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Abstract
Weighted undirected graphs are a simple, yet powerful way to encode structure in data. A first

question we need to address regarding such graphs is how to use them effectively to enhance

machine learning problems. A second but more important question is how to obtain such a

graph directly from the data. These two questions lead the direction of this thesis.

We first explore the use of graphs in matrix completion, with direct implications in recom-

mendation systems. In such systems side information graphs arise naturally, by comparing

user behavior and interactions, and by product profiling. Given incomplete object ratings by

users, and known graphs for user and object similarities, we propose a new matrix completion

model that exploits the graphs to achieve better recommendations. Our model is convex and

is solved efficiently with an Alternating Direction Multipliers method (ADMM). It achieves

better recommendations than standard convex matrix completion, especially when very few

ratings are known a priori, while it is robust to the graph quality.

Continuing with the second question, we are interested in learning a graph from data. Data

is usually assumed to be smooth on a graph, an assumption associated with graph sparsity

and connectivity. Using this assumption, we provide a general graph learning framework that

is convex and easy to optimize. We classify graph learning according to the prior structure

information in edge-local, node-local or global.

Edge-local models are the cheapest computationally, learning each edge independently. Expo-

nential decay graphs and ε-neighborhood graphs, the most prevalent weighting schemes in

the literature, are such models of our framework. We provide a new model that interpolates

between these two, and achieves better performance in many settings.

Node-local models take into account the neighborhood of each edge. While they require

iterative algorithms, they are stronger models achieving better results. We provide a new node-

local model for general graph learning under smoothness assumptions, that redefines the

state of the art. We discuss the previous state of the art, two global models of our framework.

We provide efficient primal-dual based algorithms for efficiently solving our model and the

most prevalent of the previous ones. Our model performs best in many settings.

Large scale applications require graphs that are easy to compute, with cost that scales grace-

fully with respect to the number of nodes, and do not need parameter tuning. We provide the

first large scale graph learning solution, based on approximate nearest neighbors with cost of
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O
(
n log(n)

)
for n nodes. Our solution automatically finds the needed parameters given the

sparsity level needed.

We finally explore learning graphs that change in time. In many applications graphs are not

static, and data comes from different versions of them. In such cases there is no one graph

that correctly summarizes connectivity, and we need to learn several graphs, one for each

selected time window. Assuming that graphs change slowly, we provide two new models based

on a known global and our own node-local one. Our convex time-varying-graph models can

use any convex differentiable loss function for time-change penalization, have a cost linear

to the number of time windows, and are easy to parallelize. The obtained graphs fit the data

better and provide a good compromise between detail in time and computational cost.

Key words: graph, graph learning, matrix completion, recommendation systems, smooth sig-

nals, signal processing on graphs, cumulative energy, total cumulative energy residual, TCER,

large scale graph learning, time varying graphs, network inference, graph regression, Laplacian

estimation, convex optimization, ADMM, primal-dual optimization, proximal methods.
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Résumé
Les graphes pondérés non dirigés présentent un moyen simple, mais puissant d’encoder la

structure des données. Cette thèse explore deux questions importantes relatives aux graphes.

Premièrement comment les utiliser de façon efficace pour améliorer la résolution de prob-

lèmes d’apprentissage automatique? Deuxièmement, comment obtenir ces graphes directe-

ment à partir des données?

Pour commencer, nous appliquons les graphes au problème de complétion de matrices, un

problème qui a une implication directe dans les systèmes de recommandations. Dans cette

application, les graphes émergent naturellement par exemple en comparant le comportement

et les interactions des utilisateurs. En se fondant sur quelques évaluations ainsi que deux

graphes connectant les utilisateurs et les produits, nous proposons un nouveau modèle de

complétion de matrices. Notre modèle est convexe et se résout facilement via une méthode

parallélisable (ADMM). Il surpasse le modèle standard de complétion de matrice et se révèle

particulièrement efficace lorsque peu d’évaluations sont connues.

Ensuite, nous nous intéressons à l’apprentissage d’un graphe directement à partir des don-

nées. En général, les données sont supposées être régulières sur un graphe, une hypothèse

associée à la parcimonie et à la connectivité. Grâce à cette hypothèse, nous proposons une

classe de problèmes convexes facilement optimisables qui permettent d’apprendre le graphe.

Nous classifions ces problèmes en fonction de leur structure: «arête locale», «nœud local» ou

«global».

Les modèles «arête locale» sont les moins gourmands en calcul car chaque arête est apprise

indépendamment. Par exemple, les graphes à décroissance exponentielle et les graphes de

voisinage ε-proche, les stratégies les plus utilisées dans la littérature, sont de tels modèles dans

notre contexte. Nous proposons un nouveau modèle qui interpole entre ces deux cas et qui

atteint de meilleures performances dans de nombreux scénarios.

Les modèles «nœud local» prennent en compte le voisinage de chaque arête. Ils nécessitent

des algorithmes itératifs mais sont plus performants. Nous proposons un nouveau modèle

«nœud local» sous l’hypothèse de la régularité qui redéfinit l’état de l’art. Nous discutons des

résultats antérieurs de l’état de l’art, deux modèles généraux de notre classe. Nous proposons

aussi des implémentations efficaces fondées sur des algorithmes proximaux pour notre mo-

dèle ainsi que pour l’un des précédents, montrant que notre modèle est le meilleur dans de

nombreuses situations.
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Par ailleurs, les applications à grande échelle nécessitent des graphes facilement calcula-

bles, c’est à dire avec un coût qui augment lentement par rapport au nombre de nœuds, et

sans réglage de paramètres. Nous proposons la première implémentation à grande échelle

d’apprentissage de graphe fondée sur une approximation des plus proches voisins. Le coût

est de l’ordre de O
(
n log(n)

)
pour n nœuds et les paramètres pour un niveau de parcimonie

donné sont sélectionnés automatiquement.

Finalement, nous explorons l’apprentissage des graphes évoluant au cours du temps. En sup-

posant un changement lent, nous proposons deux nouveaux modèles fondés sur les résultats

précédents. Notre méthode d’apprentissage peut être utilisée avec n’importe quelle fonction

de pénalisation différentiable et est facilement parallélisable. Le graphe ainsi obtenu permet

un bon compromis entre la précision au niveau temporel et le temps de calcul.

Mots clefs: graph, graph learning, matrix completion, recommendation systems, smooth sig-

nals, signal processing on graphs, cumulative energy, total cumulative energy residual, TCER,

large scale graph learning, time varying graphs, network inference, graph regression, Laplacian

estimation, convex optimization, ADMM, primal-dual optimization, proximal methods.
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Introduction

When we solve a machine learning problem, adding prior information about the structure

of our data can lead to stronger models. An effective and flexible way to express structure

in data is by the use of graphs, where pairs of objects (nodes) are connected through edges.

Depending on the problem and the data in hand, a graph structure might be trivially available.

For example in social networks the graph can be defined through friendships, while in a train

transportation network the graph connects cities that have a direct train connection. When

such prior information is known about our data, a natural question that arises is

1. How can we use graph structures to solve a machine learning problem more effectively?

In the context of machine learning, the graph structure is often encoded through its Laplacian

matrix, denoted by L (Chapter 1). The importance of the graph Laplacian has long been known

as a tool for low-dimensional embedding, manifold learning, clustering and semi-supervised

learning, see for example Belkin and Niyogi [2001]; Zhu et al. [2003]; Coifman et al. [2005];

Belkin et al. [2006]; Von Luxburg [2007].

More recently we find an abundance of methods that exploit the notion of smoothness on a

graph (Chapter 1) to regularize various machine learning tasks, solving problems of the form

minimize
X

g (X )+ tr
(
X �LX

)
. (1)

Zhang et al. [2006] solve problems of this form in order to enhance web page categorization

with graphs, Elmoataz et al. [2008] for image and manifold processing, and Zheng et al. [2011]

for graph regularized sparse coding. Cai et al. [2011] use the same smoothness term to

regularize NMF, Jiang et al. [2013] for PCA, and Shahid et al. [2015] for Robust PCA. In Chapter

2 we solve a problem of this form in order to enhance matrix completion when similarity

graphs are known [Kalofolias et al., 2014].

From data to structures

In many cases, the structure underlying our data in hand is not readily available. Learning

such graph structures is in itself an important problem. Not only can they be an powerful

statistical analysis tool, but also a necessary step behind the success of the aforementioned
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methods.

Given the importance of the problem, a big part of today’s machine learning research is de-

voted in identifying structures from data. The second and more interesting question addressed

in this thesis is in the same direction:

2 How can we learn a graph from given data?

In order to learn a graph we solve the complementary problem, where we are given the data X

and we want to find a graph through its Laplacian L

minimize
L∈L

tr
(
X �LX

)+ f (L),

where L denotes the set of valid graph Laplacians. This is the subject of Chapter 3 and the

ones after that, significantly extending the work in [Kalofolias, 2016].

Graphs are a great data analysis and processing tool. In order to afford to use them for real

data, we have to keep the computational cost low as the number of nodes increases. This

is the reasoning behind using Chebyshev polynomials [Hammond et al., 2011] or Lanczos

approximations [Susnjara et al., 2015] in order to vastly reduce the cost of graph filtering. This

is also the rationale for using approximate nearest neighbor graphs [Muja and Lowe, 2014]

instead of exact fully connected or nearest neighbor graphs. For the same reasons, graph

learning has to be performed efficiently, leading us to methods like our large scale graph

learning of Chapter 6.

Thesis structure and contributions

Chapter 1: We provide properties of graphs (many of which are novel) that will be needed in

the rest of the thesis. We show the connection between data smoothness, graph sparsity, and

connectivity. We unify different models of smooth signals under the notion of filtering. We

provide a new quality measure of how well a linear basis “explains” a data matrix or distribution.

The latter will be needed throughout the thesis to measure graphs quality. Notably, we show

that minimizing tr
(
X �LX

)
implicitly optimizes this general basis quality measure.

Chapter 2: We introduce a novel matrix completion model that uses graphs to encode prox-

imity information between rows and between columns. Fitting the model leads to a convex

function, for which we provide an efficient optimization algorithm. Targeting recommender

systems applications, we study and evaluate the proposed matrix completion on synthetic

and real data, showing that our model outperforms the standard matrix completion model in

many situations.

Chapter 3: We propose a framework to learn the graph structure underlying a set of smooth

signals. Given X ∈Rm×n whose rows reside on the vertices of an unknown graph, we learn the

edge weights w ∈R
m(m−1)/2
+ under the smoothness assumption that tr

(
X �LX

)
is small, where

2
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L is the graph Laplacian. We show that the problem is a weighted �1 minimization that leads

to naturally sparse graphs. We classify models as edge-local, node-local or global depending

on the separability of the objective function with respect to the edges.

Chapter 4: We focus on graph learning where each edge can be learnt separately (edge-local).

We prove that the standard graph construction with Gaussian weights wi j = exp
(− 1

σ2 ‖xi −x j‖2
)

is a special case of our framework, with an objective function related to the edge entropy. The

ε-neighborhood graphs are also part of our framework. We provide a new model that interpo-

lates between ε-neighborhood and Gaussian weight graphs, and we show that in many cases

it performs better than both.

Chapter 5: Models where edges are not learnt separably are stronger. We propose a new

node-local model and present a fast and scalable primal-dual based algorithm to solve it.

We also analyze the previous state of the art model using our framework, so as to simplify it,

prove fundamental properties, and provide a scalable algorithm that was missing from the

literature. The two algorithms we provide (for our model and the previous state of the art) are

the first scalable solutions in the literature to learn a graph under smoothness assumptions.

We discuss a Bayesian point of view of graph learning to show the connections between these

models and another global model of the literature. We evaluate their performance on artificial

and real data. Our model performs best in most settings, providing good connectivity for

distant nodes, where the previous state of the art model is struggling.

Chapter 6: We attack the two main problems of our model of Chapter 5 in terms of complexity.

We provide an approximate solution scheme based on approximate nearest neighbors graphs,

that costs O
(
m logm

)
instead of O

(
m2
)

per iteration for m-nodes graphs. We analyze the

sparsity of the obtained graph as a function of the learning parameters in order to give a

practical scheme of setting them automatically. With a simple Matlab implementation we are

able to learn a graph between 60000 images of MNIST on a laptop in less than a minute. Our

large scale experiments further show that our model vastly outperforms the previous state of

the art, that we also implement using our large scale scheme.

Chapter 7: We show how one can learn a graph that changes slowly in time. We show how

the same algorithm we used in Chapter 5 can solve the new problem, and how it is easily

parallelized. Our experiments show that the new “time smoothness” assumption makes time

varying graphs more robust to the number of training signals, fitting data better and achieving

greater detail in time.

Chapter 8: We discuss some of the main points of this thesis and new research directions that

it can lead to.

3





1 Graphs and data on graphs

In this thesis we are interested in weighted undirected graphs without self-loops. Such a graph,

written as G = {V ,E ,W }, is defined by the set of vertices or nodes V = {1 . . .n}, the set of edges

E ⊆ {(i , j
) |i , j ∈V}, and a weighted adjacency matrix W ∈Rn×n+ . An element Wi j of the latter

is the weight of its associated edge (i , j ) ∈ E , or equal to 0 if such an edge does not exist. The

adjacency matrix of an undirected graph is symmetric, and as we do not assume self-loops,

has a zero diagonal.

Given a graph G we define a signal x ∈Rn on a graph by associating its element xi to vertex i

of the graph. A signal x will in general be called smooth on G if its Dirichlet energy

‖x‖2
D,G = 1

2

∑
i , j

Wi j (xi −x j )2 (1.1)

is small. In order for the Dirichlet energy of a signal x to be small, it needs to have similar

values xi and x j for two well connected nodes i , j (that is, with large Wi j ). For a set of m

signals in Rnarranged as columns of a matrix X ∈ Rn×m , the Dirichlet energy measuring its

smoothness on G is defined as

‖X ‖2
D,G =

n∑
k=1

‖xk‖2
D,G = 1

2

∑
i , j

Wi j
∥∥xi −x j

∥∥2 , (1.2)

where now we use xi to denote the i -th row of X . In this case, each of the nodes of the graph

corresponds to a row of X . Note that in order to keep notation simple, we will follow the same

convention from now on, using xi to denote a vector in Rn or Rm according to the context,

unless otherwise noted.

A very important mathematical object defined on a graph is its Laplacian

L = D −W, D = diag(W 1) , (1.3)

where 1 = [1, . . . ,1]� and D is the diagonal matrix containing the weighted degrees of the graph.

5



Chapter 1. Graphs and data on graphs

Given this definition of the Laplacian, the Dirichlet energy can be written as

‖x‖2
D,G = x�Lx,

‖X ‖2
D,G = tr

(
X �LX

)
,

using the fact that

1

2

n∑
i=1

n∑
j=1

Wi j‖xi −x j‖2
2 =

1

2

n∑
i=1

n∑
j=1

(xi −x j )�Wi j (xi −x j )

=
n∑

i=1

n∑
j=1

x�
i Wi j xi −

n∑
i=1

n∑
j=1

x�
i Wi j x j

=
n∑

i=1
x�

i xi

n∑
j=1

Wi j − tr
(
X �W X

)
= tr
(
X �D X

)− tr
(
X �W X

)
= tr
(
X �LX

)
. (1.4)

1.1 Properties of the graph Laplacian

A big part of this thesis is dedicated to learning a graph from a data matrix X . Previous

approaches to learning a graph from data were based on searching for the Laplacian of the

graph [Lake and Tenenbaum, 2010; Hu et al., 2013; Dong et al., 2015]. The space of all valid

graph Laplacians, is by definition

L=
{

L ∈Rn×n :(∀i �= j
)

Li j = L j i ≤ 0, Li i =−∑
j �=i

Li j

}
,

containing constraints about the sign of the off-diagonal elements, the relationship between

the diagonal and off-diagonal elements, and the symmetricity. We argue that it is more

intuitive to search for a valid weighted adjacency matrix W from the space

Wm = {W ∈Rn×n
+ : W =W �, diag(W ) = 0

}
,

leading to simplified problems. Even more, when it comes to actually solving the problem by

optimization techniques, we should consider the space of all valid edge weights for a graph

Wv =
{

w ∈R
n(n−1)/2
+

}
,

so that we do not have to deal with the symmetricity of W explicitly.

The spaces L, Wm and Wv are equivalent, and connected by bijective linear mappings. We use

the notation W = matrixform(w) and w = vectorform(W ) to express the transition between a
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1.1. Properties of the graph Laplacian

Table 1.1 – Equivalent terms for representations from sets L, Wm and Wv . We use z =
vectorform(Z ) and linear operator S that performs summation in the vector form.

L ∈L W ∈Wm w ∈Wv

2tr
(
X �LX

) ‖W ◦Z‖1,1 2w�z
tr(L) ‖W ‖1,1 2w�1 = 2‖w‖1

– ‖W ‖2
F 2‖w‖2

2
diag(L) W 1 Sw
1� log(diag(L)) 1� log(W 1) 1� log(Sw)
‖L‖2

F ‖W ‖2
F +‖W 1‖2

2 2‖w‖2
2 +‖Sw‖2

2

weight vector w ∈Wv and an adjacency matrix W ∈Wm . We can see the vectorform operation

as a simple stacking of the upper triangular elements of W (the diagonal not included) in a

vector w . In the sequel we use Wm to analyze the problem in hand and Wv when we solve

the problem using optimization. Table 1.1 exhibits some of the equivalent forms in the three

spaces.

1.1.1 Smoothness on a graph means graph sparsity

In this section we see the Dirichlet energy as a function of the weights (and not as a function

of X ). Let us define the pairwise distances matrix Z ∈Rn×n+ :

Zi j =
∥∥xi −x j

∥∥2 . (1.5)

Using matrix Z we can rewrite the Dirichlet energy as a function of W as

tr
(
X �LX

)= 1

2
tr(W Z ) = 1

2
‖W ◦Z‖1,1 , (1.6)

where ‖A‖1,1 is the elementwise norm-1 of A and ◦ is the Hadamard product. The last equality

holds because both W and Z are non-negative.

In words, the smoothness term is a weighted �-1 norm of W , encoding weighted sparsity, that

penalizes edges connecting distant rows of X . The interpretation is that when the given

distances come from a smooth manifold, the corresponding graph has a sparse set of edges,

preferring only the ones associated to small distances in Z .

Explicitly adding a sparsity term γ‖W ‖1,1 to the objective function is a common tactic for

inverse covariance estimation. We can easily see that adding such a term is equivalent to

merely adding a constant to the squared distances in Z :

tr
(
X �LX

)+γ‖W ‖1,1 = 1

2

∥∥W ◦ (2γ+Z )
∥∥

1,1 . (1.7)

7



Chapter 1. Graphs and data on graphs

Note that all information of X conveyed by the trace term is contained in the pairwise distances

matrix Z , so that the original data could be omitted. Moreover, using the last term of eq. (1.6)

instead of the trace enables us to define other kinds of distances instead of Euclidean. In fact,

any kind of pairwise dissimilarity between nodes can be used in order to learn a graph with

our framework of Chapter 3, depending on the application.

Note finally that the separate rows of X do not have to be smooth signals in some sense. Two

non-smooth signals xi , x j can have a small distance between them, and therefore a small

entry Zi j .

1.1.2 Graph sparsity versus connectivity

The number of different connected components of a graph is given by the number of zero

eigenvalues of its Laplacian, n − rank(L). While the rank itself is not a convex function of W or

L, we can consider the tightest convex relaxation that is the nuclear norm of L if we want to

control connectivity. Then the following interesting property holds:

‖L‖∗ = tr(L) = tr(D) = ‖W ‖1, (1.8)

where the last equality holds because the weights are non-negative. The interpretation of this

property is that when we have a sparser graph (fewer edges), it becomes less connected and a

larger number of separate connected components will appear. On the other hand, by keeping

the nuclear norm high, the graph is denser as we have a less sparse W .

The nuclear norm of the Laplacian is very particular, as it is a linear function of W . A direct

implication of this is that when we learn a graph we can either penalize or promote connectivity

(i.e. adding a positive or a negative term ‖L‖∗), keeping the optimization problem convex. We

will see both these cases in Chapter 4.

1.1.3 Degrees and eigenvalues

The degrees and the eigenvalues of a graph Laplacian have a special relationship. We already

know that they have the same sum:

tr(L) =
n∑

i=1
λi =

n∑
i=1

di = tr(D) .

More than that, the eigenvalues of a Laplacian majorize the node degrees according to the

Schur-Horn theorem [Schur, 1923; Horn, 1954]:

n∑
i=1

[λ↓]i >
n∑

i=1
[d↓]i ,
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Figure 1.1 – Eigenvalues and degrees of different types of graphs. According to the Schur-Horn
theorem [Schur, 1923; Horn, 1954], the eigenvalues majorize the degrees of the Laplacians.

where λ↓ denotes sorting of the eigenvalues in a decreasing order, and []i is the i -th element

of the expression in brackets. One of the implications is that the smallest degrees are always

larger in general than the smallest eigenvalues (and the largest degrees smaller than the largest

eigenvalues). We can see a few examples in Figure 1.1.

In Chapter 5 we will use the relationship between the degrees and the eigenvectors in order to

compare different graph learning models.

