamic crack propagation in a pre-strained plate is in-

vestigated and the occurrence of crack branching and

the existence of a velocity-toughening mechanism are

more particularly examined. Finally, section 4 is de-

voted to the simulation of crack propagation in a het-

erogeneous medium. Situations in which the crack is

constrained to propagate along a weak plane as well as

propagation in presence of distant heterogeneities are

investigated.

2 Variational phase-field models of brittle

fracture

The phase-field models proposed in the literature as

regularized models of brittle fracture can be split in two

categories. The first category is based on a Ginzburg-

Landau phase transformation evolution equation [33,

27,28]. Although this first approach enabled to produce

interesting results regarding crack branching, mixed-

mode instabilities and surface roughening, some issues

concerning the evolution of the phase field away from

the crack tip, even if the sample has been brought to

equilibrium, have been raised in [13]. Besides, this for-

mulation seems more distant to Griffith’s theory of frac-

ture although some physical parameters can be related

to a fracture energy and a regularization length.

The second category of phase-field models has been

developed as a regularization of free discontinuity prob-

lems [2,11] arising in the variational approach to frac-

ture proposed in [21]. In this case, a continuous func-

tion d varying between 0 (sound material) and 1 (fully

cracked material) is introduced to obtain a smooth for-

mulation of the Griffith fracture functional by a crack

density function depending on d and ∇d. This func-

tional is parametrized by the Griffith fracture energy

Gc and an internal length scale l0, which is related to

the distance over which the phase field varies from 0

to 1 in a localized damaged band. The majority of the

phase-field models adopted in the literature are based

on this formulation, either in a rate-independent form

[44,13,8] or in a rate-dependent form including viscous

dissipation of crack propagation as a numerical regular-

ization of the time evolution problem [45,29,30].

Continuum descriptions of cohesive fractures have

also been proposed using the phase-field approach [43,

65], continuum damage-gradient [41] or the thick-level

set (TLS) method [47], see also [15] for a compari-

son between the TLS and the phase-field approach.

Recent works also proposed to extend the phase-field

approach to the case of ductile fracture in an elasto-

plastic-damageable formulation [1].

Phase-field models based on a regularization of the

variational approach to fracture share strong links with

continuum damage-gradient models [52]. In fact, the

phase-field model based on [11] belongs to the general

class of gradient damage models for a specific choice of

damage constitutive laws. These damage-gradient mod-

els have been recently extended to the dynamic prop-

agation in [36,37]. Due to the variational formulation

of these models and their generality, we will adopt this

point of view in the remainder of this work.

Finally, let us mention that, for crack-like localized

solutions, quasi-static damage-gradient models converge

to the Griffith theory of brittle fracture when the inter-

nal length scale l0 is much smaller than the character-

istic length L of the structure [61]. Although no formal

proof has been published yet concerning the dynamic

case, it seems reasonable to expect that such a result

will still hold in this case.

2.1 Formulation of the variational approach to

dynamic fracture

We briefly recall here the general formulation of the

variational phase-field or gradient damage model of dy-

namic fracture. We invite the reader to refer to [37] and

to references mentioned therein for more details on the

construction of such models.

In the context of isotropic damage models, a contin-

uous scalar field d, taking values in the [0; 1] interval, is

introduced as a smooth representation of a transition

between intact material (d = 0) and a fully cracked ma-

terial (d = 1) (see Figure 1). Denoting by u a kinemat-

ically admissible displacement field and by u̇ its asso-

ciated velocity, the variational gradient damage model

relies on the definition of the following energies:

– the elastic strain energy:

Eel(u, d) =

∫
Ω

ψ(ε, d) dΩ (1)
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Fig. 1 Continuum regularization of a possibly branched
crack C by a continuous phase field d(x) ∈ [0; 1] in a con-
tinuum Ω subjected to imposed displacement and tractions
T at its boundary. The regularized crack corresponds to the
domain Cd for which d > 0, its typical width is related to l0.

where Ω represents the continuum (Fig. 1), ε =
1
2 (∇u+∇uT) is the linearized strain tensor associ-

ated with u, ψ being the elastic potential depending

on d;

– the kinetic energy:

Ekin(u̇) =

∫
Ω

1

2
ρu̇ · u̇ dΩ (2)

where ρ is the material density;

– the non-local damage or fracture energy:

Efrac(d) =

∫
Ω

(
w(d) +W0l

2
0∇d · ∇d

)
dΩ (3)

where w(d) is the local damage energy density, W0

is homogeneous to an energy density and l0 is ho-

mogeneous to a distance.

Finally, an action-integral over a time interval I =

[t1, t2] is introduced as follows:

A =

∫
I

(Eel(u, d) + Efrac(d)− Ekin(u̇)−Wext(u)) dt

(4)

where Wext(u) represents the work done by the exter-

nal forces on the displacement field u.

The variational formulation of the gradient damage

model, giving the space-time evolution of the mechani-

cal fields (u, d), is then obtained by assuming that:

– the damage variable evolution is irreversible: ḋ ≥ 0

for all t;

– the variation action-integral is positive with respect

to arbitrary variations of admissible displacements

and damage evolution;

– energy is dissipated only via the fracture energy

Efrac(d).

The derivation of these principles, especially the second

one, shows that the elastodynamic equilibrium equation

is obtained for a damage-dependent stress state σ =

∂εψ(ε, d):

div σ + f = ρü (5)

with appropriate boundary conditions and where f is a

given body force density.

Besides, the variation of (4) in terms of admissible dam-

age evolution results in the total energy satisfying a

minimum principle constrained by the irreversibility con-

dition of damage evolution:

Eel(u, d) +Efrac(d) ≤ Eel(u, d̂) +Efrac(d̂) ∀d̂ ∈ D(d)

(6)

where D(d) is the admissible space for damage varia-

tions from a given damage state 0 ≤ d ≤ 1 defined

by:

D(d) =
{
d̂ s.t. 0 ≤ d ≤ d̂ ≤ 1

}
(7)

In practice, the wave equation (5) and the damage min-

imum principle (6) are solved numerically at every time

step.

2.2 Constitutive modeling choices

The previous formulation is very general and differ-

ent damage models can be obtained depending on the

choice of the damageable elastic energy density ψ(ε, d)

and the local damage density w(d).

