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Abstract
Networks, as abstractions for representing complex relationships among entities, are central

in the modeling and analysis of many large-scale human and technical systems, and they

have applications in diverse fields such as computer science, biology, social sciences, and

economics. Recently, network mining, i.e., statistical models and computational methods

applicable specifically to network data, has been an active area of research. In this thesis, we

study several related network-mining problems, from three different perspectives: the model-

ing and theory perspective, the computational perspective, and the application perspective.

In the bulk of this thesis, we focus on network alignment, where the data provides two (or

more) partial views of the network, and where the node labels are sometimes ambiguous.

Network alignment has applications in social-network reconciliation and de-anonymization,

protein-network alignment in biology, and computer vision.

In the first part of this thesis, we investigate the feasibility of network alignment with a random-

graph model. This random-graph model generates two (or several) correlated networks, and

lets the two networks to overlap only partially. Indeed, this model is parameterized by the

expected node overlap t 2 and by the expected edge overlap s2 of the two networks. For a

particular alignment, we define a cost function for structural mismatch. We show that, if the

average node-degrees of the random graphs grow as s−2t−1
(
log(n)+ω(1)

)
, the minimization

of the proposed cost function (assuming that we have access to infinite computational power),

with high probability, results in an alignment that recovers the set of shared nodes between

the two networks, and that also recovers the true matching between the shared nodes. Our

result shows that network alignment is fundamentally robust to partial edge-overlaps and

node-overlaps, and this motivates us to look for network-alignment algorithms with low

computational and memory complexity.

The most scalable network-alignment approaches use ideas from percolation theory, where a

matched node-couple infects its neighboring couples that are additional potential matches.

In the second part of this thesis, we propose a new percolation-based network-alignment

algorithm that can match large networks by using only the network structure and a handful

of initially pre-matched node-couples called seed set. We characterize a phase transition

in matching performance as a function of the seed-set size. We also show the excellent

performance of our algorithm over several real large-scale social networks.

In the third part of this thesis, we consider two important application areas of network mining

in biology and public health. The first application area is percolation-based network alignment

of protein-protein interaction (PPI) networks in biology. The alignment of biological networks
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has many uses, such as the detection of conserved biological network motifs, the prediction of

protein interactions, and the reconstruction of phylogenetic trees. Network alignment can be

used to transfer biological knowledge between species. We introduce a new global pairwise-

network alignment algorithm for PPI networks, called PROPER. The PROPER algorithm shows

higher accuracy and speed compared to other global network-alignment methods. We also

extend PROPER to the global multiple-network alignment problem. We introduce a new

algorithm, called MPROPER, for matching multiple networks, and we show that MPROPER

outperforms the other state-of-the-art algorithms. Finally, we explore IsoRank, one of the

first and most referenced global pairwise-network alignment algorithms. We develop an

approximation algorithm that outperforms IsoRank by several orders of magnitude in time

and memory complexity, despite only a negligible loss in precision.

Our second application area is the control of epidemic processes. We develop and model

strategies for mitigating an epidemic in a large-scale dynamic contact network. More precisely,

we study epidemics of infectious diseases by (i) modeling the spread of epidemics on a network

by using many pieces of information about the mobility and behavior of a population, such

as mobile call-data records; and by (ii) designing personalized behavioral recommendations

for individuals, in order to mitigate the effect of epidemics on that network. We evaluate the

effectiveness of our suggested recommendations over the Orange D4D dataset and show their

benefits.

Key words: Network mining, network alignment, graph matching, random graph, percolation,

protein-protein interaction, epidemic modeling
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Résumé
Les réseaux, en tant qu’abstraction pour représenter des relations complexes entre entités,

sont au cœur de la modélisation et de l’analyse de nombreux systèmes humains et techniques

à grande échelle. Leurs applications sont très répandues dans divers domaines tels que l’in-

formatique, la biologie, les sciences sociales et de l’économie. En conséquence, théorie des

réseaux, c’est à dire, les modèles statistiques et les méthodes de calcul applicables spécifi-

quement au réseaux de données, est un domaine de recherche actif actuellement. Dans cette

thèse, nous étudions plusieurs problèmes associés à l’extraction de réseaux à partir des trois

points de vue suivants : celui de la modélisation et de la théorie, celui du calcul et celui de

l’application. La majorité de cette thèse se concentre sur l’alignement de réseaux, où les don-

nées fournissent deux (ou plsueiurs) vues partielles de ceux-ci et où les étiquettes de nœuds

peuvent être ambiguës. L’alignement de réseaux a des applications dans la réconciliation et la

désanonymisation de réseaux sociaux, l’alignement de réseaux de protéines en biologie et la

vision par ordinateur.

Dans la première partie de cette thèse, nous étudions la faisabilité de l’alignement de réseau

selon un modèle de graphes aléatoires. Celui-ci génère deux (ou plusieurs) réseaux corrélés

et leur permet de ne se chevaucher que partiellement. En effet, ce modèle est paramétré

par le chevauchement prévu des nœuds t 2 et par le chevauchement prévu d’arêtes s2 des

deux réseaux. Pour un alignement particulier, nous définissons une fonction de coût pour

l’inadéquation structurelle. Nous démontrons que la minimisation de celle-ci (en supposant

que nous avons accès à une puissance de calcul infini), si la moyenne des degrés de nœuds

des graphes aléatoires croît comme s−2t−1
(
log(n)+ω(1)

)
, résulte en un alignement qui récu-

père l’ensemble des nœuds partagés entre les deux réseaux avec une forte probabilité et qui

couvre, également, la véritable correspondance entre ces nœuds. Notre résultat montre que

l’alignement de réseaux est fondamentalement robuste aux arêtes partielles et aux chevauche-

ments de nœuds. Cela motive la recherche d’algorithmes d’alignement de réseaux avec une

faible complexité de calcul et de mémoire. Les approches les plus extensibles d’alignement de

réseaux utilisent des idées de la théorie de la percolation, où un nœud-couple apparié infecte

ses couples avoisinants comme des adéquations potentielles supplémentaires.

Dans la deuxième partie de cette thèse, nous proposons un nouvel algorithme d’alignement

de réseaux basé sur la percolation, qui peut correspondre à de grands réseaux en utilisant

uniquement leur structure, ainsi qu’une poignée de nœud-couples initialement pré-appariés,

appelés graines. Nous caractérisons une transition de phase aux performances de couplage en

fonction de la taille de l’ensemble des graines, sur le modèle de graphe aléatoire introduit pré-
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cédemment. Nous montrons aussi l’excellente performance de notre algorithme sur plusieurs

réseaux sociaux réels à grande échelle.

Dans la troisième partie de cette thèse, nous considérons deux domaines d’application im-

portants de l’extraction de réseaux en biologie et en santé publique. Le premier domaine

d’application est l’alignement en biologie de l’interaction protéine-protéine (PPI) des réseaux

basé sur la percolation. L’alignement des réseaux biologiques a de nombreuses utilisations,

telles que la détection de motifs conservés dans les réseaux biologiques, la prédiction d’inter-

actions entre protéines, ainsi que la reconstruction d’arbres phylogénétiques. L’alignement de

réseaux peut aussi être utilisé pour transférer des connaissances biologiques entre espèces.

Nous introduisons un nouvel algorithme d’alignement global de réseaux par paires pour les

réseaux PPI, appelés PROPER. L’algorithme PROPER permet une meilleure précision et une

plus grande rapidité d’exécution par rapport aux autres méthodes d’alignement global de

réseaux. Nous appliquons également PROPER au problème d’alignement global de réseaux

multiples. Nous introduisons un nouvel algorithme pour coupler plusieurs réseaux, appelé

MPROPER, et montrons que MPROPER surpasse les autres algorithmes de pointe sur les

réseaux biologiques réels. Enfin, nous explorons IsoRank, l’un des premiers algorithmes, et

l’un des plus référencés, d’alignement global de réseaux appariés. Nous développons un algo-

rithme d’approximation qui surpasse IsoRank de plusieurs ordres de grandeur en temps et en

mémoire, en dépit seulement d’une perte négligeable de précision.

Notre deuxième domaine d’application est le contrôle des processus épidémiques. Nous déve-

loppons des stratégies pour atténuer une épidémie dans un réseau de contacts dynamiques à

grande échelle. Plus précisément, nous étudions les épidémies de maladies infectieuses par :

(i) La modélisation de la propagation d’épidémies sur un réseau en utilisant de nombreux

éléments d’information sur la mobilité et le comportement d’une population, tels que les don-

nées d’appel téléphoniques ; and (ii) la conception de recommandations comportementales

personnalisées aux particuliers, afin d’atténuer l’impact des épidémies sur ce réseau, tout en

minimisant l’effet sur le cours normal de la vie quotidienne. Nous évaluons l’efficacité de nos

recommandations sur le jeu de données d’Orange D4D et nous montrons leurs avantages.

Mots clefs : Théorie des réseaux, l’alignement de réseaux, interaction protéine-protéine,

graphe aléatoire, percolation, épidémie
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1 Introduction

1.1 Motivation

Human societies with billions of people, technological and economic systems, connected

mobile devices, interacting genes and proteins in living organisms, and collections of activities

of neurons in human brains are examples of the many complex systems that make up our daily

life. Networks1, as abstractions for representing complex relationships among entities, are at

the heart of these complex systems. In a network, an entity or object is represented by a node,

where some interacting or related pairs of nodes are connected by links. Any network can be

modeled by a graph G(V ,E), where the set of vertices V represents the entities of the network

and the set of edges E represents the links. Social networks such as Facebook, Google and

Twitter, the network of interactions between proteins, genes and transcripts, the networks of

connections between neurons in the brain, the power-grid network of generators, consumers

and transmission lines, human-made technological networks such as the World-Wide Web,

Internet and ad-hoc wireless networks, road networks, and trade networks are all samples of

real-world networks that are the backbones of different complex systems.

We will never understand complex systems unless we develop a deep understanding of the

complex networks underlying them. Studying complex networks, referred to as network

science2, has recently been an active area of research. The set of developed mathematical,

computational, and statistical tools, which are applicable specifically to network data are the

main building blocks of network science. Studying complex networks directly affects different

fields such as computer science, biology, social sciences and economics. It has applications

from personalized drug design to metabolic engineering. It can improve our security by

fighting terrorism networks. It helps businesses to improve their marketing strategies and their

influence on costumers. In this thesis, we study several related network-mining problems,

from three different perspectives: the modeling and theory perspective, the computational

perspective, and the application perspective.

1Also known as complex networks.
2Network mining
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Despite the diversity of seemingly unrelated complex networks, many of them share common

characteristics that are frequently observed in their experimental evaluations: heavy-tailed

degree distribution, small diameter, high clustering, transitivity, community structure, ho-

mophily, node centrality, and small-world effect [11, 20, 33, 55, 142, 143, 192]. It seems that

the structure and the dynamic of these networks follow a common set of fundamental laws

and principles. These common topological and dynamical features motivate the research

community to look for models to explain and to predict the universal properties of complex

networks. Models enable the formulation of conjectures and provide the necessary expla-

nations for different experimental observations. For example, many network models are

presented by researchers to characterize properties of complex networks, to mimic the evolu-

tion and growth of these networks, and to reproduce many of their structural properties [32].

Real-world networks are modeled with random graphs models [42, 58], small-world models

[198] and preferential attachment models [19]. To model networks with community structure,

we can use the stochastic block model, a generative random model to produce graphs with

known communities [78].

In order to predict the performance of network-mining algorithms, to compare them, to

provide guarantees for the correctness of algorithms, and to understand the theoretical basis

of these algorithms, we need to analyze them. Robust and rigorous models, in addition to

identifying and explaining the unifying properties that are at the basis of real networks, help

us to develop a fundamental understanding of network-mining algorithms. For this reason,

one important modeling approach is to design mathematical models that capture key aspects

of the input. With these models, we can analysis different types of algorithms. For example,

network-sampling models create a small, but representative sample out of large complex

networks in order to efficiently compute the graph measures such as shortest path, centrality,

betweenness, clustering coefficient, assortativity and degree distribution [115, 197]. In the

literature, graph sampling and graph sparsification models cover a wide range of approaches,

from edge sampling and node sampling to graph traversal techniques such as random walks

[23, 125, 179, 180]. Also, graph sampling methods are used to model structurally correlated

networks, as it is convenient to assume these similar networks are sampled from an underlying

hidden network [49, 109, 150]. Furthermore, it is beneficial to study, under mathematical

models, information cascades [39, 206], network dynamics and epidemics [37, 48]. In this

thesis, the first perspective from which we study complex networks is the modeling and theory

perspective.

Network mining is more and more challenging with the rapid growth of many of the networks

of practical interest. Indeed, real-world complex networks are large and some grow in size with

time. Efficient algorithms have an important role in the understanding of static and dynamic

properties of large complex networks. The algorithmic efficiency with respect to time (and

memory) is an old and an essential question in the history of science. It is well emphasized

by a famous quote from Ada Byron, Memoir on the Analytic Engine, dated back to 1843: “In

almost every computation a great variety of arrangements for the succession of the processes

is possible, and various considerations must influence the selections amongst them for the
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purposes of a calculating engine. One essential object is to choose that arrangement which

shall tend to reduce to a minimum the time necessary for completing the calculation.”

The rise of interconnected multi-core processors and distributed systems has increased avail-

able computational power substantially and has brought researchers many new opportunities

to process very large networks. Several distributed graph-parallel frameworks, such as Graphx

[201], PowerGraph [68] and Pregel [127], have been successful in implementing large-scale

data-intensive applications in past few years. Although there are numerous examples of the

success of these platforms in providing scalable solutions for real-world problems, for many

algorithms, distributed solutions induce substantial overhead and cause computations to

be slower [132]. Generally, it is true that for an efficient algorithmic design “you can have a

second computer once you’ve shown you know how to use the first one.”3 In the second part

of this thesis, we consider network-mining problems from a computational perspective. By

borrowing tools from graph theory, algorithms, statistics and probability theory, we design

effective, simple, parallelizable and robust computational methods with provable guarantees,

based on sound mathematical foundations.

The main distinguishing feature of network science from graph theory is its application

nature. We are interested in developing tools with excellent performances over real data,

i.e., a good model and algorithm should provide deep insight about real complex systems.

Network science has many direct applications in different disciplines. Understanding networks

helps in the improvement of public health and public policy. Network inference problems

play a major role in computational biology. Modern systems-biology approaches, which

represent genes and proteins and their interactions as networks, provide new opportunities

for studying and improving diagnoses and treatments of disease phenotypes and genetic

variations associated with psychiatric diseases such as Autism Spectrum Disorders (ASD),

Schizophrenia (SCZ) and Intellectual Disability (ID) [67, 73, 121, 147, 193]. Analyzing and

predicting how complex networks function have many other important applications, such as

finding connectivity patterns of neuronal firings in the brain [96, 122], modeling, detecting

and mitigating the spread of epidemics in human networks [93, 164, 195], characterizing

the diffusion of information in social networks [8, 160], sampling hidden and hard-to-reach

populations [48], and influencing maximization for viral marketing and rumor control [38, 105,

117]. In the third part of this thesis, we study network-science problems from an application

perspective. We use the developed models and algorithms (from the first two parts) to make

inferences about real networks, mainly for biological networks.

Each of the modeling and theory perspective, the computational perspective and the applica-

tion perspective is associated with a specific important aspect in studying complex networks.

Indeed, the combination of these perspectives offers a collection of powerful models and

tools for solving network-mining problems. We can also check the quality of our solutions in

carefully designed experimental settings.

3A quote by Paul Barham.
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In this thesis, we study how to merge information from different sources in order to make

better inferences about a network and its properties from the modeling and theory perspec-

tive, the computational perspective and the application perspective. In many data analysis

applications, information from different sources has to be merged into an integrated data

model. This is notoriously difficult, because entity names or features from different sources

are often unreliable and/or incompatible. When merging network data, one remedy is to rely

on structural information, rather than on explicit vertex labels or vertex features to match

two (or several) networks. More specifically, in the bulk of this thesis, we focus on network

alignment4, where the data provides two (or more) partial views of the network, and where the

node labels are sometimes ambiguous. Network alignment has applications in social-network

reconciliation and de-anonymization, protein-interaction network alignment in biology, and

computer vision.

We investigate the network-alignment problem from three perspectives. In Chapter 2, we

explore the feasibility of network alignment by using a random graph model. In Chapter 3, we

give a new network-alignment algorithm. In Chapters 4, 5 and 6, we study network alignment

from the application perspective. Also, in Chapter 7, by merging many pieces of information

about the mobility and behavior of a population, we model the spread of an epidemic in a

large-scale dynamic contact network.

In the rest of this chapter, we first discuss each of the modeling, computational and application

perspectives briefly. Then, we summarize the main contributions of this thesis.

1.2 The Modeling and Theory Perspective

The network-alignment problem has received significant attention recently. It shows that

social networks can be aligned by structural information [40, 41, 63, 99, 109, 140, 150, 202].

From a privacy point of view, research on network alignment provides many examples of

networks that are vulnerable to structure-based de-anonymization attacks; these attacks are

real threats to users’ privacy [18, 89, 90, 138, 140, 151, 181, 199]. The main idea in these attacks

is that the structural characteristics of users are uniquely identifiable across different networks.

Protein-interaction network alignment enables us to find proteins with common biological

functions in different species [103, 107, 176]. Also, network alignment has many applications

in pattern recognition and machine vision [47], e.g., finding similar images in a database by

matching segment-adjacency graphs [56, 108, 189].

Formally speaking, the network-alignment problem can be stated as follows: We are given two

graphs G1(V1,E1) and G2(V2,E2), where some couples of vertices [i , j ] ∈ V1 ×V2 correspond

to some unique underlying entity (e.g., a person). In general, not all vertices in V1,2 have a

counterpart in the other graph. The purpose of graph matching is to find the corresponding

vertex couples in V1 ×V2, based on the topologies of the two networks and node features.

4Network alignment is also known as graph matching or network reconciliation in the literature.
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For example, consider G1 to be the network of users in Twitter, and G2 the network formed

by the contact relationships of Flicker users. The sets V1 and V2 only partially overlap in

general, because some users have an account on one but not two services. The goal is to find

the bijection between those users who have accounts on both Twitter and Flicker (users in

V0 =V1 ∩V2), based on the structural similarities of the two networks [140].

Network alignment can be viewed as a generalization of the classic graph-isomorphism

problem, where we look for the correct alignment between the nodes of two structurally

similar networks, without relying on node identifiers. While finding even the exact graph

isomorphism can be complex in the worst case5, in most of the real world scenarios the

problem is much more difficult as the two graphs are subject to noise and uncertainties, and

are not exactly isomorphic [47].

Recent works on network alignment have taken a modeling and information-theoretic angle,

and shown conditions on the parameters of a random-graph model when perfect matching is

possible [49, 88, 89, 91, 150]. The fundamental scaling results show the regions where network

alignment is theoretically feasible. The feasibility of network alignment depends on two main

assumptions: the structure of the two graphs and the side information that can be presented

in different forms. A good random-graph model will serve as a basis for the structure of

networks in information-theoretic results. For example, Pedarsani and Grossglauser [150]

model the observed graphs as samples of a fixed underlying graph. They assume edges of

each network are sampled from this hidden underlying network with a fixed probability s. The

parameter s controls the structural similarity or the correlation of the two networks, e.g., for

s = 1 the two networks are isomorphic and network alignment problem is equivalent to graph

isomorphism. When s < 1, with high probability the two graphs are not isomorphic. Pedarsani

and Grossglauser [150] find regions such that the correct alignment can still be identified,

where unlimited computational power is assumed.

In this thesis, we study the feasibility of network alignment by using a new random-graph

model. This model generates two (or several) correlated networks and permits the two net-

works to overlap only partially. More specifically, in Chapter 2, we introduce a simple parsimo-

nious graph-sampling model called G(n, p; t , s): Assuming we have a fixed hidden underlying

network G(n, p), nodes and edges of the two observed networks G1,2 are sampled from G

through independent node-sampling and edge-sampling processes with fixed probabilities t

and s, respectively. This model is inspired by the model from [150]. By using this stochastic

model, we find sufficient conditions for the identifiability of the true partial matching between

the node sets of the two graphs.

5The class of graphs that appear the most challenging is thought to be the strongly regular graphs [178].
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1.3 The Computational Perspective

In the first part of this thesis, we study network alignment from a modeling and theory

perspective. Our results in Chapter 2, along with the recent results from [49, 88, 89, 91, 150],

show that network alignment is fundamentally robust to partial edge and node overlaps.

Although this feasibility result is true for the information-theoretic setting, where unlimited

computational power is assumed, it motivates us to look for network-alignment algorithms

with low computational and memory complexity.

Several heuristics have been proposed for network alignment [47]. A major class of the network-

alignment algorithms could be formulated from the optimization point of view, based on a

notion of graph edit distance [47, 61]. For example, it is possible to model network alignment

as a quadratic assignment problem (QAP) [123], which is a well-known NP-complete problem

[64], and try to find a linear programming (LP) relaxations for the QAP [24, 107]. Spectral

methods are used as another approach for network alignment in the literature [35, 114, 176].

The main issue with the QAP and spectral approaches is that they are not scalable, and it is

not possible to apply them over graphs with millions of nodes and edges. Another class of

graph-matching algorithms uses semantic information (e.g., name, location and image of

users) for the de-anonymization of social networks [128, 145]. Melnik et al. [133] introduce

a similarity-flooding algorithm that matches nodes based on the spread of similarities in

the network. Several machine-learning models are developed to match graphs by using the

collected features about the nodes [7, 56, 145]. In general, performance guarantees and a

characterization of feasible classes of the graphs to be matched by all these heuristics have

been elusive in the literature.

It has been shown that structural similarity is the most important feature in the graph-

matching process [75], and structure-based algorithms are more accurate and scalable [18,

109, 202]. Currently, the most scalable structure-base methods use ideas from percolation

theory, where a matched node-couple infects its neighboring couples as additional potential

matches. This line of work begins with the assumption that there is side information in the

form of a seed set of “pre-matched" node couples, i.e., it assumes that a (small) subset of nodes

across the two graphs are identified a priori. The matching is generated incrementally, starting

from the seed couples and percolating to other node couples; for this reason, we refer to this

class of algorithms as percolation graph-matching (PGM) methods.

The pioneering work by Narayanan and Shmatikov [140] is based on a seed-based heuristic

PGM algorithm, which succeeded in de-anonymizing social networks with millions of nodes.

They empirically observed a strong sensitivity of their algorithm to the seed-set size: If the

seed set was too small, the percolation did not occur; when the seed-set size was increased,

there was an abrupt change to a supercritical regime, where the algorithm succeeded in de-

anonymizing a large fraction of the network. Yartseva and Grossglauser [202], for a random-

bigraph model, prove the existence of such a phase transition in the seed-set size. A similar

model is analyzed in [109] and is extended to scale-free graphs, under the assumption that
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seeds are dense (i.e., a constant fraction of nodes are seeds).

These PGM approaches have a basic feature in common: they incrementally build the match-

ing between nodes of the two graphs. In every step, the set of node couples matched so far are

used as evidence to match an additional node couple, if possible. The evidence for deciding

which couple to match can take different forms, but it is obtained locally within the two graphs.

For example, in [202], the rule is extremely simple: (i) every seed couple is considered matched;

(ii) a node couple is matched if it has at least r already matched neighbours6 and i , j are not

already part of another matched couple. The recursive application of rule (ii) can, under some

conditions, match all the nodes.

The analysis of iterative matching algorithms on large networks, by using tools from percola-

tion theory and random graphs, has a rich history in the literature. For example, there is an

important body of work on the design and analysis of gossip algorithms, whose purpose is to

deliver a message to the whole network as efficiently as possible [97, 170, 196].

In PGM algorithms, initial seeds play an important role. The seed couples can be obtained

in several ways, depending on the scenario: For example, some users of two different social

networks might elect to make their identities public, which provides a set of known matches.

Alternatively, methods have been proposed in the literature to identify plausible seed couples,

based on structural graph features [18, 151] or manually through visual inspection [140].

In the second part of this thesis, we consider the network-alignment problem from a compu-

tational perspective. In Chapter 3, we give a new PGM algorithm with a dramatic reduction in

the required size of the seed set. This algorithm can operate in a regime that needs far fewer

starting seeds than previous approaches. By using ideas from bootstrap percolation theory,

we rigorously characterize the phase transition in the seed-set size. We also show the excellent

performance of our algorithm in matching several real social networks with over a million

nodes, by using only a handful of seeds.

1.4 The Application Perspective

In the third part of this thesis, we consider two important applications of network mining in

biology and public health. The first application area is percolation-based network alignment

of protein-interaction networks in biology. The second application area is the control of

epidemic processes.

1.4.1 Network Alignment and PPI Networks

Proteins are large biomolecules that carry out vital functions in living cells. Proteins rarely

conduct their functions alone. Their interactions with the other biomolecules, especially other

6Two couples [i , j ] and [i ′, j ′] are called neighbours if there is an edge (i , i ′) in E1, and an edge ( j , j ′) in E2.
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proteins, enables their diverse functionality [207]. Proteins conduct numerous functions, such

as forming signaling networks and metabolic pathways, and regulating enzymatic activities,

all via protein-protein interactions [207]. In this context, the term protein-protein interaction

(PPI) stands for the mutual interactions between pairs of proteins.

PPI data are obtained by high-throughput experimental techniques such as yeast 2-hybrid [85],

synthetic lethality [188] and co-immunoprecipitation coupled mass spectrometry [9]. The

data are deposited in more than 100 PPI databases [146] such as BioGRID [36], the Molecular

Interaction Database (MINT) [120], the Human Protein Reference Database (HPRD) [152], and

IntAct [76]. Despite the large amount of PPI data, the detection of the protein pathways and

protein complexes is challenging because many of the PPIs are noisy and non-reproducible.

PPI networks are a valuable source of information for understanding the evolution of protein

interactions and system-level cellular processes. A comparative analysis of PPI networks pro-

vides insight into species evolution and information about evolutionarily-conserved biological

interactions, such as pathways across multiple species [103, 172, 183, 207]. Network-alignment

algorithms were introduced to compare PPI networks between two or more species.

The comparison of PPI networks, by network alignment, shows that there are identical interac-

tion patterns between proteins with high sequence-similarity across different species [203].

For example, there are many common protein interactions between proteins in yeast networks

and their corresponding protein orthologs in PPI networks of worms [131]. Because functional

interactions are conserved across species and false positives are unlikely to occur in multiple

species, network alignment can increase the confidence level of an observed interaction in a

database [171].

PPI-network alignment has many applications in areas such as the detection of new pathways

and of conserved motifs, the prediction of the functions of proteins, orthology detection, drug

design, protein-protein interaction prediction and phylogenetic tree reconstruction [111, 175].

Generally, PPI-network alignment methods assume that two functional ortholog proteins on

two different PPI networks are likely to interact with proteins in the corresponding networks

that are functionally orthologs themselves [157, 177, 207]. Following this line of thought,

local network-alignment (LNA) and global network-alignment (GNA) methods are the main

approaches for aligning PPI networks [57, 59, 207]. The LNA algorithms search for small but

highly conserved subnetworks (e.g., homologous regions of biological pathways or protein

complexes) between species, whereas GNA algorithms try to align all (or most of) the proteins

to find large subgraphs that are functionally and structurally conserved over all the nodes in

the two networks [57, 59, 207].

There are two main classes of GNA algorithms: (i) pairwise-network alignment, and (ii)

multiple-network alignment. The multiple-network alignment methods produce alignments

consisting of aligned clusters (or tuples) with nodes from several networks [57, 59]. Also,

multiple-network alignment algorithms are classified into two categories of one-to-one and
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many-to-many algorithms. In the first category, each node from a network can be aligned with

at most one node from another network. In the many-to-many category, one or several nodes

from a network can be aligned with one or several nodes from another network.

Recently, Meng et al. [135] compared the performances of several LNA and GNA algorithms in

predicting new functionalities of proteins. Their result indicates that these two general classes

of algorithms produce very different predictions, but they are still complementary to each

other. This highlights the need for both LNA and GNA algorithms that produce high-quality

alignments.

In this thesis, we investigate the GNA problem. In Chapter 4, we introduce a new percolation-

based pairwise-network algorithm for PPI networks; it is called PROPER. In Chapter 5, we

introduce a new algorithm, called MPROPER, for aligning multiple networks. In Chapter 6, we

explore IsoRank [119, 175, 176], one of the first and most referenced global network-alignment

algorithms, and develop an approximation algorithm for it.

1.4.2 Modeling and Mitigating Epidemics

Epidemics of infectious diseases are among the largest threats to the quality of life and to the

economic and social well-being of developing countries. In several occasions throughout

human history, outbreaks of diseases have had disastrous effects on societies: the outbreak

of bubonic plague killed between 30% to 50% of Europe’s population in the 1300s [70]; the

epidemics, caused by the arrival of Europeans, had harmful consequences for the native

Americans’ civilizations [53]; in 1918, the Spanish flu pandemic caused an estimated 50

million deaths worldwide [186]; more recently, the 2002–2003 SARS pandemic that originated

in Hong-Kong and spread worldwide caused the death of 774 [200].

Modeling and effectively mitigating the spread of infectious diseases is one of the high priori-

ties of global public-health policies and has been a long-standing goal. Epidemic modeling

enables scientists to predict epidemic outbreaks and to find strategies for decreasing mortality

rates, along with the costs to the economy [60, 65, 81, 83]. In modeling epidemics, biological

issues mix with social ones and make it more challenging. As a classic example of epidemic

modeling, Kermack and McKendrick [106] in their seminal work introduce a SIR model with

three distinct classes of populations: susceptible (S), infective (I) and recovered (R). This sim-

ple yet powerful model is very popular for modeling the evolution of epidemics in populations.

Hethcote [77] reviews different extensions of this model such as SIS, SI and SEIS, as well as

threshold theorems involving measures such as the reproduction number.7

In a large-scale dynamic contact network, the mobility of individuals plays a crucial role and is

the source of disease spread among different geographical areas [16, 27, 166, 190]. Therefore,

in order to improve the realism of epidemic models, we need to build an accurate and data-

7Reproduction number is the average number of secondary infections caused by an infected individual when in
contact with a susceptible population.
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driven mobility model. This mobility network is used to model and predict the spread of

epidemics and to design strategies for weakening the links in the contact network that form

the path through which the epidemic spreads. The SIR models, which incorporate mobility

between regions, are examples of powerful tools for designing and testing different strategies

to control epidemics [44, 159]. Nowadays, by the advent of mobile technologies, the call-data

records (CDRs) collected by cellular services provide a valuable source of information for

large scale empirical-validation of mobility models; we use these mobility models to create

epidemic models with a high predictability power [19, 25, 26, 69, 84, 184].

Effective measures against an epidemic require an accurate and up-to-date assessment of

the situation: a very rapid response and a strong coordination. They require colossal or-

ganizational efforts under tight time constraints. To this day, there is no uncontested way

of preventing epidemics in general. Traditional epidemic mitigation-methods consist of

heavy, top-down approaches such as blockades, quarantines or large-scale vaccination cam-

paigns [136, 167, 174, 182, 204, 205]. Although the arsenal of measures against epidemics

is well-established, these measures are costly and insufficient. These methods have sev-

eral drawbacks: they are difficult and slow to put into place, and can be expensive and also

freedom-restrictive. It is clear that any improvement would have a tremendous impact and

translate into significant welfare gains.

One of the most important and fascinating applications of network science is the modeling

and predicting epidemics, and the suggesting of strategies for mitigating them. In Chapter 7,

as an alternative to the traditional methods, we suggest that access to mobile technology and

information about human-contacts network at large scales could enable a much richer and

sophisticated set of mitigation measures for human-mediated epidemics.

1.5 Contributions

In this thesis, we address three important aspects of network mining: (i) the modeling and

theory perspective, (ii) the computational perspective, and (iii) the application perspective.

We design and answer challenging questions regarding these aspects. The following is the list

of the main contributions of this thesis.

1.5.1 The Modeling and Theory Perspective

From the modeling an theory perspective, we make the following contributions in Chapter 2.

• To generate two Erdős-Rényi random graphs whose vertex sets overlap only partially,

we extend the random-bigraph model developed by Pedarsani and Grossglauser [150]

The model has two parameters (t and s) to control vertex overlap and edge overlap,

respectively.

• We formulate network alignment as an optimization problem over the space of all
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possible partial matchings between the two node sets. Our main information theoretic

result is a sufficient condition on the graph density (or average vertex degree) and on the

amount of noise for perfect matching. We define a cost function for structural mismatch.

We show that minimizing the proposed cost function, with high probability, identifies

the true matching.

1.5.2 The Computational Perspective

From the computational perspective, we make the following contributions in Chapter 3.

• We develop a new graph-matching algorithm called ExpandWhenStuck. The distin-

guishing feature of this algorithm is that, in comparison to state-of-the-art algorithms

[109, 202], it requires a dramatically smaller number of seeds. It is able to match, by

using only a handful of seeds, real social-networks with over a million nodes, as well as

various types of random graphs (for example, Barabási–Albert [21], Chung–Lu [42] and

Erdős–Rényi [58] graphs).

• We analyze the performance of a simplified version of the ExpandWhenStuck algorithm

(called ExpandOnce) by using the random-bigraph model that is introduced in Chapter 2.