1.2 Smooth Signals

The claim that a signal is smooth on a graph if its Dirichlet energy is small is a bit vague. A

slightly more rigorous definition can be given using tools from signal processing on graphs,

as explained in the work of Shuman et al. [2013]. Similarly to time signals, we can analyze a

graph signal x ∈Rn in its graph frequencies x̂ ∈Rn using the graph Fourier transform:

x̂ =U�x.

The graph Fourier matrix U = [u1, . . . ,un] of a graph is defined through the eigenvectors ui

of its Laplacian, associated to its eigenvalues λi , sorted in increasing order: L =UΛU�. Low

graph frequencies correspond to small eigenvalues, and smooth signals are the ones with a

big part of their energy concentrated in low graph frequencies. This is revealed if we assume a

unit norm graph signal x so that
∑

i x̂2
i = ‖x‖2 = 1 and write its Dirichlet energy as

‖x‖D,G = x�Lx = x̂�Λx =
n∑

i=1
λi x̂2

i .

Low frequency coefficients x̂i are multiplied by small eigenvalues λi and obtain a small graph

Dirichlet energy.

In the literature, different definitions of what is a smooth signal have been used in different

contexts. We unify these different definitions using the notion of filtering on graphs. Filtering
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Chapter 1. Graphs and data on graphs

of a graph signal x by a filter h(λ) is defined as the operation

y = h(L)x =∑
i

ui h(λi )u�
i x =∑

i
ui h(λi )x̂i . (1.9)

Note that by h we denote both the function h : R→R and its matrix counterpart h : Rn×n →
Rn×n acting on the matrix’s eigenvalues. As low frequencies correspond to small eigenvalues,

a low-pass or smooth filter corresponds to a decaying function h.

In the sequel we show how different models for smooth signals in the literature can be written

as smoothing problems of an initial non-smooth signal. We give an example of three different

filters applied on the same signal in figures 1.2 and 1.3.

1.2.1 Smooth signals by Tikhonov regularization.

Given an arbitrary initial signal x0 ∈Rn we can obtain a smooth signal x not too far from x0 by

directly penalizing its Dirichlet energy x�Lx:

x = argmin
x

1

2
‖x −x0‖2

F + 1

α
x�Lx.

The result of this optimization problem, that can be seen as a denoising problem [Elmoataz

et al., 2008] of signal x0 is given by x = (αL+ I )−1x0. Equivalently, we can see this as filtering

x0 by

h(λ) = 1

1+αλ
, (1.10)

where large α values result in smoother signals.

1.2.2 Smooth signals from a linear Gaussian model.

Lake and Tenenbaum [2010] proposed that smooth signals can be generated by a linear

Gaussian model

x ∼N
(
0,
(
L+ I /σ2)−1

)
. (1.11)

Later, Dong et al. [2015] modeled smooth signals on graphs as Gaussian signals from the

generative model

x ∼N
(
x̄, L†

)
, (1.12)

where L† is the pseudo-inverse of L and the mean x̄ should also be a smooth signal. The two

generative models (1.11) and (1.12) are equivalent up to an additive constant in the special
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1.2. Smooth Signals

case where x̄ is a constant vector, and for σ→∞.1, 2 The Dirichlet energy of a signal is however

invariant to additive constants.

To sample from a Gaussian linear model, it suffices to draw an initial white Gaussian signal

x0 ∼N (0, I ) (that is non-smooth), and then compute

x = x̄ +h(L)x0, (1.13)

with h(L) =
√(

L+ I /σ2
)−1 for eq. (1.11) or h(L) =

�
L† for eq. (1.12). Equivalently, for the

model by Lake and Tenenbaum [2010] we can filter x0 by

h(λ) =
√(

λ+σ−2
)−1 ∈R, (1.14)

and for the model by Dong et al. [2015] we can filter x0 by

h(λ) =
⎧⎨⎩
�
λ−1, λ> 0

0, λ= 0
∈R (1.15)

and add the mean x̄ ∈R.

We point out here that using eq. (1.13) on any x0 ∼N (0, I ) and for any filter h(λ) would yield

samples from

x ∼N
(
x̄,h(L)2) ,

therefore the probabilistic generative model can be used for any filter h. However, it does

not cover cases where the initial x0 is not white Gaussian. For an analysis of graph stationary

signals with arbitrary covariance function h(L), we refer the curious reader to the work of

Perraudin and Vandergheynst [2016].

1.2.3 Smooth signals by heat diffusion on graphs

Another type of smooth signals in the literature results from the process of heat diffusion on

graphs. See for example the work by Zhang and Hancock [2008] for an application on image

denoising by heat diffusion smoothing on the pixels graph. Given an initial signal x0, the result

of the heat diffusion on a graph after time t is x = exp(−Lt)x0, therefore the corresponding

filter is

h(λ) = exp(−tλ), (1.16)

1This happens because the two covariances only differ in how they deal with the 0-th eigenvalue of L, that is
associated with a constant eigenvector.

2Note also that if we learn a graph between rows of a matrix X using Euclidean distances Z , adding a random
constant to any column will not change the result, as Z is translation invariant.
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Chapter 1. Graphs and data on graphs

Table 1.2 – Different Types of Smooth Signals.

Concept Model Graph filter

Tikhonov x = argminx
[1

2‖x −x0‖2
F + 1

αx�Lx
]

h(λ) = 1
1+αλ

Generative model x ∼N
(
0,L†
)

h(λ) =
{

1�
λ

if λ> 0

0 if λ= 0

Heat diffusion x = exp(−αL) x0 h(λ) = exp(−αλ)

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1.2 – The filters of Table 1.2 for α= 10.

where larger values of t result in smoother signals.

1.2.4 Artificial smooth data

Table 1.2 summarizes the different models of smooth signals, that are plotted in Figure 1.2.

Samples of these signals on the same non-uniform graph are plotted in Figure 1.3. We see that

the three signals are quite similar to each other, as they are smooth versions of the same initial

x0.

1.3 Sample graphs versus feature graphs

Suppose that we have a matrix X ∈ Rn×m , where rows correspond to samples, for example

different images, and columns correspond to features, in this case pixels. In the literature

there have been two types of graphs proposed for this kind of data.

The most prevalent type is the one between samples. In this case, the columns can be seen

as signals on the columns graph. The rationale behind these is very often that samples

reside on low dimensional manifolds, and graphs are their discrete approximations. For

example learning the connections between images, forming the graph Laplacian and using

the eigenvectors of the smallest eigenvalues we can embed them in a low dimensional space

Belkin and Niyogi [2001]. This is the point of view followed by Zhu et al. [2003] as well, and in

general by most of the graph models in the literature.
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Figure 1.3 – Different smooth signals on the Non Uniform graph used for our artificial data
experiments. All signals are obtained by smoothing the same initial x0 ∼N (0, I ) with three
different filters. This instance of the graph is disconnected with 2 components.

More recently, a different functionality of graphs was introduced in the literature. In the work

by Shahid et al. [2016a] a graph was introduced between features, in order to obtain a close to

low rank matrix X without a nuclear norm term. Later, Perraudin and Vandergheynst [2016]

introduced the notion of signals that are stationary on feature graphs, that is, signals whose

graph Laplacian and covariance have the same eigenvectors. The signals in this case are the

images, or the samples, that reside on the features’ graph. There is not necessarily a manifold

reasoning behind this choice of graphs. On the other side, we can draw connections between

this type of graph and an inverse covariance matrix, or with principal component analysis

(PCA).

In this thesis, we experiment with both above cases. To show the contrast between them,

we will learn both types of graphs from the same data matrix X , the train part of the MNIST

dataset. The latter contains 60000 images (samples) of 784 pixels (features) as the images are

of size 28×28. In Figure 1.5b we see the quality of learned feature graphs compared to quality

of a PCA basis when explaining the whole MNIST dataset using only k samples (signals). As

explained in this figure, such graphs are especially interesting when few samples (signals) are

available for this task. On the other hand, we also learn a graph between all 60000 images in

Chapter 6. There, we have no choice: we only have 784 signals (pixels) available in order to

learn a graph with 60000 nodes.

Note that it is not always clear which assumption makes more sense for our data. For example

in matrix completion of a ratings matrix where columns and rows correspond to users and

movies respectively, there is no clear distinction between features and samples. If samples

are the users, then features are the movies, and if samples are the movies, then features are
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Chapter 1. Graphs and data on graphs

the users. Nevertheless, the use of graphs to encode proximities between users and between

movies helps in improving the recovery quality (Chapter 2).

1.4 A new graph quality measure

In our research it is crucial to have a good measure of how well a graph G fits a data matrix

X or a distribution p(X ). This is important in both fundamental problems that interest us in

this thesis: when we recover X knowing G , and when we learn a graph G from the data X . In

this section, we propose a new quality measure that associates a graph to a data matrix or

distribution, that to the best of our knowledge was missing from the literature.

In order to define the new measure, we will see the graph as a method that provides us with an

orthogonal basis. This basis is the graph Fourier transform matrix [Chung, 1997], that is, the

eigenvector matrix of the graph Laplacian.

One of the known quality criteria of orthogonal bases is their ability to “explain” most of the

data energy or variance with as few basis vectors as possible. The energy is optimized by

the singular vectors of a matrix obtained by SVD, and the variance by the eigenvectors of its

empirical covariance obtained by PCA. Naturally, when seeking a good basis Q for smooth

signals X , we want to quantify this ability of “energy explanation by few vectors”, asking the

question: How efficiently does Q accumulate energy of data X or distribution p(X ) in its first

few vectors?

We begin by defining how much energy of a matrix X is carried by the first k vectors of an

orthogonal basis Q:

Definition 1. Data cumulative energy on a basis Q: Given a data matrix X ∈ Rn×m and a

sorted orthogonal basis Q = [q1, . . . qn
]
, the cumulative energy of the data on the first k vectors

of the basis is defined as

S{X ,Q}(k) =
k∑

i=1
‖q�

i X ‖2 = ‖X̂k‖2
F .

By X̂k we denote the projection of X on the first k vectors of the basis: X̂k =Q:,1:kQ�
:,1:k X .

To understand why the cummulative energy can reveal the basis quality, let us see the error

between the projected matrix X̂k and the original matrix X :

‖X − X̂k‖2
F = ‖X ‖2

F +‖X̂k‖2
F −2tr

(
X̂ �

k X
)

= ‖X ‖2
F −‖X̂k‖2

F

= ‖X ‖2
F −S{X ,Q}(k). (1.17)

We can see that by increasing the cumulative energy on the first k vectors, we decrease the error

between the projection X̂k and the actual data X . The cumulative energy is a non decreasing

14



1.4. A new graph quality measure

function of k and obviously depends on the order of the basis vectors.

We can summarize the compressibility of a dataset on a given basis Q as expressed by the

cumulative energy by its sum over all possible ranks of approximation from 1 to n:

Definition 2. Total cumulative energy of data on a basis Q: Given a data matrix X ∈ Rn×m

and a sorted orthogonal basis Q = [q1, . . . qn
]
, the total cumulative energy of the data X is

defined as

T {X ,Q} =
n∑

k=1
S{X ,Q}(k) =

n∑
k=1

k∑
i=1

‖q�
i X ‖2 =

n∑
i=1

(n +1− i )‖q�
i X ‖2.

The highest cumulative energy S of any matrix X for a fixed k is achieved by its left singular

vector basis. Consequently, the same basis achieves the highest total cumulative energy of X .

In the special case that X has zero sum of columns, the best basis is the one given by principal

component analysis (PCA): Suppose that the singular value decomposition of the data matrix

is X =UΣV � where Σi i are sorted in decreasing order. Then we have

max
Q∈O

T {X ,Q} = T {X ,U } =
n∑

k=1

k∑
i=1

Σ2
i i =

n∑
i=1

(n +1− i )Σ2
i i , (1.18)

where O is the set of all orthogonal matrices. Note that if X has zero column sum, U is also its

PCA basis, as its empirical covariance matrix is 1
n X X � =UΣ2U� =U EU�, where E =Σ2 is the

eigenvalue diagonal matrix.

If the columns of X follow a distribution p(X ) with mean mX = EP (X ) {X } and covariance CX =
EP (X )

{
(X −mX ) (X −mX )�

}
, what is more interesting is to measure the expected cumulative

energy:

Property 1. Expected cumulative energy

EP (X )
{
S{X ,Q}(k)

}= EP (X )

{
k∑

i=1

∥∥q�
i X
∥∥2

.

}

=
k∑

i=1
q�

i EP (X )
{

X X �}qi

=
k∑

i=1
q�

i

(
CX +mX m�

X

)
qi

=
k∑

i=1

∥∥q�
i UX ΣX

∥∥2

=S
{
UX ΣX ,Q

}
(k),

where we have used the eigenvalue decomposition

CX +mX m�
X =UX Σ

2
X U�

X .
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Figure 1.4 – Expected cumulative energy of empirical covariance basis (left) and graph basis
(right) computed from 20 samples versus maximum expected cumulative energy (blue line).
Data is constructed according to the generative model (1.13) from a 100-node sensor graph
and normalized. The residual of the expected total cumulative energy, eq. (1.20) is equal to
the difference between the red and blue areas over the blue area. The graph used for the right
figure is our model explained in detail in Chapter 5.

The maximum expected total cumulative energy is now achieved by the basis implied by

EP (X )
{

X X �}:
max
Q∈O

EP (X )
{
T {X ,Q}

}= max
Q∈O

T {UX ΣX ,Q}

= T {UX ΣX ,UX }

=
n∑

i=1
(n +1− i )ΣX

2
i i . (1.19)

For zero-mean data, this translates to the eigenvectors of the covariance CX (also known as

the Karhunen–Loève basis) instead of the sample covariance used by PCA.

While the PCA basis of a zero-mean matrix X “explains” best its samples (columns of X ), it

might fail to explain well other samples of the same distribution, if the number of “training”

samples is not sufficient. Furthermore, if the number of samples is smaller than the number of

variables, only the first eigenvectors of the covariance matrix are valid, and the rest are rotated

arbitrarily in the space orthogonal to the first ones. We see this effect in the left part of Figure

1.4. When only 20 samples are used to approximate the covariance matrix, the quality of the

basis of its eigenvectors is far from the perfect basis given by the eigenvalue decomposition of

the actual covariance matrix (blue line). To quantify this compression inefficiency, we propose

the following orthogonal basis quality measure:

Definition 3. Total cumulative energy residual (TCER): Given a data distribution p(X ) with

mean mX and covariance CX , and a sorted orthogonal basis Q = [q1, . . . qn
]
, we define the
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1.4. A new graph quality measure

residual of the total cumulative energy as

R
{

p(X ),Q
}= 1 − EP (X )

{
T {X ,Q}

}
maxQ∈O EP (X )

{
T {X ,Q}

}
= 1 − T {UX ΣX ,Q}

T {UX ΣX ,UX }
(1.20)

where we use the eigenvalue decomposition CX +mX m�
X =UX Σ

2
X U�

X and the denominator of

eq. (1.20) is simply
∑n

k=1

∑k
i=1ΣX

2
i i .

An interesting implication of TCER is that for stationary signals on graphs as defined by Per-

raudin and Vandergheynst [2016], where eigenvectors of the covariance CX and the Laplacian

coincide, if the graph Fourier coefficients are strictly decreasing in magnitude (the signal is

smooth), TCER is minimized. In other words, TCER is a measure of how smooth and stationary

is a signal on a given graph. This is because for such signals the Karhunen–Loève transform

and the graph Fourier transform coincide as well.

1.4.1 Graphs versus PCA and the graphical LASSO

One of the advantages of using graphs is, as we see in Figure 1.5, that they provide a good basis

for the whole distribution, even when very few samples are available. To produce this figure

we have used zero mean data in order to have a fair comparison against PCA (for MNIST we

subtract the per-feature mean from the whole dataset before any computation). We see that

the trend on artificial data (left figure) is closely followed by real data as well (right figure).

Because for the latter we can not know the exact theoretical covariance matrix (to compute

the denominator of eq. (1.20)), we approximate it by the sample covariance of 50000 samples

that were not used for computing the bases by PCA or graphs.

For MNIST, we also compare against a sparse inverse covariance estimator (also known as the

graphical LASSO) [Banerjee et al., 2008; Friedman et al., 2008], that was proposed as a remedy

to the problem of having very few observations for covariance estimation. We see that learning

a graph gives a better quality basis unless we have around 100 samples or more for training.

Note also that the computational cost of graphical LASSO is in general O
(
n3
)

per iteration,

while the graph learning model used here (Section 5.2) has a cost of only O
(
n2
)

per iteration.

1.4.2 Connection with tr
(
X �LX

)
Let L =QΛQ� be the eigenvalue decomposition of the graph Laplacian. Then we can rewrite

the Dirichlet energy of a data matrix X on the graph as:

tr
(
X �LX

)= n∑
i=1

λi‖q�
i X ‖2.
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Figure 1.5 – Total cumulative energy residual of bases computed by sample PCA and graphs for
different number of samples. Left: Artificial data from a sensor graph of 200 nodes following
the generative model (1.13). Right: Covariance and graphs bases between features (pixels with
at least 5% of the maximum variance) of MNIST train dataset. The theoretical upper bound
of the expected cumulative energy was approximated using the 50000 samples of the dataset
that were not used for PCA or the graph construction. The yellow circle indicates the number
of features (nodes), above which the empirical covariance is invertible. Graph learning is
especially attractive for the region to the left of this point. The graph used for the right figure is
our model explained in detail in Chapter 5.

For the same basis, the data matrix X has the total cumulative energy

T {X ,Q} =
n∑

i=1
(n +1− i )‖q�

i X ‖2.

The two quantities are complementary, in the sense that the Dirichlet energy has increasing

weights and TCER decreasing ones for the terms ‖q�
i X ‖2. When we learn a graph by minimiz-

ing the Dirichlet energy, we implicitly minimize the TCER, obtaining a good representability of

the data using the first few eigenvectors of the Laplacian. This is an explanation of why graph

smoothing works, where we are given a graph and we minimize with respect to X . This is also

why graph learning works, where we are given data X and we minimize with respect to the

Laplacian L.
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2 Matrix completion on graphs

The problem of finding the missing values of a matrix given a few known elements is called

matrix completion. In order to solve it we need further assumptions, the most common one

being that it is low rank. Although under a low rank assumption the problem is NP-hard,

Candès and Recht [2009] showed that we can obtain an exact solution with high probability if

the number of observed elements is sufficiently large. In this chapter, we introduce a novel

matrix completion model that makes use of side information about proximities between rows

and between columns in order to achieve better reconstruction quality.

The assumption of known connectivity between rows or columns makes sense in real-world

problems like in recommender systems, where there are communities of people sharing

preferences, while products form clusters that receive similar ratings. Our main goal is to find

a low-rank solution that is structured by the proximities of rows and columns encoded by

graphs. Given the graphs of products (for example movies) and users, we can assume that

the corresponding signals are smooth thereon. We formulate our matrix recovery model as

a convex non-smooth optimization problem, for which we provide an efficient alternating

direction multipliers method in order to optimize it. We study and evaluate our model on

synthetic and real data, showing that adding the graphs’ side information provides better

performance than the standard matrix completion model in many situations.

2.1 Related work

Reconstructing signals exactly from very few measurements was first explored by the field of

compressed sensing. Exact recovery from few measurements is actually possible if the signal

is sparse in some representation domain. A related essential question has been recently con-

sidered for matrices: is it possible to reconstruct matrices exactly from very few observations?

It appears that exact recovery is also possible in this setting if the matrix is low-rank. The

problem of low-rank recovery from sparse observations is referred as the matrix completion

problem. Several important real-world problems can be cast as a matrix completion problem,

including remote sensing [Schmidt, 1986], recommendation systems [Srebro et al., 2004], and
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Chapter 2. Matrix completion on graphs

system identification [Liu and Vandenberghe, 2009]. Throughout this chapter we will consider

the application to recommendation systems as an illustration of the matrix completion prob-

lem. Such systems have indeed become very common in many applications such as movie or

product recommendation (e.g. Netflix, Amazon, Facebook, and Apple).

The Netflix recommendation system tries to predict ratings of movies never seen by users.

Collaborative filtering is widely used today to solve this problem [Breese et al., 1998], inferring

recommendations by finding similar rating patterns and using them to complete missing

values. This is typically a matrix completion problem where the unknown values of the matrix

are computed by finding a low-rank matrix that fits the given entries.

How much information is needed for the exact recovery of low-rank matrices? In the case of

random uniformly sampled entries without noise, Candès and Recht [2009] showed that, to

guarantee perfect recovery, the number of observed entries must be larger than cn1.2r logn

for n ×n matrices of rank r (this bound has been refined more recently, see [Recht, 2011] and

references therein). The case of noisy observations was studied in [Candès and Plan, 2010;

Negahban and Wainwright, 2012], while a non-uniform sampling setting was considered by

Salakhutdinov and Srebro [2010]. In this chapter, we propose to use additional information

about rows and columns of the matrix to further improve the matrix completion solution,

especially in the noisy case.

