
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Squall: Scalable Real-time Analytics using Efficient,
Skew-resilient Join Operators

Aleksandar VITOROVIĆ

Thèse n° 7290

2023

Présentée le 15 mai 2023

Prof. W. Zwaenepoel, président du jury
Prof. C. Koch, directeur de thèse
Prof. V. Markl, rapporteur
Dr S. Kandula, rapporteur
Prof. A. Ailamaki, rapporteuse

Faculté informatique et communications
Laboratoire de théorie et applications d’analyse de données
Programme doctoral en informatique et communications

I am fain to compare myself with a wanderer

on the mountains who, not knowing the path,

climbs slowly and painfully upwards

and often has to retrace his steps

because he can go no further — then,

whether by taking thought or from luck,

discovers a new track that leads him

on a little till at length

when he reaches the summit

he finds to his shame

that there is a royal road

by which he might have ascended,

had he only the wits to find

the right approach to it. In my works,

I naturally said nothing about my mistake

to the reader, but only described

the made track by which he may now reach

the same heights without difficulty.

— Hermann von Helmholtz

To my beloved wife, Milica,

and to my dear daughter, Sara.

Acknowledgements
First of all, I would like to thank my advisor, Christoph Koch. When I came, I was completely

clueless about what the research is all about, and he was patient in explaining me how to do it

the right way. Christoph taught me how to distinguish between incremental and fundamental

advances in science, and to think big. I appreciate that he was always asking more from me,

forcing me to give my best. He also showed me by example a high level of dedication a research

career requires. I am also thankful to him that he almost always pulled an all-nighter with

us before a deadline. I would also like to thank Srikanth Kandula, my advisor at Microsoft

Research, where I interned during summer 2015. Thank you for providing me with such a

great environment and for assembling such a great team of highly qualified and motivated

people. It was my pleasure working and brainstorming with you! I learned a lot from you

Srikanth, especially in terms of getting great ideas and getting them done in a real system.

I owe many thanks to Yannis Klonatos, my dear colleague from the EPFL DATA Lab. He

helped me in so many different ways, so that it is hard to express in words all the gratitude

I feel towards him. Several times during my PhD when I was close to quiting because of

slow progress, he gave me feedback about my work, and encouraged me to continue. He

reviewed every paper that I ever submitted, and not once, but many times. Thank you Yannis

for countless proof-readings of my papers! In particular, I thank you for your enormous

contributions to the ICDE paper. You read the paper in great detail (including all the formulas),

and helped me to extract and articulate contributions in a clear way. I am sure that if you were

not there, this paper would not be accepted, and I would have hard time to graduate.

I thank Mohammad El Seidy for being a core contributor of Squall (this thesis is about our

system Squall). Thank you for the collaboration on the papers, and all the brainstorming that

helped us to better design Squall. I’ll never forget these two weeks before an important paper

deadline when you stopped your own research to help me to submit a paper.

I also highly appreciate the contributions of many master students, whose semester, course

or master projects extended Squall and made it much more robust. Most notably, I thank

Khayyam Guliyev and Khue Vu. Khayyam created a Web interface for Squall, and implemented

some multi-way join operators. Khue enabled running Local DBToaster from Squall, and led

a team in a course project that implemented a hypercube scheme. I also thank all the other

Squall contributors: Mohammed El Seidy and Christoph Koch (core contributors), Yannis

Klonatos, Abdallah Elguindy, Oliver Kennedy, Amir Shaikhha, Mohammad Dashti, Daniel

Espino Timón, Tam Nguyen Thanh, Diana-Andreea Popescu, Zisi Wang, Loïc Gardiol, Bruno

Corijn, Yannick Tapparel, Michalis Zervos, Matthaios-Alexandros Olma, Andriani Stylianou,

i

Acknowledgements

Guillaume Ulrich, Patrice Gueniat, Gilles Cressier, Romain Poiffaut, Nithin George and Ferhat

Elmas.

I would like to thank the entire DATA lab. I thank Mohammed El Seidy for listening to me when

I was complaining, and for countless discussions about the research and industry, work-life

balance and true values in life, faith, philosophy, to name just a few. You definitely helped

me to get a wider perspective on life. Thank you, Miloš Nikolić, for being a great office-mate

during last 5 years, and Lionel Parreaux, with whom we shared the office for a semester. I thank

Amir Shaikhha and Mohammed Dashti for always having time to discuss both professional

and non-professional topics, and for radiating optimism even in difficult situations. On the

other hand, I appreciate honesty of Daniel Lupei, whose back-to-earth comments were mostly

true. Daniel, I’ll also remember our runs on the shore of Lake Geneva, and your patience until

I got into good shape. I thank Immanuel Trummer for his in-depth feedback on my ICDE

paper, and for the translation of the abstract of this thesis to German. I thank Simone Muller,

for helping out in many administrative tasks. I also thank Matthaios Olma from the DIAS Lab,

with whom I had a great collaboration at Microsoft Research.

No success is possible without a strong family support. First, I owe greatest thanks to my

wife Milica for all the love, care, encouragement and understanding. She made my life much

more enjoyable. I also thank her for tolerating my long working hours before the deadlines

and for patiently listening about research in computer science, despite the fact that she is a

professor of music. I thank our daughter Sara, who always run to me and hugged me when I

was coming back from work. Frequently I worked at home, and she was full of understanding

and encouraged me with “Aaa, pos’o!” (“Ahh, work!”) and “Tata piše tezu” (“Daddy writes

his thesis!”). I thank my parents, Rade and Zora, for their unconditional love and moral and

financial support throughout whole my life. They taught me what are the core values in

life, and to work hard. I thank to my brother Danilo, who taught me how to write my first

Hello-world program in Basic on Commodore 64 when I was around 10. He is now an assistant

professor of neurological sciences, but he knows enough about computer science so he was

able to give me some feedback about my research. Last but not least, I thank my mother-in-law

Mira for coming to Switzerland many times to help us with Sara.

I would also like to thank to many of my friends I got to know here in Switzerland. I thank

Clifford and Samuel for encouraging me during my studies. I also thank Stephane and Marco,

who invited us many times at their place. I am thankful to a Serbian EPFL community (Miloš,

Milena, Andrej, Lazar, Bilja, Zlatko, Nataša, Renata, Ivan, Danica, Mira) for many lunches

and birthday parties we had. Thank you, Vlad, for many interesting discussion we had, and

for tutoring me on how to find a job. I would also like to thank Quentin (whom I met at

Mission Caleb) for translating the abstract of this thesis in French. I thank Groupes Bibliques

Universitaires (GBU) at EPFL, for organizing many interesting events and conferences.

Finally, I would like to thank Dositeja, Foundation for young talents of Republic of Serbia, for

granting me a scholarship during my PhD studies.

Lausanne, 15 September 2016 A. V.

ii

Abstract
Squall is a scalable online query engine that runs complex analytics in a cluster using skew-

resilient, adaptive operators. Online processing implies that results are incrementally built

as the input arrives, and it is ubiquitous for many applications such as algorithmic trading,

clickstream analysis and business intelligence (e.g., in order to reach a potential customer

during the active session).

This thesis presents an overview of Squall, including some novel join operators, as well as

lessons learned over five years of working on this system. Existing open-source online systems

(e.g. Twitter Storm, Spark Streaming) provide only hash-joins, which are limited to equi-joins

and prone to skew. In contrast, Squall puts together state-of-the-art skew-resilient partitioning

schemes (including some of our own), local query operators, and techniques for scalable

online query processing. Such a system allows us to leverage the effect of various design

choices on the performance, to seamlessly build efficient novel operators, and to discover and

address new skew types (e.g. dependence on tuple arrival order) that can arise only in online

systems.

Existing partitioning schemes for joins work well only for a narrow set of data distribution

properties, that is, specific proportion of join output and input sizes for 2-way joins, or

similar data distribution among all the relations for multi-way joins. In contrast, Squall

covers the entire spectrum of different data distributions by providing two novel skew-resilient

partitioning schemes: (a) a scheme for 2-way non-equi joins partitions the data using a multi-

stage load-balancing algorithm that contains a join-specialized computational geometry

algorithm, and (b) a scheme for multi-way joins which constructs a composite partitioning,

consisting of different partitioning schemes according to the skew degree in different relation

attributes. Compared to state-of-the art, our schemes achieve up to 12× speedup and are up

to 5× more efficient in terms of resource consumption.

Key words: online query engine, skew-resilient parallel operators, 2-way and multi-way joins,

equi and non-equi joins, skew types, adaptivity

iii

Résumé
Squall est un moteur de réquete évolutif en ligne qui exécute des analyses complexes dans un

cluster en utilisant des opérateurs adaptatifs et asymétrie-résilients. Le traitement en ligne

implique que les résultats sont incrémentiellement construits dès que l’entrée arrive, ce qui

est très souvent le cas pour un grand nombre d’applications comme le trading algorithmique,

l’analyse de flux de clics et la informatique décisionnelle (par exemple afin d’atteindre un

client potentiel au cours d’une session active).

Cette thèse présente une vue d’ensemble de Squall, comprenant plusieurs opérateurs de

jointure, ainsi que quelques leçons retenues après cinq années de travail sur ce système. Les

systèmes open-source en ligne existants (comme Twitter Storm et Spark Streaming) four-

nissent seulement des jointures hachée, qui sont limités aux equi-jointures et sujets aux

asymétrie. En revanche, Squall utilise à la fois des schémas de partitions asymétrie-résilients

de pointe (y compris certains des notres), des opérateurs de requêtes locales, et des techniques

pour le traitement évolutif de requêtes en ligne. Un tel système permet d’évaluer l’effet de

différents choix de conception sur la performance, de construire de manière transparente de

nouveaux opérateurs efficaces, et de découvrir et solutionner des nouveaux types de asymétrie

(par exemple dépendance au tuple ordre d’arrivée) qui ne peut survenir que dans des systèmes

en ligne.

Les schémas de partitions existants pour les jointures fonctionnent bien seulement pour un

ensemble restreint de propriétés de distribution de données, donc une proportion spécifique

de taille entre de entrée et sortie de jointure pour des jointures 2-voies, ou la distribution de

données similaire parmi toutes les relations pour des jointures multi-voies. En revanche, Squall

couvre tout le spectre des différentes distributions de données en fournissant deux nouveaux

schémas de partitions asymétrie-résilients : (a) un schéma pour 2-voies non-equi jointures

qui divise les données en utilisant un algorithme d’équilibrage multi-étage qui contient un

algorithme de géométrie algorithmique spécialisée pour jointures et (b) un schéma pour des

jointures multi-voies qui construit un partitionnement composite, constitué de différents

schémas de partition en fonction du degré de asymétrie dans les différents attributs des

relations. Par rapport aux schémas actuels de pointe, nos schémas atteignent une vitesse

jusqu’à 12 fois supérieure et sont jusqu’à 5 fois plus efficace en termes de consommation de

ressources.

Mots clefs : Moteur de réquete en ligne, opérateurs parallèles asymétrie-résilients, jointures

2-voies et multi-voies, equi et non-equi jointures, types d’asymétrie, adaptivité

v

Zusammenfassung
Squall ist ein skalierbares System zur Online-Datenverarbeitung welches komplexe Analysen

auf einem Cluster ausführt. Dafür verwendet Squall verzerrungsresistente und anpassungsfä-

hige Operatoren. Squall zielt ab auf Online-Szenarien in denen Eingabedaten inkrementell

verfügbar werden. Solche Szenarien treten zum Beispiel auf im Kontext des Hochfrequenzhan-

dels, der Clickstream-Analyse, oder im Bereich der Geschäftsanalyse.

Diese Dissertation beschreibt das Squall System, seine neuartigen Join Algorithmen und die

praktischen Erfahrungen die wir über die letzten Jahre im Umgang mit dem System gesammelt

haben. Frühere Systeme (zum Beispiel Twitter Storm order Spark Streaming) implementieren

nur den Hash Join Algorithmus welcher auf Gleichheitspraedikate beschränkt ist und emp-

findlich auf Verzerrungen reagiert. Squall setzt sich ab von diesen früheren Systemen durch

verzerrungsresistente Datenverteilungsmethoden, lokale Datenverarbeitungsoperatoren und

durch Techniken zur skalierbaren Online-Verarbeitung. Ein solches System erlaubt es uns, die

positiven Effekte von verschiedensten Design-Entscheidungen miteinander zu kombinieren.

Frühere Datenverteilungsmethoden decken nur einen kleinen Teil der möglichen Verzerrun-

gen ab. Squall deckt dagegen das gesamte Spektrum verschiedener Fälle ab und bietet zwei

neue verzerrungsresistente Datenverteilungsmethoden an: (i) eine Datenverteilungsmetho-

de für binäre Joins mit diversen Filterprädikaten und (ii) eine Datenverteilungsmethode für

nicht-binäre Joins. Verglichen mit dem vorherigen Stand der Technik beschleunigen unsere

Methoden die Verarbeitung um Faktor 12 und reduzieren den Ressourcenverbrauch um Faktor

5.

Stichwörter: Online Datenverarbeitungssystem, verzerrungsresistente Operatoren zur paralle-

len Verarbeitung, binäre und nicht-binäre Joins, Joins mit diversen Filterprädikaten, Verzer-

rungsarten, Anpassungsfähigkeit

vii

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Thesis statement . 1

1.2 Motivation . 3

1.3 Intellectual and technological contributions . 3

1.4 Long and short-term impact . 5

1.5 Thesis outline . 5

2 Background 7

2.1 Classes of online processing . 8

2.2 Requirements for online systems . 10

2.3 Existing work on online systems . 12

3 System architecture 17

3.1 Overview . 17

3.2 Consistency . 23

4 A partitioning scheme for 2-way Joins 27

4.1 Introduction . 27

4.2 Background & Preliminaries . 30

4.2.1 Definitions . 30

4.2.2 Content-Insensitive Partitioning Scheme 32

4.2.3 Content-Sensitive Partitioning Scheme . 33

4.2.4 Equi-Weight Histogram Scheme . 34

4.3 Histogram algorithm . 35

4.3.1 Sampling . 38

4.3.2 Coarsening . 39

4.3.3 Regionalization . 40

ix

Contents

4.3.4 Putting it all together . 43

4.4 Join operator . 44

4.4.1 Sampling the Output Tuples . 44

4.4.2 Discussion and Generalization . 46

4.5 Related Work . 46

4.6 Evaluation . 49

4.6.1 Experimental Setup . 49

4.6.2 Performance Analysis . 51

4.6.3 Scalability . 53

4.6.4 Accuracy and Efficiency of C S IO . 55

4.6.5 Sensitivity analysis . 56

4.6.6 Summary . 60

4.7 Further details . 60

4.7.1 Types of partitioning . 60

4.7.2 The histogram algorithm: Details and proofs 61

4.7.3 Joins . 65

5 Multi-way join operators: partitioning schemes and local operators 67

5.1 Novel join operators . 67

5.1.1 Applications . 67

5.1.2 Partitioning schemes . 69

5.1.3 Important special cases . 72

5.1.4 Local join algorithms . 72

5.1.5 HyLD operator: Hypercube scheme with Local DBToaster 73

5.2 Multi-way joins: General case . 74

5.3 Gathering insights about multi-way joins . 78

5.3.1 The subsystem for collecting results and performance metrics 79

5.3.2 Interacting with the system . 81

5.4 Related work . 82

5.5 Evaluation . 85

5.5.1 Datasets . 86

5.5.2 Multi-way vs 2-way joins . 86

5.5.3 Hybrid-Hypercube versus Hash-Hypercube and Random-Hypercube . . 87

5.5.4 DBToaster versus traditional local joins . 91

5.5.5 Summary . 92

6 Adaptivity 93

6.1 Skew types and Adaptivity . 93

6.2 Adaptive 1-Bucket operator . 96

6.2.1 Operator Structure . 97

6.2.2 Input-load factor . 98

6.2.3 Adaptivity . 99

6.3 Towards adaptive Equi-weight histogram (EWH) scheme 102

x

Contents

6.3.1 Monitoring Statistics . 102

6.3.2 Actuation . 103

6.4 Evaluation for Adaptive 1-Bucket . 104

6.4.1 Skew Resilience . 106

6.4.2 Performance Evaluation . 106

6.4.3 Scalability Results . 109

6.4.4 Summary . 110

7 Conclusion 111

7.1 Summary of Contributions . 111

7.2 Future work . 112

A Appendix 115

A.1 Integrating DBToaster in Squall . 115

Bibliography 126

Curriculum Vitae 127

xi

List of Figures
3.1 Squall architecture. An example query plan has selections (σ), projections (π),

joins (1) and aggregations (Agg). 19

4.1 Different partitioning schemes (of 3 machines) on a band-join with a join condi-

tion |R1.A−R2.A| ≤ 1. Shaded cells represent output tuples. (b)-(d) Ir is i nput

and Or is out put metric of a region r with maximum weight wx∈1..J = Ix +Ox . 32

4.2 Weight Histograms. 35

4.3 Histogram algorithm stages. The weight function is w(r) = ci (r)+co(r) = i nput (r)+
out put (r). For instance, in (c), w(r4) = 2 ·112+15 = 239. 37

4.4 a) Non-monotonicity in rectangles 1 and 2 due to candidates marked with black.

b) rm 1 (rm 2) is a minimal candidate rectangle for r1 (r2). 40

4.5 Execution times . 51

4.6 Cluster Memory Consumption. 53

4.7 Scalability of BC B−3. 54

4.8 Scalability of BEOC D . 54

4.9 Maximum Region Weight. 55

4.10 Types of partitionings. 60

5.1 Partitioning schemes for R(x, y) 1 S(y, z) 1 T (z, t). Uniform data (a), data-

independent (b), skewed data (c, d). 70

5.2 Squall’s Web Interface. 79

5.3 Demonstration: Running a query. 80

5.4 Results and query performance metrics. 80

5.5 Finding bottleneck in a Squall query plan. sel stands for a no-op selection (it

passes through all the tuples). 82

5.6 Performance for 3-reachability query. We use 36 joiner machines. 87

5.7 Comparison of different hypercube schemes. 88

5.8 Multi-way joins with different local joins (traditional vs DBToaster). 92

6.1 The adaptive operator structure. Each of J machines is assigned one reshuffler

and one joiner task. 97

6.2 (I) Relations are of the same size (a), so 8×8 is the optimum mapping (b). (II)

Both relations grow, and one relation is 64× bigger than the other one (c). Using

the old 8×8 mapping (d) is highly suboptimal compared to (64×1)-mapping (e). 98

xiii

List of Figures

6.3 Decomposing J = 20 machines into independent groups of 16 and 4 machines. 101

6.4 Input-Load Factor. 106

6.5 Execution Time. 107

6.6 Throughput and latency. 108

6.7 BNC I Performance Evaluation. 108

6.8 Scalability Results. 109

xiv

List of Tables
4.1 Comparison with most important related work. 30

4.2 Summary of the notation used in the paper. 31

4.3 The time complexity improvements. 36

4.4 Joins’ characteristics. Input and out put sizes are in millions of tuples. β is the

width of the band. 50

4.5 Join execution and histogram algorithm time (s) of C S I for different number of

buckets p. 52

5.1 Relation and final result schemas for the Stock market query. 68

5.2 Maximum and average load per machine for different hypercube schemes. M

stands for millions of tuples. 90

5.3 Replication factor for different hypercube schemes. 90

6.1 Runtime in secs. 105

xv

1 Introduction

1.1 Thesis statement

We design and implement Squall, a scalable online query engine that runs complex analytics

in a cluster. First, we clarify what we mean by “online”. Online processing implies that results

are incrementally built as the input arrives. A tuple is a data unit that contains one or more

data type objects, and is sometimes referred to in the literature as a record. Each input tuple

produces output and updates the system state necessary for processing subsequent inputs.

Online processing is ubiquitous for many applications such as algorithmic trading, clickstream

analysis and business intelligence (e.g., in order to reach a potential customer during the active

session).

Scalable online processing is challenging in the presence of data skew [134]. Skew is a tuple

and key distribution that leads to uneven data partitioning. Skew occurs in real-world datasets

and applications [140, 36, 20]. In the context of scientific MapReduce [48] jobs, [115] shows

that assigning the same input data size to reducers is insufficient for load-balancing. Namely,

the authors show that 38% of Hadoop i jobs in a cluster running scientific applications suffer

from considerable skew in the amount of work per reducer (there exists a reducer task which

takes at least 2X time that of an average task). On the other hand, join processing takes a

central place in many analytics tasks. We distinguish two types of skew in join operators.

Redistribution skew (RS) represents uneven input data partitioning among the machines ii

due to skew in the join keys. Join product skew (JPS) represents imbalance in load due to

variability in the join selectivity. In both cases, a small number of machines process most of

the data. Squall addresses both RS and JPS.

Squall achieves high throughput and low latency using skew-resilient, scalable and adaptive

operators. We study database operators such as selections, projections, joins and aggregations,

but we focus on joins, as they are the most challenging ones. Squall supports both 2-way

iHadoop is an open-source implementation of the MapReduce.
iiBy machine we mean a logical concept of a computing node, rather than a physical, potentially multi-core

machine.

1

Chapter 1. Introduction

joins and multi-way joins. By a multi-way join we mean a join between multiple relations

that requires a single communication step (in MapReduce [48] terminology, one MapReduce

job). Each operator runs on multiple machines (by machine we mean a core/hardware thread

with exclusively assigned portion of the main memory). To provide for scalability even in the

case of high number of machines, we employ shared-nothing architecture. In this setting, an

operator consists of a partitioning scheme and a local operator. A partitioning scheme assigns

incoming tuples to the operators’ machines (with or without replication). A local operator

runs the same algorithm on each of the machines, but on different data (data parallelism).

The role of a partitioning scheme is to evenly partition the data among the machines, that is,

to achieve load balancing.

Squall builds on state-of-the-art partitioning schemes and local algorithms, including some of

our own. As we already said, we focus on joins. An ideal partitioning scheme is skew resilient,

that is, it achieves load balancing despite possible skew in the data. By load balancing we

imply minimizing the maximum work per machine. Previous work achieves this goal and

offers efficient solutions only in some situations. For 2-way joins, existing approaches work

well only for a specific proportion between the join output and input sizes. They also require

that this proportion is known beforehand. Unfortunately, output size estimation techniques

are known to be error-prone [74]. For multi-way joins, previous work is designed only for the

cases when a) all the joins are equi-joins, and skew exists either in all the join keys or in none

of them, or b) all the joins are non-equi joins. Consequently, the existing work falls short for

a common case of datasets that mix uniform distribution for some relation attributes and

skewed distribution for other attributes, or for queries that consist of both equi- and non-equi

joins. In contrast, Squall covers the entire spectrum of different data distributions. Namely,

we design and implement a partitioning scheme for 2-way non-equi joins, which collects

detailed information about both input and output data distribution. Using this information,

the scheme optimally partitions the input data among the machines. For multi-way joins, we

propose a “composite” (multi-dimensional) partitioning scheme, which consists of different

“atomic” (per-attribute) partitioning schemes. We build a composite scheme according to the

skew degree in different relation attributes. Last but not least, our partitioning schemes are

applicable in an offline system as well.

Furthermore, Squall offers state-of-the-art local join operators, including DBToaster [16].

DBToaster was previously considered hard to parallelize in the presence of multiple (parallel)

data sources [79], but Squall provides a natural framework for its parallelization.

In the context of online processing, we discuss how Squall operators can adapt to changes in

data statistics. Statistics in an online system may be unknown ahead of time, or it changes

during run-time. On the other hand, we need data statistics to choose an optimal partitioning.

We design and implement an adaptive 2-way join operator that has optimality guarantees

on data distribution and communication costs. Existing open-source online systems (e.g.,

Twitter’s Storm [95], Spark Streaming [143], Flink [22] do not provide adaptive operators. On

the other hand, existing adaptive partitioning schemes do not provide optimality guarantees

2

1.2 Motivation

as Squall does. We also explain that merely adjusting to data statistics is sometimes insufficient

to achieve good performance. An example is skew fluctuation, which implies changing data

statistics right after the operator adapts.

1.2 Motivation

Skew occurs frequently in real-life datasets. For instance, certain types of skewed distributions

(such as zipfian distribution) appear in Internet packet traces, city sizes and word frequency

in natural languages. Unfortunately, existing open-source online systems (e.g., Twitter’s Storm

[95], Spark Streaming [143], Flink [22]iii) provide only vanilla database operators, such as equi-

joins based on hash partitioning, which do not perform well in the case of skew iv. Regarding

non-equi joins, Storm do not provide them. Whereas, Spark Streaming and Flink execute

non-equi joins very inefficiently (a Cartesian product followed by a selection). On the other

hand, existing partitioning schemes (both for equi- and non-equi joins) work well only for a

narrow set of data distribution properties. Squall addresses this problem. It allows studying

different partitioning schemes, local query operators and techniques for scalable online query

processing in a unified framework.

1.3 Intellectual and technological contributions

1. Partitioning scheme for 2-way joins. Our main contribution is a skew-resilient scheme

for 2-way non-equi joins. Compared to state-of-the art, it achieves sizable gains under a wide

variety of conditions. Our scheme achieves minimal work per machine, without imposing

any assumptions about input or output sizes, or data distribution. To do so, we devise an

efficient parallel scheme for capturing the input and output distribution from the join to

a special data structure called join matrix. Each dimension of the join matrix (rows and

columns) corresponds to the join keys from an input relation, and the join matrix contains

the information on work distribution for processing the corresponding ranges of join keys. In

particular, we build the join matrix through sampling of both input and output data, without

performing the entire join. To optimally partition the work (join matrix) among the machines,

we devise a multi-stage load-balancing algorithm which contains a novel, join-specialized

computational geometry algorithm for rectangle tiling.

2. Partitioning scheme for multi-way joins. The second contribution is our partitioning

scheme for multi-way joins. We designed and implemented a partitioning scheme that is

a composite of multiple per-attribute partitioning schemes. We choose appropriate per-

attribute partitioning scheme according to the data distribution on the corresponding rela-

tion’s attribute (whether there is skew or not) and the attribute’s connections to other relations’

attributes through join conditions. It was challenging to design an optimization algorithm

iiiFlink provides both offline and online processing, but in this thesis we discuss only the online case.
ivSome of these systems also provide a range partitioning, which can address RS, but it is still prone to JPS.

3

Chapter 1. Introduction

(an algorithm that generates on optimal composite partitioning scheme) given the variety

of join conditions and variety of different data distributions. We show that the optimization

algorithm is an elegant extension of an existing algorithm (which is already proven optimal).

3. Adaptive operators. Our adaptive operator follows general adaptivity loop [50] that contains

a) capturing the statistics from the past, b) deciding on changing the partitioning scheme and

c) migrating the data accordingly. Our contributions are the following. First, we collect statis-

tics in a decentralized manner (rather than collecting all the statistics on a single machine).

Second, we carefully choose when to re-evaluate the optimality of the current partitioning

scheme (and accordingly adjust the scheme). We prove a constant competitive ratio in data

distribution optimality, as well as amortized total communication cost (including migrations).

Third, we perform minimal, non-blocking state migration by reusing existing state on the

machines as much as possible.

4. Modular design and skew in online systems. Finally, we design Squall so that it puts

together state-of-the-art partitioning schemes, local query operators, and techniques for

scalable online query processing. Such a system allows us to leverage the effect of various

design choices on the performance, to seamlessly build efficient novel operators, and to think

about new aspects, such as dependence on tuple arrival order and support for fault-tolerance.

We discover new types of skew, that can arise only in online systems. For instance, temporal

skew occurs even if the data distribution is uniform, if there is a specific tuple arrival pattern

(e.g., tuples arrive in the sorted order and the tuple key frequency is moderate). Squall offers

techniques to address these types of skew. We also classify partitioning schemes according to

levels of adaptivity that they achieve for different skew types. This study leads us to discover

and formulate a general principle about tradeoffs between Skew-resilience, Adaptivity and

Replication (SAR principle).

These contributions and this thesis are derived from the publications accepted at VLDB and

ICDE conferences:

• Aleksandar Vitorovic, Mohammed Elseidy, Khayyam Guliyev, Khue Vu Minh, Daniel

Espino, Mohammad Dashti, Ioannis Klonatos, Christoph Koch.

Squall: Scalable Real-time Analytics.

VLDB Demo 2016.

• Aleksandar Vitorovic, Mohammed Elseidy, Christoph Koch.

Load Balancing and Skew Resilience for Parallel Joins.

ICDE 2016.

• Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, Christoph Koch.

Scalable and Adaptive Online Joins.

VLDB 2014.

For the last paper, I have to thank Mohammed and Abdallah for their contributions. My

4

1.4 Long and short-term impact

contributions for this paper were:

• This paper originated from a course project for which I was the responsible TA. The

course project was about implementing a skew-resilient join operator in Squall, while

Mohammed introduced adaptivity in this operator.

• I participated in the adaptive operator design. Most notably, I was responsible for the

aspects of fault-tolerance and correctness in the case of multiple operator groups. The

groups are necessary when the number of machines is not a power of 2. In that case, we

divide the operators into groups such that each group has a power of two machines.

• I was responsible for running the experiments, and writing the Evaluation section.

This was quite challenging, as it required tuning Squall and Storm to harness the best

performance.

1.4 Long and short-term impact

First, Squall is an open-source projectv that has been developed for the last five years (mainly

by the authors at EPFL, but also with external contributions). It has been available for several

years, and it has attracted a community of users. We anticipate that the number of users

will grow due to the following. As existing online systems do not handle skew well, users

will employ Squall whenever there is a need for skew-resilient operators. In contrast to

these systems, Squall pays attention to non-equi joins, which are ubiquitous nowadays for

expressing complex analytics tasks. Second, Squall is a modular system and it can be easily

extended with new partitioning schemes and local operators. This might attract scientist to

implement their operators in Squall. For instance, they might want to evaluate their local join

along with some of our partitioning schemes. Third, our partitioning scheme for 2-way joins

may change the way scientists look at join processing. Previously, scientists tried to reduce

the time for collecting data statistics. Our work shows that it is worth spending more time for

capturing the data distribution, as it pays off in the resulting optimal partitioning schemes.

Finally, our multi-way join can significantly improve the performance, and the optimization

algorithm is very elegant. Our partitioning schemes are also applicable in offline scenarios, so

we expect commercial systems to implement it.

1.5 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 gives more details about

background. It explains motivation for our work, including the emergent requirements for

systems that provide online processing and skew resilience. Chapter 3 presents the high-

level architecture of our system Squall. In this chapter, we highlight supported features of

the system, as well as process of translating queries to the execution graph in a distributed

vhttps://github.com/epfldata/squall/

5

Chapter 1. Introduction

setting. Chapter 4 introduces a novel partitioning scheme for 2-way joins, including a detailed

theoretical analysis of the scheme. This section also provide a detailed overview of state-

of-the-art 2-way join partitioning schemes, as well as a comparison with the most relevant

state-of-the-art techniques. Chapter 5 introduces multi-way joins in Squall. After explaining

the motivation for multi-way joins both for offline and online systems, this chapter presents

a novel partitioning scheme for multi-way joins. We also illustrate modularity of Squall by

showing how we wire up our partitioning scheme with a state-of-the-art local join operators.

Chapter 6 describes different types of skew, some of which exist only in online systems.

We categorize different partitioning schemes according to their resilience to these types

of skew. In this chapter we also introduce the SAR principle, which represents a tradeoff

between Skew-resilience, Adaptivity and Replication. Furthermore, this chapter presents an

adaptive operator design for a 2-way join, which can be generalized to multi-way joins. Finally,

Chapter 7 concludes this thesis.

6

2 Background

There is an ever-increasing need for processing large data in a scalable way. To get useful

insights from the data, we need process terabytes of data such as logs or clickstream data.

Another interesting use case is exploratory data analysis over scientific data. An example

is analyzing particle physics experiments at CERN, where each year scientists analyze 30

petabytes of data collected from particle accelerator Large Hadron Collider (LHC) [3]. In

addition, a petabyte of data from LHC is ingested and analyzed on daily basis.

In fact, volume of the data is just one requirement in data analytics. Analytics tools also need

to provide for high velocity, which refers to speed of data changes i. The system needs to

quickly (and continuously) adjust the result according to these data changes. Here is a list of

common applications that require continuous and quick answers:

• Business intelligence. It is crucial to find patterns in customer and sales data, in order to

reach potential customers (e.g., offer them promotions) during an active session. To do

so, we need the information about customers’ salary, previous history of shopping etc.

Finding potential customers typically involves joining customer, product and session

tables. For example, Amazon offers product recommendations according to the session

information, including last visited web page [1]. At Twitter, the recommendations are

based on recent conversations [81]. Many start-ups, such as QuantCast, 8digits and

RocketFule, created their businesses around the idea of facilitating online advertising.

• Online anomaly and fraud detection. For instance, it is crucial to perform fraud de-

tection over credit card transactions quickly and continuously, in order to reduce the

financial loss due to credit card misuse. Running fraud detection algorithms with low

latency is also necessary for virtual auction systems, such as eBay and BetFair, where we

need to continuously analyze trading transactions.

• Stock market and algorithmic trading. Bidding (and accepting bids) on stock market

also require fast and continuous processing. In algorithmic trading, arbitrage is of great

iThis includes updates to existing data as well as new data

7

Chapter 2. Background

interest, as it allows earning money by selling goods on one market and buying them on

another market with lower price. Arbitrage not only requires low latency (in order to

be the first to perform a trade), but it also implies complex join processing (we discuss

the existing work on complex join processing in Section 2.3). Trading systems can also

perform analytics over external data providers, such as social networks, and use this

information to improve its trading strategies. For instance, if there is a lot of positive

hype around a company (which we can for example obtain by running a sentiment

analysis tool over Tweeter’s tweets), it is likely that its share price will increase. Joining

trading and social media data typically involves complex query processing, and Squall

is designed for that.

• Monitoring. For safety reasons, it is crucial that infrastructure surveillance and traffic

monitoring provide low-latency processing. In other domains, such as sensor network

and Internet of Things, we still need to analyze incoming data in a real-time fashion in

order to obtain actionable insights.

The common denominator in all these applications is a quick reaction on changes (new data

tuples coming to the system), which lends itself to emergence of online analytics. In some of

these cases, we need to ensure latency (the timeout between the time a tuple comes and the

time when the tuple is reflected in the result) on the order of tens or hundreds of milliseconds.

Next, we discuss classes of query processing and their different requirements. Offline sys-

tems include traditional Relational Database Management Systems (RDBMS) such as Oracle

Database and Microsoft SQL Server, and MapReduce systems such as Hadoop [7] and Cos-

mos/SCOPE [38]. All these systems perform arbitrary queries over a static dataset. However,

completing a query may take hours or even days. On-line analytical processing (OLAP) sys-

tems provide faster answers than offline systems for a set of queries (e.g., per-dimension

aggregations over multi-dimensional data). They do so by materializing views and computing

some aggregations ahead of time. In OLAP systems, datasets are mostly static, possibly with

periodic (e.g., nightly) updates. Furthermore, the answer is provided only after all the data

(materialized views and base relation) that contributes to the result is fully processed. In con-

trast, online processing implies that updates (tuples) are continuously coming to the system

at high pace. Online systems need to provide low latency for processing incoming tuples and

producing the final result. To do that, these systems materialize some views, similarly to OLAP

systems. Squall is a system that supports large-scale online (sometimes also called real-time)

query processing.

2.1 Classes of online processing

There are three main classes of online processing: incremental view maintenance, stream

processing and online aggregation.

To begin with, incremental view maintenance (IVM) [116, 69, 141, 67, 80] represents the query

8

2.1 Classes of online processing

result as a view and it continuously updates the view as tuples are coming to the system. The

goal is to maintain the view without re-computation (performing the full query from scratch)

each time a new tuples arrives. In addition to maintaining the view, an online system may

continuously send a view (result) deltas to downstream operators (for further processing) or

to a completely different subsystem (e.g., to a visualization tool such as Graphite [5]). Squall

supports classical IVM as well as these extensions.

Stream processing refers to processing very large (potentially unbounded) streams of data

using limited amount of resources (memory). There are several flavors of stream processing,

and window semantics is the most popular one. Window semantics (cf. e.g. [78]) implies that

we maintain and perform operations only on the state consisting of tuples that recently arrived

to the system (e.g. tuples from time/count-based tumbling or sliding windows). Alternatives

are to perform load shedding which implies discarding some incoming tuples (e.g. [124]),

or to preserve a synopses (approximated representation) of the entire state [47]. Existing

streaming systems such as Borealis [10] and STREAM [23] focus on small-state windows

and load shedding. These systems partition the operators among the machines, providing

inter-operator parallelism. In contrast, Squall schedules operators using large-scale intra-

parallelism in addition to inter-parallelism. This is necessary as Squall is designed for large-

state operators. Squall does not implement load shedding, but it supports window join

semantics by reusing the machinery for IVM and extending it with constructs for removing

outdated tuples from the operator state.

Finally, online aggregation (e.g., [77]) focuses on the case of aggregate queries, and produces

an approximate query result, long before the processing of the query has been completed.

The dataset is static and known ahead of time. Using the amount of data processed so far,

online aggregation also provides confidence intervals and error bounds on the approximate

result. That is, it gives the information about the confidence that the approximate result

is within certain error bounds from the exact answer (the exact answer is the answer on

the entire dataset). As more data is processed, the approximate result is closer to the final

result (which is also reflected in higher confidence and/or smaller error bounds). Online

aggregation techniques use the current result (the result on the previously processed tuples)

to approximate the exact result. Online aggregation is related to IVM as in both cases we

maintain the result according to the tuples seen so far. This allows sharing the machinery

between IVM and online aggregation. The key technical contributions of past work in the

area of online aggregations are techniques for sampling from the input data set in such a way

that results converge relatively quickly as well as good bounds on the current error of the

approximate results can be given. Squall does not currently take advantage of sampling-based

approximate query answering. However, we can easily extend Squall with machinery from the

online aggregation literature [73, 107, 70, 77] for sampling the input and approximating the

result.

9

Chapter 2. Background

2.2 Requirements for online systems

Low latency. In an online system, we need to preserve low latency between the time a tuple

enters the system and the time the result is updated. Each tuple typically introduces a small

change to the operator state and to the final result, but the tuple input rate is high. The goal is

to avoid costly re-computing the result after each new tuple arrives, as it would be the case

if we use an offline system. Rather, we need to preserve the state and the result from the

computation performed so far. In addition, to maintain both low latency and high throughput

of the system, we need to perform the computation in parallel, as well as to provide efficient

local join operators. Next, we discuss parallel execution.

Parallel execution. Modern online applications typically have high input rates, and require

large-state operators [37, 24] which results in high memory consumption. Thus, a single-

machine setup is incapable of satisfying these requirements. Rather, we need to execute our

operators on a cluster. The challenge here is to ensure correctness of the result, and to provide

for load balancing even in the presence of skew. We discuss skew resilience next.

Skew resilience. Skew is ubiquitous and it appears in many real-life datasets [140, 36]. An

example of skewed distribution is zipfian distribution [146], which states that a key multiplicity

(the number of tuples with a particular key) and the rank of key multiplicity are inversely

proportional. That is, the first key (the key with the highest multiplicity) has n× bigger

multiplicity than the n-th ranked key. For instance, the first key (which is the most popular

one) has 3× bigger multiplicity than the third ranked key. Consequently, the most popular

key corresponds to a high percentage of the entire dataset. Let us consider an operator

that uses hash partitioning, as existing online systems, such as Twitter’s Storm [95], Spark

Streaming [143], Flink [22], most frequently use this type of partitioning. Let us assume that

20% of the entire dataset has the most popular key. Given 10 machines, ideally each machine

should process 10% of the dataset. However, due to the skew, the machine which processes

the most popular key is assigned 2× more data (20% rather than 10%), hindering the operator

performance. As we already discussed, this type of skew is called Redistribution skew (RS).