For the elastic strain energy density, we chose the

classical form [3]:

ψ(ε, d) = (1− d)2ψ+(ε) + ψ−(ε) (8)

ψ+(ε) =
κ

2
〈tr ε〉2+ + µεd : εd (9)

ψ−(ε) =
κ

2
〈tr ε〉2− (10)

where κ and µ are the compressibility and shear elastic

moduli, εd is the deviatoric strain tensor and 〈?〉± =

(?±|? |)/2 denotes the positive (resp. negative) part of

?.

This model enables to distinguish between tension

and compression, the damage degradation impacting

the deviatoric strain as well as the positive part of the

volumetric strain, while the negative part of the vol-

umetric strain is not impacted. This is not the only

choice for tension-compression splitting, see [37] for an

extensive discussion on this subject. For the problem

considered in this paper, the impact of the splitting
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Fig. 2 One dimensional localized solution of an infinite bar
in traction for the different damage laws. The total dissi-
pated energy for this test case corresponds exactly to Gc. For
w(d) ∝ d (12), the damage profile is d = (1 − |x|/(2l0))2

for |x| ≤ 2l0 and d = 0 for |x| ≥ 2l0. For w(d) ∝ d2 (11),
the damage profile is an exponential with infinite support
d = exp(−|x|/l0).

choice is limited as compression stress waves reflected

at the boundaries are generated only by the crack tip

advance and are of small amplitude.

As regards the choice of the damage energy density,

the most widely used model [11,44,29,8,15] is given

by1:

w(d) +W0l
2
0∇d · ∇d =

Gc
2l0

(
d2 + l20∇d · ∇d

)
(11)

where Gc is the Griffith fracture energy.

Although appealing from a numerical point of view

due to its purely quadratic nature, this model predicts

no elastic domain in which the material behaves elasti-

cally with zero damage [52]. Therefore, when comparing

the macroscopic total dissipated energy with respect to

a crack length evolution, a non-negligible part of this

dissipated energy actually comes from small damaging

of the bulk domain due to the applied stress state. This

pre-damaging of the surrounding bulk domain will also

tend to reduce the values of the different wave speeds

compared to a non-damaged domain. Besides, the local-

ized 1D solution for d of a bar in tension corresponds to

an exponentially decreasing function with infinite sup-

port (Fig. 2).

For these different reasons, we chose to use the fol-

lowing damage energy density proposed in [52]:

w(d) +W0l
2
0∇d · ∇d =

3Gc
8l0

(
d+ l20∇d · ∇d

)
(12)

1 with sometimes a non-essential rescaling of the internal
length l0

The absence of a square exponent in the damage vari-

able leads to a pure elastic phase associated with a crit-

ical stress σc =
√

3GcE/(8l0) for a 1D homogeneous

traction test. In this case, the 1D profile corresponds

to a portion of parabola with an exactly zero damage

state for |x| ≥ 2l0 (Figure 2).

Let us also mention that the normalization of both

models is chosen so that, when considering the localized

damage solution for a 1D bar in traction, the surface

fracture energy corresponds exactly to Gc.

2.3 Numerical aspects

The numerical code used in this work is inspired from

the open-source implementation of the dynamic damage-

gradient model [38] based on the FEniCS project for

automated resolution of PDE’s [40] and the PETSc li-

brary [4].

Classical linear finite element interpolations on tri-

angles are used for the displacement, velocity, accel-

eration and damage fields. As regards temporal dis-

cretization, an explicit Newmark scheme has been cho-

sen for the update of accelerations, velocities and dis-

placements. The damage problem is formulated as a

bound-constrained quadratic optimization problem to

ensure damage irreversibility. More details on the nu-

merical implementation can be found in [37].

The mesh size has usually been taken approximately

4-5 times smaller than l0, thus reducing the numerical

overestimation of the fracture energy [37]. Time steps

have been chosen sufficiently small to satisfy the con-

ditional stability of the explicit scheme. Mesh size and

time steps have been varied to ensure that converged

results have been obtained. Besides, it has also been

observed that energy conservation is ensured at a satis-

fying accuracy for small time steps as mentioned in [37].

Although the following results will be presented for

a constant regularization length of l0 = 0.1 mm, let us

highlight that this value has been also varied. Dimin-

ishing this value resulted in a decrease of the damaged

band widths as expected but crack patterns as well as

crack velocities remained essentially the same. Indeed,

as long as l0 � L and the solution is localized in a dam-

aged band, reducing l0 will only produce a self-similar

thinner damage profile in the direction normal to crack

propagation whereas the crack will still propagate ac-

cording to a similar energy release rate.
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Fig. 3 Pre-strained PMMA plate problem (left) and crack
patterns (right) sketched from experimental observations [72]
for different imposed displacements (taken from [67]). For low
loading levels, single crack propagation is observed. For higher
values, microbranches appear during propagation. For even
higher loadings, macroscopic branches are formed.

3 Dynamic crack branching in homogeneous

medium

3.1 Position of the problem

We investigate the problem of dynamic crack propa-

gation in a pre-strained PMMA rectangular plate ge-

ometry. This problem has been previously investigated

experimentally in [72] (it is also quite close to the exper-

iments of [60]) and from a numerical point of view using

cohesive elements [73] and a non-local integral dam-

age model [67]. Contrary to more traditional numeri-

cal benchmark problems in dynamic branching such as

those investigated in [7,8,29] where a constant stress

echelon loading is applied, in this particular geometry,

no stress waves are produced by the loading but only

by crack propagation.

Indeed, the experimental setup of [72] consists, first,

in moving the upper and lower surfaces of the plate in

a quasi-static manner until reaching a desired displace-

ment. While maintaining the upper and lower bound-

aries at this fixed value, a small sharp crack is created at

the middle of the sample using a razor edge. The crack

then accelerates until reaching a steady-state propaga-

tion regime. Another advantage of this problem is that

the initially stored energy is well defined and can be

related to the fracture energy dissipated by crack ad-

vance. This pre-strained strip configuration has been

used in many experiments to measure the dependence

of fracture energy on crack velocity. For all these rea-

sons, we advocate this problem as a benchmark for as-

sessing numerical models of dynamic brittle fracture.