The simplification needed to make the analysis tractable concerns the generation of can-

didate couples: Although ExpandWhenStuck dynamically percolates from unmatched

candidate couples whenever necessary, we can rigorously analyze only a slightly more re-

strictive setting, where this occurs only once at the outset. Specifically, the ExpandOnce

algorithm expands the seed set into a larger set that includes many incorrect couples; a

second algorithm (called NoisySeeds) then percolates from this latter set.

• We demonstrate a phase transition in the number of required seeds for NoisySeeds, as

a function of the network size, overlap between the two graphs, and structural similarity.

We prove that the NoisySeeds algorithm is robust to partial node-overlap. More pre-

cisely, we prove that NoisySeeds naturally filters out the nodes without counterparts in

the other graph, and that it correctly matches the rest.

1.5.3 The Application Perspective

From the application perspective, we consider the two problems of PPI-network alignment,

and modeling and mitigating epidemics.

Global Pairwise-Network Alignment

In Chapter 4, we study the global pairwise-network alignment problem.

• We design a new percolation-based pairwise-network alignment algorithm for PPI

networks; it is called PROPER.
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• We show the excellent performance of PROPER (in terms of both accuracy and speed),

compared to several state-of-the-art algorithms.

• We introduce a new measure for evaluating the performance of algorithms in aligning

biological pathways. We show that PROPER can detect large portions of conserved

biological pathways between species.

• By using a simple parsimonious evolutionary-model (similar to the model we intro-

duce in Chapter 2), we explain why PROPER performs well with respect to different

comparison criteria that are used for evaluating pairwise alignments.

Global Multiple-Network Alignment

In Chapter 5, we study the global multiple-network alignment problem.

• For aligning multiple PPI-networks, we introduce a new extension of the PROPER

algorithm; it is called MPROPER. The MPROPER algorithm has two main steps: (i)

SeedTupleGeneration and (ii) MultiplePercolation. In the first step, to generate

an initial set of seed clusters (or tuples), the SeedTupleGeneration algorithm uses

only protein sequence similarities. In the second step, to align remaining unmatched

nodes, the MultiplePercolation algorithm uses network structures and the seed

tuples generated from the first step.

• We show that, with respect to different evaluation criteria, MPROPER outperforms the

other state-of-the-art algorithms.

• We present a graph-sampling model (as a generalization of the model we introduce

in Chapter 2) for generating k correlated networks. By using this model, we prove

that, if initially enough seed tuples are provided, the MultiplePercolation algorithm

correctly aligns almost all the nodes.

IsoRank

In Chapter 6, we make the following contributions.

• We explore IsoRank, one of the first and most referenced global network-alignment

algorithms [119, 175, 176].

• We show that when IsoRank similarity depends only on network structure, the similarity

of two nodes is only a function of their degrees.

• We develop an approximation algorithm (by using ideas from [14, 71]) that outperforms

IsoRank in time and memory complexity by several orders of magnitude, despite only a

negligible loss in precision.
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1.5. Contributions

Strategies for Mitigating Epidemics

In Chapter 7, we make the following contributions.

• We model and predict the spread of epidemics in a large-scale dynamic contact network,

by using many pieces of information about the mobility and behavior of the population,

such as call-data records.

• We design personalized behavioral recommendations to individuals, in order to mitigate

the effect of epidemics on that network, and we minimize the side-effects on the normal

course of daily life.

• We evaluate these strategies over the Orange D4D dataset and show the benefit of these

measures, even if only a fraction of the population participates.
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2 A Model and Achievability Result for
Network Alignment

Network alignment (or graph matching) is the problem of identification of a bijection between

the (full or partial) vertex sets of two networks. Finding such an alignment is particularly

important and challenging when only the structures of the two graphs are available, i.e., the

two graphs can be considered unlabelled. Obviously, the availability of any side-information,

such as node or edge attributes, makes the problem easier.

In the first part of this thesis, we investigate the feasibility of network alignment. We establish

an information-theoretic characterization of the region, where the alignment between two

correlated networks with overlapping vertex sets is possible. Concretely, we explore to what ex-

tend network parameters can be relaxed (in the form of information-theoretic thresholds) such

that the exact recovery of node correspondences is feasible, given unbounded computational

resources.

From an information-theoretic perspective, Pedarsani and Grossglauser [150] show condi-

tions on the parameters of a random-bigraph model when perfect matching is possible. Their

model generates two correlated G(n, ps) random graphs, with a similarity parameter 0 ≤ s ≤ 1.

When s < 1, with high probability the two graphs are not isomorphic, but [150] establishes

a threshold function for p such that the correct alignment can nevertheless be identified.

The threshold is proportional to c(s) log(n)/n, where the function c(s) is a penalty due to the

dissimilarity of the two graphs. In summary, their work shows conditions where graph struc-

ture fundamentally contains sufficient information for finding alignments, if computational

resources are unlimited. Cullina and Kiyavash [49] improve the achievability bound of [150] by

a factor of 4(2−s)
s . Also, they show that there is only a gap of factor 2 between their bound and a

converse threshold [49]. Furthermore, Cullina et al. [50] investigate the problem of network

alignment for the class of stochastic block models (SBMs). Ji et al. [89, 91], by using the same

model as [150], study the effect of seed information on both perfect matchability and partial

matchability1 of networks.

The models from [49, 88, 89, 91, 150] make several strong and unrealistic assumptions, in-

1Matching a 1−ε fraction of all the nodes

17



Chapter 2. A Model and Achievability Result for Network Alignment

cluding that the vertex sets of the two graphs are of the same size, and that a full matching

between these sets can be found. In most practical scenarios, node overlap would be only

partial. For example, when reconciling two social networks, we should be able to permit users

of one network to not be users of the other; or an adversary should take into account that only

a subset of nodes might be included in a privately released dataset.

To the best of our knowledge, it is an open question as to what extent partial overlap of the

node sets hampers the feasibility of network alignment. In this thesis, we address this question

by using a random-graph model. This model generates two (or several) correlated networks

and permits the two networks to overlap only partially. Indeed, this model is parameterized by

the expected node-overlap t 2 and by the expected edge-overlap s2 of the two networks. For a

particular alignment, we define a cost function for structural mismatch. We show that, if the

average node degrees of the random graphs grow as s−2t−1
(
log(n)+ω(1)

)
, the minimization

of the proposed cost function (assuming that we have access to infinite computational power),

with high probability, results in an alignment that recovers the set of shared nodes between

the two networks; this minimization also recovers the true matching between the shared

nodes. Our result shows that network alignment is fundamentally robust to partial edge

and node overlaps, hence an motivation to look for network-alignment algorithms with low

computational and memory complexity.

In this chapter, we make the following contributions.

(a) First, we extend the random-bigraph model of [150] in order to generate two Erdős-Rényi

random graphs whose vertex sets overlap only partially. The model has two parameters

(t and s) for controlling vertex overlap and edge overlap, respectively.

(b) Second, our main result is a sufficient condition for the graph density (or average

vertex degree) and for the amount of noise for perfect matchability. A perfect matching

amounts to (i) filtering out nodes without counterparts in both G1 and G2, and (ii)

correctly match the remaining nodes that are present in both graphs.

(c) Third, we formulate network alignment as an optimization problem over the space of

all possible partial matchings between the two node sets. We show scaling conditions

such that minimizing a cost function identifies the true matching with high probability.

Although the optimization formulation does not lend itself to a scalable algorithm, our

results delineate the boundary between the fundamentally possible and impossible.

This chapter is structured as follows. In Section 2.1, we introduce our model for generating

correlated graphs with partial vertex overlap, and we state our main result. In Section 3.2.2, we

prove the result. Section 2.3 concludes the chapter. Some technical details are relegated to

appendices.
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2.1. Model and Conditions for Perfect Matching

2.1 Model and Conditions for Perfect Matching

In this section, we first formally state the graph-matching problem. Then, to formalize a partial

overlap in the vertex sets of the graphs, we present a random-bigraph model that generates

two correlated Erdős-Rényi random graphs. We introduce a cost function for quantifying

the structural mismatch, for a given candidate alignment, between the two graphs. Finally,

we state the main theorem of this chapter. Our theorem shows that under surprisingly mild

conditions, minimizing this cost function, with high probability, finds the correct matching.

2.1.1 Problem Definition

Assume we are given two graphs G1(V1,E1) and G2(V2,E2) that represent, for example, two

social networks (e.g., G1 is Facebook, G2 is LinkedIn). We know that some users have profiles

in several social networks. In this chapter, we study the graph-matching problem that refers

to inferring the alignment of the common users of the networks G1 and G2 by structural

information only.

The graph-matching problem is defined formally as follows. Given the two graphs G1(V1,E1)

and G2(V2,E2), the goal is to find a matching between the nodes in V0 = V1 ∩V2, where V0

(we define n0 = |V0|) is the set of vertices common to both graphs. We call this true hidden

matching π0. We assume that, without loss of generality, V1,2 ⊂ [n] = {1, . . . ,n} and denote

n1 = |V1|, n2 = |V2|. Next, we define the set of all possible matchings Π from graph G1 to G2.

Definition 1. Π is the set of all partial matchings (or alignments) π from the vertex set V1

to V2. A partial matching π is a subset of V1 ×V2 such that any node in V1 = {1, . . . ,n1} and

V2 = {1, . . . ,n2} is matched to at most one node in the other graph.

Thus, the identity hidden matching π0 is the set of couples of nodes that are present in both

graphs G1 and G2, i.e., π0 = {[u,u] : u ∈ V0}. Furthermore, if node v1 ∈ V1 is matched to

node v2 ∈ V2, we say v2 = π(v1) and v1 = π−1(v2). For a pair of nodes e = (u, v) we define

π(e) = (π(u),π(v)). Let us define V1,2(π) as the sets of vertices in V1,2 that are matched by π,

and E1,2(π) as the sets of matched edges (an edge is matched if both endpoints are matched).

For a node u, we say π(u) is null (denoted by π(u) =�) if either u is not present (u �∈ V1) or

u is not matched (i.e., u ∈ V1 but u �∈ V1(π)). Similarly, for a node v , we say π−1(v) is null

(π−1(v) =�) if v �∈V2 or v �∈V2(π). For a pair e = (u, v), π(e) is defined to be null (denoted by

π(e) =�) if either π(u) =� or π(v) =�. Similarly, π−1(e) =� if either π−1(u) =� or π−1(v) =�.

Definition 2. For a matching π, we define (i) |π| as the size of matching π, (ii) l as the number

of correctly matched couples of the form [i , i ], and (iii) k = |π|− l as the number of incorrectly

matched couples. Let Πl
k represent a class of matchings of size |π| = l +k ≤ min{n1,n2} with l

correctly matched couples. Note that the sets Πl
k partition the set Π of all partial matchings.

Figure 2.1 shows two examples of alignments: (i) the identity matching π0 ∈Π7
0, and (ii) the

matching π ∈Π2
6 from V1 to V2.
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Figure 2.1 – Examples of two alignments: (i) The true matching π0 ∈Π7
0 = {[u1,u1], . . . , [u7,u7]},

and (ii) the matching π ∈Π2
6. White nodes are common to both graphs, whereas red nodes are

present in only one but not the other.

2.1.2 Random Bigraph Model

We study the graph-matching problem under a random bigraph model. This stochastic model

assumes that graphs G1(V1,E1) and G2(V2,E2) are sampled from an Erdős-Rényi (i.e., G(n, p))

graph [58] G(V ,E) as follows: First, the unseen generator graph G(V ,E) is sampled from the

probability space of G(n, p) random graphs with n nodes, where each of the
(n

2

)
possible

edges exists independently with probability 0 < p ≤ 1. Second, vertex sets V1,2 are sampled

independently from the vertex set V with probability t , i.e., P(u ∈ V1) = P(u ∈ V2) = t for all

u ∈V . Third, edges of graph G1(V1,E1) are sampled from those edges of graph G whose both

endpoints are sampled in V1 by independent edge sampling processes with probability s. The

edges of graph G2(V2,E2) are generated similarly. Formally, for an edge e = (u, v) ∈ E we have

P(e ∈ E1|u, v ∈V1) =P(e ∈ E2|u, v ∈V2) = s.

We refer to this model as the G(n, p; t , s) bigraph model. For this model, we were inspired

by [150]; we consider a more challenging and realistic scenario, where the two graphs have

partially overlapping vertex sets (this is modeled by the node sampling process). Figure 2.2

provides a schematic overview of the G(n, p; t , s) model.
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Bi( ; t, s)

G(V,E)
Node sampling

Edge sampling

G1(V1,E1) G2(V2,E2)

Figure 2.2 – The G(n, p; t , s) random bigraph model. The two graphs G1(V1,E1) and G1(V1,E1)
are sampled from the generator graph G(V ,E ) through node sampling (with probability t ) and
edge sampling (with probability t) processes. Also, we assume that the hidden underlying
graph G(V ,E) is sampled from the probability space of G(n, p) random graphs.

2.1.3 Perfect Matchability and Structural Mismatch

We now define a cost function that, for a given partial matching π, quantifies the structural

mismatch between the two graphs G1(V1,E1) and G2(V2,E2). The cost function has two terms

Φπ and Ψπ:

• Mismatched edges:

Φπ = ∑
e∈E1(π)

1{π(e)∉E2} +
∑

e∈E2(π)
1{π−1(e)∉E1}.

• Unmatched edges: Ψπ =Ψ1
π+Ψ2

π, where Ψ1
π and Ψ2

π are the number of unmatched edges

in E1 and E2, respectively. More precisely, we define

Ψ1
π = |{e ∈ E1\E1(π)}| and Ψ2

π = |{e ∈ E2\E2(π)}|.

The cost function is a weighted sum of Φπ and Ψπ:

Δπ =Φπ+αΨπ. (2.1)
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Our approach consists in minimizing the cost function Δπ over all possible partial matchings

π. There is a trade-off between the two cost terms (2.1): adding node couples to the matching

π cannot decrease Φπ (and it can increase even for correct couples because of edge sampling),

while Ψπ cannot increase. The parameter α controls this trade-off: with α= 0, the trivial empty

matching minimizes Δπ; with α > 1 the optimal matching is always of the largest possible

size min{n1,n2}, because the increase in Φπ when adding a couple to π is smaller than the

decrease in αΨπ. Below, we identify constraints on α and provide an appropriate value such

that with high probability, matching found by minimizing Δπ is the correct partial matching

π0.

We now state the main result of the chapter.

Theorem 3. In the G(n, p; t , s) bigraph model with 6144logn+ω(1)
ns3t 2 = p 
 1, for each p, t and s

there exists a value of α such that with high probability

π0 = argmin
π

Δπ. (2.2)

Expressed in terms of the expected degree npst of the two observable graphs G1,2, the thresh-

old is log(n)/s2t for perfect matchability. Before proving Theorem 3, we provide some context

for the result.

The dependence on n is tight. To see this, consider the intersection graph G0 = G (V0,E0),

where V0 =V1 ∩V2 and E0 = E1 ∩E2. Its expected degree is nps2t 2.2 If this is asymptotically

less than lognt 2, then G0, with high probability, has symmetries, i.e., the automorphism group

of G0 is not trivial (that, in fact, stem from the isolated vertices [33]). In this case, the correct

matching cannot be determined uniquely. To see this, assume that an oracle reveals, separately

for G1 and for G2, the set of nodes and edges without counterpart. These sets contain no useful

information for estimating π0 over the common nodes, due to the independence assumptions

in the model. Essentially, given an oracle, G0 is a sufficient statistic for π0, whose symmetries

would preclude inferring π0.

Based on this argument, the dependence on t is tight, where there is a gap of a factor of s

between the achievability result in Theorem 3 and the trivial lower bound based on G0. It is

not clear whether the upper or lower bound is loose with respect to s.

With t = 1, we can recover the achievability result of Pedarsani and Grossglauser [150] up to a

constant. Note that this is not trivial, as their problem formulation minimizes a cost function3

over the set {Πl
k : k + l = n}, where here we minimize over the larger set {Πl

k : k + l ≤ n}. Then,

our result shows that there is asymptotically no penalty for not knowing a priori the overlap

set V0. Also, we can derive the maximum a posteriori (MAP) rule for the G(n, p; t , s) model

2To be precise, (n −1)ps2t 2; we sometimes omit lower-order terms for readability.
3Identical to ours with α= 0.
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2.2. Proof of Theorem 3

with t = 1. The MAP rule is to choose the permutation π̂ from the symmetric group Sn
4 given

by

π̂MAP = argmax
π∈Sn

P[π|G1,G2].

The MAP rule can be equivalently stated in terms of a simpler concept, by the following lemma.

Lemma 4. We have

π̂MAP = argmax
π

P[π|G1,G2] = argmin
π

Φπ. (2.3)

The proof of Lemma 4 is given in Appendix 2.A. Lemma 4 and Theorem 3 (along the result of

[150]) show that the MAP estimator recovers the true alignment with high probability for t = 1.

The cost function Δπ with α = 1 is similar to a simple graph edit distance between G1 and

G2. Suppose we wanted to find the cheapest way to transform the unlabeled graph G1 into

G2 through edge additions and deletions. Then the number of operations is exactly Δπ. Our

conditions on α (discussed in detail within the proof) show that minimizing this edit distance

does not work. Instead, the trade-off between penalizing mismatched mapped edges and

unmapped edges needs to be controlled more finely through an appropriate choice of α,

which depends on p and s.

The result is for the Erdős-Rényi random-graph model with uniform sampling. This parsi-

monious model is a poor approximation of most real networks that have salient properties

not shared with random graphs (skewed degree distribution, high clustering, community

structure, etc.). However, we conjecture that network alignment for random graphs is harder

than for real graphs, because the structural features of real networks make nodes more dis-

tinguishable in these networks than in random graphs. Our results suggest that, even for the

difficult case of random graphs, network alignment is fundamentally easy given sufficient

computational power.

2.2 Proof of Theorem 3

We provide a brief sketch followed by the detailed proof. Let S be the number of matchings

π ∈Π such that Δπ−Δπ0 ≤ 0. Following the Markov inequality, as S is a non-negative integer-

valued random variable, we have P[S ≥ 1] ≤ E[S]. We will prove that, under the conditions of

Theorem 3,

P[S ≥ 1] ≤ E[S] = ∑
π∈Π

P(Δπ−Δπ0 ≤ 0) → 0. (2.4)

4As we assume that t = 1, the set of possible matchings is {Πl
k : k + l = n}. This is equivalent to the set of all

possible permutations over {1,2, · · · ,n}, i.e., the symmetric group Sn .
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The main complication of the proof stems from the fact that the random variables Δπ and

Δπ0 are correlated in a complex way, because they are both functions of the random vertex

and random edge sets V1,2 and E1,2. Both Δπ and Δπ0 can be written as sums of Bernoulli

random variables. The main challenge in the proof is to decompose the difference Δπ−Δπ0

into components that are mutually independent and can be appropriately bounded.

For this, we first partition the node sets V1 and V2 with respect to how they are mapped by π

and π0. This node partition induces an edge partition. Elements of some parts of the edge

partition contribute equally to Δπ and Δπ0 and can be ignored. The remaining parts can be

further subdivided into linear structures (specifically, chains and cycles) with only internal

and short-range correlation. Finally, this leads to the desired decomposition of the sums of

Bernoullis to apply standard concentration arguments to Δπ and Δπ0 individually, and to then

stochastically bound their difference.

Detailed Proof of Theorem 3

We consider the contribution of edges (or potential edges) to the terms Δπ and Δπ0 as a random

variable in the G(n, p; t , s) probability space. More precisely, for a pair of nodes u, v ∈V1 and

their images under the matching π (i.e., π(u),π(v)) we look at the probability of having/not

having an edge between these nodes in G1,2. From now on, a pair e represents a possible edge

e = (u, v) which, based on the realization of the G(n, p; t , s) bigraph random model, might

have or not have an actual edge between the nodes u and v .

Let us call the set of all pairs in G1 as V 2
1 (here, we slightly abuse the notation, meaning

(V1
2

)
).

The set V 2
2 is defined similarly. We define, by analogy, the set of matched pairs V 2

1 (π) as the set

of all the pairs (u, v) ∈ (V1(π)
2

)
. Also, the set V 2

2 (π) is defined similarly.

The term Φπ counts the number of edges, that in both graphs, are matched to a nonexistent

edge in the other graph. More precisely, the contribution of pair e ∈ V 2
1 (π) and its image

π(e) ∈ V 2
2 (π) to Φπ is φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|. Note that pairs e and π(e) contribute to

Φπ if and only if exactly one of them exists in G1 or G2. Also, for e ∈ V 2
1 \ V 2

1 (π), we define

ψ1(e) = 1{e∈E1\E1(π)} which represents the contribution of pair e to Ψ1
π. This indicator term is

equal to 1 if the edge between unmatched pair e in G1 exists. Similarly, for e ∈V 2
2 \V 2

2 (π), we

define ψ2(e) = 1{e∈E2\E2(π)}. To sum up, we can write Δπ as

Δπ = ∑
e∈V 2

1 (π)

φ(e)+α

⎡
⎣ ∑

e∈V 2
1 \V 2

1 (π)

ψ1(e)+ ∑
e∈V 2

2 \V 2
2 (π)

ψ2(e)

⎤
⎦ .

In order to compute contributions of different pairs to Δπ and Δπ0 , we first partition the set

of vertices V1 ∪V2 based on the matchings π and π0. Then we partition the node pairs with

respect to this node partition.
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2.2.1 Node Partition

We partition the nodes in V1 ∪V2 into the following five parts based on the matching π:

1. �(π) is the set of nodes that are matched correctly by π, i.e., �(π) = {u ∈V1 ∪V2|π(u) =
u}.

2. → (π) is the set of nodes that are matched in the graph G1, but π−1 is null for them, i.e.,

→ (π) = {u ∈V1 ∪V2|π(u) �= �,π−1(u) =�}.

3. ← (π) is the set of nodes that are matched in the graph G2, and π is null for them, i.e.,

← (π) = {u ∈V1 ∪V2|π(u) =�,π−1(u) �= �}.

4. ↔ (π) is the set of nodes that are matched in both graphs G1,2, but incorrectly, i.e.,

↔ (π) = {u ∈V1 ∪V2|π(u) �= {u,�},π−1(u) �= {u,�}}.

5. ×(π) is the set of nodes which are null in both graphs G1,2 under the matching π, i.e.,

×(π) = {u ∈V1 ∪V2|π(u) =�,π−1(u) =�}.

In the matching π0 all the nodes in V0 are matched correctly and the other nodes are left

unmatched; therefore, only the two sets �(π0) and ×(π0) are nonempty. The pairwise inter-

sections of the partitions under the two matchings π and π0 are shown in Table 2.1. For an

example of these pairwise intersections, see Table 2.2.

Table 2.1 – Partition of the nodes in V1 ∪V2 into eight sets based on the pairwise intersections
of partition of the nodes in V1 ∪V2 under π and π0.

������π0

π � ↔ → ← ×
� C W L R S
× � � Q X U

Table 2.2 – Example of partition of the nodes V1 ∪V2 of the graphs G1,2 from Figure 2.1.

������π0

π � ↔ → ← ×
� u1,u2 u3,u4,u5,u6 � u7 �
× � � u8,u9 u12 u10,u11

2.2.2 Edge Partition

We now partition the set of pairs with respect to the classes of nodes defined in Table 2.1.

A pair e contributes equally to Δπ and Δπ0 (i) if it is matched in the same way by π and π0
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(i.e., π0(e) =π(e)), or (ii) if it is null in both alignments. The following sets are the pairs that

contribute equally to Δπ and Δπ0 , consequently, their contributions will cancel-out in the

difference Δπ−Δπ0 :

1. Pairs between the nodes in the set C. These pairs are present in both graphs and their

endpoints are matched correctly by both π and π0. For example, in Figure 2.1, the pair

(u1,u2) is matched with the same pair by alignments π0 and π.

2. Pairs, in G1 between U ∩V1 (i.e., the nodes in V1 which are unmatched by π and not

sampled in V2) and V1, contribute equally to both Ψπ and Ψπ0 . Similarly, for the pairs in

(U ∩V2)×V2 in the graph G2. Note that these pairs are present in only one of the graphs.

For example, in Figure 2.1, the pairs (u10,u11), (u10,u12) and (u10,u2) in graph G2 are

not matched either under π or under π0.

3. Pairs e between Q and S∪R in the graph G1 contribute equally to both Ψπ and Ψπ0 by

a term ψ1(e). Similarly, the pairs between X and S∪L in the graph G2 contribute with a

term ψ2(e) under both alignments π and π0. Note that these pairs are present only in

one of the graphs. In Figure 2.1, (u7,u8) and (u7,u9) provide two examples of pairs in

this class from graph G1.

Let Zπ and Zπ0 denote the contribution of all the pairs from these partitions (mentioned

above) to Δπ and Δπ0 , respectively. We know that Zπ = Zπ0 . Let’s define E as the set of all the

remaining pairs that are matched differently under π and π0. Note that E depends on both

alignments π and π0. As for each instance of the G(n, p; t , s) bigraph model, the matching π0

is fixed; for simplicity of notation, we drop the dependence on π0. Furthermore, we define

Xπ =Δπ−Zπ and Yπ =Δπ0 −Zπ0 . Here, Xπ and Yπ represent the sums of indicator terms over

the contribution of pairs in the set E under alignments π and π0, respectively. In summary, we

have

Δπ−Δπ0 = (Xπ+Zπ)− (Yπ+Zπ0 ) = Xπ−Yπ. (2.5)

The next step of the proof is to find a lower-bound for Xπ−Yπ. In order to compute contribu-

tions of pairs from the set E to different indicator terms in Xπ and Yπ, we partition this set into

the following sub-classes:

1. The set of pairs present in only one of the graphs G1,2 and matched by π. Note that at

least one of the endpoints of these pairs are not sampled in either V1,2. Therefore, these

pairs are not matched by π0. These pairs are divided into the two following sets:

• E�,M∗ = {(i , j ) ∈ (Q×V1(π))
}

is the set of pairs that contribute with ψ1(e) to Ψ1
π0

and with φ(e) to Φπ.

• E�,∗M = {(i , j ) ∈ (X ×V2(π))} is the set of pairs that contribute with ψ2(e) to Ψ2
π0

and with φ
(
π−1(e)

)
to Φπ.
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For example, in Figure 2.1, we have (u3,u8) ∈ E�,M∗ and (u1,u12) ∈ E�,∗M .

2. The set of pairs is present in both graphs G1,2, but is unmatched by π in at least one of

the graphs. These pairs can be further partitioned into three sub-classes:

• EM ,M� = {(i , j ) ∈L× (C∪W ∪L)
}

is the set of pairs that are matched in G1 and

unmatched in G2. A pair e ∈ EM ,M� contributes with φ(e) to Φπ0 and Φπ, and with

ψ2(e) to Ψ2
π.

• EM ,�M = {(i , j ) ∈R× (C∪W ∪R)} is the set of pairs that are matched in G2 and

unmatched in G1.

• EM ,�� = {(i , j ) ∈ (S ×V0)
⋃

(L×R)} is the set of pairs that are unmatched by π in

both graphs. These pairs contribute with φ(e) to Φπ0 , and with ψ2(e) to both Ψ1
π

and Ψ2
π.

In Figure 2.1, the unmatched pair (u4,u7) in G1 is matched by π only in G2, i.e., (u4,u7) ∈
EM ,�M .

3. EM ,M M = {(i , j ) ∈W×(C∪W)} is the set of pairs that are present and matched incorrectly

by π in both graphs G1,2. These pairs are matched differently by π and π0. The pairs

in the set EM ,M M contribute with terms φ(e) to Φπ0 , and contribute with terms φ(e)

and φ
(
π−1(e)

)
to Φπ. Note that this is not generally true. Indeed, transpositions5 in

π contribute equally to both Φπ and Φπ0 . We have at most �k/2� pairs of this type,

because the number of incorrectly matched couples is k. To be more concrete, we do

not consider these pairs in the set EM ,M M . For example, in Figure 2.1, the pairs (u1,u3)

and (u4,u5) that are matched differently by π0 and π belong to the set EM ,M M .

Now, let us define the sizes of the described sets as follows: m1 = |E�,M∗ ∪E�,∗M |, m2,1 =
|EM ,M� ∪EM ,�M |, m2,2 = |EM ,��|, m2 = m2,1 +m2,2 and m3 = |EM ,M M |. Also, we define m =
m1 +m2 +m3.

2.2.3 Indicator Terms and Expected Values

In Lemma 5, the two terms Xπ and Yπ are expressed as sums of indicator terms (which are

correlated Bernoulli random variables) over the pairs in E .

Lemma 5. For Xπ we have:

Xπ = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

φ(e)+α

[ ∑
e∈EM ,�M∪EM ,��

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

ψ2(e)

]
, (2.6)

5A pair (u, v) is a transposition under π if π(u) = v and π(v) = u.
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where φ(e)∼Be
(
2ps(1−ps)

)
and ψ1(e),ψ2(e)∼Be(ps). For Yπ we have:

Yπ = ∑
e∈EM ,M�∪EM ,�M∪EM ,��∪EM ,M M

φ(e)+α

[ ∑
e∈E�,M∗

ψ1(e)+ ∑
e∈E�,∗M

ψ2(e)

]
, (2.7)

where φ(e)∼Be
(
2ps(1− s)

)
, and ψ1(e),ψ2(e)∼Be(ps).

Proof. First, note that E�,M∗∪EM ,M�∪EM ,M M = E ∩V 2
1 (π) is the set of all matched pairs from

G1 in the set E . Remember that by (2.5) the term Xπ is the sum of indicators in Δπ over pairs

in the set E . Thus, we get the first term in the right-hand side of (2.6). Each pair e (the same is

true for π(e)) exists in each of the graphs G1,2 with probability ps; thus φ(e) = Be
(
2ps(1−ps)

)
.

Second, we compute the number of terms ψ1,2(e) that contribute to Xπ. These terms are (i)

pairs of type EM ,M�∪EM ,�M that contribute to either Ψ1
π or Ψ2

π, and (ii) pairs of type EM ,��
that contribute to both Ψ1

π and Ψ2
π. The probability of a pair e to have an actual edge e ∈ E1,2 is

ps, hence ψ1(e),ψ2(e)∼Be(ps).

Yπ is the contribution of the pairs in the set E to Δπ0 . For each pair e matched by π0 and π,

e ∈ EM ,M�∪EM ,�M ∪EM ,��∪EM ,M M there is an indicator φ(e) in Yπ. Note that this φ(e) is an

indicator of the event that e is sampled in G1 and π(e) = e is not sampled in G2 (or vice versa).

Thus φ(e) = Be
(
2ps(1− s)

)
. The argument for ψ1(e),ψ2(e) is the same as for Xπ. This proves

(2.7).

In the next corollary, we compute the expected values of Xπ and Yπ.

Corollary 6. For Xπ and Yπ we have

E[Xπ] =
(
m3 +

m1 +m2,1

2

)
2ps(1−ps)+αm2,1ps +2αm2,2ps.

E[Yπ] = (m2 +m3)2ps(1− s)+αm1ps.

Proof. Note that the term φ(e), which is defined as φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|, depends on

pairs e and π(e) from graphs G1 and G2, respectively. Also, as the matching π is an injective

function, each pair e ∈ V 2
1 can be matched to at most one pair from V 2

2 . This is generally

true for pairs e ∈ V 2
2 from G2. Therefore, the number of pairs from graph G1, which con-

tribute to terms {φ(e)}, is equal to the number of pairs from graph G2 in these terms, i.e.,

|E�,M∗ ∪EM ,M�∪EM ,M M | = |E�,∗M ∪EM ,�M ∪EM ,M M |. Remember that |E�,M∗ ∪E�,∗M | = m1

and |EM ,M�∪EM ,�M | = m2. In short, the number of {φ(e)} terms that contribute to Xπ (defined

precisely in Lemma 5) is m3+ m1+m2,1

2 . The rest of the proof comes directly from the definitions

of m1,m2 and m3.

In the following lemma, we prove that the expected value fof Xπ is larger than the expected
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value of Yπ.

Lemma 7. If 1−ps >α> 1− s, then E[Xπ] > E[Yπ].

Proof. From Corollary 6, we have

E[Xπ] > ps
(
(1−ps)m1 +2αm2 +2(1−ps)m3

)> E[Yπ],

if the following inequalities hold: (i) (1−ps) >α, (ii) α> (1− s), and (ii) (1−ps) > (1− s). Note

that if the first two inequalities hold, then the third inequality is true also.

2.2.4 Correlation Structure

Lemma 7 guarantees that for any π �=π0, E[Δπ] > E[Δπ0 ]. Next, we demonstrate that Xπ and Yπ,

which are sums of correlated Bernoulli random variables, concentrate around their means.

Due to the edge sampling process, the presence of edges between the nodes in V0 is correlated

in the two graphs G1 and G2. For example, consider an event φ(e) that is a function of edges

e ∈ G1 and π(e) ∈ G2. Furthermore, assume π(e) is sampled and matched in the graph G1.

Then, the presence of π(e) in G1 is correlated with the presence of π(e) in G2. Therefore, the

two terms φ(e) and φ (π(e)) are correlated. By the same lines of reasoning, if π2(e) is sampled

and matched in G1, the two terms φ (π(e)) and φ
(
π2(e)

)
are correlated, and so on.