In addition to RS, join operators also suffer from Join Product Skew (JPS), which refers to

uneven number of produced output tuples among the machines. Let us consider a 2-way

parallel symmetric hash join [66], which is an equi-join that uses hash partitioning (it partitions

the data using the hash value of the join key). Let us assume that both relations in the join

have zipfian distribution with 20% of each relation corresponding to the most popular key.

If this key is the same in both base relations, not only that the machine which is assigned

the most popular key have to process more input tuples than the other machines, but that

machine also needs to perform cartesian product among the tuples with the most popular

key from the two relations. In this case, JPS affects the performance even more than RS. The

challenge is to design partitioning schemes that address both RS and JPS.

Handling skew in online systems is even more important in an online system compared to

an offline system. In an offline system, skew affects throughput and total execution time. In

10

2.2 Requirements for online systems

an online system, skew degrades these performance metrics even more and it affects other

metrics as well. First, overloaded nodes cannot keep up with the incoming input rate, and

thus they suffer from high or even ever-increasing latency. Second, an overloaded node may

run out of memory, either because network queues accepting tuples from data sources or

upstream operators grow very large, or because of high number of assigned tuples. In either

case, the system needs to prematurely terminate the query, or to resort to spilling to disk.

As our performance numbers from Section 6.4 show, spilling to disk results in an order of

magnitude performance degradation. Furthermore, spilling to disk leads to underutilization

of the downstream machines. Some online systems such as Twitter Heron [81] have a back

pressure mechanism, which allows each operator to limit its input rate to avoid overloading by

sending control signals to the upstream operators or data sources. This mechanism bounds

the size of network queues and thus avoids memory overflow on all the operators, but not

on data sources. Back pressure causes underutilization of other machines (those that are

assigned a smaller number of tuples) and it still results in increased latencies (the time a tuple

waits in a buffer to be sent to a downstream operator also counts as latency). Overall, a single

overloaded node affects both the performance and resource utilization of the whole query

plan [55, 54].

Scalability. Scalability implies that, given more resources, a system or an algorithm performs

more work proportionally to the given resources. In particular, weak scalability states that,

when increasing the number of given machines and the dataset size proportionally (e.g., when

we double both the number of machines and the dataset size), the performance (execution

time) should remain approximately the same. Let us consider the hash partitioning example

from above when given 2 times more machines (20 machines) and 2 times bigger dataset.

Assuming that the skew degree remains the same (20% of a relation has the most popular

key), after increasing the dataset size the multiplicity of the most popular key is doubled.

Consequently, the machine responsible for processing this key is assigned two times more

tuples than before. On the other hand, hash partitioning on a uniform dataset scales well.

Thus, we need to take skew into account when designing a scalable partitioning schemes and

operators. Interestingly, Stratosphere [19] project also states that their operators do not scale

above certain number of machines due to data skew.

Certain system design choices can also lead to poor scalability. For instance, some existing

online systems (e.g., Naiad [100]) enforce a global update order to ensure result correctness.

This may not scale after certain number of machines, as there is a single entity that assigns

timestamps. We discuss this line of work in further detail in Section 2.3 and compare it with

Squall’s design choices in Section 3.2.

Complex queries. The analytics tasks are nowadays becoming increasingly complex. That is,

users want to run both 2-way and multi-way joins with complex join conditions, including

both equi-join and non-equi joins [144, 45, 106, 13]. Examples include analyzing nearby

objects in space or time, such as call logs analytics (e.g., base station misconfiguration) and

whether forecast analytics (e.g. storm propagation). In business intelligence, we are interested

11

Chapter 2. Background

in finding customers that can afford to buy a product (e.g., the amount on their account

is bigger than the product price). Unfortunately, existing work is either limited to equi-

joins [13, 45], or it also supports non-equi joins but at the cost of excessive tuple replication

among the machines [106, 144]. The replication leads to high amount of work performed on

each machine, degrading the operator performance. The challenge is to achieve load balancing

for complex operators while minimizing total work performed by the parallel operator. As we

discuss later, we do so both for 2-way and multi-way joins by using the information about the

join conditions and skew degree.

Adaptivity. As in an online system data statistics can change at run-time, we need to adjust the

partitioning scheme accordingly (also at run-time). Unfortunately, existing work on adaptive

operators supports only equi-joins and requires stalling the input streams while performing

state migrations [120, 90, 91]. Rather, to keep the latencies low, we need to continue processing

new incoming tuples when migrating state. Furthermore, existing partitioning schemes for

complex joins (including non-equi joins and multi-way joins) [106, 144, 13] are designed for

offline systems and they are non-adaptive. The challenge here is to design a general adaptive

operator that adjusts the partitioning scheme at carefully chosen points in time. In particular,

we need to find the right trade-off between performing too frequent state migration on one

hand, and using a suboptimal partitioning scheme for too long on the other hand.

Summary. To best of our knowledge, there is no existing open-source distributed query engine

that satisfies all of these requirements. On the contrary, Squall is designed to meet all the

requirements, and to provide for scalable online query processing in a single system.

2.3 Existing work on online systems

This section provides a brief overview of the most important (and most widely used) existing

online systems. For more details about different online systems, we refer an interested reader

to an excellent survey [92].

MapReduce systems cannot provide online processing. The challenge of real-time data

processing has recently moved to the forefront of interest among users of analytics and data

warehousing systems as well as the large-scale Web applications / NoSQL crowd. On the other

hand, map-reduce style batch processing systems [48, 7, 75] are not amenable for low-latency

processing due to the following. A MapReduce job consists of a map and a reduce stage. A

job does not produce any output before all the input is processed, that is, a reduce function is

invoked only after the map function processes all the input data. If the computation consists

of multiple MapReduce jobs, only one job is executing at a time, and the next stage blocks

until the current one completely delivers its intermediate result ii. Thus, latencies are very

high in these systems, and we need to use different systems to achieve low latencies.

Cohabitation of offline and online systems. Large Web applications companies, which play a

iiIf there is no data dependencies among jobs, they can execute in parallel.

12

2.3 Existing work on online systems

key role in the NoSQL movement and the development of map-reduce style batch processing

systems [48, 7, 75], use batch processing systems in conjunction with large-scale realtime

frontend systems. An architecture that concurrently runs fault-tolerant batch processing and

low-latency online processing for the same application is denoted in literature as Lambda

architecture [96]. In this architecture, once the exact results from the batch processing are in

place, they overwrite the corresponding eventually consistent results from the online process-

ing pipeline. Twitter’s Summingbird [33] offers a user the same declarative interface for offline

and online processing. The systems uses Scalding (Cascading’s Scala API) [6] as the backend

for offline processing, and Storm [95] as the backend for online processing. Summingbird

also allows running the same application in both backends at the same time (hybrid mode).

Google DataFlow [18] provides similar functionalities using FlumeJava framework [39] and

MapReduce for offline processing, and MillWheel [17] for online processing. Google DataFlow

focuses on time series data processing for unbounded streams, allowing a user to choose a

tradeoff between latency, correctness and resource costs.

Micro-batch systems. There have been proposals that attempted to introduce onlineness

in Hadoop, the most famous examples being the Hadoop Online Prototype (HOP) [46] and

Scalla [88, 87]. We note that the paper [109] on Nova also claims batched incremental pro-

cessing of workflows on Hadoop, but provides little detail on the systems aspects of it. HOP

pipelines in small batches the map output to reducers, and it performs multi-pass merge on the

reducers. However, it was shown in Scalla [88] that HOP is not amenable for high-performance

online processing, because sort-merge, inherited from Hadoop, has unacceptable blocking

cost. Rather, Scalla [88, 87] uses hash partitioning, which performs better. This system also

maximizes performance by carefully partitioning tuples among memory and disk in the case of

memory overflow. Both HOP [46] and Scalla [88, 87] focus on general micro-batch MapReduce

processing, rather than on database operators. In contrast, Squall focuses on database ope-

rators. It uses hash partitioning in the case of skew-free datasets, but we design and implement

other partitioning schemes as well (depending on the join conditions and skew degree).

There are attempts to bring online processing to other batch engines. Spark is an in-memory

MapReduce system where the computation is specified as transformations over resilient

distributed datasets (RDDs). RDD abstraction ensures that, in the case of a machine failure,

other machines divide among themselves the work that was assigned to the failed machine.

Spark Streaming [143, 142] is based on Spark and it simulates online processing by performing

MapReduce-style computation in small batches (micro-batching). As explained in Trill [41],

Spark Streaming unfortunately uses the same batch size for physical batching (which helps

in achieving high performance) and semantic batching (which is due to specific window

semantics). In contrast, these two types of batching are independent in Squall, and query

results do not depend on the physical batch sizes. In contrast to Squall, Spark Streaming has

no skew-resilient joins iii nor multi-way joins.

iiiThere is a spark-skewjoin library (https://github.com/tresata/spark-skewjoin) that extends Spark with the
support for skew resilience for equi-joins. However, their scheme is very similar to F-Skew join [36], which handles
only certain types of skew. For more information about this scheme, please refer to Section 4.5.

13

Chapter 2. Background

All these systems [46, 88, 87, 143, 142] modify an existing batch system to perform micro-

batching. Micro-batch systems achieve better latencies than batch systems. However, micro-

batching systems still suffer from high synchronization penalties between machines. This

is due to the fact that the system needs to synchronize after each micro-batch, and new

incoming tuples are blocked until the whole micro-batch is processed. If a computation

contains multiple stages (MapReduce jobs), the synchronization overheads grow as the system

synchronizes after each micro-batch on each stage. This is equivalent to a coarse-grained

lock-step. Thus, the slowest machine of an operator limits the entire operator execution.

The performance degradations occur even in the absence of skew, as one machine may be

slower due to non-deterministic reasons (small glitches in network, or small differences in

performance among the same hardware). Synchronization raises latencies to the order of

seconds and fundamentally hinders scalability.

Ground-up online systems. Next, we describe systems that are designed specifically for online

processing. These systems are implemented from scratch, rather than by modifying an existing

offline system. Ground-up online systems represent the computation as a DAG of pipelined

operators (rather than a series of map and reduce stages), where each operator produces

output on a per-tuple basis.

Flink is an Apache project that emerged from a research project called Stratosphere [19]. This

system is designed for online processing, that is, the input is unbounded stream, and the

input tuples are continuously pipelined through a computation graph. However, Flink can

also support offline processing by treating its input in a special way (bounded streams). Flink

provides functional interface, where computation is specified through operations over parallel

collections. This system offers two join partitioning schemes (repartition and broadcast)

and local join operators (hybrid-hash and sort-merge). Flink is equipped with a cost-based

optimizer that chooses an optimal scheme and local operator, according to the data and

memory sizes. However, Flink currently does not provide skew-resilient nor multi-way joins.

On the other hand, Flink has better support for UDF operators (including UDF joins) compared

to Squall. In particular, Flink may reorder UDFs (and operators in general) to achieve better

performance, while preserving the original program semantics. Furthermore, in contrast to

Squall, Flink can run iterative analytics.

Naiad [100] provides online processing for cyclic and iterative analytics using global times-

tamps. A timestamp consists of location in the graph, epoch and loop counter. Naiad processes

updates with tens of milliseconds latencies and it allows a user to send a tuple to a precise

timestamp in the future. This system provides a high-level language support (via language-

embedded query technology for .NET called LINQ) and it allows coexistance of synchronous

and asynchronous computation in the same program. In asynchronous mode, tuples are sent

immediately. Whereas, synchronous mode invokes a method when all the tuples for a given

epoch are received (e.g., this is useful when performing an aggregation operation). Although a

global notion of timestamp allows a user to express some interesting communication patterns,

it limits throughput and scalability as all the tuples need to be timestamped on a single entity

14

2.3 Existing work on online systems

in the system. We discuss this aspect of Naiad in a greater detail in Section 3.2. Finally, Naiad

does not focus on supporting complex joins nor on skew resilience.

MillWheel [17] is another system for online processing. It focuses on efficient fault-tolerance

techniques such as replay with duplicate elimination using Bloom filters. This work is orthogo-

nal to Squall, as we could use MillWheel’s techniques for achieving fault-tolerance techniques

in Squall.

Twitter Storm [95] has a very convenient, dataflow-like, programming abstraction and excellent

scalability. It allows users to write arbitrary programs by specifying the computation DAG and

the code within each DAG node. Storm offers persistent storage and it supports at-least once,

at-most once and exactly-once semantics. To provide exactly-once semantics, Storm uses

a persistent storage. Storm’s Trident library offers database operators such as aggregations,

joins, selections and projections. However, Storm supports only equi-joins on skew-free

datasets, as well as multi-way joins having the same join key among all the involved relations.

In contrast, Squall supports complex join operators, including 2-way and multi-way joins,

both over skew-free and skewed datasets. Furthermore, Storm requires a user to specify a

query plan. In contrast, our system provides SQL interface, and automatically translates SQL

to query plans, which are then translated to Storm topologies. Squall is based on Storm, and

we discuss both systems in greater detail in Section 3.

Heron [81] is a next-generation online processing engine developed at Twitter. Heron and

Storm are built with the same goal in mind, and Heron is API-compatible with Storm. In

fact, Heron is built from scratch with the goal of addressing various performance bottlenecks

in Storm. The main performance inefficiency in Storm is the presence of multiple levels of

indirection: a worker (JVM process) has multiple executors (threads), and each executor is

assigned multiple component tasks [81]. This design causes Storm to spend significant amount

of time in multiplexing/demultiplexing each tuple through tasks, executors and workers. That

is, each received or sent tuple in Storm goes through multiple queues and threads. In particular,

a Storm worker has one thread for receiving tuples and one for sending them further down.

Whereas, a Storm executor has a thread for user logic, and a thread for sending tuples to the

worker. Thus, each input tuple has to go through 4 threads [81]. In addition, multiple levels

of indirection result in conflicting scheduling goals and thus, in scheduling inefficiencies. By

adopting a simpler design and by implementing tuple transferring more efficiently, Heron

achieves an order-of-magnitude performance improvementsiv compared to Storm. Heron also

achieves better scalability than Storm due to limiting the maximum number of connections

for heartbeats (Zookeeper) and for tuple routing (Stream Manager) via hierarchical structuring

of communicating nodes.

Trill [41] is a high-performance library for online processing, and Quill [40] is a parallel version

of Trill. Trill/Quill achieve very high throughput mainly due to using optimizations related to

column stores. This line of work is orthogonal to Squall, as we could employ their optimizations

ivhttp://www.infoq.com/news/2015/06/twitter-storm-heron

15

Chapter 2. Background

in our system.

Overall, existing open-source online systems focus on distribution primitives (e.g., commu-

nication patterns, fault tolerance) and low-level performance optimizations. In contrast to

existing online systems, Squall focuses on supporting complex joins and on skew resilience.

16

3 System architecture

3.1 Overview

Squall is an online distributed query engine which achieves low latency and high throughput.

It supports full-history (incremental view maintenance) and window (stream) semantics.

Squall uses Storm [95] as a distribution and parallelization platform.

The overall system architecture is shown in Figure 3.1. Next, we give an overview of various

Squall concepts.

User interface. Squall offers multiple interfaces: declarative (SQL), functional (a modern

Scala collections API), interactive (Scala) and imperative (Java). Similarly to Hive [125] which

provides an SQL interface on top of Hadoop [125] for offline processing, Squall’s declarative

interface offers running SQL over Storm for online processing i. We support SQL because it is

becoming very popular in NoSQL systems (such as Hadoop). For example, according to [118],

Hive (and its SQL interface) is used for auto-generating 95% of Hadoop jobs at Facebook (only

the remaining 5% is written by hand). Squall’s functional interface provides for compositions

of data transformations over streams. Squall also provides interactive interface built on top of

the Scala REPL (Read-Eval-Print Loop) that allows a user to interactively construct and run

query plans. For each of these three interfaces, Squall translates the user input to a logical

query plan (see Figure 3.1). Finally, the imperative interface gives the user full control over

the physical query plan. A user can run a query plan specified by any Squall interfaces either

locally or on a cluster, making it easy to learn and test Squall.

Next, we illustrate running a query using different interfaces. Our declarative interface takes

SQL as the input:

SELECT CUSTOMER.MKTSEGMENT , COUNT(ORDERS.ORDERKEY)

FROM CUSTOMER join ORDERS on CUSTOMER.CUSTKEY=ORDERS.CUSTKEY

GROUP BY CUSTOMER.MKTSEGMENT

iThe name of our system contains letters S, Q and L. In addition, the names of both Squall and Storm are related
to weather conditions.

17

Chapter 3. System architecture

A functional (Scala) interface leverages the brevity, productivity, convenience, and syntactic

sugar of functional programming. For example, the previous query is represented as follows:

1 val customers = Source[customer]("customer").map { t => Tuple2(t._1, t._7) }

2 val orders = Source[orders]("orders").map { t => t._2 }

3 val join = customers.join(orders)(k1=> k1._1)(k2 => k2) //k1._1 = k2

4 val agg = join.groupByKey(x => 1, k => k._1._2) //count and groupby

5 agg.execute(conf)

The same query is expressed in the Squall’s imperative interface as follows:

1 Component customer = new DataSourceComponent("customer", conf)

2 .add(new ProjectOperator(0, 6));

3 Component orders = new DataSourceComponent("orders", conf)

4 .add(new ProjectOperator(1));

5 // join on CUSTKEY

6 Component custOrders = new EquiJoinComponent(customer, 0, orders, 0)

7 // group by MKTSEGMENT and count

8 .add(new AggregateCountOperator(conf).setGroupByColumns(1));

Logical and Physical query plans. A logical Squall query plan is a DAG of relational algebra

operators. A physical Squall query plan consists of a DAG of physical operators and their

requested level of parallelism. An operator runs in parallel on multiple machines and it is

specified by the partitioning scheme and local algorithm. To minimize the number of network

hops, and thus maximize the performance, we co-locate the connected operators that use

the same partitioning scheme. We denote a pipeline of co-located operators as a component.

Component is a logical unit of execution in a distributed environment, and it can be scaled

out to many machines. Figure 3.1 shows components as rounded rectangles in the example

physical plan. An example of a component is a join followed by a selection. Both in logical

and physical plan, data sources R, S and T are continuously sending tuples, and the final

component is continuously performing aggregations on its incoming tuples.

Operators. Squall offers database operators such as selections, projections, joins and aggrega-

tions (we currently support SUM, COUNT and AVERAGE aggregates). In this thesis, we focus

on joins, as they are the most challenging operators. A join operator consists of a partitioning

scheme and a local join algorithm. We build novel partitioning schemes in Squall:

• Equi-weight histogram (EWH) scheme is presented in Section 4,

• Hypercube schemes for multi-way joins (a multi-way join runs within a single compo-

nent, rather than using a pipeline of 2-way joins) is described in Section 5 and

• Adaptive 1-Bucket scheme is introduced in Section 6.2.

Squall provides novel join operators by combining each of these partitioning schemes with

state-of-the-art local join algorithms. Our local join operators employ indexes that we build on

18

3.1 Overview

Parser/
Translator

Logical plan

Query
Optimizer

Physical plan

Squall-to-Storm
Translator

Storm Topology

Spout Spout

Spout

R S

T⋈

⋈

σ

Agg

⋈

Agg

Comp.
Par=4

Part. scheme

⋈ Comp.
Par=3

Part. scheme

S Comp.
Par=1σ

T Comp.
Par=2

R Comp.
Par=3

Bolt

Stream grouping

Bolt

Stream grouping

π

π

Parser

SELECT SUM(T.E)
FROM R,S,T

WHERE R.B = S.B
AND S.D = T.D

AND S.C > 3

SQL

Functional

Interactive

Imperative

Interface:

Figure 3.1: Squall architecture. An example query plan has selections (σ), projections (π), joins
(1) and aggregations (Agg).

the fly (hash indexes for equi-joins, and balanced binary tree indexes for band and inequality

joins). For example, let us consider a join condition R.A = S.A AN D 2 ·R.B < S.C . In this case,

Squall builds hash-indexes R.A and S.A and balanced binary tree indexes R.B and S.C . Upon

tuple arrival, we store the tuple, update all of its indexes, and lookup indexes on the opposite

relation in order to produce result tuples.

Regarding the system optimizations for local joins, we employ collections of primitive rather

than wrapper types using the Trove library [9] (we implement Squall in Java). Similarly,

we store complex data types (such as Strings) as byte arrays. Both of these optimizations

bring significant savings in memory consumption. As explained in [103], memory savings

can translate to performance improvements. Finally, we describe local multi-way joins in

Section 5.1.4.

For aggregations, there are several ways to assign them to components in a query plan. First, if

a user is responsible for consuming the last component output in parallel, the last aggregation

can be collocated with the previous operator (e.g., join). Second, a user may require that

each machine is responsible for a single GROUP BY key of the aggregation. In that case,

we need an additional component for the aggregation, unless the previous operator uses

hash partitioning, and the GROUP BY key and the key from the previous operator are in

Superkey/key relationship [27]. This property implies that, given that the key from the previous

operator is assigned to exactly one machine (this holds due to hash partitioning), each GROUP

BY key is assigned to exactly one machine. Consequently, in that case, we do not need an

additional component for the last aggregation. Third, a user might want to merge all the

results on a single machine. The query plan needs to scale well with the increase in parallelism

of the next-to-last component. To that end, we use two aggregation operators. The first one

pre-aggregates the output of the last non-aggregation operator, and these two operators are

co-located on the same component. The second aggregation continuously merges all the

19

Chapter 3. System architecture

results, and it executes on a component with parallelism of 1. The goal of the pre-aggregation

is to coarsen the input to the next (single-machine) component, so that the next component

can sustain its input throughput. In particular, the first aggregation periodically (in tens or

hundreds of milliseconds) sends its entire state (after which it flushes it) to next component

(which has parallelism of 1). The assumption is that there is certain degree of repetition in

the GROUP BY keys. Otherwise, pre-aggregation brings no performance benefits. By doing

aggregation on two components, we reduce network traffic (potentially increasing throughput)

and preserve scalability, but latency grows due to periodical sending from the first aggregation.

Squall provides both full-history and window semantics for its operators. It implements typical

stream primitives, such as tumbling and sliding windows, by adding the window expiration

logic on top of the full-history engine.

Query optimizer. Squall’s query optimizer generates a physical plan from the logical plan.

Squall provide a cost-based and a rule-based optimizer, as well as versions of the optimizer

in which a user can manually specify parallelism and/or join ordering. In what follows,

we present the cost-based optimizer. The optimizer maximizes throughput and minimizes

both latency and the number of machines used. It chooses an optimal join order and an

optimal parallelism for each component. An optimal component parallelism implies that

machines running the component tasks are neither overloaded nor mostly idle. We refer to

this as universal producer-consumer balance. The universal producer-consumer is balance is

important as an overloaded machine suffers from ever-increasing latency and low throughput

due to the fact that most of the time a machine is doing I/O rather than useful computation.

On the other hand, keeping machines mostly idle wastes resources, which is particularly

important in cloud environments that employ pay-as-you-go policies.

The optimizer automatically assigns operators to components and specifies connections

between components. In particular, it starts from the data sources and adds the operators

one after another, automatically pushing selections and projections as close as possible to the

data sources. Where possible, the optimizer co-locates operators to components to minimize

network transfers. It also performs common subexpression elimination. That is, if only

expressions are used downstream a component in the query plan, the component sends only

these expressions (rather than the all the corresponding fields). To do so, each component

decides on its output scheme based on the fields/expressions that are needed downstream in

the query plan.

The optimizer uses a dynamic programming (Selinger-style [119]) algorithm to evaluate differ-

ent join orders and to pick the best plan for each intermediate result. The best plan is the one

which uses a minimal number of machines. The algorithm builds a query plan bottom-up

starting from data sources (whose parallelism is given), and specifies the right parallelism

for each component using the producer-consumer balance (no machine is overloaded nor

underloaded) and the previously chosen parallelism for the upstream components. For the

subplans producing the same intermediate result, the algorithm prunes all the subplans ex-

20

3.1 Overview

cept the one requiring the smallest number of nodes. By doing so, the optimizer chooses an

optimal join order and optimal component parallelisms at the same time (deciding on the

component parallelisms after fixing the join order may lead to suboptimal query plans).

To compare the cost of different query plans, the cost-based optimizer needs some basic data

statistics about the data being processed. Actually, a relatively small amount of information,

such as relation size, number of different values in the primary key attributes, minimum and

maximum attribute values and relationships among relations suffices. Squall builds statistics

about intermediate relations (intermediate join outputs) in a similar way as [119]. We assume

that selections applied before joins are uncorrelated, so that they do not change the computed

relationships among joined relations. The required statistics might be available from the

previous runs, or it is known from the application domain (e.g., each customer buys in average

10 items). If no statistics is available, a user can resort to an optimizer which allows her to

specify the desired join order and component parallelisms. Finally, we consider the optimizer

just an aspect of the system. Namely, we also provide operators that can adjust to changing

data statistics (Section 6), and operators that are resilient to changes in certain types of data

statistics such as changes in join selectivity (Section 5).

Squall supports a wide range of SQL queries, and it also supports some features which are

outside the SQL Standard:

• GROUP BY (for example in an aggregation) is possible not only on a column, but also on

a Projection over a tuple,

• DISTINCT can operate on multiple fields.

Currently, the SQL interface recognizes ANSI SQL syntax, and it instantiates equi-joins with

hash partitioning and full-history semantics.

Online processing aspects. An online system must adapt to changing data statistics. Squall

collects statistics and adjusts the operator’s partitioning scheme at run-time (see Section 6.2).

Furthermore, it offers multiple partitioning schemes that achieve different levels of adaptivity

for different skew types (e.g., data, temporal and join selectivity skew) and degrees of skew

fluctuations.

Distribution platform. Squall uses Twitter’s Storm [95] as a distribution platform, but our

contributions and ideas are more widely applicable. That is, all the proposed ideas are or-

thogonal to the underlying system (Storm), and are applicable to other systems as well (Flink,

Spark Streaming etc.). In other words, although Squall uses Storm, we could have also used

Spark Streaming. For our purpose, the two systems are interchangeable, even though they

come from different backgrounds, Storm having been developed for realtime processing us-

ing certain stream processing abstractions, and Spark Streaming having been developed by

modifying Spark, very pronouncedly a batch processing system, to perform online processing.

We note that Storm is sometimes called a data stream processor, but we think of it more as

21

Chapter 3. System architecture

an online/realtime analytics system with a very convenient programming abstraction and

excellent scalability, since it does not of itself enforce small state or handle overload situations

(by load shedding). Along these lines, Akidau et al. [18] explain that micro-batch or streaming

systems should be equivalent from the user perspective, that is, a user can use either kind

of systems to run the same application. The authors state that micro-batch and streaming

systems should differ only in the achieved tradeoff between latency, throughput and resource

utilization.

In Storm, real-time computation is performed through topologies. A topology is a graph of

spouts (data sources) and bolts (which perform computation). A spout generates a stream(s),

where a stream is a sequence of tuples. A spout can read data from external entities, such as

Kafka queues. A bolt performs computation; it consumes some streams and produces new

ones. Each topology graph node (spout or bolt) executes on one or more machines. An edge

in the topology graph is called stream grouping, and it represents partitioning of incoming

tuples from a stream among the machines of a bolt. The mapping between streams and

bolts is many-to-many, that is, a bolt can subscribe to multiple streams, and multiple bolts

can subscribe to the same stream. Squall maps a physical query plan to a Storm topology,

components to Storm spouts and bolts, and builds partitioning schemes using Storm’s stream

grouping. Storm takes care about assigning spouts and bolts to particular nodes in the cluster,

and for communication among them.

Storm and Squall are written in JVM languages (Clojure, Java, Scala). Storm topologies are

analogous to MapReduce/Hadoop jobs, but with important differences. First, a Hadoop job

consists only of a map and (optionally) a reduce stage. In contrast, a Storm topology is a graph

with arbitrarily many nodes (spouts and bolts), which can be connected in many different

ways (stream groupings). Second, Hadoop is meant for batch (offline) processing. A Hadoop

job does not produce any output before all the input is processed, that is, a reduce function is

invoked only after the map function processes all the input data. A Hadoop application may

contain multiple jobs, but jobs with data dependencies are executed in a serial order (a job can

start only after it predecessor finishes). In contrast, Storm supports online processing, which

means that the output is continuously produced as new tuples are coming to the system. To

that end, all the Storm nodes run in parallel (thus competing for resources) and the output

of each component is continuously sent to the input of its downstream components. As the

system throughput is determined by the slowest component, it is important to assign the right

spout/bolt (Squall component) parallelism.

Next, we discuss employed parallelization architecture. Shared-memory model assumes

a single server machine, where multiple tasks have access to the same memory. Shared-

nothing architecture implies that each task has a separate address space, and that all the

communication among tasks is explicit via communication primitives. Shared-memory

architecture provides for cheap communication between tasks, but it requires locking to avoid

inconsistencies in the result. Furthermore, parallelism in this architecture is limited by the

number of hardware threads in the server machine. In certain cases (e.g., small number of

22

3.2 Consistency

tasks, low contention), shared-memory achieves better performance than shared-nothing

architecture. However, we employ the shared-nothing architecture, due to the following

reasons. First, this architecture is more general, as it can scale out beyond one server machine.

Second, shared-nothing architecture lends itself to scalable execution, as it avoids locking

completely.

Squall is a main-memory system. It also offers connectivity to BerkeleyDB [108], which spills

tuples to disk when main memory is insufficient. However, throughput and latency are orders

of magnitude better when only main memory is used.

3.2 Consistency

Squall is built around highly scalable techniques for processing queries online. As we already

discussed, online processing implies that results are computed by incrementally building the

result as the input arrives. Hence, each input both produces output and updates system state

necessary for processing subsequent inputs. This sort of dependent system state change is

in direct conflict with our goal of distribution, which is necessary for analytics processing

at large scale. These state changes follows complex patterns defined, not only by the query,

but also by the state of other machines. Due to the fact that not all tuples are sent to all

nodes, a node cannot distinguish a missing from delayed tuple, resulting in a lack of liveness

property. This problem is a variant of the FLP impossibility result [59]. In such environments,

data might become inconsistent, thus generating incorrect query results. (The last part of

Section 6.2.3 shows examples of data arrival patterns which lead to incorrect results if no

consistency-enforcing mechanism is used.) To preserve correctness, existing online systems

(e.g., Naiad [100]) employ a suitable consistency-enforcing mechanism, typically through en-

forcing a global update order. It has been frequently observed that classical strong consistency

protocols for keeping partitioned state in sync do not scale to large distributed systems (e.g.

[34, 133]). Recently, some very large-scale systems have been built as hybrid systems that

combine expensive and lightweight consistency protocols. They employ strong consistency

protocols, but only to address technical subproblems that do not need large-scale distribution,

splitting the scaling challenge into a small subsystem that uses strong consistency proto-

cols and a separate large subsystem that handles the bulk of the work and does not require

expensive protocols. An example of this approach is the Google File System (GFS) [62].

Squall aims at distributed low-latency online query evaluation; the goal is to develop a scalable

eventual consistency [133] mechanism that does not make heavy use of strong consistency

protocols. The principal challenge is to perform distributed binary operations, specifically

joins in a non-batched, online, and asynchronous fashion that does not require strong con-

sistency methods to keep nodes in lockstep, while achieving high scalability with low update

(view refresh) latencies.

Thus, the key technical problem is the distributed online evaluation of joins. Squall circumvent

the problem of inconsistencies for both 2-way and multi-way joins by carefully partitioning

23

Chapter 3. System architecture

the state, rather than by preserving a global order. Update processing is parallelized across

partitions such that eventual consistency of the result is guaranteed: Inside a partition, updates

are implicitly ordered, whereas updates from different partitions cannot affect each other

(they produce independent output tuples). In other words, we ensure that all the join results

can be generated by joining tuples stored locally on each join machine, so there is no danger of

violating atomicity. By composing these joins into a query plan (pipeline of joins), we preserve

eventual consistency on the level of the entire query plan.

For skew-free 2-way equi-joins, all the tuples from both base relations having the same join

key value are sent to the same join machine. To that end, we use data partitioning in the style

of an online MapReduce reshuffler to ensure eventual consistency of query results. However,

MapReduce uses sort-merge which is blocking, while Squall uses non-blocking partitioning

(e.g., hashing). Tuples can be processed in any order, as the output is the same for the same

set of incoming tuples (join is a commutative and distributive operation).

For 2-way equi-joins over skewed data, 2-way non-equi joins and multi-way joins, we assign

tuples to join machines such that each output tuple is assigned to a single machine. This

approach implies a certain degree of replication, as we will see in the following two chapters.

However, we believe that replication is fundamentally more scalable than enforcing a global

order, as it lends itself to making progress independently among machines running tasks in

parallel. This motivates our work in the following two chapters on minimizing replication for

joins.

Stable consistency. Our system guarantees eventual consistency [133]: although the same

correct final result is always eventually produced, results may be temporarily incomplete,

since some updates may have not yet fully propagated. However, there are cases in which a

user may want strongly-consistent results periodically, or upon a request. Strong consistency

implies that the final result is consistent with respect to a global snapshot comprising a subset

of the input tuples arrived to the system. We achieve strong consistency with respect to all the

input tuples arrived before a certain point in time. We do so in a decentralized, non-blocking

fashion using punctuations. In particular, upon request a punctuation is sent all data sources.

Then, each data source inserts the punctuation in its output streams, forwarding it to all

its downstream component tasks. We rely on in-order communication between any pair of

tasks (e.g., TCP is used). Each component task maintains separate data structures for tuples

arriving before and after punctuation (old and new epoch) for each of its upstream component

tasks. The stable result is consistent with all the input tuples labeled with the old epoch.

The output of a component task is marked with the old epoch only if all the contributing

tuples belong to the old epoch. Otherwise, an output tuple is labeled with the new epoch.

After a component task receives a punctuation from each of its upstream component tasks, it

sends punctuation to all of its downstream component tasks. A punctuation received from

an upstream component task implies that no new tuples for the old epoch (and stable result)

will come from that task. The last component also produces results labeled with the old and

new epoch, and once it produces punctuation, the stable result is completed. After that, each

24

3.2 Consistency

component task merges different states (old and new epoch for each upstream component

task), and waits for new punctuation signals.

25

4 A partitioning scheme for 2-way Joins

We address the problem of accurate and efficient load balancing for parallel offline joins. (The

discussion on how to take an offline operator and turn it into an online one is in Sections 6.2

and 6.3.) We show that the distribution of input data received and the output data produced

by worker machines are both important for performance. As a result, previous work, which

optimizes either for input or output, stands ineffective for load balancing. To that end, we

propose a multi-stage load-balancing algorithm which considers the properties of both input

and output data through sampling of the original join matrix. To do this efficiently, we

propose a novel category of equi-weight histograms. To build them, we exploit state-of-the-art

computational geometry algorithms for rectangle tiling. To our knowledge, we are the first

to employ tiling algorithms for join load-balancing. In addition, we propose a novel, join-

specialized tiling algorithm that has drastically lower time and space complexity than existing

algorithms. Experiments show that our scheme outperforms state-of-the-art techniques by

up to a factor of 12.

4.1 Introduction

There is an increasing demand for scalable and efficient parallel processing of large amounts

of data. Load balancing is crucial for reaching this goal, as the total execution time depends on

the slowest machine. In this chapter, we develop algorithms and techniques for efficient and

accurate load balancing for parallel joins. We design and implement a partitioning scheme

which assigns input tuples to machines such that each machine performs approximately the

same amount of minimal join work.

Join types. The state-of-the-art parallel equi-joins rely on hashing with special handling

for heavy hitters (join keys with high multiplicity). Examples are the PRPD [140] and F-

SkewJoin [36] schemes. Beame et al. [29] prove that a modified PRPD scheme [140] is close to

the communication optimum.

Unfortunately, these approaches are limited to equi-joins. In contrast, we propose a par-

27

Chapter 4. A partitioning scheme for 2-way Joins

titioning scheme for a broad class of monotonic joins [106] that include combinations of

equality, band and inequality (<, ≤, >, ≥) join conditions (e.g., band-join is a combination

of 2 inequality join conditions). Still, for joins with only equality conditions, one should use

existing approaches (e.g. [29]).

Monotonic joins often arise in practice. Notable examples of band-joins are time-distance

joins (e.g. in call logs [144]) and space-distance joins (e.g. in locating nearby objects [106]).

Skew types. Data skew occurs frequently in industrial applications [140, 36]. Load balancing

is challenging in the presence of two major types of skew [134]. First, redistribution skew (RS)

represents uneven input data partitioning among the machines due to skew in the join keys.

Thus, RS impedes performance. For instance, the 1-Bucket scheme [106] achieves up to 5×
speedup by addressing RS.

Second, join product skew (JPS) [134] represents imbalance in load due to variability in the

join selectivity, causing disproportionate numbers of output tuples to be processed among

parallel workers. That is, a few machines produce a large portion of the output. These

machines become bottleneck, severely hindering performance. In fact, JPS can occur even in

the absence of RS [112]. The following example illustrates that.

Example 4.1.1. Let us consider a band join with condition |R1.A−R2.A| ≤ 10. Let us consider

the bucket with range [0..30] assuming that each relation has 10 join keys in this range. If R1.A

and R2.A never satisfy the join condition (e.g. R1.A in [0..9] and R2.A in [20..29]), the output

size is 0. On the other hand, if each of R1.A and R1.A has 10 distinct values in [0..9], the output

size is 100.

Although each bucket has the same size bs = 10 (there is no RS), the join output size per bucket

varies from 0 to b2
s = 100 (there is JPS), depending on the the relative distribution of the join

keys between the input relations. Thus, using only bucket sizes leads to inaccurate estimation

of the output distribution, which results in JPS.

Depending on the input and output sizes, JPS may impede performance more than RS. Our

evaluation shows that our scheme, which addresses both RS and JPS, achieves up to 12×
speedup compared to a state-of-the-art scheme which addresses only RS [106].

Previous work. We present approaches that, similar to ours, go beyond just equi-joins and also

support band-joins, inequality-joins etc. We classify previous work as follows. JPS-avoidance

schemes (e.g. 1-Bucket [106]) balance the output-related work among the machines, regardless

of the join selectivity. However, these schemes heavily replicate the input tuples, causing high

network and memory consumption, high input-related work per machine, and thus, high

execution time. JPS-susceptible schemes (e.g. M-Bucket [106]) do not estimate the join output

distribution. Hence, these schemes cannot address JPS, causing high output-related work per

machine and a vast disparity in the amount of work assigned to machines. In general, previous

work does not capture the output distribution, as this requires the output sample. Building

28

4.1 Introduction

the sample is hard, as a join between uniform random samples from the input relations is not

a uniform random sample of the join output [43].

Our scheme. We propose a novel partitioning scheme which eliminates both RS and JPS.

As Table 4.1 shows, we are the first to provide a scheme which is both input- and output-

optimal. In contrast to previous work, our scheme achieves load balancing on minimal work

per machine, which includes both input- and output-related work. This results in better

execution times.

To build such a partitioning scheme i , we solve two problems. First, we propose an efficient

parallel scheme for capturing the output distribution. We represent the input and output

distribution as a matrix, where each dimension of the matrix corresponds to the join keys

from an input relation. Second, using these distributions, we optimally assign portions of the

matrix (called regions) to machines.