In the standard matrix completion problem, rows and columns are assumed to be completely

unorganized. However, in many real-world problems like the one of Netflix, there exist rela-

tionships between users, (reflecting their behavioral similarities) and movies (such as their

genre, release year, actors, origin country, etc). This information can be taken advantage of,

since people sharing the same tastes for a class of movies are likely to rate them similarly. We

make use of graphs to encode relationships between users and movies and we introduce a

new reconstruction model called matrix completion on graphs. Our main goal is to find a

low-rank matrix that is structured by the proximities between users and movies.

Introducing structure in sparse recovery problems is not new in the literature of compressed

sensing [Huang et al., 2009; Baraniuk et al., 2010; Jenatton et al., 2011], while similar structure

inducing regularization has been proposed for factorized models for matrix completion [Ma

et al., 2011]. Yet, introducing structures via graphs in the convex low-rank matrix recovery

setting is novel. We note that a large class of recommendation systems, called content-based

filtering, use graphs and clustering techniques to make predictions [Huang et al., 2002]. Along

this line, our proposed methodology can be seen as a hybrid recommendation system that

combines collaborative filtering (low-rank property) and content-based filtering (graphs of

users and movies).

We borrow ideas from the field of manifold learning [Belkin and Niyogi, 2001, 2003] and force

the solution to be smooth on the graphs of users and movies. When data resides on a manifold,

it is computationally more convenient to work with the corresponding graph, that can be

seen as the (non-uniform) discretization of the latter. In the case of clustered data, we can see
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2.2. Original matrix completion problem

each cluster to be a different manifold that corresponds to a community in the graph. In any

case, we use the graph Dirichlet energy (1.2), and show that the proposed model leads to a

convex non-smooth optimization problem. Convexity is a desired property in order for the

solution to be unique. Non-smoothness can be challenging, however, our problem belongs

to the class of �1-type optimization problems, for which several recently proposed efficient

solvers exist [Boyd et al., 2011; Combettes and Pesquet, 2011; Nesterov and Nemirovski, 2013].

The corresponding algorithm is derived in Section 2.4. It is tested on synthetic and real data

[Miller et al., 2003] in Section 2.5.2.

2.2 Original matrix completion problem

The problem of matrix completion is to find the values of an m ×n matrix M given a sparse

set Ω of observations Mi j : (i , j ) ∈Ω ⊆ {1, . . . ,m}× {1, . . . ,n}. Problems of this kind are often

encountered in recommender system applications, the most famous of which is the Netflix

problem, in which one tries to predict the rating that n users (columns of M) would give to

m films (rows of M), given only a few ratings provided by each user. A particularly popular

model is to assume that the ratings are affected by a few factors, resulting in a low-rank matrix.

This leads to the rank minimization problem

min
X∈Rm×n

rank(X ) s.t. AΩ(X ) =AΩ(M), (2.1)

where AΩ(M) = (Mi j∈Ω) denotes the observed elements of M . Problem (2.1) is NP-hard.

However, replacing rank(X ) with its convex surrogate known as the nuclear or trace norm

[Srebro et al., 2004] ‖X ‖∗ = tr((X X �)1/2) = ∑k σk , where σk are singular values of X , one

obtains a semidefinite program

min
X∈Rm×n

‖X ‖∗ s.t. AΩ(X ) =AΩ(M). (2.2)

Under the assumption that M is sufficiently incoherent, if the indices Ω are uniformly dis-

tributed and |Ω| is sufficiently large, the minimizer of (2.2) is unique and coincides with the

minimizer of (2.1) [Candès and Recht, 2009; Recht, 2011]. If in addition the observations are

contaminated by noise, one can reformulate problem (2.2) as

min
X∈Rm×n

γn‖X ‖∗ +� (AΩ(X ),AΩ(M)) , (2.3)

where the data term � in general depends on the type of noise assumed, and γn ∈ R+ is a

parameter that depends on the amount of noise assumed. If � is the squared Frobenius

norm ‖AΩ ◦ (X −M)‖2
F (AΩ here is the observations mask matrix, ◦ the Hadamard product),

the distance between the solution of (2.3) and M can be bounded by the norm of the noise
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Chapter 2. Matrix completion on graphs

[Candès and Plan, 2010].

One notable disadvantage of problems (2.2-2.3) is the assumption of a “good” distribution

of the observed elements Ω, which implies, in the movie rating example, that on average

each user rates an equal number of movies, and each movie is rated by an equal number of

users. In practice, this uniformity assumption is far from being realistic: for instance, in the

Netflix dataset, the number of movie ratings of different users varies from 5 to 104. When

the sampling is non-uniform, the quality of the lower bound on |Ω| deteriorates dramatically

[Salakhutdinov and Srebro, 2010], from approximately constant number of observations per

row in the former case, to an order of n1/3 −n1/2 in the latter. In such settings, Salakhutdi-

nov and Srebro [Salakhutdinov and Srebro, 2010] suggest using the weighted nuclear norm

‖X ‖∗(p,q) = ‖diag(
�

p)X diag(
�

q)‖∗, where p and q are m- and n- dimensional row- and

column-marginals of the distribution of observations, showing a significant performance im-

provement over the unweighted nuclear norm. Pathologically non-uniform sampling patterns,

such as an entire row or column of M missing, cannot be handled. Furthermore, in many

situations the number of observations might be significantly smaller than the lower bounds.

2.3 Matrix completion on graphs

Assuming that the recovered matrix should be low rank implies that its rows or columns

are linearly dependent. However, this dependence is unstructured. In many situations, the

rows/columns of matrix M possess additional structure that can be incorporated into the com-

pletion problem in the form of a regularization. In this work, we assume that rows/columns of

M are given on vertices of graphs. In the Netflix example, the users (columns of M) are the

vertices of a “social graph” whose edges represent e.g. friendship or similar tastes relations.

Thus, it is reasonable to assume that connected users would give similar movie ratings, that is,

interpreting the ratings as an m-dimensional vector-valued function on the n vertices of the

social graph, such a function would be smooth.

More formally, let us be given the undirected weighted row graph Gr = (Vr ,Er ,Wr ) and column

graph Gc = (Vc ,Ec ,Wc ). Let X ∈Rm×n be a matrix, which we will regard as a collection of m-

dimensional column vectors denoted with subscripts X = [x1, . . . , xn], or of n-dimensional row

vectors denoted with superscripts X = [(x1)�, . . . , (xm)�
]�

. Regarding the columns x1, . . . , xn

as a vector-valued function defined on the vertices Vc , the smoothness assumption implies

that x j ≈ x j ′ if ( j , j ′) ∈ Ec . Stated differently, we want

∑
j , j ′

wc
j j ′‖x j −x j ′‖2

2 = tr
(
X Lc X �) = ‖X �‖2

D,c (2.4)

to be small, where Lc = Dc−Wc is the Laplacian of the column graph Gc , and ‖·‖D,c is the graph

Dirichlet semi-norm for columns. Similarly, for the rows we get a corresponding expression

tr
(
X �Lr X

)= ‖X ‖2
D,r with the Laplacian Lr of the row graph Gr . These smoothness terms are
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2.4. Optimization

added to the matrix completion problem as regularization terms (in the sequel, we treat the

case where � is the squared Frobenius norm),

min
X

γn‖X ‖∗ +� (AΩ(X ),AΩ(M))+ γr

2
‖X ‖2

D,r +
γc

2
‖X �‖2

D,c . (2.5)

2.3.1 Relation to simultaneous sparsity models.

Low rank promoted by the nuclear norm implies sparsity in the space of outer products

of the singular vectors, i.e., in the singular value decomposition X =∑k σk uk v�
k only a few

coefficients σi are non-zero. Recent works [Oymak et al., 2012] proposed imposing additional

structure constraints, considering matrices that are simultaneously low-rank (i.e., sparse

in the space of singular vectors outer products) and sparse (in the original representation).

Our regularization can also be considered as a kind of simultaneously structured model.

The column smoothness prior (2.4) makes the rows of X be close to the eigenvectors of the

column graph Laplacian Lc , i.e., each row of X can be expressed as a linear combination

of a few eigenvectors of Lc (see Section 1.4.2). This can be interpreted as row-wise sparsity

of X in the column graph Laplacian eigenbasis. Similarly, the row smoothness prior results

in column-wise sparsity of X in the row graph Laplacian eigenbasis. Overall, the whole

model (2.5) promotes simultaneous sparsity of X in the singular vectors outer product space,

and row/column-wise sparsity in the respective Laplacian eigenspaces.

2.4 Optimization

Problems like (2.5) containing non-differential terms cannot be optimized with pure gradient

based approaches, while proximal based methods can be applied instead. We use the Alter-

nating Direction Method of Multipliers (ADMM) that has seen great success recently [Boyd

et al., 2011]1 by first introducing the equivalent splitting version of (2.5)

min
X ,Y ∈Rm×n

γn‖X ‖∗︸ ︷︷ ︸
F (X )

+ 1

2
‖AΩ ◦ (Y −M)‖2

F + γr

2
‖Y ‖2

D,r +
γc

2
‖Y �‖2

D,c︸ ︷︷ ︸
G(Y )

s.t. X = Y . (2.6)

This splitting step followed by an augmented Lagrangian method to handle the linear equality

constraint is what constitutes ADMM. The success of ADMM for �1 problems is mainly due to

the fact that it does not require an exact solution for the iterative sub-optimization problems,

but rather an approximate solution. The augmented Lagrangian of (2.6) is

L(X ,Y , Z ) = F (X )+G(Y )+ tr
(
Z�(X −Y )

)〉+ ρ

2
‖X −Y ‖2

F .

1Other choices could include for example fast iterative soft thresholding [Beck and Teboulle, 2009].
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Chapter 2. Matrix completion on graphs

Both F and G are closed, proper and convex, and since we have no inequality constraints,

Slater’s conditions hold and therefore we have strong duality. Then (X �,Y �) and Z� are

primal-dual optimal if (X �,Y �, Z�) is a saddle point of the augmented Lagrangian L, i.e.

sup
Z

inf
X ,Y

L(X ,Y , Z ) = L(X �,Y �, Z�) = inf
X ,Y

sup
Z

L(X ,Y , Z ) ⇒

L(X �,Y �, Z ) ≤ L(X �,Y �, Z�) ≤ L(X ,Y , Z�) ∀X ,Y , Z .

ADMM finds a saddle point with the following iterative scheme

X k+1 = argmin
X

L(X ,Y k , Z k ), (2.7)

Y k+1 = argmin
Y

L(X k+1,Y , Z k ), (2.8)

Z k+1 = Z k +ρ(X k+1 −Y k+1). (2.9)

Eventually the convergence of the proposed ADMM algorithm (2.7)-(2.9) can be studied (and

likely proved) with different mathematical approaches, for example as by Cai et al. [2010].

2.4.1 Solving sub-optimization problems

ADMM algorithms can be very fast as long as we can compute fast approximate solutions to

the sub-optimization problems, here (2.7) and (2.8). The first one requires finding X k+1 that

minimizes L(X ,Y k , Z k ), that is2

X k+1 =argmin
X

γn‖X ‖∗ +ρ/2‖X −H‖2
F

=proxF /ρ(H),

where H = Y k −ρ−1Z k . In the case of the nuclear norm, there exists a closed-form solution:

X k+1 =U softγn /ρ(Λ)V �,

where UΛV � = H is the singular value decomposition (SVD) of H , and softη(λ) = max(0,λ−
η) λ

|λ| is the soft-thresholding operator defined for λ ∈R.

To solve the second subproblem (2.8), we need to find Y k+1 that minimizes L(X k+1,Y , Z k ),

that is

Y k+1 =argmin
Y

1/2‖AΩ ◦ (Y −M)‖2
F +γr /2‖Y ‖2

D,r +γc /2‖Y �‖2
D,c +ρ/2‖Y −H‖2

F

=proxG/ρ(H),

where H = X k+1 +ρ−1Z k . The solution of this problem can be obtained by solving a linear

2The proximal operator proxE of function f is defined as prox f (X ) = argminY f (Y )+1/2‖X −Y ‖2
F .
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2.5. Numerical experiments
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(a) Rank-10 matrix M of ideal ratings (b) Graph of users with 25% of wrong edges

Figure 2.1 – Synthetic ‘Netflix’ dataset

system of equations. More precisely, the optimality condition of (2.8) is

AΩ ◦ (Y −M)+γr Y Lr +γc Lc Y +ρ(Y −H) = 0,

which can be re-written in the standard form Ay = b as

(ÃΩ+γr Lr ⊗ In +γc Im ⊗Lc +ρImn)vec(Y ) = vec(M +ρH).

Here we have used the column stack vectorization operator vec(·), the Kronecker product ⊗,

and ÃΩ = diag(vec(AΩ)). We also use the known formula vec(ABC ) = (C� ⊗ A)vec(B). Also

note that A is symmetric positive semidefinite (s.p.s.d.) as the Kronecker product of two

s.p.s.d. matrices, thus the conjugate gradient (CG) algorithm can be applied to compute a fast

approximate solution of (2.8).

Computational complexity. The overall complexity of the algorithm is dominated by the

computation of the nuclear proximal solutions by SVD, whose complexity is O(mn2) per

iteration for m > n [Golub and Van Loan, 2012]. The computational complexity of the CG

algorithm is O(kmn) for k-NN graphs.

2.5 Numerical experiments

In this section we evaluate our method under different experimental scenarios, both in artifi-

cial and on real data.

2.5.1 Synthetic ‘Netflix’ dataset

We start the evaluation of our matrix recovery model with a synthetic Netflix-like dataset, to

study the behavior of model under controlled conditions. The artificial dataset M is generated

such that it fulfills two assumptions: (1) M is low-rank and (2) its columns and rows are

respectively smooth w.r.t. the column graph Gc and the row graph Gr . Figure 2.1a shows our
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Chapter 2. Matrix completion on graphs

synthetic dataset. It is inspired by the problem of movie recommendations as elements of M

are chosen to be integers from {1. . .5} like in the Netflix prize problem. The matrix in Figure

2.1a is noiseless, showing the ideal ratings for each pair of user and movie groups.

The row graph Gr of the matrix M is constructed as follows. The rows of M are grouped into

10 communities of different sizes. We connect nodes within a community using a 3-nearest

neighbors graph and then add different amounts of erroneous edges, that is, edges between

vertices belonging to different communities. The erroneous edges form a standard Erdős-

Rényi graph with variable probability. We follow the same construction process for the column

graph Gc that contains 12 communities. For both graphs, binary edge weights are used. The

intuition behind this choice of graphs is that users form communities of people with similar

taste. Likewise, movies can be grouped according to their type, so that movies of the same

group obtain similar ratings. The users graph is depicted in Fig 2.1b, where nodes of the same

community are clustered together. Note that matrix M in Figure 2.1a has rank equal to the

minimum of user communities and the movie communities, in this case 10.

Recovery quality versus number of observations

Two standard assumptions often used in the literature on matrix completion are that the

observed elements of the matrix are sampled uniformly at random, and that the reconstructed

matrix is perfectly low-rank (the case that we call noiseless).

Noiseless case. We test the performance of our method in this setting, comparing it to the

standard nuclear norm-based matrix completion (a particular case of our problem with

γc = γr = 0) and to a method that uses only the graphs (γn = 0). We reconstruct the matrix M

using different levels of observed values and report the reconstruction root mean squared error

(RMSE) on a fixed set of 35% of the elements that was not observed. The result is depicted in

Fig 2.2a. We use graphs with 10%, 20%, and 30% of erroneous edges. Noisy graphs alone (green

lines) perform poorly compared to the nuclear norm reconstruction (blue line). However,

when we use both graphs and nuclear norm (red lines), we obtain results that are better than

any of the two alone.

Noisy case. We add noise to M using a discretized Laplacian distribution. This type of noise

models the human tendency to impulsively over- or under-rate a movie. In this case, the

matrix that we try to reconstruct is close to low-rank, and the nuclear norm is still expected

to perform well. As we see in Figure 2.2b though, if we have high-quality graphs (green line

with 10% erroneous edges), we can expect the same reconstruction quality of the nuclear

norm regularization by using just half of the number of observations and only with the graph

smoothness terms (green dashed line), that computationally is much cheaper to run. In this

figure, the dashed black line designates the level of added noise in the data.

Note also that even if we use connectivity information of relatively bad quality (green dashed

line with 30% wrong edges), we can still benefit by combining the smoothness and the low-rank
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Figure 2.2 – Matrix recovery error on synthetic ‘Netflix’ dataset (uniform sampling). Percentage
of erroneous edges in graphs is shown on top of green and red lines.
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Figure 2.3 – Matrix recovery error on synthetic ‘Netflix’ dataset (non-uniform sampling).
Percentage of erroneous edges in graphs is shown on top of green and red lines.
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Chapter 2. Matrix completion on graphs

regularization terms (solid red line). Therefore the combination of nuclear and graph is robust

to graph construction errors for low levels of observation. However, when the observation

level is high enough (> 50% for this specific size of matrices - note that this number may vary

significantly depending on the matrix size), this benefit is lost (solid red line) and the nuclear

norm regularizer (blue line) works as well without the graph smoothness terms.

Non-uniform sampling. As noted in [Salakhutdinov and Srebro, 2010], the pattern of the

observed values in real datasets does not usually follow a uniform distribution. In fact, the

observations are such that the rating frequencies of users and movies closely follow power

law distributions. In our experiment, we assume a simple generative process where users and

movies are independently sampled from a power law, that is pr
(
sample{i , j }

)= 1/i j . This is a

very sparse distribution with fixed expected number of observations, so we repeat this process

identically s times in order to control the overall density. Our final sampling is the logical OR

operator of all these s ‘epochs’, that follows the distribution p
(
{i , j } ∈Ω

)= 1− (1−1/i j
)s . We

find that this simple sampling scheme gives results close to the actual ratings of real datasets

such as the MovieLens 10M that we use in the following.

The results of our experiments for this setting are summarized in Figure 2.3a. Not surprisingly,

all methods suffer from the non-uniformity of the sampling distribution. Still, the nuclear

norm (blue line) crosses the line of a high-quality graph (10% green line) only after 35%

observations, while in the uniform case, Figure 2.2a, this happened for less than 20% observed

values. A similar behavior is exhibited for the noisy case, Figure 2.3b. There, the nuclear norm

regularization quality is better than the medium-quality graph (20% green line) only for more

than 45% observations, while in the uniform case, Figure 2.2b, the corresponding percentage

was 25%.

2.5.2 Movielens dataset

In this section, we report experiments on real data, which appear consistent with the results

on the aforementioned artificial data. We work with the widely used MovieLens 10M dataset

[Miller et al., 2003], containing ratings (‘stars’) from 0.5 to 5.0 (increments of 0.5) given by

71,567 users for 10,677 movies. The density of the observations is 1.31%. In our experiments,

we use a 500×500 subset of the original matrix for the reconstruction evaluation. This serves

two purposes: firstly, we can choose an arbitrary density of the submatrix, and secondly, we

can use ratings outside of it as features for the construction of the column and row graphs, as

detailed below (see Figure 2.4a). Furthermore, the effect of non-uniformity is weaker.

The density of the observations is selected as follows. We sort the rows (users) and columns

(movies) by order of increasing sampling frequency (Figure 2.4b). Then, users and movies are

chosen to be close to the 99-th and 95-th percentile of their corresponding distributions.3

The resulting 500×500 matrix has 39.4% observed values that correspond to the ratings that

3Since the number of movies in the full matrix is much smaller than the number of users, we keep more
frequently rating users in order to have a dense features matrix when we create the users graph.
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(a) Full Movielens matrix A.
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Figure 2.4 – Movielens 10M dataset. The submatrix M of A is used for training and testing. The
blocks Fm and Fu are used to construct the movie and user graphs.

a user has given to a movie. After a row and column permutation, the original MovieLens

10M matrix A is partitioned in blocks A = [M ,Fu ;Fm ,R], where M is the 500×500 matrix that

we use for our experiments (Figure 2.4a). We treat Fu as the users feature matrix, Fm as the

movies feature matrix and discard the remaining matrix R.

Graph construction

Quality of graphs obviously plays an important role to our matrix recovery algorithm. A

detailed analysis of how to construct good graphs is the subject of the next chapters of this

thesis, but for this application we will resort to a simple, yet natural way of constructing the

graphs for our setting, using the feature matrices Fu and Fm . We adapt the basic algorithm of

[Belkin and Niyogi, 2003] to our setting that contains missing values.

The distance we use between two users is the RMS distance between their commonly rated

movies dui j = ‖[Fui −Fu j

]
Ωui j

‖�2 /
√

|Ωui j |, Ωui j = Ωui ∩Ωu j , where Ωui is the set of ob-

served movie ratings for user (row) i in Fu and |Ωui j | is the number of movies in Fu that both

users i and j have rated. We do the same to construct the movie distances from Fm , that is,

for each pair of movies we only take into account the ratings from users that have rated both.

Note that distances between movies or between users, that take values from [0,4.5] stars, share

the same scale with the ratings and with the reconstruction error. Since the distances are all

Euclidean, choosing the parameters of the graphs becomes more natural. The first choice we

make is to use an ε-neighborhood graph instead of a k-NN graph. To give weights to the edges,

we use a Gaussian kernel, that is, wui j = exp
[
−(dui j −dmin-u

)2 /α
]

if dui j < ε,0 otherwise. In

the latter, dmin-u denotes the minimum distance among all pairs of users and α controls how

fast the weights decay as distances increase. The transfer function used for the movies graph

is plotted in Figure 2.5a, while the one for users is nearly identical.