To address the correlations contributing to terms Φπ and Ψπ, we first define, for an align-

ment π, the two concepts of chains and cycles. We call a sequence of non-repeating pairs

(e1, · · · ,ei · · · ,eq ) a chain if (i) π−1(e1) =�, i.e., e1 is either unmatched or not sampled in G2; (ii)

π(eq ) =�, i.e., eq is either unmatched or not sampled in G1; and (iii) π(ei ) = ei+1 for 1 ≤ i < q ,

i.e., each pair in a chain is the image of the previous pair in that chain.6 In Figure 2.3b, the

sequence ((u3,u9), (u5,u6), (u4,u7)) is an example of a chain of length three. Also, we call a

sequence of differing pairs (e1, · · · ,ei , · · · ,eq ) a cycle if (i) π(ei ) = ei+1 for 1 ≤ i < q ; and (ii)

π(eq ) = e1. As an example, see the cycle ((u2,u3), (u2,u5), (u2,u4)) in Figure 2.4a.

e

(u8, u9)

π(e)

(u12, u6)

φ(e)

(a)

e

(u3, u9)

π(e)

(u5, u6)

π2(e)

(u4, u7)

ψ1(π(e))

φ(π(e))φ(e)

(b)

Figure 2.3 – (a) Example of a chain with length one from the matching π from Figure 2.1. (b)
Example of a chain with length three from the matching π from Figure 2.1: The term ψ1 (π(e))
corresponds to the contribution of pair (u2,u6) in the graph G1. In this chain, the term φ (π(e))
is correlated with the two terms φ(e) and ψ1 (π(e)).

6Note that a chain or cycle of pairs is defined for a given alignment π.
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e

(u2, u3)

π(e)

(u2, u5)

π2(e)

(u2, u4)

φ(π(e))

φ(e)

φ(π2(e))

(a)

e

(u3, u5)

π(e)

(u5, u4)

π2(e)

(u4, u3)

φ(π(e))

φ(e)

φ(π2(e))

(b)

Figure 2.4 – Examples of two cycles from the matching π from Figure 2.1: Pairs generate a
cycle of dependent terms. In these cycles, the terms φ(e),φ (π(e)) and φ

(
π2(e)

)
are correlated

pairwise.

Following the discussion above, we state Lemmas 8 and 9. In Lemma 8, we (i) partition all the

pairs of E into chains and cycles and (ii) demonstrate contributions of these pairs to different

indicator terms. In Lemma 9, we characterize correlations between terms in the induced

sequence of indicators.

Lemma 8. All the pairs in the set E can be partitioned into chains and cycles, where they induce

sequences of indicator terms as follows:

• For each cycle (e1, · · · ,ei , · · ·eq ),1 ≤ i < q, the ei pairs contribute to the induced sequence

of indicator terms
(
φ(e1), · · ·φ(ei ), · · ·φ(eq )

)
.

• For each chain (e1, · · ·ei , · · ·eq ),1 ≤ i < q, the ei pairs contribute to one of the following

five types of induced sequences of indicator terms:

1. e1 ∈ E�,M∗ and eq ∈ E�,∗M : these pairs contribute to the induced sequence of indica-

tor terms
(
φ(e1), · · ·φ(ei ), · · ·φ(eq−1)

)
.

2. e1 ∈ E�,M∗ and eq ∈ EM ,�M : these pairs contribute to the induced sequence of indi-

cator terms
(
φ(e1), · · ·φ(ei ), · · ·φ(eq−1),ψ1(eq )

)
.

3. e1 ∈ EM ,M� and eq ∈ E�,∗M : these pairs contribute to the induced sequence of indi-

cator terms
(
ψ2(e1),φ(e1), · · ·φ(ei ), · · ·φ(eq−1)

)
.

4. e1 ∈ EM ,M� and eq ∈ EM ,�M : these pairs contribute to the induced sequence of

indicator terms
(
ψ2(e1),φ(e1), · · ·φ(ei ), · · ·φ(eq−1),ψ1(eq )

)
.

5. e1 ∈ EM ,��: we have a chain of length one. The edge e1 contributes to the induced

sequence of indicator terms
(
ψ2(e1),ψ1(e1)

)
.

Lemma 9. For sequences of induced indicator terms from partitions in Lemma 8, we have

• All the induced indicators from {φ∪ψ}, associated with different chains and cycles, are

mutually independent.
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• For a chain, each indicator from {φ∪ψ} is correlated with at most the preceding and

subsequent indicators in the induced sequence.

• For a cycle, each indicator from {φ} is correlated with at most the preceding and subse-

quent indicators in the induced sequence, and φ(e1) is correlated with φ(eq ).

For details regarding the correctness of this partition, their induced indicator terms and the

correlation arguments refer to Appendix 2.B.

From Lemma 9, we know that each term from {φ(e)∪ψ1,2(e)} is correlated with at most two

of its neighbors (e.g., see Figure 2.3 and 2.4). We associate a label 0 or 1 with all the induced

φ(e) and ψ1,2(e) terms by alternating these labels. We obtain a labeling that all the indicators

with the same label are independent. Note that this is not generally true for the terms that

are at the start and end of cycles with odd number of indicator terms. For more explanation

on how to handle these special cases, see the discussions and the detailed computation of

the concentration bounds in Appendix 2.C. Based on this labeling strategy, we can split the

terms which contribute to Xπ into two sums of independent random variables and derive

concentration bounds for each sum. Next, by using these bounds, we find an upper-bound for

P [Xπ−Yπ ≤ 0].

2.2.5 Concentration

We define μ1 = E[Xπ] and μ2 = E[Yπ] and apply a union bound for the difference Xπ−Yπ (2.5)

as follows

P [Xπ−Yπ ≤ 0] ≤P
[

Xπ < μ1 +μ2

2
,Yπ > μ1 +μ2

2

]
≤P

[
Xπ < μ1 +μ2

2

]
+P
[

Yπ > μ1 +μ2

2

]
. (2.8)

From the result of Lemma 13 from Appendix 2.C, we use the following bounds for the concen-

tration of Xπ and Yπ around their means:

P
[

Xπ < μ1 +μ2

2

]
≤ 2exp

(
− (μ1 −μ2)2

96μ1

)
,

P
[

Yπ > μ1 +μ2

2

]
≤ exp

(
− (μ1 −μ2)2

12μ1

)
. (2.9)

The first step to upper-bound (2.8) is to find a lower-bound for μ1−μ2

μ1
(2.9). Let’s define

α′ = min
((

1−ps −α), (α− (1− s)
))

.

From Corollary 6, we have

μ1 −μ2 ≥α′ps(m1 +m2 +m3) ≥ psα′m.
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Also, note that μ1 ≤ 2mps and μ2 ≤ 2mps. Therefore, we have

(μ1 −μ2)2

μ1
≥ α′2mps

2
.

To sum up, we have

P[Xπ−Yπ ≤ 0] ≤P
[

Xπ < μ1 +μ2

2

]
+P
[

Yπ > μ1 +μ2

2

]
≤ 3exp

(
−α′2 mps

192

)
. (2.10)

Thus the expected number of alignments π �=π0 such that Δπ ≤Δπ0 is

E(S) ≤∑
k,l

|Πl
k |P[Xπ−Yπ ≤ 0] ≤∑

k,l
|Πl

k |3exp

(
− α′2

192
mps

)
.

To finalize our proof, it remains to find a lower bound for m (which is the number of node

pairs in the set E) and an upper bound for |Πl
k |.

Lemma 10. We have

1. if k ≤ n0 − l , then m > (n0−l )(n0−2)
2 and |Πl

k | < n3(n0−l ).

2. if k > n0 − l , then m > k(n0−2)
2 and |Πl

k | < n3k .

Proof. First, we upper-bound the number of alignments in the set Πl
k . For this reason. assume

we first choose l nodes from n0 nodes in the set V0 that are matched correctly. Then, we

choose k other nodes from the remaining nodes of V1 and V2. Also, there are at most k !

possible alignments between these k chosen nodes. Therefore,

|Πl
k | ≤

(
n0

l

)(
n1 − l

k

)(
n2 − l

k

)
k ! ≤ nn0−l

0 nk
1 nk

2 . (2.11)

Based on the value of k we consider two different cases:

• if k ≤ n0 − l , then |Πl
k | < n3(n0−l ). By definition, m = |E | is the number of pairs that are

matched differently by π and π0. This includes the set of pairs between any sampled

node v1 ∈ V0 and any node v2 ∈ V0 matched differently by π and π0. Note that these

pairs are all the present pairs and there are m2 +m3 of them. Also, we should consider

the pairs that contribute equally to both terms due to transpositions. Thus we have

m ≥
(

n0 − l

2

)
+ (n0 − l )l −�k

2
� ≥ (n0 − l )(n0 −2)

2
.

• if k > n0 − l , then |Πl
k | < n3k . Here note that the set E includes all the pairs between

any sampled node v1 ∈V0 and any node v2 ∈V1(π)∪V2(π) that are matched differently
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by π and π0. Again, we should consider transpositions. We compute the number of

pairs matched by π as m ≥ m3 +m1 ≥ (k2)+kl −�k
2 �. After that, if k ≥ n0, we have the

statement immediately; otherwise, we use l > n0 −k, and obtain

m ≥
(

k

2

)
+k(n0 −k)−�k

2
� ≥ k(n0 −2)

2
.

So, we can lower-bound m for two different cases and find an upper-bound for |Πl
k |.

Now, we find an upper bound for E[S] from the result of Lemma 10. (1) If k ≤ n0 − l : we define

i = n0 − l . Using the facts that m > (n0−l )(n0−2)
2 , k ≤ n and |Πl

k | < n3(n0−l ), we obtain

E[S] ≤∑
k,l

3exp

(
i

(
3logn −ps

α′2

384
(n0 −2)

))
≤

n0∑
i=1

3exp

(
(3i +1)logn − i ps

α′2

384
(n0 −2)

)
.

(2) If k > n0 − l : using the facts that m > k(n0−2)
2 and |Πl

k | < n3k , we obtain

E[S] ≤∑
k,l

3exp

(
k

(
3logn −ps

α′2

384
(n0 −2)

))
≤

n∑
k=1

3exp

(
(3k +1)logn −kps

α′2

384
(n0 −2)

)
.

(2.12)

The geometric sum of (2.12) goes to 0, if its first term goes to 0. Thus if we assume ps α′2
384 n0 −

4logn =ω(1), we obtain E[S] → 0. We can show that n0 = nt 2 (1+o(1)) from a Chernoff bound

and conclude ps α′2t 2

384 n −4logn =ω(1).7

To conclude the proof of Theorem 3, we choose α= (1−ps)+(1−s)
2 = 1− s(1+p)

2 ; then α′ = s(1+p)
2 .

In summary, we derive the final bound ps s2t 2

1536 n −4logn =ω(1) or ps3t 2 = 6144logn+ω(1)
n .

2.3 Summary

In this chapter, we have addressed the problem of matching two unlabeled graphs by their

edge structure alone. We have proposed a stochastic model for generating two correlated

graphs with partial node and edge overlaps. More precisely, we introduce the G(n, p; t , s)

bigraph generator model, where G(n, p) is the underlying ground-truth graph, and t and

s are two parameters that control the similarities of the vertex and edge sets, respectively.

We take an information-theoretic perspective, in that we ignore computational limitations

and identify sufficient conditions such that a combinatorial optimization problem yields the

correct answer with high probability.

We have given conditions on the graph density p, and have proved that within these conditions

7For any α ∈ [1− s,1−ps].
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the true partial matching between the node sets of the two graphs can be inferred with zero

error. The conditions on the node and edge similarity parameters t and s are quite benign:

essentially, the average node degree has to grow as log(n)+ω(1)
s2t .

Beyond establishing the scaling relation of network alignment in the presence of partial node

overlap, the configuration of the cost function suggests heuristics for efficient algorithms.

In particular, the cost function takes the form of a graph edit distance, but with a trade-off

between the two types of error (mismatch and map-to-null) quite delicate to control (through

the parameter α). We therefore expect our model and result to be useful in the development

and tuning of matching heuristics in practice and to shed light on the connection between

exact and approximate graph isomorphism.
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Appendix

2.A Graph Matching and Edge Mismatch: Proof of Lemma 4

In this appendix, we provide the proof of Lemma 4. Assume (i) a graph G(V ,E ) is sampled from

G(n, p); (ii) the edges of graphs G1(V1,E1) and G2(V2,E2) are sampled from the edges of G by

two different independent edge sampling processes with probability s; and (iii) a permutation

π0 is chosen uniformly at random from the symmetric group Sn and it is applied to G2. The

goal is then to identify the permutation π0 based on the two given graphs G1 and G2. For

convenience of notation, we assume with out loss of generality that the unknown π0 is the

identity permutation. Note that we can interpret graphs G1,2 as samples of the G(n, p; t , s)

model with t = 1.

As the choice of permutation π is uniformly at random from the symmetric group Sn , the MAP

rule is equivalent to the maximum likelihood (ML) rule. More precisely, we can write

P [π|G1,G2] = P [G1,G2|π]P [π]

P[G1,G2]
.

By noting that P[π] = 1
n! and P[G1,G2] is fixed for any permutation π, we have

π̂MAP = π̂ML = argmax
π∈Sn

P[G1,G2|π]. (2.13)

To compute the right-hand side of (2.13), let’s define the following:

∇π = |π(E1)∩E2| = |E1|+ |E2|−Φπ

2
,

Uπ = |π(E1)∪E2| =Φπ+∇π.

We then have

P[G1,G2|π] =∑
G
P[G1,G2,G|π] =∑

G
P[G1,G2|π,G]P[G].

To compute this sum, we note on one hand that if G does not contain all the edges in E1 ∪
π−1(E2), then P[G1,G2|π,G] = 0. On the other hand, if G does contain all the edges in E1 ∪
π−1(E2) (note that the total number of such graphs G is 2(n

2)−Uπ), then by letting i to be the
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number of edges in G that do not belong to the set E1 ∪π−1(E2), i.e., by assuming that G has

Uπ+ i edges, and k = (n2), we obtain

P [G1,G2|π,G]P[G] = s|E1|+|E2|(1− s)Φπ,1+Φπ,2+2i ×pUπ+i (1−p)k−Uπ−i

= sUπ+∇π(1− s)Φπ+2i pUπ+i (1−p)k−Uπ−i ,

where Φπ,1 =∑e∈E1(π) 1{π(e)∉E2},Φπ,2 =∑e∈E2(π) 1{π−1(e)∉E1} and Φπ,1 +Φπ,2 =Φπ. As a result, we

have

P[G1,G2|π] =
k−Uπ∑

i=0

(
k −Uπ

i

)
sUπ+∇π(1− s)Φπ+2i pUπ+i (1−p)k−Uπ−i

=sUπ+∇π(1− s)ΦπpUπ
(
p(1− s)2 + (1−p)

)k−Uπ .

We note further that

(i) Uπ = |E1|+|E2|+Φπ

2 .

(ii) the two values Uπ+∇π = |E1|+ |E2| and k = (n2) are not dependent on the choice of π.

As a consequence

π̂MAP = argmax
π∈Sn

P[G1,G2|π] = argmax
π∈Sn

logP[G1,G2|π]

= argmax
π∈Sn

{
Uπ log

p

p(1− s)2 +1−p
+Φπ log(1− s)

}
= argmax

π∈Sn

{Φπ

2
log

p

p(1− s)2 +1−p
+Φπ log(1− s)

}

= argmax
π∈Sn

{
Φπ log

p(1− s)2

p(1− s)2 +1−p

}
.

Finally, as 1−p ≥ 0 and p(1−s)2

p(1−s)2+1−p ≤ 1 we always have

log
p(1− s)2

p(1− s)2 +1−p
≤ 0.

Therefore, we can conclude that

π̂MAP = argmax
π

P[π|G1,G2] = argmin
π

Φπ. (2.15)

This proves Lemma 4.

2.B Partition of Node Pairs into Chains and Cycles

In this appendix, we provide the detailed proof for Lemmas 8 and 9. More precisely, we prove

that the set of chains and cycles correctly partition the pairs in set E , and we characterize the
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dependence structure of the indicators within this partition.

Firstly, note that each pair e ∈ E�,M∗ is present only in G1, thus it contributes only to one φ(e)

indicator term. Consider the chain (e,π(e), . . .πc (e)), when c is the smallest number such that

πc+1(e) is null. This case happens in one of the two following scenarios:

• if πc (e) ∈ E�,∗M , then πc (e) is matched and exists only in G2. Therefore, this chain of

pairs induces the sequence
(
φ(e), · · · ,φ

(
πc−1(e)

))
of indicator terms. Figure 2.3a is an

example of such a chain under the matching π from Figure 2.1.

• if πc (e) ∈ EM ,�M , then πc (e) exists in both graphs, but is matched only in G2. Therefore,

this chain induces the sequence
(
φ(e), · · · ,ψ1 (πc (e))

)
of indicator terms. Figure 2.3b is

an example of such a chain under the matching π from Figure 2.1.

Secondly, each pair e ∈ EM ,M� is present in both G1 and G2, but is matched only in G1, thus

it contributes to terms φ(e) and ψ2(e). Consider the chain (e,π(e), . . .πc (e)) when c is the

smallest number such that πc+1(e) is null. This case happens in one of the two following

scenarios:

• if πc (e) ∈ E�,∗M , then πc (e) is matched and exists only in the graph G2. Therefore, this

chain induces the sequence
(
ψ2(e),φ(e), · · · ,φ

(
πc−1(e)

))
of indicator terms.

• if πc (e) ∈ EM ,�M , then πc (e) exists in both graphs but is matched only in the graph

G2. Therefore, this chain induces the sequence
(
ψ2(e),φ(e), · · · ,ψ1 (πc (e))

)
of indicator

terms.

Now we formulate the cycle and chain partition processes as follows:

• Chain partition: (i) For each pair, we build a chain as described above; (ii) for each pair

e ∈ EM ,M�, we build another chain; and (iii) for each pair of type e ∈ EM ,��, we build

another chain (ψ1(e),ψ2(e)). Note that the first two types of chains are duals of each

other: For each chain of pairs that ends with a pair e ∈ E�,∗M or e ∈ EM ,�M , we can build

the same chain of pairs backwards; starting from e and applying π−1 instead of π. Based

on this observation, we conclude that there are m1 + m2 pairs that start or end a chain.

Thus, the fourth step is to partition the remaining, unvisited pairs that all have type

EM ,M M (note that they are sampled and matched by π in both graphs).

• Cycle partition: For each unvisited pair e, the unvisited pair π(e) also has type EM ,M M

(otherwise π(e) and e belong to some chain, hence e is visited), thus the pairs e and π(e)

are not null. To build a cycle, we start with a pair e and build the sequence (e, · · · ,πc (e)),

where c is the smallest number such that πc (e) = e. We continue until there are no more

unvisited pairs. Note that each indicator of a pair belongs to at most one chain or cycle

because π is an injective function from V 2
1 to V 2

2 . Figure 2.4 provides examples of cycles
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of pairs under the matching π from Figure 2.1. Note that pairs induced by transpositions

generate cycles of length two, i.e., for a pair e = (u, v) with π(u) = v and π(v) = v the

cycle
(
φ(e),φ(π(e)

)
is generated where π2(e) = e.

Remember that we defined the indicator terms as follows: (i) φ(e) = |1{e∈E1(π)} − 1{π(e)∈E2(π)}|;
(ii) ψ1(e) = 1{e∈E1\E1(π)}; and (iii) ψ2(e) = 1{e∈E2\E2(π)}. From the definition, it is clear that for two

node pairs ei �= e j , we have ψ1(ei ) ⊥⊥ψ2(e j ). Also, if e j ∉ {ei ,π(ei )}, then φ(ei ) ⊥⊥ψ1(e j ),ψ2(e j ).

Furthermore, if e j ,π(e j ) ∉ {ei ,π(ei )}, then φ(ei ) ⊥⊥ φ(e j ). Following these independence ar-

guments, we can conclude that indicators associated with different chains and cycles are

mutually independent, and these indicators are correlated only with their precedent and

subsequent terms in induced sequences.

2.C Labeling the Indicator Terms

In this appendix, we show that (i) there is an efficient algorithm for labeling the indicator terms

to break the dependency between them; and (ii) based on this labeling strategy, we derive a

bound for the concentration of Xπ around its expected value.

In Lemmas 8 and 9, we defined induced sequences of indicator terms and characterized their

correlation. Now we explain how to label each indicator term with alternating 0 and 1 labels in

a way such that almost all of the indicators with the same label are independent. This is true

for all terms except for those that are at the beginning and the end of cycles with an odd length:

although they have the same label, but they are not independent. A sufficient condition for a

successful labeling strategy, which can help us to derive good concentration bounds, is that for

each type of indicators φ(e) and ψ1,2(e) at least a constant fraction of them should be labeled

with 0 and a constant fraction of them with 1.

For a sequence of indicators
(
φ(e1), · · ·φ(ei ), · · ·φ(eq )

)
induced by a cycle (See Lemma 8 ), we

start with a pair φ(e1) and label it with m
(
φ(e1)

)= 0. Next, we label φ(e2) with 1, φ(e3) with 0

and so on. We continue the next sequence with a new label (if we ended with 1 then we start

with 0 and vice versa) until there is no more unlabeled cycle.

For sequences, which are induced by chains, the labeling strategy is more complicated. First,

note that we can iteratively label a sequence from its beginning or its end. Second, remind

that all the indicators induced by pairs e1 and eq (i.e., the beginning and end of chains) are

either type φ(e) for a e ∈ E�,M∗∪E�,∗M or type ψ(e) for a e ∈ EM ,M�∪EM ,�M ∪EM ,��. Now, we

label all the sequences of indicators, which are induced by chains, in the following five steps:

1. Take sequences that start (or end) with an indicator of type φ(e) and label φ(e) with

m
(
φ(e)

)= 0. Next label φ (π(e)) (or φ
(
π−1(e)

)
) with 1 and so on.

2. Take sequences that start (or end) with an indicator of type ψ(e) and label ψ(e) with

m
(
ψ(e)

)= 0. Next we label φ (π(e)) (or φ
(
π−1(e)

)
) with 1 and so on.
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3. Take sequences that start (or end) with an indicator of type φ(e) and label φ(e) with

m
(
φ(e)

)= 1. Next label φ (π(e)) (or φ
(
π−1(e)

)
) with 0 and so on.

4. Take sequences that starts (or ends) with an indicator of type ψ(e) and label ψ(e) with

m
(
ψ(e)

)= 1. Next label φ (π(e)) (or φ
(
π−1(e)

)
) with 0 and so on.

5. Then, we continue by labeling the remaining sequences with an alternating 0 and 1

labels.

Lemma 11. The labeling strategy assigns the labels 0 and 1 to the indicator terms {φ(e)∪ψ1,2(e)}

in a way such that

1. at least 1
6 of indicators of type {ψ1(e)∪ψ2(e)} from pairs in {EM ,�M ∪EM ,��} and {EM ,M�∪

EM ,��} is label with 0, and at least 1
6 of them is labeled with 1.

2. at least 1
3 of indicators induced by pairs in {E�,M∗ ∪EM ,M� ∪EM ,M M } is labeled with 0,

and at least 1
3 of them is labeled with 1.

3. if m
(
φ(e1)

)= m
(
φ(e2)

)
and e1 �=πc (e2) for some c ≥ 0, then φ(e1) and φ(e2) are indepen-

dent. The same is true for indicators of type ψ1,2.

Proof. We start by proving the first clause of the lemma. At each iteration, out of eight consid-

ered start and end indicators (i.e., four starts and four ends) at least two and at most six terms

have type ψ. Out of these six, at least one is labeled with 0 at step 2 and at least one labeled

with 1 at step 4 of the labeling procedure (which exactly amounts to at least 1
6 of the considered

subset). If we are in the case that there is no more chain that is starting or ending from an

indicator φ, we label every second chain-start with 0. In this case, at least 1
4 of indicators of

type ψ is labeled with 0. The same argument is true for label 1.

To proof the second clause of the lemma, consider indicators of type {φ(e)} from pairs {E�,M∗∪
EM ,M�∪EM ,M M }. For the indicators induced by cycles, we start labeling with 0, and alternating

0 and 1. Thus approximately (depending if we stopped at 0 or 1) half of the pairs is labeled with

0 and the rest is labeled with 1. For the chains, at least 1
6 of start (and end) indicators of type φ

is labeled with 1 and the same for label 0 (the argument here is the same as for indicators of

type ψ). For internal indicators, as we alternate the start counter at each iteration, at least 1
3 of

the indicators is labeled with 0 and at least 1
3 of the indicators is labeled with 1.

The final statement of the lemma follows directly from the definition of the chains and cycles.

For the rest of this section, for simplicity of notation, we assume m(e) = m
(
φ(e)

)
and m(e) =

m
(
ψ(e)

)
.
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Using the introduced labeling strategy, we split the Xπ = S1+S2 into two terms S1 and S2, such

that

S1 = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

m(e)=0

φ(e)+α

⎡
⎢⎣ ∑

e∈EM ,�M∪EM ,��
m(e)=0

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

m(e)=0

ψ2(e)

⎤
⎥⎦

and

S2 = ∑
e∈E�,M∗∪EM ,M�∪EM ,M M

m(e)=1

φ(e)+α

⎡
⎢⎣ ∑

e∈EM ,�M∪EM ,��
m(e)=1

ψ1(e)+ ∑
e∈EM ,M�∪EM ,��

m(e)=1

ψ2(e)

⎤
⎥⎦

Lemma 12. We have

E[S1] ≥ E[Xπ]

6
and E[S2] ≥ E[Xπ]

6
.

Proof. This follows directly from Lemma 11 and the linearity of expectation.

Lemma 13. Denote by μ1 = E[Xπ] and by μ2 = E[Yπ]. We have

P[Xπ < μ1 +μ2

2
] ≤ 2exp(− (μ1 −μ2)2

96μ1
),

P[Yπ > μ1 +μ2

2
] ≤ exp(− (μ1 −μ2)2

12μ1
).

Proof. As Xπ = S1 +S2, then

P[Xπ < (1−ε)μ1] ≤P
[
S1 < (1−ε)E[S1]

⋃
S2 < (1−ε)E[S2]

]
≤P [S1 < (1−ε)E[S1]]+P [S2 < (1−ε)E[S2]] .

We first prove that P[S1 < (1− ε)E[S1]). From the result of Lemma 11, we know that all the

terms in S1 are independent except for those that are the beginning and end of cycles with odd

lengths. For those cycles φ(e1), . . . ,φ(ec ), we introduce a new variable We1 = φ(e1)+φ(ec )
2 . And

for the rest of indicators, we define We = φ(e)
2 . Note that if W =∑Wei , then 2W = S1 and all We
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terms are independent. Consequently, we have

P [S1 < (1−ε)E[S1]] =P
[∑

Wi < (1−ε)E[W ]
]

≤ exp

(
−E[W ]ε2

2

)
(by the Chernoff-Hoeffding bound from Appendix 2.D)

≤ exp

(
−E[S1]ε2

4

)
≤ exp

(
−E[Xπ]ε2

24

)
(by Lemma 12).

To prove the lemma, we set ε= μ1−μ2

2μ1
. As we have μ1+μ2

2 = μ1 − μ1−μ2

2 = μ1(1− μ1−μ2

2μ1
), we can

conclude the bound for S1. By proving the bound for S2 in a similar way, we obtain an upper

bound for Xπ with a high probability.

For μ2, we can write similarly μ1+μ2

2 =μ2(1+ μ1−μ2

2μ1
). The result for Yπ follows directly from a

Chernoff bound due to the fact all of its terms are independent.

2.D Chernoff-Hoeffding Lemma

Lemma 14. [Chernoff-Hoeffding bound [54]]

Let X �∑n
i=1 Xi where Xi ,1 ≤ i ≤ n, are independently distributed in [0,1]. Then for ε> 0,

P [X > (1+ε)E[X ]] ≤ exp

(
−ε2

3
E[X ]

)
,

P [X < (1−ε)E[X ]] ≤ exp

(
−ε2

2
E[X ]

)
.
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3 Percolation Graph Matching

The problem of identifying a (full or partial) matching between nodes in two structurally

similar graphs is known as network alignment (or graph matching). In this problem, we

are given two unlabeled graphs G1(V1,E1) and G2(V2,E2). We assume a true but unknown

equivalence between nodes that are in the intersection of the two graphs. We denote such a

hidden alignment by π0. Given the two graphs G1,2, the purpose of graph matching is to find

the hidden matching π0.

In Chapter 2, we looked at the problem of network alignment from a modeling and information-

theoretic perspective. We showed that partially overlapping graphs can be correctly matched

under quite mild conditions. For graphs G1,2, a correct matching amounts to (i) filtering out

nodes without counterparts in both G1 and G2, and then (ii) correctly matching the nodes in

the intersection of the two graphs. Compared to the idealized situation of two fully overlapping

graphs, it is quite remarkable that the added difficulty of (i) has such a benign effect on the

fundamental ability of matching. Of course, this is true for the information-theoretic setting

considered so far, where unlimited computational power is assumed. In this chapter1, we

complement our feasibility result by introducing an accurate and scalable graph-matching

algorithm. We investigate the effects of partial node overlap and edge overlap on this algorithm,

both theoretically and experimentally.

The best-studied and most scalable class of graph-matching algorithms assumes the existence

of auxiliary information in the form of a set of pre-matched node-couples called seeds. These

algorithms then incrementally build the full mapping from this pre-matched seed set. We

refer to this class as percolation graph-matching (PGM) algorithms [40, 41, 109, 140, 202]. All

the algorithms in the PGM class are based on the same key idea introduced by the work of

Narayanan and Shmatikov [140]: A (small) subset of nodes across the two graphs are identified

a priori and are matched. Then, in an iterative procedure, the matched couples “infect”

neighboring potential matches, with some threshold criterion that turns a potential match

into a permanent match. For example, in [202], the rule is extremely simple: (i) Every seed

1The material of this chapter is based on [99].
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couple is considered matched; (ii) a node-couple [i , j ] is matched if it has at least r already

matched neighbours2 and i , j are not part of another matched couple already. Yartseva and

Grossglauser [202] show that the recursive application of rule (ii) can, under some conditions,

correctly match all the nodes.

Narayanan and Shmatikov [140] empirically observe that their seed-based heuristic PGM

algorithm is sensitive to the seed-set size. Furthermore, Yartseva and Grossglauser [202]

rigorously analyze the PGM algorithms, within a random graph model from [150] (they assume

the same vertex set for the two graphs), and they characterize a phase transition. More

precisely, they prove that if the number of couples in the seed set (where all of them are

correct) is above a threshold and r ≥ 4, then the PGM algorithm correctly matches almost all

the nodes; and if the seed set is too small, the percolation does not take off, hence dying young.

A similar model is analyzed in [40, 109].

In this chapter, we give a new PGM algorithm by separating the decision to match a couple

from the use of a potential match as evidence for other matches. The distinguishing feature

of this algorithm is that it requires a dramatically smaller number of seeds, in comparison to

other algorithms from [40, 41, 109, 140, 202]. Whereas Yartseva and Grossglauser [202] prove

that, with high probability, their algorithm matches every node couple (with zero errors) for

r ≥ 4, this performance criterion has to be slightly relaxed. Specifically, we would be content

with a vanishing fraction of incorrectly aligned couples (with high probability). In summary,

we manage to trade-off a very significant reduction in the seed-set size, with a fairly benign

increase in the error rate.

The reason this works is quite subtle: For a PGM algorithm to succeed, two conditions have

to be satisfied. First, the algorithm has to percolate: if at some point, there is not enough

evidence to match a new couple, the algorithm stops. If this happens before a significant

portion of the nodes have been matched, the algorithm fails. Second, if the algorithm does

percolate, it has to percolate correctly. If at some point, the evidence for matching an incorrect

couple is stronger than the evidence for any correct couple, then the algorithm makes an error.

Furthermore, this incorrect match could percolate to other incorrect couples in future steps,

thus (potentially) leading to a cascade of errors.

Clearly, there is a trade-off between these two conditions. This trade-off can be controlled

by the strength of the required evidence for permanently matching a couple. For example,

consider the parameter r above: if r is chosen quite high (r = 5, say), then percolation might

easily stop early; however, a high r makes errors less likely; for r = 2, the algorithm percolates

easily, but might often incorrectly match couples.

In this chapter, we control this trade-off in a different way, by decoupling the decision to

match a couple from its ability to infect other couples. We refer to a tentative couple that is

not yet matched as a candidate couple. Essentially, a candidate couple provides evidence for

2Two couples [i , j ] and [i ′, j ′] are called neighbours if there is an edge (i , i ′) in E1, and an edge ( j , j ′) in E2.
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other couples, thereby fueling the percolation process, but this couple is not yet matched. It

is not a priori obvious that this decoupling is a good idea; showing this is the key theoretical

contribution of this chapter. The reason is not obvious and has to do with the way the evidence

for correct and incorrect couples percolates. Basically, correct couples tend to infect a small

number of neighbouring correct couples, each with relatively high probability; incorrect

couples tend to infect only other incorrect couples, but crucially this effect is uniform over all

incorrect couples and becomes “diluted”.