The geometry and boundary conditions are repre-

sented in Figure 3 and are identical to those used in

[73,67]: the plate is 32 mm wide and 16 mm high with

a 4 mm pre-notch and modeled as a 2D plane-stress

medium. It is pre-strained by applying uniform dis-

placements ±∆U in the vertical direction on the bot-

tom and top surfaces. First, a quasi-static computa-

tion is done to reach the pre-strained state, then an ex-

plicit dynamic computation is carried out to simulate

the crack propagation.

PMMA is assumed to be isotropic linear elastic with

E = 3.09 GPa, ν = 0.35, ρ = 1180 kg/m3, the Rayleigh

wave speed is cR = 906 m/s. As regards the damage

parameters, a value of Gc = 300 J/m2 is retained, cor-

responding to quasi-static measurements and the regu-

larization length is l0 = 0.1 mm.

3.2 A comment about the infinite strip configuration

Let us mention that the previous problem is close to

the infinite strip configuration, see [22] for instance.

For this translation-invariant problem, a steady state

propagation occurs with a fracture energy Γ equal to

the initially stored energy per unit length, given by

W = 2E(∆U)2/h where h is the plate height. This

configuration seems thus appropriate to measure the

possibly velocity-dependent fracture energy.

An approximate equation of motion for the infinite

strip problem has been derived in [42] using a pertur-

bation approach:

v̇ =
1− Γ (v)/W

h/2
c2d(1− v2/c2R)2 (13)

As W can be arbitrarily chosen, when W > max
v

Γ (v)

the crack is supposed to accelerate up to the Rayleigh

wave speed but with an increasing effective mass so

that acceleration becomes always more difficult when

approaching cR [10]. The identification of Γ (v) to W

can then only be valid for a true steady state. For high

velocities, an even small value of acceleration can cor-

respond to an important difference between Γ (v) and

W , leading to an overestimation of Γ (v).

3.3 Numerical computation of the macroscopic

fracture energy

The crack tip position has been recorded by consider-

ing the top-rightmost node of the finite element mesh

for which the damage field is greater than 0.9, its hori-

zontal position is denoted by a(t) with the origin taken

at the prenotch tip (a(0) = 0). Hence, in the case of

macroscopic branching, only the upper-branch tip is fol-

lowed. Unless stated otherwise, the crack tip velocity v
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corresponds to the horizontal component of the instan-

taneous velocity vector of the crack tip ȧ. This velocity

is computed by fitting an affine function for a few sim-

ulation outputs around a(t).

The damage dissipation rate Γ , which can be inter-

preted as a macroscopic fracture energy, has been com-

puted as the derivative of dissipated energy per unit

crack advance

Γ = −dEel
da
− dEkin

da
=
dEfrac
da

(14)

since the boundaries of the domain are fixed during

crack propagation. Γ has then been estimated by fitting

an affine function for a few simulation outputs around

Efrac(a). Let us also mention that the apparent dy-

namic energy release rates can also be computed using

the G − θ method (virtual domain extension) general-

ized to such damage-gradient models [36]. Despite slight

differences, the values computed using such a method

are consistent with those derived from (14).

3.4 Dynamic crack branching results

Simulations have been undertaken for different values

of the imposed displacement ∆U . Evolutions of crack

velocities are reported in Figure 4 in which it can be

observed that cracks accelerate up to a limiting veloc-

ity which is below the Rayleigh wave speed cR, around

0.68cR. The acceleration is stronger for higher load-

ings and it decreases when the crack speed approaches

the final velocity, which is consistent with experimental

observations and the infinite-strip equation of motion

(13).

For small values of the loading (∆U < 0.04 mm),

no macroscopic branching has been observed during

the simulation. For higher loadings, branching has been

observed and it occurs sooner the higher the loading.

phase-field distributions corresponding to different load-

ing levels have been represented in Figure 5.

Let us observe that these simulations yield crack ve-

locities that are higher than those observed experimen-

tally for the same loading. As a consequence, macro-

scopic branching also occurs at lower loading levels than

in the experiments. For instance, experiments with∆U =

0.06 mm reported a steady state velocity of 0.37cR with

a single crack propagation.

This discrepancy between simulations and experi-

ments has always been observed in previous works using

cohesive zone models [73] or non-local integral damage

models [67]. Both works mentioned the lack of rate-

dependency of the constitutive model as the origin of

this difference. Inclusion of a viscous dissipation energy,

as initially introduced in [33] and proposed in [45] as

a purely artificial regularization to improve numerical

stability, would enable to introduce a rate-dependent

effect reducing the value of the computed velocities.

However, this aspect would be the purpose of another

work and we will not attempt here to reproduce quanti-

tatively the measured velocities but we will concentrate

on other aspects of dynamic crack propagation such as

the transition from single crack propagation to branch-

ing. Besides, we expect that the rate-dependency will

have less influence for fast cracks reaching a steady-

state for which the material response will be quasi-

instantaneous contrary to slow or accelerating cracks.

As the branching mechanism occurs at a high limiting

velocity, rate-dependent effects may be less important

in this context.

A striking result is that the damaged band widens

as the crack propagates, which has also been previously

reported in other phase-field simulations [8,37] but also

with other models such as a process-region cell model

[32] or peridynamics [7]. This ”widening” is mild for low

loading levels but it is clearly visible for higher levels,

especially before a branching event. For this reason, it

is not easy to detect the exact origin of branching as it

does not seem to be an abrupt phenomenon but rather a

progressive one, exhibiting a continuous transition from

an increasingly wider band to almost two crack tips

propagating horizontally. At some point, when the two

tips are sufficiently established, they start to screen and

repel each other, leading to a true bifurcation and prop-

agation of two isolated branches with a smaller damage

band width. If the branching angle is measured as the

angle made between the straight parts of the two iso-

lated branches, a value close to 30◦ is found, which is

consistent with experiments and other simulations [7].

However, we have also observed that different values of

the branching angle can be obtained by varying the do-

main geometry (it is smaller for plates with a smaller

height h).

The evolution of Γ (t) as a function of the crack tip

position a(t) enables to better understand how the dam-

aged band width increases with crack propagation. In-

deed, denoting by l(t) the total damaged surface (per

unit length in the transverse direction), let us recall

that

Efrac(t) = Gc

∫
Ω

3

8l0

(
d+ l20∇d · ∇d

)
dΩ = Gc · l(t)

(15)
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Fig. 4 Evolution of crack tip velocity for different loadings. For all loadings, the crack accelerates up to a limiting velocity
around 0.68cR. Branching events are indicated by the star-shaped symbol.