To do so, we introduce a novel family of histograms which we call equi-weight histograms, and

a novel histogram algorithm to build them. An equi-weight histogram is a partitioning of the

matrix into regions where regions have almost the same weight (the region weight corresponds

to the machine’s work). Thus, a partitioning scheme based on the equi-weight histogram by

design provides for accurate load balancing.

Our histogram algorithm builds on state-of-the-art computational geometry (CG) algorithms

for rectangle tiling. To our knowledge, we are the first to employ CG algorithms for join load

balancing. Using existing CG algorithms require O(n5 logn) time to produce an accurate

partitioning (n is the input relation size). This is impractical, as it is more costly than executing

the join itself. In contrast, our algorithm runs in O(n) time, while providing for accurate load

balancing, close to that of the baseline CG. We achieve efficiency and accuracy as follows.

First, we devise a novel CG algorithm that employs the domain-specific knowledge about

monotonic joins (the properties of the join output distribution). This algorithm drastically

reduces the time and space complexity compared to the baseline CG, while providing the

same accuracy.

Second, we devise a 3-stage histogram algorithm (sampling, coarsening and regionalization),

where the output of each stage is the input to the next one in the chain. Each stage reduces

the input size of the next one, while providing guarantees for its output. As later stages have

more coarse-grained input, we employ more precise algorithms for them to preserve accuracy.

As more precise (and expensive) algorithms work on smaller inputs, we preserve efficiency.

Third, we resolve the challenging problem of setting the right output size for each stage.

Namely, the size must be small enough to keep the algorithm running time short. On the

other hand, the size must be big enough, as insufficient output granularity (resolution) leads

iBy a partitioning scheme we mean either the algorithm for generating the partitioning, or the partitioning
itself. In this case we mean the latter. In general, the meaning should be clear from the context.

29

Chapter 4. A partitioning scheme for 2-way Joins

Table 4.1: Comparison with most important related work.

Partitioning Scheme Input-Optimal Output-Optimal
1-Bucket ✘ ✔

M-Bucket ✔ ✘

EWH(ours) ✔ ✔

to inaccurate load balancing (one machine is assigned much more work than the others).

We explain highlights of our solution while outlining the main contributions of this work:

1. To provide for efficient and accurate load balancing, we devise a multi-stage histogram

algorithm which contains a novel, join-specialized computational geometry algorithm.

2. Our scheme achieves minimal work per machine, without imposing any assumptions about

the data distribution.

3. We experimentally validate our scheme. Compared to state-of-the-art, our scheme achieves

up to 12× speedup in terms of total time (which includes both building the scheme and

performing the join) and is up to 5× more efficient in terms of resource consumption.

The rest of this chapter is organized as follows. First, we introduce the background and define

the problem statement; §4.3 presents the algorithm for building equi-weight histograms;

§4.4 shows how to incorporate the histograms in a join operator; §4.5 discusses related work

and, finally, §4.6 evaluates the performance and validates the effectiveness of equi-weight

histograms in achieving load balancing.

4.2 Background & Preliminaries

This chapter is organized as follows. First, we introduce definitions used throughout this

chapter. Important symbols used in this chapter are summarized in Table 4.2. Then, we

describe existing partitioning schemes and highlight the benefits of our equi-weight histogram

scheme on a concrete join example. Finally, we define the problem statement for building our

partitioning scheme.

4.2.1 Definitions

Join Model. We model a join among relations R1 and R2 as a join matrix M. For row i and

column j , cell M(i , j) represents a potential output tuple. M(i , j) is 1 iff ri and s j tuples

satisfy the join condition. As the result of any join is a subset of the Cartesian product, the

join matrix can model any join condition. Figure 4.1a shows a matrix for a band-join with a

join condition |R1.A−R2.A| ≤ 1. We focus on the joins which are common in practice, and for

30

4.2 Background & Preliminaries

Table 4.2: Summary of the notation used in the paper.

Symbol Description Value

R1, R2 Input relations
J The number of machines
n Max. input relation size
m Join output size
ρoi Output/Input ratio

w(r) Weight of region r
M Original join matrix
MS Sample matrix of size ns ×ns ns =

p
2n J

si Input sample size Θ(ns logn)
so Output sample size Θ(ns)
MC Coarsened matrix of size nc ×nc nc =Θ(J)
MH Equi-weight histogram

which state-of-the-art techniques perform poorly, that is, low-selectivity joinsii. These joins

have sparse join matrices, that is, only a small portion of the Cartesian space produces output

tuples.

Regions. We execute a join using J machines in a shared-nothing architecture. We refer

to a set of cells (that is, the corresponding input tuples) assigned to a single machine for

local processing as a region. We adhere to rectangular regions, as opposed to rectilinear or

non-contiguous regions, to incur minimal storage and communication costs [58].

Input and Output metrics. A region’s i nput is its semi-perimeter, that is, the sum of the

number of rows and columns from the join matrix intersecting the region. Processing an input

tuple consists of receiving the tuple (which incurs network and demarshalling costs) and join

computationiii. The out put is the number of output tuples (frequency) of a region. We use

frequency as opposed to area as we focus on low-selectivity joins. The processing cost of an

output tuple mainly comes from post-processing (writing the output to disk or transferring it

over the network to the next operator in the query plan). For example, region r1 in Figure 4.1b

has i nput = 19 and out put = 10.

Load balancing is defined as minimizing the maximum work per machine. As each machine

is assigned a region, we represent the machine’s work as a weight function of i nput and

out put costs: w(r) = ci (r)+ co(r). As these costs depend on the local join algorithm and

hardware/software architecture, ci (r) and co(r) naturally mimic the actual cost of processing

i nput (r) and out put (r) tuples, respectively. Thus, the load-balancing goal can be expressed

as minimizing the maximum w(r). Next, we discuss whether different schemes achieve this

goal.

iiWe also run high-selectivity joins with minimal overhead (see Section 4.6.5).
iiiThe computation cost can partially belong to out put (see Section 4.6.1).

31

Chapter 4. A partitioning scheme for 2-way Joins

R
2
.A

R
1
.A

19151110233922551726925327

17

13

9

9

20

3

6

19

5

5

15

23

3

22

25

7

(a) Matrix for a band-join

r
1

r
2

r
3

19151110233922551726925327

17

13

9

9

20

3

6

19

5

5

15

23

3

22

25

7

R
2
.A

R
1
.A

(b) C I (1-Bucket): I1=19; O1=10

r
1

r
2

r
3

27262523221917151110995533

25

23

22

20

19

17

15

13

9

9

7

6

3

5

3

5

R
2
.A

R
1
.A

p x p = 8 x 8

(c) C S I (M-Bucket): I1=14; O1=14

r
1

r
2

r
3

27262523221917151110995533

25

23

22

20

19

17

15

13

9

9

7

6

3

5

3

5

R
2
.A

R
1
.A

(d) C S IO (EWH): I1=10; O1=10

Figure 4.1: Different partitioning schemes (of 3 machines) on a band-join with a join condition
|R1.A−R2.A| ≤ 1. Shaded cells represent output tuples. (b)-(d) Ir is i nput and Or is out put
metric of a region r with maximum weight wx∈1..J = Ix +Ox .

4.2.2 Content-Insensitive Partitioning Scheme

The content-insensitive partitioning scheme, C I (called 1-Bucket in [106, 58]), illustrated in

Figure 4.1b, assigns all cells (n2 of them) to machines, regardless of the join condition. Thus,

regions cover the entire join matrix. This ensures result completeness and avoids expensive

post processing or duplicate elimination. An incoming tuple from R1 (R2) randomly picks a

row (column) in the join matrix, and is assigned to all the regions which intersect with the row

(column). The choice of a row or a column is completely random, and it does not depend on

32

4.2 Background & Preliminaries

the tuple at all (this is why the scheme is called content-insensitive). For example, the tuple

with join key 17 from R2 randomly picks column 5, which intersects with regions r1 and r3.

Thus, the tuple is assigned to these regions.

The scheme achieves almost perfect load balancing for out put by ensuring that regions have

almost the same area. In particular, due to random tuple distribution, almost equal-area

regions have almost equal out put .

However, C I incurs prohibitively high i nput costs for low-selectivity joins. Namely, as this

scheme assigns all the cells (regardless of whether they produce an output tuple) to machines,

C I suffers from excessive input tuple replication.

We compare partitioning schemes in Figures 4.1b, 4.1c and 4.1d using the weight function

w(r) = i nput (r)+out put (r). Due to excessive tuple replication, C I (Figure 4.1b) has the

highest maximum w(r) (w(r1) = 29 compared to w(r1) = 28 and w(r1) = 20 of the other

schemes). In fact, C I works well only if the out put costs are much bigger than the i nput

costs, as in that case input tuple replication has small effect on the work per machine.

4.2.3 Content-Sensitive Partitioning Scheme

A content-sensitive scheme addresses the excessive tuple replication problem. It assigns an

input tuple to a machine(s) according to its content (join key).

C S I (Figure 4.1c), called M-Bucket in [106], is a content-sensitive scheme that uses the input

statistics. To simplify notation, we denote both relation sizes as n iv. C S I builds approximate

equi-depth histogramsv with p buckets over join keys of each input relation (p < n), and

creates a grid of size p ×p over the join matrix. In Figure 4.1c, p = n/2 = 8, and each grid cell

contains h = (n/p)2 = 4 matrix cells. We denote a grid cell which may produce an output tuple

as a candidate cell (marked with diagonally engraved lines).

To efficiently check if a grid cell is a candidate (in O(1) time), C S I requires a join condition

that allows candidacy-checking by examining only join keys on the grid cell boundaries. This

holds for monotonic joins, as the boundary join keys are sorted. For example, grid cell (0,1) in

Figure 4.1c is non-candidate, as the distance between the lower R2 and upper R1 cell boundary

join keys (5−3 = 2) exceeds the width of the band-join (1).

C S I optimizes the i nput costs, as it assigns only candidate grid cells to machines, safely

disregarding large contiguous portions in the join matrix that produce no output. C S I scheme

assigns tuples to regions according to intersection of the rows and columns with regions.

For instance, in Fig. 4.1c, a tuple from R1 with join key 9 is forwarded to regions r1 and r2.

Whereas, all other tuples from R1 are forwarded to exactly one region. However, as regions

are rectangular, C S I also assigns some non-candidates to machines. For example, although

ivOur analysis also holds when the sizes differ.
vFor the sake of this example, we assume the exact histogram.

33

Chapter 4. A partitioning scheme for 2-way Joins

grid cell (0,1) in Figure 4.1c is non-candidate, it is assigned to r1. In Figure 4.1, the maximum

i nput (r) of C S I is only I1 = 14, compared to I3 = 21 of C I . The gap between the two schemes

deepens with increasing the number of machines J , as the number of non-candidates grows.

However, C S I is susceptible to JPS, as it ignores the actual number of output tuples (out put)

and assigns a constant to each candidate cell. In practice, the out put of a grid cell varies

from 0 to the size of the Cartesian product between the encompassed input tuples from the

two relations, that is, from 0 to the grid cell area h (h = 4 in our example). In Figure 4.1c,

regions r1 and r2 have the same number of candidate cells (4), but vastly different number of

output tuples (14 versus 5, respectively). This is why the maximum w(r) in C S I (w(r1) = 28)

only slightly improves that of C I (w(r1) = 29). Thus, JPS prevents C S I from performing better

compared to C I . In fact, C S I works well only if the i nput costs are much bigger than the

out put costs, as in that case JPS marginally affects the work per machine.

4.2.4 Equi-Weight Histogram Scheme

We propose a novel, equi-weight histogram scheme, C S IO (Figure 4.1d), which achieves the

best of both worlds: it avoids both JPS and excessive tuple replication.

C S IO is a content-sensitive scheme that accurately estimates the number of output tuples

per candidate cell via sampling (see Section 4.4.1)vi. In contrast to C S I , C S IO is resilient to

JPS. This is why the maximum w(r) in C S IO (w(r1) = 20) is much smaller than that of C S I

(w(r1) = 28). In practice, the gap between the two schemes is much deeper. Namely, to have

acceptable time for building the C S I scheme, it must hold that p ≪ n [106]. This increases the

candidate grid cell area h, making C S I much more prone to JPS.

An optimal partitioning scheme minimizes the maximum w(r). In contrast to C I and C S I

which work well only if out put or i nput costs dominate, our C S IO is close-to-optimum for

a wide range of out put/i nput costs. We build such a scheme using a novel equi-weight

histogram. The histogram contains buckets of almost equal weight, where each bucket corre-

sponds to a rectangular region. Figure 4.2 depicts weight histograms for different schemes

from Figure 4.1. C S IO is based on equi-weight histograms and it is the only scheme that

minimizes the maximum region weight (machine’s work), providing by design for accurate

load balancing. Next, we formalize the histogram construction problem.

Problem definition. Given a sparse matrix M[1..n ,1..n] with cell values {0, 1}, partition it to

J ≪ n non-overlapping axis-parallel rectangular regions r j ∈R, such that each 1-cell is covered

by exactly one region, and each 0-cell is covered by at most one region. The goal is to minimize

the maximum weight of a region, that is min{maxr j∈R{w(r j)}}. M is the original join matrix

where 1-cells represent output tuples and 0-cells depict empty entries, w(r) represents the work

of a machine assigned to region r , and J is the number of joiners (machines).

viFor the sake of this example, we assume exact statistics.

34

4.3 Histogram algorithm

Output
Costs

Input
Costs

CI CS
I

CS
IO

r
1

r
2

r
3

5

10

15

20

25

30

Unit Weight

Equi-Weight
Histogram

Figure 4.2: Weight Histograms.

The join matrix is just a model. The histogram algorithm does not build M, as this is the actual

join result (this would defeat the purpose of building the scheme for parallel join execution).

Rather, we resort to sampling (see next section, particularly Section 4.3.1).

4.3 Histogram algorithm

In this section, we show how our efficient histogram algorithm achieves accurate load balanc-

ing. We first provide a high-level overview of the different stages of our algorithm. Then, we

provide more details about each stage in subsequent sections.

Previous work. The histogram construction problem is NP-hard. The best known approximate

algorithm is BSP [30], a tiling algorithm which runs in O(n5) time and has an approximation

ratio 2.

To create a histogram with J buckets (regions), we need to perform a binary search over

the BSP (see Section 4.3.3). We denote the entire process as regionalization, and it takes

O(n5 logn) time. This is impractical, as it is more costly than the join.

Our solution. We propose a histogram algorithm that takes O(n) time on a single machine,

while providing for load balancing that is close to the one of the BSP [30]. Our idea is twofold.

First, we reduce the input matrix size of the regionalization (originally, regionalization takes the

original matrix M as the input). Second, we drastically improve the regionalization running

time and space by using a novel tiling algorithm which we call MONOTONICBSP. These ideas

allow us to be the first to use tiling algorithms for join load balancing.

1. Reducing the regionalization input. We introduce the sampling stage, which generates

35

Chapter 4. A partitioning scheme for 2-way Joins

Table 4.3: The time complexity improvements.

BSP BSP BSP MonotonicBSP
over M over MS over MC over MC

O(n5 logn) O((n J)2.5 logn) O(n5/3 logn) O(n)

sample matrix MS of size ns ×ns . MS has much smaller size than the original matrix M
(ns ≪ n). To provide for load balancing, ns needs to be (at least)

p
2n J (see Section 4.3.1). If

the regionalization takes MS as the input, it runs in O(n5
s logn) =O((n J)2.5 logn) time. This

computation cost is still too high.

To further reduce the regionalization input, we introduce the coarsening stage. This stage

takes MS as the input and creates a coarsened matrix MC of size nc ×nc (nc < ns). The

coarsening reduces the regionalization input by using the distribution of MS cell weights (i.e.,

we represent multiple small MS cells as one MC cell). To provide for load balancing, we opt

for nc = 2J (see Section 4.3.2). If the regionalization takesMC as the input, it runs inO(J 5 logn)

time. As using J =O(3
√

n/log2 n) machines is sufficient in practicevii, the regionalization takes

O(n5/3 logn) time. This is still expensive compared to the join costs.

2. MONOTONICBSP: a novel tiling algorithm. In contrast to BSP which takes O(J 5 logn)

time, our MONOTONICBSP runs in only O(J 3 log2 n) time. To do so, MONOTONICBSP exploits

the output properties of monotonic joins (see Section 4.3.3). As J =O(3
√

n/log2 n) vii, the

regionalization based on MONOTONICBSP, along with the sampling and coarsening, takes only

O(n) time (see Sections 4.3.1 to 4.3.3). Table 4.3 summarizes all the complexity improvements.

Putting everything together. Our histogram algorithm consists of 3 stages: sampling, coars-

ening and regionalization. Figure 4.3 illustrates the chain of the histogram algorithm stages

for w(r) = i nput (r)+ out put (r). The sampling stage builds MS of size ns ×ns (ns = 16

in Figure 4.3a) using small input and output samples from M. MS preserves the weight

distribution of M. That is, with high probability, regions’ weights in MS are very close to

the corresponding weights in M. The coarsening stage creates a non-uniform grid nc ×nc

over MS (nc = 8 in Figure 4.3b), such that each grid cell becomes an MC cell. Thus, MC
is of size nc × nc . The frequency (out put) of an MC cell is the sum of the correspond-

ing MS cell frequencies, e.g. out put (MC(1,2)) = out put (MS (1,2..3)) = 3. The weight

is w(MC(1,2)) = 3n/ns +out put (MC(1,2)) = 3 ·16+3 = 51. The regionalization builds the

equi-weight histogram MH by coalescing MC cells into regions (see Figure 4.3c). This stage

uses the hierarchical partitioning (recursively dividing rectangles into 2 sub-rectangles) over its

input (MC). The hierarchical partitioning allows more configurations that the grid partitioning

from the coarsening stage. For example, the grid partitioning cannot produce the hierarchi-

cal partitioning from Figure 4.3c, as r1 and r2 partially overlap over the y-axis. Section 4.7.1

viiDue to parallelization overhead, adding machines after a certain point provides no additional performance
benefits. Our formula for J captures this observation and states that, for example, if n is hundreds of millions, it is
then sufficient to use hundreds of machines.

36

4.3 Histogram algorithm

1

1

1 2

2 1 1

1 31

1

1216

2 13

714 1

129 11

211312

4125

3 75

9

49 362

2050

1

1

1 2

2 1 1

1 31

1

1216

2 13

7
14

1

129 11

211312

4125

3 75

9

49 62

2050

3

22 23

34 30 5

23

28 1

8 1

5

1

1

1 2

2 1 1

1 31

1

1216

2 13

714 1

129 11

211312

4125

3 75

9

49 62

2050

3

22 23

34 5

23

28 1

8 1

5

181

82

100

15

a) Sample Matrix MS

 nsX ns = 16 x 16

b) Coarsened Matrix MC

nc x nc = 8 x 8
c) Equi-Weight Histogram MH

n / ns=16

Coarsening Regionalization

Input/
Output

Random
Samples

Output
Costs

Input
Costs50

100

150

200

250

Unit Weight

Equi-Weight
Histogram

n / ns=16

7 * 16=112

7*16=112

224

15

10082181

144160

64

r1 r2 r3 r4

r1

r2

r3

r4

d) Equi-Weight Histogram MH

Figure 4.3: Histogram algorithm stages. The weight function is w(r) = ci (r) + co(r) =
i nput (r)+out put (r). For instance, in (c), w(r4) = 2 ·112+15 = 239.

illustrates different partitionings and emphasizes their differences.

The main ideas in our histogram algorithm that allow for efficient and accurate load balancing

are:

1) We avoid imposing any assumptions about distribution within a cell, as it leads to incorrect

weights and inaccurate load balancing. Thus, we create MC cells (regions) on the granularity

of an MS (MC) cell.

2) Careful choice of the matrix sizes ns and nc (see Section 4.3.1-4.3.3).

3) Using more precise algorithms when it matters for accuracy of load balancing, that is, when

the cell weights in the input matrix of the stage are high (i.e., on more coarse-grained matrices).

This is important because with the increase in maximum cell weight, the potential error in

load balancing is higher. In particular, as we move forward in the chain of the stages, the

matrix size drops and the maximum cell weight grows. For example, in Figure 4.3, the matrix

sizes are ns = 16 and nc = 8, and the maximum cell weights are w(MS (1,1)) = 2 ·16+62 = 94

and w(MC(6,6)) = 6 ·16+8 = 104. We account for this by using more precise algorithms as

we move forward in the chain. Namely, the coarsening considers only grid configurations (of

size nc ×nc) over its input (MS), as illustrated in Figure 4.3b. Whereas, the regionalization

is more precise than the coarsening, as it explores all the hierarchical partitionings over its

input (MC), as illustrated in Figure 4.3c. More precise algorithms are also more expensive per

input matrix cell (see Sections 4.3.1 to 4.3.3). However, as more expensive algorithms work

on smaller input matrices (recall ns = 16, nc = 8), the histogram algorithm is efficient.

4) Devising MONOTONICBSP, a novel tiling algorithm.

5) All the stages use a weight function which accurately estimates the processing costs, and

each stage provides guarantees for minimizing its maximum cell weight. We prove an upper

bound on the MS cell weight (Lemma 4.3.1). The coarsening (regionalization) guarantees to

produce partitionings within a factor of 2 from the optimum on grid (arbitraryviii) partitioning

viiiIt allows any partitioning into rectangles.

37

Chapter 4. A partitioning scheme for 2-way Joins

on the given MS (MC) matrix. Section 4.7.1 illustrates different partitionings and emphasizes

their differences.

Next, we discuss the details of each stage.

4.3.1 Sampling

This stage efficiently builds the sample matrixMS , which provides for accurate load balancing.

Region weight proximity. As the histogram algorithm requires precise region weights for

accurate load balancing, MS must preserve the region weights of the original matrix M.

As we previously saw that regions are defined by their boundary keys, a region rs from MS
corresponds to a region r from the original matrix M if and only if they share all the region

boundary keys. The region weight proximity means that for any two corresponding regions rs

and r , MS ensures that w(rs) ≈ w(r) with very high probability. In other words, any region

in the sample matrix has almost the same weight as the corresponding region in the original

matrix.

Previous work on sample data structures mainly concerns multi-attribute single-relation

histograms, which are used for answering range queries (e.g. [99, 113]). As the algorithms

for building these data structures consider only frequency (output), they cannot preserve

the w(rs) ≈ w(r) property. Hence, these algorithms fall short for providing accurate load

balancing.

Building sample matrix MS . In contrast, we build MS of size ns ×ns (in Figure 4.3a, ns = 16),

which keeps the w(rs) ≈ w(r) property by preserving both the input and output distribution:

a) To preserve the input distribution, we build an approximate equi-depth histogram [42]

with ns buckets on each input relation. The histogram boundaries form a grid of size ns ×ns

over the original matrix. Each such grid cell corresponds to an MS cell. Region’s i nput is a

product of the number of MS cells on its semi-perimeter and the expected bucket size n/ns .

For example, in Figure 4.3a, the region defined by MS (0..1,0) has i nput of 3 ·n/ns = 48. b) To

preserve the output distribution, we take a uniform random sample of the join output. To

do so efficiently, we propose a parallel sampling scheme (Section 4.4.1). Once the sample is

in place, we increment the corresponding MS cell for each sample output tuple. Region’s

out put is a product of the ratio of output sample tuples within the region and the total output

size m (we show how to find m in Section 4.4.1). For example, in Figure 4.3a, region MS (0..1,0)

has out put of 50+49 = 99.

Efficiency and Accuracy Considerations. Setting the MS size ns is crucial for both efficiency

and accuracy. As the coarsening takes MS as the input, in order to keep the running time

of this stage short, ns must be small enough. On the other hand, decreasing ns may affect

accuracy of the histogram algorithm, and thus, accuracy of load balancing. In particular, if we

decrease ns , the MS cells correspond to bigger portions in the original matrix and thus, the

MS cell weights grow. For example, the maximum cell weight in Figure 4.3a is σ= 2 ·16+62 =

38

4.3 Histogram algorithm

94, which corresponds to MS (1,1). Assume that MS
′ differs from the MS in Figure 4.3a

only by replacing ns = 16 by n′
s = 4. Then, the maximum cell weight is σ′ = 8 ·16+201 = 329,

which corresponds to MS (0..3,0..3) and which is much bigger than si g ma = 94. As we avoid

imposing assumptions within an MS cell, regions are on the MS cell granularity and a region

contains at least one MS cell. Thus, the maximum region weight in the partitioning scheme

with n′
s = 4 is at least σ′ = 329. Such a scheme is suboptimal compared to the MH scheme

from Figure 4.3c,d, which has the maximum region weight w(r1) = 4 ·16+181 = 245. Thus,

small ns leads to weighty regions, which affects accuracy of load balancing.

It is challenging to choose a value for ns , as in the sampling stage we do not know the maximum

w(r) of the MH partitioning scheme. To that end, we find a lower bound on the maximum

w(r) of the optimum MH scheme. We denote this lower bound as wOPT , and we compute

it by dividing the lower bound on the total join work (w(M), where i nput (M) = 2n and

out put (M) = m) ix equally among the machines. In fact, w(M) is a lower bound as it assumes

no input tuple replication. To ensure accuracy given that the coarsening and regionalization

use approximate algorithms, we require that σ≤ 0.5wOPT (rather than simply σ≤ wOPT). This

holds independently from the join condition and join key distribution if ns =
p

2n J , as the

following lemma shows. The proofs are in Section 4.7.2.

Lemma 4.3.1. ns =
p

2n J is the minimum MS size such that the maximum cell weight σ in

MS is at most half of the maximum region weight of the optimum MH partitioning. This

holds independently from the join condition and the join key distribution, given that m ≥ n x.

Next, we briefly discuss the sizes of the input and output sample, which are required for

building MS . The detailed analysis is in Section 4.7.2. The input sample size is si =Θ(ns logn).

We determine that the output sample size is so =Θ(ns) using Kolmogorov’s statistics [64]. Next,

given ns =
p

2n J , we prove that the sampling stage has low running time.

Lemma 4.3.2. The time complexity of the sampling stage is O(ns logns). For ns =
p

2n J and

J =O(3
√

n/log2 n) xi, the time complexity is O(n/J).

4.3.2 Coarsening

This stage creates a coarsened matrix MC by imposing a grid of size nc ×nc over the input

matrix MS . As nc < ns , the coarsening further reduces the regionalization input. Figure 4.3b

shows MC with nc = 8. The goal is to minimize the maximum cell weight in MC . This is an

NP-hard tiling problem, but it admits approximate solutions. The best approximate algorithm

is the coarsening from [102], which has an approximation ratio 2.

Deciding on nc . To keep the running time short, while achieving accurate load balancing in

ixIt is a lower bound as it assumes no input tuple replication.
xThis typically holds in practice. We discuss the extensions to support the general case for m in Section 4.7.2.

xiSee footnote vii.

39

Chapter 4. A partitioning scheme for 2-way Joins

r
m1

r
2

r
m2

r
1

(a) Non-monotonic matrix

1

2

(b) Min. candidate rectangles

Figure 4.4: a) Non-monotonicity in rectangles 1 and 2 due to candidates marked with black. b)
rm 1 (rm 2) is a minimal candidate rectangle for r1 (r2).

the regionalization, we opt for nc = 2J . We discuss how such nc brings accuracy in Section 4.3.4.

The following lemma proves low time complexity.

Lemma 4.3.3. The running time of the coarsening algorithm is O((ns +n2
c logns) ·nc logns).

For nc = 2J and J =O(3
√

n/log2 ns), the time complexity becomes O(n).

Monotonicity is a property of the join output distribution which holds for many interesting

joins, including equi-, band- and inequality joins. It states that “if cell (i , j) is not a candidate

cell, then either all cells (k, l) with k ≤ i , l ≥ j , or all cells (k, l) with k ≥ i , l ≤ j are also not

candidate cells” [106]. That is, candidate cells are consecutive per row/column. All the join

matrices in Figure 4.1 are monotonic, while the one in Figure 4.4a is not due to the candidate

cells marked black.

MonotonicCoarsening. We speed up the coarsening algorithm using monotonicity. The

coarsening algorithm iteratively improves the coarsened matrix. To do so, in each iteration it

computes the weights of all the MC cells. As the weight of non-candidate cells is 0, it suffices

to compute only the weights of the candidate cells. Monotonicity allows skipping the non-

candidates for free. Thus, the MonotonicCoarsening considers only the candidate cells. This

improves the algorithm’s running time in practice, although the complexity does not change

asymptotically.

4.3.3 Regionalization

This stage creates the equi-weight histogram MH, which consists of (at most) J rectangular

regions over MC cells. Figure 4.3c illustrates MH with J = 4. The goal is to minimize the

40

4.3 Histogram algorithm

Algorithm 1 BSP.

1: function BSP(r ect ang les)
2: for each rectangle r in r ect ang les do
3: rm = MINIMALCANDIDATERECTANGLE (r)
4: if w(rm) ≤ δ then
5: r .regions = {rm}
6: else
7: for each splitter in rm do
8: {r1, r2} = rm .split
9: splits.add({r1, r2})

10: r .regions = min{r1,r2}∈spl i t s (r1.regions ∪ r2.regions)

11: end function

maximum region weight δ, while covering with regions all the candidate MC cells. xii The best

such algorithm is Binary Space Partition (BSP) [30, 101]. However, BSP solves a dual problem:

given the maximum region weight δ, it minimizes the number of regions. To that end, we

perform a binary search over δ until BSP returns a partitioning with the available J regions

(machines).

BSP [30, 101] is a tiling algorithm based on dynamic programming. It creates an optimum

hierarchical partitioning, which is within a factor of 2 from an optimum arbitrary partitioning.

BSP (Algorithm 1) analyzes each rectangle in MC as follows. If the rectangle weight is below

the given maximum region weight δ, we cover the rectangle with a single region (line 5).

Otherwise, BSP splits the rectangle by a horizontal or vertical line such that the total number

of regions used for the two sub-rectangles is minimized (lines 7-9). We obtain a minimal set

of regions for a rectangle by using the previously found splitters for each sub-rectangle. We

acquire the final regions by extracting them from the rectangle encompassing the entire MC .

Extending BSP to join load balancing. As we do not need to assign non-candidate MC cells

to machines, we minimize a rectangle so that no candidate cell is omitted (line 3). We denote

such a rectangle as minimal candidate rectangle rm . For example, in Figure 4.4b, rectangle

r1 (r2) contains no candidate cells on the left and lower (right and upper) boundaries. Thus,

before computing the weights, we minimize r1 (r2) to its minimal candidate rectangle rm 1

(rm 2).

As the input for the BSP is the coarsened matrix MC of size nc × nc , and nc = 2J (see

Section 4.3.2), BSP runs in O(J 5) time. With binary search, it takes O(J 5 logn) time. As

J =O(3
√

n/log2 n) xiii, the regionalization based on BSP runs in O(n5/3 logn) time. This is

expensive compared to the join costs.

BSP also suffers from high space complexity, which is proportional to the total number of

rectangles in the input matrix MC . As a rectangle is defined by 2 corners, and each corner is

xiiAs regions are rectangular, they cover some non-candidates as well, subject to minimizing δ.
xiiiSee footnote vii.

41

Chapter 4. A partitioning scheme for 2-way Joins

Algorithm 2 MONOTONICBSP.

1: function MONOTONICBSP
2: r ect ang lesm = GENERATECANDIDATERECTANGLES()
3: Sort r ect ang lesm according to the semi-perimeter
4: BSPCANDIDATES(r ect ang lesm)
5: end function

6: function GENERATECANDIDATERECTANGLES

7: for x1 = 1 to nc do
8: for y1 in cand. cell indexes in row x1 do
9: for x2 = x1 to nc do

10: for y2 in cand. cell indexes in row x2 do
11: r ect ang lesm .add(x1, y1, x2, y2)

12: return r ect ang lesm

13: end function

14: function BSPCANDIDATES(r ect ang lesm)
15: for each rectangle rm in r ect ang lesm do
16: if w(rm) ≤ δ then
17: rm .regions = {rm}
18: else
19: for each splitter in rm do
20: {r1, r2} = rm .split
21: rm1 = MINIMALCANDIDATERECTANGLE(r1)
22: rm2 = MINIMALCANDIDATERECTANGLE(r2)
23: splits.add({rm1, rm2})

24: rm .regions = minspl i t s (rm1.regions ∪ rm2.regions)

25: end function

defined by 2 MC coordinates, the space complexity is O(n4
c) =O(J 4).

MONOTONICBSP. We propose MONOTONICBSP, a novel tiling algorithm which drastically

reduces both time and space complexity of the BSP. To do so, MONOTONICBSP exploits the

output distribution properties for monotonic joins. In BSP, enumerating rectangles from MC
results in high time/space complexity (O(n4

c)). However, for monotonic joins, only a small

portion of these rectangles are minimal candidates. The main challenge is to enumerate only

minimal candidate rectangles without even looking at all the rectangles, as this would require

O(n4
c) time. We do so using the following lemma.

Lemma 4.3.4. A rectangle is defined by the upper left and the lower right corner. For monotonic

joins, each defining corner of a minimal candidate rectangle is a candidate cell, yielding O(n2
c)

minimal candidate rectangles in total.

As Figure 4.4) shows, rectangles rm 1 and rm 2 are minimal candidate rectangles, and their

defining corners are candidate cells.

Thus, by designating each pair of the candidate cells as the rectangle defining corners, the

MONOTONICBSP (Algorithm 2) enumerates all the minimal candidate rectangles (lines 6-13).

There are O(n2
c) such rectangles, as MC has O(nc) candidate cells (we deal with low-selectivity

42

4.3 Histogram algorithm

joins). Then, the algorithm sorts the rectangles by their semi-perimeter (line 3), and runs a

BSP version which considers only minimal candidate rectangles (lines 14-24).

Lemma 4.3.5. The regionalization stage based on MONOTONICBSP runs in O(n3
c lognc logn)

time. For nc = 2J and J =O(3
√

n/log2 n) xiv, the stage takes O(n) time.

The space complexity of MONOTONICBSP is O(n2
c), as there are n2

c minimal candidate rectan-

gles (see Lemma 4.3.4).

MONOTONICBSP significantly outperforms the baseline BSP for monotonic joins, both in

terms of space and time complexity. Namely, MONOTONICBSP requires only O(n2
c) space and

O(n3
c lognc logn) time. Whereas, the baseline BSP runs in O(n4

c) space and O(n5
c logn) time.

4.3.4 Putting it all together

The computation cost. By directly applying previous work [30] (i.e., the regionalization based

on BSP over the original matrix M), computing the histogram requires O(n5 logn) time. In

contrast, our 3-stage histogram algorithm runs in only O(n) time.

Theorem 4.3.1. The time complexity of the histogram algorithm is O(n).

The proof directly follows from Lemmas 4.3.2-4.3.5 (each stage runs in O(n) time).

The accuracy of load balancing. As in our algorithm the regionalization creates regions on

the MC cell granularity, we next discuss how much the coarsening stage affects the accuracy

of load balancing. For output-only weight functions, Wang [136] shows that the arbitrary

partitioning over a grid partitioning is within a factor of 4 from the arbitrary partitioning

over the original data. Applied to our case, if nc ≥ J and the input matrix of the coarsening

stage is the original matrix M (rather than the sample matrix MS), the coarsening and

regionalization produce a partitioning which is at most a factor of 4 from the one produced by

the regionalization alone (this holds only for output-only weight functions). We lessen the

factor of 4 by choosing nc = 2J (rather than nc = J) for the MC size.

Sampling minimally affects load balancing, as MS with very high probability preserves the

weight distribution from M (Section 4.3.1). Further, we minimize the effect of coarsening to

accuracy by ensuring that the maximum cell weight in MS is at most half of (rather than equal

to) the maximum region weight in the optimum MH partitioning scheme (Lemma 4.3.1). We

provide strong empirical evidences for the accuracy of our equi-weight histogram scheme (see

Section 4.6).

xivSee footnote vii.

43

Chapter 4. A partitioning scheme for 2-way Joins

4.4 Join operator

In this section, we integrate our partitioning scheme into a join operator. First, we collect the

statistics, that is, samples of the input and output tuples (Section 4.4.1). Then, using these

statistics, we build the equi-weight histogram (see Section 4.3). Finally, we distribute and

process the data according to the histogram.

Local Join Algorithm. Each machine processes a region using a local join algorithm. As long

as all the machines run the same algorithm, our scheme is orthogonal to the local joins.

Sampling the Input Tuples. As described in Section 4.3.1, we need a uniform random sample

of size si from each relation. We build the input sample in one pass in parallel using Bernoulli

sampling [61] with a sampling rate of qi = si /n. As explained in [61], the sample is of expected

size si . In order to guarantee this sample size, we set the sampling rate qi slightly higher. This

algorithm is denoted as the Bernoulli sampling with probabilistic sample size bounds [61].

4.4.1 Sampling the Output Tuples

Chaudhuri et al. [43] show that we cannot obtain a uniform random sample of the join output

by joining uniform random samples from the input relations. Alternatively, performing the

entire join and then sampling from the output defeats the purpose of building the equi-weight

histogram. The Stream-Sample algorithm [43] provides a uniform random output sample

without performing the entire join. However, this is a single-machine algorithm. To make it

efficient and scalable, we devise a parallel version of the Stream-Sample. Next, we discuss

efficiency of this algorithm in the context of join load balancing. To our knowledge, we are

the first to use random samples of the join output for parallel join load balancing. Then, we

describe the baseline and parallel Stream-Sample in detail.

Efficiency. The cost of Parallel Stream-Sample, which mainly comes from scanning the input

relations, is small compared to the cost of parallel join. This is due to the following:

1) The benefits of using the collected statistics easily surpass the scanning overhead, both in

MapReduce [106, 56, 82] and distributed databases [111]. In both cases, scanning involves

repartitioning of the join keys [106, 111]. Our experiments (Section 4.6) also show that scanning

pays off, as JPS affects performance much more than scanning.

2) The output sample tuples contain only join keys, as we use the samples only for building

MS (and not for propagating it further in the query plan). This reduces the network traffic.

3) The output sample size is much smaller than the input relation size (so =Θ(ns) =Θ(
p

n J) ≪
n).

Stream-Sample. The Stream-Sample [43] works only for equi-joins, but we extend it to work

for band- and inequality joins as well.

44

4.4 Join operator

First, we introduce the notation. The base relations are R1 and R2 and a sample from R1 is S1.

Given a tuple t1 ∈ R1 with a join key t1.A, the joinable set of t1 consists of all the tuples from R2

which are joinable with t1. For equi-joins, the joinable set of t1 comprises of all the tuples from

R2 with t1.A as the join key. For band- and inequality joins, the joinable set contains all the

tuples from R2 with a join key within a certain distance (specified by the join condition) from

t1.A. We denote the joinable set size as d2(t1.A), and the ensemble of them as d2. Using the

keys from d2 with an equality condition yields d2equi . WR (WOR) is sampling With (Without)

Replacement.

The Stream-Sample algorithm works as follows. We take a WR weighted sample S1 of size so

from R1, where the weight of t1 ∈ R1 is d2(t1.A). Then, for each ts1 ∈ S1, we randomly choose

t2 ∈ R2 from the joinable set of ts1 and produce an output tuple ts1 1 t2.

Parallelization. We design a parallel, scalable version of Stream-Sample, which runs efficiently

on the same number of machines as the join itself. For the ease of presentation, we describe it

in terms of MapReduce [48] jobs.

1. We build d2equi from R2 in a single MapReduce job. To reduce the work, we designate R2

to be smaller of both relations. To partition the work evenly, we assign the R2 tuples to the

machines according to their join keys and the approximate equi-depth histogram on R2.