This observation leads us to create an algorithm that is highly robust to incorrect candidate

couples. We prove that under a wide range of network parameters, this algorithm will percolate

with high probability, generating a large number of incorrect candidate couples along the

way. However, the majority of matched couples are correct. It is important to note that our

algorithm has specific provisions for treating (i) filtering and (ii) matching. Consequently,

we might suspect that this algorithm could be quite sensitive to partial node overlap. One of

the key findings in this chapter is that this is not the case: We observe that quite often, the

percolation process over node-couples matches correct couples, and then stops “at the right

time”, i.e., when it has exhausted the nodes that are in the interaction of both vertex sets.

In summary, our contributions in this chapter are as follows:

• We develop a new graph-matching algorithm called ExpandWhenStuck. The distin-

guishing feature of this algorithm is that it requires a dramatically smaller number

of seeds, in comparison to state-of-the-art algorithms [109, 202]. It is able to match

real-social networks with over a million nodes and various types of random graphs (for

example, Barabási-Albert [21], Chung-Lu [42] and Erdős-Rényi [58] graphs), by using

only a handful of seeds (see Section 3.4).

• We analyze the performance of a simplified version of the ExpandWhenStuck algorithm

over an Erdős-Rényi random-bigraph model with partial-overlapping vertex sets.3 The

simplification is needed to make the analysis tractable: Whereas ExpandWhenStuck

dynamically percolates from unmatched candidate couples whenever necessary, we can

rigorously analyze only a slightly more restrictive setting (the ExpandOnce algorithm),

where this occurs only once at the outset. Specifically, ExpandOnce expands the seed

set into a larger set that includes many incorrect couples; a second algorithm called

NoisySeeds then percolates from this latter set in a manner similar to [202]. In Sec-

tion 3.2, (i) we demonstrate a phase transition in the number of required seeds, as a

function of the network size, overlap between the two graphs, and structural similarity,

and (ii) we prove that the algorithm is robust to partial node-overlap. More precisely, we

prove that the proposed PGM algorithm naturally filters out the nodes that are without

counterparts in the other graph and correctly matches the rest.

The remainder of this chapter is organized as follows. In Section 3.1, we explain our proposed

3The model is introduced in Section 2.1 from Chapter 2.
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PGM algorithm. In Section 3.2, we prove a performance guarantee for the algorithm of

Section 3.1. In Section 3.3, using the ideas from previous sections, we present a heuristic

algorithm whose performance is better in practice. In Section 3.4, we report the simulation

results of our algorithms over real and random graphs. We compare our proposed algorithms

with two state-of-the-art graph matching algorithms [109, 202] over several real graphs. In

Section 3.5, we conclude this chapter.

3.1 Algorithms

In this section, we define and explain the ExpandOnce algorithm that first performs one

round of expansion of the initial seed-set and then applies a novel PGM algorithm, called

NoisySeeds, over the expanded seed set. This expansion step helps the percolation process

overcome the bottleneck due to a small seed-set size. This algorithm is kept deliberately

simple for mathematical tractability. We provide an intuitive explanation for the performance

of our approach based on the model from Section 2.1. A rigorous analysis of our algorithm is

then provided in Section 3.2. A more practical but heuristic algorithm, based on the key ideas

developed here, will be presented in Section 3.3.

3.1.1 Notation

Let us introduce the necessary notation. For graphs G1(V1,E1) and G2(V2,E2) let V0 =V1 ∩V2.

We assume n1 = |V1|,n2 = |V2| and n0 = |V0|. Also, d1,i and d2, j denote degrees of nodes i and

j in graphs G1 and G2, respectively. Let pairs (i , i ′) ∈ E1 and ( j , j ′) ∈ E2 represent the edges

between nodes i , i ′ and j , j ′ in graphs G1 and G2, respectively; and [i , j ] represent a couple

of nodes where i ∈V1 and j ∈V2. A couple [i ′, j ′] ∈V1 ×V2 is a neighbour of another couple

[i , j ] if (i , i ′) ∈ E1 and ( j , j ′) ∈ E2. Indeed, the evidence for deciding which couple to match is

the number of common neighbors (called the score of a couple) each couple has in the set

of currently used seed couples. We refer to the process of spreading out marks from a seed

couple [i , j ] as adding one mark to each of its neighbouring couples. Therefore, the score of a

couple is defined, equivalently, as the number of marks it has received from other couples in

the matching process.

For convenience of notation, without loss of generality we assume that the hidden correct

mapping between the nodes in V0 is the identity mapping. Therefore, a couple is correct if

and only if it is of the form [i , i ]. Let Λ(S) denote the number of correct couples in a set S
of couples, and let Ψ(S) represent the number of incorrect couples. Also, V1(S) is the set of

nodes from graph G1 in a set of couples S , i.e., V1(S) = {i |∃ j s.t. [i , j ] ∈S}. Similarly, we define

V2(S) = { j |∃i s.t. [i , j ] ∈S}. Table 5.2 summarizes all the notations used in this chapter.
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3.1.2 NoisySeeds Algorithm

In this part, we first give a new PGM algorithm, called NoisySeeds; it is a main building-block

of the ExpandOnce algorithm. Before that, for the sake of better illustration, we explain the

algorithm from [202] that in this chapter we refer to as PercolateMatched.

The PercolateMatched algorithm starts from an initial seed-set (a predefined matching)

and iteratively matches couples having at least r matched neighbours. More specifically, (i)

initially we are given as inputs a set of a0 predefined (and correct) matched couples, called

seed set A =A0 (|A0| = a0), and a fixed threshold r ; (ii) at each time step τ, the algorithm

picks an unused couple from set A and spreads marks to all of its neighbouring couples; (iii)

as soon as a couple obtains at least r marks, i.e., it is a neighbour of at least r used couples

in the set A, it will be added to the set A; and (iv) the algorithm stops when there exist

no further unused couples in the set A. The User-Matching algorithm [109] is similar to

PercolateMatched, with a slight difference: nodes are matched in several rounds based on a

simple degree-bucketing method that matches high-degree nodes first.

i i

j j

G2G1

Figure 3.1 – The PercolateMatched algorithm: It starts from a predefined matching called
seed set and iteratively matches couples having at least r matched neighbours. Dark-green
nodes are initial seeds (e.g., couple [i , i ]). Light-green nodes are the newly matched couples
after the first three iterations (e.g., couple [ j , j ]). These matched couples are served as new
seeds in later steps. In this example, we set r = 2.

The success of the PercolateMatched algorithm heavily relies on the condition that all the

matched couples (including the initial seed-couples) are indeed correct couples. In order for
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PercolateMatched to succeed, this condition then results in some constraints on r , namely

r ≥ 4. Our main theoretical contribution in this chapter is to show that (i) the matching process

can be made robust to a large number of incorrect couples in the seed set, provided there are

enough correct couples in the seed set as well; and (ii) r = 2 is sufficient to match almost all

the nodes correctly.

The NoisySeeds algorithm (see Algorithm 1) starts with an initial noisy seed set A0, i.e., a set

with possibly many incorrect couples. First, the marks coming from all the couples in A0 are

computed at the beginning (lines 1 to 4) and all these couples are added to the set of used

couples Z (line 5). The algorithm proceeds as follows. We consider a set of matched couples,

denoted by M, which is initially empty. If there is any couple with a score of at least r , then we

add this couple to the matched set M. Each time a couple [i , j ] ∈M\Z is chosen randomly,

it spreads out marks to its neighbouring couples and is added to Z . Because the couple [i , j ]

is in the matching M, any other couple in the form of [i , j ′] or [i ′, j ] is not a candidate for

matching any longer and is permanently removed from consideration.

The percolation process stops if there is no remaining unused couple with a score of at least r .

Note that as not all the couples in the noisy set A0 are necessarily correct, they are not added

to the matched set initially, i.e., the matched set is decoupled from the seed set. These couples

are used only for the sake of creating an initial set of marks for different couples associated

with the two graphs.

Example 15. The execution of NoisySeeds after four iterations (for r = 2) is illustrated in

Figure 3.2. NoisySeeds begins by spreading out marks from the initial noisy seed-set (dark-

green and red nodes in Figure 3.2). Afterwards, all the newly matched couples (light-green

and red nodes in Figure 3.2) are added to the seed set, and the matching process continues by

spreading out their marks.

Algorithm 1: NoisySeeds

Input: G1(V1,E1),G2(V2,E2), noisy seed set A0 and threshold r
Output: The set of matched couples M

1 for all couples [i , j ] ∈A0 do
2 add one mark to all the neighbouring couples of [i , j ];
3 if score of a couple [i ′, j ′] ≥ r and i ′ ∉V1(M) and j ′ ∉V2(M) then
4 add [i ′, j ′] to the set M;

5 Z ←A0;
6 while M\Z �= � do
7 randomly choose a couple [i , j ] ∈M\Z and add [i , j ] to the set Z ;
8 add one mark to all the neighbouring couples of [i , j ];
9 if score of a couple [i ′, j ′] ≥ r and i ′ ∉V1(M) and j ′ ∉V2(M) then

10 add [i ′, j ′] to the set M;

11 return M;
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u1
u2

u3

u1
u2

u3u4

u5

i i

u u

G2G1

Figure 3.2 – The NoisySeeds algorithm: Dark-green and dark-red nodes correspond to the
initial correct and incorrect seed-couples, respectively. After the first four iterations (for
r = 2), light-green nodes form correctly matched couples, and light-red nodes form incorrectly
matched couple (see Example 15).

A convenient way to evaluate graph-matching algorithms is to analyze their performance

over the G(n, p; t , s) model, a parsimonious model for generating two correlated graphs with

partially overlapping vertex sets (see Section 2.1.2). In Section 3.2, by using the G(n, p; t , s)

model, we prove that the NoisySeeds algorithm is robust to the noise in the seed set. An

intuitive explanation for this robustness is as follows: (i) A correct couple obtains a mark

from any other correct couple with probability ps2 (an edge exists in the generator graph

with a probability p and is sampled in both G1,2 with a probability s2). Also, an incorrect

couple obtains a mark from any other incorrect or correct couple with probability p2s2 (it

corresponds to two different edges in the generator graph). Note that p2s2 
 ps2. Thus, the

effect of spreading marks from an incorrect couple, compared to a correct couple is negligible.

(ii) Consider a couple that contains a node without any counterpart in the other graph (this is

necessarily an incorrect couple): This couple obtains r ≥ 2 marks from any other r couples

with probability at most O(p4s4). Therefore, only a small fraction of incorrect couples (in

expectation O(n2
1n2

2p4s4)) obtains more than one mark.
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3.1.3 ExpandOnce Algorithm

In this sub-section, we introduce the ExpandOnce algorithm that trades-off a small decrease

in precision, relative to PercolateMatched, with a dramatic reduction in the seed-set size.

This algorithm accepts as input a seed set A0 of correct couples. It expands the seed set A0 to

a larger set of candidate couples A′
0 of size a′. Then, it runs NoisySeeds over the expanded

seed-set. In other words, in its first step, ExpandOnce creates, from a small set of correct

couples (A0), a larger set of candidate couples A′
0, many of which are incorrect in general.

In Section 3.2, we will prove that these incorrect couples in A′
0 have only a negligible effect

on the performance of the matching process in ExpandOnce. Also, the new correct couples

in A′
0 (rather than those from A0) enable the percolation process to kick-off. As a result, by

calling NoisySeeds on the expanded seed set A′
0, we obtain a successful matching of the two

graphs. In summary, the process of expanding correct couples to a noisy seed-set enables us

to successfully match graphs with much fewer initial seeds.4 For a schematic overview of the

ExpandOnce algorithm refer to Figure 3.3. Algorithm 2 explains ExpandOnce in detail.

NoisySeedsExpand

Seed set A0
Expanded noisy seed set A′

0

Matched set MMatched set M

Figure 3.3 – The ExpandOnce algorithm: Input to the algorithm is a seed set of correct couples.
This algorithm expands the initial seed-set to a larger set of candidate couples with more
correct couples and many incorrect couples. Then, it runs the NoisySeeds algorithm over
the expanded seed-set. In this figure, green and red circles represent correct and incorrect
couples, respectively.

3.2 Performance of Matching with Noisy Seeds

In this section, (i) we identify a phase transition in the seed-set size of NoisySeeds (explained

in Algorithm 1); (ii) we prove NoisySeeds correctly matches almost all the nodes that are in

the intersection of the two graphs and filters-out the nodes without counterparts in the other

graph; and (iii) we prove the addition of many incorrect couples to the initial correct seed set

A0 of NoisySeeds would have a negligible effect on the performance of this algorithm.

4Experiments over different types of graphs show that expanding an initial correct seed set A0 to the noisy seed
set A′

0 whose size is of order of min(n1,n2) results in an excellent matching performance.
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Algorithm 2: ExpandOnce

Input: G1(V1,E1),G2(V2,E2), seed set A0 of correct couples, integer value a′ ≥ 1 and threshold r
Output: The set of matched couples M

1 A′
0 ←A0 and A←A0;

2 while |A′
0| < a′ do

3 Z ←� and U ←A′
0;

4 for all couples [i , j ] ∈A do
5 for all neighbouring couples [i ′, j ′] of couple [i , j ] do
6 if |A′

0| < a′ and i ′ ∉V1(U ) and j ′ ∉V2(U ) then
7 add [i ′, j ′] to A′

0 and Z ;

8 A←Z ;

9 return M← NoisySeeds(G1,G2,A′
0,r );

The robustness guarantee for the NoisySeeds algorithm, with respect to a noisy seed-set,

explains why ExpandOnce (Algorithm 2) requires a small set of initial seeds. Indeed, lines 2 to

8 of ExpandOnce turn a small set of clean seeds into a large noisy seed-set that contains both

correct and incorrect couples. This new set is then fed into NoisySeeds as an input and, as

this algorithm is robust to incorrect couples, it succeeds with high probability.

Here, we analyze a simplified variant of the ExpandOnce algorithm. We assume that A0 is a

random set in the following sense: each correct couple [i , i ] ∈V 2
0 is placed inA0 independently,

with a constant probability λ. Also, each incorrect couple [i , j ], i �= j ∈ V1 ×V2, is placed

in A0 independently, with a constant probability ψ. Hence, we expect λn correct couples

and ψn(n −1) incorrect couples as the initial noisy seed-set for the NoisySeeds algorithm.

Throughout this section, we assume that the number of nodes n and average degree np tend

to infinity. We also assume that the nodes and edge sampling probabilities 0 < t , s ≤ 1 are

arbitrary constants. Let Zτ and Mτ be, respectively, the set of used and matched couples

at time step τ of NoisySeeds. Also, let M∗ denote the final set of matched couples from

NoisySeeds. We now state our main theorem in this chapter.

We first define two parameters bt ,s,r and at ,s,r [86, 202]:

bt ,s,r =
[

(r −1)!

nt 2(ps2)r

] 1
r−1

and at ,s,r =
(
1− 1

r

)
bt ,s,r =

(
1− 1

r

)[
(r −1)!

nt 2(ps2)r

] 1
r−1

. (3.1)

Theorem 16 (Robustness of NoisySeeds). For an arbitrarily small but fixed 1
6 > ε> 0, assume

that n−1 
 p ≤ n− 5
6−ε. If all the couples in the noisy seed-set A0 are chosen uniformly at

random, such that the expected number of correct couples is E[Λ(A0)] > (1+ ε)at ,s,r and the

expected number of incorrect couples is E[Ψ(A0)] ≤ wn for a constant w,5 then with high

probability the NoisySeeds algorithm percolates and the size of its final matching is nt 2 ±o(n)

5Note that in general the algorithm is robust to a number of additional incorrect couples (in the seed set), which
scales with n and p. Here, we have chosen this number to be wn in order to simplify our statements.
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with Λ(M∗) = nt 2 ±o(n) and Ψ(M∗) = o(n).

Yartseva and Grossglauser [202] proved that it is possible to correctly match almost all the

nodes under the following limited assumptions: (i) the vertex sets of the two graphs G1,2 are

exactly the same, i.e., t = 1 in our model, (ii) there is no incorrect couple in the initial seed set,

i.e., Ψ(A0) = 0, and (iii) the size of initial seed set is at least a1,s,4 (r = 4). For this special case,

Theorem 16 guarantees that a seed set of size a1,s,2 (r = 2) is enough for matching almost all

the nodes correctly with a vanishing fraction of errors. Note further that the ratio a1,s,4/a1,s,2

goes to infinity which amounts to a huge increase in the required number of seeds. Also, with

r = 4, we are able to align only nodes with degrees at least four in the two networks.

Next, we prove Theorem 16 for the case r = 2; it needs the least number of seeds, i,e., at ,s,r is

minimized when r = 2. Generalization for values r > 2 is straightforward. For ease of notation,

we define ac = at ,s,2 = 1
2nt 2p2s4 . We first provide a brief sketch for the proof of Theorem 16. The

detailed proof is given afterwards.

3.2.1 Sketch of the Proof

In the beginning of NoisySeeds, all the couples in the seed set A0 spread out marks to their

neighbouring couples. Then, at each time step τ≥ 1, one couple from Mτ \Zτ is picked and

spreads out marks to its neighbouring couples. It is easy to see that the matching process stops

at a time step T ∗, where |M∗| = |MT ∗ | = T ∗ (i.e., T ∗ is the first time when all the couples

inside MT ∗ have already been picked). Note that T ∗ is at most min(n1,n2), as each node can

be matched at most once. In order to prove Theorem 16, we show that with high probability

(w.h.p.) T ∗ = nt 2 ±o(n), and the number of incorrectly matched couples is at most o(ac ).

More precisely, the proof can be summarized in the following two steps:

(a) We provide an upper-bound on the number of incorrectly matched couples at each step

of the algorithm through computing its expected value. Using this upper-bound we

prove that the effect of incorrect couples is negligible in the final result of NoisySeeds

(see Lemmas 17 to 19).

(b) By using step (a) and the results from the bootstrap percolation process [86, 202], we

prove that w.h.p. the correct couples percolate when their initial number Λ(A0) is more

than the percolation threshold ac . Therefore, as a result of percolation of the correct

couples, the number of correctly matched couples at time step T ∗ is nt 2 ±o(n).

3.2.2 Proof of Theorem 16

Let us first introduce the notations used in this subsection. For an integer � let P�,τ denote

the set of couples with score � at time step τ; also let P≥�,τ be the set of couples with score

at least � at time τ. We let Zτ and Mτ be the set of used and matched couples at time step τ,
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respectively. Assume the time τcip corresponds to the completion of the initial phase (cip) of

the algorithm, i.e., at the time τcip all the initial seeds are used for spreading out marks. All the

other notations are explained in Section 3.1.1.

In the beginning of NoisySeeds (lines 1 to 4 in Algorithm 1), all the couples in the seed set A0

spread out marks to their neighbouring couples. Afterwards, at each time step τ≥ 1 (lines 5 to

10 in Algorithm 1), one couple from Mτ \Zτ is picked and spreads marks to its neighbouring

couples. The matching process stops at a time step T ∗, where |M∗| = |MT ∗ | = T ∗. Note

that T ∗ is at most min(n1,n2), as each node can be matched at most once. In order to

prove Theorem 16, we will show that w.h.p. T ∗ = n0 −o(n). Using the Chernoff bound, with

high probability n0 = nt 2 ± o(n). Therefore, we have T ∗ = nt 2 ± o(n), and the number of

incorrectly matched couples is at most o(ac ). More precisely, we bound the number of

incorrectly matched couples at each step through computing their expected value. Using this

upper-bound, we prove that the effect of incorrect couples is negligible. Also, we prove that

the correct couples percolate, if the number of initial correct-seeds Λ(A0) is more than the

percolation threshold ac .

We proceed by computing the expected number of incorrectly matched couples at time τcip.

Lemma 17. E
[
Ψ(Mτcip )

]=O(w2n4p4s4t 2) = o(ac ).

Proof. We first recall that the time τcip corresponds to the completion of the initial phase (cip)

of the NoisySeeds algorithm. We define the random variables Xi , j , i �= j as

Xi , j =
{

1 if [i , j ] ∈P≥2,τcip ,i.e., couples with score at least 2 at the end of initial phase

0 o.w.

and X =∑∀[i , j ],i �= j Xi , j . Note that as each node can be matched at most once, X is an up-

per bound for the total number of incorrectly matched couples at time τcip, i.e., Ψ(Mτcip ).

Therefore, we have

E
[
Ψ(Mτcip )

]≤ E [X ] =
∑

∀[i , j ],i �= j
E
[

Xi , j
]≤ n1n2P

[
[i , j ] ∈P≥2,τcip

]
. (3.2)

We will prove that

P
[
[i , j ] ∈P2,τcip

]≤ (n1n2)2p4s4
(

wn

n1n2

)2[
1+O

(
1

np

)]
=O(n2w2p4s4), (3.3)

and for all 3 ≤ r ≤ n

P
[
[i , j ] ∈Pr,τcip

]≤ (n1n2)r p2r s2r
(

wn

n1n2

)r [
1+O

(
1

np

)]
=O(nr wr p2r s2r ). (3.4)
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Note that for r > 3, we have

nr wr p2r s2r

nw2p4s4 = nr−1wr−2p2(r−2)s2(r−2) = o(1). (3.5)

From (3.5), we conclude that for r > 3

P
[
[i , j ] ∈Pr,τcip

]=O(nw2p4s4).

Therefore, by using union bound the probability that a couple [i , j ] obtains two marks is

bounded from above by

P
[
[i , j ] ∈P≥2,τcip

]≤ n∑
r=2

P
[
[i , j ] ∈Pr,τcip

]

=P
[
[i , j ] ∈P2,τcip

]+P
[
[i , j ] ∈P3,τcip

]+ n∑
r=4

P
[
[i , j ] ∈Pr,τcip

]
≤ 2O(n2w2p4s4)+nO(nw2p4s4) =O(n2w2p4s4),

consequently

E
[
Ψ(Mτcip )

]≤ n1n2P
[
[i , j ] ∈P≥2,τcip

]=O(w2n4p4s4t 2).

This proves Lemma 17.

We will prove Equation (3.3); Equation (3.4) is proven in a similar way. Consider a couple [i , j ],

i �= j . This couple obtains two marks if there exist two other couples [u1, v1] and [u2, v2] in

the seed set A0 such that (i ,u1), (i ,u2) ∈ E1 and ( j , v1), ( j , v2) ∈ E2. Note that as a couple [i , j ]

is added to the matching M, any other couple in the form of [i , j ′] or [i ′, j ] cannot also be

in the matching M and will be discarded to ensure that each node is matched at most once.

Hence, for the sake of analysis, we assume all the marks that were previously created from all

the couples that have the form of [i , j ′] or [i ′, j ] are subtracted.6

Let us first assume that i ∉ {v1, v2} and j ∉ {u1,u2}. We consider three cases.

(i) All the four nodes u1,u2, v1 and v2 are different: in this case, the edges (i ,u1), (i ,u2) ∈ E1

and ( j , v1), ( j , v2) ∈ E2 exist independently. Thus [i , j ] obtains two marks from these

two couples with probability p4s4. The number of such couples [u1, v1], [u2, v2] is at

most (n1n2)2, and each such couple is in the seed set with probability wn
n1n2

. Thus the

probability that [i , j ] obtains two marks from such couples is bounded from above by

(n1n2)2( wn
n1n2

)2p4s4 =O(w2n2p4s4).

(ii) We assume u1 �= v1 and u2 �= v2. We further assume that either u1 = u2 or v1 = v2 (but

not both): let us, with out loss of generality, take u1 = u2 and v1 �= v2. In this case, the

edge (i ,u1) = (i ,u2) ∈ E1 exists with probability ps, and both edges ( j , v1), ( j , v2) ∈ E2

6We observe that in practice, this step only has a small effect on the performance, but is computationally costly.
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exist with probability p2s2. Thus, the couple [i , j ] with probability p3s3 obtains two

marks from these two couples. The number of such couples [u1, v1] and [u1, v2] is at

most O(n0n1n2), therefore, the probability that [i , j ] obtains two marks from such kind

of couples is upper-bounded by n0n1n2( wn
n1n2

)2p3s3 =O(w2np3s3).

(iii) Either u1 = v1, u2 = v2 or both: along the same lines as above, it is easy to see the

probability that [i , j ] obtains two marks is upper bounded by O(w 2np3s3).

Now, assume i ∈ {v1, v2} or j ∈ {u1,u2}; similarly to the method we used above, we upper-

bound the probability that a couple [i , j ] obtains two marks from the couples [u1, v1] and

[u2, v2]. There are three different cases:

(i) One node in {u1, v1,u2, v2} is equal to i or j : The number of such couples [u1, v1], [u2, v2]

is at most O(n3t 3). Couple [i , j ] obtains two marks from these couples with probability

p4s4.

(ii) Two nodes in {u1, v1,u2, v2} are equal to i or j : There are at most O(n2t 2) such couples,

and the probability that [i , j ] obtains two marks from these couples is O(p3s3).

(iii) Three nodes in {u1, v1,u2, v2} are equal to i or j : For the couples [u1, v1],[u2, v2], there

are at most O(nt ) choices. The couple [i , j ] obtains two marks from such kind of couples

with probability O(p2s2).

To summarize, by considering all the cases mentioned above, the probability that a couple

[i , j ] obtains two marks at time τcip is bounded from above by O((n1n2)2p4s4( wn
n1n2

)2[1+ 1
np ]) =

O(n2w2p4s4). This proves (3.3).

The next step is to prove that the number of incorrectly matched couples at each time step

1 ≤ τ≤ T ∗ of the matching process is at most O(w2n4p4s4) = o(ac ). At each time step τ≥ 1,

NoisySeeds picks a random couple [i , j ] ∈Mτ \Zτ and adds one mark to its neighbouring

couples. It is easy to see that Λ(Mτ) and Ψ(Mτ) are increasing by τ. In Lemma 19 stated

below, using Markov’s inequality and the results of Lemmas 17 and 18, we will prove that

Ψ(M∗) =Ψ(MT ∗) = o(ac ). Consequently, from monotonicity of Ψ(Mτ) with respect to τ, we

conclude that Ψ(Mτ) = o(ac ) holds for all 1 ≤ τ≤ T ∗.

Lemma 18. E [Ψ(MT ∗)] =O(w2n4p4s4t 2) = o(ac ).

Proof. We define the random variables Xi , j , i �= j , as

Xi , j =
{

1 if [i , j ] ∈P≥2,T ∗

0 o.w.,

and let X =∑∀[i , j ],i �= j Xi , j . In words, the random variable Xi , j indicates whether an individual

couple [i , j ] can collect at least two marks during the steps of NoisySeeds. Of course as each
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node can be matched at most once, not all couples in P≥2,T ∗ will end up in the final match set.

Hence we have

E [Ψ(MT ∗)] ≤
∑
i �= j

E
[

Xi , j
]≤ n1n2P

[
[i , j ] ∈P≥2,T ∗

]
. (3.6)

We proceed by finding an upper bound for P
[
[i , j ] ∈P≥2,T ∗

]
. Let Pq,M∗ and P≥q,M∗ , respec-

tively, represent the set of couples that obtain exactly q and at least q marks from all the T ∗

matched couples M∗ =MT ∗ . Assuming i �= j , the couple [i , j ] is in the set P≥2,T ∗ if one of the

three following cases holds (we thus can use the union bound for P
[
[i , j ] ∈P≥2,T ∗

]
):

Case 1 [i , j ] ∈P≥2,τcip , i.e., [i , j ] obtains at least two marks from couples in A0. This means

that the couple [i , j ] is added to the set of matched couples already at time step τcip. Indeed,

for the result of Lemma 17, we have

P
[
[i , j ] ∈P≥2,τcip

]=O(w2n2p4s4).

Case 2 [i , j ] ∈P≥2,M∗ , i.e., [i , j ] obtains at least two marks from all the matched couples in

MT ∗ from time step τ= 1 to τ= T ∗ ≤ min(n1,n2) =O(nt ) (see Figure 3.4a). To upper bound

this probability, we consider two cases: [i , j ] ∈P2,M∗ , and [i , j ] ∈Pr,M∗ for 2 < r ≤ n. Let us

first find an upper bound for the former. Assume couple [i , j ] obtains two marks from the

couples [u1, v1] and [u2, v2]. As each node could be matched at most once, then i , u1, and u2

are mutually different. The same is true for j , v1 and v2. In this regard, there are three cases:

(i) Either [u1, v1] = [ j , i ] or [u2, v2] = [ j , i ]. It is obvious that both cases cannot hold simulta-

neously. We assume without loss of generality that [u1, v1] = [ j , i ], and thus u2 �= j and v2 �= i .

In this case, each one of the edges (i , j ), (i ,u2), ( j , v2) is sampled in the underlying graph G

independently with probability p. If an edge exists in the hidden underlying graph G , then

it appears with probability s in each one of the sampled graphs G1 or G2. Therefore, couple

[i , j ] obtains two marks with probability p3s4. As the couple [u1, v1] = [ j , i ] is fixed, for couple

[u2, v2] we have at most T ∗ −1 =O(nt ) choices.

(ii) Either i = v1 and j = u2, or i = v2 and j = u1(but not both): we assume without loss of

generality that the former case holds. Similarly to the case (i), couple [i , j ] obtains two marks

with probability p3s4. As nodes i and j can be matched only once, the number of this type of

couples is at most one.

(iii) None of the cases above hold, i.e., i ∉ {u1,u2} and j ∉ {v1, v2}: all the four edges (i ,u1), (i ,u2) ∈
E1 and ( j , v1), ( j , v2) ∈ E2 are independent, and they exist simultaneously with probability p4s4.

The number of such [u1, v1] and [u2, v2] couples is at most
(T ∗

2

)
, where T ∗ =O(nt ). To sum up
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all the above three cases we have

P[[i , j ] ∈P2,M∗ ] ≤O(np3s4t )+O(p3s4)+O(n2p4s4t 2) =O(n2p4s4t 2).

A couple [i , j ] is added to the set of matched couples if it obtains r ≥ 2 marks. So far, we have

found an upper bound for the probability of obtaining exactly two marks from all the matched

couples MT ∗ . We proceed by finding an upper bound for cases 2 < r ≤ n. Let Cr,M∗ be the set

of all the possible ways of choosing r couples from the set M∗ =MT ∗ . We also represent a

generic element of Cr,M∗ by cr . To upper bound the probability that a couple [i , j ] obtains

exactly r marks from all the possible combinations cr , we consider two cases: (a) For a given

cr , i ∈ V1(cr ) and j ∈ V2(cr ), couple [i , j ] obtains r marks from cr with probability p2r−1s2r .

We know that nodes i and j appear at most once in the sets V1(cr ) and V2(cr ), respectively.

Hence, the number of possible cr in this case is at most O((nt )r−1). (b) If case (a) does not hold,

then couple [i , j ] with probability p2r s2r obtains r marks from each one of at most O((nt)r )

possible combinations for cr . To conclude, we obtain

P[[i , j ] ∈Pr,M∗ ] ≤O((nt )r−1p2r−1s2r )+O((nt )r p2r s2r ) =O(nr p2r s2r t r ).

Note that for r > 3, we have

nr p2r s2r t r

nt p4s4 = nr−1p2(r−2)s2(r−2)t r−1 = o(1). (3.7)

From (3.7), we conclude that for r > 3

P[[i , j ] ∈Pr,M∗ ] =O(nt p4s4).

By using a union bound, the probability that a couple [i , j ] obtains two marks is bounded

from above by

P
[
[i , j ] ∈P≥2,M∗

]≤ n∑
r=2

P
[
[i , j ] ∈Pr,M∗

]≤O(n2p4s4t 2)+ntO(np4s4) =O(n2p4s4t 2).

i j

u1 v1

u2 v2

[u1, v1] ∈ M
T∗

[u2, v2] ∈ M
T∗

(a)

i j

u1 v1

u2 v2

[u1, v1] ∈ M
T∗

[u2, v2] ∈ A0

(b)

Figure 3.4 – (a) A couple [i , j ], i �= j obtains two marks from couples [u1, v1] and [u2, v2] ∈MT ∗ .
(b) A couple [i , j ], i �= j obtains one mark from [u1, v1] ∈MT ∗ and one from [u2, v2] ∈A0.
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Case 3 [i , j ] obtains one mark from the couples in A0 and one mark from the matched

couples MT ∗ , i.e., [i , j ] ∈ P1,τcip ∩P1,M∗ (see Figure 3.4b). We know that u1 ∉ {i ,u2} and

v1 ∉ { j , v2}. To upper-bound the probability of obtaining one mark from matched couples,

there are two cases: (i) If [u1, v1] = [ j , i ] then two edges (i , j ) ∈ E1 and ( j , i ) ∈ E2 exist with

probability ps2. The number of these couples is at most one. (ii) If [u1, v1] �= [ j , i ] then two

independent events (i ,u1) ∈ E1 and ( j , v1) ∈ E2 happen with probability p2s2. In this case, we

have at most T ∗ =O(nt ) couples. Therefore, by using the union bound

P
[
[i , j ] ∈P1,M∗

]≤ T ∗p2s2 +ps2 =O(np2s2t ).

Each couple [u2, v2] is in the initial seed-set A0 with probability wn
n1n2

. To compute an upper-

bound for P
[
[i , j ] ∈P1,τcip

]
, similarly as above, we consider two cases: (i) There is one couple

such that [u2, v2] = [ j , i ]. Couple [i , j ] obtains one mark from this couple with probability ps2.