(a) ∆U = 0.035 mm at t = 40 µs (b) ∆U = 0.038 mm at t = 40 µs

(c) ∆U = 0.040 mm at t = 40 µs (d) ∆U = 0.045 mm at t = 20 µs

Fig. 5 Phase-field distribution for different loadings. The damaged zone widens as the crack propagates and accelerates. For
low loading levels, a single crack propagation is observed and macroscopic branching is observed for higher loadings. It occurs
earlier in the crack propagation for higher loadings. The branching angle is around 30◦.
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Fig. 6 The normalized damage dissipation rate Γ/Gc increases during crack propagation. For the low loading level
(∆U = 0.035 mm), the evolution is regular with Gc ≤ Γ ≤ 1.5Gc and no branching is observed. This increase leads to
an effective thickening of the crack width. For a higher loading (∆U = 0.045 mm), branching is observed slightly after
Γ ≥ 2Gc, corresponding to two crack tips. After branching, the dissipation associated with a single crack tip (Γ/2) is close to
its initial value, slightly above Gc.

since Gc is uniform in the whole sample. Therefore,

Γ (t) = Gc
dl

da
, so that the normalized damage dissi-

pation rate Γ/Gc is equal to the increase in total frac-

ture surface l(t) per apparent crack surface increase (if

one interprets a(t) as an apparent crack surface). This

quantity has been represented in Figure 6 for two dif-

ferent loading values: ∆U = 0.035 mm for which no

macroscopic branching takes place and ∆U = 0.045

mm for which macroscopic branching is observed. Af-

ter a first phase of initiation, the crack advances with

values of Γ slightly above Gc. The damage dissipation

rate then increases during crack advance with an al-

most constant rate depending on the loading level. As

mentioned before, this increase is directly related to the

increase of total over apparent fracture surface due to

the damaged band widening. It is to be noted that, for

the duration of the simulation with ∆U = 0.035 mm, Γ

increased from Gc to 1.5Gc and no branching has been

observed. For the higher loading (∆U = 0.045 mm),

branching has been observed slightly after Γ exceeded

2Gc, a value corresponding to two crack tips, although

detection of the exact instant of branching is difficult

(this is symbolized by the gray zone in Fig. 6, the cor-

responding values of Γ have not been represented dur-

ing the transition from single to branched crack). After

branching, the total damage dissipation rate continued

to increase and when looking only at the contribution

of a single branch (given by Γ/2 due to the symmetry

of the branched pattern, see Fig. 5(d)), values close to

the initial ones (slightly above Gc) are obtained. This

last observation is related to the fact that the damage

band width of the branched parts are smaller than the

main crack just before branching. Finally, the increase

of Γ/2 after branching suggests that a new branching

event can occur if this quantity again reaches a critical

value close to 2Gc.

We are not aware of previous works reporting such

numerical results pointing towards an energetic crite-

rion for the occurrence of branching. In particular, our

results indicate that branching can be triggered without

stress waves arriving at the crack tip as already indi-
cated in [7]. However, incoming waves at the crack tip

can lead to a sudden increase of the dynamic energy re-

lease rate, which will exceed its critical value and form

branches. This seems to be the case for the more tradi-

tional stress echelon problem [7,8,30].

When inspecting damage profiles in a direction per-

pendicular to the main crack propagation for ∆U =

0.04 mm (see Fig. 7), it can clearly be observed that, ini-

tially, the damaged zone is close to the one-dimensional

analytic damage profile d(y) = (1−|y|/(2l0))2 (A), thus

explaining why Γ ≈ Gc at the early stage of propaga-

tion. A fully damaged zone (d = 1) with increasing

width then appears during crack advance (B and C).

It is to be noted that the shape of the transition zone

from d = 0 to d = 1 remains similar, at all stages, to

the theoretical 1D damage profile. The associated in-

crease in Γ before branching is, thus, essentially due

to this wide zone with d = 1. At the onset of branch-

ing, one can observe that the central region exhibits a
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Fig. 7 Symmetric vertical damage profiles for y ≥ 0 at different positions from the left part of the domain (∆U = 0.04 mm):
A (x = 5 mm), B (x = 12 mm), C (x = 18 mm), D (x = 20 mm), E (x = 22 mm). The profiles clearly indicate the existence of
a fully damaged zone (d = 1) with increasing width before splitting into two distinct cracks. The black square line corresponds
to the 1D parabolic profile.

damage level lower than 1, the maxima of the damage

profile occurring at two symmetric positions away from

the central path, as if two single crack tips were prop-

agating side-by-side (D). With a further reduction of

the central zone damage level, the two tips are well iso-

lated and start to mutually screen each other, leading

to a symmetric deviation of the two branches from the

horizontal direction. After branching (E), the damage

profile of a single branch is similar to the initial profile

with a small fully damaged band.

Let us highlight that, for all simulations, the crack

propagates from left to right with an already fully es-

tablished damage band width, meaning that this wide

band does not appear after the crack tip has further

propagated. Hence, these two modes of propagation

(crack tip advance and damage band widening) occur

simultaneously and, once the crack tip further advances,

no further evolution of the damage band is observed in

the crack tail.