We give weight values equal to 1 for distances close to the minimum one (around 0.6 stars),

while the weights decay fast as the distance increases. We choose ε = 1.1 star, while α is
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Figure 2.5 – Experiments on a part of the Movielens-10M dataset

chosen so that the transfer function is already very close to 0 for dui j → ε. This means that

our model is equivalent to an inf-NN graph with the same exponential kernel. Note that the

final reconstruction error is better than 1.1 star in RMS, which justifies that distances that are

smaller than that are trusted. We found that the results are indeed much better when a k-NN

graph is not used. A possible explanation for this is that in the case that a user that deviates

a lot from the habits of other users (s)he would still have k connections. These connections

would not contribute positively in the recommendations quality regarding this user.

All this being said, it is here essential to emphasize that the graphs constructed for these exper-

iments are not optimal. We foresee that the results presented in this chapter can be further

improved if one has access to detailed profile information about users and movies/products.

This information is available to typical companies that sell products to users.

Results

We apply a standard cross-validation technique to evaluate the quality of our completion

algorithm. For this purpose, the 39.4% observations of the 500×500 matrix are split into a

fixed test set (7.4%) and a varying size training set (from 1% to 32%). We perform 5-fold cross

validation to select the parameters γn , γr and γc of our model (2.5) and only use the test set to

evaluate the performance of the final models. The recommendation error results are plotted

in Figure 2.5b. The behavior of the algorithms is similar to the one exhibited by the noisy

artificial data above (medium quality of graphs). For most observation levels our method

combining nuclear norm and graph regularization (red line) clearly outperforms the rest.

There are however two boundary phases that are noteworthy. When very few observations

are available (1%) there seems to be no benefit in adding the expensive nuclear norm term in

the optimization problem, as the graph regularization alone (green line) performs best. On

the other hand, for very dense observation levels (32%) the nuclear norm (blue line) reaches
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the performance of the combined model. In general our combined model is very robust to

observation sparsity, while the standard nuclear norm model performs worse even than the

much cheaper graphs-only model for up to 8% observations.

2.6 Conclusion

The main message of this chapter is that the standard low-rank matrix recovery problem

can be further improved using similarity information about rows and columns. We solve an

optimization problem seeking a low-rank solution that is structured by the proximity between

rows and columns that form communities. As an application, our matrix completion model

offers a new recommendation algorithm that combines the traditional collaborative filtering

and content-based filtering tasks into one unified model. The associated convex non-smooth

optimization problem is solved with a well-posed iterative ADMM scheme, which alternates

between nuclear proximal operators and approximate solutions of linear systems. Artificial

and real data experiments are conducted to study and validate the proposed matrix recovery

model, suggesting that in real-life applications where the number of available matrix entries

(ratings) is usually low and information about products and people taste is available, our

model would outperform the standard matrix completion approaches.

Specifically, our model is robust to graph construction and to non-uniformly sampling of

observations. Furthermore, it significantly outperforms the standard matrix completion when

the number of observations is small.
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3 How to learn a graph from smooth
signals

In this and the next chapters we are interested in how to learn a meaningful graph from the

data. Consider a matrix X ∈Rn×m = [x1, . . . , xn]�, where each row (sample) xi ∈Rm resides on

one of n nodes of an undirected graph G . In this way, each of the m columns (feature) of X can

be seen as a signal on the same graph. A simple assumption about data residing on graphs, but

also the most widely used one is that it changes smoothly between connected nodes. An easy

way to quantify how smooth is a set of vectors x1, . . . , xn ∈Rm on a given weighted undirected

graph is through the function

1

2

∑
i , j

Wi j‖xi −x j‖2 = tr
(
X �LX

)
, (3.1)

where Wi j ∈R+ denotes the weight of the edge between nodes i and j and L = D −W is the

graph Laplacian, Di i =∑ j Wi j being the diagonal weighted degree matrix. In words, if two

vectors xi and xi from a smooth set reside on two well connected nodes (i.e. Wi j is large), they

are expected to have a small distance ‖xi −x j‖ so that tr
(
X �LX

)
is small.

As discussed in the Introduction and in the previous chapter, many machine learning problems

come in the form

minimize
X

g (X )+ tr
(
X �LX

)
, (3.2)

where the Laplacian of a graph is used as a regularizer. The goal of this and the rest of this thesis

is to solve the complementary problem of learning a good graph:

minimize
L∈L

tr
(
X �LX

)+ f (L), (3.3)

where L denotes the set of valid graph Laplacians (Section 1.1).

Why is this problem important? Firstly because it enables us to directly learn the hidden graph

structure behind our data. Secondly because in problems in the form of eq. (3.2) we are often

given a noisy graph, or no graph at all. Therefore, starting from the initial graph and alternating
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Chapter 3. How to learn a graph from smooth signals

between solving problems (3.2) and (3.3) we can at the same time get a better quality graph

and solve the task of the initial problem.

In this chapter we give a general framework for graph learning from smooth signals. As we

see in the next chapter, the most standard weight construction formula, eq. (4.2) can be

obtained by our framework for a specific choice of prior. In Chapter 5 we similarly show that

the previous state of the art graph learning model is a special case of it. In the same chapter,

we use our framework to provide a general purpose graph learning model that becomes the

new state of the art.

3.1 Related work

Dempster [1972] was one of the first to propose the problem of finding connectivity from

measurements, under the name “covariance selection”. Years later, Banerjee et al. [2008] pro-

posed solving an �1 penalized log-likelihood problem to estimate a sparse inverse covariance

with an unknown pattern of zeros. However, while a lot of work has been done on inverse

covariance estimation, the latter differs substantially from a graph Laplacian. For instance,

the off-diagonal elements of a Laplacian must be non-positive, while it is not invertible like

the inverse covariance.

Wang and Zhang [2008] learn a graph with normalized degrees by minimizing the objective∑
i ‖xi −∑ j Wi j x j‖2, but they assume a fixed k-NN edge pattern. Daitch et al. [2009] considered

the similar objective ‖LX ‖2
F and they approximately minimized it with a greedy algorithm

and a relaxation. Jebara et al. [2009] learn a binary edge pattern (b-matching) from a pairwise

distance matrix.

Zhang et al. [2010] alternate between problem (3.2) and a variant of (3.3). However, while

initializing with a graph Laplacian L, they finally learn a s.p.s.d. matrix that is not necessarily a

valid Laplacian.

More recently, Segarra et al. [2016] proposed to learn the topology of a graph given that

the eigenvectors of the graph Laplacian (or adjacency matrix) are known, and specifically

given by its covariance matrix. However, approximating the actual data covariance with the

empirical covariance matrix requires many samples, as we show in Section 1.4 and Figure 1.5.

Furthermore, when the number of nodes is big, it is not possible to obtain a full eigenvalue

decomposition, while there is no scalable algorithm proposed in the paper even if the latter is

given.

The works most relevant to ours are the ones by Lake and Tenenbaum [2010] and by Hu et al.

[2013]; Dong et al. [2015]. In the first one, the authors consider a problem similar to the one

of the inverse covariance estimation, but impose additional constraints in order to obtain

a valid Laplacian. However, their final objective function contains many constraints and a

computationally demanding log-determinant term that make its solution impractical. To the
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3.2. General framework

best of our knowledge, there is no scalable algorithm in the literature that solves their model.

Hu et al. [2013] propose a model that outperforms the one by Lake and Tenenbaum according

to experiments by Dong et al. [2015], while they optimize blindly with respect to the graph

Laplacian without exploiting its structure. In Chapter 5 we provide an analysis of their model

following our general graph learning framework, that allows us to provide an efficient, scalable

algorithm to solve it.

3.2 General framework

In order to learn a graph from smooth signals, we propose to rewrite problem (3.3) using the

weighted adjacency matrix W and the pairwise distance matrix Z , as explained in Section 1.1:

minimize
W ∈Wm

‖W ◦Z‖1,1 + f (W ). (3.4)

Since W is positive we could replace the first term by tr(W Z ), but we prefer this notation

to keep in mind that our problem already has a sparsity term on W . Sparse graphs are

desirable for large scale applications, while they are often easier to interpret when used to

reveal structure.

We want to point out here that using this form instead of tr
(
X �LX

)
enables us to use any

dissimilarity measure is meaningful for our data, and not only pairwise �2 distances. For

example oftentimes it is more meaningful to use an �1 distance between samples, which

is perfectly valid using the framework of eq. (3.4). Another example is text document data,

where X is a term-document matrix with many zero values, and cosine similarities or TF-IDF

represenations are more meaningful than Euclidean distances.

As we show in Section 1.1.1, maximizing smoothness is maximizing sparsity of the adjacency

matrix. And since an empty adjacency matrix is not very useful, the role of f (W ) is very

important. Its most significant tasks are the following:

1. Prevent W from obtaining the trivial solution W = 0.

2. Allow W to obtain zero values.

3. Impose further structure using prior information.

Preferably we would like to have a parameter that controls the sparsity level, that is easy to

achieve in many models as we see in the next two chapters. In the next section we give an

indicative list of possible choices of f in order to give an idea of how it affects the result.

3.2.1 Regularization

In this section we give some possible choices for f that are convex and easy to optimize within

our framework, and give a brief explanation of their effect. Note that some of them can be
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Chapter 3. How to learn a graph from smooth signals

combined as we will see in the next chapters. While we do not use all of them (and the list

could be much longer), we present them here in order to show the flexibility of the framework.

The actual choice of the final function f (W ) should be based on the problem we want to solve,

and the prior knowledge we have on the structure of the graph.

Note that by � {condition} we denote the indicator function that takes a zero value when

the condition holds, and infinity otherwise. We also refer the reader to Table 1.1 for the

connections between functions of W and L.

1. Constrain the graph to have at least a given amount c of "connectivity":

f 1(W ) =� {‖W ‖1 ≥ c} =� {‖L‖∗ ≥ c} . (3.5)

This should not be used alone with the term ‖W ◦Z‖, as then we have a linear program

that assigns weight c to the edge corresponding to the smallest pairwise distance in Z

and zero everywhere else. To prevent this, it has to be combined with other regularizers

like the ones below.

2. Keep each node connected to at least a neighbor:

f 2(W ) =−∑
i

log
∑

j
Wi j =−1� log(W 1), (3.6)

where 1 = [1, . . .1]�, and the last logarithm is applied elementwise to the degrees vector.

The log-barrier prevents the degrees W 1 from becoming zero.

3. Prevent formation of super-connected nodes:

f 3(W ) =∑
i

(∑
j

Wi j

)2

= ‖W 1‖2. (3.7)

By preventing the well connected nodes from getting a too big degree, and in combina-

tion with term f1, prevents indirectly the distant nodes from being assigned zero edge

weights. It has the advantage of being a smooth differentiable function of W that is easy

to optimize.

4. Prevent formation of too strong edges:

f 4(W ) = 1

p

∑
i j

W p
i j , p > 1. (3.8)

By preventing close-by nodes from getting too big weights, and in combination with

term f1, this term prevents indirectly the distant nodes from being assigned zero edge

weights. It is a differentiable of W (the p-norm of the vector of W to the power p).
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3.3. Three levels of locality for graph learning

5. Prevent many disconnected components:

f 5(W ) =− logdet(L+λ0I ) =−
n∑

i=1
log(λi +λ0), (3.9)

where λi , i = 1. . .n are the eigenvalues of the Laplacian and λ0 > 0 is a small number

(bigger for big noise) to make L+λ0I positive definite. This term was used by Lake and

Tenenbaum [2010] in a graph learning model that emerged as a MAP estimator of a data

generative model.

6. Distance from initial (noisy) graph:

f 6(W ) = ‖W −W0‖2
F , (3.10)

f 7(W ) = ‖W −W0‖1,1. (3.11)

If there is prior information about a noisy version of the adjacency matrix these priors

could be used for graph denoising or imposing structure preference.

3.3 Three levels of locality for graph learning

The term ‖W ◦Z‖1 of the objective function of our framework is simple, in the sense that it

can be written as a simple sum over all edges. Any structure that relates different edges with

each other in the objective function might only come from the term f (W ). We can classify the

graph models of our framework according to this criterion of edge grouping by f (W ), leading

to the following three levels of locality:

1. Edge-local models: f (W ) =∑
i , j

fi , j
(
Wi j
)

In these models we can split the problem in n2 independent subproblems and solve

them separately as there is no interaction between different edges. Example: f 4(W ) =
1
p

∑
i , j W p

i j is edge separable.

2. Node-local models: f (W ) =∑
i

fi
(
Wi ,:
)

In these models each row1 of W is grouped, containing n variables. Example: f 2(W ) =
−∑n

i=1 log
(‖Wi ,:‖1

)
is node-local.

3. Global models: f (W ) cannot be written as a sum of element-separable functions of W .

Example: f 5(W ) =− logdet(L+λ0I ) cannot be written as a sum of functions operating

on disjoint sets of edges.

The above classification is an indicator of the modeling power and the complexity of different

models. For example, the edge-local models are weaker in terms of modeling power, as the

only information used for setting a weight to an edge is its own pairwise distance. At the same

time, they are the cheapest models available, and the first ones used in the literature.

1or column, because W =W �
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Chapter 3. How to learn a graph from smooth signals

While the above classification is clear, its correlation with difficulty is not absolute. As we will

see in Section 5.2 for example, while the constraint that sets the sum of all edges equal to a

constant leads to a global model, the latter can be solved as efficiently as node-local models.

The same cannot be said for f 5(W ), eq. (3.9), however.

Note also that while we make a distinction between node-local and global models, for both of

them changing a distance between only one pair of nodes can lead to the change of all the

other weights of the graph. For node-local models, however, this happens indirectly because

W is symmetric and not because of f (W ) itself.

In Chapter 4 we give an analysis of known and new edge-local models, in Chapter 5 we design

a new node-local model, and in Chapter 6 we show how it can be scaled to big datasets.
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4 Edge-local graph learning

Imagine the following scenario: You are given the distance Zi j = ‖xi − x j‖2 between nodes i

and j , and you need to assign a weight to the edge between them without knowing the distances

of other neighboring nodes. How do we solve this problem? The two most common solutions

used in the literature that can fit this scenario are the following [Belkin and Niyogi, 2003]:

• ε-neighborhood graph: we set a threshold ε and we assign Wi j = 1 if ‖xi − x j‖2 < ε, 0

otherwise.

• Exponential decay graph: we connect the two nodes with an exponentially decaying

function of the distance Wi j = exp(−‖xi −x j‖2)/σ2.

While the idea of graph learning is relatively new, weighted graphs were used long before, and

were constructed from the data with simple weighting rules like the ones above. As we show

in this chapter, these simple edge-weighting schemes are special cases of the graph learning

framework we proposed in the previous chapter. The models that correspond to this type of

graph construction are the ones defined by an objective function completely separable by

edges:

minimize
W ∈Wm

‖W ◦Z‖1,1 + f (W ), f (W ) =∑
i , j

fi , j
(
Wi j
)

.

In these models, because the whole objective function can be written as an independent

sum over the graph edges, we can solve the problem by splitting it in the following n × (n −1)

sub-problems1:

minimize
Wi j∈R+

Wi j Zi j + fi , j (Wi j ), j > i . (4.1)

Even more, depending on the choice of f (W ), these models might enjoy an analytic solution,

and “graph learning” is reduced to standard “graph construction” like the cases discussed

1We have supposed for convenience that fi , j = f j ,i . The non-symmetric case fi , j �= f j ,i can easily be solved by
replacing fi , j with fi , j /2+ f j ,i /2 in eq. (4.1).
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Chapter 4. Edge-local graph learning

f (W ) Explanation

+‖L‖∗ Enhance sparsity (see Section 1.1.1)
−‖L‖∗ Prevent disconnectivity (see Section 1.1.1)
+‖W ‖2

F Prevent strong edges
+∑i , j W p

i j , p > 1 Prevent strong edges, effect larger for large p

−∑i , j log
(
Wi j
)

Prevent zero edges
+∑i , j Wi j log

(
Wi j −1

)
Negative normalized edge entropy (prevents zero edges)

Table 4.1 – List of some convex edge-local functions f (W ).

before. Obviously graphs of this family are weaker in terms of modeling power, since they are

completely edge-local and do not take into account at all the relationship between different

edges. However, depending on the application in hand, they might be the only plausible

solution given their extremely low computational complexity.

In Table 4.1 we can see some edge-separable functions and the intuition behind them.

4.1 Exponential decay graphs

In the literature one of the most common practices is to construct edge weights given X from

the Gaussian function

Wi j = exp

(
−‖xi −x j‖2

2

σ2

)
. (4.2)

We can prove that this choice of weights can be seen as the result of solving problem (3.4) with

a specific prior on the weights W :

Proposition 1. The solution of the problem

minimize
W ∈Wm

‖W ◦Z‖1,1 + σ2
∑
i j

Wi j
(
log(Wi j )−1

)
(4.3)

is given by eq. (4.2).

Proof. The problem is edge separable and the objective can be written as
∑

i , j
[
Wi j Zi j +σ2Wi j (log(Wi j −1))

]
.

Differentiating w.r.t. Wi j we obtain the optimality condition Zi j +σ2 log(Wi j ) = 0, or Wi j =
exp(−Zi j /σ2), that proves the theorem.

What is most interesting about this result is the intuition behind the objective function. This

model tries to find a graph balancing between the sparsest solution (first term of eq. (4.3))

and a solution with the maximum normalized entropy (second term). Note, however, that

despite the sparsity term in the objective function, the logarithm of the second term prevents

the weights from being assigned a zero value. As the result is a fully connected graph, any
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4.2. From exponential decay to ε-neighborhood graphs

sparsification has to be imposed explicitly afterwards.

4.2 From exponential decay to ε-neighborhood graphs

Another specifically interesting edge-local model is the following:

min
W

‖W ◦Z‖1,1 −λ‖L‖∗ + β

p

∑
i j

W p
i j , p ∈ (1,∞). (4.4)

With a first look we can see that parameter λ should control sparsity, p should control how

large are the strong edges allowed to be compared to the weak ones, and β should control the

edge strength in general. In order to solve this problem, we can solve separately for each edge

Wi j

min
Wi j>0

Wi j‖xi −x j‖2 −λWi j + β

p
W p

i j ,

that has the analytic solution

Wi j = p−1

√
max
(
0, λ−‖xi −x j‖2

)
β

. (4.5)

Indeed, as we see in Figure 4.1, the parameters λ,β, p effect the result as expected.

This edge weight construction, however simple it might seem, has very interesting properties.

Parameter λ simply sets an upper limit to any pairwise distance, above which a zero weight is

assigned. Parameter β is a multiplicative scaling parameter, that can be set to β=λ in order to

assign a maximum weight Wi j = 1 if ‖xi −x j‖ = 0. The most interesting parameter, however, is

the order of the norm, p.

The value of p controls how fast is the decay of the weights as a function of the pairwise

distance. The smaller the value p, the faster the weight decays given the input distance. What

more, we can prove that if we set p to the limits p → 1+ and p →∞, we recover exponential

decay and ε neighborhood graphs respectively. In other words, model (4.5) interpolates

between exponential decay graphs (4.2) and ε-neighborhood graphs.

Theorem 1. The p-norm model of eq. (4.4) with solution (4.5) converges to the exponential

decay model (4.2) in the limit p → 1+ and for β=λ= σ2

p−1 .

Proof. Let β=λ so that for zero distance we assign weight equal to 1. Let us also fix them to
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Figure 4.1 – The effects of the different parameters λ,β, p of the model (4.4).

λ= σ2

p−1 . Then, in the limit of p → 1+ and for ‖xi −x j‖2 <
�
λ we have

Wi j = lim
p→1+

p−1

√
λ−‖xi −x j‖2

2

λ

= lim
p→1+

p−1

√√√√√ σ2

p−1 −‖xi −x j‖2
2

σ2

p−1

= lim
p→1+

p−1

√
1+ (p −1)

−‖xi −x j‖2
2

σ2

= exp

(
−‖xi −x j‖2

2

σ2

)

where we have used the known identity2

ex = lim
δ→0+ (1+δx)

1
δ .

Note also that while we threshold to 0 any weight of distance greater than
�
λ, this does not

change the result as λ= σ2

p−1 →∞ for p → 1+.

Theorem 2. The p-norm model of eq. (4.4) with solution (4.5) converges to the ε-neighborhood

model

Wi j =
⎧⎨⎩1 if ‖xi −x j‖ < ε,

0 otherwise

in the limit p →∞ for λ= ε2 and for any finite β.

2Another way to explain this limit behavior is to start from the objective function and use the identity log(w) =
limδ→0+

1
δ

(
wδ−1

)
in order to obtain the objective function of the exponential decay weighting scheme,

f (W ) =σ2∑
i , j

Wi j (logWi j −1) = lim
p→1+

σ2

p −1

(
−‖L‖∗ + 1

p

∑
i , j

W
p

i j

)
.
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4.2. From exponential decay to ε-neighborhood graphs

Proof. We set λ= ε2. The solution (4.5) of the model can be written as

Wi j =

⎧⎪⎨⎪⎩
p−1

√
λ−‖xi−x j ‖2

β if ‖xi −x j‖ < ε,

0 otherwise.

