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APPENDIX A
PROOF OF EQUATIONS (5) AND (6)
As the adversary does not have knowledge about con-
ditional mobility profiles for the users, their mobil-
ity profiles are independent of each other – formally,
Pr (au(t) = r|au′(t) = r′) = Pr (au(t) = r), for any users
u and u′. Using Bayes’ rule it follows that, for any r ∈ RN

Pr (a(t) = r) =
N∏
i=1

Pr (aui
(t) = ri) (A.1)

We start the proof of Equation (5) by proving its base case:
t = 0.

αU0 (r) = Pr (a(0) = r | K) (A.2)
= Pr (au1

(0) = r1 | K)× · · · ×
Pr (auN

(0) = rN | K) (A.3)
= πu1

(r1) . . . πuN
(rN ) (A.4)

= πU (r) (A.5)

In step (A.2)→(A.3) of the derivation, we use the indepen-
dence assumption (A.1); in step (A.3)→(A.4), we use the fact
that the probability of a user u being in some region r at time
t = 0, given her mobility profile, is captured by the steady
state vector, i.e., πu(r), as there are no observations at, or
before, t = 0. We now complete the proof for any t > 0.

αUt (r) = Pr (o(1) . . .o(t), C1 . . . Ct,a(t) = r | K) (A.6)
= Pr (Ct |o(1) . . .o(t), C1 . . . Ct−1,a(t) = r,K) ·

Pr (o(1) . . .o(t), C1, . . . , Ct−1,a(t) = r | K) (A.7)
= Pr (Ct |a(t) = r,K) ·

Pr (o(1) . . .o(t), C1 . . . Ct−1,a(t) = r | K) (A.8)
= lt(r, C) ·

Pr (o(1) . . .o(t), C1 . . . Ct−1,a(t) = r | K) (A.9)
= lt(r, C) · Pr (o(t) |a(t) = r,K) ·

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,a(t) = r | K)

(A.10)
= lt(r, C) · fU (r,o(t)) ·

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,a(t) = r | K)

(A.11)
= lt(r, C) · fU (r,o(t)) ·∑

ρ∈RN

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,

a(t) = r,a(t− 1) = ρ | K) (A.12)
= lt(r, C) · fU (r,o(t)) ·∑

ρ∈RN

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,

a(t− 1) = ρ | K) ·
Pr (a(t) = r |a(t− 1) = ρ,K) (A.13)

= lt(r, C) · fU (r,o(t)) ·∑
ρ∈RN

αUt−1(ρ) · pU (ρ, r) (A.14)

In step (A.6)→(A.7) of the derivation, we apply the chain
rule. In step (A.7)→ (A.8), we use conditional independence:
given a(t) = r, the probability that the locations r can

represent the reported Ct depends neither on the observa-
tions, nor on K. In step (A.8)→(A.9), we use Definition (7).
In step (A.9)→(A.10), we apply the chain rule and use
conditional independence: given a(t) = r, o(t) does not
depend on the past observations. In step (A.10)→(A.11),
we use the fact that the location obfuscation process is
applied independently for each user. In step (A.11)→(A.12),
we apply the law of total probability, conditioning over all
the possible actual locations ρ users could have been at, at
time t− 1. In step (A.12)→(A.13), we use the chain rule and
conditional independence: given a(t− 1) = ρ, a(t) does not
depend on the past observations. In step (A.13)→(A.14), we
use Definition (4).
The proof of Equation (6) follows the same line of reasoning.

APPENDIX B
EFFECTS OF TRUE CO-LOCATIONS AND SPATIAL
CLOAKING
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Fig. 10. Privacy (top), absolute privacy loss (middle) and relative privacy
loss (bottom) for the limited user set attack with N = 2 users, when
users do not report fake co-locations (µ = 0) and use spatial cloaking or
location hiding as protection mechanisms. The privacy loss is expressed
w.r.t. the case where no co-locations are available (ν = 0, µ = 0); the
histograms show median values.