(ii) [u2, v2] �= [ j , i ], there are at most O((nt )2) possible candidates. Each one of these candidate

couples is inside A0, with probability wn
n1n2

, and spreads out one mark to the couple [i , j ] with

probability p2s2. To summarize,

P
[
[i , j ] ∈P1,τcip

]≤ wn

n1n2
n1n2p2s2 +ps2 =O(wnp2s2).

Now, we compute an upper bound for the joint probability P
[
[i , j ] ∈P1,M∗ , [i , j ] ∈P1,τcip

]
. We

consider the two following cases: (i) If neither i = v1 = u2 or j = u1 = v2 then obtaining marks

from the two sets are independent of each other. (ii) If either i = v1 = u2 or j = u1 = v2 (but

not both) then a couple obtains two marks from these couples with probability p3s4. The

maximum number of this kind of couples is at most O(nt ). Therefore, we have

P
[
[i , j ] ∈P1,M∗ , [i , j ] ∈P1,τcip

]=O(wn2p4s4)+O(np3s4) =O(wn2p4s4).

To wrap up all the three cases, we prove P
[
[i , j ] ∈P≥2,T ∗

]=O(wn2p4s4).

Finally, as a consequence of (3.6), we have E
[
Ψ(MT ∗)

]=O(w2n4p4s4t 2). This proves Lemma 18.

Lemma 19. With high probability, we have Ψ(Mτ) = o(ac ) and Ψ(Mτcip ) = o(ac ).

Proof. For any δ> 0, by using Markov’s inequality, we have

P

[
Ψ(Mτ)

ac
≥ δ

]
≤

E

[
Ψ(Mτ)

ac

]
δ

.

From Equation (5.14) and Lemma 18 we have ac = 1
2nt 2p2s4 and E

[
Ψ(Mτ)

] ≤ E
[
Ψ(MT ∗)

] =
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O(wn4p4s4t 2) for τ≤ T ∗, respectively. Therefore,

P

[
Ψ(Mτ)

ac
≥ δ

]
≤

E

[
Ψ(Mτ)

ac

]
δ

=O(
w2n5p6s8t 4

δ
) =O(n−ε) = o(1).

By using Lemma 17, we have E
[
Ψ(Mτcip )

]=O(w2n4p4s4). If we use Markov’s inequality again

and follow the same steps as above, we obtain that w.h.p. Ψ(Mτcip ) = o(ac ). These prove

Lemma 19.

In the next step, we use Lemma 19 to prove Theorem 16. We first give a brief overview of

bootstrap percolation [86]. Bootstrap percolation is the process of node activation on a G(n, p)

random graph [86]. In this process, initially we are given a set A(0) (|A(0)| = a0) of active nodes

and a threshold r ≥ 2. A node is activated at time step τ if at least r of its neighbours were

activated and used in the previous τ time steps. Let A(τ) and Z(τ) denote the set of active and

used nodes at time step τ. We assume Z(0) =�. At each time step τ≥ 1, we choose a node uτ

from A(τ−1) \Z(τ−1) and give each one of its neighbours a mark. We call uτ a used node

and update Z(τ) =Z(τ−1)∪uτ. Assume ΔA(τ) is the set of activated nodes at time step τ

and we let A(τ) =A(τ−1)∪ΔA(τ). At each step τ (before the activation process stops) one

node is added to the set of used nodes, i.e., |Z(τ)| = τ. We define An,a(τ) = |A(τ)|. Also, T ∗
n,a

denote the time step when An,a(T ∗
n,a) = |Z(T ∗

n,a)| = T ∗
n,a . The bootstrap percolation process

stops when A(τ) \Z(τ) = � or equivalently An,a(τ) ≤ τ. The phase transition threshold for

bootstrap percolation is stated in the following theorem.

Theorem 20 (Theorem 3.1 and Lemma 8.2 of [86]). Assume bc,r = n (pn)r−1

(r−1)! e−pn, τc,r =
[

(r−1)!
n(ps2)r

] 1
r−1

and ac,r = (1− 1
r )τc,r . And let b∗ = bc,r w(n), where ω(n) →∞ slowly, otherwise it is arbitrary.

Suppose that r ≥ 2 and n−1 
 p 
 n−1/r . Then, for any a > ac,r , w.h.p. An,a(τ) > τ for all

τ ∈ [0,n −b∗].

Hence Theorem 20 is valid for any choice of ω(n) →∞; it is equivalent to the statement that for

all τ ∈ [0,n −O(bc,r )] with high probability An,a(τ) > τ [86]. It is easy to see that O(bc,r ) = o(n)

[86]. By analogy between graph matching problems over G(n, p; t , s) graphs and the bootstrap

percolation process on G(n0, ps2) [202], for time steps τ≥ 1 we have

P
[
Λ(Mτ) > τ

] (a)≥ P
[

An0−2Ψ(MT∗ ),a0

(
τ−3Ψ(MT ∗)+a0

)> τ+a0
]

(b)≥ P
[

An0−3Ψ(MT∗ ),a0

(
τ−3Ψ(MT ∗)+a0

)> τ+a0
]

(c)≥ P
[

An0−6Ψ(MT∗ ),a0−3Ψ(MT∗ )
(
τ−3Ψ(MT ∗)+a0

)> τ−3Ψ(MT ∗)+a0
]

(3.8)

The three inequalities follow from the following reasons:

(a) In the matching process, we have a0 initial correct couples. At any time step τ, we
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Chapter 3. Percolation Graph Matching

have Ψ(Mτ) ≤Ψ(MT ∗) = o(ac ) incorrectly matched couples. Each incorrect couple

[i , j ], i �= j , in the worst case, removes marks produced by the two correct couples [i , i ]

and [ j , j ], from the set of used couples Zτ. We know that among the matched couples,

there are at most o(ac ) incorrect couples. Therefore, we conclude that there are at least

n0−2Ψ(MT ∗) potential correct couples that obtain marks from at least τ−3Ψ(MT ∗)+a0

correct couples at time step τ.

(b) As we assume p and the number of initial active nodes are fixed, decreasing the total

number of nodes by Ψ(MT ∗) would increase the probability of the process stopping.

(c) We assume, in the worst case, at the first 3Ψ(MT ∗) steps of the bootstrap percolation,

the chosen nodes from A(τ−1) \Z(τ−1) do not spread out marks. Thus the probability

that the percolation process stops would increase.

Note that Λ(A0) = Bi nomi al (n0, c
n0

) and c > ac → ∞, therefore, by using the Chernoff

bound, we can conclude that for an arbitrarily small but fixed ε′ > 0 with high probabil-

ity a0 = Λ(A0) > (1− ε′)E[Λ(A0)] = (1− ε′)c. Finally, if a0 = Λ(A0) > ac − 3Ψ(MT ∗), then

from (3.8) and Theorem 20 we conclude that w.h.p. T ∗
n0−6Ψ(MT∗ ),a0

= n0 − o(n). Also, (3.8)

implies that w.h.p. T ∗ ≥ T ∗
n0−6Ψ(MT∗ ),a0

. From Lemma 19, we know that at the time T ∗ ≤
min(n1,n2) the number of incorrectly matched couples is upper-bounded by Ψ(AT ∗) = o(ac ),

and Ψ(AT ∗)+Λ(AT ∗) = T ∗. Thus, w.h.p. Λ(MT ∗) = n0 −o(n) and Ψ(AT ∗) = o(ac ). Note that

by using the Chernoff bound w.h.p. we obtain n0 = nt 2 ±o(n). This proves Theorem 16.

3.3 ExpandWhenStuck Heuristic

In this section, we introduce a new heuristic algorithm, called ExpandWhenStuck; it is de-

signed based on the robustness ideas developed in the previous sections. This algorithm is able

to match real social-networks with over a million nodes by using a small number of seeds (e.g.,

see Figure 3.16 and Table 3.2 in Section 3.4). In comparison with ExpandOnce, this algorithm

has better performance for both real and random graphs, and its computational complexity is

lower. However, we cannot formally characterize its performance. To better illustrate, let us

briefly go back to the PercolateMatched algorithm described in the beginning of Section 3.1.

In the sub-critical regime of PercolateMatched, the final number of matched couples is at

most twice the number of initial seeds [86]. The robustness arguments of Section 3.2 allow

PGM algorithms to be much more aggressive in spreading out marks.

A main feature of ExpandWhenStuck is to expand the seed set by many noisy candidate cou-

ples whenever there are no other unused matched couples. More precisely, whenever there are

no further couples with a score of at least two, we add all the unused7 and unmatched8 neigh-

bouring couples of all the matched couples to the candidate couples (line 11 in Algorithm 3)

and consequently new marks are spread out. Among these candidate couples, where a small

7A couple [i , j ] is unused if [i , j ] ∉Z .
8A couple [i , j ] is unmatched if i ∉V1(M) and j ∉V2(M).
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u3 u3

u1 u1

u2 u2

u4 u5

u u

G1 G2

Figure 3.5 – ExpandWhenStuck (Algorithm 3): Nodes u1,u2,u3,u4 and u5 are unmatched
neighbours of node u in the underlying graph G (see Example 21 and Figure 3.2).

fraction is correct and most of them are incorrect, (i) correct couples help us to continue the

percolation process and to match remaining unmatched couples, and (ii) incorrect couples

have a negligible effect (see Theorem 16).

Example 21. When the percolation graph-matching process is stopped, there is still useful

information that can help us match the remaining nodes. Assume, as in Figure 3.2, there

are no unmatched couples with a score of at least r = 2. Node u is one of these (correctly)

matched nodes. Among all the 16 possible unmatched neighbouring-couples of the couple

[u,u] (see Figure 3.5), three of them are correct (light-green arrows) and the rest are incorrect

(light-red arrows). Therefore, ExpandWhenStuck adds them to the set of candidate couples.

As our algorithm is robust to the incorrect candidate couples, correct candidate couples can

help us in the matching process.

In addition, to enhance the performance of our algorithm (especially for real graphs), we

make the following further modification. At each time step, instead of adding all the candidate

couples with a score of at least two to the matched set, we choose the one with the highest

score among such couples and add it to the matched set; also, each node is matched at most

once. We then proceed with spreading out the marks from this matched couple.

In many steps (especially in the beginning), there are several couples with the maximum score.

Among all such candidate couples [i , j ], we choose the couple that minimizes the difference

in the degrees of nodes |d1,i −d2, j |. This can be intuitively justified as d1,i is often closer to

d2, j when [i , j ] is a correct couple, i.e., i = j , than when i �= j . This degree tie-break increases

the performance, especially in real graphs, because their degree distributions are often heavily

skewed and less concentrated compared to the G(n, p) model. For a schematic overview of

the ExpandWhenStuck algorithm, refer to Figure 3.6. Algorithm 3 explains ExpandWhenStuck

in detail.
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NoisySeeds

Seed set A0

Matched set M

Expand

Expanded noisy candidate set A

Figure 3.6 – The ExpandWhenStuck algorithm: It expands the candidate couples by many
noisy couples whenever the percolation process is stuck (and not at the beginning). Because
percolation graph matching algorithms are generally robust to the noisy candidate couples,
the expansion step can help us in the matching process. In this figure, green and red circles
represent correct and incorrect couples, respectively.

3.4 Simulation Results

In this section, we first demonstrate numerically the phase transitions of NoisySeeds given

by Theorem 16. We next evaluate, through experiments, the performance of ExpandOnce and

ExpandWhenStuck over the G(n, p; t , s) model. We find that these algorithms match correct

couples, and then stop at the right time. We show that these two algorithms are able to match

graphs with only a handful of seeds. To compare the performance of our algorithm with the

other methods in the literature, simulation results for ExpandWhenStuck over power-law and

preferential attachment random graphs and real graphs are provided. Finally, we explain the

MapReduce implementation of a variant of ExpandWhenStuck.

In this section, we use precision and recall to evaluate the performance of algorithms: (i)

Precision refers to the fraction of errors in the set of matched nodes, and (ii) Recall is the

fraction of nodes in the intersection of the two graphs G1,2 that are matched correctly. Formally,

they are defined as precision = Λ(M∗)
Λ(M∗)+Ψ(M∗) and recall = Λ(M∗)

nident
where nident is the number of

nodes that are present in both graphs G1,2, with degrees of at least two (for other notations see

Section 3.1.1 and Table 5.2 in Appendix 3.A).
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Algorithm 3: ExpandWhenStuck

Input: G1(V1,E1),G2(V2,E2), seed set A0 of correct couples
Output: The set of matched couples M

1 A←A0 is the initial set of seed couples, M←A0;
2 Z ←� is the set of used couples;
3 while |A| > 0 do
4 for all couples [i , j ] ∈A do
5 add the couple [i , j ] to Z and add one mark to all of its neighbouring couples;

6 while there exists an unmatched couple with score at least 2 do
7 among the couples with the highest score select the unmatched couple [i , j ] with the

minimum |d1,i −d2, j |;
8 add [i , j ] to the set M;
9 if [i , j ] ∉Z then

10 add one mark to all of its neighbouring couples and add the couple [i , j ] to Z ;

11 A← all neighbouring couples [i , j ] of matched couples M s.t. [i , j ] ∉Z , i ∉V1(M) and
j ∉V2(M);

12 return M;

3.4.1 Experimental Results with Random Graphs

The experiments in this part are performed over two different types of random graphs: (i)

Erdős-Rényi graphs, and (ii) scale-free networks. Although the performance of our algorithm is

guaranteed for the G(n, p; t , s) model (see Theorem 16 in Section 3.2), simulation results show

the excellent performance of our algorithm versus state-of-the-art graph-matching algorithms

for all types of graphs studied in this chapter.

Erdős-Rényi Random Graphs

We first demonstrate numerically the phase transitions established in Theorem 16 for the

NoisySeeds algorithm. As shown in Theorem 16, for the G(n, p; t , s) model, such a transition

takes place when the number of correct couples in the initial seed-set passes a certain thresh-

old at ,s,r , while there are possibly many incorrect couples in the seed set. In Figure 3.7, we

plot the total number of correctly matched couples versus the normalized number of seeds

(i.e., the number of correct seeds divided by at ,s,r ) for the set of parameters n = 106, p = 20/n

and different ranges of node and edge sampling probabilities. As can be seen, (i) the phase

transitions take place close to the critical values of at ,s,r and (ii) the total number of correctly

matched nodes is very close to the expected number of nodes in the intersection of the two ver-

tex sets, i.e., nt 2. Note that in all the cases considered in Figure 3.7, the fraction of incorrectly

matched couples is very small, i.e., the precision is close to one.

We now proceed with the simulation results of ExpandOnce and ExpandWhenStuck, to com-

pare their performance over G(n, p; t , s) model (we also compare with PercolateMatched
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Figure 3.7 – NoisySeeds algorithm: Total number of correctly matched couples vs. number of
seeds normalized by at ,s,r for r = 2. Simulations are done over G(n, 20/n; t , s) with n === 106.

[202]). Figures 3.8 confirms that the ExpandOnce algorithm performs surprisingly well and that

with only a handful of seeds (only 13,67 and 235 seeds for s2 = 0.81,0.64 and 0.49, respectively)

it can correctly match almost all the nodes in a graph with n = 106 nodes and an average degree

of 20. Figure 3.9 shows that when the matching process percolates, the precision is close to

one. For comparison, if we set the minimum threshold r = 2, then the PercolateMatched

algorithm [202] would need at least 1906, 3052 and 5207 seeds for matching G(n, p; s) (equiv-

alent to t = 1 in our model) graphs with edge overlap probabilities s2 = 0.81,0.64 and 0.49,

respectively. Also, we observe that ExpandWhenStuck needs fewer seeds with respect to the

ExpandOnce algorithm, in order to match correctly almost all the nodes. Specifically, the

ExpandWhenStuck algorithm for parameters t 2 = 1.0 and s2 = 0.81 with only 8 seeds (i.e., a

fraction 8 ·10−6 of the total number of nodes), matches almost all the nodes correctly, whereas

for PercolateMatched this number is at least 1906 (the threshold for r = 2). In other words,

in this example, ExpandWhenStuck needs 238 times fewer seeds than PercolateMatched.

We next analyze to what extent the robustness to the node overlap and edge overlap holds. In

Figures 3.10 and 3.11, we observe a phase transition with the size and density of the graphs

intersection. We see that for only 100 seeds, if the node overlap is at least 50%, our algorithm

successfully identifies, with very high precision, almost all the nodes of the intersection.

Generally, it is true that when the algorithm is provided with enough seeds (i) the number of
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Figure 3.8 – Total number of matched couples vs. number of seeds. Simulations are done over
G(n, 20/n; t , s) with t === 1 and n === 106.
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Figure 3.9 – Precision vs. number of seeds. Simulations are done over G(n, 20/n; t , s) with t === 1
and n === 106.

correctly matched nodes is very close to the expected number of nodes in the intersection of

the two graphs (i.e., nt 2), (ii) fraction of incorrectly matched nodes is negligible, and (iii) there

are phase transitions in the number of correct seeds. Also, we see that the graphs generated

by G(n, p; t , s) model are, indeed, matchable with a very few seeds. We observe that the PGM

algorithm is robust to partial node-overlap.
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Figure 3.10 – Recall vs. node and edge overlap probabilities (i.e., t 2 and s2). Number of seeds is
100. Simulations are done over G(n, p; t , s) random graphs with n = 105 and an average degree
of 20.

Scale-Free Random Graphs

We evaluate ExpandWhenStuck over scale-free random graphs; they are better representative

of real-world (e.g., social and biological) networks. Note that as Erdős-Rényi graphs contain

less structural information (for example, degree distribution is concentrated around the mean

and a low clustering-coefficient), it is harder to match them. Also, our simulation results

confirm that matching scale-free networks is an easier task.

First, we apply the ExpandWhenStuck algorithm to the Chung-Lu graphs [42] (a variant of

power-law random graphs). In these graphs, the degree distribution of nodes follows a power-

law distribution, i.e., the proportion of nodes of degree d scales with d−β. In this model,

the probability of having an edge between two nodes i and j with degrees di and d j (this

probability is independent of all the other edges in the graph) is proportional to di d j . We

generate two graphs G1,2 through node-sampling with probability t and edge-sampling with

probability s over a Chung-Lu graph. In Figure 3.12, for example, we observe that with only

20 seeds ExpandWhenStuck matches almost all the nodes correctly for fairly small node and

edge overlap probabilities of 0.75. In all our experiments, we observe that precision is always

better than recall.

Next, we apply ExpandWhenStuck to the preferential attachment random graphs. The Barabási-

Albert model [21] is one of the models for social networks most referred to. This model gener-

ates random scale-free networks in a preferential attachment setting. A Barabási-Albert (BA)

random graph is generated as follows [34]: (i) It starts with a single node with m self-loops;

68



3.4. Simulation Results

Node overlap probability t2

0.5
0.6

0.7
0.8

0.9
1.0 Edge ov

erl
ap prob

abilit
y s

2

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.11 – Precision vs. node and edge overlap probabilities (i.e., t 2 and s2). Number of
seeds is 100. Simulations are done over G(n, p; t , s) random graphs with n = 105 and an average
degree of 20.
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Figure 3.12 – Recall vs. node and edge overlap probabilities (i.e., t 2 and s2). Number of seeds is
20. Simulations are done over power-law (Chung-Lu) random graphs with n = 105, β= 2.5 and
an average degree of 20.
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and (ii) each new node is connected to m existing nodes with probabilities proportional to

their current degrees. Figure 3.13 shows the simulation result of ExpandWhenStuck over BA

random graphs. In these experiments, the underlying graph G is sampled from the BA model.

The two graphs G1 and G2 are generated by independent node-sampling and edge-sampling

processes from graph G . Figure 3.14 shows the result over BA random graphs with n = 105 and

an average degree of 20, where 10 uniformly chosen seeds are provided.
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Figure 3.13 – ExpandWhenStuck algorithm: Recall vs. edge overlap probabilities (i.e., s2) and
number of seeds. Simulations are done over Barabási-Albert random graphs with edge overlap
probability t 2 = 0.81, n = 105 and an average degree of 20.

We register the remarkable performance of the ExpandWhenStuck algorithm that, even with

one seed, successfully aligns two graphs with 90% node and edge overlaps (see Figures 3.13 and

3.15). This brings up interesting questions about to success of the algorithm over preferential-

attachment generated graphs. Korula and Lattanzi [109] analyzed a PGM algorithm in a regime

of an extremely large number of seeds (in their result a constant fraction of nodes is needed

as seeds), when they make the complete node-overlap assumption. Clearly, as shown in our

experiments, very few seeds are needed and the full node-overlap assumption is not essential.

We also mention that due to the heavy-tailed degree distribution, these graphs have several

high-degree nodes that potentially can be used as seeds for the algorithm.

Our experiments show that choosing seeds among high-degree nodes, instead of picking them

randomly, results in better alignments. For example, given only the highest-degree node as

a seed is enough to match almost all the nodes correctly in Chung-Lu and BA graphs with

n = 106, an average degree of 20, and sampling probabilities t 2 = 0.81 and s2 = 0.81.
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Figure 3.14 – Recall vs. node and edge overlap probabilities (i.e., t 2 and s2). Number of seeds is
10. Simulations are done over Barabási-Albert random graphs with n = 105 and an average
degree of 20.
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Figure 3.15 – Recall vs. node and edge overlap probabilities (i.e., t 2 and s2). Number of seeds
is 1. Simulations are done over Barabási-Albert random graphs with n = 105 and an average
degree of 20.

3.4.2 Experimental Results with Real Graphs

In this section, we illustrate the experimental results of ExpandWhenStuck algorithm over five

real social-networks. The baseline for our comparisons are state-of-the-art graph-matching
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Chapter 3. Percolation Graph Matching

algorithms: (i) PercolateMatched [202] (here, by PercolateMatched we mean a deferred

version of it that has been reported to have better performance compared to its basic version),

and (ii) User-Matching [109]. In all our experiments, PercolateMatched [202] outperforms

User-Matching [109]. Therefore, due to space limitations we only plot the results correspond-

ing to PercolateMatched algorithm in certain figures.

In statistical analysis and machine learning, F1-score combines both the precision and the

recall into one metric to provide an average of them [155]. This measure is defined as

F1-score = 2
precision× recall

precision+ recall
. (3.9)

The value of F1-score is between 0 and 1. When F1-score is close to 1, we can conclude that (i)

precision is close to 1, i.e., the fraction of errors in the set of matched couples is small, and (ii)

recall is close to 1, i.e., a large fraction of nodes that are present in the both graphs G1,2 are

matched correctly. We use this measure to compare the performance of algorithms.

For the first experiment, we choose a very large real graph. We run ExpandWhenStuck over

the Youtube graph with 1134890 nodes and an average degree of 5.26 [116] (see Table 3.1).

In this graph, links correspond to friendships among users. The edge sampling with prob-

ability s generates two graphs G1,2. To make a comparison with the User-Matching [109]

and PercolateMatched [202] algorithms, we choose the node-sampling probability t = 1.0.

Figure 3.16 compares our algorithm with the two baseline algorithms. The F1-scores for

ExpandWhenStuck is non-zero from the very beginning, and with only few seeds our algo-

rithm finds high-quality alignments. We observe that the F1-scores of User-Matching and

PercolateMatched (for the sampling probabilities that we have considered here) are always

around zero.

The second graph matching is done over friendship links on the Slashdot social network [116].

This network has 77360 nodes and an average degree of 12.13 (see Table 3.1). The two graphs

G1,2 are generated though node-sampling and edge-sampling processes over the Slashdot

network. In Figure 3.17, when 20 seeds are provided, we observe the F1-score (see (3.9)) for

different sampling probabilities.

Table 3.1 – Statistics for Slashdot, Youtube and Pokec datasets.

Slashdot Youtube Pokec

Nodes 77360 1134890 1632803
Edges 469180 2987623 22301964
Average degree 12.13 5.26 27.32
Average clustering coefficient 0.0555 0.0808 0.1094
Diameter (longest shortest path) 12 20 11

To analyze the correlation between the number of seeds, graph overlaps and recall, we run

the following simulations. Figure 3.18, shows the recall for different number of seeds and
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Figure 3.16 – F1-score (see Equation (3.9)) vs. number of seeds. Simulations are done over
Youtube graph with 1134890 node.
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Figure 3.17 – F1-score vs. node and edge overlap probabilities (i.e., t 2 and s2). Simulations are
done over Slashdot network when the number of seeds is 20.

node-overlap probabilities when the edge-overlap probability is s2 = 0.64. Figure 3.19, shows

the recall for different number of seeds and edge-overlap probabilities, and the node-overlap
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probability is t 2 = 0.64.
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Figure 3.18 – Recall vs. number of seeds and node-overlap probabilities (i.e., t 2). Simulations
are done over Slashdot network when the edge overlap probability is s2 = 0.64.
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Figure 3.19 – Recall vs. number of seeds and edge overlap probabilities (i.e., s2). Simulations
are done over Slashdot network when the node overlap probability is t 2 = 0.64.
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For the third experiment, we use the most popular online social network in Slovakia called

Pokec, with 1632803 nodes and an average degree of 27.32 [116] (see Table 3.1). Again, the two

graphs G1,2 are generated though node and edge samplings. The excellent performance of

ExpandWhenStuck over Pokec social-network is shown in Table 3.2.

Table 3.2 – F1-score (see Equation (3.9)): Simulations are done over Pokec social network with
n = 1632803 and t 2 = 1.0, when 5 seeds are provided.

���������Algorithm
s2

0.81 0.64 0.49

ExpandWhenStuck 0.99 0.98 0.97
User-Matching [109] 0.04 0.02 ≈ 0
PercolateMatched [202] 0.05 0.02 ≈ 0

In the fourth experiment, we use different snapshots of the e-mail network on the EPFL

campus [150]. Each snapshot of the network is created by aggregating all the exchanged

e-mails in a given time period. Each node corresponds to an account, and the undirected

edges represent exchanged e-mails between entities. In this experiment, we match two real

graphs without any modelling assumptions, i.e., we do not assume any node or edge sampling

process. As shown in Figure 3.20, with only one seed we can match most of the nodes in

the EPFL e-mail network. In all snapshots of the EPFL e-mail network, the nodes with the

highest degrees are the same. This is because the node-degree distributions of real graphs

are often heavy-tailed. We can use the couple of the highest degree nodes as the starting

seed to ExpandWhenStuck. For this network, the performance of PercolateMatched [202]

is superior to User-Matching [109], hence for our comparison, we have only provided the

results corresponding to PercolateMatched.

The fifth experiment is done over the Gowalla social network [116]. This dataset contains

friendship relations and timestamped check-ins of users to different locations. Using this

information, two snapshots of Gowalla network are generated [109]: In the first snapshot,

two nodes are connected if they are friends and they check-in to exactly the same location in

an even month; the second snapshot is generated similarly, by considering the friendships

and check-ins in odd months. In this experiment the number of identifiable nodes, which is

defined as the total number of nodes that are present in both graphs G1 and G2 with degrees

greater than five, is 6634. Figure 3.21 and its zoomed-in version (Figure 3.22) show the superior

performance of ExpandWhenStuck versus algorithms from [109, 202]. Note that (i) these two

Gowalla graphs are not generated through an edge sampling process, i.e., we match two real

graphs without any modelling assumptions, and (ii) as Korula and Lattanzi [109] use check-ins

to approximately the same locations instead of exactly the same locations to generate two

Gowalla social graphs, our simulation results differ a little bit from their reported results.

Our experiments show that ExpandWhenStuck is indeed robust against low node-overlaps

between the graphs. For example, in Gowalla (see Figure 3.22) the overlap between the two
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Figure 3.20 – F1-score (see Equation (3.9)) vs. number of seeds. Simulations are done over
EPFL e-mail network with. Each snapshot of the e-mail network is created by aggregating all
the exchanged e-mails in a given time period.

Figure 3.21 – F1-score (see Equation (3.9)) vs. number of seeds. Simulations are done over
Gowalla social network. The number of identifiable nodes, nident = 6634, is defined as the total
number of nodes that are present in both snapshots with degrees greater than five.

76



3.4. Simulation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120 140 160 180 200

F
1

–
S

co
re

Number of Seeds

ExpandWhenStuck

PercolateMatched

User–Matching

Figure 3.22 – F1-score (see Equation (3.9)) vs. number of seeds. Simulations are done over
Gowalla social network. The number of identifiable nodes, nident = 6634, is defined as the total
number of nodes that are present in both snapshots with degrees greater than five. This figure
is the zoomed-in version of Figure 3.21.

graphs is only 0.72. Note that, in the intersection of the Gowalla networks, there are many

nodes present in one of the graphs with degree 1. If we consider only the nodes with degrees

more than 1 in both graphs, then the overlap reduces to 0.42. As another example, the overlaps

for EPFL e-mail networks (see Figure 3.20) are between 0.27 to 0.31. Also, for random graphs

with low overlaps, increasing the number of seeds (e.g., only 100 seeds for Chung-Lu graphs

with n = 106, β= 2.5, t 2 = 0.49 and s2 = 0.49) results in good (close to 1) recalls and precisions.

3.4.3 MapReduce implementation

One of the key features of PGM algorithms is their computational simplicity. Nevertheless, for

extremely large graphs (100s of millions of nodes or more), the computational and storage

overhead for a single machine can still be prohibitive. For this reason, we explored the imple-

mentation of a parallelized variant of ExpandWhenStuck within the MapReduce framework

for scalability; we briefly report the main ideas and results here.

The ExpandWhenStuck algorithm cannot be readily parallelized, given the explicitly sequential

back-and-forth iterating between spreading marks (lines 9 to 10 in Algorithm 3) and matching

new couples (lines 7 to 8 in Algorithm 3). However, we found that without fundamentally

affecting the performance of the algorithm, it is possible to reorder these two operations. We

can first spread marks from all the eligible couples, then perform the matching of new couples

77



Chapter 3. Percolation Graph Matching

afterwards. More concretely, this approximation of the original ExpandWhenStuck algorithm

works as follows: (i) We spread marks from the couples in the seed set A; (ii) we add all the

couples with at least r marks to the matched set M; (iii) we spread marks from all the new

matched couples. The steps (ii) and (iii) are repeated iteratively up to the point that there is no

new couple with score at least r ; and (iv) at the point the percolation process stops a new set

of candidate couples A is generated from the neighbouring couples of matched couples and

the graph matching process continues by returning to step (i).

In this setting, the process of spreading marks can be done independently for all the couples.

This enables a parallel implementation of the algorithm through four consecutive MapReduce

jobs per iteration. Next we sketch the function of each of these MapReduce jobs, without

providing a detailed pseudo-code (in the interest of space):

• The Mapper in the first job spreads out marks from the couples in the candidate set A.

The output of Reducer in this job is the set of all the couples with score at least r .

• It is possible for a node to be in several couples with scores above the threshold. The

second MapReduce job filters out the nodes that appear in more than one couple with a

score of at least r .

• The output of the second MapReduce job is the newly matched couples. These couples

are fed to the third MapReduce job to spread their marks and match new couples. The

percolation graph-matching process continues by running iteratively the second and

third MapReduce jobs.

• When there are no newly matched couples, i.e., the percolation process is stuck, the

forth MapReduce job is executed. This job generates a new set of candidate couples

A. Provided there are enough seeds, a few iterations of these four MapReduce jobs will

correctly match almost all the nodes.

Our MapReduce implementation is able to easily match graphs with millions of nodes. For

example, by using a Hadoop cluster with 15 nodes, it took less than twenty minutes to match

random graphs with 10 million nodes (starting with 18 seeds); and in under half an hour, the

algorithm matches graphs sampled from LiveJournal and Orkut online social networks [116]

with 4,847,571 and 3,072,441 nodes, respectively.

3.5 Summary

In this chapter, we have studied the problem of graph matching between two unlabeled graphs

when only the structures of the two graphs are available. We characterize the graph-matching

problem for graphs with partial-overlapping vertex sets. We give a new percolation graph

matching algorithm. We prove that our algorithm correctly matches the nodes that are in the

intersection of the two graphs and filters-out the nodes without counterparts in the other
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Figure 3.23 – The schematic overview of a variant of the ExpandWhenStuck algorithm.

graph. A phase transition in the seed-set size of percolation graph-matching is formally

established. Also, we prove that under a wide range of network parameters, our algorithm is

robust against a noisy seed-set. As with our algorithmic contribution, we achieve a dramatic

reduction in the size of the seed set. We also show the excellent performance in matching

several large real social-networks.
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Appendix

3.A Table of Notations

Table 3.3 – This table summarizes all the notations used in this chapter.