2. In this step, we build d2 and S1. We create d2 as follows: Each reducer obtains a range of

sorted join keys from d2equi along with their multiplicities. As mentioned before, d2(t1.A) is

the sum of multiplicities of the join keys from R2 which are within a certain distance from t1.A

(according to the join condition). Each time a reducer moves in the sorted key sequence such

that the joinable set changes (adding or removing a tuple), a new d2 key-value pair is created.

We also build a WR weighted sample S1 from R1, where weights are based on d2. To do so, we

use a parallel one-pass algorithm for WOR weighted sampling [57] which works as follows: It

puts each t1 ∈ R1 into a priority queue of size so using the priority computed as a function of

d2(t1.A). According to [57], the precise formula for priority is r (1/w), where r = r andom(0,1)

and w is the weight, which is in our case d2(t1.A). After each reducer produces its Max-Heap

reservoir, we merge them into a single reservoir using the same priority function. Finally, we

transform S1 from a WOR to a WR sample using [43].

We build d2 and S1 together in a single MapReduce job. We assign the d2equi and R1 tuples

to the machines according to their join keys and the approximate equi-depth histogram on

R1 due to the following reasons: First, d2equi tends to be much smaller than R1. Secondly, by

doing so, we balance the work for computing S1.

3. Finally, we produce a uniform random output tuple for each tuple ts1 ∈ S1. As we use the

output tuple only for building MS , it contains only a concatenation of the join keys. This

relieves us from choosing uniformly at random an R2 tuple from the joinable set of ts1 , which

would require processing R2 again. Instead, we randomly choose a join key from the joinable

45

Chapter 4. A partitioning scheme for 2-way Joins

set of ts1 , with probability directly proportional to the key multiplicity. These multiplicities are

available in d2equi . As S1 is typically much smaller than d2equi , we assign S1 and d2equi to the

machines according to their join keys and the partitioning of d2equi from step 1. Thus, we sort

S1 and use a Map-only job for this step.

Synergy. We first build equi-depth histograms on R1 and R2. Then, we sample input and

output tuples in parallel by sharing mappers (sampling the input requires only one reducer).

If an input relation has a predicate which filters out many tuples, we reduce the scanning

overhead for the join by materializing the filtered relation in the statistics scan.

Parameters. To build the sample matrix, we need to know m (see Section 4.3.1). On the other

hand, it is hard to obtain m ahead of time. We obtain m from the Parallel Stream-Sample

algorithm. In particular, as we iterate over the entire R1 relation in the step 2 of the algorithm,

we compute m as
∑

t1∈R1
d2(t1.A).

4.4.2 Discussion and Generalization

System architecture. As [45] shows, systems designed for main-memory parallel processing

are very popular nowadays (e.g. Shark-Spark [139], Dremel [97]), mainly because of superior

performance compared to the disk-based systems. For that reason, recent parallel joins are

main-memory operators [111, 45]. We follow the same reasoning and implement our operator

in a main-memory parallel system.

Input relations are not necessarily base relations. Rather, a join may contain selection pred-

icates, or it may consume the output from another join. To support these general joins, we

build our scheme for each join (i.e., no reusing among different joins), and report this in the

total execution time. The M-Bucket scheme [106] adopts the same approach.

Multi-way joins. Our scheme assumes 2-way joins. As our scheme enhances performance

especially when the out put cost matters a lot (e.g. transferring tuples between operators over

the network), a multi-way join can be efficiently executed using a sequence of our 2-way joins.

Squall also offers an operator that performs a multi-way join within a single communication

step, which we present in Chapter 5.

Heterogeneous clusters. In heterogeneous clusters, we assign work to machines proportion-

ally to their capacity. To do so, we set the number of regions (J) in the histogram algorithm

higher than the number of machines.

4.5 Related Work

Load balancing is extensively studied both in MapReduce and distributed databases. There

has been much work done towards devising efficient join algorithms using the MapReduce

framework. The predominant join type in MapReduce is repartition join [32], which moves

46

4.5 Related Work

each input tuple over the network. In distributed databases, data is already partitioned among

the machines (rather than being stored externally, e.g., on HDFS, as in MapReduce). Thus,

some tuples can stay on the same machine. Broadcast join replicates one relation on all the

machines. This is efficient only if the replicated relation is very small [140]. Directed join

moves portions of one relation to the corresponding locations of the other relation. It typically

requires that one relation is physically partitioned by the join key [32]. This is a limitation

when we join a relation with other relations using different join keys [32]. We propose a novel

repartition join, as repartition join is the most widely applicable join type. Using our join as

a directed join (the data is already in place) is also possible. After running our equi-weight

histogram, we can assign regions to machines in such a way to maximize locality (data kept on

the same machine) and minimize network traffic. This algorithm is described in the context of

Adaptive Equi-weight histogram scheme in Section 6.3.2.

1. Equi-joins. Most previous work focuses on equi-joins [13, 32, 140, 36, 29, 111, 45] and

partitions the input through some variant of hashing. One should use these techniques for

joins that have only equality join conditions.

Next, we discuss why hashing techniques fall short for monotonic joins on an example of

a band-join. Namely, hashing scatters neighboring join keys, so that the corresponding

tuples from the opposite relation need to be replicated. For a band-join with the width of

the band of β, each tuple from the opposite relation goes to 2β+1 machines (hash(ke y −β),

hash(ke y −β+1), . . . hash(ke y +β) xv). This implies more input-related work, as well as

higher network and memory consumption. The overheads grow proportionally to the width of

the band β. Range partitioning avoids this problem, as neighboring join keys are in most cases

on the same machine. This leads to less tuple replication, and less overall work compared to

hash partitioning.

2. Monotonic joins. In this chapter we focus on monotonic joins that do not contain only

equality join conditions. State-of-the-art techniques in MapReduce are the 1-Bucket and

M-Bucket schemes [106]. We discuss these techniques in detail in Sections 4.2.2 and 4.2.3.

In contrast to the 1-Bucket scheme [106], our scheme achieves load balancing on minimal

work per machine. In contrast to the M-Bucket scheme [106], we address JPS. In the context

of distributed databases, Stamos et al. [121] present a method that covers the entire join

matrix with regions, similarly to the 1-Bucket scheme. This method uses a heuristic model

to minimize total communication cost. DeWitt et al. [51] study band-joins with the goal of

minimizing disk accesses. Similarly to the M-Bucket [106], this work do not estimate the

output distribution, and hence suffers from JPS. Finally, Zhang et al. [144] extend Okcan’s work

to evaluate multi-way joins. We dedicate Chapter 5 to multi-way joins.

3. Reliability. Bruno et al. [36] introduce the term reliability for equi-joins, arguing that the

repartitioning overhead “is more predictable” than the imbalance in load due to JPS. We use a

xvThis is an upper bound on the number of machines, as different hash values can be assigned to a single
machine.

47

Chapter 4. A partitioning scheme for 2-way Joins

similar argument for monotonic joins: the sampling overhead is more predictable than the

imbalance in load when JPS is not addressed. In particular, sampling introduces overhead of

up to 0.13×, as Section 4.6.5 shows. However, this is acceptable compared to the speedups

that our scheme achieves by addressing JPS (up to 12×, see Section 4.6.2).

Adaptive load balancing. Adaptive skew handling exist for hash joins (e.g., [71], and for

general-purpose MapReduce applications (e.g., [83]). These techniques in general work as

follows. When a task becomes idle, it takes over some work from the busiest task. This

implies moving the tuples over the network multiple times (first to the “busy”, then to the

“idle” task), which increases the input-related work. In contrast, we ensure that after building

the partitioning scheme, each tuple is repartitioned exactly once. Furthermore, the precise

estimation of the remaining time for joins essentially requires equi-weight histograms. In

contrast to these adaptive approaches which rely on future load distribution estimation, we

present equi-weight histograms that accurately capture workload skew and accordingly fairly

partition the work. One could combine the two techniques to reap the benefits of both worlds.

In particular, we can use our technique for initial partitioning and for feeding the estimator

from [83] in the case of necessity for task reassignment. By doing so, we could obtain a

scheme that adapts to run-time changes (e.g., network problems, machine failures), and that

drastically reduces number of task reassignments compared to that of [83] alone.

Work-stealing. Work-stealing (e.g., [14]) is a concept related to adaptive load balancing, but

with important differences. Rather than moving the partitions among the machines, it implies

dividing the workload into many more partitions than the number of available machines.

Each machine pulls a new partition once it finishes processing the previous one. However,

increasing the number of partitions inherently increases replication. For example, if we divide

a partition into two sub-partitions, the corresponding tuples from the opposite relation need

to be duplicated. Thus, work-stealing increases the input-related work. Finally, it is not clear

how to decide on the number of partitions so that work-stealing avoids JPS.

Sample data structures. The closest data structure to our sample matrix MS is single-relation

multi-attribute histogram [99, 113, 11, 35], which is used for selectivity estimation. These

histograms represent the frequency distribution over a multi-dimensional space. In our

MS , frequency is the number of output tuples for the corresponding segments of the input

relations. However, the goal of multi-attribute histograms differs from ours as their aim is

to minimize the total frequency errors over the entire domain, rather than to lend support

for load balancing. Namely, multi-attribute histograms cannot provide for load balancing, as

they capture the frequency rather than the weight distribution, and they cannot guarantee the

maximum cell weight nor decide on the MS size ns . In addition, we take advantage of join

peculiarities, that is, monotonicity.

48

4.6 Evaluation

4.6 Evaluation

This section compares our operator with state-of-the-art operators. We first evaluate the

execution time and resource consumption, that is, memory requirements and network com-

munication. Then, we assess the scalability of each operator. Further, we evaluate the accuracy

of our partitioning scheme, along with the efficiency of building it. Finally, we analyze worst-

case scenarios for our operator.

4.6.1 Experimental Setup

Environment. We perform our experiments on an Oracle Blade 6000 server with 10 Oracle

X6270 M2 blades. Each blade has two 3Ghz 6-core Intel Xeon X5675 CPUs. Each blade runs

Ubuntu 12.04 and has 72GB of DDR3 RAM and a 1Gbit Ethernet interface. Later on, by a

machine assigned to an operator, we mean a core with an exclusively assigned portion of the

blade main memory.

Datasets. We experiment on joins over both TPC-H [8] and a synthetic dataset X. We employ

the TPC-H generator [44], which creates datasets with Zipf distributions set through the skew

parameter z. We set z = 0.25 to demonstrate that JPS can be large even if RS is moderate. The

X dataset has 2 independently generated relations (R1 and R2), each with 2 segments. The

second and first segment sizes are in proportion 80/20, and joining smaller segments from

R1 and R2 produces majority of the output. In particular, in the first segment, we generate x

tuples and choose its join keys uniformly at random from the [0..x/6] domain. In the second

segment, we generate y = 4 ·x tuples and choose its join keys uniformly at random from the

[2y,6y] domain. The segments from different relations are independently generated.

Operators. We evaluate three different join partitioning schemes: (i) C I (1-Bucket scheme) [106],

(ii) C S I (M-Bucket scheme) [106], and finally, (iii) C S IO , which is our equi-weight histogram

scheme. We label the operator by the name of the employed partitioning scheme.

Configuration. We run the join queries on J = 32 machines, whereas for the scalability experi-

ments we use 16 to 64 machines. For the joins over the TPC-H data, we set the scale factor

to 160 (i.e., 160GBs) and for the scalability experiments, we set it between 80 and 320. In

the histogram algorithm of C S I
xvi, we set the number of buckets p to 2000. In the scalability

experiments, we scale p proportionally to the number of machines J (e.g., p = 4000 for J = 64).

Programming model. We run experiments using our system SQUALL, which is based on

STORMxvii. Storm is Twitter’s backend engine for data analytics. In this chapter, we use Squall

for offline processing. That is, we are interested only in the runtime of the entire query plan,

rather than in per-tuple latencies. In that context, we can consider Squall as an in-memory

xviThis histogram algorithm does not create equi-weight histograms; it is a heuristic that builds a partitioning
scheme.
xviihttp://storm.apache.org/

49

Chapter 4. A partitioning scheme for 2-way Joins

Table 4.4: Joins’ characteristics. Input and out put sizes are in millions of tuples. β is the
width of the band.

Name Dataset Join condition i nput out put
B∗

IC D TPC-H Band-join(β= 2) 480M 296M
BC B X Band-join(β= 1) 192M 348M
BC B X Band-join(β= 3) 192M 812M
BC B X Band-join(β= 16) 192M 3828M
BE∗

OC D TPC-H Band/Equi-join(β= 2) 36.8M 2000M
* For joins over the TPC-H data, the database size is 160G and z = 0.25.

xviii MapReduce-like system, in which we partition the data and locally use indexes (hash or

balanced binary tree), rather than sorting the data (which is typical for the map output in

MapReduce systems). In the context of MapReduce, a join is defined in terms of map and

reduce stages. Mappers shuffle the input tuples according to the partitioning scheme of the

operator. Reducers perform the actual join and randomly shuffle the output tuples to the

mappers of the next stage (e.g. join, aggregation). Thus, each mapper performs the same

amount of work. Hence, to achieve global query plan load balancing, it suffices to balance the

load among the reducers of a job. The job execution time includes the time of sending the

tuples over the network to the next stage. We use up to 64 machines for the join, and up to 16

machines for the next stage. Squall runs in Java JRE v1.7.

Cost model. For our experiments we define the weight function (Section 4.2) for load balancing

among the reducers asxix:

w(r) = ci (r)+ co(r) = wi · i nput (r)+wo ·out put (r)

where wi , wo is the average time cost of processing a single input and output tuple, respectively.

We determine the values for wi and wo using linear regression on several benchmark runs.

The regression method automatically divides all the communication and computation costs

into ci and co costs. The results of regression in our system suggest the values wi = 1 and

wo = 0.2 for band-joins and wi = 1 and wo = 0.3 for combinations of equi- and band-joins.

Joins. As the operator performance is highly correlated to the out put/i nput cost ratio (co/ci),

we classify joins to input-cost dominated (ICD), cost-balanced (CB) and output-cost dominated

(OCD). We evaluate a band-join (BIC D) and a join with band and equality join conditions

(BEOC D) over the TPC-H dataset, and a band-join (BC B) with 3 different widths of the band

(β) over the X dataset. Table 4.4 summarizes the joins’ characteristics. BIC D is an input-cost

dominated join, as ci = 8.1·co . BEOC D is an output-cost dominated join, as ci = 0.06co . Finally,

BC B is cost-balanced, as the i nput and out put cost are comparable (0.25co ≤ ci ≤ 2.75co ,

depending on β). For the scalability experiments, we run the joins with the input of up to 480

million and the output of up to 8.8 billion tuples. The joins are defined in Section 4.7.3.

xviiiSee Section 4.4.2 for a discussion about alternative architectures.
xixThe model can be flexibly adapted to represent any realistic cost function, as described in Section 4.2.4.

50

4.6 Evaluation

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

ρoi=0.62

 BICD

ρoi=1.81

 BCB−1

ρoi=4.23

 BCB−3

ρoi=19.94

 BCB−16

ρoi=54.35

 BEOCD

O
p

e
ra

to
r

E
x
e
c
.

T
im

e
 (

s)

Join time CI
Stats time CSI
Join time CSI

Stats time CSIO
Join time CSIO

Memory
Overflow

 6000

 6400

(a) Total Execution Time.

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

N
o

rm
a

li
ze

d
 T

o
ta

l
T

im
e

Output/Input ratio ρoi

CI CSI CSIO

(b) Normalized Execution Time BC B−β.

Figure 4.5: Execution times

4.6.2 Performance Analysis

In this section, we evaluate the operators’ performance in terms of the execution time and

resource consumption, that is, memory requirements and network communication. We show

that the execution time mainly depends on the join out put/i nput ratio, which we call ρoi .

Total execution time is shown in Figure 4.5a as the sum of the time for building the partitioning

scheme (“stats time”) and the join execution time (“join time”). C I has only “join time” as it has

no preprocessing phase, as it requires only the input sizes. Figure 4.5b shows the normalized

total execution times for BC B . The operators’ execution times are highly correlated to the

out put/i nput ratio ρoi : (i) For small ρoi , that is, on one side of the spectrum, i nput costs

dominate the join execution time. Thus, C I , which replicates each input tuple to 6 machines,

performs poorly for BIC D . C S I avoids this problem, and as the join is input-cost dominated,

the lack of output statistics and JPS do not affect performance. (ii) For high ρoi , that is, on the

other side of the spectrum, out put costs dominate the join execution time. Thus, for BEOC D ,

the effect of JPS on the join execution time of C S I escalates, causing C S I to perform poorly.

C I achieves almost perfect load balancing for the out put costs by randomly assigning the

tuples to the machines. High input replication does not affect performance for C I because it

is an output-cost dominated join. (iii) As BC B is a cost-balanced join, both existing operators

perform worse than C S IO . Increasing the width of the band β in BC B leads to the increase in

ρoi , such that the out put costs grow relatively to i nput costs. This improves the performance

of C I and degrades the performance of C S I compared to C S IO .

Our C S IO outperforms the other operators as it is close-to-optimum on the total work per

machine, which includes both i nput and out put costs. C S IO captures the output distribution

and avoids high input tuple replication. Thus, in terms of the join execution time, C S IO

achieves from 1.01× slowdown (BIC D) to 16.99× speedup (BEOC D) compared to C S I , and

from 1.08× (BEOC D) to 4.36× (BIC D) speedup compared to C I . In terms of the total execution

time, C S IO achieves up to 12.12× (BEOC D) speedup compared to C S I , and up to 2.42× (BIC D)

speedup compared to C I . In fact, as C I for BIC D runs out of memory, we extrapolate its total

execution time using the cost model parameters and the percentages of processed input and

output tuples. Note that in terms of total execution time, C S IO performs worse than the best

among C I and C S I at the extremes of the spectrum. Namely, for BIC D , C S IO is 1.13× slower

than C S I . Similarly, for BEOC D , C S IO is 1.31× slower than C I . This is because C I does not

51

Chapter 4. A partitioning scheme for 2-way Joins

Table 4.5: Join execution and histogram algorithm time (s) of C S I for different number of
buckets p.

Join Time
Number of buckets p

2000 4000 8000 10000 16000 24000

BEOC D
Join execution 6372 6306 5480 5080 4294 3410
Histogram alg. 0.4 1.3 5 8.1 19 49

BC B Join execution 615 604 601 582 569 575
β= 3 Histogram alg. 0.4 1.4 4.9 6.7 15 36

incur any time for building the partitiong scheme, and building the partioning scheme is more

involving for C S IO than for C S I .

All the SQUALL operators will be faster once we migrate from STORM to Twitter HERON, as

HERON is an order-of-magnitude fasterxx than STORM. We describe HERON’s design choices

that lead to performance improvements in Section 2.3. HERON is API-compatible with STORM.

At the time of preparing this thesis, HERON was not open source yet. In the meantime, HERON

became an open source project, and we are currently porting SQUALL to HERON. Once we

complete the porting, SQUALL will be on par with other parallel main-memory database

systems (e.g. Track Join [111]).

Choosing among C SI and C I . An important difficulty when using the existing C S I and C I

schemes is that we cannot always choose the better one without knowing the input/output

sizes. However, output size estimation using the precomputed statistics is error-prone due

to possible predicate correlations [74]. In fact, the estimate can be orders of magnitude

away [122]. Output size estimation is even harder for non-equi joins. This might lead to

choosing the worst operator among C I and C S I (e.g. C I for an input-cost dominated join). In

that case, our C S IO achieves from 2.42× (BIC D) to 12.12× (BEOC D) speedup.

More detailed input statistics in C SI (increased number of buckets p in C S I) cannot cure the

lack of output statistics nor address JPS. In particular, Table 4.5 shows that for both BEOC D

and BC B−3, increasing p leads to increased histogram algorithm time, and thus, increased

time for building the partitioning scheme. Increasing p also decreases the join execution

time. However, even if C S I is given more time for building the partitioning scheme than C S IO ,

its total execution time is still much worse than that of C S IO . For instance, for BEOC D and

p = 24000, the histogram algorithm grows to 49 seconds, making the time for building the

partitioning scheme on par with that of C S IO . Moreover, in that case, the total execution time

of C S I is 6.67× worse than that of C S IO .

Resource consumption. Figure 4.6 illustrates resource consumption, which includes cluster

memory and network traffic (input data sent from mappers to reducers). Resource con-

sumption is important because it directly translates to energy consumption and, in cloud

environments, to dollar costs. In general, C I has better execution times than C S I , but it is very

xxhttp://www.infoq.com/news/2015/06/twitter-storm-heron

52

4.6 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BICD BCB-3 BEOCD
C

lu
st

er
 M

em
or

y
(G

B
s)

 C
on

s. CI
CSI

CSIOMemory Overflow

Figure 4.6: Cluster Memory Consumption.

resource-inefficient compared to both C S I and C S IO .

For BIC D and BC B−3, C I requires around 4× more memory than C S I and C S IO . This is due

to the fact that C I excessively replicates tuples (the replication factor is 6, as the partitioning

scheme is 4×8 so one relation is replicated 4× and the other is replicated 8×). C I requires

4× rather than 6× more memory as both C S I and C S IO replicate some input tuples (see

Figures 4.1c, 4.1d). C S IO uses slightly more memory than C S I , because C S IO balances on the

total work, so it assigns more i nput for the regions with relatively small out put . In fact, as C I

for BIC D runs out of memory, we extrapolate its memory consumption using the percentage

of the processed input tuples. C I in BEOC D does not have high memory consumption, as the

input size is smaller than for BIC D and BC B−3.

4.6.3 Scalability

Next, we evaluate the weak scalability of the operators by scaling the data size and the number

of machines evenly. We show that our C S IO , in contrast to C S I and C I , scales well both in the

total execution time and resource consumption.

BC B−3 total execution time is shown in Figure 4.7a. We evaluate various i nput/out put/J

settings, more specifically, 96M/406M/16, 192M/811M/32 and 384M/1.62B/64, where M

and B stand for millions and billions of tuples, respectively. C I scales worse than C S I and

C S IO . This is expected, as the replication factor grows from 4 (J = 16) to 8 (J = 64), which

doubles the i nput costs on each machine. Namely, for J = 16 and J = 64, C I has 1.62× and

2.29× worse total execution time than C S IO , respectively. In fact, as C I with J = 64 runs out of

memory, we extrapolate its total execution time and memory consumption.

The join execution time for C S IO grew from 310s (J = 32) to 479s (J = 64). Given that the work

per machine did not grow between J = 32 and J = 64, the only possible explanation would be

reaching the shared network limits. In fact, the network throughput per machine for J = 32 is

more than twice as high compared to J = 64 (20MB/s vs only 7.5MB/s, respectively).

53

Chapter 4. A partitioning scheme for 2-way Joins

 200

 400

 600

 800

 1000

 1200

 1400

 1600

96M/16 192M/32 384M/64

O
pe

ra
to

r
E

xe
c.

 T
im

e
(S

ec
) CI

CSI
CSIO

Memory
Overflow

(a) BC B−3 Scalability Execution Time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

96M/16 192M/32 384M/64

C
lu

st
er

 M
em

or
y

(G
B

s)
 C

on
s. CI

CSI
CSIO

Memory Overflow

(b) BC B−3 Scalability Memory Cons.

Figure 4.7: Scalability of BC B−3.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

80G/16 160G/32 320G/64

O
p

e
ra

to
r

E
x
e
c
.

T
im

e
 (

S
e
c
)

 18000

 20000
CI

CSI
CSIO

(a) BEOC D Scalability Execution Time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

80G/16 160G/32 320G/64

C
lu

st
er

 M
em

or
y

(G
B

s)
 C

on
s. CI

CSI
CSIO

(b) BEOC D Scalability Memory Cons.

Figure 4.8: Scalability of BEOC D .

BC B−3 resource consumption. Figure 4.7b shows the cluster memory consumption for BC B−3.

As the replication factor grows from 4 (J = 16) to 8 (J = 64), C I requires increasingly more

memory compared to C S I and C S IO . Namely, for J = 16 and J = 64, C I requires 3.1× and 5.25×
more memory than C S IO , respectively. As C I with J = 64 runs out of memory, we extrapolate

its memory consumption.

B EOC D total execution time is shown in Figure 4.8a. The i nput/out put/J settings are

21.2M/612M/16, 36.8M/2B/32 and 62M/8.8B/64. Taking into account that increasing J from

16 to 64 (4×) causes the output size to grow 14.46×, C S IO and C I achieve good scalability. For

C S IO , this validates the efficiency of our scheme even for highly output-cost dominated joins

(for J = 64, ρoi = 142.57). For C I , this is due to the fact that the out put cost outweighs the

i nput cost. On the other hand, C S I scales very poorly as JPS causes that only few machines

produce most of the output. Namely, for J = 16, J = 32 and J = 64, C S I has 6.23×, 12.12× and

11.06× longer total execution time than C S IO , respectively.

For J = 64, C S IO performs 1.45× worse than C I . This is primarily due to the time for building

54

4.6 Evaluation

 0

 25

 50

 75

 100

 125

 150

 175

 200

BICD BCB−3 BEOCDM
a

x
.

R
e
g

io
n

 W
e
ig

h
t

(w
 i

n
 M

il
li

o
n

s)

CI
CSI

CSIO
CSIO−est.

 450

 475

Figure 4.9: Maximum Region Weight.

the C S IO partitioning scheme, which took 531s for J = 64. We identified several ways to

improve the C S IO stats time, but we leave them for future work. For now, if needed, we can

resort to fall back approach described in Section 4.6.5. The C S IO join execution time (1246s) is

comparable to the total C I time (1227s). This is because BEOC D is an output-cost dominated

join, and C I achieves perfect load balancing for the output.

B EOC D resource consumption. Figure 4.8b shows the cluster memory consumption for

BEOC D . The gap between C I and the other two operators is smaller than in BC B−3 due to the

following. As the number of machines J grows from J = 16 to J = 64 (4×), the input size grows

only 2.92×. Thus, for J = 64, C I takes 2.82× more memory than C S IO .

Scalability summary. Overall, in terms of the total execution time and resource consumption,

only C S IO scales well for both BC B−3 and EOC D .

4.6.4 Accuracy and Efficiency of C S IO

This section evaluates the accuracy of our partitioning scheme, as well as the efficiency of

building it. Building the partitioning scheme consists of collecting the input and output

samples and running our 3-stage histogram algorithm.

Accuracy of the cost model. Our cost model represents the join work of a machine as the

weight of the region assigned to it. In a parallel setting, the machine assigned the biggest

amount of work determines the join execution time. Thus, the cost model is accurate if

the region weight corresponds to the machine’s work, that is, if the maximum region weight

corresponds to the join execution time. Figure 4.9 validates the model accuracy as for each join

among BIC D , BC B−3 and BEOC D (J = 32), the maximum region weights of different schemes

are proportional to the corresponding join execution times. The proportionality holds only

within the same join, as a weight unit represents different amount of work in different joins. We

obtain the weights after the join execution by computing the weight function on the number

of input and output tuples per machine.

55

Chapter 4. A partitioning scheme for 2-way Joins

Accuracy of our C SIO . Figure 4.9 shows that the estimated maximum region weight in our

histogram algorithm, marked as C S IO -EST., is at most 6% off the value computed after the

execution. Thus, our scheme is accurate.

The time for building the partitioning scheme is illustrated in Figure 4.5a as “stats time". It

includes the time to collect statistics (the input statistics for C S I and input and output statistics

for C S IO), and the running time of the histogram algorithm. We evaluate the efficiency of

building our partitioning scheme, and compare it to that of C S I .

Figure 4.5a shows that building the C S IO scheme takes at most 44.5% of its total execution

time (BIC D). Furthermore, building the C S IO scheme is at most 11.7% more expensive than

that of C S I in terms of the C S IO total execution time (BIC D). This is due to the following

reasons: (i) Collecting the input statistics is much cheaper in C S IO than in C S I . C S I requires

2 MapReduce stages, while C S IO requires only 1 MapReduce stage. This is due to the fact

that C S I needs to use more buckets than C S IO to account for the error caused by the lack of

the output statistics. In the worst case (high JPS), the required number of buckets for C S I

is Θ(n). In contrast, the number of buckets for C S IO does not depend on skew at all, and it

slowly grows with the increase in n (O(
p

n)). (ii) The time to collect output statistics for C S IO

is not much longer than the second pass of collecting input statistics for C S I . In addition to a

scan over the input relations, which is required by both operators for building the partitioning

scheme, C S IO performs a scan over d2equi (step 2 in Section 4.4.1) and produces the output

sample (step 3 in Section 4.4.1). The former is cheap as d2equi tends to be much smaller than

its originating relation, which is the smaller one. The latter is cheap as the output sample size

is very small compared to n (so =Θ(
p

n J)).

Accuracy/Efficiency summary. Overall, our equi-weight histogram scheme is practical, as it

provides for both accurate and efficient load balancing.

4.6.5 Sensitivity analysis

Worst-case scenarios

Input-cost dominated joins (small ρoi)/no skew. For very small ρoi (BIC D), C S IO achieves

minimal slowdowns in the join execution time compared to C S I (1.01×). This is because the

out put cost is 8.1× smaller than the i nput cost, so JPS minimally affects the performance. In

fact, joins with very small ρoi behave almost as if there was no JPS at all. Thus, in the worst case

(BIC D), the total execution time of C S IO is 1.13× higher than that of C S I . This is acceptable

compared to the speedups that our scheme achieves for other joins.

High-selectivity joins (very high ρoi). Our scheme is designed for low-selectivity joins. C S IO

is better or on par with C I if the output is up to 2 orders of magnitude bigger than the input.

We address high-selectivity joins as follows. As we saw in Secti on 4.6.2, we cannot know join

selectivity beforehand. Rather, we take advantage of the following fact. As ρoi grows, building

56

4.6 Evaluation

C S IO requires less time compared to the total execution time of the better among C I and

C S IO (from 44.5% for BIC D to 29.9% for BEOC D , see Figure 4.5a). This is because higher ρoi

implies producing more output tuples and leads to more join work. On the other hand, when

building the partitioning scheme, we need to produce only a small sample of the join output.

As building the C S IO scheme is comparably cheap for high-selectivity joins, we always start

with our scheme, and fall back to C I if needed. We decide when to switch to C I using the

following fact. As ρoi grows, the time for building the C S IO scheme grows relatively to the

input sizes (259s for 480M tuples of BIC D to 160s for only 37M tuples of BEOC D). If the time

for building the scheme exceeds a certain experimentally-found threshold (e.g. one second

for each million of input tuples in our setup), we fall back to C I . In that case, we waste only

8% of the total execution time of C I before switching to C I .

Next, we analyze the difference in memory consumption between C S IO and C I as a function

of ρoi . For small ρoi (BIC D), C I takes 4.42× more memory than C S IO (see Figure 4.6). Whereas,

for large ρoi (BEOC D), C I takes 1.98× more memory than C S IO . As we move more to the right

of the ρoi spectrum, the savings in memory of C S IO compared to C I diminish. Interestingly,

C I starts to outperform C S IO (for ρoi = 54.35 and BEOC D) when it still takes more memory

(1.98×) than C S IO . This illustrates the tradeoff between total execution (which includes

building the partitioning scheme) and memory consumption.

Summary. In the worst case of data distribution (input-cost dominated or high-selectivity

joins) C S IO can perform worse (up to 1.13× for BIC D , up to 1.31× for BEOC D , J = 32 and up

to 1.45× for BEOC D , J = 64) than the better among the existing schemes. For low ρoi , C S I

outperforms C S IO as the latter collects the output sample, while JPS makes very little difference

in performance. In other words, for small ρoi , the sampling overheads are considerable

compared to the join processing time. For instance, building the partitioning scheme for BIC D

for C S IO is 80% of the corresponding join execution time (44.5% of the corresponding total

execution time), as Figure 4.5a shows. For high ρoi , C S IO falls back to C I , and the overhead is

due to the time taken before deciding to switch to C I . C I is a better choice for high-selectivity

joins as it achieves almost perfect load balancing on both input and output, without requiring

the input or output sample nor running a histogram algorithm.

Overall, possible slowdowns due to overheads of using our partitioning scheme (up to 1.45×)

are acceptable compared to the achieved speedups (up to 12.12×). When the fall back ap-

proach is used, the slowdowns are only up to 1.13×. Finally, C S IO subsumes both C I and C S I

in a sense that C S IO often performs better than the better among C I and C S I schemes. This is

because C S I addresses only RS, and C I addresses both RS and JPS but with high replication

cost. Our C S IO addresses both RS and JPS, while minimizing tuple replication.

Discussion

The importance of JPS. The importance of JPS is directly connected to the out put/i nput

ratio which we call ρoi . From Figure 4.5a, we can see that JPS becomes more important (C S IO

57

Chapter 4. A partitioning scheme for 2-way Joins

performs better compared to C S I) as ρoi grows. On the other hand, for joins with small ρoi ,

that is, for joins with relatively small output (e.g., BIC D from Figure 4.5a), JPS minimally affects

performance. This is effectively equivalent to execution without any JPS, and in that case C S I

may outperform our C S IO .

The importance of JPS also depends on the processing costs. In our setup, the output-related

work for joins is significant, especially when join output is considerably large. This is due to

sending the join output over the network. In a different setting, when performing a directed

join, the output tuples stay in the memory of the machine which produced them (e.g., Track-

Join [111]). In that case, the next operator in the query plan takes into account initial data

distribution, and produces the join output while minimizing the number of tuples transfered

over the network. In such an environment, the cost of processing an output tuple is much

smaller than the cost for processing an input tuple, and JPS does not affect performance much,

even if ρoi is relatively high.

If JPS has a minimal effect on the performance due to any of the reasons mentioned above, we

recommend using the C S I scheme, as it does not collect the output sample. Furthermore, for

low-selectivity joins without JPS (i.e., uniform output distribution over the join matrix), we

expect C S IO to be on par with C S I (for small ρoi , C S IO may be slightly slower due to collecting

the output sample). In that case, the benefit of using our C S IO is that our scheme subsumes

both C S I and C I , and the performance difference between C S I and C I is often significant (so

choosing the wrong operator among the existing ones affects performance considerably).

Relative relation sizes. The performance difference between a content-insensitive (C I) and a

content-sensitive scheme (C S I or C S IO) depends on the relative relation sizes. Let us consider

a general case of two input relations R1 and R2, where |R2| = x · |R1|. Given J machines, the

optimum C I partitioning is J1·J2, where J = J1·J2 and J2 = x·J1 (for more details on the analysis,

please refer to the Random-Hypercube scheme from Section 5.2, as C I is a 2-dimensional

Random-Hypercube). The load per machine for the C I scheme is:

LC I = |R1|
J1

+ |R2|
J2

= 2 · |R1|
J1

(4.1)

Next, we analyze the load per machine for a content-sensitive scheme. The exact load depends

on the data distribution and the concrete scheme used. We simplify the analysis by computing

the lower bound on the load per machine, which implies uniform distribution (no skew) and

no input tuple replication. Given the same number of machines J as for a content-insensitive

scheme, we express the parallelism as J = J1 · J2 and J2 = x · J1, in order to have the same

variables as in Equation 4.1. Thus, the formula for a content-sensitive scheme is:

LC S = |R1|+ |R2|
J

= |R1| · (1+x)

x · J 2
1

(4.2)

Hence, the upper bound on the improvement in load per machine that a content-sensitive

58

4.6 Evaluation

scheme can achieve over a content-insensitive scheme is:

LC I

LC S
= 2 · x · J1

1+x
(4.3)

For example, if J = 64 and both relations are of the same size (J1 = J2 = 8 and x = 1), LC I
LC S

= 8.

On the other hand, if J = 64 and |R2| = 64 · |R1| (x = 64, J1 = 1, J2 = 64), LC I
LC S

≈ 2. Overall, the

potential memory savings and performance speedup when using a content-sensitive scheme

is much higher for relations of comparable sizes. This analysis is in accordance with a common

strategy which employs a broadcast join (a special case of the C I scheme) when one relation

is much smaller than the other one. Given that C I achieves perfect load balancing on output

while only requiring relative relation sizes, it is the best choice among C I , C S I and C S IO when

one input relation is considerably smaller than the other one.

The number of candidate cells and their detection. The content-sensitive schemes (such as

C S I and our C S IO) are designed for low-selectivity joins, where only a small portion of the join

matrix produces output tuples. To that end, we categorize the join matrix cells into candidates

(potentially producing output tuples) and non-candidates (guaranteed to not produce any

output). Low selectivity refers to the proportion between the number of the output and input

tuples in the join, but also to the number of candidate cells. There are scenarios when the

output is comparable to the input (satisfying the first requirement for low selectivity joins), but

it is dispersed across the entire join matrix. Thus, majority of the matrix cells are candidates,

and the histogram algorithm (both for C S I and our C S IO) becomes very expensive. In that

case, C I achieves the best performance.

In addition to having a relatively small number of candidate cells, the content-sensitive

schemes (C S I and our C S IO) need to quickly identify whether a join matrix cell is a candidate

or not. Some join conditions allow candidacy-checking according to the cell boundary keys

(e.g., a band-join). If the only way to find candidates is to examine all the tuples within

the matrix cell, this becomes equivalent to join execution, defeating the purpose of finding

candidates and building the partitioning scheme. In that case, using the C I is the best option.

Join conditions. We focus on monotonic joins, which include combinations of equi-joins,

band joins and inequality joins. A 2-way join which includes one or more equality join

conditions and a band join condition frequently occurs in practice. Interestingly, we can turn

this join into an equivalent one which has only a band join condition with a join key which is a

concatenation of the different join keys from the original join. An alternative way to execute

this join is to partition the input relations using the equality join conditions (e.g., using the

scheme from [29]), and then locally perform additional filtering using the band join condition.

Such an execution plan in the case of uniform output distribution might execute faster than

the one using C S IO or C S I over the entire join, as it does not require running a histogram

algorithm for building the partitioning scheme. However, such an execution plan is prone

to JPS. In particular, although different machines receive roughly the same number of input

tuples, the number of output tuples sent over the network for the next operator in the query

59

Chapter 4. A partitioning scheme for 2-way Joins

(a) Grid partitioning (b) Hierarchical partitioning (c) Arbitrary partitioning

Figure 4.10: Types of partitionings.

plan (or written to disk) varies due to join selectivity variations of the band join. In contrast,

C S IO addresses JPS, and its performance is more reliable (performance reliability is defined in

Section 4.5).

4.6.6 Summary

Joins are defined in a spectrum of cost distribution. At each end, either i nput or out put

costs dominate the join cost. Previous work, that is, C S I and C I , perform well only at the

extreme ends of the out put/i nput spectrum. This is because C I suffers from excessive input

tuple replication (which worsens with the increase in the number of joiners), while C S I cannot

capture the out put cost distribution. Due to errors in the output size estimation, especially for

non-equi joins, choosing the wrong operator among C S I and C I becomes plausible, causing

severe performance degradations. In contrast to previous work, our C S IO captures the output

distribution, and avoids high input tuple replication. Thus, our scheme is close-to-optimum

on the total work per machine, which includes both i nput and out put costs. Consequently,

our scheme performs very well over a wide spectrum of out put/i nput ratios, and it scales

with increasing data sizes.

C S IO achieves up to 5.25× improvement in resource consumption (for BC B−3, J = 64) and up

to 2.42× speedup (for BIC D , J = 32) compared to C I . Moreover, C S IO achieves up to 12.12×
speedup compared to C S I (for BEOC D , J = 32). As these speedups refer to the total execution

time, they also validate the efficiency of building our scheme, which consists of collecting the

input and output samples and running our 3-stage histogram algorithm.