Let us briefly discuss here the effect of the mesh

size on the different damage profiles and the computed

value of Γ . In these simulations, a mesh size of h =

0.02 mm has been used near the middle plane of crack

propagation corresponding to 5 elements over a distance

of l0. In [12,37], it has been mentioned that the quasi-

static damage profile can be wider than the theoretical

one by approximately δh ≈ 2h (see Fig. 8-top) leading

to the following overesimated fracture energy:

Γ qsest = Gc

(
1 +

3(2h)

8l0

)
= Gc + Γmesh (16)

In our case, the quasi-static fracture energy would be

over-estimated by 15%. In practice, a smaller overesti-

mation (around 10%) is observed, see for instance the

measured value of Γ ≈ 1.1Gc in Fig. 6 for ∆U = 0.035

mm at the beginning of crack propagation. In the dy-

namic case, we observe a similar behavior i.e. the two

sharp transitions from the fully damaged zone to the

parabolic profile can be over-estimated by a distance

h (see Fig. 8-bottom). As a result, if we consider a

damage profile consisting of a fully damaged zone of

width 2s due to dynamic effects, two mesh-related over-

estimations of size δh ≈ h and the two parabolic pro-

files, then the effective dynamic fracture energy can be

estimated as:

Γ dynest = Gc

1 +
6s

8l0︸ ︷︷ ︸
dynamic

+
6h

8l0︸︷︷︸
mesh size

 = Γ dyn + Γmesh (17)

where Γmesh ≈ 0.15Gc. The previous expression of

Γ dyn holds only in the case of a single-crack propaga-

tion (profiles A to C). In the transition regime (profile

D), the decrease of damage at y = 0 should be taken

into account.
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Fig. 8 Potential effect of mesh size (solid line) on the damage
profiles (dashed lines without mesh-size effect): quasi-static
case (top) and dynamic case (bottom).

Except in one case (∆U = 0.04 mm), no evident

decrease of the crack velocity has been observed after

branching. Although such results are not reported here,

simulations in different configurations (loading, bound-

ary conditions) exhibited branching at much lower ve-

locities than those reported here (around 0.2cR). These

results suggest that the crack velocity is not a determin-

ing parameter for crack branching. However, a critical

value of the energy release rate (close to 2Gc) seems to

be a necessary condition for branching for this phase-

field model. After branching, the damage rate drops to

a value close to Gc, which is associated with a smaller

damaged zone, until the process eventually repeats it-

self (multiple branching events have indeed been ob-

tained for higher loading values). This mechanism is

very similar to the one suggested in [54].

In view of the present results, we believe that an

energetic criterion is a pertinent way to describe the

branching process and would, therefore, require further

investigations, either from numerical simulations or ex-

periments. In particular, it would be very interesting to

design experiments with patches of different materials

with a known fracture energy: one can think of a sit-

uation in which a single crack propagates in a tougher

material and branches when arriving in a weaker one.

3.5 Velocity-toughening results

For all loadings, the evolution of the damage dissipation

rate Γ as a function of the instantaneous crack velocity

v has been recorded during the single crack propaga-

tion i.e. slightly after the initiation phase and before

the occurrence of macroscopic branching. Both quanti-

ties have been represented in Figure 9. A well-defined

master-curve is obtained for all loading levels showing

that Γ is slightly greater than the quasi-static fracture

energy Γ (0) = Gc at low velocities whereas a strong in-

crease of Γ can be observed when approaching a limit

speed around 0.7cR. Remarkably, this value is close to

the limiting velocity of 0.75cR identified experimentally

in [72] for the same geometry and loading conditions.

The L-shape aspect of the curve is associated with a

competition between two behaviours already identified

in dynamic crack propagation experiments: at low ve-

locities, a single crack propagating according to Griffith

theory whereas, at high velocities, a constant velocity

regime with important increase of additional dissipa-

tion mechanisms at the crack front.

This observation can be linked to the experimentally

observed transition between a mirror-like propagation

and a mist then hackle propagation characterized by

surface roughening and microbranching. Although the

present 2D model is not able to resolve the small length
scales associated with the onset of microbranches (and

obviously its 3D nature) or surface roughening, it is

possible for the damage field evolution to ”choose” (as

a by-product of energy minimization) between dissipat-

ing more energy by advancing the crack tip at a higher

velocity or by increasing the width of the damaged zone

by propagating a damage front on a small distance per-

pendicularly to the main crack propagation (this last

possibility could be associated with some kind of crack

tip blunting).

The degree of generality of Figure 9 has been ad-

dressed by changing the material parameters to those

close to Homalite-100 with E = 4.55 GPa, ν = 0.35,

ρ = 1230 kg/m3 and Gc = 38.5 J/m2 and to soda-lime

glass with E = 72 GPa, ν = 0.22, ρ = 2440 kg/m3 and

Gc = 3.8 J/m2 while keeping the same geometry. In

these cases, the Rayleigh wave speed is cR = 1093 m/s

for Homalite and cR = 3102 m/s for glass. We also var-

ied the PMMA plate geometry by considering a square



Dynamic crack propagation with a variational phase-field model 13

Fig. 9 The damage dissipation rate Γ is a well-defined increasing function of the crack speed for all initial loadings. The
points correspond to instantaneous values of v and Γ during the single crack propagation phase i.e. after initiation phase and
before branching for high loadings. The dotted line corresponds to the experimentally observed limiting velocity in [72].

geometry of 32 mm × 32 mm and a slender band of 32

mm × 8 mm with the same pre-notch of 4 mm.

The Γ (v) relation is represented in Figure 10 for

these different cases along with the collective results

of Figure 9. It can be observed that the same increas-

ing trend is obtained for each case. Interestingly, the

non-dimensional results corresponding to Homalite-100

and glass superimpose quite well to those obtained with

PMMA for the same geometry. On the contrary, it seems

that the Γ (v) relation is more dependent on the geom-

etry, at least at high velocities.

The origin of this dependence on geometry is not

yet clear, it may certainly be related to a different in-

teraction of the crack with stress waves reflected at the

boundary of the domain. In any case, it is a signature of

a difference in the conversion process of kinetic and elas-

tic energies into fracture energy. It is interesting that

such a process seems independent of material properties

when represented in terms of non-dimensional variables

while elastic moduli, fracture energies and sound wave

speeds differ by several factors.

Interestingly, without including any rate-dependency

in the model, our results are able to reproduce a velocity-

toughening mechanism at the macroscopic scale. Al-

though this increase of fracture surface seems to be

limited to a factor 2.5 whereas in [60] a factor 6 has

been observed due to the creation of microbranches,

our simulations show that a limiting velocity consistent

with experimental observations can be achieved. For

instance, this was not the case with rate-independent

cohesive models [73] in which cracks could accelerate

up to the Rayleigh wave speed for this particular con-

figuration.