Similarly to our experimental setup presented in Fig-
ure 5b, we evaluate user privacy for a different LPPM,
namely location hiding (with probability λ) or spatial cloak-
ing (with probability 1 − λ). When using cloaking, a user
does not report the region corresponding to her actual lo-
cation, but instead a meta-region consisting of four regions,
one of which is the actual location. In Figure 10 we present
our results. We conclude that the proportion of reported true
co-locations consistently decreases the location privacy of
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the users (as was the case for the other LPPM based on
location hiding and location obfuscation), but in this case
the privacy loss is more evident. This could be explained by
the fact that in the case of cloaking, when observing a meta-
region of size four regions, the adversary has to explore four
possible regions as candidates for the user’s actual location;
whereas in the case of obfuscation, five possible candidates
for the actual location have to be explored (one of the four
neighboring regions of the observed (obfuscated) region and
the observed region itself).

APPENDIX C
EFFECTS OF THE DIFFERENCES OF INDIVIDUAL
LPPM SETTINGS

In this section, we analyze the effect of the differences, in the
users’ LPPM settings, on the location privacy (loss) due to
co-locations. To do so, we focus on the case of two users, a
target and her co-target, both who obfuscate their locations
but with different hiding probabilities λtarget and λco-target.
We perform a joint optimal localization attack. The results
are depicted in Figure 11 under the form of heat-maps that
represent the target user’s location privacy (a) as well as her
absolute (b) and relative (c) privacy loss (with respect to the
case ν = 0) as functions of the respective LPPM settings
λco-target (x-axis) and λtarget (y-axis).

A first observation is that co-locations always decrease
the privacy of the target (i.e., all values in Figure 11b
are positive) and that the more information the co-target
discloses, the worse the privacy of the target is (i.e., the cells
of the heat-map depicted in Figure 11a become lighter, when
going from right to left on a given row).

The diagonals of the heat-maps correspond to the case
λco-target = λtarget, which is depicted in more detail in
Figure 5. The region of the heat-map above the diagonal
corresponds to the case where the target is more conser-
vative, in terms of her privacy attitude, than her co-target
(i.e., λco-target < λtarget). It can be observed that the in-
formation disclosed by the target herself compromises her
privacy more than the information disclosed by her co-
target, e.g., the cell (0.6,0) is lighter (which means that the
target’s privacy is lower) than the cell (0,0.6).

By comparing the columns “λco-target = 1” and “no co-
target” (two right-most columns in Figure 11a), we can
observe the privacy loss stemming from the use, through the
co-location information, of the co-target’s mobility profile
alone (as the co-target never discloses her location). This is
substantial. The intuition behind this result is that co-located
users are likely to be at a place that is often visited by both
of them, which narrows down the choice of locations the
adversary needs to explore when localizing both users.

Finally, in the extreme case where the target never dis-
closes location information and her co-target always does so
(top-left cell of the heat-maps in Figures 11b and 11c), the
privacy loss for the target is 190m, which corresponds to a
decrease of 18%. This case (and in general the cases where
the target never discloses location information, i.e., the top
row of the heat-maps) highlights the fact that, as reported
co-locations involve two users, users lose some control
over their privacy: Without revealing any information about
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Fig. 11. Median values of the target’s location privacy (loss), for the
limited user set attack with N = 2 users, when the target and her co-
target have different values of λ (with obfuscation, ν = 0.5, µ = 0). The
diagonals correspond to the values of Figure 5b.

herself, a user can still have her privacy decreased by other
users, due to co-location information.
For the rest of the evaluation, we focus on the case where all
users have the same LPPM settings (i.e., same values of λ).

APPENDIX D
CO-LOCATION INFORMATION ON A LARGER SCALE

In Section 7 and Section 5, we considered a small dataset of
users, due to the high complexity of the optimal solution. We
denote this small dataset by Us. Here, we evaluate our belief
propagation solution on a larger dataset, in order to quantify
location privacy loss when co-locations from a larger set of
users are available. To this end, we select a subset Ul of
users in the GeoLife dataset, such that each selected user
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must have at least one real co-location7 with any other user
in Ul (across their full traces). This results in 38 users being
selected. Note that Us ⊂ Ul. We emphasize that due to the
low availability of real co-locations across the GeoLife users,
this represents a weaker constraint of minimum desired co-
locations, compared to that which we use when sampling
the users in our small dataset Us. The low availability of co-
locations, coupled with the sparsity of the location informa-
tion available, also motivates sampling 10 short individual
collections of actual traces in the following way: For each
u, a target user in Ul, we generate actual traces for all the
users in Ul such that (1) u has at least 10% of valid samples
(i.e., different from r⊥) and u has at least 1 co-location with
her co-target1.
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Fig. 12. Comparison of the localization attacks for target users in Ul
on Scenarios (a) and (e), as depicted in Figure 6, with obfuscation.
The privacy loss (middle and bottom) is evaluated w.r.t. Scenario (a). In
Scenario (e), we consider users report true co-locations with probability
ν = 0.5 and that they do not report fake co-locations (µ = 0).