4.7 Further details

4.7.1 Types of partitioning

Figure 4.10 shows 3 different types of partitioning from the computational geometry litera-

ture [101, 102]. Grid partitioning results from dividing the original rectangle into rows and

columns. Hierarchical partitioning is generated by recursively dividing the original rectan-

gles into 2 subrectangles using a horizontal or vertical line. Arbitrary partitioning allows any

partitioning to rectangles.

60

4.7 Further details

4.7.2 The histogram algorithm: Details and proofs

Sampling

The following lemmas require that w(r) is monotonic xxi (a region weighs at least the weight

of any of its subregions) and that ci (r) and co(r) are superadditive, that is, processing x + y

input (output) tuples is at least as expensive as the sum of processing costs for x and y input

(output) tuples. This holds for realistic cost models.

Lemma 4.3.1. ns =
p

2n J is the minimum MS size such that the maximum cell weight σ in

MS is at most half of the maximum region weight of the optimum MH partitioning. This

holds independently from the join condition and the join key distribution, given that m ≥ n xxii.

Proof. An MS cell corresponds to a region in the original matrix with dimensions n/ns ×n/ns ,

where ns is the number of buckets in the equi-depth histogram. Due to the fact that ns =p
2n J , the semi-perimeter of each cell is maxcel l (sp (cel l)) = 2n/ns =

p
2n/J . The maximum

frequency of an MS cell is given by the Cartesian product between the encompassed input

tuples from the two relations. That is, maxcel l (f (cel l)) ≤ (n/ns)2 = n/2J . Because m ≥ n,

it follows that maxcel l (f (cel l)) ≤ m/2J . It holds that σ = maxcel l (w(cel l)) ≤ ci (
p

2n/J)+
co(m/2J). As J ≪ n (it suffices that J < n/3), it follows that

p
2n/J < n/J and σ ≤ ci (n/J)+

co(m/2J). We denote the maximum region weight of the MH optimum partitioning as wOPT .

It holds that wOPT ≥ (ci (2n)+ co(m))/J , as each incoming tuple is assigned to at least one

region. Since ci and co are superadditive, it follows that wOPT ≥ ci (2n/J)+co(m/J) and that

σ≤ wOPT /2. More precisely, as the bucket sizes are probabilistic, we can conclude that with

high probability, these bounds are very close to the actual bounds.

For the next lemma, we will need to define input and output sample sizes.

Input sample size si. For each relation, we build an approximate equi-depth histogram [42].

Namely, for each relation, we take a random uniform sample of size si , sort the sampled

tuples according to the join key, and then build an equi-depth histogram on them with ns < si

buckets.

According to [42], for a given ns , si needs to be at least 4ns ln(2n/γ)/e2, where e is the maximum

error on the bucket size with probability of at least 1−γ. This implies that a small sample of

size si =Θ(ns logn) is sufficient for building approximate equi-depth histogram.

Output sample size so. In [99], the authors show that the sample size is not a function of the

actual data size, and that it can be obtained from standard tables based on Kolmogorov’s

statistics [64]. For example, for an error on the region out put within 5% and confidence of

at least 99%, the standard tables only require that the sample size is at least 1063. On the

xxiMonotonicity on the join output and monotonicity on the weight function are different and should not be
confused.
xxiiThis typically holds in practice. We relax it later in this section.

61

Chapter 4. A partitioning scheme for 2-way Joins

other hand, the sample size should be a small integer multiple of the number of scrutinized

categories in the population. In our case, this number is the number of candidate MS cells

(ns c), as the non-candidate cells never produce an output tuple. Thus, the output sample size

is so ≥ max(1063,ns c) for the specified error margin and confidence interval. Consequently,

we need an output sample of size so =Θ(ns c).

To determine ns c , we define a low-selectivity join precisely. As Section 4.2.2 states, the content-

insensitive (C I) scheme achieves (almost) perfect load balancing for out put . Thus, if the

output size m > ρB n (ρB ≫ 1 is a constant), C I works very well. Hence, it pays off to use a

content-sensitive scheme only if m ≤ ρB n xxiii , that is, if m =O(n). This condition defines a

low-selectivity join. We require a similar condition to hold between the input and output of

the sample matrixxxiv:

ns c =O(ns) (4.4)

Thus, we need a small output sample: so =Θ(ns) =Θ(
p

n J).

We next prove that, given this ns =
p

2n J from Lemma 3.1, the sampling stage time complexity

is low.

Lemma 4.3.2 [Extended version]. The total sample size collected for buildingMS isΘ(ns logn).

The sampling stage running time is O(ns logns). For ns =
p

2n J and J =O(3
√

n/log2 n) xxv, the

sample size and the time complexity are both O(n/J).

Proof. From J =O(3
√

n/log2 n), it follows that

logn =O(
√

n/J 3) (4.5)

As the input sample size is si =Θ(ns logn), and the output sample size is so =Θ(ns), the total

sample size is dominated by the input. By substituting logn from Equation 4.5, the total

sample size is si =Θ(ns logn) =Θ(
p

n J logn) =O(n/J).

Let us discuss the time complexity for building MS . To create approximate equi-depth

histogram on input, we need to sort the input sample tuples. We do it on the sites providing

the samples, incurring O(log2 si) =O(log2(n/J)) time.

For each sample output tuple (so of them), we use binary search to find a MS cell to increment.

Thus, processing the output takes O(so logns) =O(ns logns) time. As ns ≤ n, it follows that

xxiiiIn our setup, our scheme works well even if m is two orders of magnitude bigger than n (see Section 4.6.3).
Thus, we cover a wide range of joins in practice.
xxivIf any of these assumptions do not hold, we fall back to the content-insensitive operator (see Section 4.6.5 for
details). However, we experimentally show that the assumptions hold for many interesting joins.

xxvSee footnote vii.

62

4.7 Further details

logns ≤ logn, and from Equation 4.5, logns =O(
√

n/J 3). Hence, O(ns logns) =O(n/J). Thus,

the total time complexity for building MS is bounded by O(n/J).

Coarsening

The coarsening algorithm [102] is the RTILE (rectangle tiling) problem with grid (nc ×nc)

partitioning and the MAX-WEIGHT-ID metric. This is an approximation algorithm with an

approximation ratio of 2 [102]. That is, givenMS and nc (the size ofMC), where the maximum

MC cell weight of the optimum grid partitioning is φ0, the algorithm returns an MC with

maximum cell weight φ≤ 2φ0.

For sparse matrices, if range trees are used for computing the prefix sum, the coarsening

algorithm [102] runs in

O(ns c logns c + (ns +n2
c logns c) ·nc logns) (4.6)

time, where ns is the MS size, and ns c is the number of candidates in MS .

MonotonicCoarsening. Monotonicity (consecutiveness of candidate cells) allows us to visit all

the nc c candidate cells in O(nc c) time. Along the lines of Equation 4.4, we assume nc c =O(nc).

Consequently, the coarsening algorithm for monotonic joins performs only O(nc), rather than

n2
c weight computations per iteration. The complexity from Equation 4.6 then becomes:

O(ns c logns c + (ns +nc logns c) ·nc logns) (4.7)

Lemma 4.3.3. The running time of the coarsening algorithm is O((ns +n2
c logns) ·nc logns).

For nc = 2J and J =O(3
√

n/log2 ns) xxvi, the time complexity becomes O(n).

Proof. Equation 4.6 shows the total running time for building the coarsened matrix. By

substituting ns c =O(ns) (Equation 4.4), logns from J =O(3
√

n/log2 ns), nc =Θ(J) and ns =
Θ(

p
n J) into Equation 4.6, it follows that the complexity is O(n).

Regionalization

Regionalization is an RTILE problem with arbitrary partitioning [101] and the MAX-WEIGHT-ID

metric. There exist algorithms for this problem in the restricted, output-only case, e.g. [31].

However, they are not applicable for the general case, which entails support for: a) monotonic

metrics (including the weight function) and b) segments which may or may not be covered

by a region (0-cells). By design, these algorithms generate prolate regions and thus incur

excessive i nput costs. Hence, they can be arbitrarily worse in weight than the optimum. The

best algorithm which works for the general case is Binary Space Partition (BSP) [30, 101].

xxviSee footnote vii.

63

Chapter 4. A partitioning scheme for 2-way Joins

Next, we prove lemmas from Section 4.3.3.

Lemma 4.3.4. A rectangle is defined by the upper left and the lower right corner. For monotonic

joins, each defining corner of a minimal candidate rectangle is a candidate cell, yielding O(n2
c)

minimal candidate rectangles in total.

Proof. We prove the lemma using contradiction by assuming that a defining corner of a

minimal candidate region is not a candidate cell. Let us consider the position of the upper

left corner. If it is before the first candidate cell in the row of MC , the left boundary of the

rectangle is empty (see rectangles r1 and rmi n 1 in Figure 4.4b). Thus, the rectangle is not a

minimal candidate. If the position of the upper left corner is after the last candidate cell in the

row, the upper boundary of the rectangle is empty (see rectangles r2 and rmi n 2 in Figure 4.4b).

Again, the rectangle is not a minimal candidate. Consequently, the upper left corner must be a

candidate cell. The proof for the lower right corner is symmetric. Thus, both defining corners

of a minimal candidate rectangle are candidate cells.

Consequently, there are nc
2
c minimal candidate rectangles, where nc c is the number of can-

didate cells in MC . Along the lines of Equation 4.4, we assume nc c =O(nc). Thus, there are

O(n2
c) minimal candidate rectangles in total.

Lemma 4.3.5. The regionalization stage based on MONOTONICBSP runs in O(n3
c lognc logn)

time. For nc = 2J and J =O(3
√

n/log2 n), the stage takes O(n) time.

Proof. Generating rN minimal candidate rectangles and sorting them takes O(rN logrN) time.

Then, for each rectangle (there are rN of them), we: a) compute its weight which takes O(1)

time with O(n2
c) prefix sum precomputation (line 16) and b) for each splitter line within a

rectangle, O(nc) of them, for both subrectangles, find the corresponding minimal candidate

rectangle (using binary search it takes O(lognc) time) (lines 19-23). Step b yields O(nc lognc)

time per rectangle. Overall, this requires a total time of O(n2
c + rN (logrN +nc lognc)).

From Lemma 4.3.4, we know that rN =O(n2
c). Thus, MONOTONICBSP runs inO(n3

c lognc) time.

Due to transformation from DRTILE to RTILE, the regionalization stage takes O(n3
c lognc logn)

time. Given nc =Θ(J), log J ≤ logn and J =O(3
√

n/log2 n), it follows that the stage takes O(n)

time.

Putting it all together

Theorem 4.3.1 [Extended version]. The histogram algorithm runs in O(n) local time and it

requires a total of O(n/J) sample tuples.

Proof. Lemmas 4.3.2, 4.3.3 and 4.3.5 directly imply Theorem 4.3.1.

64

4.7 Further details

We next discuss why this cost is affordable. As a parallel join takes Ω((n +m)/J) communi-

cation time (m is the join output size), the histogram algorithm can afford O(n/J) time for

collecting sample tuples and O(n) local processing time (which is much cheaper than the

communication time).

Generalization and Discussion

We next relax some assumptions and outline how we address them to preserve all the guaran-

tees.

A small number of output tuples. We relax the assumption m ≥ n from Lemma 4.3.1. If

m < n, a sample matrix MS cell frequency can surpass m/J , breaking the Lemma bounds.

We distinguish two cases. (i) If m =Θ(n) = cn, where c < 1 is a constant, we increase ns to

preserve the bounds. More precisely, it must hold that (n/ns)2 ≤ m/2J , that is, (n/ns)2 ≤ cn/2J .

It follows that ns ≥
p

2n J/c. Thus, ns grows only by a constant factor of 1/
p

c. (ii) If c ≪ 1

(m ≪ n), to avoid a huge increase in ns , and thus the histogram algorithm complexity, we

adjust MS such that each cell weight is below the required threshold (wOPT /2, where wOPT

is the maximum region weight of the MH optimum partitioning). Namely, we divide only the

row and/or column of the overweighted cell(s). Then, we reassign the affected output sample

tuples to the new MS cells.

Reducing the sample matrix size ns is an important optimization, as it decreases the his-

togram algorithm running time. Lemma 4.3.1 decides on ns using a conservative assumption

that ρB ≥ 1 in m = ρB n, that is, m ≥ n. (We covered the case when m < n earlier in this sec-

tion.) Using the actual value of ρB ≥ 1 decreases ns from
p

2n J to
√

2n J/ρB , without loosing

any guarantees. We know m and thus ρB from sampling the output tuples (see Section 4.4.1).

This optimization requires rebuilding the sample matrix once m is known (input and output

samples are collected as before). Reducing ns is very useful when ρB is sufficiently bigger than

1 and when input relations are very large. We use it for BC B .

Parameters. The output sample size is so =O(ns c). In our experiments we set so = 2ns c . We

compute nc s by counting the candidate MS cells right after collecting a sample of input

tuples.

4.7.3 Joins

The joins are defined as follows:

B
IC

D

SELECT *

FROM ORDERS O1, ORDERS O2

WHERE ABS(O1.orderkey - 10 * O2.custkey) <= 2

65

Chapter 4. A partitioning scheme for 2-way Joins
B

C
B
−β SELECT *

FROM R1, R2

WHERE ABS(R1.key - R2.key) <= β

B
E

O
C

D

SELECT *

FROM ORDERS O1, ORDERS O2

WHERE O1.custkey = O2.custkey

AND ABS(O1.ship-priority - O2.ship-priority) <= 2

AND O1.order-priority = "4-NOT SPECIFIED"

AND O2.order-priority = "1-URGENT"

AND 01.totalprice BETWEEN γ AND 360000

AND 02.totalprice BETWEEN γ AND 360000

For BC B , we experiment with different widths of the band β: 1, 2, 3, 4, 8 and 16. Scaling out

BEOC D using the same γ leads to highly disturbed out put/i nput ratio ρoi . As the relative

performance of different operators highly depends on ρoi , we set γ such that ρoi remains on

the same order of magnitude. Namely, we set γ to 120.000, 140.000 and 160.000 for the scale

factor of 80, 160 and 320, respectively.

66

5 Multi-way join operators: partitioning
schemes and local operators

5.1 Novel join operators

We devise new join operators in Squall by wiring up state-of-the-art partitioning schemes

and local join algorithms. So far, we presented novel partitioning schemes for 2-way joins.

Next, we introduce multi-way joins (a multi-way join uses a single communication step, that

is, it runs within a single component) in Squall. These joins can outperform the correspond-

ing pipelines of 2-way joins as they avoid shuffling intermediate data, which can be very

large [13, 144, 45]. Multi-way joins are especially beneficial when the output of intermediate

stages is big compared to the size of the base relations and/or final output. Even if this is not

the case, a multi-way join may outperform the corresponding pipeline of 2-way joins. In par-

ticular, an optimal query plan consisting of 2-way joins is very sensitive to the join selectivity

of intermediate relations. As a query optimizer typically lacks accurate join selectivity infor-

mation, it might produce a suboptimal pipeline of 2-way joins. In contract, multi-way joins

are inherently resilient to inaccurate statistics [85]. In an online system, the join selectivity

might vary. As we explain in Section 6.1, we could periodically adjust the join order, but the

cost might be unacceptably high due to recomputing large intermediate relations. In contrast,

multi-way joins inherently bring adaptivity to join selectivity variations.

We also devise a novel multi-way join partitioning scheme that further enhances performance

by taking into account skew degrees of different relation attributes (see Section 5.1.2). In

particular, our scheme constructs composite partitioning, consisting of different partitioning

schemes according to the skew degree in different relation attributes. In addition, Squall has

efficient local algorithms for online multi-way joins (DBToaster, see Section 5.1.4).

5.1.1 Applications

The need for multi-way joins arises frequently in an online scenario. Next, we mention some

typical applications.

67

Chapter 5. Multi-way join operators: partitioning schemes and local operators

Relation Schema
Tweet Username, Stock symbol, Sentiment
StockTicker Stock symbol, ∆Stock price
User Username, <User-Feature, Feature-Value> list
Result User-Feature, Feature-Value, %Accuracy

Table 5.1: Relation and final result schemas for the Stock market query.

Mobile data analytics. A typical mobile dataset contains information about (anonymized)

users, call begin and end time, and base stations used [144]. Inspired by [144, 76], we found

queries that translate to multi-way joins, and that require real-time response. A query example

is Find users whose calls used multiple stations within a short period of time. This might imply a

problem (e.g. misconfiguration) in a base station. Being automatically notified by our system,

the operator can immediately take appropriate actions.

Scheduling data analytics. There is a publicly available dataset with cluster monitoring data

provided by Googlei. This dataset contains information about jobs (start and end time, status,

etc.), tasks (events, resource usage) and machines (assignments, attributes). We put ourselves

in the shoes of a large cluster administrator, who gets notified when a potential problem

arises. An interesting multi-way join query is finding machines that are not production-

ready, that is, List the machines which often fail tasks belonging to production jobs. This

is a 3-way join between jobs, tasks and machines relations. Another interesting query is

Measure the scheduling algorithm quality. A motivation for this query is in the fact that the

scheduling algorithm might perform badly for a particular (rare) event order, and this can

manifest only in production. Schedulers assign jobs to machines to maximize “goodness”

score [130], which includes the machine’s number of preempted or failed tasks, (production)

jobs distribution across the cluster, presence of application dependencies, cluster failure

domains etc. For instance, it is particularly important to assign production jobs to machines

with high “goodness” score. Computing the score involves joining multiple relations. We

observe the scheduling algorithm quality by monitoring (in real-time) the score aggregated

over jobs and machines.

Analyzing employees’ performance. By continuously monitoring company’s or public project

repositories, we can get insights about employees’ performance. For instance, a company

might want to give a prize to an employee who was the result of the query Find the employee

within each team who committed the highest number of lines of code with less than 20%

rewritten code for a particular language and project? for the longest period of time. This query

involves joining between Users, Commits, Projects and Teams relations.

Stock market prediction. We consider the task of stock market prediction through Twitter

feeds. More precisely, we are interested in identifying classes of Twitter users who can be used

as predictors of stock market activity. This can be represented as a 3-way join. Table 5.1 shows

ihttps://github.com/google/cluster-data

68

5.1 Novel join operators

relations’ attributes. The first relation consists of Twitter username, stock market ticker symbol

and sentiments. A stream of tweets with author usernames and tagged with stock symbols is

available from the Twitter’s API. Sentiments can be generated by a running sentiment analysis

tool over tweets. The second relation contains the stock symbols together with a percentage

change in the stock’s price, which can be obtained from a stock feed. These two relations are

joined on the stock symbol. The third relation contains publicly available features for each

user that we receive a tweet from. We join it with the other two relations on the username

attribute. We say that a tweet/stock pair is accurate if the user’s sentiment (positive or negative)

corresponds to the stock price (up or down, respectively). Finally, the query aggregates the

results, computing the average accuracy (prediction rate) for each user-feature.

5.1.2 Partitioning schemes

Next, we describe several partitioning schemes for multi-way joins that execute a join within a

single communication step, that is, within a single Squall component. We present the schemes

along with their skew resilience and supported join conditions. The assumptions are that

the we are dealing with a shared-nothing architecture and that initially, the data is evenly

partitioned among the machines. In this section, we present the schemes briefly, along with

some examples. A detailed analysis of the multi-way join schemes in Section 5.2.

Hash-Hypercube scheme [13] models the result space as a hypercube, where each axis corre-

sponds to a join key domain. Each machine covers a unique portion of the hypercube space.

Figure 5.1a illustrates this scheme for a query with a join condition R.y = S.y AND S.z = T.z.

In the further text, we refer to this query as R(x, y) 1 S(y, z) 1 T (z, t). The Hash-Hypercube

scheme is a generalization of hash partitioning to multi-way joins. This scheme assigns an

input tuple to machines by hashing on the tuple’s join keys and by replicating on the join keys

from the other relations. For example, R tuples are hashed on y and replicated on z (each

R tuple is replicated to a “row” of machines with coordinates (y, z) = (hash(y),∗)). Similarly,

T tuples are replicated on y and hashed on z (each T tuple is replicated to a “column” of

machines with coordinates (y, z) = (∗,hash(z))). Whereas, S tuples are partitioned using

coordinates (y, z) = (hash(y),hash(z)). The scheme achieves correctness as each potential

output tuple tR (x, y) 1 tS(y, z) 1 tT (z, t) is assigned to a single machine with coordinates

(hash(y),hash(z)).

The operator’s performance depends on the slowest machine, that is, the machine with the

highest load (number of received input tuples). Thus, the optimization criterion is to choose

the dimension sizes, such that we minimize the load per machine. In Figure 5.1a, given

64 machines and that each relation is of size H and assuming uniform distribution, the

dimensions y × z = 8×8 minimize the load. (The dimension choosing algorithm is presented

in Section 5.2.) Thus, the load of each machine L is |R|/8+ |S|/(8 ·8)+ |T |/8 ≈ 0.26H . The

Hash-Hypercube scheme supports skew-free multi-way equi-joins.

Random-Hypercube scheme [144]. This scheme also models the result space as a hypercube,

69

Chapter 5. Multi-way join operators: partitioning schemes and local operators

hash(y)

hash(z)

R

T

hash(y), hash(z)S

z

y

(a) Hash-Hypercube.

R

T

S

R random

(b) Random-Hypercube.

0.5 H
hash(z)

T

hash(y)
R

hash(y), hash(z)S

z

y

(c) Hash-Hypercube with skew.

random

R,S
hash(y)

Tz

y

(d) Hybrid-Hypercube.

Figure 5.1: Partitioning schemes for R(x, y) 1 S(y, z) 1 T (z, t). Uniform data (a), data-
independent (b), skewed data (c, d).

but each axis corresponds to a relation, as shown in Figure 5.1b. The Random-Hypercube

scheme is a generalization of the 1-Bucket scheme [106], which uses random partitioning over

a matrix (2-dimensional hypercube). The Random-Hypercube scheme randomly distributes

the input tuples on the axes of the originating relation, and replicates on the other axes. For

example, each R tuple is replicated on a “slice” of machines (Figure 5.1b shows one such slice

with diagonally engraved lines). In Figure 5.1b, given 64 machines and given that each relation

is of size H , the dimensions R×S×T = 4×4×4 minimize the load. (The algorithm for deciding

on dimensions is presented in Section 5.2.) As each machine receives 1/4 of each relation,

the load per machine is 3 · H/4 = 0.75H , where the relations are of the same size H . The

Random-Hypercube scheme supports multi-way theta-joins and is skew resilient. However, it

replicates tuples more than the Hash-Hypercube scheme (because it uses a 3-dimensional

rather than 2-dimensional hypercube). The Random-Hypercube scheme is skew-resilient and

it achieves perfect load balancing, but at the expense of the excessive tuple replication.

Our Hybrid-Hypercube scheme. Consider the same query (R(x, y) 1 S(y, z) 1 T (z, t)) on a

70

5.1 Novel join operators

non-uniform dataset. For example, assume that y has uniform distribution and that z has zip-

fian distribution (the skew parameter of 2) both in S and T . The Random-Hypercube scheme

performs the same independently of skew (L = 0.75H , as before). The Hash-Hypercube

scheme with the given data distribution is shown in Figure 5.1c. Due to skew, it performs

only slightly better than the Random-Hypercube (the maximum load per machine is L =
|R|/8+|S|/(8 ·2)+|T |/2 ≈ 0.69H).

Hash- and Random-Hypercube are designed and work well only for the cases when skew

exists either in all the relations or in none of them. We propose the Hybrid-Hypercube, which

uses hash partitioning for skew-free join keys, and random partitioning elsewhere. Random

partitioning implies replication, so it is more costly than hash partitioning. That way, our

scheme achieves skew resilience while minimizing tuple replication. In the case of equi-

joins and skew-free attributes, the Hybrid-Hypercube produces the same partitioning as the

Hash-Hypercube. Similarly, in the case of skew on all the join keys, the Hybrid-Hypercube is

equivalent to the Random-Hypercube scheme. Thus, our scheme subsumes both the Hash-

and Random-Hypercube schemes. Furthermore, in contrast to the Hash-Hypercube, the

Hybrid-Hypercube supports non-equi joins (using random partitioning therein). For instance,

our scheme works without any change if we have an inequality join condition between S and

T ii, bringing the same performance improvement compared to the Random-Hypercube as

before.

The Hybrid-Hypercube scheme is illustrated in Figure 5.1d, and it works as follows. R and S

tuples are hashed on y and replicated in the selected “row” of machines. We can consider

R 1 S as a (replicated) hash join. We preserve correctness as we partition R and S using the

same hash function, so the corresponding partitions from these relations are on the same set

of machines. Whereas, each T tuple randomly picks a “column” of machines to be replicated

on. Given that there are no skew on y , hash(y) from R and S simulates random distribution

with respect to T . Thus, we can consider RS 1 T as a 1-Bucket join. RS 1 T does not indicate

the order of execution, but simply the different partitioning schemes employed. We use RS

rather than R 1 S notation due to the following. As R and S use the same partitioning on y ,

the replication in 1-Bucket join is the same as if we had a relation of size R +S. We preserve

correctness as follows. R and S tuples ”meet“ all the tuples from T , as each T tuple intersects

each row on a single machine.

As a result, the maximum machine load in the Hybrid-Hypercube is L = (|R|+ |S|)/7+|T |/9 ≈
0.36H , which is 2.08× and 1.92× better than that of Random-Hypercube and Hash-Hypercube,

respectively. It is interesting to compare these schemes with respect to total load among all

the machines. The Hash-Hypercube total load is R ·8+S +T ·8 = 17H , the total load for the

Random-Hypercube is R ·16+S ·16+T ·16 = 48H , and the one for the Hybrid-Hypercube is

R ·7+S ·7+T ·9 = 23H . Our scheme with slightly higher replication than the Hash-Hypercube

(due to using random partitioning on the attributes with skew) achieves the best maximum

load per machine among all the three hypercube schemes. This illustrates the tradeoff between

iiWe only need to change the local join implementation to reflect the change in the join condition.

71

Chapter 5. Multi-way join operators: partitioning schemes and local operators

replication and skew resilience, which we talk about in a greater detail in Section 6.1.

5.1.3 Important special cases

Star schema typically consists of one big fact table and several small dimension tables. Usually,

in a distributed setting, the fact table is partitioned and dimension tables are replicated.

Interestingly, both the Hash-Hypercube and Random-Hypercube schemes comply with this

partitioning. Namely, due to relative relation sizes, these schemes yield p×1 · · ·×1 partitioning

(p is the number of machines), which implies partitioning on one dimension and replication

on other dimensions. The only difference is that the Hash-Hypercube scheme partitions the

fact table on join keys, while the Random-Hypercube scheme randomly partitions the fact

table.

Join among multiple relations on the same key appears often in practice. An example is

TPC-H [8] Q9, which joins LI N E I T E M , PART SU PP and PART on par tke y . This allows

execution of a multi-way join within the same component, without any replication. Interest-

ingly, the Hash-Hypercube scheme yields the same partitioning, as it uses the join keys as the

hypercube axes.

5.1.4 Local join algorithms

Online local joins typically work as follows: a new incoming tuple for a relation is joined with

the stored tuples from the other relation(s), and stored for use by future tuples [66, 58]. Existing

online distributed systems enhance their local joins with indexes (hash or balanced binary

tree) to improve performance. However, these joins are orders of magnitude slower than the

state-of-the-art online local join, DBToaster [16]. The gap deepens with the increase in the

number of relations in a multi-way join.

In brief, the main idea of DBToaster is to recursively maintain views for an n-way join. Instead

of maintaining only the final result, DBToaster maintains all the intermediate (n −1)-, (n −2)-,

(n −3)-, . . . , and 2-way joins. For instance, given 4 relations R , S, T , V , DBToaster materializes

and maintains
(4

2

)
2-way intermediate relations (R 1 S, R 1 T , R 1V , S 1 T , S 1V and T 1V),(4

3

)
3-way intermediate relations (R 1 S 1 T , R 1 S 1V , R 1 T 1V and S 1 T 1V) and final

result R 1 S 1 T 1V . When a new tuple comes, DBToaster updates the intermediate relations,

and produces the (delta) result by joining the incoming tuple with the corresponding (n −1)-

way materialized join. The savings come from the fact that DBToaster does not recompute the

(n −1)-way join for each new tuple, as it would be the case if we use indexes only on the base

relations. This is why the savings grow with the increase in the number of relations n.

When parallelizing DBToaster, it is challenging to preserve correctness of the result (exactly-

once semantics) as tuples (in the Incremental View Maintenance terminology, updates to

relations) may arrive in different order to different machines. Existing parallel DBToaster [105]

relies on a synchronous system (Spark/Spark Streaming) to circumvent the problem. As we

72

5.1 Novel join operators

explain in Section 2.3, Spark Streaming is a system that performs synchronization at the

end of each micro-batch, achieving latencies in the order of seconds. In contrast, Squall

is an asynchronous system, as machines of the same operator make progress completely

independently. Consequently, Squall achieves an order of magnitude better latencies than

existing parallel version of DBToaster [105]. Furthermore, in contrast to Squall, existing parallel

DBToaster [105] does not focus on skew resilience. Next, we discuss how Squall parallelizes

DBToaster.

5.1.5 HyLD operator: Hypercube scheme with Local DBToaster

Squall seamlessly parallelizes the state-of-the art local join (DBToaster) by using separation of

concerns. That is, Squall requires no changes in the partitioning scheme and local join when

putting them together in a parallel join operator. In particular, the hypercube schemes ensure

that each machine executes an independent portion of the join, so that each output tuple is

produced at exactly one machine. That way, we can run a separate DBToaster instance on each

machine. We denote such an operator as Hypercube scheme with Local DBToaster (HyLD). The

HyLD operator combines network efficiency due to a hypercube scheme and CPU efficiency

due to using DBToaster locally. An interested reader can find more implementation details

about integration of DBToaster into Squall in Section A.1.

As we already saw, the Hybrid-Hypercube subsumes the other two hypercube schemes. Hence,

it suffices to choose the right partitioning type for each dimension of the Hybrid-Hypercube.

As shown in Section 5.1.2, random partitioning is expensive but skew-resilient, while hash

partitioning is cheaper but prone to skew. To decide on the Hybrid-Hypercube partitioning,

we need to know if join keys are skew-free or not. Note that we consider only the join keys

from relations that are part of the query result. That is, we are interested in the join keys’

distribution after applying selection operators over the base relations. In addition, if a relation

has only a few distinct join keys, hash partitioning assigns work only to a few machines, leaving

the other machines idle. In this case, we consider the relation as skewed, and use random

partitioning therein.

Although DBToaster is an online local join operator, our hypercube schemes are applicable

both for the offline and online scenarios. We start with the offline scenario.

Choosing among hypercube schemes: offline case. There is a threshold in attribute skew

after which random partitioning brings better performance compared to hash partitioning.

In offline systems, we can employ sampling and estimate the frequency of the most popular

key in the dataset. Sampling incurs negligible overheads compared to the query execution

time [140, 52, 107]. To find the optimal partitioning for a hypercube scheme, we run the

optimization algorithm twice. In the first run, we simply compute the load after marking

the attribute skewed (which enforces using random partitioning). In the second run, we run

the optimization algorithm marking the attribute uniform (which opts for hash partitioning).

When computing the maximum load for hash partitioning, we take into account the top key

73

Chapter 5. Multi-way join operators: partitioning schemes and local operators

frequency, as all the tuples with the same key go to the same machine. In particular, we

estimate the maximum load per machine as (L−Lm f)/p +Lm f , where L and Lm f are the load

for all the keys and for the most frequent key, respectively, and p is the number of machines
iii. Finally, we choose the partitioning (hash or random) with the smaller maximum load per

machine. Alternatively, we could find out the threshold analytically. In that case, we mark the

attribute as skewed or non-skewed using the information from the sample, and we run the

optimization algorithm only once.

Choosing among hypercube schemes: online case. A good initial choice of a hypercube

scheme saves us from future adaptations. Fortunately, in many cases, even in an online

scenario, we know beforehand whether a join key is skew-free. In some cases we can infer this

from the scheme. For example, an attribute with the uniqueness property (such as the primary

key) cannot have skew iv . On the other hand, zipfian distributions are typical in many real-life

datasets, including Internet packet traces, city sizes, word frequency in natural languages and

advertisement clickstreams [26]. An example is dealing with chain stores, where we know

ahead of time that some stores (e.g., these ones in bigger cities) sell more items than other

stores. Similarly, we may know ahead of time that some products are very popular (they are

sold much more frequently than other products).

5.2 Multi-way joins: General case

So far, we illustrated the Hash-Hypercube, Random-Hypercube and Hybrid-Hypercube schemes

on a specific 3-way join (see Section 5.1.2). Next, we discuss the optimization algorithm for

each scheme, which finds an optimal partitioning for a general join. For each scheme, the

optimal partitioning produces a partitioning that minimizes the load per machine, and thus,

it also minimizes the total amount of replication. We are given p machines, and the produced

partitioning is a hypercube where each dimension j is of size p j , so that p = p1 ·p2 · · · · ·pl .

Hash-Hypercube. Given relations Ri from the query, where i ∈ 1..k, the formula for load per

machine is L =∑
i |Ri |/∏

j : j∈Ri
p j [13], where hypercube dimension sizes are p1 ×p2 ×·· ·×pl .

Given the relative relation sizes (e.g., |Ri | : |Ri | : . . . : |Rk | = s1 : s2 . . . : sk), the optimization

algorithm chooses the dimension sizes for the Hash-Hypercube so that it minimizes the load

per machine. This algorithm is known as the HyperCube algorithm [13, 29].

The formula for load L reflects the fact that the load from each relation is partitioned among

dimensions that correspond to the join keys from that relation. In general, not each join key

has a separate axis (equivalently, each join key corresponds to an axis, but some axes are of

size 1, so we omit them from the hypercube dimensions). In contrast, previous work on the

optimization algorithm [13, 28] takes as input all the attributes appearing in the query, which

iiiWe can obtain more precise estimation by using more information from the sample about data distribution,
e.g., by using J most popular keys.

ivThis holds for hash partitioning, which is a natural choice in this scenario. If we use range partitioning, we
could have skew, depending on the data distribution and range bounds.

74

5.2 Multi-way joins: General case

includes both join keys and the attributes from the SELECT clause (GROUP BY, aggregation

attributes etc.). Indeed, we realize that using join keys is sufficient, as we will explain shortly.

This observation is important as it reduces the input to the optimization algorithm, improving

its performance. Using only join keys as the algorithm input also allows us to more easily

reason about the optimization algorithms for the Random-Hypercube and Hybrid-Hypercube,

as we will see later.

We next explain why it suffices to use only the join keys (rather than all the relation’s attributes

appearing in the query) as the input in the optimization algorithm. Let us relation R which

has attributes x1, x2, . . . and xn (these are join keys), and y1, y2, . . . and yn (these are non-join

attributes). For a fixed number of partitions p for relation R, the load per machine is the

same for hypercube schemes with different dimensions from that relation. For instance, the

load is the same for a hypercube scheme that uses only x1 from R where p = px1 = 12, and

for a scheme that has x1, y2 dimensions from R where p = px1 · py2 = 3 ·4. In other words,

the load per machine due to relation R depends only on the number of partitions p for that

relation, and not on the number of hypercube dimensions. On the other hand, only the joins

keys increase the number of partitions (and reduce the load) for other relations (the ones

that share the same join key). Thus, for each hypercube partitioning that contains non-join

attributes, there is one which uses only join keys as dimensions, which is at least as good as

the partitioning with non-join attributes. In other words, the algorithm always chooses the

join keys as the hypercube dimensions, as this allows partitioning two (or more) relations with

a single attribute (join key).

There are different versions of the Hash-Hypercube optimization algorithm. The original

one [13] is computationally expensive as it solves a system of non-linear equations in order to

find optimal dimension sizes. Beame et al. [28] address the efficiency problem by translating

the non-linear to a linear system of equations by using some mathematical transformations.

Namely, the authors express the dimension sizes in an exponential form, and then take a

logarithm over the obtained mathematical expressions. The full details are outside of the

scope of this thesis. For more details, we refer an interested reader to [28]. Unfortunately, as

explained in [45], both works [13, 28] do not handle the case when dimension sizes (obtained

from solving the equations) are not integers. For instance, if we have 7 machines in total and 3

dimensions of the same size, each dimension is of size 71/3 = 1.91. If we round down this value,

we fall back to sequential execution (using only 1 machine), completely wasting the remaining

6 machines. Chu et al. [45] propose an algorithm that always proposes integer dimension sizes.

To do so, the authors use breadth-first search to explore different configurations whose total

number of machines is less or equal than the given number of machines. Then, the algorithm

chooses a configuration with the smallest load per machine.

In fact, we introduce the terms Hash-Hypercube and Random-Hypercube. Furthermore, we

discover and analyze the common structure between these two schemes in a principled way.

Random-Hypercube. The problem formulation is similar as before, except that the dimensions

75

Chapter 5. Multi-way join operators: partitioning schemes and local operators

correspond to the relations themselves, rather than to the join keys. The load per machine is

equal to
∑

i |Ri |/pi [144], as each relation randomly chooses a position on its own dimension,

and replicates among the other dimensions. As shown in [144], the optimal hypercube is

the one that divides its dimensions into segments of equal size, that is, |R1|/p1 ≈ |R2|/p2 ≈
·· · ≈ |Rk |/pk . In other words, in the optimal partitioning, the dimension sizes are in the

same proportion as the relation sizes. For example, if we have 64 machines and R1 is 4×
bigger than R2, the optimal partitioning is {R1 ×R2} = {16×4}. This 16×4 partitioning implies

the minimal load per machine and minimal communication cost among all the possible

Random-Hypercube partitionings for the given proportion among the relations sizes.

We discover a technique for translating the Random-Hypercube partitioning problem to that of

the Hash-Hypercube. That is, we express the join R1 1R2 1 · · ·1Rk as R1(x1),R2(x2) . . .Rk (xk),

where xi are quasi-attributes that we use as the dimensions in the Hash-Hypercube optimiza-

tion algorithm. As no attribute appearing in more than one relation, and each relation has

exactly one attribute, the resulting partitioning scheme is the same as the one produced by the

Random-Hypercube algorithm [144] for the given number of machines v. After we compute

the dimension sizes using the Hash-Hypercube optimization algorithm, we use random rather

than hash partitioning on each dimension.

Hybrid-Hypercube. To decide on dimensions and their sizes for a general multi-way join,

we extend the optimization algorithm for the Hash-Hypercube. Let us first more closely

look at query R(x, y) 1 S(y, z) 1 T (z, t) from Section 5.1.2. The resulting Hybrid-Hypercube

partitioning scheme is shown in Figure 5.1d. We obtain this partitioning by using join key

renamingvi and by assigning each join key name to a separate hypercube dimension. In

particular, given that there is skew on S.z and T.z, we rename them to z ′ and z ′′, respectively.

To address skew at join execution time, we use random partitioning on the renamed attributes

z ′ and z ′′. We have to use different attribute names (z ′ and z ′′), otherwise the optimization

would use the same dimension for S.z and T.z, and as we are using random partitioning on

both attributes, we would miss many result tuples. As we use separate dimensions for S.z and

T.z, and on each of them we employ random partitioning, this implies that we perform S 1 T

using the 1-Bucket scheme. On the other hand, we join R and S using hash partitioning, given

that they share a common skew-free attribute y .