For the first case, because the variable of the root is positive we can use the known limit

lim
p→∞

p
�
α= 1, α> 0,

that concludes the proof.

In Table 4.2 we gather some of the separable problems that enjoy analytic solutions. Note that

in all cases exhibited therein we have included the term −‖L‖∗ that always has a translation

effect on the squared pairwise distance. As an example, in the standard Laplacian with

exponential decay (third row of Table 4.2), it is reasonable to choose λ= mini j Dxi j , so that

the maximum output weight is equal to exp(0) = 1.
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Analytic solution of edge-separable models

Figure 4.2 – Analytic solution of edge-local models. Solid lines: model of second row of Table
4.2. Dashed lines: model of third row, that is the standard exponential kernel. Dashed/dotted
line: last model of Table 4.2. For all models, the parameters not shown in the legend, corre-
sponding to multiplicative scaling, were chosen so that the weight assigned to zero distance is
equal to 1. Only the models based on p-norm regularization are sparse, since they become 0
for distances d >�

λ= 1. Note how close is the p-norm model with p = 1.1 to the exponential
decay models. Note also that for p = 1000 we have a model close to the ε-neighborhood graph.
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Regularization term f (W ) Analytic solution Parameters Sparse?

−λ‖L‖∗ + β
2 ‖W ‖2

F Wi j = max
(
0,

λ−Zi j

β

) λ: cut-off distance
β: multiplicative scaling

YES

−λ‖L‖∗ + β
p

∑
i j W p

i j , p > 1 Wi j = p−1

√
max(0,λ−Zi j )

β

λ: cut-off distance
β: multiplicative scaling
p: decay speed

YES

−λ‖L‖∗ +σ2∑
i j Wi j (logWi j −1) Wi j = e

λ−Zi j

σ2
λ: multiplicative scaling
σ: decay speed

NO

+λ‖L‖∗ −α
∑

i j logWi j Wi j = α
Zi j+λ

λ: decay speed
α: multiplicative scaling

NO

Table 4.2 – List of separable problems with analytic solutions and the explanation of their
parameters. The term ‖L‖∗ in the first three models prevents disconnectivity. In the last model
this role is played by the ”stronger” logarithmic term, and the nuclear norm has the opposite
effect of preventing infinite connectivity between zero distance nodes. We use Zi j = ‖xi −x j‖2.

4.3 Experiments on real data

We compare different edge-local models using real data, both for sample graphs and for feature

graphs. The model with square weight decay Wi j = α
Zi j+λ performed significantly worse for all

cases of our experiments, we thus do not report these results.

4.3.1 Sample graphs

We first perform label propagation between images of the digits “1” and “2” of MNIST. We

randomly choose 100 images of the digit “1” and 100 images of the digit “2”, stacking them in

a matrix X ∈R200×768. We compute the pairwise distance matrix Z ∈R200×200 using squared

Euclidean distances between the images (features are pixels), and use different models to

compute graph adjacency matrices. We keep 10% of their labels as known, and use label

propagation as proposed by Zhu et al. [2003] to classify unknown images into classes “1” and

“2”. The quality measure for this experiment is the classification error.

Note that this problem has a particular difficulty, as explained in Figure 4.3: The distance of

pairs of digits from different classes (“1” vs. “2”, yellow histogram) has the same distribution as

the distance between pairs of digits from the same class “2” (orange histogram). This means,

that if we want the edges between images of “2” to pass the threshold, we will automatically

allow many “wrong” edges that connect nodes from different classes. For this reason, the

graphs have to be fairly dense in order to achieve a good connectivity and therefore a good

classification quality.

In the left part of Figure 4.4 we see the quality of artificially thresholded exponential decay

graphs that are often used in the literature. The horizontal axis corresponds to different
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Figure 4.3 – Histogram of squared Euclidean distances between “1”s and “2”s of MNIST, using
pixels as features. The distances between pairs of a “1” and a “2” have the same distribution as
the distances between pairs of “2”, making the problem very difficult. Moreover, the distances
between pairs of “1”s are significantly smaller, making edge-local models prefer connecting
these over other pairs.
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(a) Thresholded dense models from eq. (4.2)
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(b) Sparse models using a p-norm

Figure 4.4 – Quality of different graphs between images of MNIST 1 vs 2. The dashed line
corresponds to the result of the best dense graph with wi j = exp(−z2

i j /σ2). In the left figure we
see that thresholding a dense graph does not lead to better results, while the result depends
heavily on the parameter σ. However, using models that are by construction sparse (right
figure, p = 1.1), we can achieve better classification quality with a sparser graph.
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(b) Graphs learned from 50 images

Figure 4.5 – Quality (total cumulative energy residual, Section 1.4) of graphs between pixels of
images of the digit ’2’ of MNIST. The TCER is measured over the rest of the images (around
6000) of the same digit. The dashed line corresponds to the result of the best dense graph with
wi j = exp(−z2

i j /σ2).

thresholding levels, obtaining on average k neighbors per node. A first observation is that

exponential decay graphs are very sensitive to the choice of σ. It seems that it is preferable to

choose a σ that is larger than optimal, than one that is too small (σ= 1). Another observation

is that the quality can only decay by decreasing the threshold, and the best result is achieved

by a dense graph for any given choice of σ2.

In the right part of Figure 4.4 we see results for our p-norm model that is naturally sparse,

and its thresholding distance is controlled by the choice of λ. The first observation is that our

p-norm model (4.5) achieves the best result of all edge-local models for small values of p, close

to the limit of the exponential decay graphs (Theorem 1). Moreover, when sparser graphs are

needed, we can choose slightly larger values of p and perform better for any given level of

sparsity.

We also see that ε-neighborhood graphs (limit p →∞, Theorem 2) perform worse than any

other choice of p <∞. However, they still do better than thresholding an exponential graph

with a wrong σ (left part of figure, blue line).

We can conclude that our p-norm model that interpolates between exponential decay and

ε-neighborhood graphs enjoys the best of two worlds. It is naturally sparse and robust to the

choice of thresholding level as long as p is in a relatively small value.

4.3.2 Feature graphs

We continue by evaluating the quality of the graphs when we need to “explain” the distribution

between features of the digit “2” using very few samples. This is an experiment similar to the

one of Figure 1.5, but with the weaker (and cheaper) edge-local models of this chapter.
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As features we use the pixels with at least 5% of the maximum pixel energy across all images

of “2”s (364 nodes). We measure how well the distribution is “explained” using the total

cumulative energy residual (TCER) that we defined in Section 1.4. The distribution of the

features is defined as the distribution of the rest of the images (around 6000) of the same digit.

The results of the basis quality obtained from only 10 or only 50 images of the same digit

are plotted in Figure 4.5. The first observation is that for 10 samples the graphs perform

better than the empirical covariance, while for 50 their quality is not as good as the one of

the empirical covariance. In this case, more expressive graph models like the ones of the next

chapter are needed to achieve the good quality exhibited in Figure 1.5.

We see that the quality of our p-norm model is close to or superior (for 50 samples) to the best

dense exponential decay graph. However, while the dense model is not robust to the choice of

parameter σ (we only plot the best of all choices of σ), the inherently sparse ones are more

robust, especially the ones with small parameter p.

4.4 Weakness of edge-local models

While edge-local models are computationally cheap and have some theoretical interest, when

it comes to practice they exhibit a significant weakness. The fact that each edge is computed

independently, makes them weaker in terms of modeling, as they fail to capture any interaction

between different edges, for example edges of the same node.

To understand the implications of edge independence, let us see how we control sparsity in

such models. Given the distance between a pair of nodes, we connect them or not, depending

on whether this distance is below a threshold. As each edge is considered separately, this

threshold is the same across edges of the whole graph. In most real data, this can be detri-

mental, as samples are not uniformly distributed in the original high-dimensional space, and

thresholding blindly will inevitably lead to leaving distant nodes completely disconnected.

We illustrate this effect in Figure 4.6, where we plot the sparsity pattern of the adjacency

matrix for the problem MNIST “1” vs “2”. In this problem, having a very sparse graph leads to

connecting only images of digit “1” (upper left block), that have small distances between them

(Figure 4.6a). Obviously this is not a good quality graph, which explains why the models of this

chapter perform poorly in our label propagation experiments, especially for sparse graphs.

When we increase the distance threshold in order to allow connections between digits of “2”,

we also allow the formation of “wrong” edges, connecting digits from different classes (Figure

4.6b), making also dense graphs perform poorly.

Note that this effect is universal for all edge-local models. If we assume that the weight assigned

to an edge is a non-increasing function of the corresponding distance, the sparsity pattern for

any given sparsity level (average number of edges per node) is independent of the choice of

the function. To avoid this problem, we should use instead node-local or global models, like
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Figure 4.6 – Sparsity pattern of adjacency matrix between images of digits “1” and “2” of
MNIST for edge-local models. The first 100 nodes correspond to the “1”s, that have small
distances and are well connected. The last 100 nodes correspond to images of “2”s, that have
larger distances, with the same distribution as distances between a “1” and a “2”. Left: Only
connections between “1”s, that have smaller distances, appear. Right: Connections between
“2”s appear, but so do many erroneous edges (off-diagonal parts of adjacency matrix).

the ones discussed in the next chapter. These models take into account the neighborhood

structure, to prioritize edges that are expected to be more meaningful.
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5 Node-local graph learning

As we saw in Section 4.4, learning each edge of a graph independently has limited modeling

power. In this chapter, we are interested in models that take into account the neighborhoods

of the edges, to add structure and obtain better graphs. For these models, the objective

function cannot be written as an independent sum over the edges, as explained in Section 3.3.

Eventually in this chapter we provide a new general purpose node-local model, that sets the

new state of the art in terms of both quality and computational efficiency, and discuss two

global models of the literature.

To motivate the need of taking into account the edge neighborhood, we again use the example

of graphs between digits “1” and “2” of MNIST. When going from a sparser to a denser graph,

we should be able to prioritize edges according to their importance. Looking at the pattern

of Figure 4.6a, we can see that adding edges in the lower right block should be prioritized

compared to adding edges to the upper right (and lower left) block. This becomes obvious by

the fact that the first rows (nodes) already have many edges, while the last ones have no edges

at all.

This problem could be avoided following two different approaches: (1) by penalizing the

formation of super-connected nodes or (2) by penalizing the formation of completely discon-

nected nodes. The first approach is followed by the model of Section 5.2, that was the previous

state-of-the-art, while the last one is followed by our log-degrees model presented in Section

5.1.

To illustrate the modeling power of node-local models, we plot in Figure 5.1 the pattern of an

adjacency matrix using our model of the next section. Compared to Figure 4.6, we see that

edges in the off-diagonal blocks are not prefered, as oposed to edges between nodes of the

same class, even if the distribution of their distances might be the same (cf. Figure 4.3).
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Figure 5.1 – Sparsity pattern of adjacency matrix between images of digits “1” and “2” of
MNIST using our log-degrees node-local model of Section 5.1. The first 100 nodes correspond
to the “1”s, that have small distances and are well connected. The last 100 nodes correspond
to images of “2”s, that have larger distances, with the same distribution as distances between
a “1” and a “2”. Compared to Figure 4.6 we see that edges of the lower right block (connecting
nodes of digit “2”) are given higher priority, as oposed to edges between different classes in the
off-diagonal blocks, even if the distribution of their distances might be the same (cf. Figure
4.3).

5.1 Our proposed model

Based on our framework (3.4) our goal is to give a general purpose model for learning graphs,

when no prior information is available. In order to obtain meaningful graphs, we want to

make sure that (1) each node has at least one edge with another node. It is also desirable to (2)

have control of how sparse is the resulting graph.

To meet these expectations, we need to incorporate the neighborhood structure of the graph

in our model, that can be encoded by the vector of the node degrees. We eventually propose

the following model with parameters α> 0 and β≥ 0 controlling the shape of the edges:

minimize
W ∈Wm

‖W ◦Z‖1,1 − α1� log(W 1) + β

2
‖W ‖2

F . (5.1)

The logarithmic barrier (second term of the objective function) acts on the weighted degree

vector W 1 of the nodes, unlike the model 4.3 that has a similar barrier on the edge matrix W .

This means that we force the degrees to be strictly positive, but do not prevent the weights

of individual edges from becoming zero. This improves the overall connectivity of the graph,

without compromising sparsity.

Note however, that adding solely a logarithmic term (β= 0) leads to very sparse graphs, and

changing α only changes the scale of the solution and not the sparsity pattern (Proposition

2 for β= 0). For this reason, we need an additional term in the objective function to control

sparsity. As we showed with eq. (1.7), adding an �1 norm term for this reason is not very useful:

it just adds the same constant to all pairwise squared distances. Instead, adding a Frobenius

norm is a wiser choice in this case.
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5.2. Fitting the state of the art in our framework

The reason we add the squared Frobenius norm of W in our objective function is to penalize

the formation of large edges, but not penalize smaller ones. This leads to more dense edge

patterns for larger values of β. An interesting property of our model is that even if it has two

terms shaping the weights, if we fix the scale we then need to search for only one parameter:

Proposition 2. Let F (Z ,α,β) denote the solution of our model (5.1) for input distances Z and

parameters α, β. Then the following property holds for any γ> 0:

F
(
Z ,α,β

)= γF

(
Z ,

α

γ
,βγ

)
=αF

(
Z ,1,αβ

)
. (5.2)

Proof. See Appendix A.

This means that for example if we want to obtain a W with a fixed scale ‖W ‖ = s (for any norm),

we can solve the problem with α= 1, search only for a parameter β that gives the desired edge

density and then multiply with the scalar that gives ‖W ‖ = s.

The main advantage of our model over the state of the art �2-degree based model (Section 5.2),

is that it promotes connectivity by putting a log barrier directly on the node degrees. Even the

sparsest possible solution, obtained with β= 0, will assign at least one edge to each node. In

this case, the distant nodes will have smaller degrees (because of the first term), but will still

be connected to their closest neighbor similarly to a 1-NN graph.

5.2 Fitting the state of the art in our framework

Hu et al. [2013] proposed the following �2-degree penalization model (that was also used by

Dong et al. [2015] later) for learning a graph:

minimize
L∈L

tr
(
X �LX

)+α‖L‖2
F ,

s. t., tr (L) = s.

Parameter s > 0 controls the scale1 and parameter α≥ 0 controls the density of the solution.

This formulation has two weaknesses. First, using a Frobenius norm on the Laplacian has a

reduced interpretability: the elements of L are not only of different scales, but also linearly

dependent.2 Secondly, solving this optimization problem is complicated, as it has 4 constraints

on L: 3 in order to constrain L in space L, and one to keep the trace constant. Hu et al. [2013]

optimize it using projected gradient descent on the space of L, ignoring, during the gradient

step, the dependence of the diagonal and off-diagonal elements, while Dong et al. [2015] do

not provide an algorithm and rely on CVX (a black box general purpose optimization toolbox)

1Hu et al. [2013] and Dong et al. [2015] set it to n, but as we prove in Proposition 3, it can be set conveniently to
any scale we want without compromising the range of edge shapes that can be obtained by different choices of α.

2Actually the authors of [Hu et al., 2013] proposed penalizing ‖W ‖2
F but ended up with ‖L‖2

F because the first

one “is not derivable with respect to L”. However, using ‖W ‖2
F would have led to the much weaker edge-local

model (4.4) with p = 2. Clearly, writing the optimization problem in terms of the weight matrix W increases
interpretability and avoids confusion.
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Chapter 5. Node-local graph learning

that is less than efficient.

We propose to solve this model using our framework: Using transformations of Table 1.1, we

obtain the equivalent simplified model3

minimize
W ∈Wm

‖W ◦Z‖1,1 +α‖W 1‖2
2 +α‖W ‖2

F ,

s. t. ‖W ‖1,1 = s. (5.3)

Using this parametrization, solving the problem becomes much simpler, as we show in Section

5.4. Note that for α = 0 we have a linear program that assigns weight s to the edge corre-

sponding to the smallest pairwise distance in Z , and zero everywhere else. On the other hand,

setting α to large values, we penalize large degrees (through the second term), and in the limit

α→∞ we obtain a dense graph with constant degrees across nodes. We can also prove some

interesting properties of (5.3):

Proposition 3. Let H(Z ,α, s) denote the solution of model (5.3) for input distances Z and

parameters α and s. Then for γ> 0 the following properties hold:

H(Z +γ,α, s) = H(Z ,α, s) (5.4)

H(Z ,α, s) = γH

(
Z ,αγ,

s

γ

)
= sH (Z ,αs,1) (5.5)

Proof. See Appendix A.

In other words, model (5.3) is invariant to adding any constant to the squared distances. The

second property means that similarly to our model, the scale of the solution does not change

the shape of the connectivity. If we fix the scale to s, we obtain the whole range of edge shapes

given by H only by changing α.

5.3 A probabilistic perspective

Lake and Tenenbaum [2010] proposed a linear Gaussian generative model for smooth signals

X given a graph with adjacency matrix W . Following the intuition behind standard sparse

inverse covariance estimation, they explicitly penalize the �1 norm of W in order to obtain

sparse graphs, which is the result of assuming an exponential prior over its edges. Their

hierarchical model reads

p(W ) ∝ exp
(−β‖W ‖1,1

)
, (5.6)

p(xi |W,σ) =N
(
xi

∣∣∣0,
(
L+σ2I

)−1
)

, (5.7)

with a graphical model like the one of Figure 5.2, left. The existence of σ2 > 0 makes the

Gaussian proper (that is, non-degenerate), as
(
L+σ2I

)
is invertible. In order to learn W (and

3We ommit a factor 1
2 of the first term, as it can be absorbed by parameter α.
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Figure 5.2 – Different graphical models of graph learning. Left: The model by [Lake and
Tenenbaum, 2010]. Middle: The model by [Dong et al., 2015]. Right: Equivalent to the model
of [Dong et al., 2015] showing E-step and M-step of an expectation maximization algorithm for
graph learning from noisy observations. The M-step of this model is equivalent to the model
in the left with σ= 0 (degenerate case) and without a prior on W .

σ2), Lake and Tenenbaum propose a maximum posterior probability (MAP) estimate, that can

be written using our framework4 as the optimization problem

min
W ∈Wm ,σ2∈R+

1

4

∥∥W ◦ (Z +4β
)∥∥

1,1 − 1

2
(2π)−m/2 log

∣∣D −W +σ2I
∣∣ , (5.8)

where | · | denotes the determinant of a square invertible matrix. This can be seen as a “global”

graph learning model, as the second term cannot be split as a sum over nodes or edges of the

graph. Unfortunately, because of the same term this model is computationally expensive (see

Table 5.2), needing O
(
n3
)

computations per iteration. Nevertheless, being mathematically

interesting, it is worth to draw connections between this and the other models of this chapter,

showing effectively how the latter can be seen as computationally efficient approximations.

5.3.1 Connections with the model by Dong et al. [2015]

More recently, Dong et al. [2015] proposed a similar generative model, adding a noisy observa-

tions assumption, that leads to the hierarchy5

p(x̂i ) =N
(
x̂i

∣∣∣0,Λ†
)

, (5.9)

xi |U , x̂i =U x̂i , (5.10)

p(yi |xi ,σε) =N
(
yi
∣∣xi ,σ2

ε I
)

, (5.11)

4The authors of [Lake and Tenenbaum, 2010] omit the factor (2π)−m/2/2 of the logarithm of the determinant.
5For simplicity, we omit an assumed mean of xi that should also be a smooth signal – denoted by ux in [Dong

et al., 2015].
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where xi ∈Rn are the latent smooth signals and yi ∈Rn are noisy observations. As in Section

1.2, we assume the eigenvalue decomposition L =U diag([λ1, . . . ,λn])U�, and λ†
i is the pseudo-

inverse of λi .

While this generative model (Figure 5.2, middle) is derived using a factor analysis point of view

(where U is the latent loadings matrix), it is more convenient to parameterize them using the

graph Laplacian W , obtaining the equivalent simpler graphical model on the right of Figure

5.2. This is because we can only allow a pair of U and Λ that obtains L ∈L (see Section 1.1),

and explicitly applying all implied constraints on U and Λ would be much more difficult if

possible at all.

Given this model, it is tempting to try to simultaneously learn the latent variables X and the

graph adjacency matrix W by maximizing the posterior distribution of xi

p(X |Y ,W,σε) = p(Y |X ,σε)p(X |W )

p(Y )
, (5.12)

where we have used the rule of Bayes. By taking the negative logarithm of the latter, and

because p(X |W ) =N
(
X
∣∣0,L†

)
, we can write it as a minimization problem jointly on X and

W (keeping σε fixed to avoid trivial solutions):

minimize
X ,W ∈Wm

1

2σ2
ε

‖X −Y ‖2
F + 1

2
tr
(
X �LX

) − 1

2
(2π)−m/2 log |L|+ , (5.13)

where | · |+ is the pseudo-determinant [Rao, 2009] that takes into account only the positive

eigenvalues of L.6 Such problems are usually solved using expectation maximization, that

alternates between learning the mean of X and updating the parameter W :

minimize
X∈Rn×m

1

2σ2
ε

‖X −Y ‖2
F + 1

2
tr
(
X �LX

)
(E-step), (5.14)

minimize
W ∈Wm

1

4
‖W ◦Z‖1,1 − 1

2
(2π)−n/2 log |L|+ (M-step). (5.15)

We see that the M-step of expectation maximization is equivalent to solving problem (5.8) for

β= 0 and σ→ 0, so that the complete algorithm would cost at least the cost of (5.8) multiplied

by the number of iterations until convergence. What the authors of Dong et al. [2015] do

instead is keep the M-step intact and replace the E-step by solving Hu et al.’s version of graph

learning (5.3) that is arguably cheaper.