4 Crack propagation in a heterogeneous

medium

Brittle fracture mechanics in heterogeneous materials

is now receiving increasing attention and more specifi-

cally in the dynamic case for which numerous questions

are still unanswered. The role of heterogeneities in dy-

namic fracture processes is studied across various length

scales, ranging from kilometres for earthquakes [20,35],

to millimetres for composite plates [71] or heteroge-

neous thin films [64] or even to nanometres in metal-

lic glasses [48]. Heterogeneities can have a complex in-

fluence on a crack propagation by nucleating daughter

cracks or exhibit a transition from weak to strong pin-

ning regime [50]. In particular, all these various dissi-

pative mechanisms in presence of heterogeneities make

it difficult to predict the effective toughness of a het-

erogeneous material.

In this section, we revisit the limiting speed, branch-

ing and velocity-toughening mechanism in presence of

heterogeneities. As mentioned previously, experiments

have also reported that crack velocities near cR can be

obtained when constraining the crack path to a weaker

interface or by drilling an array of holes ahead of the

crack [66]. We first aim at reproducing numerically these

observations. The velocity-toughening mechanism is then

reinterpreted for a crack propagating along such an

interface and subjected to unsuccessful branching at-



14 Jérémy Bleyer∗ et al.

Fig. 10 The normalized damage dissipation rate Γ/Gc as a function of the normalized crack velocity v/cR does not seem to
depend on material properties whereas it is dependent on geometry.

Fig. 11 Constrained propagation along a weak interface: the
same problem as in Section 3 is considered, except that the
crack is forced to propagate along the weak interface of frac-
ture energy Gi

c, the surrounding material has the same elastic
properties but is much tougher so that macroscopic branching
is prevented.

tempts. Finally, we also investigate how a distant het-

erogeneity can influence the crack propagation path.

4.1 Constrained crack propagation along a weak

interface

First, a band of material of width t = 2l0 = 0.2 mm

and fracture energy Gic = 300 J/m2 surrounded by a

tougher material (Gbc = 100Gic) is considered (see Fig.

11). Elastic properties are still homogeneous and cor-

respond to those of Section 3 so that the initial pre-

stressed state is the same as before.

In this configuration, the crack never branched (Fig.

12). Contrary to Fig. 7, the phase field is almost fully

saturated to d = 1 with a steep transition to d = 0

at the interface between both materials. For a given

Fig. 12 Crack propagation in a constrained path configu-
ration with ∆U = 0.05 mm. Branching is completely sup-
pressed, dissipation takes place only inside the middle inter-
face and the crack accelerates up to the Rayleigh wave speed.

Table 1 Crack velocities for the weak interface configura-
tion. Velocities up to 0.98cR have been attained.

∆U (mm) Stored energy (J/m2) Crack velocity (cR)

0.04 618 0.81
0.05 966 0.87
0.10 3,863 0.94
0.15 8,691 0.98

loading, the crack is accelerating to higher velocities

than for unconstrained configurations. Final velocities

for different initial loadings are reported in Table 1.

In particular, it has been possible to obtain velocities

up to 0.98cR for the highest loading. It is to be noted

that for ∆U > 0.15 mm, the whole interface starts to

damage at the same time due to the initial stress state

exceeding the elastic limit of the damage model.



Dynamic crack propagation with a variational phase-field model 15

Fig. 13 Constrained crack propagation in a perforated ma-
terial: here the same homogeneous material as in Section 3 is
considered except that an array of holes has been drilled in
front of the crack path. This results in an apparently weaker
interface so that propagation is also favoured along this plane.

4.2 Crack propagation through a perforated material

We now go back to the case of the homogeneous ma-

terial of Section 3 except that an array of holes of di-

ameter D, spaced by a distance S, is considered on the

mid-plane of the sample ahead of the crack tip (Fig.

13). We considered 30 holes with D = 0.4 mm and

S = 0.9 mm so that the holes are sufficiently small for

inducing only a negligible change of the total initially

stored elastic energy and sufficiently weaken the mid-

dle interface. Although this configuration induces stress

concentrations at the hole boundaries, the stress levels

remain sufficiently low so that no damage occurs be-

tween holes prior to the crack tip arrival.

Crack propagation is driven by a succession of the

following events (Fig. 14): when arriving near a hole,

the crack tip is first attracted to the boundary; after a

short time without any further evolution of the phase

field, a new crack nucleates on the middle plane at the

opposite point of the hole boundary and starts to prop-

agate towards the next hole.

As for the homogeneous case, progressive widening

of the damage band can be observed with increasing

crack advance (events A to C); for sufficiently avail-

able energy at the crack tip, this can translate into an

attempt at forming two branched cracks at the nucle-

ation point (events C to E). The attraction exerted by

the next hole can then stop the branching process and

reform one single crack from the two branches. As the

crack further propagates, the length of the side branches

increases. Similarly to the weakened interface, higher

crack speeds can be obtained in this configuration. For

instance, an initial loading of ∆U = 0.05 mm leads to

averaged velocities up to 0.9cR (Fig. 15(a)).

It is interesting to note that this particular simula-

tion shares some qualitative similarities with the micro-

branching phenomenon when considering the role of nu-

cleation, growth and coalescence of microcracks ahead

of the main crack path [57,58,16].

This process can be further understood when look-

ing at the evolution of the damage dissipation rate dur-

ing crack propagation (Fig. 15(b)). The five represen-

tative events are also reported and correspond approx-

imately to the moment when the crack tip is located

halfway between two holes.

At first, the apparent damage dissipation rate is less

than the medium fracture energy due to the weakening

presence of the holes. The apparent porosity along the

main crack path is φ = D/S ≈ 0.44, a simple crude es-

timate of the weakened interface fracture energy using a

rule of ”mixture” would then be Gc,weak = (1−φ)Gc =

0.56Gc. This estimate is roughly consistent with the

measured value of Γ at the beginning of the propaga-

tion (after the initiation phase) in Fig. 15(b), which is

around 0.7Gc (event A). It is also interesting to note

that the increase of Γ is relatively regular in the early

stages of propagation, corresponding to a straight prop-

agation of the crack through the first holes (up to event

B). However, when the crack further propagates, bursts

of increasing amplitude can be observed in the evolution

of Γ , which can be directly associated with unsuccessful

attempts at forming macrobranches (events C to E).

From a macroscopic point of view, the evolution of Γ

during crack propagation can be related to the observa-

tions of Fig. 6 in the homogeneous case. One important

difference is that the increase of Γ is more important

since it goes approximately from 0.7Gc to 2.3Gc. Re-

ferring to Fig. 14 from a macroscopic point of view,

this stronger relative increase in Γ can also be associ-

ated with a widening of a macroscopic damage band.