As we already discussed, we need to provide only join keys (rather than all the attributes from

the query) as the input for the optimization algorithm. In our example, and after renaming, the

input for the optimization algorithm is R(y),S(y, z ′),T (z ′′). Interestingly, the fact that renamed

attributes z ′ and z ′′ use random rather than hash partitioning changes nothing in the formulas

for the dimension sizes from the optimization algorithm. This is because we care only about

equal distribution of tuples among the rows/columns. It is irrelevant for the formulas whether

we achieve this using a hash function on a uniform dataset over by randomization. Thus, from

vWork [144] has an additional optimization criterion of finding the optimal operator parallelism. In our work,
we assume that the number of machines is given ahead of time.

viThe renaming is used only in the optimization algorithm and the partitioning scheme. The local joins are
unchanged.

76

5.2 Multi-way joins: General case

the viewpoint of the Hash-Hypercube optimization algorithm, we can consider a renamed

equi-join R(x, y)1 S(y, z ′)1 T (z ′′, t) as an equi-join with hypercube dimensions (y, z ′, z ′′).

The Hybrid-Hypercube partitioning from Figure 5.1d has 2 rather than 3 dimensions (y, z ′, z ′′).

The reason is the following. As we already discussed, an optimal partitioning includes only

join keys, that is, the attributes that appear in multiple relations. Given that z ′ only appears

in relation S, and that this relation is already partitioned by y attribute (which is a join key

appearing also in R relation), the optimization algorithms sets the dimension size of z ′ to

one, effectively removing it from the hypercube dimensions. On the other hand, although z ′′

is also appearing only in a single relation, it is the only attribute that partitions the relation

T . Thus, attribute z ′′ remains in the final (y, z ′′) partitioning, which corresponds to our

Hybrid-Hypercube from Figure 5.1d. Each tuple from R or S is hashed on y and replicated

on z ′′. Whereas, we randomize T on z ′′ and replicate it on y . In other words, we perform

replicated hash join between R and S, and a 1-Bucket RS 1 T join. By doing so, the Hybrid-

Hypercube saves one hypercube dimension compared to the Random-Hypercube (which

directly translates to smaller amount of replication and thus better performance), while still

providing for skew resilience.

Continuing this example, for certain relative relation sizes, a partitioning may become a

1-dimensional one. For instance, if T is really small compared to R and S, the optimal par-

titioning (with respect to the minimal load per machine) is (y), which implies broadcasting

relation T . A nice property of our Hybrid-Hypercube is that it automatically handles all these

cases. A user needs to provide only the relation sizes and whether each join key is skew-free or

not.

Let us now consider a more complex query R(x, y, z) 1 S(y, z) 1 T (z, t) in which only T.z is

skewed. In this case, we rename only T.z to z ′ and use random partitioning therein. This

allows us to share z attribute among R and S, lowering the amount of replication required.

From the perspective of 1-Bucket join S 1 T , we simulate random distribution on S.z using

hash(S.y,S.z), given that both S.y and S.z are skew-free attributes. In general, we rename

attributes and create new hypercube dimensions only when necessary (in the presence of

skew), allowing sharing of attributes among different relations whenever possible.

The Hybrid-Hypercube can save more than one hypercube dimension compared to the

Random-Hypercube scheme. For example, if in R(x, y) 1 S(y, z) 1 T (z, t) 1U (t) only z has

skew, the Random-Hypercube uses 4 dimensions (each corresponding to one relation), while

the Hybrid-Hypercube uses only 2 dimensions (one on y attribute, and another on t). In par-

ticular, the Hybrid-Hypercube hashes R and S on attribute y to “rows” of the 2-dimensional

hypercube (matrix), and T and U on t to “columns“. In other words, we perform replicated

hash join for R 1 S and T 1U , and a 1-Bucket join RS 1 TU . In order to partition the data

equally using the 1-Bucket join, hashing on S.y needs to produce a similar effect as random

partitioning on S.z (the same should hold for T.t and T.z attributes). This holds, as there is no

skew on S.y nor on T.t . Thus, we can apply dimensionality reduction in multiple places in

77

Chapter 5. Multi-way join operators: partitioning schemes and local operators

the query. In general, with the increase in the number of relations (dimensions), the potential

of our hypercube scheme for saving dimensions (and reducing replication) grows. Similarly,

increasing the number of relations in a pipeline of 2-way joins implies network transferring of

more intermediate relations, while the corresponding hypercube scheme transfers no inter-

mediate relations at all. On the other hand, given a fixed number of machines, increasing the

dimensionality of any hypercube scheme (including ours) leads to higher replication. This is

due to the fact that more dimensions have to share the same total number of machines.

Next, we analyze the Hybrid-Hypercube optimization algorithm for queries with non-equi

joins. Let us consider a query R.x = S.x and S.x < T.y . From the perspective of the optimiza-

tion algorithm, we can consider this query as an equi-join R(x),S(x),T (y) and dimensions

(x, y) vii. We do not require any renaming, and we use hash partitioning for both x and y .

Hash partitioning on S.x allows us to reuse the same dimension for R.x attribute. From the

perspective of 1-Bucket join S 1 T , we simulate random distribution on S.x using hash(S.x),

given that S.x is a skew-free attribute. Similarly, we simulate random distribution on T.y using

hash(T.y), given that T.y is a skew-free attribute viii. That way, we perform a replicated hash

join R 1 S and an 1-Bucket join RS 1 T . In other words, the resulting partitioning scheme

replicates R and S over a “row” of machines in the matrix (2-dimensional hypercube), and it

replicates T over a “column” of machines.

Continuing this example, let us assume that there is skew on T.y . The dimensions ((x, y))

and their sizes are the same as before. The only difference is that we need to employ random

(rather than hash) partitioning on T.y . On the other hand, if there is skew only on S.x we

need to rename this attribute to x ′, and the optimization algorithm produces a hypercube

with (x, x ′, y) dimensions, using hash, random and hash partitioning, respectively. In that

case, attributes R.x and S.x correspond to different dimensions, and we employ random

partitioning over the renamed attribute S.x in order to handle skew.

5.3 Gathering insights about multi-way joins

In order to allow a user to easily interact with Squall, and to learn about multi-way joins and

skew-resilience, we provide a graphical interface that shows the query results and various

performance metrics. This work was demonstrated at VLDB 2016, where we got a very positive

feedback from the demonstration attendees. We first present the overall architecture of

the subsystem that collects query results and performance metrics. Then, we discuss how

a user can interact with this subsystem, in order to get some insights about the data and

skew-resiliency of various multi-way joins.

78

5.3 Gathering insights about multi-way joins

⋈

Agg

Comp.
Par=4

Part. scheme

⋈ Comp.
Par=3

Part. scheme

S Comp.
Par=1 σ

T Comp.
Par=2

R Comp.
Par=3

π

π

Flask Web Server

Squall query plan

Clients

Redis data store

Query results

Instantiate & run

Graphite
monitoring Metrics

Grafana
Visualization

Figure 5.2: Squall’s Web Interface.

5.3.1 The subsystem for collecting results and performance metrics

Figure 5.2 shows the subsystem for collecting results and performance metrics. A client

communicates with a web server, and instantiates and runs a query plan. (The query plan

shown in the figure contains only 2-way joins, but we use the same architecture for multi-way

joins as well.) The Storm build-in web server does not show the result, and shows metrics only

textually. Thus, we need to set up a separate web server and create a web page that shows both

the results and performance metrics graphically. As Python code is much more concise than

Java (Squall and Storm are written in Java), we opted for a Python-based web framework called

Flask, which has a built-in web server. We represent the results and metrics as time series

lines. This allows us not only to see the current value of a metric, but also how its changes over

time, which is very convenient in a dynamic system. We discuss the interface with the user in

a greater detail in Section 5.3.2.

Only the final component produces results, so we collect the results only from there. The

final component sends the results to Redis, a high-performance in-memory data store. Our

web application (which we set up using the Flask web server) subscribes to Redis in order to

continuously get updates (the latest results in the query plan). If needed, as in the case of high

update result rate and/or high parallelism of the final component, we can show a sample of

the results or scale out Redis on multiple machines. We use Graphite for collecting metrics, as

there are libraries that allows for easy propagation of Storm metrics to Graphite. We collect

metrics from each component that contains a join. Graphite contains three modules: Carbon,

viiThese changes are only for the optimization algorithm. The local joins are unchanged.
viiiWe could as well use random partitioning on T.y in order to more closely mimic 1-Bucket partitioning for

S 1 T . In that case, we do not pay any extra replication cost, as there are no other y attributes in the query.

79

Chapter 5. Multi-way join operators: partitioning schemes and local operators

Figure 5.3: Demonstration: Running a query.

Figure 5.4: Results and query performance metrics.

Whisper and Graphite Web. Carbon collects the data and stores it in Whisper, a time-series

database library. Graphite Web renders graphs from the collected data. However, we use

Grafana rather than Graphite Web as a visualization tool, as Grafana offers better control offer

graphs. Namely, it allows a user to specify different criteria for metrics aggregation (e.g. over

machines, over time) from a graphical interface. Grafana accesses the time-series metrics data

using the Graphite API. We integrate Grafana graphs into our web interface.

80

5.3 Gathering insights about multi-way joins

5.3.2 Interacting with the system

Demonstration. As shown in Figures 5.3 and 5.4, we allow attendees to specify a query and

to try out different partitioning schemes (Hash-Hypercube, Random-Hypercube, Hybrid-

Hypercube), local joins (traditional joins, DBToaster) and the parallelisms (number of ma-

chines). Attendees can verify scalability by changing the number of machines for a topology.

With a button click, the attendees run the specified query plan on an in-house cluster with 220

hardware threads. This is illustrated with a line “Instantiate & run” in Figure 5.2. At run-time,

they can continually monitor the query results, performance metrics (throughput, latency,

CPU utilization and memory consumption) and operators’ properties such as hypercube

dimensions, replication factor and skew degree. The replication factor is the component’s

number of input tuples divided by the total number of tuples produced by the immediate

upstream components. The replication factor is an online counterpart of the MapReduce

replication rate defined in [117] as the proportion between the output and input size of the

mappers in terms of number of tuples. We define skew degree as the division between the

largest partition size and the average partition size.

Evaluating partitioning schemes. We allow attendees to compare hypercube schemes by

monitoring the performance as a function of the operator’s replication factor and skew degree.

For instance, the Random-Hypercube scheme achieves perfect load-balancing (no partition

skew) but it replicates tuple (as we can observe from the replication factor). For each hypercube

scheme, we identify scenarios (the number of relations, their sizes and skew degrees) where it

performs the best.

CPU-bound or network-bound? We aid attendees to find the bottleneck in online processing.

To estimate the CPU share, we run the same query plan with different local joins (DBToaster,

traditional joins). The attendees can also observe the correlation among the operator’s memory

consumption and throughput. To estimate the network share, we run the query plan with

the same local joins but with different partitioning schemes. For instance, we replace a Hash-

Hypercube with a Random-Hypercube scheme. We quantify the difference among the query

plans (of the same query) using intermediate network factor which we define as the sum

of all the component tasks’ input and output divided by the sum of the query input and

query output, that is, (
∑

comp. t ask t i nputt +out putt)/(quer y i nput +quer y out put). The

intermediate network factor represents the amount of intermediate network shuffling. Then,

we compare the performance among different query plans (of the same query) as a function of

this factor. The attendees can also verify on real-world queries and datasets that query plans

with multi-way joins frequently outperform the ones with a pipeline of 2-way joins due to

network savings.

There is an alternative way to find out if Squall query plans are CPU-bound or network-

bound. We run a query plan and starting from data source reading, we add a single ele-

ment (computation or network). We illustrate this process in Figure 5.5 on the example of

CU ST OMER 1ORDERS from the TPC-H [8] dataset. For some data points, we run the query

81

Chapter 5. Multi-way join operators: partitioning schemes and local operators

 0

 10

 20

 30

 40

 50

 60

 70

 80

ReadFile (RF) RF+sel(int) +sel(date) RF+sel(int),network Full join

R
u

n
ti

m
e

(s
)

CUSTOMER-ORDERS, 160G, 64J

Figure 5.5: Finding bottleneck in a Squall query plan. sel stands for a no-op selection (it passes
through all the tuples).

with a no-op selection (no tuples are filtered out) in order to estimate the cost of selections.

The full join has no selections. From the first three bars, the cost of a selection over an integer

field is only 1.6% of the entire execution. Whereas, the cost of a selection over a date field is

about 16%. This is because the creation of a Date instance (from an input String) is much

more expensive than the creation of an integer. From the last two bars, we extract the cost of

network transferring and join computation. The network transferring takes 60% of the entire

execution. Whereas, the join computation takes only 14% of the full join execution. Thus,

Squall/Storm is clearly network-bound. The input throughput of the full join is 4.19 million

tuples per second for the entire cluster, and 65.000 tuples per second per join task (hardware

thread). Hence, our operators are fairly efficient.

5.4 Related work

Offline multi-way join schemes. The Hash-Hypercube [13] and Random-Hypercube [144]

schemes, which we describe in detail in Sections 5.1.2 and 5.2, are originally proposed for

offline systems. (As we show in Section 6, we can use these schemes in online systems as well,

by periodically adjusting to the statistics collected so far.) Similarly, our Hybrid-Hypercube

scheme is also directly applicable for offline processing. The Hybrid-Hypercube advances

state-of-the-art, as in contrast to the Hash-Hypercube it supports non-equi joins and it is

skew resilient, while incurring significantly smaller communication cost compared to the

Random-Hypercube. The main insight of the Hybrid-Hypercube is to optimize the replication

according to the join keys’ skew degree and join conditions. We estimate the skew degree

information from a sample from each relation.

Chu et al. [45] propose an operator that combines the Hash-Hypercube partitioning scheme

82

5.4 Related work

with a state-of-the-art offline local operator for cyclic joins. In contrast, we offer different

hypercube schemes, and use state-of-the-art online local join operator for acyclic joins. In-

spired by [45], in the future we plan to combine local online cyclic joins with our hypercube

schemes. YSmart [86] studies partitioning schemes for subqueries consisting of both joins and

aggregations. It recognizes subqueries that can be executed without any replication within a

single MapReduce job.

BinHC [29] and SharesSkew [12] are partitioning schemes for multi-way joins that separate

relation’s tuples into heavy hitters (the join keys with high multiplicity) and light hitters (the

remaining join keys). The main idea is to use some variant of hash partitioning for light hitters

and random partitioning for heavy hitters. These operators reduce replication as much as

possible and they may achieve smaller load per machine compared to the Hybrid-Hypercube

in the offline setting. This is due to the fact that Hybrid-Hypercube always decide on parti-

tioning according to the attribute distribution on the relation as a whole, while BinHC [29]

and SharesSkew [12] partition each relation into two parts (heavy and light hitters). Thus,

an optimal partitioning scheme for multi-way joins should support efficient execution of

both equi-joins and non-equi joins (which our Hybrid-Hypercube does), as well as per-key

partitioning for equi-joins (as BinHC [29] does). We left the design and implementation of

such an operator for future work.

However, both BinHC [29] and SharesSkew [12] are restricted to equi-joins. In addition, these

approaches might be suboptimal in an online scenario. In particular, they require detailed

statistics about skew, that is, key frequencies. Although we can adjust the partitioning scheme

according the statistics seen so far, the (relative) key frequencies can repeatedly change over

time, even right after the scheme adjustment (we denote this pattern as skew fluctuations,

and explain it in detail in Section 6.1). This implies frequent data migrations, which affects the

performance. In contrast, the Hybrid-Hypercube requires only information about whether

the relation’s attribute is skew-free or not (this information is used to decide on hash or range

partitioning). It does not require information about the exact degree of skew, nor about

which keys are highly skewed. The skew degree on the relation as a whole typically changes

less frequently than the skew degree among the particular keys, causing smaller number

of migration and better performance of online Hybrid-Hypercube compared to the online

counterparts of BinHC and SharesSkew.

Local online join algorithms. There is a significant body of work on local online 2-way

join algorithms [137, 127, 123, 53, 98]. Symmetric hash join [137] requires that data fits in

memory. Works [127, 123, 53, 98] address this issue by employing different strategies for

spilling to disk. MJoin [131] generalizes XJoin [127] to (local) multi-way joins, and focuses

on strategies for spilling to disk. CACQ [93] and STAIRs [49] execute multi-way joins using

Eddies architecture [25], that is, they decide on per-tuple basis on an optimal join order. The

main difference between DBToaster [16] that we use in Squall and these multi-way joins is as

follows. First, these works [131, 93, 49] focus on equi-joins. Whereas, DBToaster also supports

complex non-equi joins. Second, DBToaster materializes intermediate multi-way joins (2-way

83

Chapter 5. Multi-way join operators: partitioning schemes and local operators

to (n−1)-way joins) in order to avoid re-computation. In contrast, STAIRs only partially avoids

re-computation, as it materializes intermediate tuples that results from joining of only up to 2

relations. Finally, Squall is an extensible system, as we can combine any of these local join

algorithms with our partitioning schemes.

Distributed online joins. BiStream [89] and Photon [21] offer online join processing in a

distributed setting. Photon [21] is designed for click-stream analytics in Google, and it sup-

ports only equi-joins. BiStream [89] is a 2-way stream join operator that partitions each input

relation on a separate set of machines. It focuses on scalability and elasticity, and it supports

both equi- and non-equi joins. Upon receiving an incoming tuple, BiStream always store it on

exactly one machine, and produces the output by sending the tuple to all the machines that

(may) contain joinable tuples from the opposite relation. BiStream uses hash partitioning (it

sends an input tuple to two machines, one for storing the originating relation, and another

for joining with the opposite relation) and random partitioning (an input tuple is randomly

assigned to a machine of the originating relation, and sent to all the machines of the opposite

relation for join processing). BiStream also proposes ContRand partitioning, which hashes

an input tuple to a subgroup of machines. Within a subgroup, ContRand uses random par-

titioning. As BiStream always store a tuple on exactly one machine, it has smaller memory

requirements than the 1-Bucket scheme [106]. However, when using random partitioning

(for non-equi joins or for equi-joins with high skew), BiStream has higher communication

cost that the 1-Bucket scheme [106]. We illustrate this on the following example. To simplify

the analysis, we compare the two schemes assuming that the relations are of equal sizes. In

that case, each relation in the BiStream scheme uses p/2 machines. Whereas, the 1-Bucket

scheme is a
p

p ×p
p matrix. Thus, BiStream sends each tuple to p/2 machines, while the

1-Bucket sends a tuple only to
p

p machines. In other words, the 1-Bucket scheme implies

smaller communication and storage cost than the BiStream scheme.

Distributed online joins: multiple hops. We next describe the line of work that execute multi-

way joins using multiple network hops. CTR scheme [68] and PSP scheme [135] optimize

tuple routing, providing for adaptive join ordering. PSP [135] partitions the state among the

machines according to their timestamp. CTR scheme [68] and PSP scheme [135] support

both equi- and non-equi joins, These approaches attempt to address the problem of join

selectivity fluctuations by adaptive join ordering. However, CTR and PSP schemes have the

following drawbacks. First, these approaches do not materialize intermediate results, and

suffer from recomputation. Second, the intermediate results are sent over the network and can

be considerably large, causing high communication overhead, and potentially high latency for

producing result tuples. In contrast, our HyLD operator solves both problems. It uses local

DBToaster operator that allows reusing the previously computed intermediate results, and it

requires only one network hop to produce the result tuple.

Distributed Eddies [126, 145] are based on SteMs Eddies [114], and they provide for per-tuple

routing and thus, adaptive join ordering. However, Distributed Eddies [126, 145] suffer from

the same drawbacks as the CTR scheme [68] and PSP scheme [135] (multiple network hops

84

5.5 Evaluation

and no intermediate relation reusing). Distributed Eddies assume window semantics, tolerate

information loss and do not study intra-operator adaptations (as our Adaptive 1-Bucket

scheme [58] does). Furthermore, they do not materialize intermediate results, which leads

to recomputation every time a new tuple comes. For small windows, intermediate results

might not be frequently reused (when window expires, its intermediate results also expire).

However, reusing intermediate results is especially important for moderately-sized to large

windows, and for full-history queries, which are nowadays very popular [37, 24]. Thus, we

focus on large-state and full-history operators.

Distributed online joins: single hop. Next, we present the multi-way join operators that

require only one network hop for producing output tuples, similarly to our hypercube schemes.

ATR scheme [68] support non-equi joins and it uses range partitioning (with some overlapping)

on timestamp, so it replicates tuples less than the hypercube schemes. However, ATR executes

the entire window on one machine, so it might not scale for large windows and fast incoming

rates. As we already discussed, online operators with large windows or full-history semantics

are very popular nowadays [37, 24]. We can extend Squall with ATR partitioning schemes to

support small to moderate-sized window operators.

Flux [120] is an adaptive partitioning scheme, where the number of partitions is much higher

than the number of machines. This scheme supports skew but assumes that none of the

partitions, which are specified in the initialization, surpasses a machine capacity. As explained

in [135], this is easily violated in online scenarios. Flux is originally proposed for single-input

operators, but it can support some join conditions, such as equi-joins [90]. Liu et al. [90, 91]

provide multi-way equi-join operators using Flux, inheriting its drawbacks. Liu et al. [90, 91]

do not consider partitioning schemes with replication, rather they focus on multi-way joins

where all the relations use the same join key. This line of work offer moving operator states

among the machines, as well as spilling to disk. In addition, it allows changing the join order

at run-time, or even changing a pipeline of 2-way joins to a single-hop multi-way join at

run-time. However, it requires blocking of input streams while migrating state. This causes

long stalls for operators with large state, which is unacceptable in online systems. In contrast,

our Adaptive 1-Bucket [58] is a non-blocking scheme.

5.5 Evaluation

In this section, we evaluate different hypercube schemes (Hash-Hypercube, Random-Hypercube

and our Hybrid-Hypercube) for multi-way joins. We also run the corresponding pipelines of

2-way joins, where each 2-way join uses hash partitioning in the case of skew-free equi-joins,

otherwise it uses the 1-Bucket partitioning. Furthermore, we compare the performance among

multi-way joins with the same hypercube scheme but different local joins (DBToaster and

traditional local joins). Environment (hardware setup) and programming model (Squall) is the

same as in Section 4.6.1.

85

Chapter 5. Multi-way join operators: partitioning schemes and local operators

5.5.1 Datasets

We show the performance of our multi-way join operators both on TPC-H and on real-world

datasets. The first dataset is the Hyperlink Graph of the Web from August 2012 Common Crawl

Corpus [4]. In the further text, we call this dataset WebGraph. The WebGraph dataset has one

relation with {FromUrl, ToUrl} pairs, and it is available for different domain aggregation levels.

We experiment on the “Host” and “Pay-Level-Domain” aggregation levels.

Another dataset that we use is Cr awlContent , which has crawled content from a large

number of web pages [2]. We can analyze the crawled content using different tools, such as

Readability test, Sentiment analysis tools etc. In the further text, Cr awlContent refers to a

relation with the schema {Ur l ,Scor e}, where Scor e stands for the output of any text analysis

tools. As the text analysis tools are out of the scope of this work, and the Scor e is not a join key

(it is used only in some aggregations), the query performance does not depend on the Scor e

values. Thus, we synthesize them.

5.5.2 Multi-way vs 2-way joins

Multi-way joins may outperform the corresponding pipeline of 2-way join, even if the corre-

sponding pipeline is the optimal one.

3-Reachability Query. We illustrate this for a 3-step reachability query over the WebGraph

dataset. The SQL of this query is shown below:

3-
R

ea
ch

ab
ili

ty

SELECT W1.FromUrl, COUNT(*)

FROM WebGraph as W1, WebGraph as W2, WebGraph as W3

WHERE W1.ToUrl = W2.FromUrl AND W2.ToUrl = W3.FromUrl

GROUP BY W1.FromUrl

This query appears frequently in practice, as it helps to understand the structure of the web.

We could run the same query (with W3.ToUrl in the SELECT and GROUP BY clause) over the

clickstream data, and use this information to suggest a better list of suggested hyperlinks for

each website. In particular, we can propose a direct link from W1.FromUrl to W3.ToUrl, if the

corresponding count aggregate value is high.

Hypercube properties. As the query contains only equi-joins, and the dataset is uniform, the

Hash-Hypercube and Hybrid-Hypercube schemes produce the same partitioning. Given

36 joiners, the optimal partitioning is a 2-dimensional hypercube (matrix) W 1.ToUr l ×
W 2.ToUr l = 6×6, as W1, W2 and W3 are of the same size. This partitioning implies that W1 is

hashed W 1.ToUr l and replicated on W 2.ToUr l , W3 is hashed on W 2.ToUr l and replicated

on W 1.ToUr l , and W2 is hashed on both W 1.ToUr l and W 2.ToUr l . Thus, the replication

factor is 6+6+1 = 13, and total network transfer due to reshuffling data is 13×10.2M = 132.6M

tuples. We run the query on 0.5% sample of the “Host” WebGraph (the full “Host” dataset has

86

5.5 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

R
u

n
ti

m
e
 (

S
e
c
)

J = 36 Hash-Hypercube
Hybrid-Hypercube

Pipeline of 2-way joins

Figure 5.6: Performance for 3-reachability query. We use 36 joiner machines.

2,043 million arcs, so the sample has 10.2 million arcs), so that the pipeline of 2-way joins

can also finish (otherwise, it runs out of memory due to large intermediate results). The total

network transfer in the pipeline of 2-way joins is 3×10.2M +130M = 160.6M tuples (130M is

the intermediate output of the first join).

Performance results. As Figure 5.6 shows, our multi-way join outperforms the corresponding

pipeline of 2-way joins by 1.43×. This is because it transfers less tuples over the network

compared to the corresponding pipeline (132.6M tuples compared to 160.6M tuples). In both

cases, we use DBToaster as the local join operator. The speedup comes from the fact that the

intermediate results are quite large with respect to the input relations. Thus, the shuffling cost

of the pipeline of 2-way joins surpasses the replication cost of a hypercube.

5.5.3 Hybrid-Hypercube versus Hash-Hypercube and Random-Hypercube

Next, we show two queries where our schemes outperforms the-state-of-the-art multi-way

join partitioning schemes. All the multi-way join operators use DBToaster locally.

TPCH9-Partial Query. The first query is a subquery Li nei tem 1 Par tSupp 1 Par t from

the TPC-H [8] Q9. We refer to this query as TPCH9-Partial. TPCH9-Partial is an example of

a query where multiple relations share the same join key (Par tke y). Wu et al. [138] showed

that the Hash-Hypercube scheme outperforms the corresponding pipeline of 2-way joins for

TPCH9-Partial on an uniform TPC-H dataset. Indeed, the Hash-Hypercube and the Hybrid-

Hypercube produce the same partitioning (the hypercube is 1-dimensional with Par tke y as

the key).

Hypercube properties. However, for a skewed TPC-H dataset, the Hybrid-Hypercube outper-

forms both the Hash-Hypercube and the Random-Hypercube schemes. We experiment with

different configurations (J is the number of machines): 10G/8J and 80G/100J TPC-H datasets

with zipfian distribution and skew factor of 2. The Hash-Hypercube scheme partitions all

the relations on Par tke y , as all the three relations have this attribute and use it as a join key.

87

Chapter 5. Multi-way join operators: partitioning schemes and local operators

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Q9 10G/8J Q9 80G/100J WebAnalytics

R
u

n
ti

m
e
 (

S
e
c
)

Hash-Hypercube
Random-Hypercube

Hybrid-Hypercube

Memory
Overflow

x4

Memory
Overflow

Figure 5.7: Comparison of different hypercube schemes.

The Random-Hypercube scheme uses relations as hypercube dimensions and it produces

partitioning Par t ×Par t supp ×Li nei tem with the dimensions {1× 1× 8} for the 10G/8J

configuration (broadcasting two smallest relations) and {1×4×25} for the 80G/100J configu-

ration. Due to high skew in Par tke y in Li nei tem relation, the Hybrid-Hypercube schemes

uses random partitioning on Par tke y and hash partitioning on Suppke y . In particular, our

Hybrid-Hypercube scheme produces Par tke y ×Suppke y partitioning with the dimensions

{1×8} for the 10G/8J configuration and {1×100} for the 80G/100J configuration.

Performance results. Figure 5.7 shows the performance results. For query TPCH9-Partial and

the 80G/100J configuration, the Hash-Hypercube does not complete the processing due to

high memory requirements caused by high skew. However, we extrapolate its completion time

using the information about the number of tuples processed before running out of memory.

The Hybrid-Hypercube outperforms the Random-Hypercube by a factor of 2.39× and the

Hybrid-Hypercube by 1.6×. This is due to the fact that our scheme uses hash partitioning

whenever possible (on Suppke y) and random partitioning only when necessary due to high

skew (for Par tK e y).

WebAnalytics Query. The second query that shows the advantages of our Hybrid-Hypercube

scheme is over the Pay-Level-Domain WebGraph and CrawlContent datasets. It reports

hyperlink paths from the WebGraph dataset that have length of two and that go through

’blogspot.com’ (which has the highest in-degree in the dataset), and joins the result with the

CrawlContent relation that contains URL and a web page content score. The SQL for this

query is shown below:

88

5.5 Evaluation

W
eb

A
n

al
yt

ic
s

SELECT W1.fromUrl, Score, COUNT(*)

FROM WebGraph as W1, WebGraph as W2, CrawlContent as C

WHERE W1.ToUrl = 'blogspot.com' AND W2.FromUrl = 'blogspot.com'

AND W1.ToUrl = W2.FromUrl AND W1.FromUrl = C.Url

GROUP BY W1.fromUrl, Score

Hypercube properties. The size of WebGraph relation is 623 million arcs. After applying

selections, the size of W1 and W2 is 1.03 and 3.9 million arcs, respectively. The CrawlCon-

tent relation has 43 million tuples (this is the number of distinct Urls from the Pay-Level-

Domain WebGraph dataset). We compare the performance using 40 machines for each

hypercube scheme. The Hash-Hypercube scheme uses a 2-dimensional hypercube with

dimensions W 1.F r omUr l (C .Ur l)×W 2.F r omUr l (W 1.ToUr l) = {20×2}. Relation W 1 is par-

titioned among the machines using its FromUrl and ToUrl attributes. Relation W 2 is hashed

on W 2.F r omUr l and replicated on W 1.F r omUr l attribute. Whereas, relation C is hashed on

C .Ur l and replicated on W 2.F r omUr l attribute. The Random-Hypercube scheme creates a

3-dimensional hypercube W 1×W 2×C = {1×2×20}. This schemes uses replication on all the

dimensions, and relation W 1 is replicated on all the machines. The Hybrid-Hypercube scheme

creates a 2-dimensional hypercube with dimensions W 1.F r omUr l (C .Ur l)×W 2.F r omUr l =
{20×2}. This scheme opts for random partitioning on W 2.F r omUr l (this is optimal because

WebGraph is highly skewed, as there is only one distinct value of this join key) and hash parti-

tioning on W 1.F r omUr l attribute (this is optimal because there is no skew on W 1.F r omUr l

and this attribute is the primary key in CrawlContent, so it is skew-free). In other words,

the Hybrid-Hypercube scheme performs a replicated hash join W 11C and a 1-Bucket join

W 1−C 1W 2. We use DBToaster as the local join operator for all hypercube schemes.

Performance results. Figure 5.7 shows the performance results for the WebAnalytics query.

As this query takes more than an hour to execute, we show the runtime for producing the

first 6.5 million output tuples (this gives us comparable running times to the ones from the

TPCH9-Partial query). The Hybrid-Hypercube achieves 1.43× speedup compared to the

Hash-Hypercube, and 11.64× speedup compared to the Random-Hypercube (we extrapolate

its running time). This is due to the fact that, among the hypercube schemes, only our

Hybrid-Hypercube scheme is able to employ different partitionings for different attributes.

Furthermore, our scheme does so in an optimal manner.

Relationship between maximum load per machine and performance. To understand better

the performance differences and skew resiliency of different hypercube schemes, we also

extract the maximum and average load per machine in terms of number of input tuples

received. Table 5.2 shows these numbers. From these numbers we can also extract skew

degree, which we define in Section 5.3.2 as the division between the maximum and average

load per machine. Due to the fact that the Hash-Hypercube does not address skew, it has

very high maximum load compared to the average load per machine. This scheme does

not complete for the TPCH9-Partial 80G configuration, and that is why we cannot obtain

its maximum and average load for this configuration. In contrast, the Hybrid-Hypercube

89

Chapter 5. Multi-way join operators: partitioning schemes and local operators

Table 5.2: Maximum and average load per machine for different hypercube schemes. M stands
for millions of tuples.

Query Size Machine Load
Hypercube type

Hash Random Hybrid

TPCH9-Partial 10G
Maximum 38.5M 15.6M 22.8M
Average 8.5M 15.6M 8.6M

TPCH9-Partial 80G
Maximum N/A 35M 78.9M
Average N/A 35M 6.3M

WebAnalytics Pay-Level-Domain
Maximum 2.26M N/A 2.07M
Average 2.18M N/A 2M

Table 5.3: Replication factor for different hypercube schemes.

Query Size
Hypercube Replication factor
Hash Random Hybrid

TPCH9-Partial 10G 1 1.83 1.01
TPCH9-Partial 80G N/A 6.19 1.11

addresses skew and thus it has smaller maximum load per machine than the Hash-Hypercube

schemes. This explains why the Hybrid-Hypercube outperforms the Hash-Hypercube scheme,

as shown in Figure 5.7. For the WebAnalytics query, it is interesting that a relatively small

difference in the load (1.09×) among the Hash-Hypercube and Hybrid-Hypercube schemes

leads to a considerable difference (1.43×) in the performance. This is due to the fact that this

query is CPU-intensive (each incoming tuple incurs considerable computation).

The Random-Hypercube always achieves perfect load balancing due to randomization of all

the input tuples. This is why the maximum and average load per machine are always the same

for this scheme, but average load is rather high. In contrast, the Hybrid-Hypercube scheme

replicates tuples only when necessary, and thus it has smaller average load per machine

than the Random-Hypercube scheme. On the other hand, for TPCH9-Partial, the Hybrid-

Hypercube has higher maximum load per machine than the Random-Hypercube, as Suppke y

does not have completely uniform distribution (the skew is not high enough to justify using

randomization on that attribute) ix. Still, the Hybrid-Hypercube outperforms the Random-

Hypercube scheme, as shown in Figure 5.7. Thus, we need to take into account not only the

maximum load per machine but also the total communication cost (which is the average load

multiplied by the number of machines), as network may be a bottleneck (i.e., network might

be unable to sustain high enough throughput among all the communicating machines).

A closer look at the replication factor. Table 5.3 shows the replication factor for different

hypercubes in TPCH9-Partial. We define the replication factor in Section 5.3.2 as the ratio

between the total number of tuples the the component receives and the number of tuples that

ixWhen computing the Hybrid-Hypercube dimensions, for the attributes which a user marks as non-skewed, we
assume uniform distribution. Thus, the computed maximum and average load per machine is the same.

90

5.5 Evaluation

the immediate upstream components (in this case, data sources) produce. A small replication

factor implies small network traffic as well as small amount of local join processing. Table 5.3

illustrates that not only the Hybrid-Hypercube has lower replication factor than the Random-

Hypercube (and thus better performance), but its replication factor also scales considerably

better. In addition, the Hybrid-Hypercube has slightly higher replication factor than the Hash-

Hypercube. However, this is exactly the reason why it is skew-resilient, and consequently, why

it achieves better performance than the Hash-Hypercube scheme.

5.5.4 DBToaster versus traditional local joins

Next, we compare multi-way joins with traditional local joins versus DBToaster as the local

joins.

TPC-H Queries. We run TPCH9-Partial with the 10G/8J configuration and TPC-H Q3 with the

10G/8J configuration on the TPC-H dataset with the zipfian distribution and the skew factor

of 2. In all the TPC-H queries, we disregard LIMIT and ORDER BY clauses, as Squall does not

support these constructs yet. The query plans with traditional joins cannot finish due to high

computation cost (joiners cannot keep pace even with a minimal number of data sources),

so we extrapolate their running time. The performance numbers from Figures 5.8a and 5.8b

show that DBToaster brings an order of magnitude improvement compared to the traditional

local joins.

Google TaskCount Query. We also run queries over the Google scheduling datasetx. We

presented the schema and properties of this dataset in Section 5.1.1. We provide results for

a query that provides the count of failed tasks per machine id and platform over the Google

scheduling dataset:

G
o

o
gl

e
Ta

sk
C

o
u

n
t

SELECT MACHINE_EVENTS.machineID, MACHINE_EVENTS.platform, COUNT(*)

FROM JOB_EVENTS, TASK_EVENTS, MACHINE_EVENTS

WHERE TASK_EVENTS.eventType = FAIL

AND JOB_EVENTS.jobID = TASK_EVENTS.jobID

AND MACHINE_EVENTS.machineID = TASK_EVENTS.machineID

GROUP BY MACHINE_EVENTS.machineID, MACHINE_EVENTS.platform

Hypercube properties. We run the Google TaskCount query using 8 machines. The Hash-

Hypercube creates machi neI D× j obI D = {1×8} partitioning, that is, it hashes JOB_EV E N T S

and T ASK _EV E N T S and replicates the smallest relation (M AC H I N E_EV E N T S). Whereas,

the Random-Hypercube produces M AC H I N E_EV E N T S×JOB_EV E N T S×T ASK _EV E N T S =
{1×1×8} partitioning, that is, it replicates the smallest two relations (M AC H I N E_EV E N T S

and JOB_EV E N T S). As the query consists of only equi-joins, and there is no significant skew,

the Hybrid-Hypercube generates the same partitioning as the Hash-Hypercube scheme (recall

that the Hybrid-Hypercube subsumes both the Hash-Hypercube and Random-Hypercube

xhttps://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

91

Chapter 5. Multi-way join operators: partitioning schemes and local operators

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

DBToaster Traditional joins

R
u
n
ti

m
e
 (

S
e
c
)

Hash-Hypercube
Random-Hypercube

Hybrid-Hypercube

x10

(a) TPCH9-Partial 10G/8J

 0

 500

 1000

 1500

 2000

 2500

DBToaster Traditional joins

R
u
n
ti

m
e
 (

S
e
c
)

Hash-Hypercube
Random-Hypercube

Hybrid-Hypercube

x10

(b) TPC-H Q3 10G/8J

 0

 100

 200

 300

 400

 500

DBToaster Traditional joins

R
u
n
ti

m
e
 (

S
e
c
)

Hash-Hypercube
Random-Hypercube

Hybrid-Hypercube

(c) Google TaskCount 8J

Figure 5.8: Multi-way joins with different local joins (traditional vs DBToaster).

schemes). The difference between the three hypercube schemes is rather small, as the total size

of M AC H I N E_EV E N T S and JOB_EV E N T S is only 14.5% of the relation T ASK _EV E N T S

size.

Local joins. On the other hand, using different local joins makes a big difference. As Figure 5.8c

shows, the hypercube schemes with DBToaster outperforms the schemes with traditional local

joins by a factor of 3−4×.

5.5.5 Summary

Multi-way joins avoid shuffling the intermediate results, but typically have higher replication

of the base relation tuples compared to the corresponding pipeline of 2-way joins. Hence, for

certain queries (such as 3-Reachability), multi-way joins reduce the total communication costs.

This translates to achieving better performance compared to the corresponding pipelines of

2-way joins, validating the fact that communication cost plays an important role in distributed

processing. Multi-way joins are also more amenable for online processing due to their inherent

adaptivity to join selectivity fluctuations. Namely, due to their hypercube structure, multi-way

joins completely avoid the need for join reordering (see Section 6.1 for more information).