5.3.2 Connections with our model

While our model (5.1) does not stem from a probabilistic model and does not assume a specific

data generative model, it has an interesting connection with the one by Lake and Tenenbaum.

6By assuming a connected graph, we could replace this term by −∏n
i=2 logλi . This would only yield connected

graphs, since all eigenvalues of L except for λ1 would be bound to be positive by this logarithmic barrier.
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5.3. A probabilistic perspective

In the latter, the log determinant term does not allow for trivial solutions W = 0. This is done

by putting a log barrier on the eigenvalues of the Laplacian:

− log |L+σ2I | = − log
n∏

i=1

(
λi +σ2)=−

n∑
i=1

log
(
λi +σ2) .

Instead, in our model, we use a log barrier directly on the degrees of the nodes, so that no

eigenvalue decomposition is needed in every iteration. Our barrier term can be written as the

log determinant of the degrees matrix D , that is the diagonal part of the graph Laplacian L:

− log |D| = − log
n∏

i=1
(di ) =−

n∑
i=1

log(di ) .

As explained by Ipsen and Lee [2011], the logarithm of the determinant of a symmetric positive

definite matrix can be approximated by the logarithm of the determinant of its diagonal. More

precisely, for L̃ = L+σ2I and D̃ its diagonal, we have:

− log
∣∣L̃∣∣=− log

∣∣D̃ −W
∣∣

=− log
∣∣D̃∣∣− log

∣∣I − D̃−1W
∣∣

=− log
∣∣D̃∣∣+ ∞∑

p=2

(−1)p

p
tr
((

D̃−1W
)p)

.

For the last equality we have used the matrix Taylor expansion log(I + A) =∑p=1
(−1)p−1

p Ap that

converges because ρ(A) = ρ
(
D̃−1W

) < 1,7 and the fact that log |I + A| = tr
(
log(I + A)

)
. Also

note that the first term of the sum (for p = 1) is zero, and that the approximation is tighter for

bigger values of σ.

5.3.3 Controlling connectivity and Laplacian eigenvalues

Given the three models we have seen until now, we can summarize their terms that principally

control connectivity:

• Log-degree model (5.1): −∑
i

log(di )

• L2-degree model (5.3):
‖λ‖2

2

‖λ‖1

• Log-determinant model (5.8): −∑
i

log(λi +σ−2)

The first one is a node-local model and decouples the connectivity constraint into disjoint

degrees. Had the symmetricity constraint not existed, changing a node degree would only

affect the edges of that node.

7By ρ we denote the spectral radius of a matrix.
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The other two models are global: even without L being symmetric, changing only one eigen-

value changes the whole graph in general (or the whole corresponding component for discon-

nected graphs).

Our log-degree model has the advantage that, even for very sparse graphs, it always connects

each node to at least another one. Our experiments show that for very sparse graphs, our

model achieves a good connectivity even for more distant nodes.

The �2-degree model, on the other hand, implicitly controls connectivity through the sparsity

of the eigenvalues. Unfortunately, as we see in our experiments, when sparse graphs are

sought, this model tends to produce graphs with many disconnected nodes. This can be

expected, as there is a direct sparsity term on the eigenvalue vector λ.

5.4 Optimization

An advantage of using the formulation of problem (3.4) is that it can be solved efficiently

for a wide range of choices of f (W ). We use primal dual techniques that scale, like the ones

reviewed by Komodakis and Pesquet [2014] to solve the two state of the art models: the one

we propose and the one by Hu et al. [2013] (and used by Dong et al. [2015]). Using these as

examples, it is easy to solve many interesting models from the general framework (3.4).

In order to make optimization easier, we use the vector form representation from space Wv

(see Table 1.1), so that the symmetricity does not have to be imposed as a constraint. We

remind the reader that if W ∈Wm is an n×n adjacency matrix, then w ∈Wv is an n(n−1)/2×1

vector. We write the problem as a sum of three functions in order to fit it to primal dual

algorithms reviewed by Komodakis and Pesquet [2014]. The general form of our objective

function is

minimize
w∈Wv

f1(w)+ f2(K w)+ f3(w), (5.16)

where f1 and f2 are functions for which we can efficiently compute proximal operators, and f3

is differentiable with gradient that has Lipschitz constant ζ ∈ (0,∞). K is a linear operator, so f2

is defined on the dual variable K w . The main advantage of using primal dual splitting methods

is that we can avoid explicitly optimizing with respect to w when a part of the function (here

f2) is defined on a linear transformation K w of w .

In the sequel we explain how this general optimization framework can be applied to the two

models of interest, leaving some details in the Appendix. For a better understanding of primal

dual optimization or proximal splitting methods we refer the reader to the works of Combettes

and Pesquet [2011]; Komodakis and Pesquet [2014].

In our model, the second term acts on the degrees of the nodes, that are a linear function of the

edge weights. Therefore we use K = S, where S is the linear operator that satisfies W 1 = Sw if
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5.4. Optimization

w is the vectorform of W . In words, S = K is the operator that takes the weights w and returns

the degrees of the graph d =W 1 = matrixform(w)1.

In the first term of our model we group the positivity constraint of Wv and the weighted �1,

and the second and third terms are the priors for the degrees and the edges respectively. In

order to solve our model we define

f1(w) =� {w ≥ 0}+2w�z,

f2(d) =−α1� log(d),

f3(w) =β‖w‖2, with ζ= 2β,

where

� {c} =
⎧⎨⎩0, if c = true

∞, if c = false

is the indicator function of condition c. Given the above splitting, we need to provide the

algorithm with the proximal operators of the first two functions, the gradient of the third one,

as well as the operator K and the Lipschitz constant of the gradient of f3. Note again that

we only need to provide the proximal of the second function f2 as defined directly on the

dual variable d (that here is very conveniently the node degrees vector), and not w . The final

algorithm for our model is given as Algorithm 1.

While many different primal dual algorithms could be used for solving such problems, we

choose specifically a forward-backward-forward scheme, as it allows for very efficient paral-

lelization of most computations. Specifically, note that in Algorithm 1, we can run completely

independently lines in pairs: 3 with 4, 5 with 6, and lines (7, 9) in parallel with lines (8, 10).

Algorithm 1 Primal dual algorithm for log-degrees model (5.1).

1: Input: z,α,β, w 1 ∈Wv , d 1 ∈Rm+ , γ, tolerance ε

2: for i = 1, . . . , imax do
3: yi = w i −γ(2βw i +S�d i )
4: ȳ i = d i +γ(Swi )
5: pi = max(0, yi −2γz) � proximal of primal variable

6: p̄i = (ȳ i −
√

(ȳ i )2 +4αγ)/2 [elementwise] � proximal of dual variable

7: qi = pi −γ(2βpi +S�p̄i )
8: q̄ i = p̄i +γ(Spi )
9: wi = w i − yi +qi ; � Update weights

10: d i = d i − ȳ i + q̄ i ; � Update degrees
11: if ‖wi −wi−1‖/‖wi−1‖ < ε and
12: ‖d i −d i−1‖/‖d i−1‖ < ε then
13: break
14: end if
15: end for
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Chapter 5. Node-local graph learning

For model (5.3) we can define in a similar way

f1(w) =� {w ≥ 0}+2w�z,

f2(c) =� {c = s} ,

f3(w) =α
(
2‖w‖2 +‖Sw‖2) , with ζ= 2α(m +1),

and use K = 21� so that the dual variable is c = K w = ‖W ‖1,1, constrained by f2 to be equal to

s.

In order to solve the �2-degrees model (5.3), we provide Algorithm 2 based on the same primal

dual template. Vector z ∈R
m×(m−1)/2
+ is the vector form of Z , and parameter γ ∈ (0, 1/(ζ+‖K ‖))

is the stepsize.

Algorithm 2 Primal dual algorithm for �2-degrees model (5.3).

1: Input: z,α, s, w 1 ∈Wv , c1 ∈R+, γ, tolerance ε

2: for i = 1, . . . , imax do
3: yi = w i −γ(2α(2w i +S�Swi )+2ci )
4: ȳ i = ci +γ(2

∑
j wi

j )

5: pi = max(0, yi −2γz) � Proximal of primal variable
6: p̄i = ȳ i −γs � Proximal of dual variable
7: qi = pi −γ(2α(2pi +S�Spi )+2pi )
8: q̄ i = p̄i +γ(2

∑
j pi

j )

9: wi = w i − yi +qi ; � Update weights
10: ci = ci − ȳ i + q̄ i ; � Update sum of weights
11: if ‖wi −wi−1‖/‖wi−1‖ < ε and
12: |ci −ci−1|/|ci−1| < ε then
13: break
14: end if
15: end for

5.4.1 Complexity and Convergence

Both algorithms that we propose have a complexity of O(m2) per iteration, for m nodes

graphs, and they can easily be parallelized. As the objective functions of both models are

proper, convex, and lower-semicontinuous, our algorithms are guaranteed to converge to the

minimum ([Komodakis and Pesquet, 2014]).

5.5 Experiments

We compare our model against the previous state of the art model (5.3) solved by our Algorithm

2 for both artificial and real data. Comparing to the model by Lake and Tenenbaum [2010]

was not possible even for the small graphs of our artificial experiments, as there is no scalable

algorithm in the literature and the use of CVX with the log-determinant term is prohibitive.
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5.5. Experiments

Table 5.1 – Performance of Different Models on Artificial Data.

Tikhonov Generative Model Heat Diffusion

base Hu etal Ours base Hu etal Ours base Hu etal Ours

Rand. Geometric
F-measure 0.685 0.885 0.913 0.686 0.877 0.909 0.758 0.837 0.849

edge �1 0.866 0.357 0.298 0.798 0.371 0.348 0.609 0.524 0.447
edge �2 0.676 0.376 0.336 0.658 0.397 0.390 0.576 0.531 0.468

degree �1 0.142 0.146 0.065 0.261 0.147 0.112 0.209 0.227 0.142
degree �2 0.708 0.172 0.079 0.689 0.174 0.128 0.474 0.264 0.176

Non Uniform
F-measure 0.686 0.863 0.858 0.633 0.840 0.832 0.766 0.839 0.830

edge �1 0.821 0.423 0.349 0.864 0.487 0.472 0.594 0.565 0.473
edge �2 0.706 0.434 0.344 0.735 0.480 0.474 0.550 0.587 0.451

degree �1 0.160 0.184 0.055 0.235 0.185 0.100 0.233 0.255 0.128
degree �2 0.612 0.209 0.073 0.632 0.215 0.161 0.427 0.324 0.157

Erdős Rényi
F-measure 0.288 0.766 0.893 0.199 0.755 0.896 0.377 0.629 0.655

edge �1 1.465 0.448 0.391 1.566 0.478 0.427 1.379 0.832 0.841
edge �2 1.060 0.442 0.402 1.105 0.457 0.440 1.033 0.735 0.726

degree �1 0.094 0.107 0.046 0.099 0.105 0.066 0.182 0.179 0.183
degree �2 0.986 0.161 0.066 1.312 0.181 0.151 0.892 0.236 0.273

Barabási-Albert
F-measure 0.345 0.710 0.868 0.382 0.739 0.838 0.352 0.690 0.765

edge �1 1.531 0.614 0.533 1.496 0.652 0.624 1.468 0.740 0.675
edge �2 1.061 0.568 0.506 1.036 0.611 0.571 1.041 0.662 0.590

degree �1 0.175 0.264 0.111 0.199 0.264 0.207 0.254 0.317 0.148
degree �2 0.554 0.340 0.201 0.556 0.333 0.287 0.568 0.414 0.283

Other models based on the log-determinant term, for which scalable algorithms exist, are

irrelevant to our problem as a sparse inverse covariance is not a valid Laplacian and are known

to not perform well for our setting. According to the experiments of Dong et al. [2015] on small

graphs, the model by Lake and Tenenbaum [2010] performs worse.

5.5.1 Artificial data

The difficulty of solving problem (3.4) depends both on the quality of the graph behind the

data and on the type of smoothness of the signals. We test 4 different types of graphs using 3

different types of signals.

Graph types. We use two 2-D manifold based graphs, one uniformly and one non-uniformly

sampled, and two graphs that are not manifold structured:

1. Random Geometric Graph (RGG): We sample x uniformly from [0,1]2 and connect

nodes using eq. (4.2) with σ= 0.2, then threshold weights < 0.6.

2. Non-uniform: We sample x in [0,1]× [0,5] from a non-uniform distribution px1,x2 ∝
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Chapter 5. Node-local graph learning

1/(1+αx2) and connect nodes using eq. (4.2) with σ= 0.2. We threshold weights smaller

than the best connection of the most distant node (≈ 0.01).

3. Erdős Rényi: Random graph as proposed by Gilbert [1959] (p=3/m).

4. Barabási-Albert: Random scale-free graph with preferential attachment as proposed by

Barabási and Albert [1999] (m0=1, m=2).

Signal types. To create a smooth signal we filter a Gaussian i.i.d. x0 by eq. (1.9), using one of

the three filter types of Section 1.2. We normalize the Laplacian (‖L‖2 = 1) so that the filters

h(λ) are defined for λ ∈ [0,1]. See Table 1 (Appendix) for a summary.

1. Tikhonov: h(λ) = 1
1+10λ as in eq. (1.10).

2. Linear Gaussian Model: h(λ) = 1/
�
λ if λ> 0, h(0) = 0 from model of eq. (1.13) (x̄ = 0).

3. Heat Diffusion: h(λ) = exp(−10λ) as eq. (1.16).

For all cases we use n = 100 nodes, with m = 1000 smooth signals as features, and add 10% (�2

sense) noise before computing pairwise distances. We perform grid search to find the best

parameters for each model. We repeat the experiment 20 times for each case and report the

average result of the parameter value that performs best for each of the different metrics.

Metrics. Since we have the ground truth graphs for each case, we can measure directly the

relative edge error between the learned and the ground truth graphs, in the �1 and �2 sense. We

also report the relative error of the weighted degrees di =∑ j Wi j . This is important because

both models are based on the use of priors on the degrees vector. We also report the F-measure

(harmonic mean of edge precision and recall), that only takes into account the binary pattern

of existing edges and not the weights.

Baselines. The baseline for the relative errors is a classic graph construction using equation

(4.2) with a grid search for the best σ. Note that this exact equation was used to create the two

first artificial datasets. However, using a fully connected graph with the F-measure does not

make sense. For this metric the baseline is set to the best edge pattern found by thresholding

(4.2) with different thresholds.

Table 5.1 summarizes all the results for different combinations of graphs/signals. In most of

them, our model performs better for all metrics. We can see that the signals constructed fol-

lowing the generative model (1.13) do not yield better results in terms of graph reconstruction.

Using smoother “Tikhonov” signals from eq. (1.10) or “Heat Diffusion” signals from (1.16) by

setting λ= 20 yielded slightly worse results in both cases (not reported here). It also seems

that the results are slightly better for the manifold related graphs than for the Erdős Rényi

and Barabási-Albert models, an effect that is more prevalent when we use samples of length

m = 100 smooth signals instead of 1000 (c.f. Table 2 of Appendix). This would be interesting to

investigate theoretically.
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Figure 5.3 – Graph learned from 1001 USPS images. Left: Clustering quality. Middle: Label
propagation quality. Right: Number of completely disconnected components (continuous
lines) and number of disconnected nodes for �2-degrees model (blue dashed line). Our model
and k-NN have no disconnected nodes.

5.5.2 Real data

We also evaluate the performance of our model on real data. In this case, the actual ground

truth graph is not known. We therefore measure the performance of different models on

spectral clustering and label propagation, two algorithms that depend solely on the graph

quality. Note that an explicit Laplacian normalization is not needed for the learned models

(it is even harmful as found experimentally), since this role is already played by the degrees

regularization.

Learning the graph of USPS digits

We first learn the graph connecting 1001 different images of the USPS dataset, that are images

of digits from 0 to 9 (10 classes). We follow Zhu et al. [2003] and sample the class sizes non-

uniformly. For each class i ∈ {1 . . .10} we take round(2.6i 2) images, resulting to classes with

sizes from 3 to 260 images each. We learn graphs of different densities using both models. As

baseline we use a k-Nearest Neighbors (k-NN) graph for different k.

For each of the graphs, we run standard spectral clustering as proposed by Ng et al. [2002]

100 times and measure the average error. We also perform label propagation 100 times using

different subsets of 10% known labels and report averaged results.

In Figure 5.3 we plot the behavior of different models for different density levels. The horizontal

axis is the average number of non-zero edges per node. In the left plot we see the clustering

quality. Even though the best result of both algorithms is almost the same (0.24 vs 0.25), our

model is more robust in terms of the graph density choice. A similar behavior is exhibited for

label propagation plotted in the middle. The classification quality is better for our model in

the sparser graph density levels.

The robustness of our model for small graph densities can be explained by the connectivity

quality plotted in the right. The continuous lines are the number of different connected
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Figure 5.4 – Graph learned from non-uniformly sampled images from COIL 20. Average over
20 different samples from the same non-uniform distribution of images. Left: Clustering
quality. Middle: Label propagation quality. Dashed lines are the number of nodes in compo-
nents without labeled nodes. Right: Number of disconnected components and number of
disconnected nodes (Our model and k-NN have no disconnected nodes).

components in the learned graphs, that is a measure of connectivity: the less components there

are, the better connected is the graph. The dashed blue line is the number of disconnected

nodes of the model by Hu et al.. The latter fails to assign connections to the most distant

nodes, unless the density of the graph reaches a fairly high level. If we want a graph with 6

edges per node, our model returns a graph with 3 components and no disconnected nodes.

The model by Hu et al. returns a graph with 35 components out of which 22 are disconnected

nodes.

Note that in real applications where the best density level is not known a priori, it is important

for a graph learning model to perform well for sparse levels. This is especially the case for large

scale applications, where more edges mean more computations.

Time: Algorithm 1 implemented in Matlab8 learned a 10-edge/node graph of 1001 USPS

images in 5 seconds (218 iterations) and Algorithm 2 in 1 minute (2043 iterations) on a

standard PC for tolerance ε= 1e-4.

Learning the graph of COIL 20 images

We randomly sample the classes so that the average size increases non-linearly from around 3

to around 60 samples per class. The distribution for one of the instances of this experiment is

plotted in fig. 5.5. We sample from the same distribution 20 times and measure the average

performance of the models for different graph densities. For each of the graphs, we run

standard spectral clustering (as in the work of [Ng et al., 2002] but without normalizing the

Laplacian) with k-means 100 times. For label propagation we choose 100 times a different

subset of 50% known labels. We set a baseline by using the same techniques with a k-Nearest

neighbors graph (k-NN) with different choices of k.

8Code for both models is given as part of the open-source toolbox GSPBox by Perraudin et al. [2014] using code
from UNLocBoX by Perraudin and Kalofolias.
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Figure 5.5 – The non uniform distributions of the USPS (left) and COIL 20 (right) datasets that
we used in the experiments of this chapter.

In Figure 5.4 we plot the behavior of different models for different density levels. The horizontal

axis is the average number of non-zero edges per node.

The dashed lines of the middle plot denote the number of nodes contained in components

without labeled nodes, that cannot be classified.

Learning the graph of MNIST digits 1 vs 2

To demonstrate the different behaviour of the two models for non-uniform sampling cases, we

use the problem of classification between digits 1 and 2 of the MNIST dataset. This problem

is particular because digits “1” are close to each other (average square distance of 45), while

digits “2” differ more from each other (average square distance of 102). In Figure 5.6 we report

the average miss-classification rate for different class size proportions, with 40 1’s and 160

2’s (left), 100 1’s and 100 2’s (middle) or 160 1’s and 40 2’s (right). Results are averaged over

40 random draws. The dashed lines denote the number of nodes contained in components

without labeled nodes, that cannot be classified. In this case, the �2-degrees model of [Hu

et al., 2013] fails to recover edges between different digits “2” unless the returned graph is

fairly dense, unlike our model that even for very sparse graph levels treats the different classes

more fairly. The effect is stronger when the set of 2’s is also the smallest of the two.

5.5.3 Timing comparison on real data

We compare the time needed for different algorightms of graph learning. We use 25 to 200

different images of the USPS dataset to learn graphs from different algorithms and report the

time in seconds. The results are given in Table 5.2. Log-det (CVX) denotes the CVX solution

of the model proposed by Lake and Tenenbaum [2010]. Dong etal. (CVX) denotes the CVX

solution provided by Dong et al. [2015]. We solve the same problem in the form of eq. (14)

with Algorithm 2, while our model of eq. (12) is solved by Algorithm 1. CVX is a generic convex
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Figure 5.6 – Label propagation for the problem “1” vs. “2” of MNIST with different class size
proportions: 1 to 4 (left), 1 to 1 (middle) or 4 to 1 (right). Missclassification rate for different
number of edges per node.