We perform an individual localization attack by optimal
inference for Scenario (a), considering, in turn, each user
in the set Ul as the target user (using only their own
reported locations and no co-locations). We then consider
Scenario (e), the case of an adversary that exploits co-
locations between any of the users in Ul. We assume users
report only a limited proportion of their true co-locations,
with probability ν = 0.5, and no fake co-locations (µ = 0).
We perform an approximate joint inference algorithm, by
using the belief propagation algorithm with at most 20
iterations. We then compare the privacy in Scenario (e) to
that in Scenario (a), in the case where all users use the
same LPPM settings, i.e., same value for λ and disclose
only their obfuscated locations. Figure 12 shows the results

7. Note that by real co-locations, we mean that the users are at the
same location (i.e., their actual locations at a given time instant are the
same), regardless of the fact that the co-location is reported or not.

of our comparison. It can be observed that, unsurprisingly,
the users’ privacy decreases with the amount of considered
co-locations. The privacy loss can seem somewhat modest,
in comparison to the one observed in our previous experi-
ments using Us. This can be explained by the fact that users
in Us have more real co-locations than those in Ul (a user
has a median number of real co-locations in their actual
traces of 5.5 and 2, respectively). We further compare the
privacy of only the target users from Us (but still using all
the co-locations in the larger dataset Ul) with that when
using co-locations among users from Us. Figure 13 shows
the results of this comparison. It can be observed that the
availability of co-locations with a larger number of users
can further reduce privacy (privacy loss is as much as 31%
when λ = 0).
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Fig. 13. Comparison of the localization attacks for target users in Us on
Scenario (a), Scenario (e) considering co-locations only with and among
users in Us and Scenario (e) considering co-locations with and among
all users in Ul. The privacy loss (middle and bottom) is evaluated w.r.t.
Scenario (a). We consider users report true co-locations with probability
ν = 0.5, do not report fake co-locations (µ = 0) and use obfuscation.

APPENDIX E
COMPARISON METRICS FOR THE ACCURACY OF
THE DIFFERENT INFERENCE ALGORITHMS

We compare the approximate localization attack to the
optimal localization attack, and we measure its accuracy
by the average Hellinger and statistical distance between
their output region distributions. Specifically, if h denotes
the output of the optimal localization attack ĥ that of the
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approximate localization attack, then

1

N · T
∑
u∈U

∑
t∈{1,...,T}

1√
2

√√√√∑
r∈R

(√
hut (r)−

√
ĥut (r)

)2

1

N · T
∑
u∈U

∑
t∈{1,...,T}

1

2

∑
r∈R

∣∣∣hut (r)− ĥut (r)
∣∣∣.

APPENDIX F
TABLE OF NOTATIONS

Table 1 summarizes the main notations used in our formal-
ization throughout the paper.

TABLE 1
Table of notations.

U Set of mobile users
R Set of regions that partition the whole area
N Number of users (N = |U|)
M Number of regions (M = |R|)
T Number of time instants

pu(·, ·) Mobility profile of user u
πu(·) The stationary distribution of pu
fu(·) Obfuscation function employed by user u

gu,v(·, ·) Co-location reporting function for users u and v
K Adversary’s background knowledge

au(t) Actual location of user u at time t
a(t) Actual locations of all the users at time t
u@t r User u reports being in r at time t
ou(t) Obfuscated location of user u at time t
o(t) Obfuscated locations of all the users at time t

u↔t v A co-location was reported between u and v at time t
cu,v(t) Binary variable incorporating whether u↔t v
Ct Set of all reported co-locations at time t
C Set of all reported co-locations