(i , j ) ∈ E an edge between two nodes i , j in G(V ,E)

[i , j ] a couple of nodes where i ∈V1 and j ∈V2

d1,i degree of node i in graph G1

d2, j degree of node j in graph G2

A0 initial seed set in Algorithm 1

a0 size of seed set A0 in Algorithm 1

A′
0 expanded seed set in Algorithm 2

a′ size of expanded seed set A′
0 in Algorithm 2

Mτ set of used couples at time step τ in Algorithm 1

Zτ set of matched couples at time step τ in Algorithm 1

T ∗ stopping time of the matching process

M∗ final set of matched couples

Λ(S) number of correct couples in a set S of couples

Ψ(S) number of incorrect couples in a set S of couples

V1(S) set of nodes from graph G1 in a set of couples S
V2(S) set of nodes from graph G2 in a set of couples S
τcip completion time of the initial phase (cip) of Algorithm 1

P�,τ set of couples with exactly � marks at time step τ

P≥�,τ set of couples with at least � marks at time step τ

Pq,M∗ set of couples that obtain exactly q marks from all the T ∗ matched couples M∗ =MT ∗

P≥q,M∗ set of couples that obtain at least q marks from all the T ∗ matched couples M∗ =MT ∗

Cr,M∗ set of all the possible ways of choosing r couples from the set M∗

cr a generic element of Cr,M∗
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4 Global Pairwise-Network Alignment

A comparative analysis of protein-protein interaction (PPI) networks provides insight into

the evolution of organisms and information about the evolutionarily-conserved biological

interactions. Network-alignment algorithms are one of the most powerful tools to compare

PPI networks. PPI-network alignment has many applications in areas such as the detection

of new pathways and of conserved motifs, the prediction of the functions of proteins, or-

thology detection, drug design, protein-protein interaction prediction and phylogenetic tree

reconstruction [111, 175].

PPI-network alignment algorithms use topological (e.g., local and global network structures)

and biological (e.g., amino acid sequences of proteins) information to align two (or several)

networks. The topological information is more important than sequence information for

aligning functionally conserved interactions [51, 129], hence the focus of network-alignment

algorithms shifted from using only biological information towards using topological informa-

tion. Local network-alignment (LNA) and global network-alignment (GNA) methods are the

main approaches for aligning PPI networks. Most of the early works on PPI-network alignment,

such as PathBLAST [104], NetworkBLAST [172], NetAlign [118], MaWISh [110] and Græmlin

[62], study the local network-alignment (LNA) problem. More recent methods, such as IsoRank

[119, 176], the GRAAL family [111, 112, 129, 134, 137], MAGNA and its successor MAGNA++

[165, 194], SPINAL [10], PINALOG [154], Netcoffee [80] and BEAMS [12], are examples of global

network-alignment (GNA) algorithms.

In this chapter1, we consider the problem of global pairwise-network alignment. Singh et al.

[176] introduced IsoRank as the first GNA algorithm for PPI networks. The IsoRank algorithm

is formulated as an eigenvalue problem, where it first computes a pairwise protein similarity

metric (as a convex combination of protein-sequence similarities and a structural-similarity

score), and then generates the final global alignment between the two networks based on

this metric. Bayati et al. [24] developed approximation algorithms for efficient computation

of the IsoRank similarities. GHOST [149] aligns two networks according to the similarity of

1The material of this chapter is based on [101].
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spectral signatures of node couples. PINALOG [154] finds the final alignment by matching the

communities of the two networks first. The GRAAL (GRAph ALigner) family is a group of GNA

methods that use the graphlet-degree signature similarity to align two networks. GRAAL [112]

is the first GNA algorithm that uses only structure of the two networks for alignment. It first

selects a couple of nodes with high graphlet-degree signature similarity; then, by a seed-and-

extend matching procedure, it tries to expand the alignment around this couple in a greedy way.

In general, a seed-and-extend algorithm starts the alignment procedure from a set of highly

similar couples called seed pairs. Then, it proceeds to align iteratively similar couples among

neighbors of the seed pairs. H-GRAAL [137] uses the Hungarian algorithm for improving the

quality of alignments produced by GRAAL, at the cost of increased computational complexity.

To align two networks, MI-GRAAL [111] integrates several metrics such as graphlet-degree

signature similarity, local clustering coefficient differences, degree differences and protein

sequence similarity. L-GRAAL [129] is the latest algorithm from the GRAAL family; it directly

optimizes both the structural and sequence similarities with a heuristic seed-and-extend

strategy based on a Lagrangian relaxation. The SPINAL algorithm [10] iteratively grows an

alignment based on an a priori computed coarse-grained node-similarity scores. By using

a genetic algorithm, MAGNA [165] tries to optimize the edge conservation between two

networks.

In this chapter, we design a new global pairwise-network alignment algorithm for PPI networks;

it is built upon our previous results for graph matching (see Chapters 2 and 3). We show the

excellent performance of our algorithm (in terms of both accuracy and speed) compared

to several state-of-the-art algorithms. We also introduce a new measure for evaluating the

performance of algorithms in aligning biological pathways between species. We argue the

suitability of our algorithm by analyzing its performance in a bigraph-sampling model of

network evolution, similar to the model from Chapter 2. For this random-bigraph model, we

use the results of Chapters 2 and 3 to guarantee the performance of our algorithm.

4.1 The PROPER Algorithm: Two Steps

GNA algorithms, by finding a one-to-one mapping of proteins, try to find large conserved

sub-networks (as they are indicative of a common ancestor) and network motif2 among several

species [43]. Pairwise-network alignment algorithms align proteins of only two species in

order to maximize the biological and topological similarities (these concepts are defined

precisely later in the text) between aligned proteins; they have been extensively studied in

the literature [10, 57, 59, 154, 176]. In this section, we use the ideas from the PGM class of

network-alignment algorithms (mainly from Chapter 3) to design our PROPER (PROtein-

protein interaction network alignment based on PERcolatin) algorithm.

A PPI network can be represented by a graph G(V ,E), where V is the set of proteins and each

2A network motif is a small recurrent connected-subgraph that occurs in PPI networks (and other biological
networks) significantly more often than in random networks.
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edge (u, v) in E is an indicator of interaction between the two proteins u and v . Formally speak-

ing, given two networks G1(V1,E1) and G2(V2,E2), the purpose of global network-alignment is

to identify a bijection between the full (or partial) vertex sets of two networks. The network-

alignment algorithms use the protein similarities and the network topology. The pairwise

similarities between proteins are computed by the well-known basic local-alignment search

tool (BLAST) [13] that considers the alignment of amino-acid sequences of those proteins.

In the process of PPI-network alignment by PROPER, initially we have as inputs two PPI

networks G1(V1,E1) and G2(V2,E2), the set of pairwise BLAST bit-score similarities (call it S)

for couples of proteins in V1×V2, and fixed thresholds �,r > 0, where � and r are the sequence

similarity and the local topological similarity thresholds, respectively. The PROPER algorithm

uses the sequence similarities and network structures in a two-stage procedure: (i) At the

first step, it uses the sequence similarities to generate a seed set for a PGM algorithm; and

(ii) at the second step, to align remaining couples, it uses only the network structure and

the seeds generated from the first step as inputs to the PGM algorithm. This is in contrast

with many other pairwise algorithms, where they try to simultaneously maximize a function

of both sequence and structural similarities. In this section, we first explain the process of

generating seed set A from S (the SeedGeneration algorithm). Then, we explain how to align

new couples, starting from the set A (the MapPercolation algorithm).

4.1.1 The First Step: SeedGeneration

Initial seeds play an important role in the alignment process. In the PPI setting, the BLAST

bit-score is often a good indicator of functional similarities between proteins [92]. In other

words, at high levels of sequence similarity it is possible to make a functional inference with

an acceptable accuracy [153]. This means that, for couples of proteins with a high sequence-

similarity it is very likely that they have similar functions. The main approach in this chapter

is to use such couples as a starting point to find a global alignment. Indeed, the seeds to

the PROPER algorithm are those couples of proteins with high sequence-similarities. Also,

a protein can be aligned with at most one protein from the other species. The degree of

similarity between the couples in the seed set A is controlled by the threshold �.

The seed set A is generated from the pairwise similarities (the set S) in the following manner:

Among all the couples of proteins with BLAST bit-score similarity above �, couples [i , j ] are

matched in a descending order of sequence similarity, unless i or j is matched already. More

precisely, (i) we add the couple [i , j ] ∈S with the highest similarity to the seed set and match

i to j ; (ii) all the couples [i , j ′] and [i ′, j ] are now forbidden and we remove them from S .

We repeat the steps (i) and (ii) until there is no remaining couple in the set S with BLAST

bit-score similarity at least �. Note that, in the process of seed generation, when there are

several couples with the same sequence similarity, we randomly pick one of them.

Algorithm 6 describes the SeedGeneration algorithm in detail. In this algorithm, for a set of

couples A, V1(A) defines the set of nodes from network G1 in A, i.e., V1(A) = {i |∃ j s.t. [i , j ] ∈

85



Chapter 4. Global Pairwise-Network Alignment

A for some j }. We define V2(A) similarly. Also, Bl astBi t(i , j ) denotes the BLAST bit-score

similarity between two proteins i and j .

A priori, the probability of biological similarity of a protein couple decreases with a decrease

in the sequence similarity. Therefore, there is a trade-off between the number of protein

couples with the same biological functions and the accuracy (i.e., the ratio of couples with

the same functions over the size of seed set) based on �. Clearly, choosing a high value for �

aligns proteins that, with a high probability, have similar functions. However, this can result in

removing couples with lower sequence-similarities, but the same functions from the initial

seed-set.

Algorithm 4: The SeedGeneration Algorithm

Input: BLAST bit-score similarities S and �

Output: The seed set A
1 A←�;
2 for all couples [i , j ] ∈S from the highest similarity to the lowest do
3 if i ∉V1(A), j ∉V2(A) and Bl astBi t (i , j ) ≥ � then
4 add the couple [i , j ] to A;

5 return A;

4.1.2 The Second Step: MapPercolation

The second step of PROPER (the MapPercolation algorithm) starts the alignment process

from the seed couples (set A) obtained from the set of pairwise similarities S (see the

SeedGeneration algorithm). It then incrementally generates the set π of matched couples

among V1 ×V2 \A. In the MapPercolation step, the PROPER algorithm relies only on the

structure of G1,2, and it does not use the sequence similarities. In this regard, the seed cou-

ples are added to the set of aligned couples π. Then, at each time-step, the goal of the PGM

algorithm is to add a new couple to the set π so that structural similarity is maximized.

In the process of the MapPercolation algorithm, we look at the neighboring couples of

the previously matched couples. We say a couple of proteins [i ′, j ′] ∈ V1 ×V2 is a neighbor

of another couple [i , j ] if and only if (i , i ′) ∈ E1 and ( j , j ′) ∈ E2. To achieve the maximum

structural similarity, our algorithm chooses the next couple in a greedy way: it chooses the

couple with the maximum number of common neighbors (provided there are at least r ) in

π and permanently aligns them. Indeed, the evidence for deciding which couple to match

(called the score of a couple) is the number of common neighbors each couple has in the set

of currently aligned couples. A new couple of proteins can be matched if its score is at least r .

When there are several couples with the maximum score, we tie-break by the minimum degree-

difference in the two networks, i.e., we choose the couple [i , j ] with the minimum |d1,i −d2, j |,
where d1,i and d2, j denote the degrees of nodes i and j in the networks G1 and G2, respectively.
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If there are more than one couples with the minimum degree difference, we choose the couple

with the minimum d1,i +d2, j . Finally, if there are still several candidate couples, we randomly

pick one of them. The process of alignment continues to the point where there is no remaining

unmatched couple of proteins (we say a couple [i , j ] is unmatched if i ∉V1(π) and j ∉V2(π))

with at least r common neighbors, in the current set of aligned proteins. Note that for a

given value of r , only nodes with degree at least r can get enough score to be matched. More

precisely, MapPercolation is not able to align: (i) unmatched nodes with a degree less than

r , and (ii) couples that have not gained enough scores. Figure 4.1 presents an example of

the second step of PROPER (the MapPercolation algorithm). Algorithm 5 describes this

algorithm.

j1

v1

i1

u1

G1

j2

i2

u2

G2

Figure 4.1 – Dark-green nodes correspond the initial seed-set. Couples [i1, i2], [i1, j2], [ j1, j2],
[ j1, i2], [v1, i2], [v1, j2] are neighboring couples of the couple [u1,u2]. The couples [i1, i2] and
[ j1, j2] are the common neighbors of the couple [u1,u1] in the set of already matched couples
π, i.e., the score of couple [u1,u2] is two. Light-green nodes are the nodes that are matched
after the first three steps of the MapPercolation algorithm. In this example, we set r = 2.

4.2 Performance Measures

In this section, we explain the measures used for comparing alignment algorithms. As there is

no single standard measure for evaluating the quality of alignments, we use several existing

measures [43, 57, 59]). In addition, we introduce a new measure for comparison based on the

performance of algorithms in aligning biological pathways.

For better illustration, in this section we assume that, without loss of generality, G2 has at least

as many nodes as G1, i.e., |V1| ≤ |V2|. Let π denote the mapping produced by an alignment
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Algorithm 5: The MapPercolation algorithm

Input: G1(V1,E1),G2(V2,E2), seed set A and threshold r
Output: The set of aligned couples π

1 π←A;
2 while there exists an unmatched couple with score at least r do
3 among all the couples with the highest score select the unmatched couple [i , j ] with the

minimum |d1,i −d2, j |. If there are more than one couples with the minimum |d1,i −d2, j |,
select the couple with the minimum d1,i +d2, j . Finally, if there are still several candidates,
randomly pick one of them;

4 add [i , j ] to the set π;

5 return π;

algorithm. Also, let G[V ] denote the induced subgraph of G on the set of vertices V . Assume π

maps the nodes V ′
1 ⊂V1 to the nodes V ′

2 ⊂V2. Note that many global alignment algorithms do

not match all the nodes from graph G1 to a node from graph G2, i.e., they align a large fraction

of the nodes but not all of them. We define graph G0(V0,E0) as the intersection of the two

graphs G1 and G2 under the alignment π, i.e., V0 is the set of proteins in graph G1 aligned by π

to a protein in graph G2; and E0 is the set of interactions in G1, conserved under the alignment

π in the graph G2. Formally, we have V0 =V ′
1 and E0 = EG1[V ′

1] ∩π−1(EG2[V ′
2]).

4.2.1 Structural and Functional Similarity Measures

In this section, we review the measures that are used widely to evaluate the performance of

network-alignment algorithms.

(i) Node correctness (NC) of an alignment is defined as the ratio of the number of correctly

aligned couples to the number of nodes in the smaller network (i.e., |V1|) [112]. The precision

is defined as the ratio of number of correctly aligned couples to the total number of couples

|π| in the alignment π. These measures are applicable only to synthetic networks, because

they can be used only for alignments with known ground-truth [59].

As the true alignment between the proteins of two species is not known completely for real

networks, it is not possible to directly calculate the NC and precision of an alignment [43,

57, 59]. To compare the performance of algorithms over real datasets, two different types of

measures were introduced in the literature. The first group of measures uses the topological

similarity of aligned networks. The second group measures the quality of an alignment by

using other biological information.

The following measures are used for evaluating the structural (topological) similarity of aligned

networks.

(ii) The number of conserved interactions under the alignment π (call it Δπ) is one of the
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measures used to evaluate the quality of algorithms based on the topological similarity [207].

Formally,

Δπ = |π(E1)∩E2|.

(iii) Edge correctness (EC) is a measure of topological similarity among the aligned networks

[112]. EC computes the ratio of edges from graph G1, i.e., all the edges in the smaller network,

which are conserved under the alignment π. Formally,

EC = |π(E1)∩E2|
|E1|

.

(iv) Recall that the numbers of proteins (nodes) in the two networks are not equal. Therefore,

one drawback of the EC measure is that aligning sparse regions of G1 with dense regions of

G2 can result in high values of EC. The induced conserved-structure score (IC S) measures

the structural similarity of aligned networks by penalizing dense regions of G2 [149]. The ICS

score for an alignment π from graph G1 with graph G2 is

IC S = |π(E1)∩E2|
|EG2[π(V1)]|

.

(v) The symmetric substructure score (S3) is defined with respect to both G1,2 networks [165].

The S3 measure penalizes the alignments that map sparse regions of one network to denser

regions of the other network. Formally, S3 is defined as follows.

S3 = |π(E1)∩E2|
|E1|+ |EG2[π(V1)]|− |π(E1)∩E2|

.

Note that |E1| refers to all the edges in the smaller network.

(vi) The largest connected shared-component (LCSC) is the largest connected subgraph of G1,

which is found to also exist in G2, i.e., the largest connected component in graph G0 [43]. Let

|LC SC | denote the number of nodes in LCSC. Also, the share of nodes in LCSC is defined as
|LC SC |
|V1| [111].

We now introduce the second group of measures that are used for evaluating the biological

quality of alignments by comparing the functional similarity of aligned proteins.

(vii) The gene-ontology consistency (GOC) score measures the functional similarity of aligned

proteins. Note that usually more than one gene ontology (GO) terms are assigned to a protein

[17]. Also, as the GO datasets are noisy and proteins have diverse functions, it is possible

that true ortholog proteins do not have exactly the same set of GO terms. GOC for an aligned

couple of proteins u ∈V1 and v ∈V2 is defined as the Jaccard similarity coefficient between
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the GO terms of the two proteins [10]. Formally, it is defined as

GOC (u, v) = |GO(u)∩GO(v)|
|GO(u)∪GO(v)| ,

where GO(u) denotes the set of GO terms associated with the protein u. GOC (π) is calculated

by summation over the GOC terms of all the aligned couples in π:

GOC (π) = ∑
u∈V1

GOC (u,π(u)). (4.1)

For ease of notation we refer to GOC (π) as GOC score.

(viii) To compare algorithms based on the sequence similarities of aligned proteins, we use

a slightly modified version of the average normalized bit–score (ANBS) measure proposed

in [169]. ANBS for two graphs G1(V1,E1) and G2(V2,E2) under the alignment π is defined as

follows.

AN BS(π) = |V1|−1
∑

i∈V1(π)

Bl astBi t (i ,π(i ))√
Bl astBi t (i , i )Bl astBi t (π(i ),π(i ))

.

4.2.2 Pathway Comparison Measures

In order to evaluate the performance of algorithms in aligning biological pathways, we intro-

duce a new measure in this section. This measure captures the quality of alignments based on

a higher level of functional and structural similarities (beyond the introduced measures such

as the similarity of GO terms and the number of conserved interactions).

It is known that there are many biological pathways with similar functions in different species

[103]. The KEGG PATHWAY database [3] provides a set of experimentally found biological

pathways. In this database, a pathway is called by the name of a species (e.g., hsa for Homo

sapiens), followed by a number. The pathways with the same number have the same function

in different species. For example, hsa03040, mmu03040, dme03040 and sce03040 are in Homo

sapiens (human), Mus musculus (mouse), Drosophila melanogaster (fruit fly) and Saccha-

romyces cerevisiae (budding yeast), respectively. These pathways have the same functions.3

Assume PWi ,1 denotes the set of proteins from a pathway with number i in the PPI network of

the first species (i.e., G1). Similarly, we define PWi ,2. For pathway i , Δπ,i denotes the number

of conserved interactions between the proteins in this pathway under the alignment π, i.e.,

Δπ,i = EG1[PWi ,1] ∩π−1(EG2[PWi ,2]). Note that we are looking for pathways that are present in

both aligned species.

We say a protein u from a pathway is aligned correctly, if it is mapped to a protein v from a

pathway with the same function. For pathway i , we define the number of correctly mapped

3These pathways are Spliceosome. Spliceosome removes introns from a transcribed pre-mRNA, a type of
primary transcript.

90



4.3. Experimental Results

proteins as |PWi ,1 ∩π−1(PWi ,2)|. This measure corresponds to the number of proteins that,

from pathway i in the first species, are mapped to a protein from the same pathway in the

second species. For pathway i , we define the accuracy as

accπ,i =
2|PWi ,1 ∩π−1(PWi ,2)|

|PWi ,1|+ |PWi ,2|
. (4.2)

This measure corresponds to the fraction of correctly mapped proteins in pathway i .

We conjecture that a good alignment algorithm should align proteins from pathways with the

same functions across species, and many interactions among these proteins are conserved. To

quantify this expectation, we set a threshold over the structural similarity of aligned pathways

to consider them as a correct alignment. We say that an alignment π successfully aligns a

pathway i , if there are at least δ conserved interactions under the alignment π for proteins

in that pathway, i.e., if Δπ,i ≥ δ. This thresholding guarantees that the structural similarity

of aligned pathways are more than a minimum value (here, δ conserved interactions). To

evaluate the performance of an algorithm based on this thresholding criterion, we define a set

of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2) interactions in each of species. Let

“#PWδ” denote the number of such pathways.

2. Alignment π successfully aligns pathway i , if Δπ,i ≥ δ. The variable “#FPWδ” refers to

the number of successfully aligned pathways. We define the recall as

r ecal lπ,δ =
#FPWδ

#PWδ
. (4.3)

3. Again, for a correctly aligned pathway i, we define accπ,δ,i similar to (4.2).

The averages over all i of all the accπ,i and accπ,δ,i values are represented by accπ and accπ,δ,

respectively. Figure 4.2 provides a toy example of how to calculate the pathway alignment

measures.

4.3 Experimental Results

In this section, we compare PROPER with the main state-of-the-art network-alignment algo-

rithms, specifically (i) with L-GRAAL as the most recent member of GRAAL family that takes

into account both sequence and structural similarities [129]; (ii) with MAGNA++ that tries to

maximize one of the EC, ICS or S3 measures [165, 194] (In our experiments we run MAGNA++

in two different modes of maximizing S3, which is the superior mode for MAGNA++ [165], and

EC); (iii) with IsoRank [176] as one of the first global PPI-network alignment algorithms; (iv)

with PINALOG [154]; and (v) with SPINAL I and II [10] as their performances are reported to be

among the best alignment-algorithms [43]. Table 4.1 provides an overview of the arguments
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Figure 4.2 – In this figure, two example PPI networks are given. Green nodes are proteins which
are in the same pathway (i.e., a pathway with the same number in both species). Dotted lines
represent the alignment π between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by thick black edges in each
network). Also, the number of correctly mapped proteins is four. Therefore, the accuracy of
aligning this pathway is accπ,i = 2×4

6+5 , where there are six and five proteins from this pathway
in each species, respectively.

and parameters of the algorithms used in our comparisons. Note that it is recommended to

use SPINAL and MAGNA++ in modes I and S3, respectively. Also, the recommended settings

for IsoRank is α= 0.6. For the other algorithms, no default setting is provided. We evaluate the

performance of PROPER with r = 1 (structural similarity threshold) and different values of �

(sequence similarity threshold).

Table 4.1 – Algorithms and their parameters

Algorithm Commandline arguments Parameters

IsoRank [176] –K 50 –thresh 1e-5 –alpha α –maxveclen 1000000 α ∈ {0.3,0.5,0.6,0.7}
PINALOG [6, 154] do not require arguments none
L-GRAAL [129] -a α -I 50 α ∈ {0.3,0.5,0.7}
MAGNA++(S3) [194] -m S3 -p 1000 -n 15000 -f 5 -a α -t 16 α ∈ {0.3,0.5,0.7}
MAGNA++(EC) [194] -m EC -p 1000 -n 15000 -f 5 -a α -t 16 α ∈ {0.3,0.5,0.7}
SPINAL I [10] –mode -I –alpha α α ∈ {0.3,0.5,0.7}
SPINAL II [10] –mode -II –alpha α α ∈ {0.3,0.5,0.7}

All the algorithms use two sets of data as input: (i) the PPI networks of two species, and (ii)

the pairwise BLAST similarities (in form of BLAST bit-score) between proteins from the first

species and proteins from the second species. We use two different PPI-network databases

for our comparisons. The first one is from IntAct molecular interaction database [1, 76]. This

database enables us to compare algorithms based on large and more recent PPI networks.

The GO annotation terms are extracted from the Gene Ontology Annotation (UniProt-GOA)

Database [5, 22]. For pathway comparisons over these networks we can use data from [3]. The
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second database is Isobase [148], a common dataset used in comparison of recent algorithms

[43, 57]. The results for experiments over Isobase dataset are provided in Appendix 4.A. For

further evaluations, we use synthetic networks with a known ground-truth.

4.3.1 Structural and Functional Based Comparisons

Table 4.2 provides a brief description of the PPI networks for five major eukaryotic species,

namely C. elegans (ce), D. melanogaster (dm), H. sapiens (hs), M. musculus (mm) and S.

cerevisiae (sc); they are extracted from the IntAct database [1, 76]: The last column of Table 4.2

shows the number of pathways of each species from KEGG PATHWAY database [3]. The amino-

acid sequences of proteins for each species are extracted in the FASTA format from UniProt

database [4, 15]. The BLAST bit-score similarities [13] are calculated using these amino acid

sequences.

Table 4.2 – PPI networks of five major eukaryotic species from IntAct molecular interaction
database [1, 76].

species Abbrev. #nodes #edges Avg. deg. #pathways

C. elegans ce 4950 11550 4.67 117
D. melanogaster dm 8532 26289 6.16 127
H. sapiens hs 19141 83312 8.71 288
M. musculus mm 10765 22345 4.15 284
S. cerevisiae sc 6283 76497 24.35 98

Figure 4.3 compares algorithms based on the average ICS versus average GOC score for all

the possible 10 pairwise alignments between the species from Table 4.2. We observe that

PROPER outperforms the other algorithms in both measures, i.e., the PROPER algorithm

finds alignments with higher functional (GOC score) and structural (ICS) similarities. Also,

although the other algorithms claim the parameter α controls the contributions of structural

and sequence similarities, we observe that, in practice, these algorithms fail to trade-off

between these similarity measures. For the detailed comparisons of the algorithms refer to

Figures 4.6, 4.7, 4.8 and Appendix 4.A.

Note that many of the GO annotations are based on only sequence similarities, and these

annotations could increase the GOC scores artificially. Clark and Kalita [43] (similar to [10])

propose to also compare algorithms by using only the experimentally verified GO terms

(along with the comparisons based on all the GO terms) to eliminate the effects of sequence

similarities in the GOC evaluations. For this reason, in our next experiment, we consider only

GO terms with codes “EXP”, “IDA”, “IMP”, “IGI”,“IEP” and “IPI” (the codes for experimental

GO terms), and we exclude the annotations derived from computational methods. Figure 4.4

compares the GOC (based on experimentally verified GO terms) versus EC score. The result of

this experiment confirms the superiority of PROPER over the other algorithms.
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Figure 4.5 evaluates the performance of algorithms based on S3 (for structural similarity) and

ANBS (for functional similarity) measures. Again, the PROPER algorithm performs the best

with respect to the two measures, simultaneously.

0

200

400

600

800

1000

1200

1400

0 0.05 0.1 0.15 0.2 0.25 0.3

G
O

C
Sc

or
e

ICS

PROPER

150

200

300

400

500

600

SPINAL I

SPINAL II

PINALOG

IsoRank

L-GRAAL
MAGNA(EC) MAGNA(S3)

Figure 4.3 – Comparison of different global network-aligners based on the average GO con-
sistency vs. average integrated conserved structure score. For the PROPER algorithm, we set
r = 1 and each point corresponds to a different value of �. Also, the red, blue, magenta and
green points correspond to the parameters α= 0.3,0.5,0.6 and 0.7, respectively.

Table 4.3 reports the average number of aligned couples and the average of share of nodes in

LCSC. We observe that MAGNA++ and IsoRank, irrespectively of the similarity of networks,

find alignments with the full coverages, i.e., the size of their alignments is equal to the number

of nodes in the smaller network; and PINALOG has the lowest coverage among the algorithms.

The size of an alignment alone is not a good indicator of its quality, because an algorithm

with a large coverage might find alignments with low functional-similarities and structural-

similarities. Instead, we can consider the sum of functional similarities of aligned proteins.

To address this point, for example, GOC score (4.1) captures the total functional similarity, by

summation over all the couples in π (see Figures 4.3 and 4.4). We can also consider the size of

shared structure between networks. To address this second point, we use LCSC. A larger LCSC

implies that we have found a larger amount of shared structure between the two PPI networks

[111]. From Table 4.3, we observe that PROPER, L-GRAAL and SPINAL II outperform the other

algorithms (with huge margins), based on the share of nodes in LCSC.

Figure 4.6 provides a detailed comparison between the algorithms based on their performance

in aligning H. sapiens with S. cerevisiae. Also, detailed comparisons between C. elegans

and D. melanogaster, and M. musculus and S. cerevisiae are provided in Figures 4.7 and 4.8,

respectively. Note that in Figures 4.6, 4.7 and 4.8, the values for each measure are normalized
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Figure 4.4 – Comparison of different global network-aligners based on the average GO con-
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Figure 4.5 – Comparison of different global network-aligners based on the average ANBS vs.
average S3 score. For the PROPER algorithm, we set r = 1 and each point corresponds to a
different value of �. The parameter α is 0.7.
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Table 4.3 – This table reports the average number of aligned couples (i.e., |π|) and the average
of share of nodes in LCSC (i.e., |LC SC |/|V1|). We use α= 0.7 for SPINAL, IsoRank, MAGNA and
L-GRAAL, and r = 1 for PROPER.

Algorithms |π| |LC SC |/|V1|
PROPER (�= 150) 5521.2 0.528
PROPER (�= 600) 5347.4 0.728
SPINAL I 6364.3 0.219
SPINAL II 6433.4 0.720
PINALOG 3740.9 0.233
L-GRAAL 5616.4 0.726
MAGNA++(S3) 6647.8 0.292
MAGNA++(EC) 6647.8 0.353
IsoRank 6647.8 0.051

to the highest value, i.e., for each measure, in these figures, the maximum is 1 for the best

algorithm and values for the other algorithms are normalized with respect to the maximum.

We observe that PROPER outperforms the other algorithms in terms of most of GOC, ANBS,

ICS, S3, EC and LCSC measures.
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Figure 4.6 – Comparison of different global network-aligners on aligning H. sapiens and S.
cerevisiae based on six different measures. For the PROPER algorithm, we set r = 1 and
� ∈ {150,500}. The parameter α is 0.7.
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Figure 4.7 – Comparison of different global network-aligners on aligning C. elegans and D.
melanogaster based on six different measures. For the PROPER algorithm, we set r = 1 and
� ∈ {150,500}. The parameter α is 0.7.
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Figure 4.8 – Comparison of different global network-aligners on aligning M. musculus and
S. cerevisiae based on six different measures. For the PROPER algorithm, we set r = 1 and
� ∈ {150,500}. The parameter α is 0.7.

4.3.2 The MapPercolation Algorithm and r

The PROPER algorithm has two main steps: (i) SeedGeneration and (ii) MapPercolation.

The number of aligned couples in the first and second steps are functions of � and r , respec-
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tively. In Table 4.5, we report the average number of aligned couples (i.e., |π|) in the first and

second steps of PROPER for different values of � and r ∈ {1,2}. We observe that by increasing

the value of �, the number of aligned couples in the first step decreases. This is because the

number of couples with BLAST bit-score of at least � has an inverse relationship with �. In the

second step, |π| increases by a factor of 2.5 to 7.6 for � ∈ {150,200,300,400,500,600} with r = 1.

For the detailed experimental result of PROPER with r ∈ {1,2} refer to Table 4.4.

Table 4.4 – The experimental results for PROPER with different values of r ∈ {1,2} and � ∈
{150,200,300,400,500,600}. The results are the average of 10 pairwise alignments between
species from Table 4.2.

r,� |π| GOC (all) GOC (exp.) EC ICS S3 LCSC

1,150 5521.2 1388.562 371.460 0.231 0.218 0.102 3345.7
1,200 5471.4 1284.853 351.285 0.249 0.235 0.112 3610.7
1,300 5432.9 1117.425 321.699 0.273 0.264 0.125 4081.9
1,400 5416.4 999.517 301.476 0.292 0.279 0.135 4397.3
1,500 5347.4 913.508 285.664 0.303 0.285 0.140 4533.4
1,600 5320.5 832.233 271.684 0.309 0.295 0.145 4669.8
2,150 3116.1 1224.103 299.481 0.114 0.185 0.060 1375.7
2,200 2900.3 1104.756 275.392 0.122 0.205 0.066 1433.6
2,300 2618.4 920.392 239.140 0.134 0.247 0.075 1566.2
2,400 2408.7 791.523 212.464 0.143 0.269 0.082 1617.8
2,500 2216.1 687.839 191.209 0.147 0.280 0.086 1602.8
2,600 2094.0 603.080 173.923 0.148 0.296 0.089 1596.8

Choosing smaller values of r reduces the required structural similarity for aligning a couple.

This explains why the number of aligned couples for r = 1 is larger than for r = 2 in Table 4.5.

Note that the MapPercolation algorithm, for a given value of r , cannot align nodes with

degrees less than r . From Figure 4.9, which reports the degree distribution of different net-

works, we observe that there are many nodes with degree one, e.g, almost half of nodes for

C. elegans and M. musculus. These nodes of degree one cannot be aligned with r = 2, and

this is the reason we choose r = 1 for our experiments. In general, the value of r controls the

strength of the structural evidence required before we decide to align a couple and a larger

r makes errors less likely. We believe that by the increasing size of PPI networks over time,

which consequently results in the decrease of number of low-degree nodes, a larger value of r

will generate alignments with higher qualities.

Synthetic Networks

In this section, we compare algorithms based on their performance over synthetic networks.

For this, we consider the high-confidence yeast Saccharomyces cerevisiae PPI network with

1004 nodes and 8323 edges [46, 165]; this network serves as our “ground-truth”. For this

experiment, a noisy version of the yeast network is generated by sampling each of its nodes
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Table 4.5 – The average number of aligned couples when running (i) only the first step of
PROPER (i.e., the SeedGeneration algorithm), and (ii,iii) PROPER with r = {1,2} with different
values of �.