Our Hybrid-Hypercube outperforms an existing scheme by up to an order of magnitude (see

the results for query WebAnalytics in Figure 5.7). Our scheme achieves 1.6× performance

improvement compared to the best existing hypercube scheme (see the results for query

TPCH9-Partial on 80G dataset using 100 machines in Figure 5.7). This is due to the fact

that our scheme achieves skew resilience, while reducing replication of the tuples from base

relations. The maximum and average load per machine are good performance predictors

for different hypercube schemes. In general, if some of the relations are relatively small, the

performance difference between the hypercube scheme drops. Finally, using DBToaster locally

brings an additional speedup of up to an order of magnitude compared to the case when

traditional local joins are used.

92

6 Adaptivity

6.1 Skew types and Adaptivity

The data distribution in an online system can change, so Squall offers some adaptivity tech-

niques.

Skew due to hash imperfections. One may think that, in the case of uniform data distribution,

hashing (both for aggregations and equi-joins) always leads to even load distribution. However,

there are two situations when this is not the case. The first one happens if the number of

GROUP BY/join distinct keys is smaller than the operator parallelism. It causes some machines

to be completely idle. Second, uneven load distribution becomes very likely when the number

of distinct keys d and the operator parallelism p are the same, or when d is a bit bigger than

p. For instance, if d = 15 and p = 8, an optimal scheme will assign no more than ⌈15/8⌉ = 2

keys to each machine. However, due to imperfections of hash functions, it is very likely that

some machine is assigned 3 keys, leading to 1.5× higher maximum load per machine than

in an optimal case. This causes severe performance degradations. The performance gap

deepens for d = p, as it becomes very likely that one machine is assigned 2 keys (keeping

another machine completely idle), while an optimal assigns exactly 1 key per machine. The

machine which is assigned two times more work becomes a bottleneck. This results in a

largely suboptimal query plan in terms of resource utilization, throughput and latency, as we

explained in Section 2.2.

Unfortunately, suboptimal assignments due to a small number of distinct keys d happen

frequently in practice. For example, many queries from the TPC-H benchmark [8] (e.g. Q4, Q5,

Q12) have final aggregations with only up to 25 distinct values. In particular, Q4, Q12 and Q5

have 5, 7 and 25 distinct values, respectively.

On the other hand, we typically know all the distinct values for attributes with a small domain

(e.g. possible values for ship priorities in TPC-H are predefined). Squall uses this information

to optimally assign distinct values and to achieve perfect load balancing i. Before the execution

iThe optimal assignment for uniform distribution is as follows. If the number of different values is divisible by

93

Chapter 6. Adaptivity

starts, Squall creates a mapping from the predefined keys to the machines using a round robin

partitioning.

Temporal skew. There is another type of skew called temporal skew, where it does not suffice

for skew resilience to have the exact data distribution (even in the case of uniform distribution).

Temporal skew occurs when a specific tuple arrival order causes load imbalance. In contrast

to skew due to hash imperfections, temporal skew occurs only in online systems. Different

partitioning schemes have different properties with respect to temporal skew. As we stated in

Section 4.2, partitioning schemes are commonly classified [120] to content-sensitive schemes

(e.g., joins with hash or range partitioning) and content-insensitive schemes (e.g., 1-Bucket

scheme [106], which uses random partitioning). Content-sensitive schemes are prone to

temporal skew. In particular, for hash partitioning, in the case of sorted tuple arrival and

moderate join key frequencies, only one machine will be active at a time. This is equivalent to

a sequential execution. We denote imbalance in load caused by tuple arrival order as temporal

skew. Range partitioning is also prone to temporal skew. In the case of range partitioning and

sorted or nearly sorted tuple arrival (e.g., a timestamp is the join key), only a few machines

at a time perform some work. In the context of hypercube schemes, each scheme that uses

hash partitioning on at least one dimension (with size greater than 1) is considered content-

sensitive. On the other hand, content-insensitive schemes use random partitioning and they

are resilient to temporal skew. Namely, these schemes perform the same independently of

tuple arrival order, as the tuples are randomly distributed among the machines.

Thus, it is insufficient to capture only the data distribution. Rather, we also need to capture

the temporal skew, which we can do indirectly by monitoring the machine loadii. To achieve

good performance, we recommend using random partitioning schemes in the case of data or

temporal skew (or both).

Skew fluctuations. There is an important difference in adaptivity among hash, range and ran-

dom partitionings. Hash partitioning uniformly partitions the data, and thus, it always yields

bad performance in the presence of skew. For range partitioning, an online operator needs

to periodically adjust to the data distribution changes (e.g., when a different key becomes

the one with highest frequency, or when the skew degree changes). If changes are occurring

frequently, the operator spends a large amount of time on state relocations over the network.

Even worse, an adversary can change the data distribution right after the system adjusts the

scheme, thus causing the scheme to always be highly suboptimal. The random partitioning

avoids this problem as it randomly assigns tuples to machines, essentially removing skew in

the data distribution.

Join selectivity fluctuations. Next, we explain how multi-way joins bring an additional adap-

tivity level compared to the pipeline of 2-way joins. The join order in an optimal query plan

consisting of 2-way joins is very sensitive to the join selectivity of intermediate relations. In

the number of machines, all the machines should be responsible for the same number of values. Otherwise, the
number of values should not differ by more than one between any two machines.

iiThis requires that the partitioning scheme reflects the actual data distribution.

94

6.1 Skew types and Adaptivity

other words, a small change in the join selectivity may cause another join order to become

an optimal one. In online systems, the join selectivity for 2-way joins can vary at run-time.

Furthermore, some intermediate relations may grow very large [13, 144, 45].

A possible response is adaptive join reordering [65]. In that case, we discard some intermediate

relations (e.g., R 1 S) and rebuild new state for other intermediate relations (e.g., S 1 T) from

scratch. This may have very adverse and hard to predict effects in an online system, including

very large latencies for new incoming tuples. For this reason, existing online systems typically

do not perform join reordering at run-time. Squall also do not reorder join at run-time, but it

offers resilience to join selectivity fluctuations through multi-way joins.

In contrast to a pipeline of 2-way joins, a multi-way joins consists of a single join operator, so

there is no need for join reordering. Furthermore, a multi-way join does not need to change

which intermediate relations are materialized (e.g., R 1 S to S 1 T in the example above), nor

to send the intermediate results over the network. Thus, in contrast to a pipeline of 2-way

joins, hypercube schemes inherently bring adaptivity to the join selectivity fluctuations.

SAR principle. We introduce the SAR principle, which summarizes this section. To achieve

Skew-resilience and Adaptivity for more skew types in an online system, partitioning schemes

need to increase the input tuple Replication. Namely, for 2-way joins, hash partitioning

(e.g., [66]) is prone to skew but requires no replication (hash partitioning is limited to equi-

joins). Whereas, with small amount of replication, range partitioning provides resilience to

Redistribution Skew (e.g., M-Bucket scheme [106]), or to both Redistribution and Join Product

Skew (e.g., our equi-weight histogram scheme [132]). Unfortunately, range partitioning is

prone to temporal skew and skew fluctuations. On the other hand, random partitioning (e.g.,

1-Bucket scheme [106]) is resilient to data and temporal skew and skew fluctuations, but it

requires a higher amount of replication compared to the one from the equi-weight histogram

scheme [132]. A multi-way join is resilient to all skew types and it brings adaptivity to join

selectivity variations. However, it requires higher replication than in the 1-Bucket scheme [106]

due to the following. Both in 1-Bucket and multi-way joins, in order to produce the join result

without requiring communication among joiner machines, a potential output tuple and all

its corresponding input tuples are assigned to a single machine. Given more relations in the

join, a single tuple needs to join with more tuples from other relations, effectively increasing

replication. (On the other hand, pipeline of 2-way joins may incur higher total network cost

compared to a multi-way join due to transferring the intermediate results over the network.)

Related work. There is a lot of work on adapting to changing input rates [123, 78, 84]. However,

these works focus on a single-machine scenario, and optimizing the local join algorithm

accordingly. In contrast, we introduce skew fluctuations and temporal skew, which concerns

changing data distribution, and influence the choice of optimal partitioning scheme writ to

their skew. Flux [120] introduces transient skew which is essentially a short-term temporal

skew. The authors of [120] propose processing tuples out of order from buffers, which does

not address temporal skew because all the tuples in the buffer can have a single destination.

95

Chapter 6. Adaptivity

Furthermore, Flux does not discuss the behavior of different partitioning schemes with respect

to transient skew. In contrast, we reveal that only content-insensitive schemes can address

temporal skew.

Regarding the SAR principle, we are the first to formalize it, the trade-off between skew-

resilience and replication was known from before, both in the context of offline (e.g., 1-

Bucket scheme [106]) and online processing (e.g., [65]). In contrast to the previous work, we

observe the connection between adaptivity on one side, and skew-resilience and replication

on the other side. We are the first to formalize the SAR principle. In addition, we provide

classifications of different partitioning schemes according to their properties regarding skew-

resilience (for different types of skew), adaptivity and replication.

Hypercube sizes. The optimal hypercube dimension sizes minimize replication, and thus,

maximize performance. We determine the optimal sizes from the relative base relation sizes,

as explained in Section 5.2. In an online system, the relative sizes may change at run-time.

In that case, a hypercube scheme needs to adapt to these changes. Squall implements an

adaptive 1-Bucket join operator [58], which we describe in Section 6.2.

Fault tolerance. Squall uses Storm features to achieve fault tolerance. However, we can

sometimes design a better FT strategy by taking into account peculiarities of the employed

partitioning schemes. In fact, if the partitioning scheme replicates tuples, a failed node can

recover its state from some of its peers rather than from a disk checkpoint. For example, in

Figure 5.1b, if a machine with coordinates {1, 1, 1} fails, we can recover its state from any

machine {1, *, *} (for R), {*, 1, *} (for S) and {*, *, 1} (for T). This improves performance, as

network accesses are several times faster than disk accessesiii. When RDMA is used, the

performance improvements are even higher.

We can employ the same optimization even if the partitioning scheme only partially replicates

the operator state. In that case, we achieve efficient fault tolerance without replicating the

entire operator. Rather, we replicate only the parts of the operator state that are not already

replicated by the partitioning scheme.

6.2 Adaptive 1-Bucket operator

We need data statistics to choose an optimal partitioning scheme. On the other hand, statistics

may not be known ahead of time. An example is a pipeline of 2-way joins, where the input

of an operator is the output of another operator. As cardinality estimation of the output

is error-prone [74], we need to dynamically adjust the partitioning scheme. Similarly, data

statistics is unknown in the case of reading from remote data sources [50].

Existing work on adaptive operators focus on equi-joins and partitioning on the join keys [120,

37]. In contrast, we provide adaptive 1-Bucket operator, which handles both equi-joins and

iiihttps://gist.github.com/jboner/2841832

96

6.2 Adaptive 1-Bucket operator

......

......

321

...... J....

321 J....

Joiner Tasks

Output Data to the next layers

Reshuffled/Migrated Data
R₁ R₂ R₃ R₄

⋈ ⋈

⋈

An example query plan
Reshuffler Tasks

Input Data from previous layers

Figure 6.1: The adaptive operator structure. Each of J machines is assigned one reshuffler and
one joiner task.

non-equi joins.

Our adaptive 1-Bucket operator periodically adjusts the offline 1-Bucket partitioning scheme

according to the current relation sizes. Adjusting the scheme also incurs repartitioning of the

operator state. Our operator collects statistics in a decentralized manner, minimizes state

migration, offers a non-blocking migration algorithm, and provides optimality guarantees on

data distribution and communication cost. To provide guarantees, it is crucial to choose the

right moments in time (decision points) to evaluate the optimality of the current partitioning

scheme, and change the scheme if necessary. We discuss each of these contributions in a

separate section.

Our optimality guarantees refer to the worst-case join operator input (both in terms of data

distribution and tuple arrival order). Obtaining worst-case guarantees is possible only for

content-insensitive partitioning schemes for the following reason. As we explain in Section 6.1,

content-sensitive schemes are either prone to data skew (e.g., hash partitioning), or to tempo-

ral skew and skew fluctuations (e.g., range partitioning). In the worst case of data distribution

or tuple arrival order, only one machine is active at a time, wasting all other parallel resources.

Thus, we can provide guarantees only for the content-insensitive schemes, which are resilient

to these types of skew. In this section, we focus on the 1-Bucket scheme [106]). However, the

1-Bucket scheme is a 2-dimensional Random-Hypercube, and the design presented in this

section generalizes to the Random-Hypercube scheme as well.

6.2.1 Operator Structure

The operator structure is shown in Figure 6.1. The operator has two types of tasks: reshufflers

and joiners. Input tuples are randomly partitioned among the reshuffler tasks. Reshufflers

forward input tuples to joiner tasks according to the 1-Bucket scheme. One of the reshuffler

tasks is designated to collect global statistics and decide on adjusting the partitioning scheme.

We denote this task as controller. Each reshuffler is aware of the currently used partitioning

scheme and it replicates an input tuple among the joiner tasks in a randomly selected row or a

column. A joiner tasks performs the join operation. It stores the tuples received so far, and

97

Chapter 6. Adaptivity

S

r₆
r₅

r₄
r₃

r₂
r₁

s₄s₂s₁ s₅s₃ s₆

S

rᵢ
...

…
r₆

r₅
r₄

r₃
r₂

r₁

s₅s₄s₃ s₆s₁ s₂ sⱼ

R
R

<64GB><64MB>

<1
G
B
>

<512MB>

<5
12
M
B
>

1 2 3 8

1611109

61 62 63 64

1 2 3 4 61 62 63 64

1 2 3 8
9 10 11 16

61 62 63 64
<6
4M
B
>

(a) (b) (c)

(d)<1GB>

<1
G
B
>

<8GB>

<1
/8
G
B
>

(e)

(I) (II)

Figure 6.2: (I) Relations are of the same size (a), so 8×8 is the optimum mapping (b). (II)
Both relations grow, and one relation is 64× bigger than the other one (c). Using the old 8×8
mapping (d) is highly suboptimal compared to (64×1)-mapping (e).

joins new incoming tuples with the stored ones. These tasks are assigned to the J available

machines such that each machine is assigned one joiner task and one reshuffler task.

6.2.2 Input-load factor

Figure 6.2 illustrates several partitioning schemes for J = 64 machines. For instance, Fi-

gure 6.2b) shows a (8×8)-mapping of the 1-Bucket scheme for the join matrix from Figure 6.2a).

The 1-Bucket scheme is a 2-dimensional Random-Hypercube. As showed in Section 5.2, the

optimal partitioning for a 2-dimensional Random-Hypercube consists of congruent rectangu-

lar regions that together cover the entire join matrix, where tuples from a region are assigned

to a single machine for processing. As regions are congruent, it is sufficient to analyze the cost

of a single region. Independently of the (n ×m)-mapping, we always divide the join matrix in

J regions of the same area. The area corresponds to the number of produced output tuples,

as input tuples are randomized over the join matrix. Thus, it suffices to compare the region

perimeter among different (n ×m)-mappings of the 1-Bucket scheme. The region perimeter

is si zeR · |R|/n + si zeS · |S|/m, where R and S are the input relations, and si zeR (si zeS) is a

tuple size in relation R (S). We denote the region perimeter as Input-Load Factor (ILF) iv. ILF

represents the memory used on a machine and network traffic for sending the input tuples to

that machine. Input-Load Factor also corresponds to the work for demarshaling and storing

a tuple, and performing a join on a machine. Overall, by minimizing ILF, we maximize the

performance. An optimal mapping is the one that minimizes ILF.

According to Section 5.2, given that the relation sizes from Figure 6.2a are equal, the (8×8)-

mapping from Figure 6.2b is an optimal. This mapping has the minimal ILF among all the

other possible mappings for these relations sizes. Continuing this example, assume that

during the execution both relations grow such that S is 64× bigger than R (Figure 6.2c). If

we keep the (8×8)-mapping, the ILF is 8 1
8 GBs (Figure 6.2d). Whereas, the optimal mapping

(obtained by using formulas from Section 5.2) is (64×1) (Figure 6.2e), and it has ILF of only

ivILF is very related to maximum load per machine which is defined in the context of hypercube schemes, but
the formula for ILF also contains tuple sizes.

98

6.2 Adaptive 1-Bucket operator

2GBs. Consequently, it is very important to adjust the mapping during run-time.

6.2.3 Adaptivity

In this section, we discuss how to continuously adjust (n ×m)-mapping such that it corre-

sponds to the optimal mapping. To that end, our adaptive operator is equipped with a control

system called adaptivity loop [50], which consists of the following stages: (i) The monitoring

stage that consists of collecting data statistics (for our operator, we need only relation sizes).

(ii) The analysis and planning stage evaluates the optimality of the currently used scheme and

explores other schemes (for our operator, we consider different (n ×m)-mappings). (iii) The

actuation stage involves changing the employed mapping, which incurs data migration. In

each of the stages, we have an original scientific contribution.

Monitoring statistics

Existing solutions for monitoring statistics (e.g., [120]) collect all the required data on a single

machine. This machine becomes a bottleneck when the amount of collected data is large, or

when the number of involved machines is big. In contrast, we only monitor the data statistics

that goes through a single reshuffler (controller). As the input data is randomly partitioned

among the reshufflers, the optimal mapping for the 1-Bucket scheme depends only on the

relation sizes. Thus, it suffices to collect only relation sizes (rather than a histogram of the join

keys).

Analysis and planning

The main challenge is when to trigger decisions, that is, when to analyze the optimality of the

current mapping, and employ another mapping if necessary. If the decision points are too

dense, the migration cost dominates the execution. On the other hand, if the decision points

are too sparse, the operator’s mapping may be highly suboptimal. In both cases, the perfor-

mance is poor. We address this challenge by proposing an algorithm for triggering decisions

that is constant-competitive (which implies that the ILF of the employed mapping is never

worse than the ILF of the optimal one multiplied by a small constant) and that has amortized

total communication cost (the cost of migrations do not dominate the communication cost of

the optimal mapping in the Big O notation). Full details are in [58]. Here we provide only the

intuition.

We use the fact that a large number of input tuples is necessary to significantly change the

relative relation sizes. Our decision points are in exponential points in time. In particular, if

one decision point occurs right after receiving |R| and |S| tuples, the next one is when either

R reaches the size of 2|R|, or S reaches the size of 2|S|. We prove (Lemma 4.2 in [58]) that

between two successive decision points, the optimal mapping can change only for an atomic

unit. That is, if at a decision point n×m was an optimal, at the next decision point the optimal

99

Chapter 6. Adaptivity

may remain the same, or it can either be n/2×2m or 2n ×m/2. Consequently, during the

entire execution, the current mapping can be off the optimum mapping by at most one “unit”.

This provides for constant-competitiveness.

To provide for amortized communication cost, we opt for locality-aware data migration. In

particular, when performing a migration, we do not reshuffle all the data stored at joiners,

but we preserve as much data as possible. Let us consider the case of changing from (8×2)-

mapping to (4×4)-mapping. For the former mapping, each machine keeps |R|/8+|S|/2 tuples.

Whereas, for the latter mapping, each machine stores |R|/4+|S|/4 tuples. During the migration,

we need to discard half of the S state on each machine, and send R/8 state from each machine

to another machine in the operator. This cost does not dominate the total communication

cost of the optimal mapping (|R|/4+|S|/4). The full details are in [58]. After migration, the

data distribution is the same as if we used the current mapping from the beginning of the

execution.

Actuation

To preserve correctness, previous work on migration algorithms (e.g., [120]) require stalling

the input while performing migrations. For large-state operators, where migrations take

a considerable amount of time, stalling the input incurs extremely high latencies. This is

unacceptable in online scenarios.

In contrast, we process new tuples while performing migrations. In addition, we perform a

migration in a completely asynchronous manner. To that end, we allow only one migration

at a time and we carefully denote each tuple. There are several types of tuples: those that

arrive before (τ) and those that arrive after the migration decision. As the decision about new

mapping does not arrive instantly on all the reshufflers, it is possible to receive a tuple with an

old mapping after the migration decision (△). The tuples tagged with the new mapping are

denoted with △′. We ensure exactly-once semantics by producing (τ∪△∪△′)1 (τ∪△∪△′)
for all R and S tuples. The full details are in [58].

Correctness for multiple operator groups

To simplify analysis, so far we assumed that the number of joiners is a power of two. Next,

we relax that assumption. Given the number of joiners (machines) J ∈N+, J can be uniquely

decomposed into a sum of c powers of two: J = J1 + J2 + . . .+ Jc . Thus, each of c groups

has Ji machines. There are c ≤ ⌈log J⌉ such groups, and each group of machines runs an

independent instance of Adaptive 1-Bucket. Figure 6.3 shows an example with J = 20 machines

decomposed into 2 groups with sizes 16 and 4. Each group stores a distinct portion of the input,

proportionally to its number of machines. In particular, a group i stores approximately (Ji /J)T

tuples, where T is the number of incoming tuples received so far. We assign incoming tuples to

groups using a weighted random number generator. An incoming tuple is forwarded to all the

100

6.2 Adaptive 1-Bucket operator

1 2 3

765

4

8

129 10 11

151413 16

1817

19 20

Reshufflers

J1=16

J2=4

P1=16/20

P2=4/20

Figure 6.3: Decomposing J = 20 machines into independent groups of 16 and 4 machines.

groups in order to perform a join with the previously stored tuples (otherwise, some output

tuples would be missed). Each incoming tuple is stored only on a single group (otherwise, the

operator would produce duplicates when new tuples arrive to the system).

To operate correctly, the multi-group operator also needs to ensure the same tuple arrival

order among all the groups. We illustrate this by continuing the example from above. Assume

that tuples R1 and R2 arrive in this order on the first group, and in the reverse order (R2, R1)

on the second group. Each tuple is stored on one group, e.g., R2 is stored on the first group,

and R1 on the second group. In that case, always the second tuple is stored, so the result

R1 1R2 is missed. Similarly, if we stored tuples differently (R1 on the first group, and R2 on the

second group), the operator would produce duplicate results. We avoid such inconsistencies

by ensuring the same order among the groups. We do so as follows.

A possible solution would be to forward all the incoming tuples through a single machine. This

guarantees the same order among all the machines, given that the communication between

any pair of machines is in-order (e.g., TCP is used). However, this solution limits the scalability,

so we resort to an alternative solution. Given that we randomize the input tuples among the

groups independently to the originating relations, the mappings of the groups will be the

same (or very similar) with very high probability. This implies that a single machine in the

smaller group corresponds to a block of machines in the bigger group, as shown in Figure 6.3.

To ensure the same (consistent) order, we forward all the incoming tuples for a block and

the corresponding machine in the smaller group through a single machine (in Figure 6.3, a

machine from the block in the bigger group). In general, our protocol sends tuples serially

through all the groups (at most log J of them), so tuple routing cost (and thus latency) grows at

most log J times.

101

Chapter 6. Adaptivity

6.3 Towards adaptive Equi-weight histogram (EWH) scheme

As we already discussed, it is impossible to obtain worst-case guarantees for content-sensitive

schemes due to temporal skew and skew fluctuations. On the other hand, general principles

from our Adaptive 1-Bucket operator are reusable for content-sensitive schemes as well. In

particular, we can monitor statistics in a decentralized fashion (monitoring stage), and we

can design effective migration algorithms that minimize the amount of network transfers

(actuation stage). The analysis and planning stage explores and triggers new partitioning

schemes at certain points in time, called decision points. For content-sensitive operators,

we can only employ a heuristic (with no guarantees) for choosing the decision points. Our

adaptive EWH collects samples of tuples seen so far and at each decision point it rebuilds the

equi-weight histogram scheme based on the snapshot consisting of these samples.

Regarding the operator structure, we reuse the one from the Adaptive 1-Bucket. As before,

we have reshuffler and joiner tasks, and a single controller task. The only difference is that

reshufflers forward tuples to joiners according to the EWH scheme, instead of the 1-Bucket

scheme.

Next, we describe in detail the monitoring and actuation stages of the Adaptive EWH.

6.3.1 Monitoring Statistics

In contrast to the Adaptive 1-Bucket, it is insufficient to collect the information only about the

relation sizes. Rather, we need to build the equi-weight histogram out of input and output

samples. We collect input and output samples of size si and so , respectively. In a full-history

online system, n is constantly growing and thus, the sample sizes need to grow as well. It

is challenging to maintain a growing uniform random sample of a growing dataset. By the

definition of a random sample, each input tuple has to be present in the sample with equal

probability. A naive approach requires multiple passes (accessing the entire relations each

time we need a sample, that is, each time we build an equi-weight histogram).

Sampling the Input Tuples. The reshufflers can produce a uniform random sample of the

fixed-size input using Bernoulli sampling with probabilistic sample size bounds (BERN) [61]

with the sampling rate qi = si /n. As incoming tuples are randomly routed to reshufflers,

each reshuffler operates on a uniform sample of the received tuples. Thus, it suffices for the

controller to collect input statistics from a randomly chosen, leader reshuffler. As the reshuffler

sees only 1/J of all the input tuples, we scale qi to J qi .

We base our one-pass solution for maintaining the growing sample on the following obser-

vation: as n grows, the minimum required qi is monotonically decreasing. This allows us

to combine BERN (qi) with subsampling. Namely, the leader reshuffler periodically picks

q ′
i < qi , informs the controller and switches to BERN (q ′

i). After the notification, the controller

subsamples its sample with BERN (q ′
i /qi). It is shown in [61] that if qi is changed based on

102

6.3 Towards adaptive Equi-weight histogram (EWH) scheme

Algorithm 3 Assign regions to joiners.
1: function ASSIGN REGIONS TO JOINERS(ol dRTo J ,newReg i ons)
2: for each region in newRegions do
3: oldRegion = maxOverlap(region, oldRToJ)
4: joinerId = oldRToJ.get(oldRegion)
5: newRToJ.put(region, joinerId)
6: oldRToJ.remove(oldRegion)

7: return newRTo J
8: end function

n, rather than on the actual sample size, BERN (qi) with subsampling provides a uniform

random sample of the entire population. Decreasing qi also reduces the communication

overhead.

Sampling the Output Tuples. In an online setting, joiners produce outputs as the data flows

in. Thus, to build the output sample, the controller samples directly from the joiner output.

Each joiner uses on its output Bernoulli sampling with probabilistic sample size bounds

(BERN (qo)) [61], with sampling rate qo = so/n =O(
p

J/n). As qo monotonically decreases

with growing n, we maintain the growing sample by combining BERN (qo) with subsampling,

as before.

Combining the samples. To build an accurate sample matrix (a sample matrix which preserves

the original cost distribution), the controller takes a snapshot of the input and output samples

at each decision point. To do so, the controller sends a control message to the leader reshuffler,

which broadcasts it to the joiners. Upon the notification, the leader and the joiners send an

acknowledgement to the controller. Due to in-order delivery, the snapshot contains all the

sample tuples received before the corresponding acknowledgement arrived.

Parameters. To build the sample matrix, we need to know nc s and m (see §4.3.1). Interestingly,

the situation is dual to the one for offline processing. Here, we easily estimate m at the

controller by multiplying the sampling rate qo with the output sample size so . However, it

is challenging to obtain nc s . By the time we build a matrix over the equi-depth histograms

on the input sample, the joiners have already sent the corresponding output sample to the

controller. Thus, it becomes late to change nc s (qo). To mitigate the problem, the joiners

sample the output as if nc s was high, and keep the sample locally. After the controller provides

nc s , the joiners subsample their samples and send it to the controller.

6.3.2 Actuation

In contrast to the Adaptive 1-Bucket, the joiner regions do not compose a regular grid anymore,

complicating the minimization of the total migration cost. Assuming that machines can

migrate state in parallel, the migration cost is dominated by the joiner with the maximum

sum of the state relocated to and relocated from. We can reduce the migration cost by taking

into account the current state distribution among joiners when deciding about new region-to-

joiner assignment. That way, a joiner needs to relocate only a subset of its state.

103

Chapter 6. Adaptivity

A heuristic algorithm which minimizes the migration cost is shown in Algorithm 3. It works

as follows. For each region from the new partitioning scheme, it finds a region from the old

scheme (maxOver l ap function) such that the amount of retained state (overlapping input

tuples) is maximized. Then, for the corresponding regions in the new and old partitioning

scheme, it assigns the same joiner.

The migration algorithm requires special attention to the following. A single input tuple can

be replicated in the current partitioning scheme, while in the subsequent scheme the tuple

may exist only in a single region (machine). To prevent that after the migration we have two

times the same tuple (which would lead to incorrect results), we introduce unique identifiers

for each input tuple. This can be the primary key, a key extended with a sufficiently large

random number, or a large random number (so that the probability of collisions is very small).

This design allows us to assign unique identifiers at reshufflers completely independently in

parallel.

On the level of system components, migration works as follows. Controller sends the new par-

titioning scheme and the region-joiner mapping to each joiner. According to this information,

a joiner retains and sends the required parts of its local state. For quick access to transferred

part of the state, given that the EWH scheme is based on range partitioning, a joiner uses a

balanced binary tree index. If this type of index already exists for the join processing (e.g., in

the case of a band join), it can be reused for state migration.

6.4 Evaluation for Adaptive 1-Bucket

Datasets. We run queries from the TPC-H benchmark [8]. We use the TPC-H generator [44] to

generate datasets with the Zipf distribution. We set the degree of skew by choosing a value

for the Zipf skew parameter z. We experiment on five different skew settings Z0, Z1, Z2, Z3, Z4

which correspond to z = 0, z = 0.25, z = 0.5, z = 0.75 and z = 1.0 respectively. We create seven

databases with sizes 10,20,40,80,160,320, and 640GB.

Queries. We run two equi-joins from the TPC-H benchmark and two synthetic band-joins.

The equi-joins, EQ5 and EQ7 , are the most expensive join operation in queries Q5 and Q7.

All intermediate results are materialized before processing. The two band-joins represent

different workload settings. a) BC I is a high-selectivity join query that corresponds to a

computation-intensive workload, and b) BNC I is a low-selectivity join query that represents a

non-computation-intensive workload. The output of BC I is three orders of magnitude bigger

than its input size. Whereas, the output of BNC I is an order of magnitude smaller than its input.

The SQL for these queries are shown below. Table 4.4 summarizes all the query characteristics.

104

6.4 Evaluation for Adaptive 1-Bucket

EQ5 EQ7

Zipf SHJ DYNAMIC STATICMID SHJ DYNAMIC STATICMID

Z = 0 79 168 838∗ 98 192 210
Z = 1 79 176 851∗ 159 183 301
Z = 2 2742∗ 158 1425∗ 191 369 462
Z = 3 4268∗ 212 2367∗ 5462∗ 334 2610∗

Z = 4 5704∗ 203 2849∗ 6385∗ 415 3502∗

Note: [*] Overflow to disk.

Table 6.1: Runtime in secs.

B
C

I

SELECT *

FROM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.shipdate - L2.shipdate) <= 1

AND (L1.shipmode='TRUCK' AND L2.shipmode!='TRUCK')

AND L1.Quantity>45

B
N

C
I

SELECT *

FROM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.orderkey - L2.orderkey) <= 1

AND (L1.shipmode='TRUCK' AND L2.shipinstruct='NONE')

AND L1.Quantity>48

Operators. We experimentally evaluate four different dataflow operators: (i) SHJ, the parallel

symmetric hash-join operator described in [66]. This operator can only be used for equality

join conditions and it is content-sensitive as it partitions data among the machines according

to the join key. (ii) STATICMID, a static operator with a fixed square grid (
p

J ×p
J)-mapping.

This scheme is efficient when both input streams have the same size and it lies in the center of

the (n×m)-mapping spectrum. Thus, this mapping is a best guess when no information about

input stream sizes is available. (iii) STATICOPT, a static operator with an optimal mapping

scheme. This requires knowledge about the input stream sizes beforehand, which is typically

unknown in an online setting. (iv) DYNAMIC is our adaptive operator, which is initialized with

the (
p

J ×p
J)-mapping scheme. Evaluation shows that our operator does not perform much

worse than the STATICOPT operator, which has oracle knowledge about stream sizes (as we

already discussed, the sizes are typically unknown beforehand).

Joiners perform the local join in memory, but in the case of insufficient memory, the operator

starts spilling to disk. To that end, we integrate the back-end storage engine BERKELEYDB [108]

in the operators. First, we experimentally verify that, in case of overflow to disk, machines

suffer from long join execution times, hindering the performance. Then, for a fair comparison,

we allocate sufficient memory so that all operations fit in memory (whenever possible). The

heap size of each joiner machine is 2GB. Joiners use balanced binary tree indexes for band

joins and hashmaps for equi-joins. We set the input data rates so that joiners are fully utilized.

105

Chapter 6. Adaptivity

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 20 40 60 80 100

In
p
u
t-

L
o
a
d
-F

a
ct

o
r

(M
B

)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(a) EQ5 Input-Load Factor.

 0

 500

 1000

 1500

 2000

 2500

Q5 Q7 BNCI BCI
 0

 20

 40

 60

 80

 100

 120

In
p
u
t-

L
o
a
d
-F

a
ct

o
r

(M
B

)

T
o
ta

l
C

lu
st

er
 S

to
ra

g
e

C
o
n
s.

 (
G

B
)

StaticMid
Dynamic
StaticOpt

(b) Final Input-Load Factor.

Figure 6.4: Input-Load Factor.

6.4.1 Skew Resilience

Table 6.1 shows experimental results for joins EQ5 and EQ7 with different Zipf skew parameter

z for the 10G dataset. We compare the total execution time of our DYNAMIC and the SHJ

operators using 16 machines. As expected, SHJ performs well under non-skewed settings as

it does not replicate data and it evenly partitions data among machines. On the other hand,

the DYNAMIC operator, partitions workload equally between joiners, but with the additional

cost of tuple replication. As the skew parameter z grows (data gets more skewed), SHJ begins

to suffer from poor partitioning and load imbalance among machines. This is due to the fact

that most of the join work is performed on a few overwhelmed workers, while the remaining

machines are mostly idle. The busy workers are assigned a large amount of input data and

must overflow to disk, which severely degrades the performance. In contrast, our DYNAMIC

operator is resilient to data skew and consistently partitions the data equally among machines.

6.4.2 Performance Evaluation

We compare the performance of static dataflow operators against their adaptive counterpart.

We report the results for EQ5 and EQ7 on a Z4 10G dataset and of BNC I and BC I on a uniform

(Z0) 10G dataset. We start by comparing performance using 16 machines. As shown in

Table 6.1, DYNAMIC works efficiently and it consistently outperforms STATICMID. STATICMID

suffers from very high values of ILF for skewed data distributions, and thus, it spills to disk,

affecting the performance drastically. For a more fair comparison, we increase the number of

machines to 64 so that STATICMID operator does not need to overflow to disk. In that case,

STATICMID has a fixed (8×8)-mapping scheme, while the optimal mapping scheme is 1×64

for all joins. Our results show that DYNAMIC is on par with STATICOPT. This is due to the fact

that DYNAMIC chooses the optimal mapping scheme very early on during the join execution.

For completeness, we also evaluate EQ5 and EQ7 using SHJ. This operator overflows to disk due

to a high degree of data skew.

Input-Load Factor. As described in Section 6.2.2, different mappings incur different values

for the input-load factor. The average input-load factor for each operator shows that the

the ILF has linear growth over time. We illustrate this behavior for EQ5 . Figure 6.4a shows

106

6.4 Evaluation for Adaptive 1-Bucket

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100
 0

 1000

 2000

 3000

 4000

 5000

 6000

E
xe

cu
ti

o
n
 T

im
e

(S
ec

s)

S
H

J
E

xe
cu

ti
o
n
 T

im
e

(S
ec

s)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(a) EQ5 Execution Time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q5 Q7 BNCI BCI

E
x
e
c
u
ti

o
n
 T

im
e
 (

S
e
c
)

x10

StaticMid
Dynamic
StaticOpt

(b) Total Execution Time.

Figure 6.5: Execution Time.

the maximum size of ILF per machine as a function of the percentage of total input stream

processed. SHJ, STATICMID and DYNAMIC have the growth rate of 27, 14 and 2MB per 1%

input stream processed, respectively. Thus, SHJ, STATICMID suffer from high growth rates.

Figure 6.4b shows graphs with the final average ILF per machine for all the queries. STATICMID

consistently suffers from higher ILF values. In particular, its ILF is about 3 to 7 times bigger

that of DYNAMIC. This is because the optimal mapping (1×64) (which DYNAMIC eventually

chooses) lies at one end of the mapping spectrum and is far from the square grid mapping

used in STATICMID. Finally, ILF in SHJ is up to 13 times that of the other operators.

In Section 6.2.2 we explain that minimizing the ILF maximizes resource utilization and per-

formance. This is because higher ILF values leads to (i) unnecessary tuple replication among

the machines in the cluster, (ii) more messages transferred over the network (potentially

congesting the network), and (iii) additional overhead for processing and maintaining repli-

cated tuples at each machine. In what follows, we evaluate the impact of ILF on operator

performance.

Resource Utilization. The right axis in Figure 6.4b shows the total cluster storage consumption

in gigabytes. STATICMID’s fixed partitioning scheme has high resource consumption (storage,

network bandwidth) due to unnecessary tuple replication. Moreover, it requires 4× more

machines (64) than DYNAMIC to complete its execution exclusively in main memory (for the

experiments in Table 6.1, we use 16 machines). SHJ overflows to disk even when given 64

machines. DYNAMIC efficiently uses resources. This is very important in cloud environments

which typically follow pay-as-you-go policies.

Execution Time. Figure 6.5a depicts the execution time needed to process different percent-

ages of the input stream for query EQ5 . We observe that execution time grows linearly with the

percentage of input stream processed. The other join queries behave similarly. Figure 6.5b

shows the total execution time for all the join queries. The join processing time directly de-

pends on the ILF. The rigid assignment 8×8 of STATICMID yields high ILF values and thus,

it consistently performs worse than DYNAMIC. However, the performance gap is smaller for

computationally intensive joins (e.g., BC I in Figure 6.5b). The SHJ execution time is shown at

the right axis of Figure 6.5a. This operator performs two orders of magnitude worse than other

107

Chapter 6. Adaptivity

 0

 2

 4

 6

 8

 10

 12

Q5 Q7 BNCI BCI

A
ve

ra
g
e

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

x10
5

x10
5

x10
4

x10
7

SHJ
StaticMid
Dynamic
StaticOpt

(a) Operator Throughput.

 0

 20

 40

 60

 80

 100

 120

Q5 Q7 BNCI BCI

L
a
te

n
cy

 (
m

s)

StaticMid
Dynamic
StaticOpt

(b) Tuple Latency.

Figure 6.6: Throughput and latency.

 0

 500

 1000

 1500

 2000

 2500

(1x64)(2x32)(4x16) (8x8)
 0

 20

 40

 60

 80

 100

 120

In
p
u
t-

L
o
a
d
-F

a
ct

o
r

(M
B

)

T
o
ta

l
C

lu
st

er
 S

to
ra

g
e

C
o
n
s.

 (
G

B
)

Optimal mappings

StaticMid
Dynamic
StaticOpt

(a) Final Input-Load Factor.

 0

 1

 2

 3

 4

 5

 6

 7

(1x64) (2x32) (4x16) (8x8)A
ve

ra
g
e

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Optimal mappings

x10
4

x10
4

x10
5

x10
5

StaticMid
Dynamic
StaticOpt

(b) Operator Throughput.

Figure 6.7: BNC I Performance Evaluation.

operators, illustrating that poor resource utilization may cause spilling to disk, which leads to

severe performance degradations. In all cases, due to the adaptivity of DYNAMIC, this operator

performs very closely to STATICOPT.

Average Throughput and Latency. Figure 6.6a shows total operator throughput. The through-

puts of DYNAMIC are consistently close to that of STATICOPT, and at least twice that of STAT-

ICMID. Furthermore, the throughputs of DYNAMIC are two orders of magnitude higher than

that of SHJ, except for BC I where the difference is slight. This validates the fact that a low

ILF directly translates to high throughput, and that this effect is magnified when spilling to

disk occurs. The throughput of an operator depends on the amount of join computation

performed on a machine (e.g., compare BC I and BNC I). Fig 6.6b shows average tuple latencies.