Problem size Log-det (CVX) Dong etal. (CVX) Algorithm 1 Algorithm 2

25 nodes 34.29 1.49 0.09 0.10
50 nodes 473.13 4.21 0.19 0.20
100 nodes - 51.41 0.31 0.47
200 nodes - 2109.87 0.93 1.75
400 nodes - - 1.91 11.41

Table 5.2 – Time for solving different graph learning models in seconds. We use a dash for
cases that took more than an hour. Log-det is the model by Lake and Tenenbaum [2010],
solved with CVX. Our algorithms are run for a tolerance of ε= 1e −5.

optimization tool meant to be used as a black box, and therefore it struggles to solve even

moderate sized problems. This effect is stronger when the log of the determinant is used in

the objective function. On the other hand, our algorithms are fast proximal based methods

tailored specifically for our problems, and are therefore much faster. Note also that the time

needed by both our algorithms is linear to the number of iterations that varies according to

the parameters and the step size. In these experiments they converged after around 300 and

2000 iterations respectively for algorithms 1 and 2.

5.6 Conclusion

We introduce a new way of addressing the problem of learning a graph under the assumption

that tr
(
X �LX

)
is small. We show how the problem can be simplified into a weighted sparsity

problem, implying a general framework for learning a graph. We prove that the standard

Gaussian weight construction is a special case of this framework. We propose a new model for

learning a graph, and provide an analysis of the state of the art �2-degree penalization model,

that also fits our framework. The new formulation enables us to propose a fast and scalable

primal dual algorithm for our model, but also for the one with �2-degree penalization, that

was missing from the literature. Our experiments suggest that when sparse graphs are to be

learned, but connectivity is crucial, our model outperforms the previous solutions.
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5.6. Conclusion

We hope not only that our solution will be used for many applications where good quality

of graphs is crucial, but also that our framework will be the trigger for new models targeting

specific applications.
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6 Large scale graph learning

We saw that node-local graphs (Chapter 5) give an arguably better quality than edge-local

graphs (Chapter 4) and are more attractive for most applications. While the complexity

of the latter (O
(
n2
)

per iteration) makes them more scalable than log-determinant based

global models (O
(
n3
)

per iteration1), in order to scale it to realistically big data we have to

further diminish the computational cost. A scalable large scale model should have 3 main

characteristics:

1. Lower per iteration complexity.

2. No need for parameter tuning.

3. Parallelizable algorithms.

In this chapter we first show that the per iteration complexity of our model can be reduced

from O
(
n2
)

to O (nk) if we know beforehand a subset of on average k allowed edges per node.

We also show how the user can have a good estimate of the model parameters so that tweeking

them can be avoided. While providing a well parallelized algorithm would require a fair

amount of engineering beyond the scope of this thesis, the choice of primal dual algorithms

like the ones we propose here are favorable to this direction.

Ultimately, in this chapter we solve the first two of the above points. With a simple matlab

implementation of our algorithm and without any parallelization, we already can learn a

10−N N graph of 60000 nodes within seconds on a laptop. And this, without any parameter

tweeking or even data normalization needed.

We evaluate our large scale graph learning for both our log-degree model (5.1) and the �2-

degree based model (5.3). The experiments show that for such applications where data is big

but connections are few, our model vastly outperforms an �2-degrees one, being fair about

assigning edges to more distant nodes.

1The state of the art method for sparse inverse covariance (not necessarily Laplacian) estimation runs inO (n2k
)

per iteration, where nk is the number of non-zeros of the inverse covariance [Hsieh et al., 2011]. Similar algorithms
should be applicable to the valid Laplacian case, even though they don’t exist in the current literature.
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6.1 Constrained edge pattern

It is often useful to constrain the set of allowed edges in a graph. There are two reasons we

might want to do this:

• We want to reduce the complexity.

• We want to induce further constraints because of the problem we are solving. For

example we have a graph with nodes corresponding to points on the map and we want

to avoid any connection between geographically distant nodes.

We will denote by Eallowed ⊆ {(i , j ) : i < j } the set of edges that are allowed to have a non-zero

value. What we need to solve is the modified problem

minimize
W ∈W̃m

‖W ◦Z‖1,1 − α1� log(W 1) + β

2
‖W ‖2

F , (6.1)

where we optimize in the constrained set of adjacency matrices W ∈ W̃m .

Changing Algorithm 1 so that it learns only an allowed subset of edges is not difficult. Similarly

to Section 5.4, we can gather all free parameters of an adjacency matrix W̃ ∈ W̃m in a vector

w̃ ∈ W̃v . The latter is only of size |Eallowed|, that is, the number of allowed edges each counted

only once.

We can continue by using the same primal dual algorithm we used for our initial model,

using new primal variable w̃ = w(Eallowed), pairwise distances that only correspond to the

allowed edges z̃ = z(Eallowed), and a modified linear operator S̃ = S(:,Eallowed). We can solve

the problem giving the objective function as the sum of the following three functions (see

Section 5.4):

f1(w̃) =� {w̃ ≥ 0}+2w̃� z̃,

f2(d) =−α1� log(d),

f3(w̃) =β‖w̃‖2, with ζ= 2β.

Note that the dual variable d corresponding to the node degrees has not changed. However,

the linear operator K that exchanges between primal and dual spaces was replaced by S̃. The

cost of applying the modified operator in order to exchange between the primal and dual

spaces is O
(
Eallowed

)
.

6.1.1 Approximate nearest neighbors graphs

If we want to learn a large scale graph and no subset of allowed edges is known by the problem,

we can reduce the number of parameters by using approximate nearest neighbor graphs. The

latter are based on techniques that provide an approximate set of k neighbors for each node.

The user can choose the tradeoff between the approximation quality and the computation
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speed.

Overally the complexity of these methods is O
(
n log(n)d

)
for n nodes and d-dimensional

data, and efficient implementations are available. For example see the work by Muja and Lowe

[2014] and its references. The current state of the art is apparently the one reported by Malkov

and Yashunin [2016]. The details of these methods are beyond the interest of this thesis, but a

curious reader can find a fairly good review of the literature in the afforementioned papers.

Approximate nearest neighbors (ANN) are very convenient for our problem: they scale grace-

fully with the number of nodes n and provide fairly good results. Once we have a subset

Eallowed of edges of cardinality |Eallowed| =O (nk) we can learn a graph on this reduced subset

of variables. The cost automatically drops from O
(
n2
)

to O (nk) per iteration.

Note however that the advantage of graph learning over simpler techniques like weighted

k-NNs is not only due to the weights, but also due to the ability to assign more edges for some

nodes than to others. In order to not lose this advantage, if we want on average k edges per

node, the constraint set of edges Eallowed should assign slightly more edges per node. Like this,

our graph learning algorithm is free to choose which edges to allow and which to set to 0. If in

the end of the graph learning it occurs that a large number of nodes still has all its allowed

edges set to non zero values, it is an indication that we should have given a more generous set

of allowed edges. In our experiments we use 3k-ANN to compute Eallowed when we want to

finally obtain a graph with on average k edges per node and obtain very good results.

Overall complexity

Asymptotically, the cost of learning a k-ANN graph is O
(
n log(n)d

)
for a graph of n nodes and

data with dimensionality d , while additionally learning the edge weights costs only O (kn).

As usually k < log(n)d , the asymptotical complexity of our large scale graph learning is thus

dominated by the cost of computing the k-ANN, and not by the cost of learning the weights.

6.2 Automatic parameter selection

A major problem of complex models is the choice of meaningful parameters. When intuition

is not enough, we might need to perform grid search and cross validation on our data, making

the computational complexity significantly greater. In this section we show how this burden

can be avoided for our model 5.1, that initially seems to have two important parameters α and

β to be tuned.

In [Kalofolias, 2016] it is argued that model (5.1) effectively has only one parameter changing

the shape of the edges, the second changing the magnitude. We can formulate this claim more

clearly as follows:

Proposition 4. Let F (Z ,α,β) denote the solution of model (5.1) for input distances Z and
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Chapter 6. Large scale graph learning

parameters α,β> 0. Then the same solution can be obtained with fixed parameters α= 1 and

β= 1, by multiplying the input distances by θ = 1�
αβ

and the resulting edges by δ=
√

α
β :

F
(
Z ,α,β

)=√α

β
F

(
1√
αβ

Z ,1,1

)
= δF (θZ ,1,1) . (6.2)

Proof. Apply Proposition 2 with γ=
√

α
β and divide all operants by the same constant

√
αβ.

In words, all graphs that can be learned by our model (5.1) can be equivalently computed

by multiplying the initial distances Z by a constant θ, using them to learn a graph with fixed

parameters α=β= 1, and multiplying all resulting edges by the same constant δ. Obviously,

parameter θ controls sparsity: the larger θ is, the greater the pairwise distances between nodes

and therefore the sparser the edges, as connections between distant nodes are penalized.

This proposition shows that the two parameter spaces (α,β) and (θ,δ) are equivalent. The first

one was convenient to define our model, while the second one makes the sparsity analysis

and the application of the model simpler. This result is important for many graph-based

applications that are multiplicative scale invariant. In these applications, multiplying all edges

by the same constant does not change the functionality of the graph. In other applications, we

want to explicitly normalize the graph to a specific size, for example setting ‖W ‖1,1 = n as in

[Hu et al., 2013], or making sure that λmax = 1. In these cases, the user needs only search for

the value of θ that will obtain the desired sparsity.

In this chapter we take one step further, showing how θ can be set automatically to a value

that will approximately give a desired sparsity level set by the user.

6.2.1 Sparsity analysis for one node

In order to analyze the sparsity of the graphs obtained by our model, we take one step back

and drop the symmetricity constraint so that we can focus on only one node of the graph. By

keeping only one column w of matrix W , we arrive to the simpler optimization problem

min
w∈Rn+

θw�z − log(w�1)+ 1

2
‖w‖2

2. (6.3)

Note that the vector w here corresponds to only one node, having only n edges, and should

not be confused with the vector w ∈Wv in Section 5.4 that contains all n(n −1)/2 potential

edges of the graph.

The above problem also has only one parameter θ that controls sparsity, so that larger values of

θ yield sparser solutions w∗. Furthermore, it enjoys an analytic solution if we sort the elements

of z, as stated later by Theorem 3.
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6.2. Automatic parameter selection

Active and inactive variables

In order to solve Problem (6.3) we first introduce a slack variable l for the inequality constraint,

so that the KKT optimality conditions are

θz − 1

w�1
+w − l = 0, (6.4)

w ≥ 0, (6.5)

l ≥ 0, (6.6)

li wi = 0,∀i . (6.7)

We can reveal the form of w at the optimum by introducing the term λ∗ = 1
w∗�1 and rewrite

(6.4) as

w∗ =λ∗ −θz + l . (6.8)

We can split the elements of w in two sets, A and I according to the activity of the inequality

constraint (6.5), so that wI > 0 (inactive) and wA = 0 (active). Note that at the minimum, the

elements of w will also be sorted in a descending order so that w∗ = [w∗
I ;0], according to

Theorem 3. We first need a condition for an element of w∗ to be positive as expressed in the

following lemma:

Lemma 1. An element w∗
i of the solution w∗ of problem (6.3) is in the active set A if and only

if it corresponds to an element of zi for which θzi ≥λ∗.

Proof. (⇒): If wi is in the active set we have wi = 0 and li ≥ 0, therefore from eq. (6.8) we

have θzi −λ∗ ≥ 0. (⇐): Suppose that there exists i ∈ I for which θzi ≥λ∗. The constraint being

inactive means that w∗
i > 0. From (6.7) we have that li = 0 and (6.8) gives w∗

i =λ∗ −θzi ≤ 0, a

contradiction.

Analytic solution

Using Lemma 1, we can find the exact form of the solution as a function of the input "distances"

of vector z. To simplify our analysis we assume that the elements of z are sorted in increasing

order.

Theorem 3. Suppose that the input vector z is sorted in ascending order. Then the solution of

problem (6.3) has the form

w∗ = max
(
0,λ∗ −θz

)= [λ∗ −θzI ;0], (6.9)

with

λ∗ =
θbk +

√
θ2b2

k +4k

2k
.
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The set I = {1, . . . ,k} corresponds to the indices of the k smallest "distances" zi and bk is the

cumulative sum of the smallest k distances in z, bk =∑k
i=1 zi .

Proof. As elements of θz are sorted in an ascending order, the elements of λ∗−θz will be in a

descending order. Furthermore, we know from Lemma 1 that all positive w∗
i will correspond

to θzi <λ∗. Then, supposing that |I| = k we have the following ordering:

−θz1 ≥ ·· · ≥−θzk > −λ∗ ≥−θzk+1 ≥ ·· · ≥−θzn ⇒
λ∗ −θz1 ≥ ·· · ≥λ∗ −θzk > 0 ≥λ∗ −θzk+1 ≥ ·· · ≥λ∗ −θzn .

In words, the vector λ∗ −θz will have sorted elements so that the first k are positive and the

rest are non-positive. Furthermore, we know that the elements of l in the optimal have to be 0

for all inactive variables w∗
I , therefore w∗

I =λ∗ −θzI . The remaining elements of w will be 0

by definition of the active set:

w∗ = [λ∗ −θz1, · · · ,λ∗ −θzk︸ ︷︷ ︸
w∗

I

,0, · · · ,0︸ ︷︷ ︸
w∗

A

].

What remains is to find an expression to compute λ∗ for any given z. Keeping z ordered in

ascending order, let the cumulative sum of zi be

bk =
k∑

i=1
zi . (6.10)

Then from the definition of λ∗ = 1
w∗�1 and using the structure of w∗ we have

w∗�1λ∗ = 1 ⇒(
kλ∗ −θz�

I 1
)
λ∗ = 1 ⇒(

kλ∗ −θbk
)
λ∗ = 1 ⇒

k(λ∗)2 −θbkλ
∗ −1 = 0, (6.11)

which has only one positive solution,

λ∗ =
θbk +

√
θ2b2

k +4k

2k
. (6.12)

Algorithm for one node

While Theorem 3 gives the form of the solution for a known k, the latter cannot be known

apriori, and is a function of z as well. Here we propose an exact algorithm that solves the

problem in O (k) operations. This algorithm will be needed for automatically setting the

parameters for the symmetric case of graph learning.
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6.2. Automatic parameter selection

As k is the number of non-zero edges per node, it can be assumed to be a small number, like

the ones used for k nearest neighbor graphs. Therefore, it is cheap to incrementally try all

values of k starting from k = 1 until we find the correct one, as Algorithm 3 does. Once we try

a value of k for which λ is greater than θzk but smaller or equal to θzk+1, all KKT conditions

hold and we have found the solution to our problem. A similar algorithm has been proposed

in [Duchi et al., 2008] for projecting a vector on the probability simplex, that could be used for

a similar analysis for the �2-degree constraints model (5.3).

Algorithm 3 Solver of the one-node problem, eq. (6.3).

1: Input: z ∈Rn∗+ in ascending order, θ ∈R∗+
2: b0 ← 0 � Initialize cumulative sum
3: for i = 1, . . . ,n do � will only run k +1 times
4: bi ← bi−1 + zi � Cumulative sum of z

5: λi ←
√

θ2b2
i +4i+θbi

2i
6: if λi > θzi then
7: k ← i −1
8: λ∗ ←λk
9: w∗ ← max{0,λ∗ −θz} � k-sparse output of form [λ∗ −θzI ;0]

10: break
11: end if
12: end for

Selecting parameters for a sparsity level

Most interestingly, using the form of the solution given by Theorem 3 we can solve the reverse

problem: If we know the distances vector z and we want a solution w∗ with exactly k non-zero

elements, what should the parameter θ be? The following theorem answers this question,

giving intervals for θ as a function of k, z and its cumulative sum b.

Theorem 4. By setting θ in the range

(
1√

kz2
k+1−bk zk+1

, 1√
kz2

k−bk zk

]
, the result of problem (6.3)

has exactly k non-zero elements.

Proof. From the proof of Theorem 3 we know that ‖w∗‖0 = k if and only if λ∗ ∈ [θzk ,θzk+1).

We can rewrite this as

θzk ≤
θbk +

√
θ2b2

k +4k

2k
< θzk+1 ⇔

2kθzk ≤ θbk +
√

θ2b2
k +4k < 2kθzk+1 ⇔

2kθzk −θbk ≤
√

θ2b2
k +4k < 2kθzk+1 −θbk ⇔

4k2θ2z2
k +θ2b2

k −4kθ2bk zk ≤ θ2b2
k +4k < 4k2θ2z2

k+1 +θ2b2
k −4kθ2bk zk+1 ⇔

4k2θ2z2
k −4kθ2bk zk ≤ 4k < 4k2θ2z2

k+1 −4kθ2bk zk+1 ⇔
kθ2z2

k −θ2bk zk ≤ 1 < kθ2z2
k+1 −θ2bk zk+1 ⇔

θ2(kz2
k −bk zk ) ≤ 1 < θ2(kz2

k+1 −bk zk+1).
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Figure 6.1 – Theoretical bounds of θ for a given sparsity level on 1000 images from MNIST.
Left: Solving (6.3) for only one column of Z . Theorem 4 applies and for each sparsity level
k gives the bounds of θ plotted in blue. Right: Solving (5.1) for the whole pairwise distance
matrix Z . The bounds of eq. (6.13) plotted by the blue dashed line are used to approximate
the sparsity of the solution. The red line is the measured sparsity (average number of edges
per node) of the graphs learned using our model (5.1).

As θ is constrained to be positive, the only values that satisfy the above inequalities are the

ones proposed in the theorem.

The idea of Theorem 4 is illustrated in the left part of Figure 6.1. For this figure we have used

the distances between one image of MNIST and 999 other ones. For any given sparsity level

k we can know what are the intervals of the valid values of θ just by looking at the pairwise

distances.

6.2.2 Parameter selection for the symmetric case

In order to approximate the parameter θ that gives the desired sparsity of W , we can use the

above analysis for each row or column separately, omitting the symmetricity constraint. By

using the arithmetic mean of the bounds of theta we can have a good approximation of the

behaviour of the full symmetric problem. In other words, we propose to use the following

intervals to obtain a graph with approximately k edges per node:

θk ∈
(

1

n

n∑
j=1

θlower
k, j ,

1

n

n∑
j=1

θ
upper
k, j

]

=

⎛⎜⎝ n∑
j=1

1

n
√

k Ẑ 2
k+1, j −Bk, j Ẑk+1,i

,
n∑

j=1

1

n
√

k Ẑ 2
k, j −Bk, j Ẑk, j

⎤⎥⎦ , (6.13)

where Ẑ is obtained by sorting each column of Z in increasing order, and Bk, j =
∑k

i=1 Ẑi , j .

The above expression is the arithmetic mean over all minimum and maximum values of θk, j
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Figure 6.2 – Predicted and measured sparsity levels for different values of the parameter θ.
Note that θ is plotted in logarithmic scale and decreasing. Left: USPS digits dataset, 1001
non uniform samples according to the distribution used in Section 5.5.2. Middle: ATT faces
dataset, all 400 images. Right: Random 2-D data from a Gaussian distribution. When data
comes from a uniform distribution U (0,1)n×2 the approximate bounds are better predictors
(plot omitted).

that would give a k-sparse result W:, j if we were to solve problem (6.3) for each of columns

separately, according to Theorem 4. Even though the above approach does not take into

account the symmetricity constraints, it gives surprisingly good results in most cases, and a

good starting point in the few cases where it fails.

The right part of Figure 6.1 shows the approximate bounds obtained by this approach for

1000 images of the MNIST dataset. It is clear that for this dataset we can get a very good

approximation

6.3 Experiments

In this section we learn the graph between all 60000 images of the train set of MNIST and

report our findings. MNIST has relatively uniform sampling between numbers of the different

labels as shown in Figure 6.3 (left). However, it has one particularity, namely that the digits “1”

are more densely distributed than all other digits (6.3 (right)). This will affect the results of

graph learning as we see in the sequel.

Number of allowed edges and time

Running our algorithm for a subset of allowed edges Eallowed has a cost linear to the size

|Eallowed| of this set as illustrated in the left part of Figure 6.4. For learning a graph with

approximately 10 edges per node, we needed 20 seconds to compute Eallowed, and 20 seconds

to learn the final graph of 60000 nodes (around 250 iterations).

For computing Eallowed we compute an approximate nearest neighbors (ANN) graph using the

publically available FLANN library2 that implements the work of Muja and Lowe [2014]. When

2Compiled C code run through Matlab, available from http://www.cs.ubc.ca/research/flann/.
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Figure 6.3 – Label frequency (left) and average squared distribution (right) of MNIST train
data (60000 nodes). The distances between digits “2” are significantly smaller than distances
between other digits.

we want to learn a graph with on average k neighbors per node (k-NN), we first compute a

3k-ANN graph (with approximately 3k edges per node), we use its edges as Eallowed, and learn

a weighted graph on this subset. The choice of number of allowed edges does not only affect

the time needed to learn the graph, but also its quality. If we choose a very small restricted

edge set, we might prevent the final graph form learning useful edges. The percentage of

nodes of the final graph that have the maximum number of edges allowed by Eallowed is a

measure of this quality deterioration due to the edge restriction imposed by the ANN. We

plot this percentage for our large scale log-degree model in the right part of Figure 6.4. In the

horizontal axis we have k, and different lines correspond to different densities of the ANN

graph, from 2k to 4k. We find that an ANN of 3k is a good compromise between time and

quality, and use it for the rest of the experiments of this section.