This widening is here essentially caused by unsuccess-

ful branching attempts, with increasingly longer side

branches as the crack propagates. It may seem surpris-

ing that a weakened interface would lead to a stronger

increase in Γ . However, we might argue that, although

the initial crack propagation phase can be associated

with an effective fracture energy Gc,weak, the attrac-

tive presence of the holes makes it more difficult for a

crack to branch. Assuming the existence of an energetic

branching criterion like Γ ≥ Gheterc,branch, we may suppose

that Gheterc,branch is essentially the same as for the homo-

geneous case (because branching occurs inside the bulk

between two holes) or is even higher since the holes at-

traction tend to delay branching. Thus, in this hetero-

geneous case, Γ would increase from Gc,weak < Gc to

Gheterc,branch ≥ Ghomogc,branch. The presence of heterogeneities

along the crack path has, thus, an important influence
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Fig. 14 Crack propagation in a perforated material with ∆U = 0.05 mm (the same colormap as in Fig. 5 is used). Macro-
branching is temporarily suppressed by crack tip attraction to the holes. Small attempts of branching can be observed at the
end (events D and E). See also Movie 1 in supplementary material.

on the velocity-toughening mechanism.

When looking at the evolution of the different forms

of energy (elastic, kinetic and dissipated through dam-

age propagation), it can be observed that less energy is

dissipated into fracture surface (Fig. 16 for ∆U = 0.05

mm) when the crack path is constrained either in a

weak interface or an array of holes than in the homo-

geneous case where macroscopic branching is possible.

The excess amount is then mostly transferred into ki-

netic energy which can be linked to higher crack veloc-

ities.

As mentioned before, when approaching a hole, the

crack tip is attracted to its boundary. This results in

an increase of its instantaneous velocity before being

momentarily stopped by the hole. In order to have a

closer look at the interaction between the crack and a

hole, we considered a simulation with 10 holes (D = 0.4

mm) separated by a distance S = 2.55 mm, the local in-

crease of the crack tip velocity when approaching each

hole can clearly be observed in Fig. 17. Associated with

this increase of crack tip velocities, strong bursts of ki-

netic energy can also be observed just before the crack

encounters a hole (inset of Fig. 17).

Note also that, for this configuration, the time inter-

val separating the moment the crack stops at the hole

boundary and nucleates again at the opposite point is

measured to be ∆t = 0.694 µs, which corresponds ex-

actly to the time for a Rayleigh wave to travel half of

the hole circumference: ∆t = πD/(2cR).

4.3 Crack propagation in presence of distant

heterogeneities

We investigate the influence of distant heterogeneities

on the crack propagation path. The same geometry for

the PMMA plate is considered here with different hole

configurations. We present only preliminary results in

the case of holes, although other kind of heterogeneities

such as stiffer inclusions have also been considered. In-

vestigating the mechanisms driving the interaction be-

tween a crack and various heterogeneities will require

a more thorough study, which will be the purpose of

another work.

First, we considered one single hole of diameter D =

0.4 mm, the center of which is situated 0.6 mm away

from the middle plane of the sample and either 1 mm

or 6 mm away from the pre-notch tip (∆U = 0.04

mm). Recalling that cracks accelerate progressively un-

til reaching a limiting speed (Fig. 4), the crack will pass

near the hole situated 1 mm from the pre-notch tip with

a smaller velocity than when passing near the one sit-

uated 6 mm away from the notch. The comparison of

the different crack paths between the two configurations

is reported in Figure 18. It can be observed that for

the closest hole, the crack interacts with the hole at a

slower velocity and is only slightly deviated towards the

hole but then continues its straight propagation. In the

other case the crack arrives near the hole with a higher

velocity, a microbranch appears and is attracted then

stopped by the hole. The main part of the crack then

continues its propagation with a smaller damage band
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(a)

(b)

Fig. 15 Crack velocity (a) and damage dissipation rate
(b) evolution during propagation through an array of holes
(∆U = 0.05 mm). Events A to E of Fig. 14 are reported us-
ing dashed lines. The damage dissipation rate increases with
crack propagation and large bursts can be associated with
unsuccessful branching attempts (events D and E). Velocities
close to the Rayleigh wave speed are obtained.

width after the microbranching event. In both cases, a

decrease of the instantaneous crack tip velocity can be

observed when interacting with the hole. The crack ac-

celerates again after passing the hole. Let us mention

that the opposite is observed in the case of a stiffer

inclusion, the crack accelerates when passing near the

inclusion and then decelerates.

These results are consistent with known results re-

garding attraction by holes and deflection by stiff inclu-

sions. However, one may have expected that a fast crack

will have less time to interact with a distant heterogene-

ity than a slower one, contrary to what is observed.

Fig. 16 Evolution of the different contributions to the total
energy for ∆U = 0.05 mm (normalized by the initially stored
elastic energy): elastic (blue), kinetic (green) and dissipated
(red) for the unconstrained case (solid) and weak interface
(dashed) and array of holes layout (dotted). Dissipated energy
is less important in the case of a constrained crack path, the
difference being mostly compensated by an increase in kinetic
energy and only slightly by a drop of elastic energy.

Fig. 17 Increase of the instantaneous crack tip velocity when
approaching holes (gray bands) for ∆U = 0.05 mm. The
dashed parts are due to the smoothing of the velocity when
the crack is stopped by a hole. Inset: Rate of kinetic energy
change as a function of time. Strong bursts of kinetic energy
at a macroscopic level are associated with the crack acceler-
ations when approaching a hole.

On the other hand, the velocity-toughening mechanism

suggests that a faster crack seeks additional dissipation

mechanisms than just a straight propagation at higher

velocities. As the damage band widens, the distance at

which it can interact with a defect may also increase.

However, we do not have yet a clear explanation of these



18 Jérémy Bleyer∗ et al.

observations but we believe that it is a striking example

of interesting interactions between fast cracks and het-

erogeneities, which therefore calls for further numerical

or experimental investigations.