� SeedGeneration r = 2 r = 1

150 2198.4 3116.1 5521.2
200 1875.6 2900.3 5471.4
300 1393.9 2618.4 5432.9
400 1083.1 2408.7 5416.4
500 861.0 2216.1 5347.4
600 696.4 2094.0 5320.5
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Figure 4.9 – Cumulative degree distribution for all the networks from Table 4.2.

and interactions with a probability s. Here, s controls the similarity of a sampled network with

the original network, and we take 1− s as the “level of noise”. Also, the sequence similarity for

a subset of randomly chosen proteins is provided as a side information. In this experiment,

the ground-truth node mapping is known by design, which enables us to calculate NC and

precision. Note that in order to account for the randomness of our experiments, we provide

the average of 50 different alignments for each level of noise and available sequence similarity.

In the first experiment, we align the original network with five networks that are generated

by different levels of noise 1− s ∈ {5%,10%,15%,20%,25%}. Also, the sequence similarity for

50% of randomly chosen proteins is provided. Figure 4.10 provides NC comparison over

these synthetic networks for different levels of noise. From Figure 4.10, for example, we

observe that PROPER aligns networks which are sampled with the noise level 1− s = 15% with

NC=0.86. Note that the average number of nodes for different noise levels (from 5% to 25%) is
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Chapter 4. Global Pairwise-Network Alignment

946.48, 893.24, 832.54, 780.4 and 730.96, respectively. This means that PROPER correctly aligns

0.86 ·832.54 ≈ 716 couples. Figure 4.11 compares algorithms based on precision. From the

result of this experiment, we observe that for a low level of noise (1− s = 5%) L-GRAAL has the

best performance and PROPER comes second. With increasing level of noise, the performance

of PROPER remains almost unaffected, whereas the quality of the other alignments decreases

quite markedly.
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Figure 4.10 – Comparison of different global network-aligners over synthetic networks based
on node correctness (NC). The sequence similarity for 50% of randomly chosen proteins is
provided. For the PROPER algorithm, we set r = 1 and �= 150. The parameter α is 0.7.

In the second experiment, we investigate the effect of available sequence similarity on the

performance of algorithms. We consider different amounts of available sequence similarity

and fix the level of noise to 1− s = 20%. Figure 4.12 compares algorithms when the sequence

similarities for 20%,30%,40%,50%,60% and 70% of randomly chosen proteins are provided.

Figure 4.13 compares algorithms based on precision. We observe that PROPER outperform

the other algorithms for different amounts of available sequence similarity.

These two experiments confirm the success of the PROPER algorithm in aligning synthetic

networks and its robustness to high levels of noise.

4.3.3 Aligning Biological Pathways

In this section, we compare algorithms based on their performance in aligning biological

pathways. We use α= 0.7 for SPINAL, IsoRank, MAGNA and L-GRAAL, and r = 1, l = 150 for

PROPER. We use the measures introduced in Section 4.2.2. For our comparisons, we consider

the alignment of H. sapiens with the other four species from Table 4.2. We know that there

are several proteins that belong to more than one pathway, because some proteins could be
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Figure 4.11 – Comparison of different global network-aligners over synthetic networks based
on precision. The sequence similarity for 50% of randomly chosen proteins is provided. For
the PROPER algorithm, we set r = 1 and �= 150. The parameter α is 0.7.

involved in different biological processes. For this reason, along the results for all the pathways,

we consider a subset of non-overlapping pathways for each pair of species. Table 4.6 reports

the number of common KEGG pathways between different pairs of species, where we consider

(i) all the pathways, (ii) pathways with at least δ= 4 interactions in each of the species, and (iii)

a subset of non-overlapping pathways.

Table 4.6 – Number of common KEGG pathways between different pairs of species.

Pair of species #PW #PW(δ= 4) #PW (no-overlap)

hs-ce 116 19 37
hs-dm 122 31 40
hs-mm 283 152 49
hs-sc 98 32 34

For the first experiment, we do not consider the topological similarities of aligned pathways.

The result for alignments of pathways from different algorithms is provided in Table 4.7. We

observe that PROPER outperforms the other algorithms in terms of accuracy. In the second

experiment, for each algorithm we consider only the pathways with at least δ= 4 conserved

interactions across species (i.e., Δπ,i ≥ 4). Table 4.8 provides the results for this case. Again, we

observe that the PROPER algorithm outperforms the other algorithms, i.e., on average it aligns

more pathways with a higher accuracy. MAGNA++ performs very poorly in this experiment

and we omit it from Table 4.8.

For many pathways, the PROPER algorithm, compared to other algorithms, returns alignments
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Figure 4.12 – Comparison of different global network-aligners over synthetic networks based
on node correctness (NC). The level of noise is set to 1− s = 20%. For the PROPER algorithm,
we set r = 1 and �= 150. The parameter α is 0.7.

Table 4.7 – Comparison of algorithms based on aligning biological pathways. This table reports
the average value of accπ for pairwise alignments between Home sapiens and the four other
species from Table 4.2.

Algorithms accπ accπ (no-overlap)

PROPER 0.471 0.442
SPINAL I 0.447 0.426
SPINAL II 0.115 0.134
PINALOG 0.409 0.397
L-GRAAL 0.232 0.218
MAGNA++(S3) 0.016 0.020
MAGNA++(EC) 0.017 0.020
IsoRank 0.202 0.195

with a larger portion of connected conserved subgraphs. For example, Figure 4.14 shows the

connected conserved subgraph of pathways hsa05200 and mmu05200 between human and

mouse.4 The connected subgraph of this pathway has 37 nodes and 42 edges, which is larger

than alignments by the other algorithms (see Appendix 4.B).

4The connected subgraph of this pathway has 37 nodes and 42 edges, which is larger than alignments by the
other algorithms (see Appendix 4.B).
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Figure 4.13 – Comparison of different global network-aligners over synthetic networks based
on precision. The level of noise is set to 1− s = 20%. For the PROPER algorithm, we set r = 1
and �= 150. The parameter α is 0.7.

Table 4.8 – Comparison of algorithms based on pathway alignment measures for δ= 4 (i.e.,
Δπ,i ≥ 4). This table reports the average value of measures for pairwise alignments between
Home sapiens and the four other species from Table 4.2.

Algorithms #FPW accπ,δ r ecal lπ

PROPER 42.5 0.585 0.584
SPINAL I 38.75 0.554 0.536
SPINAL II 9.0 0.223 0.102
PINALOG 39.75 0.497 0.547
L-GRAAL 25.5 0.320 0.235
IsoRank 18.5 0.356 0.225

4.3.4 Execution Time

A fast and scalable alignment algorithm is needed with the growing size of PPI networks. One

of the key features of the PROPER algorithm is its low computational complexity and scalability.

PROPER is able to align synthesis networks with millions of nodes in less than a hour. In fact,

the complexity of our algorithm is O ((|E1|+ |E2|)min(D1,D2)), where D1,2 are the maximum

degrees in the two networks. Table 4.9 provides the total execution time of algorithms for 10

pairwise alignments between the five species from Table 4.2. All computations are done on

the same Linux machine with 16 GB of memory and 8 Intel Xeon E3-1270 CPUs working at

clock speeds 3.50 GHz. We observe that PROPER runs much faster than the other algorithms.
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Figure 4.14 – The connected subgraph of hsa05200 and mmu05200 pathways in human
and mouse from the PROPER algorithm, with conserved interactions in both species. This
connected subgraph has 37 nodes and 42 edges. The PINALOG algorithm returns the second
largest connected subgraph. The rectangular nodes and solid edges are the proteins and
interactions among them that are found only by the PROPER algorithm.

Table 4.9 – The total execution time of algorithms for 10 pairwise alignments between the five
species from Table 4.2.

Aligner Time

PROPER 317 seconds
L-GRAAL 4 hours and 2 minutes
MAGNA++(S3) 7 hours and 47 minutes
MAGNA++(EC) 7 hours and 41 minutes
PINALOG 2 days, 5 hours and 26 minutes
SPINAL I 10 hours and 51 minutes
SPINAL II 11 hours and 56 minutes
IsoRank 12 hours and 43 minutes

4.4 Discussion

The purpose of network-alignment algorithms is to find functional and structural similarities

between PPI networks of different species [59]. Most of the works in the literature model global
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network-alignment as an optimization problem over the convex combination of sequence

and structural similarities between two networks [112, 176, 207]. This class of algorithms aims

to maximize a cost function in order to increase the following two quantities simultaneously:

(i) the pairwise similarities between aligned proteins (e.g., by maximizing the summation over

all the BLAST similarities of aligned proteins), and (ii) the structural similarity between the

two graphs, (e.g., by maximizing the conserved PPIs under the alignment) [43].

It appears that this particular formulation of the optimization problem precludes these algo-

rithms from making good alignments by using both similarities jointly [43]. For example, in

Chapter 6 we show that in the IsoRank algorithm for the structure-only (α= 1) alignment, the

similarity of two nodes is only a function of their degrees. Our results in that chapter explicate

the poor performance of IsoRank in finding alignments with good structural similarities. Also,

our experimental results confirm the trade-off between structural and functional similarities

in most of the state-of-the-art network-alignment algorithms. We observe that each of the

five algorithms evaluated here, namely L-GRAAL, MAGNA++, IsoRank, PINALOG and SPINAL,

covers only a small portion of the trade-off frontier (see Figures 4.3 and 4.5). In summary, we

believe that these observations make it necessary to study the PPI network alignment problem

under rigorous mathematical models.

The PROPER algorithm, in comparison, shows less compromise between the functional

similarities among aligned proteins and the topological similarity. Figures 4.3, 4.4 and 4.5

show that our algorithm sweeps the frontier (i.e., has the best trade-off between both measures)

more robustly than the other algorithms. In addition, large conserved subgraphs with the

same function are aligned with PROPER. The PROPER algorithm not only aligns proteins and

their corresponding interactions from two different species better than other algorithms, it

also aligns the conserved pathways between the species with higher accuracy. This shows

that instead of finding conserved single pairwise PPIs, PROPER represents a more biologically

realistic performance by detecting sub-networks of conserved interactions from pathways

with the same function among species.

In addition to its superior accuracy, PROPER performs better in terms of memory usage and

speed, because the alignment process of PROPER is a very simple local propagation method.

4.4.1 Why the PROPER Algorithm?

In the following, we explicate the two reasons PROPER performs well in terms of all the cost

functions considered.

The first reason is that a high BLAST bit-score is a reliable indicator of a match, whereas a low

BLAST bit-score is very unreliable for many functional characteristics [52]. As a consequence,

rather than optimizing a convex combination of functional similarity with structural similarity,

it is advantageous to ascribe high confidence to the sparse set of high-BLAST couples, and to

completely ignore low BLAST bit-scores. This is what PROPER does, by generating an initial
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seed-set of high BLAST couples, and then by propagating outwards from this seed set as a

purely structure-driven process. Note that as the PGM class of algorithms are shown to be

robust against noise in the seed set [99], PROPER is not sensitive to the sequence similarity

threshold � for aligning new couples of proteins.

The second reason is more speculative and has to do with the statistical structure of the two

networks being matched. Computational biology postulates evolutionary models to explain

the difference between PPI networks. Studies have identified gene duplication and the gain

or loss of genes and their interactions as the key evolutionary events in forming biological

networks [126, 161, 187]. Several evolutionary models for regulatory networks and protein–

interaction networks have been introduced based on these observed evolutionary processes

[28, 162, 208].

Percolation-based methods for network alignment are well-suited for network pairs whose

structural differences arise from the random deletions of nodes and edges. Specifically, in

Chapters 2 and 3, we define the G(n, p; t , s) random bigraph model for generating two cor-

related networks G1,2 that rely on node and edge sampling processes. The two parameters

t and s control the node and edge similarity of the generated graphs. Although the analysis

in Chapter 3 is for a different algorithm within the PGM class, we believe the main concepts

carry over to PROPER.

More specifically, for the sake of simplicity, we assume that the evolutionary process can only

delete proteins and interactions among proteins. We call this model Evol ve(G , t , s), where

we postulate an ancestor network G(V ,E), from which both observable networks G1,2 derive

through independent evolutionary processes. The parameter t is the probability that a protein

in G survives in G1,2 (proteins are lost with probability 1− t ); and parameter s is the probability

that an interaction between proteins, i.e., an edge in G , survives in G1,2 (interactions are

lost with probability 1− s). With the additional assumption that the ancestor network G is

an Erdős-Rényi [58] random graph (i.e., a G(n, p) graph with n nodes, where each of the
(n

2

)
possible edges occurs independently with probability 0 < p < 1) this evolutionary model is

equivalent to the G(n, p; t , s) model studied in the literature [49, 100, 150].

By using this model, conditions for the success of PGM-based network alignment have been

established. In particular, a sharp phase-transition in terms of the seed-set size have been

shown: If the seed-set size is above some threshold (which depends on the network parameters

n, p, t , and s), PGM-based alignment can correctly match, with high probability, almost all

the node couples by using a purely structural process. Also, from the result of [100], we know

that under a similar random bigraph model, the correct alignment maximizes the number of

conserved interactions between the two networks. This simple parsimonious evolutionary

model provides guarantees for the performance of the PROPER algorithm over random graphs

similar to [99]. Note that, in practice, these algorithms are able to successfully align large

real-networks, as well as many types of random graphs. In conclusion, it seems that mapping

a (small) subset of nodes through a seed-generation step and matching the rest, by using only
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structure of the two graphs, works very well under an evolutionary model.

4.5 Summary

In this chapter, we have introduced a new global pairwise-network alignment algorithm called

PROPER. We have compared our algorithm with the state-of-the-art algorithms. We have

shown that PROPER outperforms the other algorithms in both accuracy and speed. Also, we

have shown that the PROPER algorithm can detect large conserved subnetworks between

species. The PROPER algorithm is publicly available at http://proper.epfl.ch.

Our results suggest that network-evolutionary models could be beneficial in designing network-

alignment algorithms. We believe that, for future work, considering a model that also takes

into account gene duplication, network motifs, clustering within networks and modularity of

biological networks (e.g., [141]) would increase the accuracy of global network-alignments.

Finally, to find biological pathways and protein complexes using the PROPER algorithm, the

next step would be to design methods that can detect sub-networks as potential pathways or

complexes (similar to the method used in [103, 104]).

107



Appendix

4.A IsoBase: Experimental Results

Isobase is a collection of PPI networks of five major eukaryotic species [2, 148]. This database

also contains information about (i) gene ontology (GO) and KEGG categories associated to the

proteins, and (ii) functionally related orthologs. In addition, for complementary comparisons,

we use the experimentally verified GO terms from [10]. We consider a subset of four species

from IsoBase. As the PPI network of M. musculus is very sparse (with average degree 1.867)

we omit if from our comparisons. Table 4.10 represents the name of these species and the

number of proteins and interactions in their PPI networks.

Table 4.10 – PPI networks of four eukaryotic species from IsoBase [148].

species #nodes #edges Avg. deg.

C. elegans 2974 4827 3.246
D. melanogaster 7387 24937 6.752
H. sapiens 10296 54654 10.617
S. cerevisiae 5523 82656 29.932

In this appendix, we compare different alignment algorithms. The alignments are done over

six pairs of species: ce-dm, ce-hs, ce-sc, dm-hs, dm-sc and hs-sc (for abbreviations and

information about the networks refer to Table 4.10).

Figure 4.15 compares algorithms based on the average of EC versus GOC score for all the possi-

ble 6 pairwise alignments between the species. The complementary result for experimentally

verified GO terms is shown in Figure 4.16.

Kyoto Encyclopedia of Genes and Genomes (KEGG) database [95] provides another classifi-

cation of proteins. We define KEGG consistency similar to the GOC using KEGG categories.

Figure 4.17 compares algorithms based on average KEGG consistency versus average LCSC.

We observe that proper finds alignments with high KEGG consistency and LCSC scores.

Figures 4.18, 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 report the detailed results of algorithms for

each one of the alignments over all pairs of species.
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Figure 4.15 – Comparison of different global network-aligners based on the average GO consis-
tency vs. average EC. For the PROPER algorithm, we set r = 1 and each point corresponds to a
different value of �. The red, blue and green points correspond to the parameters α= 0.3,0.5
and 0.7, respectively.
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Figure 4.16 – Comparison of different global network-aligners based on the average GO consis-
tency vs. average S3. For the PROPER algorithm, we set r = 1 and each point corresponds to a
different value of �. The red, blue and green points correspond to the parameters α= 0.3,0.5
and 0.7, respectively.
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Figure 4.17 – Comparison of different global network-aligners based on the average LCSC vs.
average KEGG consistency. For the PROPER algorithm, we set r = 1 and each point corresponds
to a different value of �. The red, blue and green points correspond to the parameters α =
0.3,0.5 and 0.7, respectively.
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Figure 4.18 – GO Consistency scores for each alignment of the IsoBase PPI-networks. For the
PROPER algorithm, we set r = 1 and � ∈ {40,300}. The parameter α is 0.7.

110



4.A. IsoBase: Experimental Results

0

20

40

60

80

100

120

PROPER40 PROPER300 SPINAL I SPINAL II Isorank PINALOG L-GRAAL MAGNA(EC) MAGNA(S3)

G
O

C
Sc

or
e

-
E

xp
er

im
en

ta
lT

er
m

s

ce–dm ce–hs ce–sc dm–hs dm–sc hs–sc

Figure 4.19 – GO Consistency scores (considering only experimental terms) for each alignment
of the IsoBase PPI-networks. For the PROPER algorithm, we set r = 1 and � ∈ {40,300}. The
parameter α is 0.7.
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Figure 4.20 – Edge correctness (EC) scores for each of the pairwise alignment for the IsoBase
PPI-networks. For the PROPER algorithm, we set r = 1 and � ∈ {40,300}. The parameter α is
0.7.
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Figure 4.21 – Induced conserved structure (ICS) scores for each of the pairwise alignment
for the IsoBase PPI-networks. For the PROPER algorithm, we set r = 1 and � ∈ {40,300}. The
parameter α is 0.7.
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Figure 4.22 – Symmetric substructure score (S3) scores for each of the pairwise alignment
for the IsoBase PPI-networks. For the PROPER algorithm, we set r = 1 and � ∈ {40,300}. The
parameter α is 0.7.
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Figure 4.23 – KEGG scores for each alignment of the IsoBase PPI-networks. For the PROPER
algorithm, we set r = 1 and � ∈ {40,300}. The parameter α is 0.7.
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Figure 4.24 – Comparison of different global network-aligners on aligning H. sapiens and
S. cerevisiae based on six different measures. For the PROPER algorithm, we set r = 1 and
� ∈ {40,200}. The parameter α is 0.7.
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4.B Pathways: Experimental Results

In this appendix, we provide the results of our experiments for aligning biological pathways in

more details. The results for each one of the algorithms are reported in Tables 4.11, 4.12, 4.13,

4.14, 4.15 and 4.16.

Table 4.11 – The PROPER algorithm: pathways with at least four conserved edges (δ= 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 8 0.455 0.421
dm-hs 31 12 0.611 0.387
hs-mm 152 128 0.788 0.842
sc-hs 32 22 0.486 0.688
Average 58.5 42.5 0.585 0.584

Table 4.12 – SPINAL I algorithm: pathways with at least four conserved edges (δ= 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 7 0.472 0.368
dm-hs 31 11 0.564 0.355
hs-mm 152 116 0.711 0.763
sc-hs 32 21 0.469 0.656
Average 58.5 38.75 0.554 0.536

Table 4.13 – SPINAL II algorithm: pathways with at least four conserved edges (δ= 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 1 0.301 0.053
dm-hs 31 1 0.081 0.032
hs-mm 152 30 0.261 0.197
sc-hs 32 4 0.247 0.125
Average 58.5 9 0.223 0.102

The pathways hsa05200 and mmu05200 are the pathways in the class cancer Homo sapiens

(human). The largest connected subgraphs of hsa05200 and mmu05200 pathways in the

intersection graph G0 from all the algorithms are shown in Figures 4.14, 4.26, 4.27, 4.28, 4.29

and 4.30. Next, we consider another pathway. The largest connected subgraphs of hsa04510

and mmu04510 pathways in the intersection graph G0 from all the algorithms are shown in

Figures 4.31, 4.32, 4.33, 4.34, 4.35 and 4.36. We observe that, again, PROPER returns alignments

with a larger portion of connected conserved subgraphs compared to other algorithms.
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Table 4.14 – PINALOG algorithm: pathways with at least four conserved edges (δ= 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 8 0.409 0.421
dm-hs 31 9 0.459 0.290
hs-mm 152 120 0.629 0.789
sc-hs 32 22 0.492 0.687
Average 58.5 39.75 0.497 0.547

Table 4.15 – L-GRAAL algorithm: pathways with at least four conserved edges (δ= 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 1 0.211 0.053
dm-hs 31 1 0.312 0.032
hs-mm 152 92 0.414 0.605
sc-hs 32 8 0.344 0.250
Average 58.5 25.5 0.320 0.235

Table 4.16 – IsoRank algorithm: pathways with at least four edges conserved (δ = 4) in the
intersection graph G0.

species #PWδ #FPWδ accπ,δ r ecal lπ

ce-hs 19 3 0.341 0.158
dm-hs 31 5 0.442 0.161
hs-mm 152 60 0.407 0.395
sc-hs 32 6 0.234 0.186
Average 58.5 18.5 0.356 0.225
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Figure 4.25 – PROPER: pathways hsa05200 and mmu05200. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 37 nodes and 42 edges.
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Figure 4.26 – PINALOG: pathways hsa05200 and mmu05200. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 28 nodes and 32 edges.
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Figure 4.27 – L-GRAAL: pathways hsa05200 and mmu05200. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 15 nodes and 16 edges.
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Figure 4.28 – SPINAL I: pathways hsa05200 and mmu05200. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 9 nodes and 14 edges.
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Figure 4.29 – SPINAL II: pathways hsa05200 and mmu05200. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 4 nodes and 3 edges.
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Figure 4.30 – IsoRank graph matching: pathways hsa05200 and mmu05200. Subgraph is
preserved in hs and mm. This connected subgraph of the pathway has 8 nodes and 12 edges.
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Figure 4.31 – PROPER: pathways hsa04510 and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 38 nodes and 45 edges.
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Figure 4.32 – PINALOG: pathways hsa04510 and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 30 nodes and 36 edges.
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Figure 4.33 – L-GRAAL: pathways hsa04510and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 15 nodes and 18 edges.
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Figure 4.34 – SPINAL I: pathways hsa04510and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 9 nodes and 14 edges.
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Figure 4.35 – SPINAL II: pathways hsa04510 and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 5 nodes and 5 edges.
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Figure 4.36 – IsoRank: pathways hsa04510 and mmu04510. Subgraph is preserved in hs and
mm. This connected subgraph of the pathway has 8 nodes and 12 edges.
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5 Global Multiple-Network Alignment

The advance of high-throughput methods for detecting protein interactions has made the PPI

networks of many organisms available to researchers. With the huge amounts of biological

network data and increasing number of known PPI networks, the problem of multiple-network

alignment (MNA) is gaining more attention in the systems-biology studies. We believe that a

good MNA algorithm leads us to a deeper understanding of biological networks (compared to

pairwise-network alignment methods), because they capture the knowledge related to several

species.

MNA methods produce alignments consisting of aligned clusters (or tuples) with nodes from

several networks. MNA algorithms are classified into two categories of one-to-one and many-

to-many algorithms. In the first category, each node from a network can be aligned to at most

one node from another network. In the many-to-many category, one or several nodes from a

network can be aligned with one or several nodes from another network.

Several MNA algorithms were proposed in past few years: NetworkBlast-M, a many-to-many

local MNA algorithm, begins the alignment process with a set of high-scoring sub-networks

(as seeds). It then expands them in a greedy fashion [94, 173]. Graemlin [62] is a local MNA

algorithm that finds alignments by successively performing alignments between pairs of

networks, by using information from their phylogenetic relationship. IsoRankN [119] is the

first global MNA algorithm that uses both pairwise sequence similarities and network topology,

to generate many-to-many alignments. SMETANA [163], another many-to-many global MNA

algorithm, tries to find aligned node-clusters by using a semi-Markov random-walk model.

This random-walk model is used for computing pairwise similarity scores. CSRW [87], a

modified version of SMETANA, uses a context-sensitive random-walk model. NetCoffee [80]

uses a triplet approach, similar to T-Coffee [144], to produce a one-to-one global alignment.

GEDEVO-M [82] is a heuristic one-to-one global MNA algorithm that uses only topological

information. To generate multiple alignments, GEDEVO-M minimizes a generalized graph edit

distance measure. NH [156] is a many-to-many global MNA heuristic algorithm that uses only

network structures. Alkan and Erten [12] designed a many-to-many global heuristic method

based on a backbone extraction and merge strategy (BEAMS). The BEAMS algorithm, given k

121



Chapter 5. Global Multiple-Network Alignment

networks, constructs a k-partite pairwise similarity graph. It then builds an alignment, in a

greedy manner, by finding a set of disjoint cliques over the k-partite graph. Gligorijević et al.

[66] introduced FUSE, another one-to-one global MNA algorithm. FUSE first applies a non-

negative matrix tri-factorization method to compute pairwise scores from protein-sequence

similarities and network structure. Then it uses an approximate k-partite matching algorithm

to produce the final alignment.

In this chapter, we introduce a new scalable and accurate one-to-one global multiple-network

alignment algorithm called MPROPER. This algorithm is an extension of the PROPER algorithm

(see Chapter 4). MPROPER has two main steps. In the first step (SeedGeneration ), to generate

an initial set of seed clusters (or tuples), it uses only protein sequence similarities. In the

second step (MultiplePercolation), to align remaining unmatched nodes, it uses network

structures and the seed tuples generated from the first step. We compare MPROPER with

several state-of-the-art algorithms. We show that MPROPER outperforms the other algorithms,

with respect to different evaluation criteria. Also, we provide experimental evidence for the

good performance of the SeedGeneration algorithm. Finally, we study the performance of

the MultiplePercolation algorithm, by using a stochastic graph-sampling model.

5.1 Problem Definition

The goal of a one-to-one global MNA algorithm is to find an alignment between proteins from

k different species (networks), where a protein from a species can be aligned to at most one

unique protein from another species, in a way such that (i) the clusters (or tuples) of aligned

proteins have similar biological functions, and (ii) the aligned networks are structurally similar,

e.g., they share many conserved interactions among different clusters. To be more precise, a

one-to-one global alignment π between k networks Gi = (Vi ,Ei ),1 ≤ i ≤ k, is the partition of

all (or most of) the nodes V =∪k
i=i Vi into clusters {T1,T2, · · · ,T|π|} of size at least two (i.e., they

should have nodes from at least two networks), where a cluster Ti has at most one node from

each network. Note that any two clusters Ti and T j are disjoint, i.e., Ti ∩T j =�.

In the global MNA problem, to align the proteins from k > 2 species, PPI-networks and protein

sequence similarities are used as inputs. Formally, we are given the PPI networks of k different

species: the networks are represented by G1(V1,E1),G2(V2,E2), · · · ,Gk (Vk ,Ek ). Also, the BLAST

sequence similarity of the couples of proteins in all the
(k

2

)
pairs of species is provided as

additional side information. Let Si , j denote the set of BLAST bit-score sequence similarity of

the couples in Vi ×Vj , i.e.,

Si , j = {([u, v],Bl astBi t (u, v)) |[u, v] ∈Vi ×Vj }.

In the next section, we introduce our proposed global MNA algorithm.
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5.2 The MPROPER Algorithm

In this section, we propose the MPROPER algorithm for aligning multiple PPI-networks. The

MPROPER algorithm has two main steps:

• In the first step, it uses only the sequence similarities to find a set of initial seed-tuples.

These seed tuples have nodes from at least two networks.

• In the second step, by using the network structure and the seed-tuples (generated from

the first step), MPROPER aligns the remaining unmatched nodes with a percolation

graph-matching (PGM) algorithm. By using structural evidence, to generate larger

tuples in the second step, it is possible to add new nodes to the initial seed-tuples.

5.2.1 First Step: SeedGeneration

We now explain how to generate the seed-tuples A= {T1,T2, · · · ,T|A|}, by using only sequence

similarities. We first define an �-consistent tuple as a natural candidate for seed set. Then, to

find these �-consistent tuples, we introduce a heuristic algorithm, called SeedGeneration.

A tuple T = [p1, p2, · · · , pd ] is �-consistent, if for every pi ∈ T there is at least one other protein

p j ∈ T , such that Bl astBi t (pi , p j ) ≥ �. In Section 5.5, we argue that it is reasonable to assume

that the BLAST bit-score similarities among real proteins are (pseudo) transitive. Also, we

show that proteins with high sequence-similarities, often share many experimentally verified

GO terms. Based on these two canonical observations, we argue that, often all the proteins of

an �-consistent tuple (with a large enough �) have some experimental GO terms in common,

i.e., they have common biological functions. This idea is supported by the two following

statements: (i) The pseudo transitivity property of the BLAST bit-scores guarantees that, in an

�-consistent tuple T , almost all the
(|T |

2

)
pairwise couples have high sequence-similarities; and

(ii) proteins with high sequence-similarities, often have similar biological functions. Therefore,

it is likely that all the proteins in an �-consistent tuple share many biological functions.

AssumeS is the set of all pairwise sequence-similarities, i.e., S = {S1,2, · · · ,S1,k ,S2,3, · · · ,Sk−1,k }.

Also, let S≥� denote the set of couples with BLAST bit-score similarity of at least �, i.e, S≥� =
{[u, v] ∈ S | Bl astBi t(u, v) ≥ �}. In SeedGeneration, we consider only those couples with

BLAST bit-score similarity of at least �. The SeedGeneration algorithm, by processing the

protein couples from the highest BLAST bit-score similarity to the lowest, fills in the seed-

tuples with proteins from several species in a sequential and iterative procedure. At a given

step of SeedGeneration, assume [u, v] is the next couple that we are going to process, where

u and v are from the i th and j th networks, respectively. To add this couple to the seed-tuples

A, we consider the following cases:

• Neither u nor v belongs to a tuple in A: we add both nodes to a new tuple, i.e, add

T = [u, v] to A.
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• Only one of u or v belongs to a tuple in A: assume, without loss of generality, u belongs

to a tuple Tu . If the tuple Tu does not have a protein from the network of the other node

in this couple (i.e., the j th network), then the node v is added to Tu . This step adds one

protein to one existing tuple.

• Both u and v , respectively, belong to tuples Tu and Tv in A: If Tu and Tv do not have

a node from, the j th and i th networks, respectively, then we merge the two tuples by

the MergeTuples algorithm. The goal of MergeTuples is to combine the two tuples in

order to generate a larger tuple that has nodes from more networks. In this merging

algorithm, it is possible to have another (small) tuple as a leftover.

Algorithm 6 describes the SeedGeneration algorithm. Also, MergeTuples is described in

Algorithm 7. For the notations used in these two algorithms, refer to Table 5.2. Furthermore,

Example 22 provides an example of the SeedGeneration algorithm.

Algorithm 6: The SeedGeneration algorithm

Input: Pairwise BLAST bit score similarities S between k species and �

Output: The seed set A of tuples

1 S≥� ← All the couples from the set S with BLAST bit-score similarity at least �;
2 for for all pairs [u, v] in S from the most similar to the lowest do
3 Assume u ∈Vi and v ∈Vj ;
4 if TA(u) =−1 and TA(v) =−1 then
5 Add T = [u, v] to A;

6 else if TA(u) �= −1 and TA(v) =−1 then
7 if Vj (TA(u)) =−1 then
8 add v to the tuple TA(u);

9 else if TA(u) =−1 and TA(v) �= −1 then
10 if Vi (TA(v)) =−1 then
11 add u to the tuple TA(v);

12 else
13 if Vj (TA(u)) =−1 and Vi (TA(v)) =−1 then
14 MergeTuples(TA(u),TA(v));

15 return A;

Example 22. Table 5.1 provides an example of the SeedGeneration algorithm. This algorithm

uses the set of pairwise sequence similarities; this set is sorted from the highest BLAST bit-

score to � (an input parameter to the algorithm). In this example, the couple [hs1, mm8] (i.e.,

the couple of proteins with the highest sequence similarity) generates the first tuple in the

seed set. At the third step, one of the nodes from the third couple, i.e., hs1, is already in the

tuple T1 =[hs1, mm8]. Because T1 does not have any node from the network of ce, the node

ce4 is added to T1. At the eight step, as the two nodes from [ce6, hs9] belong to two different

tuples, their corresponding tuples are merged.
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Algorithm 7: The MergeTuples algorithm

Input: Two tuples T1 and T2

Output: The modified tuples T1 and T2

1 Assume T1 is the tuple that contains the couple with the highest sequence similarity;
2 for i = 1 to k do
3 if Vi (T1) =−1 and Vi (T2) �= −1 then
4 move node Vi (T2) from T2 to T1;

5 if |T2| = 1 then
6 Delete the tuple T2 ;

Table 5.1 – An example of the SeedGeneration algorithm. Inputs to this algorithm are the set
of pairwise sequence-similarities and a fixed threshold �. The sequence similarities are sorted
from the highest BLAST bit-score to �. The seed-tuples A are generated from the pairwise
similarities.