Connectivity quality

Next we analyze the quality of the connections retrieved by our large scale log model, by the

large scale version of the �2 model (using only a subset of allowed edges like for our model),

and an k-ANN graph as a baseline. We first normalize each graph so that they have equal

total “connectivity” ‖W ‖1,1 = 1. What we plot in these histograms is the percentage of this

connectivity that is spent for edges between images of each label. The last bar corresponds

to the total percentage of connectivity wasted on useless edges (edges between any pair of

different labels).

Given the distribution of the labels and distances in the MNIST dataset (Figure 6.3), we would

like to see hopefully similar connectivity between images of each label, with a small variation

due to different average distances (with label “1” more connected). Ideally, the wrong edges

should be minimal.

A first obvious result is a general failure of the �2-degree model (5.3) to give consistent con-
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Figure 6.4 – Left: Time needed for learning a graph of 60000 nodes (MNIST images) using
the large scale version of our model . Experiments of this Chapter were performed on a
laptop (MacBook pro 2015, double core, 16GB RAM). Our algorithm converged after 250 to
450 iterations with a tolerance of 1e −4. The time needed is linear to the number of variables,
that is linear to the average degree of the graph. Right: Percentage of nodes that after learning
have the maximum allowed number of edges.

nectivities accross different labels, being too sensitive to the average distances. Like in the

experiments of the previous chapter, this model prefers to assign the vast majority of its

connectivity only to the label “1” that has the smallest intra-label image distance. This effect

becomes smaller when more dense graphs (30 edges per node, yellow bars) are sought.

On the other hand, our log-degree model does not suffer from this problem: It gives consistent

connectivities without depending much on the graph density. Similarly for a k-NN graph, the

connectivity is constant across all labels. Note, however, that we use it here only as a baseline,

and that a weighted k-NN graph would also follow the intra-label distances depending on its

weighting scheme.

Label propagation

We finally repeat the label propagation experiment of Chapter 5, this time on the whole

60000-node graph of MNIST. We have used only 1% of the labels as observations, and perform

standard label propagation [Zhu et al., 2003] to predict the rest of the labels. The results are

plotted in Figure 6.6. Given our previous observations, it is not surprising that the log model

performs best. Here to have a fair comparison we used the best weighting scheme for k-NN,

while the quality of the label propagation did not vary significantly by changing weighting

schemes.

To explain why the �2-degree model (blue line) fails even for 30 edges per node, we plot the

number of nodes that have no edge (blue dashed), only one edge, only two, or only three edges

in graphs of different degrees. The other two types of graphs perform much better to this
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Figure 6.5 – Connectivity across different labels of the full MNIST train dataset (60000 nodes).
We have normalized each graph so that ‖W ‖1,1 = 1 and measure how large is the percentage of
the total weight for pairs of each label. The last columns correspond to the total of the wrong
edges, between images of different labels. Left: The �2-degree penalization model (5.3) is too
sensitive with respect to sample distances and does not connect well digits with relatively
large distance (“2”s and “8”s) even for 30 edges per node graphs. Middle: Our model (6.1)
while sensitive to the distance between different pairs, does not neglect to connect any cluster,
even for very sparse graphs of 5 edges per node. Right: The k-NN graph does not take into
account enough the distance and connects uniformly pairs of all labels. For 30 edges per node,
it introduces many edges that should not exist.

direction.

Given the performance of the k-NN graph, one might wonder why pay the additional cost

of learning a graph only for a small improvement in label propagation. Note, however, that

the additional cost is not significant. Asymptotically, the cost of learning a k-ANN graph

is O
(
n log(n)d

)
for a graph of n nodes and data with dimensionality d , while additionally

learning the edge weights costs only O (kn). The asymptotical complexity is thus dominated

by the cost of computing a k-ANN, and not by the cost of learning the weights. For the

relatively small size of the problem we solve, this corresponds to 20 seconds for the k-ANN

graph (using compiled C code), and an additional 45 seconds for our graph learning (using a

Matlab-only implementation). Had we used C implementation for our algorithm, the second

number would be orders of magnitude less. Furthermore, for really large scale problems the

asymptotical complexity would show that the bottleneck is definitely not the graph learning.
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Figure 6.6 – Left: Label propagation with only 1% labels known on the whole MNIST train
dataset (60000 nodes). Right: Connectivity of different graphs: We measure how many nodes
have at most 1, 2 or 3 connections.
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7 Learning time varying graphs

Until now we have supposed that data reside on a static graph, and we can use them to learn

the relationship between different nodes. In this chapter we are interested in data that reside

on a graph that changes in time. Such data can occur for example as measurements from a

sensor network where the nodes are moving in space, or a social network where friendship

relationships change with time.

In this case, given our data, we wish to learn not one graph, but a set of graphs that change

slowly in time. This way we can capture the structure between nodes in different time windows

instead of learning an “average” graph using all samples and ignoring their time dependence.

One of our objectives is, as before, to have a scalable algorithm that learns meaningful connec-

tions between our data. The algorithm we propose is based on our node-local models and

scales linearly in the size of the variables to be learned. That is, linearly with respect to the

number of different graphs we learn times the number of allowed edges in each of them. We

show that such an approach explains data better than graphs or other baselines that do not

take into account the variability in time.

7.1 Adding time structure

We denote our data matrix X ∈Rn×m , containing columns x j
1 as time samples of a graph with

n nodes. We suppose that the graph changes slowly in time, and to make the problem tractable

we further discretize time in T windows. We denote by W (t ), i = 1. . .T the adjacency matrix of

a window t . Obviously T ≤ m, and while this is not binding, we suppose for simplicity that the

size of the time windows is constant.

Following our assumption that the graph changes slowly in time, we are based on our previous

models and add a term that penalizes fast changes of the adjacency matrices. To keep the

model scalable we use a differentiable term that associates each adjacency matrix with its

1In this chapter we use x j to denote column X:, j , in order to keep notation simple.
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Chapter 7. Learning time varying graphs

previous one. The model we propose is the following:

minimize
{W (t )∈Wm}

T∑
t=1

[
θ
∥∥W (t ) ◦Z (t )

∥∥
1,1 − 1� log

(
W (t )1

) + 1

2

∥∥W (t )
∥∥2

F

]
+ γ

T∑
t=2

f t
time

(
W (t )|W (t−1)) ,

(7.1)

where the last term is a dissimilarity measure between the adjacency matrix at time window

t and the one of time window t −1. By Z (t ) we denote the squared pairwise distances by eq.

(1.5), computed only from the columns of X that correspond to the time window t . Setting

the parameter γ to big values obtains graphs with slower change over time, while θ controls

sparsity as before. Similarly, if we want to allow disconnected nodes for some of the time

windows, we can solve a time-varying model based on an �-2 degree penalization

minimize
{W (t )∈Wm}

T∑
t=1

[∥∥W (t ) ◦Z (t )
∥∥

1,1 + α

2

∥∥W (t )1
∥∥2 + α

2

∥∥W (t )
∥∥2

F

]
+ γ

T∑
t=2

f t
time

(
W (t )|W (t−1)) ,

s. t.,
∥∥W (t )

∥∥
1,1 = s. (7.2)

7.2 Optimization

One feature of these models is that they can be optimized using the same primal-dual based

algorithms we used in the original models of Chapter 5. Furthermore, they are trivially

parallelizable over the time windows. To use the primal dual optimization framework, we first

split the objective function and solve (5.16), using

f1(wall) =�
{

wall ≥ 0
}
+2θw all�zall,

f2(d all) =−1� log(d all),

f3(wall) = ‖w all‖2 +γ
T∑

t=2
f t

time

(
w (t )|w (t−1)) ,

where we have stacked the vector forms w (t ) of the adjacency matrix of each window in a

vector w all, and similarly for the distances zall and the degrees d all.

For the first two functions, we see that performing the proximal operator can be done in

parallel for each window independently (even more, independently for each element of wall

or d all respectively.)

In order to switch from the primal (weights) domain to the dual (degrees) domain, we need

to use the linear operator S (see Section 5.4) for each window separately, i.e. d (t ) = Sw (t ).

Equivalently, for the space containing weights of all windows, we use the linear operator

K = diag(S, . . . ,S), that is a block diagonal operator with T repetitions of S in the diagonal.
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The gradient of f3 is easy to compute as well:

∇w (t ) f3(wall) = 2w (t ) +γ∇w (t ) f t
time

(
w (t )|w (t−1))+γ∇w (t ) f t+1

time

(
w (t+1)|w (t )) ,

for example for f t
time

(
W (t )|W (t−1)

)= 1
2

∥∥W (t ) −W (t−1)
∥∥2

F = ∥∥w (t ) −w (t−1)
∥∥2

2 we have

∇w (t ) f3(wall) = (2+4γ)w (t ) −γ
(
w (t−1) +w (t+1)) .

We see that in order to compute the gradient for a window t , we need to use message passing,

from neighboring windows t − 1 and t + 1. The computation of this gradient is the only

operation where information from neighboring windows is exchanged during the primal-dual

algorithm.

7.3 Experiments

We first evaluate our time varying models on linear Gaussian data that follow our assumptions.

We first create a set of m graphs W i with n nodes. To do so we explore two types of time

varying graph:

Data types:

1. Erdős Rényi: Starting from a random binary Erdős Rényi graph [Gilbert, 1959] G1, we

sample each subsequent graph Gt+1 by keeping 95% of the edges of Gt intact, and 5% of

them resampled from the same distribution that gave G1. In total we sample 700 such

graphs of 50 nodes, and we use probability of connection p=5/(m −1).

2. Random waypoint geometric graph: We suppose that we have 50 sensors moving around

the 2 dimensional square space [0,20]2 (meters) according to the mobility model de-

scribed by Johnson and Maltz [1996], commonly called the random waypoint model. By

assuming each sensor moves with an average speed of 0.05−0.5m/s, we sample their

positions every 0.1s for a total time of 70s. Given their positions we construct a total of

700 ε-neighborhood graphs with exponential decaying weights.

In this scenario, we are given a matrix X ∈ Rn×m , where m = 700 denotes time. To make

the data more realistic, we suppose that not only the graphs, but also the samples are time

dependent, given from the Gaussian Markov chain

p
(
xi

∣∣∣xi−1,W (i )
)
=N
(

xi

∣∣∣∣0,
(
L(i ) +σ2I

)−1
)
N
(

xi

∣∣∣∣xi−1,
1

μ
I

)
, (7.3)

starting from a zero vector x0.

Metric: Given this matrix, we can split it in time windows of a given size and learn a graph for

each of them. The number of the windows is therefore inverse proportional to the window size.

In order to compute the graph quality, we take the average TCER (Section 1.4) achieved by
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Chapter 7. Learning time varying graphs

the eigenvalue decomposition of the graph Laplacian, averaged over all samples of the given

window. For example, the basis error of a given algorithm for the first window t = 1 of size k is

1

k

k∑
i=1

R
(
p(xi )

∣∣Q(1) ) ,
where each marginal distribution p(xi ) is “explained” by the same basis Q(1) obtained as the

eigenvalue decomposition of the learned graph Laplacian (or empirical covariance) of that

window.

In Figure 7.1 we see the graph quality for different window sizes and for the two different types

of data. For the Erdős Rényi data we used the log-degree model (7.1) (that performed best),

while for the random waypoint data we used the �-2 degree model (7.2), as there are often

disconnected nodes in the initial data. Since there is a Gaussian dependence between xi and

xi+1, we use an �-2 distance f t
time

(
w (t )|w (t−1)

)= ∥∥w (t ) −w (t−1)
∥∥2

2.

Several observations are in order. Focusing only on the covariance estimation that sets the

baseline, we see that because the distribution changes in time, the sample covariance estima-

tion of all samples (dotted black line) is a worse estimator than the sample covariance with

only half, or even less of the samples (minimum of blue line). This justifies that there is a need

to split the data in more than one coherent blocks. However, splitting data in more blocks,

we keep fewer vectors in each of them, making covariance estimation worse. As suggested by

Figure 1.5, this is less of a problem when we learn a graph instead.

The red line corresponds to learning a graph from each window independently (γ= 0), which

already does much better than the covariance matrix as it is robust to fewer samples, and

therefore can achieve greater precision in time. This effect is stronger when we add the

smoothness prior, with the best result in this plot achieved for γ= 200 (purple line). In this

case, graph learning is very robust to having very few samples per window (only 6). As the

complexity is linear to the number of windows, one might choose to have less windows with

more samples each, in which case a smaller γ is more appropriate (orange line).
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Figure 7.1 – Quality of time varying graphs on a matrix X ∈R50×700 from eq. (7.3) for different
sizes of windows. More smoothing in graph learning achieves more detail in time, needing
only 6 samples per window to obtain the best result.

85





8 Discussion

During the preparation of this thesis, some questions of the field were answered explicitly or

implicitly. While we leave a detailed list of our contributions in the introduction of this thesis,

we stress here explicitly some points that the author finds important.

General graph learning framework. The biggest contribution of this thesis is the general

graph learning framework (3.4) that can easily be adapted to many graph learning problems

and has an increased interpretability compared to any previous attempt. We argue that before

solving a problem, the first step should be to simplify it as much as possible and understand

the easiest cases: Can we see standard graph construction as graph learning? What is the

interpretation of each parameter or constraint of our model? Can we omit some of them?

Traditionally, graph based machine learning problems were solved in a two step fashion: (1)

construct a graph given features, then (2) use the graph to solve the problem. With a graph

learning point of view available, and given its relatively low cost, we are free to repeat this

loop in an expectation maximization fashion, alternating between solving problem (3.2) for X

and problem (3.3) for L. We hope that this idea will lead to adapting our generic framework to

specific applications, and provide simultaneously better quality graphs and solutions of existing

machine learning problems.

Graphs, the next PCA? We saw in Figure 1.5 that graphs can obtain a good basis of our data

with only very few of them available. This is most important in today’s applications, where the

number of nodes can grow to large values, and standard structure estimators like the empirical

covariance struggle with very few signals available. Moreover, the non-negativity of the edges

and the sparsity it automatically leads to, make graphs easier to interpret than a standard

covariance matrix.1 Given the above, we hope that in the near future, learning a graph from a

matrix will be a tool as important in data science as is PCA today.

1Sparse inverse covariance estimation is an interesting alternative, but it struggles with an elevated computa-
tional cost due to the log-determinant term.
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Graphs for big data. Many advances of graphs make them easily scalable to big data. The

greatest examples are graph filtering with Chebyshev polynomials2 and approximate nearest

neighbor graphs.3 The same direction we follow with our large scale graph learning algorithm,

that has a final leading cost same as the one of approximate nearest neighbors algorithms.

We see that graphs are already targeting large scale applications, and this should be one of the

usability criteria of new models.

Reproducible research. We feel that keeping research reproducible is the only way to allow

others to correctly review, use, and build upon one’s work. Giving code capable to reproduce

important results of one’s research plays an important role in this. Most algorithms of this

thesis are available as part of the open source Matlab toolbox GSPbox [Perraudin et al., 2014].

The latter builds on our general proximal based convex optimization Matlab toolbox UN-

LocBoX [Perraudin and Kalofolias, 2016]. Code for matrix completion on graphs is available in

https://lts2.epfl.ch/research/reproducible-research/matrix-completion-on-graphs/.

2Reducing cost from O (n3) needed by eigenvalue decomposition to O (|E | · I ) for I iterations.
3Reducing cost fromO (n2m +n2 log(n)

)
needed by sorting all pairwise distances to O (n log(n)m

)
for m signals

(features) and n nodes.
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A Appendix

Proof of proposition 2

Proof. We change variable W̃ =W /γ to obtain

F (Z ,α,β) =
= γargmin

W̃

‖γW̃ ◦Z‖1,1 −α1� log(γW̃ 1)+β‖γW̃ ‖2
F

= γargmin
W̃

γ‖W̃ ◦Z‖1,1 −α1� log(W̃ 1)+βγ2‖W̃ ‖2
F

= γargmin
W̃

‖W̃ ◦Z‖1,1 − α

γ
1� log(W̃ 1)+βγ‖W̃ ‖2

F

= γF

(
Z ,

α

γ
,βγ

)
,

where we used the fact that log(γW̃ 1) = log(W̃ 1)+const.(W ). The second equality is obtained

from the first one for γ=α.
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Appendix A. Appendix

Proof of proposition 3

Proof. For equation (5.4)

H(Z +γ,α, s) =
= argmin

W ∈Wm

‖W ◦Z +γW ‖1,1 +α‖W ‖2
F +α‖W 1‖2

s. t., ‖W ‖1,1 = s

= argmin
W ∈Wm

‖W ◦Z‖1,1 +γ‖W ‖1,1 +α‖W ‖2
F +α‖W 1‖2

s. t., ‖W ‖1,1 = s

= argmin
W ∈Wm

‖W ◦Z‖1,1 +γs +α‖W ‖2
F +α‖W 1‖2

s. t., ‖W ‖1,1 = s

= H(Z ,α, s),

because ‖a +b‖1 = ‖a‖1 +‖b‖1 for positive a, b.

For equation (5.5) we change variable in the optimization and use W̃ =W /γ to obtain

H (Z ,α, s) =
= γargmin

W̃ ∈Wm

‖γW̃ ◦Z‖1,1 +α‖γW̃ ‖2
F +α‖γW̃ 1‖2

s. t., ‖γW̃ ‖1,1 = s

= γargmin
W̃ ∈Wm

γ‖W̃ ◦Z‖1,1 +γ2α‖W̃ ‖2
F +γ2α‖W̃ 1‖2

s. t., ‖W̃ ‖1,1 = s

γ

= γargmin
W̃ ∈Wm

‖W̃ ◦Z‖1,1 +γα‖W̃ ‖2
F +γα‖W̃ 1‖2

s. t., ‖W̃ ‖1,1 = s

γ

= γH

(
Z ,αγ,

s

γ

)
.

The second equality follows trivially for γ= s.
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Table A.1 – Performance of Different Algorithms on Artificial Data. Each setting has a random
graph with 100 nodes and 100 smooth signals from 3 different smoothness models and added
10% noise. Results averaged over 20 random graphs for each setting. F-measure: the higher
the better (weights ignored). Edge and degree distances: the lower the better. For relative
�−1 distances we normalize s.t. ‖w‖1 = ‖w0‖1. For relative �−2 distances we normalize s.t.
‖w‖2 = ‖w0‖2. Baseline: for F-measure, the best result by thresholding exp(−d 2). For edge
and degree distances we use exp(−d 2/2σ2) without thresholding.

Tikhonov Generative Model Heat Diffusion

base Hu etal Ours base Hu etal Ours base Hu etal Ours

Rand. Geometric
F-measure 0.667 0.860 0.886 0.671 0.836 0.858 0.752 0.837 0.848

edge �-1 0.896 0.414 0.364 0.851 0.487 0.468 0.620 0.526 0.451
edge �-2 0.700 0.430 0.390 0.692 0.494 0.477 0.582 0.535 0.471

degree �-1 0.158 0.151 0.080 0.268 0.159 0.128 0.216 0.225 0.143
degree �-2 0.707 0.179 0.095 0.679 0.193 0.145 0.479 0.264 0.177

Non Uniform
F-measure 0.674 0.821 0.817 0.650 0.779 0.774 0.763 0.835 0.827

edge �-1 0.847 0.547 0.480 0.931 0.711 0.673 0.612 0.583 0.491
edge �-2 0.724 0.545 0.462 0.784 0.673 0.624 0.565 0.598 0.464

degree �-1 0.167 0.190 0.075 0.241 0.204 0.139 0.235 0.257 0.132
degree �-2 0.605 0.228 0.099 0.614 0.261 0.187 0.433 0.325 0.164

Erdős Rényi
F-measure 0.293 0.595 0.676 0.207 0.473 0.512 0.358 0.595 0.619

edge �-1 1.513 0.837 0.798 1.623 1.113 1.090 1.401 0.896 0.899
edge �-2 1.086 0.712 0.697 1.129 0.896 0.888 1.045 0.767 0.759

degree �-1 0.114 0.129 0.084 0.135 0.146 0.114 0.185 0.182 0.184
degree �-2 0.932 0.202 0.116 1.053 0.227 0.185 0.875 0.241 0.276

Barabási-Albert
F-measure 0.325 0.564 0.636 0.357 0.588 0.632 0.349 0.631 0.711

edge �-1 1.541 0.939 0.885 1.513 0.940 0.914 1.473 0.843 0.774
edge �-2 1.073 0.802 0.761 1.052 0.808 0.773 1.049 0.732 0.672

degree �-1 0.225 0.309 0.145 0.243 0.311 0.229 0.281 0.336 0.181
degree �-2 0.560 0.378 0.281 0.563 0.386 0.350 0.570 0.429 0.319
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