Finally, we have considered a configuration of 15

small holes of diameter D = 0.4 mm, the centers of

which are situated either 0.5 mm or 0.6 mm away from

the middle plane of the sample. The spacing between

two consecutive holes is S = 1.95 mm. Two different

loadings of ∆U = 0.04 and 0.05 mm have been consid-

ered.

The results for these configurations are reported in

Figure 19. It can first be observed that the value of

the considered offset has an important influence on the

crack path patterns although the two geometric config-

urations are quite similar. In the first case of a 0.5 mm

offset (Fig. 19(a) and (b)), the crack localizes in the

weak plane composed by the holes when arriving near

the first one. The propagation, is then similar to the

one already described in the previous subsection with

attempts at branching and attraction of the different

branches by the next holes.

On the contrary, in the second configuration with

a 0.6 mm offset and ∆U = 0.04 mm (Fig. 19(c)), the

crack is slightly attracted by the presence of the first

hole but then continues its straight propagation while

small microbranches emerge from the main path to-

wards the next holes. For ∆U = 0.05 mm (Fig. 19(d)),

this behavior is more pronounced and the emergence of

microbranches tend to deflect the main crack away from

the holed plane. Additional microbranches can emerge

and are attracted by the holes even when the main crack

is quite far from the holed plane. As a result, the tough-

est plate corresponds to the second case with a 0.6 mm

offset since the crack does not propagate through the

weakened plane.

It is therefore quite surprising that, despite two con-

figurations being almost similar, such different crack

patterns are observed. Either the main crack is attracted

by the hole and propagate along a weaker plane or it is

repulsed by it and only microbranches are attracted by

the holes, resulting in the main crack deflection.

Finally, let us highlight once more that simulations

have also been conducted in the presence of hetero-

geneities consisting of a stiffer material. While a crack

is generally attracted by the presence of a hole, the

presence of stiffer inclusions tends to repel the crack.

Besides, the presence of a heterogeneity consisting of

the same elastic properties but with a different fracture

energy is not able to influence a crack unless it is lo-

cated on its path, contrary to heterogeneities consisting

of different elastic properties.

5 Conclusions and perspectives

This work has investigated the capacities of the phase-

field approach to reproduce specific features of dynamic

crack propagation in brittle media. We have focused on

the physical aspects which can be reproduced by nu-

merical simulations using such a method. We considered

a pre-strained PMMA plate configuration in which the

initially stored energy is well defined and which leads to

a progressive acceleration of the crack before reaching

a steady-state regime. By removing the effect of stress

waves induced by a suddenly applied loading in other

numerical benchmark, we are able to better understand

different aspects of dynamic crack propagation and the

onset of branching. More precisely, various key results

can be retained from this work:

– Crack propagation is characterized by a progressive

widening of the damaged band width. It does not

correspond to a later evolution of the crack tail due

to delayed diffusion but occurs simultaneously to the

crack tip advance. Besides, this wider band does not

correspond to a larger regularization length but to

a fully damaged zone with d = 1 with increasing

width, the transition zone from d = 1 to d = 0

remaining similar to the 1D solution profile.

– The damage band widening is associated with an

increase of the apparent fracture energy Γ . A well-

defined master-curve relating Γ to the crack velocity

in a single crack propagation phase is obtained. This

relation does not depend on material properties but

seems geometry-dependent.

– Macroscopic branching is observed when Γ reaches a

sufficiently high value, corresponding approximately

to 2Gc. This observation favours an energetic crite-

rion for branching. To our knowledge, this has not

been remarked in previous works and would, there-

fore, require further investigations, both from a nu-

merical and experimental point of view.

– A limiting velocity around 0.7cR is observed, which

is in accordance with experimental results for this

specific configuration. Computations in constrained

propagation along a weakened interface enabled to

reach velocities close to cR, which has also been ob-

served in previous experiments.

– The considered phase-field approach is able to natu-

rally account for velocity-toughening both at a macro-

scale with damage band thickening and branching

and at a smaller scale when interacting with hetero-

geneities through microbranching.
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(a) (b)

Fig. 18 Close-up view of the interaction of a crack with a single hole at 1 mm (a) and 6 mm (b) from the pre-notch tip with
an offset of 0.6 mm from the middle plane (∆U = 0.04 mm).

(a) 0.5 mm offset and ∆U = 0.04 mm (b) 0.5 mm offset and ∆U = 0.05 mm

(c) 0.6 mm offset and ∆U = 0.04 mm (d) 0.6 mm offset and ∆U = 0.05 mm

Fig. 19 Close-up view of the interaction of a crack with an array of holes located 0.5 mm ((a) and (b)) or 0.6 mm ((c) and
(d)) away from the middle plane for two different loadings: ∆U = 0.04 mm ((a) and (c)) or ∆U = 0.05 mm ((b) and (d)). See
also Movies 2–5 in supplementary material.
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– Computations in presence of heterogeneities clearly

showed the influence of defects on the crack prop-

agation dynamics. In particular, holes on the crack

path can delay macroscopic branching and lead to

a stronger increase of the damage dissipation rate.

Besides, the interaction of a crack with distant het-

erogeneities show that complex configurations can

be obtained depending on the crack velocity and

defect locations.

Regarding the last point, these preliminary simulations

in heterogeneous media reveal a complex interplay be-

tween crack dynamics, material heterogeneities, micro-

branching and increase of fracture surface. The predic-

tion of an effective toughness in dynamics seems to be a

challenging question as various dissipative process can

lead to a value higher than a simple average toughness.

This question will require further investigation to, even-

tually, pave the way to the design of more efficient ma-

terials regarding dynamic fracture.

We believe that this work enabled to show that

the phase-field approach is a legitimate candidate to

study complex mechanisms of dynamic fracture. How-

ever, numerous questions remain still open. First, the

pertinence of an energetically-based branching criterion

should be more precisely assessed. Secondly, the present

work did not manage to reproduce crack velocities ob-

tained from the pre-strained PMMA plate experiments

with the corresponding loading levels. Other models

showed the same deficiencies and suggest rate effects

have to be taken into account for PMMA. Finally, it is

necessary to investigate the influence of 3D effects and

the role of random material heterogeneities to better

reproduce such experimental results.
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46. Moës, N., Dolbow, J., Belytschko, T.: A finite element
method for crack growth without remeshing. Interna-
tional Journal for Numerical Methods in Engineering
46(1), 131–150 (1999)
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