Latency is the time difference between emitting an output tuple t and the arrival of the more

recent corresponding source input tuple to the operator. The figure shows that the latency is

not significantly affected by the operator adaptivity. During state relocation, an extra network

hop leads to an increase in the tuple latency. Overall, DYNAMIC has average tuple latency close

to that of STATICMID, while it achieves much higher throughput.

Different Optimal Mappings. So far, an optimal mapping for join queries we experiment on

is far from the
p

J ×p
J mapping. Next, we compare performance under different optimal

mappings (see Figures 6.7a and 6.7b). To do so, we enlarge the smaller input stream. For

all joins, DYNAMIC adjusts its mapping to the optimal one very early during the execution.

108

6.4 Evaluation for Adaptive 1-Bucket

 0

 100

 200

 300

 400

 500

 600

80GB/16 160GB/32 320GB/64 640GB/128

(M
in

u
te

s)

Dataset Size / # of Machines

 0

 100

 200

 300

 400

 500

 600

 700

10GB/16 20GB/32 40GB/64 80GB/128

(S
ec

o
n

d
s)

E
xe

cu
ti

o
n
 T

im
e

In-Memory Computation

Out-Of-Core Computation

TPCH5

TPCH7

BNCI

(a) Total Execution Time.

 0

 5

 10

 15

 20

 25

 30

 35

Q5 Q7 BNCI

x10
3

x10
3

x10
2

80GB/16

160GB/32

320GB/64

640GB/128

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Q5 Q7 BNCI

x10
3

x10
3

x10
2

x10
5

x10
5

x10
4

A
ve

ra
g
e

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

In-Memory Computation

Out-Of-Core Computation

10GB/16

20GB/32

40GB/64

80GB/128

(b) Operator Throughput.

Figure 6.8: Scalability Results.

Figure 6.7a shows that the gap in input-load factor between DYNAMIC and STATICMID drops as

the optimal mapping gets closer to the grid square (
p

J ×p
J)-mapping scheme. Consequently,

the performance gap decreases between the two operators, as Figure 6.7b shows. This validates

the fact that the input-load factor has a decisive effect on performance. When (
p

J ×p
J)-

mapping is the optimal one, all the operators (STATICOPT, STATICMID and DYNAMIC) have

the same mapping, and DYNAMIC does not change its initial mapping scheme. However,

DYNAMIC performs slightly worse. This is attributed to adaptivity which comes with a small,

non-negligible cost.

6.4.3 Scalability Results

Next, we evaluate the scalability of DYNAMIC. In particular, we measure operator execution

time and throughput as we increase both the data size and parallelism. More precisely, we

evaluate weak scalability on 10GB/16 joiners, 20GB/32 joiners, and so on (see the in-memory

graphs of Figures 6.8a and 6.8b). Ideally, increasing the data size/joiners configuration should

result in the constant input-load factor and the output size per joiner. However, the input-load

factor grows, which prevents the operator from attaining perfect scalability (doubling the

data size/joiners should result in the same execution time and doubled average throughput).

For example, for BNC I , under the 20GB/32 configuration, the input stream sizes are 0.68M

(million) and 30M tuples, respectively, and 1×32 is the optimal mapping scheme. This scheme

has an ILF of 0.68M +30M/32 = 1.61M · si zetuple per joiner. However, under the 40GB/64

configuration, the input stream sizes are 1.36M and 60M, respectively, yielding a 1×64 optimal

mapping scheme where an ILF is 1.36M + 60M/64 = 2.29M · si zetuple . In both cases, the

output size per machine is the same (64K tuples). However, the ILF differs by 42% due to

the tuple replication of the smaller input stream (in both cases, the smaller input stream is

broadcasted, and the size of the smaller input stream increases). For the other two joins, the

109

Chapter 6. Adaptivity

ILF does not grow more than 9%. Accordingly, the execution time (Figure 6.8a) and the average

throughput (Figure 6.8b) graphs show that EQ5 and EQ7 scale almost perfectly. For BNC I , a

joiner processes more input tuples as we increase the dataset size. Taking into account the

increase in ILF, our operator attains good scalability.

Secondary storage. Out-of-core computation in Figures 6.8a and 6.8b shows performance

under weak scalability when the operator uses secondary storage. As before, all the queries

scale almost ideally, considering the growth in ILF. Thus, our operator scales with large

volumes of data, and it works well for different local join algorithms. However, the performance

drops by an order of magnitude compared to the in-memory performance results (Figure 6.8a).

This validates the fact that using secondary storage is not suitable for high-performance online

processing.

6.4.4 Summary

Experiments show that our adaptive operator outperforms existing practical static schemes

in multiple performance metrics without sacrificing tuple latency. We observe that ILF has

direct effect on resource utilization and performance. This justifies our optimization goal

of minimizing ILF. Our operator provides efficient resource utilization (in terms of memory

consumption and network bandwidth) that is up to 7 times better than that of existing non-

adaptive join operators. Non-adaptivity results in higher resource requirements leading to

overflows. Even when given enough resources, the adaptive operator performs up to 4 times

better in terms of execution time and average throughput. We achieve adaptivity at the cost of

slight increase in tuple latency (between 5 and 20ms). Experiments also validate scalability of

our operator. In addition, the operator is content-insensitive and thus it is resilient to data skew.

On the other hand, content-sensitive operators overflow to disk, and suffer from performance

degradations of up to two orders of magnitude.

110

7 Conclusion

7.1 Summary of Contributions

This thesis presents Squall, a distributed online query engine. Our system automatically

translates an SQL query into a DAG of Relational Algebra operators, and further to physical

query plans for online processing. Skew appears in many real-world scenarios, and it is

important to address it to achieve good performance. This is especially important in online

systems. Thus, we focus on skew-resilient partitioning schemes for complex joins (non-equi

joins, multi-way joins) and on adaptive operators.

Our partitioning schemes achieve load balancing and skew-resilience while minimizing tuple

replication and the work per machine. To do so, our equi-weight histogram (EWH) partitioning

scheme for monotonic 2-way joins takes into account skew and covers the spectrum of

different data distributions. In contrast to previous work, our scheme ensures accurate load

balancing without any prior assumptions or knowledge about the data. Rather, the EWH

scheme provides an efficient parallel scheme for capturing the input and output distribution

from the join to a matrix. To evenly partition the work (matrix) among the machines, the EWH

scheme employs a novel multi-stage algorithm along with our join-specialized computational

geometry algorithm for rectangle tiling. By doing so, we achieve up to 12× speedup and up to

5× improvement in resource utilization compared to state-of-the-art approaches.

For multi-way joins, we propose a partitioning scheme that is a composite of different parti-

tioning schemes. We decide on the optimal scheme according to the join conditions and skew

degree in different relation attributes. Our partitioning scheme performs up to an order of

magnitude better than an existing partitioning scheme. We also employ state-of-the-art local

join operators (DBToaster), which brings an order of magnitude performance improvement.

We allow users to combine different partitioning schemes and local join operators. Such a

modular system design allows practitioners to leverage the effect of various design choices on

the performance. In our setup, communication costs dominate over computation costs. No

matter which costs dominate, using our partitioning schemes is crucial for performance. In

particular, our schemes minimize replication and network transfers per each machine (which

111

Chapter 7. Conclusion

is important for network-bound setups). Furthermore, our partitioning schemes minimize the

maximum number of tuples assigned to a machine, and thus, they minimize the computation

per machine (which is important for CPU-bound setups).

Finally, we analyze the adaptive aspects of the system. We enumerate different types of skew,

some of which occur only in online systems. We categorize partitioning schemes according

to their resilience to different types of skew. Interestingly, an offline optimal scheme is not

necessarily an online optimal scheme (e.g., in the case of temporal skew). We also reveal the

SAR principle, which states that an operator with more replication is inherently more adaptive

for various changes in data statistics, and it provides for skew-resilience for more skew types.

Squall also offers an adaptive operator, which supports arbitrary join conditions and is capable

of adjusting to changes in data statistics. This operator encapsulates data partitioning and

state migration. Our adaptive operator decides when to adjust the mapping and how to

perform data migration efficiently, in a non-blocking manner. The operator is highly adaptive,

it has up to 4× higher throughput than its static counterpart, and it maintains low latency

(on the order of tens of milliseconds). Using similar design choices, we describe how to build

an adaptive counterpart of our equi-weight histogram (EWH) partitioning scheme for 2-way

joins.

7.2 Future work

Squall can seamlessly parallelize various local join algorithms using any of our partitioning

schemes. In addition to DBToaster, we are currently investigating efficient local algorithms for

multi-way cyclic joins. A cyclic join is a join whose hypergraph, where vertices are attributes

appearing in the query and hyperedges are relations from the query over the attributes, is

cyclic [94]. Cyclic joins occurs frequently in practice [45]. Indeed, cyclic multi-way joins

typically have the intermediate results much bigger than the final result, which makes execut-

ing within a single communication step more advantageous. Recently, worst-case optimal

algorithms for local offline cyclic joins were proposed, including NPRR [104] and Leapfrog

algorithm [128]. These algorithms deflect from the traditional way of executing joins which

evaluates relation after a relation. Rather, they evaluate attribute by attribute, and for each

attribute they process in a turn all the involved relations. Similarly to how [45] parallelizes

the Leapfrog algorithm [128] using the Hash-Hypercube scheme [13], Squall could parallelize

incremental version of Leapfrog [129] using any of our hypercube schemes. We also identify a

need for a local join algorithm that is a hybrid between Leapfrog and DBToaster algorithms. In

particular, incremental Leapfrog [129] provides certain performance guarantees regarding the

worst-case join input, but only for full conjunctive queries (no projections, no aggregations).

On the other hand, DBToaster is optimized for aggregation queries, and it maintains all the

intermediate results, including those that might be bigger than the final result. We envision

a novel hybrid join algorithm, that would use the basic structure from a worst-case optimal

algorithm (e.g., incremental Leapfrog), and it would reuse previously computed intermediate

results (DBToaster) whenever their sizes do not surpass the final result size.

112

7.2 Future work

There are many other possible extensions in Squall. One of them is supporting online ag-

gregation. As described in Section 2.1, online aggregation continuously produces the result

estimation for a static dataset according to the data processed so far. This class of processing

guarantees the result quality, that is, the approximate results are within certain error bounds

from the exact answer. We can use Squall to parallelize local join algorithms for online aggre-

gation. For instance, bifocal sampling [60] is a single-machine algorithm for 2-way equi-joins

that is tailored for skewed datasets. The algorithm divides the dataset into high-frequency and

low-frequency keys. The design of this algorithm is reminiscent to a skew-resilient partitioning

scheme for equi-joins [29]. Squall is capable of parallelizing bifocal sampling by using this

scheme [29]. Similarly, for multi-way joins in the context of online aggregation, we can reuse

our hypercube schemes. Ripple join [70] is a local multi-way joins for online aggregation that

joins uniform random samples from multiple (N) relations. To achieve better performance,

we can complement this local join with aggressive preaggregation from the Local DBToaster.

Statistical tools (estimators, error bounds) from ripple joins require that we join new samples

with all the previously-seen samples, and that we randomly sample from the base relations. We

can satisfy both requirements in a parallel setting using the Random-Hypercube scheme [144],

given that we randomize all the base relations before the processing starts. That way, the

statistical tools from [70] directly apply. Thus, Squall can naturally parallelize ripple join using

the Random-Hypercube scheme. However, joining samples from many relations initially tends

to produce small number of output tuples, which translates to large error bounds [47]. Effi-

ciently executing multi-way joins in the context of online aggregation is still an open research

problem, even for a single-machine scenario. We anticipate that these new local joins will

solicit for new partitioning schemes.

Furthermore, each query plan is currently executed in isolation (and on a separate set of

machines). Frequently, these query plans share sub-plans that perform the same computation

over the same input data (e.g. same selection over the same input relation). An obvious

optimization is to share the common computation (and query plan operators) among multiple

query plans, akin to [72, 63]. By doing so, we save some resources (machines and network

traffic).

Finally, we assume flat network. This may not hold in practice, for instance, communication is

faster within a rack than between racks. An important optimization is how to schedule tasks

to machines considering their communication patterns (e.g., tasks that communicate a lot

should be scheduled closer in the physical network) [15, 110].

113

A Appendix

A.1 Integrating DBToaster in Squall

DBToaster achieves good performance by recursively maintaining materialized views. From

the given query, DBToaster generates these materialized views, and the code for updating

them on new tuple arrivals. DBToaster provides backends in multiple languages. We use the

Scala backend, because Scala runs on top of Java Virtual Machine and Squall is written in Java.

Squall invokes the DBToaster code generator while translating Squall query plan to the Storm

topology. This is done on the client machine (the machine on which we submit the topology).

Squall automatically invokes DBToaster, without requiring any user intervention. Then, all the

required code is compiled in a single jar file, which is then submitted to the Storm cluster.

Here is an example of creating a component that runs DBToaster as the local join operator:

DBToasterJoinComponentBuilder dbToasterCompBuilder =

new DBToasterJoinComponentBuilder();

dbToasterCompBuilder.addRelation(relCustomer, _long);

dbToasterCompBuilder.addRelation(relOrders, _long, _long, _string, _long);

dbToasterCompBuilder.addRelation(relLineitem, _long, _double, _double);

dbToasterCompBuilder.setSQL(

"SELECT LINEITEM.f0, SUM(LINEITEM.f1 * (1 - LINEITEM.f2)) " +

"FROM CUSTOMER, ORDERS, LINEITEM " +

"WHERE CUSTOMER.f0 = ORDERS.f1 AND ORDERS.f0 = LINEITEM.f0 " +

"GROUP BY LINEITEM.f0, ORDERS.f2, ORDERS.f3");

In the query which is the input for the DBToaster component, relation names correspond

to the upstream component names. When specifying an upstream component, we need to

provide its schema. We specify fields in a relation by using the “f” letter followed by a serial

order of that field in the corresponding schema.

115

Bibliography

[1] Amazon Architecture. http://highscalability.com/amazon-architecture.

[2] Common Crawl Corpus. http://commoncrawl.org/.

[3] Computing at CERN. https://home.cern/about/computing.

[4] Extracted Hyperlink Graph from August 2012 Common Crawl Corpus.

http://webdatacommons.org/hyperlinkgraph/index.html.

[5] Graphite monitoring and visualization tool. graphite.wikidot.com/.

[6] Scalding: A scala api for cascading. https://github.com/twitter/scalding.

[7] The Apache Hadoop project. http://hadoop.apache.org.

[8] The TPC-H benchmark. http://www.tpc.org/tpch/.

[9] Trove: High Performance Collections for Java. http://trove.starlight-systems.com/.

[10] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the

Borealis stream processing engine. In CIDR, 2005.

[11] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building histograms without

looking at data. In SIGMOD, 1999.

[12] F. Afrati, N. Stasinopoulos, J. D. Ullman, and A. Vassilakopoulos. SharesSkew: An

algorithm to handle skew for joins in mapreduce. http://arxiv.org/abs/1512.03921.

[13] F. Afrati and J. Ullman. Optimizing joins in a MapReduce environment. In EDBT, 2010.

[14] K. Agrawal, C. E. Leiserson, and J. Sukha. Executing task graphs using work-stealing. In

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages

1–12. IEEE, 2010.

[15] Y. Ahmad and U. Çetintemel. Network-aware query processing for stream-based ap-

plications. In Proceedings of the Thirtieth International Conference on Very Large Data

Bases - Volume 30, VLDB ’04, pages 456–467. VLDB Endowment, 2004.

117

Bibliography

[16] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta process-

ing for dynamic, frequently fresh views. In VLDB, 2012.

[17] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills,

P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant stream processing at internet

scale. In Very Large Data Bases, pages 734–746, 2013.

[18] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax,

S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. The dataflow model: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order

data processing. Proceedings of the VLDB Endowment, 8(12):1792–1803, 2015.

[19] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,

U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,

K. Tzoumas, and D. Warneke. The stratosphere platform for big data analytics. The

VLDB Journal, 23(6):939–964, Dec. 2014.

[20] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris.

Reining in the outliers in map-reduce clusters using mantri. In OSDI, volume 10, page 24,

2010.

[21] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko,

D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Fault-tolerant and scalable joining

of continuous data streams. In SIGMOD, 2013.

[22] Apache Flink: Scalable batch and stream data processing. https://flink.apache.org/.

[23] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,

and J. Widom. STREAM: The Stanford data stream management system. Technical

report, Stanford InfoLab, 2004.

[24] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker,

and R. Tibbetts. Linear road: a stream data management benchmark. In VLDB, 2004.

[25] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query processing. In SIGMOD,

2000.

[26] S. Banerjee and K. Ramanathan. Collaborative filtering on skewed datasets. In Pro-

ceedings of the 17th International Conference on World Wide Web, WWW ’08, pages

1135–1136, New York, NY, USA, 2008. ACM.

[27] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke. Nephele/PACTs: a

programming model and execution framework for web-scale analytical processing. In

SoCC, 2010.

[28] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. http://arxiv.org/

pdf/1401.1872.

118

http://arxiv.org/pdf/1401.1872
http://arxiv.org/pdf/1401.1872

Bibliography

[29] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS, 2014.

[30] P. Berman, B. DasGupta, and S. Muthukrishnan. Slice and dice: A simple, improved

approximate tiling recipe. In SODA, 2002.

[31] P. Berman, B. Dasgupta, S. Muthukrishnan, and S. Ramaswami. Improved approxima-

tion algorithms for rectangle tiling and packing. In SODA, 2001.

[32] S. Blanas, J. Patel, V. Ercegovac, J. Rao, E. Shekita, and Y. Tian. A comparison of join

algorithms for log processing in MapReduce. In SIGMOD, 2010.

[33] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird: A framework for integrating

batch and online mapreduce computations. Proceedings of the VLDB Endowment,

7(13):1441–1451, 2014.

[34] E. A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the 19th

Annual ACM Symposium on Principles of Distributed Computing, page 7, 2000.

[35] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multidimensional workload-aware

histogram. In SIGMOD, 2001.

[36] N. Bruno, Y. Kwon, and M.-C. Wu. Advanced join strategies for large-scale distributed

computation. In VLDB, 2014.

[37] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating scale

out and fault tolerance in stream processing using operator state management. In

SIGMOD, 2013.

[38] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope:

easy and efficient parallel processing of massive data sets. Proceedings of the VLDB

Endowment, 1(2):1265–1276, 2008.

[39] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw, and Nathan.

FlumeJava: Easy, Efficient Data-Parallel Pipelines. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 363–375, 2 Penn

Plaza, Suite 701 New York, NY 10121-0701, 2010.

[40] B. Chandramouli, R. C. Fernandez, J. Goldstein, A. Eldawy, and A. Quamar. The Quill Dis-

tributed Analytics Library and Platform. Technical Report MSR-TR-2016-25, Microsoft

Research, 2016.

[41] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger,

and J. Wernsing. Trill: A high-performance incremental query processor for diverse

analytics. Proceedings of the VLDB Endowment, 8(4):401–412, 2014.

[42] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram construc-

tion: How much is enough? In SIGMOD, 1998.

119

Bibliography

[43] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over joins. In

SIGMOD, 1999.

[44] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew.

[45] S. Chu, M. Balazinska, and D. Suciu. From theory to practice: Efficient join query

evaluation in a parallel database system. In SIGMOD, 2015.

[46] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and

R. Sears. Online aggregation and continuous query support in MapReduce. In SIGMOD,

2010.

[47] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive data:

Samples, histograms, wavelets, sketches. Foundations and Trends in Databases, 4(1–

3):1–294, 2012.

[48] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In

OSDI, 2004.

[49] A. Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive query

processing. In VLDB, 2004.

[50] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and

Trends in Databases, 1(1), 2007.

[51] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evaluation of non-equijoin algo-

rithms. In VLDB, 1991.

[52] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling in

parallel joins. In VLDB, 1992.

[53] J. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. Progressive merge join: a generic and

non-blocking sort-based join algorithm. In VLDB, 2002.

[54] T. Do and H. S. Gunawi. The case for limping-hardware tolerant clouds. In Presented as

part of the 5th USENIX Workshop on Hot Topics in Cloud Computing, 2013.

[55] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi. Limplock:

Understanding the impact of limpware on scale-out cloud systems. In Proceedings of

the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 14:1–14:14, New York,

NY, USA, 2013. ACM.

[56] C. Doulkeridis and K. Nørvag. A survey of large-scale analytical query processing in

mapreduce. VLDBJ, 23(3), 2014.

[57] P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir. Inf.

Process. Lett., 97(5), 2006.

120

Bibliography

[58] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and adaptive online joins. In

VLDB, 2014.

[59] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus

with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[60] S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz. Bifocal sampling for skew-

resistant join size estimation. In ACM SIGMOD Record, volume 25, pages 271–281. ACM,

1996.

[61] R. Gemulla, P. J. Haas, and W. Lehner. Non-uniformity issues and workarounds in

bounded-size sampling. VLDBJ, 22(6), 2013.

[62] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In SOSP, 2003.

[63] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: killing one thousand queries with

one stone. Proceedings of the VLDB Endowment, 5(6):526–537, 2012.

[64] J. D. Gibbons. Nonparametric methods for quantitative analysis. Holt, Rinehart and

Winston, New York, 1976.

[65] A. Gounaris, E. Tsamoura, and Y. Manolopoulos. Adaptive query processing in dis-

tributed settings. Advanced Query Processing, 36(1), 2012.

[66] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,

25(2), 1993.

[67] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In SIGMOD,

1995.

[68] X. Gu, P. Yu, and H. Wang. Adaptive load diffusion for multiway windowed stream joins.

In ICDE, 2007.

[69] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incrementally. SIGMOD,

22(2), 1993.

[70] P. Haas and J. Hellerstein. Ripple joins for online aggregation. In SIGMOD, 1999.

[71] L. Harada and M. Kitsuregawa. Dynamic join product skew handling for hash-joins in

shared-nothing database systems. In DASFAA, 1995.

[72] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A simultaneously pipelined

relational query engine. In Proceedings of the 2005 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’05, pages 383–394, New York, NY, USA, 2005.

ACM.

[73] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In SIGMOD, 1997.

121

Bibliography

[74] Y. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join

results. In SIGMOD, 1991.

[75] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel

programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

[76] A. Iyer, L. E. Li, and I. Stoica. CellIQ: real-time cellular network analytics at scale. In

NSDI, 2015.

[77] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query processing

with the DBO engine. In SIGMOD, 2008.

[78] J. Kang, J. Naughton, and S. Viglas. Evaluating window joins over unbounded streams.

In ICDE, 2003.

[79] O. Kennedy, Y. Ahmad, and C. Koch. Dbtoaster: Agile views for a dynamic data manage-

ment system. In CIDR, 2011.

[80] C. Koch. Incremental query evaluation in a ring of databases. In PODS, 2010.

[81] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ra-

masamy, and S. Taneja. Twitter heron: Stream processing at scale. In SIGMOD, 2015.

[82] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A study of skew in mapreduce applications.

In Open Cirrus Summit, 2011.

[83] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: Mitigating skew in mapreduce

applications. In SIGMOD, 2012.

[84] R. Lawrence. Early hash join: a configurable algorithm for the efficient and early

production of join results. In VLDB, 2005.

[85] R. Lawrence. Using slice join for efficient evaluation of multi-way joins. Data Knowl.

Eng., 67(1):118–139, Oct. 2008.

[86] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang. Ysmart: Yet another sql-to-

mapreduce translator. In Distributed Computing Systems (ICDCS), pages 25–36. IEEE,

2011.

[87] B. Li, Y. Diao, and P. Shenoy. Supporting scalable analytics with latency constraints.

Proceedings of the VLDB Endowment, 8(11):1166–1177, 2015.

[88] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy. A platform for scalable one-pass

analytics using mapreduce. In SIGMOD Conference, pages 985–996, 2011.

[89] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing. In

SIGMOD, 2015.

122

Bibliography

[90] B. Liu, M. Jbantova, and E. Rundensteiner. Optimizing state-intensive non-blocking

queries using run-time adaptation. In ICDE Workshop, 2007.

[91] B. Liu, Y. Zhu, M. Jbantova, B. Momberger, and E. A. Rundensteiner. A dynamically

adaptive distributed system for processing complex continuous queries. In VLDB, pages

1338–1341, 2005.

[92] X. Liu, N. Iftikhar, and X. Xie. Survey of real-time processing systems for big data. In

Proceedings of the 18th International Database Engineering & Applications Symposium,

pages 356–361. ACM, 2014.

[93] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous

queries over streams. In SIGMOD, 2002.

[94] D. Maier. Theory of Relational Databases. Computer Science Press, 1983.

[95] N. Marz. STORM: Distributed and fault-tolerant realtime computation.

https://github.com/nathanmarz/storm.

[96] N. Marz and J. Warren. Big Data: Principles and best practices of scalable realtime data

systems. Manning Publications Co., 2015.

[97] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis.

Dremel: Interactive analysis of web-scale datasets. In VLDB, 2010.

[98] M. Mokbel, M. Lu, and W. Aref. Hash-Merge join: A non-blocking join algorithm for

producing fast and early join results. In ICDE, 2004.

[99] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional histograms. In SIG-

MOD, 1988.

[100] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely

dataflow system. In SOSP, 2013.

[101] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two dimen-

sions: Algorithms, complexity, and applications. In ICDT, 1999.

[102] S. Muthukrishnan and T. Suel. Approximation algorithms for array partitioning prob-

lems. J. Algorithms, 54(1), 2005.

[103] M. A. U. Nasir, G. D. F. Morales, D. García-Soriano, N. Kourtellis, and M. Serafini. The

power of both choices: Practical load balancing for distributed stream processing en-

gines. In 2015 IEEE 31st International Conference on Data Engineering, pages 137–148.

IEEE, 2015.

[104] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms:[extended

abstract]. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Princi-

ples of Database Systems, pages 37–48. ACM, 2012.

123

Bibliography

[105] M. Nikolic, M. Dashti, and C. Koch. How to Win a Hot Dog Eating Contest: Distributed

Incremental View Maintenance with Batch Updates. In SIGMOD, 2016.

[106] A. Okcan and M. Riedewald. Processing theta-joins using MapReduce. In SIGMOD,

2011.

[107] F. Olken. Random sampling from databases, 1993. PhD Thesis, UC Berkeley.

[108] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX Annual Technical

Conference, FREENIX Track, pages 183–191, 1999.

[109] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V. Rao, V. Sankara-

subramanian, S. Seth, C. Tian, T. ZiCornell, and X. Wang. Nova: continuous Pig/Hadoop

workflows. In SIGMOD, 2011.

[110] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer. Network-

aware operator placement for stream-processing systems. In Proceedings of the 22Nd

International Conference on Data Engineering, ICDE ’06, pages 49–, Washington, DC,

USA, 2006. IEEE Computer Society.

[111] O. Polychroniou, R. Sen, and K. A. Ross. Track join: distributed joins with minimal

network traffic. In SIGMOD, 2014.

[112] V. Poosala and Y. E. Ioannidis. Estimation of query-result distribution and its application

in parallel-join load balancing. In VLDB, 1996.

[113] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value inde-

pendence assumption. In VLDB, 1997.

[114] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules for adaptive query

processing. In ICDE, pages 353–364, 2003.

[115] K. Ren, Y. Kwon, M. Balazinska, and B. Howe. Hadoop’s adolescence: An analysis of

hadoop usage in scientific workloads. VLDBJ, 6(10), 2013.

[116] N. Roussopoulos. An incremental access method for ViewCache: Concept, algorithms,

and cost analysis. TODS, 16(3), 1991.

[117] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on the

cost of a map-reduce computation. Proc. VLDB Endow., 6(4):277–288, 2013.

[118] F. R. Sayed and M. H. Khafagy. SQL TO Flink Translator. International Journal of

Computer Science Issues, 12(1), January 2015.

[119] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path

selection in a relational database management system. In Proceedings of the 1979 ACM

SIGMOD international conference on Management of data, pages 23–34. ACM, 1979.

124

Bibliography

[120] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An adaptive partition-

ing operator for continuous query systems. In ICDE, 2002.

[121] J. Stamos and H. Young. A symmetric fragment and replicate algorithm for distributed

joins. Transactions on Parallel and Distributed Systems, 4(12), 1993.

[122] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2’s learning optimizer. In

VLDB, 2001.

[123] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis. RPJ: producing

fast join results on streams through rate-based optimization. In SIGMOD, 2005.

[124] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding

in a data stream manager. In VLDB, 2003.

[125] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive: a warehousing solution over a MapReduce framework. In VLDB, 2009.

[126] F. Tian and D. DeWitt. Tuple routing strategies for distributed eddies. In VLDB, 2003.

[127] T. Urhan and M. Franklin. XJoin: A reactively-scheduled pipelined join operator. IEEE

Data Engineering Bulletin, 23(2), 2000.

[128] T. L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm. CoRR,

abs/1210.0481, 2012.

[129] T. L. Veldhuizen. Incremental maintenance for leapfrog triejoin. CoRR, abs/1303.5313,

2013.

[130] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale

cluster management at Google with Borg. In European Conference on Computer Systems.

ACM, 2015.

[131] S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate of multi-way join

queries over streaming information sources. In VLDB, 2003.

[132] A. Vitorovic, M. Elseidy, and C. Koch. Load balancing and skew resilience for parallel

joins. In ICDE, 2016.

[133] W. Vogels. Eventually consistent. ACM Queue, 2008.

[134] C. Walton, A. Dale, and R. Jenevein. A Taxonomy and Performance Model of Data Skew

Effects in Parallel Joins. In VLDB, 1991.

[135] S. Wang and E. Rundensteiner. Scalable stream join processing with expensive predi-

cates: workload distribution and adaptation by time-slicing. In EDBT, 2009.

[136] Y. Wang. Relations between two common types of rectangular tilings. Int. J. Comput.

Geometry Appl., 19, 2009.

125

Bibliography

[137] A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory environ-

ment. In Parallel and Distributed Information Systems, 1991.

[138] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization for massively parallel data

processing. In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 12.

ACM, 2011.

[139] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark: Sql and

rich analytics at scale. In SIGMOD, 2013.

[140] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in parallel joins in

shared-nothing systems. In SIGMOD, 2008.

[141] W. Yan and P.-Å. Larson. Eager aggregation and lazy aggregation. In VLDB, 1995.

[142] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams:

Fault-tolerant streaming computation at scale. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 423–438, New York,

NY, USA, 2013. ACM.

[143] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an efficient and

fault-tolerant model for stream processing on large clusters. In HotCloud, 2012.

[144] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing using

MapReduce. VLDBJ, 5(11), 2012.

[145] Y. Zhou, B. Ooi, and K. Tan. Dynamic load management for distributed continuous

query systems. In ICDE, 2005.

[146] G. K. Zipf. Human behavior and the principle of least effort: An introduction to human

ecology. Ravenio Books, 2016.

126

Aleksandar Vitorović

STRENGTHS I love solving hard problems in Big Data/Databases that bring significant
savings to company. At Microsoft, I introduced changes in a production
distributed system, and achieved up to 1.75X savings in resources needed.

 During my PhD, I built Squall, a distributed query engine that is up to 15X
faster than existing work. Squall attracted attention from industry (Huawei).

 Squall is an open-source project, where a total of 24 people contributed.
I led it through the design, development and maintenance stages.

EDUCATION PhD in Computer Science with Prof. Christoph Koch | EPFL
September 2010 - | Lausanne, VD

M. Sc. in CS | SCHOOL OF ELECTRICAL ENGINEERING
May 2009 – July 2010 | University of Belgrade, Serbia

B. Sc. in CS | SCHOOL OF ELECTRICAL ENGINEERING

October 2004 – February 2009 | University of Belgrade, Serbia

 3-months exchange at Texas A&M University, United States

PROFESSIONAL
EXPERIENCE/
INTERNSHIPS

PhD project in Big Data/Databases | EPFL
September 2010 - | Lausanne, VD

 Squall (50K+ lines of Java code), a distributed low-latency query engine
built on top of Apache Storm. Main features:

o Efficient and adaptive skew-resilient joins (up to 15X speedup)
o Modularity: combine best data partitioning and local operators
o Scalability (I run Squall on a cluster of 220 hardware threads)
o A resource-aware query optimizer

 Presented Squall to the managers of Huawei’s StreamSMART system
in an Invited visit to Huawei Research Lab, Hong Kong (September 2014.).

INTERN | MICROSOFT RESEARCH
May 2015 – August 2015 | Redmond, WA, USA

 The company needed to run more production queries on an existing cluster
(small errors acceptable). Worked in C++ on Approximate Query Processing.

 Participated in the design of sampler operators and in the modification
of a production query optimizer (result: 2X fewer resources needed).

 Extended the Microsoft SCOPE engine to natively support samplers
(result: additional savings in resources up to 1.75X).

INTERN | TEXAS A&M UNIVERSITY
September 2008 – December 2008 | College Station, TX, USA

 Advised by Prof. Lawrence Rauchwerger.

 Parallelization of SPEC CPU2006 C++ code using OpenMP.

 SPEC is hard to parallelize; I found patterns that allow for up to 6x speedup.

 I used this work as my Master thesis.

DEVELOPER-CONTRACTOR | INSTITUTE MIHAILO PUPIN
February 2009 – July 2010 (hourly payed, average 6h/day) | Belgrade, Serbia

 Renewable Energy Sourcing Decisions and Control: EU-FP7 project.

 Built a prototype web simulator, and coupled Java JSF and MATLAB.

LUMP-SUM CONTRACTOR | SERBIAN OBJECT LABORATORIES
July 2006 – February 2007 | Belgrade, Serbia

 Transforming UML models into Java code: SOLoist. Designed and
implemented UML model checker, and tested the Java code generator.

Av. de Préfaully 25A | Chavannes-pres-Renens, VD | aleksandar.vitorovic@epfl.ch | +41 (0)78 610-81-39

127

PUBLICATIONS A. Vitorović, M. Elseidy, K. Gyliev, K. Vu Minh, D. Espino, M. Dashti,
Y. Klonatos and C. Koch. Squall: Scalable Real-time Analytics. VLDB Demo
2016. Full version of the paper is available as a Technical Report.

 A. Vitorović, M. Elseidy and C. Koch. Load Balancing and Skew Resilience
for Parallel Joins. ICDE 2016. Full version of the paper is available as a
Technical Report.

 S. Kandula, A. Shanbhag, A. Vitorović, M. Olma, R. Grandl, S. Chaudhuri
and B. Ding. Quickr: Lazily Approximating Complex Ad-Hoc Queries in Big
Data Clusters. SIGMOD 2016, patented.

 M. Elseidy, A. Elguindy, A. Vitorović and C. Koch. Scalable and Adaptive
Online Joins. VLDB 2014. Full version of the paper is available as a
Technical Report.

 A. Vitorović, M. Tomašević and V. Milutinović. Manual Parallelization
Versus State-of-the-Art Parallelization Techniques: The SPEC CPU2006
as a Case Study. Advances in Computers, Vol. 92., 2014.

 D. Paunović, A. Vitorović, and M. Batić. Web enabling of the Matlab /
Simulink models. YUINFO 2011.

TEACHING
ASSISTANT

 Big Data: Spring 2014, 2015, graduate-level, 120 students.

 Advanced Databases: Spring 2011, 2012, 2013, graduate-level, 100 students.

 Principles of Computer Systems: Fall 2012, graduate-level, 25 students.

 Linear Algebra: Fall 2013, 2014, undergraduate-level, 300 students.

 Java Programming: Fall 2015, undergraduate-level, 150 students.

UNIVERSITY
PROJECTS
(during PhD,
M. Sc. and B. Sc.)

 HadoopGunzip: Gunzipping binary files in Hadoop. This was a homework in
the Big Data class, and I was the responsible TA. I had to implement it, and
the solution required changes in the Hadoop source code. I proposed 3
solutions (Map-only Hadoop, MapReduce Hadoop and Map-only Hadoop
Streaming Job) with different tradeoffs in performance and maintainability.

 ParImage: A parallel image processor in Java w/ a server and worker nodes.

 SVMeter: A C++ Linux application that aggregates network traffic over time.

 SmallOS: A small operating system in C++ w/ timesharing and multithreading.
It can also connect to a driver that simulates disk.

 CitySearch: Finding shortest paths in a city using A* and branch and bound
search algorithms.

 MemEff: Given a distribution of programs’ memory requirements, it yields the
average memory utilization.

TECHNICAL SKILLS Programming: Java (2 years industry + 5 years academia) w/ JSP and JSF,
 C, C++ w/ OpenMP, C#, Python, Thrift, OCaml, Visual Basic, SQL, MATLAB

 Parallel frameworks: Apache Storm, Hadoop, Heron, Microsoft SCOPE

 Relational Databases: Microsoft SQL Sever, MySQL

 Operating systems: Linux and Solaris (including bash), Windows

HONORS & AWARDS Best 4-th year Student GPA Award (2008.)

 Eurobank EFG Award for 100 Best Students in Serbia (2007.)

 Scholarship from the Serbian Government (2004.-2010.)

 Scholarship from Foundation for young talents - Dositeja, Serbia (2010.-2014.)

LANGUAGES English (C1), French (B1/B2 according to DIALANG), Serbian (native)

PERSONAL INFO 30 years

REFERENCES Available upon request.

128

	Acknowledgements
	Abstract (English/Français/Deutsch)
	List of figures
	List of tables
	Introduction
	Thesis statement
	Motivation
	Intellectual and technological contributions
	Long and short-term impact
	Thesis outline

	Background
	Classes of online processing
	Requirements for online systems
	Existing work on online systems

	System architecture
	Overview
	Consistency

	A partitioning scheme for 2-way Joins
	Introduction
	Background & Preliminaries
	Definitions
	Content-Insensitive Partitioning Scheme
	Content-Sensitive Partitioning Scheme
	Equi-Weight Histogram Scheme

	Histogram algorithm
	Sampling
	Coarsening
	Regionalization
	Putting it all together

	Join operator
	Sampling the Output Tuples
	Discussion and Generalization

	Related Work
	Evaluation
	Experimental Setup
	Performance Analysis
	Scalability
	Accuracy and Efficiency of CSIO
	Sensitivity analysis
	Summary

	Further details
	Types of partitioning
	The histogram algorithm: Details and proofs
	Joins

	Multi-way join operators: partitioning schemes and local operators
	Novel join operators
	Applications
	Partitioning schemes
	Important special cases
	Local join algorithms
	HyLD operator: Hypercube scheme with Local DBToaster

	Multi-way joins: General case
	Gathering insights about multi-way joins
	The subsystem for collecting results and performance metrics
	Interacting with the system

	Related work
	Evaluation
	Datasets
	Multi-way vs 2-way joins
	Hybrid-Hypercube versus Hash-Hypercube and Random-Hypercube
	DBToaster versus traditional local joins
	Summary

	Adaptivity
	Skew types and Adaptivity
	Adaptive 1-Bucket operator
	Operator Structure
	Input-load factor
	Adaptivity

	Towards adaptive Equi-weight histogram (EWH) scheme
	Monitoring Statistics
	Actuation

	Evaluation for Adaptive 1-Bucket
	Skew Resilience
	Performance Evaluation
	Scalability Results
	Summary

	Conclusion
	Summary of Contributions
	Future work

	Appendix
	Integrating DBToaster in Squall

	Bibliography
	Curriculum Vitae