# Couples BLAST Seed-tuples A
1 [hs1, mm8] 1308 [hs1, mm8]
2 [ce6, sc9] 909 [hs1, mm8] and [ce6, sc9]
3 [ce4, hs1] 813 [ce4, hs1, mm8] and [ce6, sc9]
4 [dm15, mm8] 797 [ce4, dm15, hs1, mm8] and [ce6, sc9]
5 [ce654, mm8] 603 [ce4, dm15, hs1, mm8] and [ce6, sc9]
6 [dm15, sc12] 414 [ce4, dm15, hs1, mm8, sc12] and [ce6, sc9]
7 [dm7, hs9] 334 [ce4, dm15, hs1, mm8, sc12], [ce6, sc9] and [dm7, hs9]
8 [ce6, hs9] 282 [ce4, dm15, hs1, mm8, sc12] and [ce6, dm7, hs9, sc9]
9 [dm7, sc63] 101 [ce4, dm15, hs1, mm8, sc12] and [ce6, dm7, hs9, sc9]

5.2.2 Second Step: MultiplePercolation

In the second step of MPROPER, a new PGM algorithm, called MultiplePercolation, uses

the network structures and the generated seed-tuples from the first step, to align the remaining

unmatched nodes. This PGM algorithm uses structural similarities of couples as the only

evidence for matching new nodes. The MultiplePercolation algorithm adds new tuples in

a greedy way, in order to maximize the number of conserved interactions among networks. In

MultiplePercolation, network structure provides evidence for similarities of unmatched

node-couples, and a couple with enough structural similarity is matched. New node-tuples are

generated by merging matched couples. Also, if there is enough structural similarity between

two nodes from different tuples, the two tuples are merged. In the MultiplePercolation

algorithm, we look for tuples that contain nodes from more networks, i.e., a tuple that has

nodes from more networks is more valuable. Next, we explain the MultiplePercolation

algorithm in detail.

Assume π is the set of aligned tuples at a given time step of the MultiplePercolation algo-
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rithm. Note that we have initially π=A, where A is the output of SeedGeneration. Let πi , j

denote the set of pairwise alignments between nodes from the i th and j th networks: A couple

[u, v], where u ∈Vi and v ∈Vj , belongs to the set πi , j , if and only if there is a tuple T ∈π such

that both u and v are in that tuple, i.e., Tπ(u) = Tπ(v) �= −1. The set πi , j is defined as

πi , j = {[u, v]|u ∈Vi and v ∈Vj s.t. there exists T ∈π where u, v ∈ T }.

The score of a couple of nodes is the number of their common neighbours in the set of

previously aligned tuples. Formally, we define the score of a couple [u, v],u ∈Vi and v ∈Vj as

scor e([u, v]) = |{[pi , p j ] ∈πi , j s.t. (u, pi ) ∈ Ei and (v, p j ) ∈ E j }|. (5.1)

The score of a couple is equal to the number of interactions that remain conserved if this

couple is added as a new tuple to the set of currently aligned tuples. Alternatively, it is possible

to interpret the score of a couple as follows: All the couples [pi , p j ] ∈ πi , j provide marks for

their neighboring couples, i.e., the couples in Ni (pi )×N j (p j ) receive one mark from [pi , p j ].

The score of a couple is the number of marks it has received from the previously aligned

couples (note that aligned couples are subsets of aligned tuples).

In the MultiplePercolation algorithm, the initial seed-tuples provide structural evidence

for the other unmatched couples. More precisely, for a tuple T = [p1, p2, · · · , pd ], all the
(d

2

)
possible couples [pi , p j ], which are subset of the tuple T , spread marks to their neighboring

couples in the networks V (pi ) and V (p j ). After this step, the couple [u, v] with the highest

number of marks (but at least r ) is the next candidate to get matched. The alignment process,

similar to SeedGeneration, is as follows:

• If Tπ(u) =−1 and Tπ(u) =−1, then we add a new tuple T = [u, v] to the set of aligned

tuples π.

• If exactly one of the two nodes u or v belongs to a tuple T ∈π, by adding the other node

to T (if it is possible1), we generate a tuple with nodes from one more network.

• If both u and v belong to different tuples of π, by merging these two tuples (again, if

possible), we make a larger tuple.

After the alignment process, [u, v] spread out marks to the other couples, because it is a newly

matched couple. Then, recursively new couples are matched and added to the set of aligned

tuples. The alignment process continues to the point that there is no couple with a score of at

least r . Algorithm 8 describes MultiplePercolation. For the notations refer to Table 5.2. An

example of the MultiplePercolation algorithm is provided in Example 23.

Example 23. Figure 5.1 provides an example of the MultiplePercolation algorithm over

graphs G1,2,3. Dark-green nodes are the initial seed-tuples. The tuple [x1, x2, x3] is an example

1Refer to Algorithm 8.
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Algorithm 8: The MultiplePercolation algorithm

Input: G1(V1,E1),G2(V2,E2), · · · ,Gk (Vk ,Ek ) seed tuples A and the threshold r
Output: The set of aligned tuples π

1 π←A;
2 while there exists a couple with score at least r do
3 [u, v] ← the couple with the highest score, where u ∈Vi and v ∈Vj ;
4 if Tπ(u) =−1 and Tπ(v) =−1 then
5 Add T = [u, v] to π;

6 else if Tπ(u) �= −1 and Tπ(v) =−1 then
7 if Vj (Tπ(u)) =−1 then
8 add v to Tπ(u);

9 else if Tπ(u) =−1 and Tπ(v) �= −1 then
10 if Vi (Tπ(v)) =−1 then
11 add u to Tπ(v)th tuple;

12 else
13 if V (Tπ(u))∩V (Tπ(p j )) =� then
14 Merge the two tuples Tπ(u) and Tπ(v) into one tuple;

15 return π;

of a seed tuple that contains nodes from all the three networks. [y1, y2] is a seed couple between

networks G1 and G2. All the pairwise couples, which are subsets of the initial seed-tuples,

provide structural evidence for the other nodes. In this example, after that initial seed-tuples

spread out marks to other couples, the couples [w1, w2] and [u2,u3] have the highest score

(their score is three). Hence we align them first. Among the couples with score two, [w1,u3] is

not a valid alignment; because the nodes w1 and u3 are matched to different nodes in G2 (also,

this true for w2 and u2). The set of aligned tuples is {[u1,u2,u3], [v1, v2, v3], [w1, w2], [z2, z3]}.

Here, there is not enough information to match v1 and v3 directly, but as they both are matched

to v2, we can align them through transitivity of the alignments. Furthermore, if we continue

the percolation process, it is possible to match the couples [i1, i2] and [i1, i3]; it results in the

tuple [i1, i2, i3]. Note that, by aligning all the networks at the same time, we have access to

more structural information. For example, although the pairwise alignment of G1 and G3 does

not provide enough evidence to align [v1, v3], it is possible to align this couple by using the

side information we can get through G2.

5.3 Performance Measures

Comparing global MNA algorithms is a challenging task for several reasons. Firstly, it is not

possible to directly evaluate the performance of algorithms, because the true node-mappings

for real biological-networks is not known. Secondly, algorithms can return tuples of differ-
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Figure 5.1 – An example of the MultiplePercolation algorithm. The alignment is performed
over graphs G1, G2 and G3. Dark-green nodes are the initial seed-tuples. Light-green nodes
are tuples that are matched in the PGM process.

ent sizes. Although the fundamental goal of a global MNA algorithm is to find tuples with

nodes from many different networks, some algorithms tend to return tuples of smaller sizes.

Therefore, tuples of different sizes make the comparison more difficult. For these reasons, we

use several measures from the literature. In addition, we introduce a new measure, using the

information content of aligned tuples.

We first compare global MNA algorithms based on their performance in generating tuples that

cover nodes from more networks. The best tuples are those that contain nodes from all the k

networks, whereas tuples with nodes from only two networks are the worst. The d-coverage of

clusters denotes the number of clusters with nodes from exactly d networks [66]. Note that,

for many-to-many alignment algorithms, it is possible to have more than d nodes in a cluster

with nodes from d networks. Therefore, for the number of proteins in clusters with different

d-coverages, we also consider the total number of nodes in those clusters [66].

A major group of measures evaluate the performance of algorithms, using the functional

similarity of aligned proteins. A cluster is annotated, if it has at least two proteins that are

annotated by at least one GO term. An annotated cluster is consistent, if all of the annotated

proteins in that cluster share at least one GO term. We define #AC as the total number of

annotated clusters. Furthermore, #ACd represent the number of annotated clusters with a

coverage d . For the number of consistent clusters, we define #CC and #CCd similarly. Also,

the number of proteins, in a consistent cluster with a coverage d , is shown by #C Pd . The

specificity of an alignment is defined as the ratio of the number of consistent clusters to the
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5.3. Performance Measures

Table 5.2 – Table of notations

Gi (Vi ,Ei ) A network with vertex set Vi and edge set Ei .
Ni (u) The set of neighbors of node u in Gi .
Bl astBi t (u, v) BLAST bit-score similarity of two proteins u and v
[u, v] A couple of proteins u and v .
T A cluster or tuple.
A Initial seed-tuples.
π The final alignment.
|T | Number of nodes in T .
V (T ) The set of networks such that have a node in the tuple T .
K (u) The K (u)th network such that u ∈VK (u).
Vi (T ) Returns the node u in T such that u ∈Vi . If there is not such tuple, we

define Vi (T ) =−1
S The set of all pairwise BLAST bit-score similarities.
S≥� The set of all pairwise BLAST bit-score similarities that are at least �.
Tπ(u) Returns the tuple T ∈ π such that u ∈ T . If there is no such tuple, we

define Tπ(u) =−1.
ETi ,T j The set of all the interactions between nodes from the two tuples Ti

and T j , i.e., ETi ,T j = {e = (u, v)|u ∈ Ti , v ∈ T j }.
V (ETi ,T j ) The set of networks such that have an edge in ETi ,T j .
C (π) The set of consistent clusters in an alignment π.

number of annotated clusters:

Spec. = #CC

#AC
and Spec.d = #CCd

#ACd
. (5.2)

Mean entropy (ME) and mean normalized entropy (MNE) are two other measures that cal-

culate the consistency of aligned proteins by using GO terms. The entropy (E) of a tuple

T = [p1, p2, · · · , pd ], with the set of GO terms GO(T ) = {GO1,GO2, · · · ,GOm}, is defined as

E(T ) =−
m∑

i=1
gi log pi , (5.3)

where gi is the fraction of proteins in T that are annotated with the GO term GOi . ME is

defined as the average of E(T ) over all the annotated clusters. Normalized entropy (NE) is

defined as

N E(T ) = 1

logm
E(T ), (5.4)

where m is the number of different GO terms in T . Similarly, MNE is defined as the average of

N E(T ) over all the annotated clusters.

To avoid the shallow annotation problem, Alkan and Erten [12] and Gligorijević et al. [66]
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Chapter 5. Global Multiple-Network Alignment

suggest to restrict the protein annotations to the fifth level of the GO directed acyclic graph

(DAG): (i) by ignoring the higher level GO annotations, and (ii) by replacing the deeper-level GO

annotations with their ancestors at the fifth level. For the specificity and entropy evaluations,

we use the same restriction method in our comparisons.

The way we deal with the GO terms can greatly affect the comparison results. Indeed, there

are serious drawbacks with the restriction of the GO annotations to a specific level. Firstly, the

depth of a GO term is not an indicator of its specificity. The GO terms that are at the same

level do not have the same semantic precision, and a GO term at a higher level might be more

specific than a term at a lower level [158]. Also, it is known that the depth of a GO term reflects

mostly the vagaries of biological knowledge, rather than anything intrinsic about the terms

[124]. Secondly, there is no explanation (e.g., in [12, 66]) about why we should restrict the GO

terms to the fifth level. Also, the notion of consistency for a cluster (i.e., sharing at least one GO

term) is very general and does not say anything about how specific are the shared GO terms.

Furthermore, from our experimental studies, we observe that two random proteins share at

least one experimentally verified GO term with probability 0.21, whereas five proteins share at

least one GO term with a very low probability of 0.002.2 To overcome these limitations, we

define the semantic similarity (SSp ) measure for a cluster of proteins. This is the generalization

of a measure that is used for semantic similarity of two proteins [158, 168]. For an annotated

tuple T , we define SSp as follows.

Assume |annot(ti )| is the number of proteins that are annotated to the GO term ti . The

frequency of ti is defined as

f r eq(ti ) = |annot (ti )|+ ∑
s∈successor s(ti )

|annot (s)|, (5.5)

where successor s(ti ) is the successors of the term ti in its corresponding gene-annotation

DAG. The relative frequency p(ti ) for a GO term ti is defined as

p(ti ) = f r eq(ti )

f r eq(r oot )
. (5.6)

The information content (IC) [158] for a term ti is defined as

IC (ti ) =− log(p(ti )). (5.7)

The semantic similarity between the d terms {t1, t2, · · · , td } is defined as

SS(t1, t2, · · · , td ) = IC (LC A(t1, t2, · · · , td )), (5.8)

where LC A(t1, t2, · · · , td ) is the lowest common ancestor of terms ti in DAG. For proteins

2For more information refer to Appendix 5.A.
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p1, p2, · · · , pd , we define semantic similarity SSp (p1, p2, · · · , pd ) as

SSp (p1, p2, · · · , pd ) = max
t1∈GO(p2),t2∈GO(p2),··· ,td∈GO(pd )

IC (LC A(t1, t2, · · · , td )), (5.9)

where GO(pi ) are the GO annotations of pi . The sum of SSp values for all clusters in an

alignment π is shown by SSp (π). Let SSp (π) denote the average of SSp values, i.e., SSp (π) =
SSp (π)
|π| . Note that, algorithms with higher values of SSp (π) and SSp (π), result in alignments

with higher qualities, because these alignments contain clusters with more specific functional

similarity among their proteins.

The second group of measures evaluate the performance of global MNA algorithms based

on the structural similarity of aligned networks. We define edge correctness (EC) as a gen-

eralization of the introduced measures in [112, 149]. EC is a measure of edge conserva-

tion between consistent clusters under a multiple alignment π. For two tuples Ti and T j ,

let ETi ,T j denote the set of all the interactions between nodes from these two tuples, i.e.,

ETi ,T j = {e = (u, v)|u ∈ Ti , v ∈ T j }. The set of networks such that have an edge in ETi ,T j is

defined by V (ETi ,T j ). Theoretically, we can have a conserved interaction between two clusters

Ti and T j , if they have nodes from at least two similar networks, i.e., |V (Ti )∩V (T j )| ≥ 2. The

interaction between two clusters Ti and T j is conserved, if there are at least two edges from

two different networks between these clusters, i.e., |V (ETi ,T j )| ≥ 2. The EC measure is defined

EC (π) = Δ(π)

E(π)
, (5.10)

where E(π) is the total number edges between all the consistent clusters Ti and T j , such

that |V (Ti )∩V (T j )| ≥ 2. Also, Δ(π) is the total number of edges between those clusters with

|V (ETi ,T j )| ≥ 2.

Cluster interaction quality (CIQ) measures the structural similarity as a function of the con-

served interactions between different tuples [12]. The conservation score cs(Ti ,T j ) is defined

as

cs(Ti ,T j ) =

⎧⎪⎨
⎪⎩

0 if |V (Ti )∩V (T j )| = 0 or |V (ETi ,T j )| = 1
|V (ETi ,T j )|

|V (Ti )∩V (T j )| otherwise,
(5.11)

where |V (Ti )∩V (T j )| and |V (ETi ,T j )| are the number of distinct networks with nodes in both

Ti , j and with edges in ETi ,T j , respectively. C IQ(π) is defined as follows:

C IQ(π) =
∑

∀Ti ,T j∈π |ETi ,T j |× cs(Ti ,T j )∑
∀Ti ,T j∈π |ETi ,T j |

. (5.12)

We can interpret CIQ as a generalization of S3 [165], a measure for evaluating the structural

similarity of two networks.
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5.4 Experimental Results

In this section, we compare MPROPER with several state-of-the-art global MNA algorithms

[59]: FUSE (F) [66], BEAMS (B) [12], SMETANA (S) [163] and CSRW (C) [87]. Also, we compare

our algorithm with IsoRankN (I) [119], which is one of the very first global MNA algorithms for

PPI networks.

Table 5.3 provides a brief description of the PPI networks for five major eukaryotic species

that are extracted from the IntAct database [1, 76]. The amino-acid sequences of proteins are

extracted in the FASTA format from UniProt database [4, 15]. The Blast bit-score similarities

[13] are calculated using these amino-acid sequences. We consider only experimentally

verified GO terms, in order to avoid biases induced by annotations from computational

methods (mainly from sequence similarities).3 More precisely, we consider the GO terms

with codes “EXP”, “IDA”, “IMP”, “IGI” and “IEP”, and we exclude the annotations derived from

computational methods and protein-protein interaction experiments.

Table 5.3 – PPI networks of five major eukaryotic species from IntAct molecular interaction
database [1, 76].

species Abbrev. #nodes #edges Avg. deg.

C. elegans ce 4950 11550 4.67
D. melanogaster dm 8532 26289 6.16
H. sapiens hs 19141 83312 8.71
M. musculus mm 10765 22345 4.15
S. cerevisiae sc 6283 76497 24.35

5.4.1 Comparisons

We first investigate the optimality of SeedGeneration in generating seed-tuples from se-

quence similarities. To have an upper-bound on the number of proteins in the set of seed-

tuples A, we look at the maximum bipartite graph matching between all pairwise species, i.e.,

all the proteins in all the possible
(k

2

)
matchings. The total number of nodes that are matched in

at least one of these bipartite matchings, provide an upper-bound for the number of matchable

nodes. Figure 5.2 compares SeedGeneration, the proposed upper-bound and MPROPER for

different values of �, and the other algorithms based on the total number of aligned proteins.

In Figures 5.3 and 5.4, we compare algorithms based on different d-coverages. We observe

that MPROPER finds the most number of clusters with 5-coverage among all the algorithms.

Furthermore, we observe that MPROPER has the best overall coverage (for clusters of size

five to two). For example, we also observe that, for � = 40, the SeedGeneration algorithm

aligns 28608 proteins (compared to 30820 proteins that we found as an upper-bound) in 1366,

1933, 2342 and 3510 clusters of size 5, 4, 3 and 2, respectively. The second step of MPROPER

3We obtained GO terms from http://www.ebi.ac.uk/GOA/downloads.

132



5.4. Experimental Results

(i.e., MultiplePercolation) extends the initial seed tuples to 40566 proteins aligned in 3076,

2719, 2502 and 3402 clusters of size 5, 4, 3 and 2, respectively.
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Figure 5.2 – Total number of aligned proteins. For MPROPER, we set r = 1. We observe that
MPROPER aligns the most number of proteins. Also, it is clear that the number of aligned
nodes, in the first step of MPROPER (i.e., SeedGeneration), is close to the values found by
the proposed upper-bound.
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Figure 5.3 – The coverage of alignments from different algorithms. The results are for clusters
with nodes from five, four, there and two networks. For MPROPER, we set r = 1 and � ∈
{40,80,100}. We observe that MPROPER finds the most number of clusters. Also, our proposed
algorithm finds the most number of clusters with nodes from all the five networks.
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Figure 5.4 – Number of proteins in clusters with different d-coverages. The results are for
clusters with nodes from five, four, there and two networks. For MPROPER, we set r = 1 and
� ∈ {40,80,100}.

An algorithm with a good d-coverage does not necessarily generate high-quality clusters (in

terms of functional similarity of proteins). For this reason, we look at the number of consistent

clusters. For example, although IsoRankN generates the maximum number of clusters with

proteins from two species (see Figure 5.3), only a small fraction of these clusters are consistent

(see Figure 5.5). Also, in Figure 5.5, we observe that MPROPER returns the largest number of

consistent clusters with proteins from five different species. Tables 5.4, 5.5, 5.6 and 5.7 provide

detailed comparisons for clusters with different coverages.

Table 5.4 compares algorithms over clusters with nodes from five networks. The second step

of MPROPER (i.e., MultiplePercolation) uses PPI networks to generate 3076 clusters out

of initial seed-tuples. We observe that MPROPER (for � = 40) finds an alignment with the

maximum d-coverage, #CC5, #C P5 and SSp (π). In addition, the first step of MPROPER (i.e.,

SeedGeneration) has the best performance on Spec.5, SSp (π) and MNE. This was expected,

because MultiplePercolation uses only network structure, a less reliable source of infor-

mation for functional similarity in comparison to sequence similarities, to align new nodes.

From this table, it is clear that MPROPER outperforms the other algorithms with respect to all

the measures.

In Figure 5.7, we compare algorithms based on the EC measure. We observe that MPROPER

(for values of � close to 150) and SMETANA find alignments with the highest EC score. In

Figure 5.8, to calculate EC, we consider only the edges between consistent clusters. We observe
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Figure 5.5 – Number of consistent clusters. The results are for clusters with nodes from five,
four, there and two networks. For MPROPER, we set r = 1 and � ∈ {40,80,100}. We observe that
SeedGeneration and MROPER find the most number of consistent clusters and consistent
cluster with nodes from all the five networks, respectively.

that MPROPER has the best performance among all the algorithms. This shows that MPROPER

finds alignments where (i) many of the aligned clusters are consistent and (ii) there are many

conserved interactions among these consistent clusters. CIQ is another measure, based on

structural similarity of aligned networks, for further evaluating the performance of algorithms.

In Figure 5.9, we observe that again MPROPER and SMETANA find alignments with the best

CIQ score.
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Figure 5.6 – Number of proteins in consistent clusters with different d-coverages. The results
are for clusters with nodes from five, four, there and two networks. For MPROPER, we set
r = 1 and � ∈ {40,80,100}. We observe that MROPER finds the most number of proteins in
consistent clusters and consistent cluster with nodes from all the five networks.
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Figure 5.7 – Comparison based on the EC measure for all clusters. The results for MPROPER
are presented for r = 1 and different values of �. We observe that MPROPER and SMETANA
find alignments with the highest EC score.
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Figure 5.8 – Comparison based on the EC measure for consistent clusters. The results for
MPROPER are presented for r = 1 and different values of �. We observe that MPROPER has
the best performance among all the algorithms.
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Figure 5.9 – Comparison based on the CIQ measure. The results for MPROPER are presented
for r = 1 and different values of �. We observe that MPROPER and SMETANA find alignments
with the highest CIQ score.

5.4.2 Computational Complexity

The computational complexity of the SeedGeneration algorithm is O
(|S≥�| log |S≥�|

)
; it in-

cludes (i) sorting all the sequence similarities from the highest to the lowest, and (ii) pro-

cessing them. The computational complexity of the MultiplePercolation algorithm is

O
(
k2 (|E1|+ |E2|)min(D1,D2)

)
, where D1,2 are the maximum degrees in the two networks. To
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have a scalable algorithm, for very large networks, we can use the MapReduce implementation

of MultiplePercolation.

5.5 Why MPROPER?

One simple solution to the global MNA problem is to first perform all the pairwise alignments

between different networks. Then to find the final multiple alignment by merging all these

pairwise alignments. The main drawback of this approach is that the collection of these

pairwise alignments might be inconsistent. For example, for nodes u1,2,3 ∈ V1,2,3, if u1 is

matched to u2 and u2 to u3, but u1 is matched to another node from G3, then it is not possible

to generate a consistent one-to-one global MNA from these pairwise alignments. In contrast

to the idea of merging different pairwise alignments, our approach has three main advantages:

• It aligns all the k networks at the same time. Therefore, it will always end up with a

consistent one-to-one global MNA.

• It uses the structural information from all networks simultaneously.

• The SeedGeneration algorithm gives more weight to the pairs of species that are evo-

lutionarily closer to each other. For example, as H. sapiens and M. musculus are very

close, (i) many couples from these two species are matched first, and (ii) there are more

couples of proteins with high-sequence similarities from these two species. Hence there

are more tuples that contain proteins from both H. sapiens and M. musculus.

In rest of this section, we provide experimental evidence and theoretical results that support

the good performance of the MPROPER algorithm.

5.5.1 Why SeedGeneration?

The first step of MROPER (SeedGeneration) is a heuristic algorithm that generates seed-

tuples. SeedGeneration is designed based on the following observations.

• First, we argue that proteins with high BLAST bit-score similarities share GO terms with

a high probability. To provide experimental evidence for our hypothesis, we look at

the biological similarity of protein couples versus their BLAST bit-score similarities.

For this reason, we define a gene-ontology consistency (GOC) measure (based on the

measure introduced in [139]) to evaluate the relationship between BLAST bit-scores and

the experimentally verified GO terms. This measure represents the percentage of pairs

of proteins with BLAST bit-score similarity of at least �, such that they share at least one

GO term. Formally, we define

g oc≥� =
|{[pi , p j ]|BL AST (pi , p j ) ≥ � and g o(pi )∩ g o(p j ) �= �}|

|{[pi , p j ]|BL AST (pi , p j ) ≥ �, g o(pi ) �= � and g o(p j ) �= �}| . (5.13)
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In this section, we consider only experimentally verified GO terms. Figure 5.10 shows

the g oc≥� measure for couples of proteins among five eukaryotic species, namely C.

elegans (ce), D. melanogaster (dm), H. sapiens (hs), M. musculus (mm) and S. cerevisiae

(sc). In this figure, the results are provided for cases, where we consider (i) all the exper-

imental GO terms, (ii) cellular component (CC) annotations, (iii) molecular function

(MF) annotations, and (iv) biological process (BP) annotations. For further experiments,

we look at the average of semantic similarity SSp (5.9) between couples of proteins with

BLAST bit-score similarity of at least �. Figure 5.11 shows the SSp for couples of proteins

with BLAST bit-score similarities of at least �. We observe that, for couples of proteins

with higher BLAST bit-score similarities, the average of SSp measure increases.
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Figure 5.10 – The g oc≥� measure for couples of proteins with BLAST bit-score similarities of at
least �.

• Second, we look at the transitivity of BLAST bit-score similarities for real proteins. In

general, the BLAST similarity is not a transitive measure, i.e., for proteins p1, p2 and p3

given that couples [p1, p2] and [p2, p3] are similar, we can not always conclude that the

two proteins p1 and p3 are similar. But real proteins cover a small portion of the space

of possible amino-acid sequences, and it might be safe to assume a (pseudo) transitivity

property for them.

Example 24. Assume, we have the three toy proteins p1, p2 and p3 with amino-acid

sequences [M M M M M M ], [M M M M M MV V V V V V ] and [V V V V V V ], respectively. In

this example, p2 is similar to both p1 and p3, where p1 is not similar to p3. Indeed, we
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Figure 5.11 – Average of SSp for couples of proteins with BLAST bit-score similarities of at
least �. We observe that, for couples of proteins with higher BLAST bit-score similarities, the
average of SSp measure increases.

have Bl astBi t (p1, p2) = 11.2,Bl astBi t (p2, p3) = 10.0 and Bl astBi t (p1, p3) = 0.

To empirically evaluate the transitivity of BLAST bit-scores, we define a new measure

for an estimation of the BLAST bit-score similarity of two proteins p1 and p3, when we

know that there is a protein p2, such that BLAST bit-score similarities between p2 and

both p1, p3 are at least �. Formally, we define α�,β as

α�,β = argmax
α

[
P[BL AST (i ,k) ≥α×� | BL AST (i , j ) ≥ �,BL AST ( j ,k) ≥ �] ≥β

]
.

A value of α�,β, which is close to one, is an indicator of a high level of transitivity (with a

probability of β) between the sequence similarities of protein couples. In Figure 5.12,

we study the transitivity of BLAST bit-scores for different levels of confidence β. For

example, in this figure, we observe that for two couples [p1, p2] and [p2, p3] with BLAST

bit-score similarities of at least 100, the similarity of the couple [p1, p3] is at least 91

with a probability of 0.80. In general, based on these experimental evidence, it seems

reasonable to assume that there is a pseudo transitive relationship between the sequence

similarities of real proteins.

The two main observations about (i) the relationship between sequence similarity and biologi-

cal functions of protein couples, and (ii) the transitivity of BLAST bit-scores help us to design
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Figure 5.12 – The transitivity of BLAST bit-score similarities for real proteins. The α�,β measure
is calculated for different values of � and β.

a heuristic algorithm for generating high-quality clusters (�-consistent tuples) from sequence

similarities.

5.5.2 Why MultiplePercolation?

The general class of PGM algorithms has been shown to be very powerful for global pairwise-

network alignment problems. For example, PROPER is a state-of-the-art algorithm that uses

PGM-based methods to align two networks (see Chapter 4). There are several works on the

theoretical and practical aspects of PGM algorithms [40, 100, 140, 202]. In this chapter, we

introduce a global MNA algorithm, as a new member of the PGM class. In this section, by

using a parsimonious k-graph sampling model (as a generalization of the model from [100]),

we prove that MultiplePercolation aligns all the nodes correctly, if initially enough number

of seed-tuples are provided. We first explain the model. Then we state the main theorem.

Finally, we present experimental evaluations of MultiplePercolation over random graphs

that are generated based on our k-graph sampling model.

A Multi-graph Sampling Model

Assume that all the k networks Gi (Vi ,Ei ) are evolved from an ancestor network G(V ,E ) through

node sampling (to model gene or protein deletion) and edge sampling (to model loss of
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protein-protein interactions) processes.

Definition 25 (The Mul ti (G ,t,s,k) sampling model). Assume we have t= [t1, t2, · · · , tk ] and

s= [s1, s2, · · · , sk ], 0 < ti , si ≤ 1. The network Gi (Vi ,Ei ) is sampled from G(V ,E ) in the following

way: First the nodes Vi are sampled from V independently with probability ti ; then the

edges Ei are sampled from those edges of graph G , whose both endpoints are sampled in

Vi , by independent edge sampling processes with probability si . We define ti , j =
√

ti t j and

si , j =�
si s j .

Definition 26 (A correctly matched tuple). A tuple T is a correctly matched tuple, if and only

if all the nodes in T are the same (say a node u), i.e., they are samples of a same node from the

ancestor network G .

Definition 27 (A completely correctly matched tuple). A correctly matched tuple T , which

contains different sample of a node u, is complete if and only if for all the vertex sets Vi ,1 ≤
i ≤ k, if u ∈Vi then Vi (T ) = u

Assume the k networks Gi (Vi ,Ei ) are sampled from a G(n, p) random graph with n nodes and

average degrees of np. Now we state two main theorems that guarantee the performance of

MultiplePercolation over the Mul ti (G(n.p),t,s,k) sampling model. We first define two

parameters bt ,s,r and at ,s,r :

bt ,s,r =
[

(r −1)!

nt 2(ps2)r

] 1
r−1

and at ,s,r = (1− 1

r
)bt ,s,r . (5.14)

Theorem 28. For r ≥ 2 and an arbitrarily small but fixed 1
6 > ε > 0, assume that n−1 
 p ≤

n− 5
6−ε. For an initial set of seed tuple A, if |Ai , j | > (1+ ε)ati , j ,si , j ,r for every 1 ≤ i , j ≤ k, i �= j ,

then with high probability the MultiplePercolation algorithm percolates and for the final

alignment π, we have |πi , j | = nt 2
i , j ±o(n), where almost all the tuples are completely correctly

matched tuples.

Theorem 29. For r ≥ 2 and an arbitrarily small but fixed 1
6 > ε > 0, assume that n−1 


p ≤ n− 5
6−ε. For an initial set of seed tuple A, if for every 1 ≤ i ≤ k there at least c set of

Ai , j , 1 ≤ j ≤ k and i �= j , such that |Ai , j | > (1+ ε)ati , j ,si , j ,r , then with high probability the

MultiplePercolation algorithm percolates and for the final alignment π, we have:

• Almost all the tuples T ∈π are correctly matched tuples.

• For a correctly matched tuple T , which contains the node u, if there are at least k − c +1

networks Gi (Vi ,E1) such that u ∈Vi , then T is a completely correctly matched tuple

Note that Theorem 28 is the special case of Theorem 29 for c = k−1. The proofs of Theorems 28

and 29 follow from generalization of the ideas that are used to prove Theorem 16 in Chapter 3.
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Experimental Results

To evaluate the performance of our algorithm by using synthetic networks, we consider k ∈
{3,4,5} randomly generated networks from the Mul ti (G ,t,s,k) model. In these experiments,

we assume that a priori a set of seed-tuples A (|A| = a), with nodes from all the k networks,

are given and the MultiplePercolation algorithm starts the alignment process from these

tuples. Figures 5.13, 5.14 and 5.15 show the simulation results for these experiments. We

use r = 2 for the MultiplePercolation algorithm. For each k ∈ {3,4,5}, the total number

of correctly aligned tuples is provided. We observe that when there are enough number of

tuples in the seed set, MultiplePercolation aligns correctly most of the nodes. We also see

the sharp phase-transitions predicted in Theorems 28 and 29. According to (5.14), we need

at ,s,r = 236 correct seed-tuples to find the complete alignments for the model parameters

of n = 105, p = 20/n, t = 0.9 and s = 0.9. We observe that the phase transitions take place

very close to at ,s,r = 236. For example, if k = 5, in expectation there are nt 5 = 59049 nodes

that are present in all the five networks. From Figures 5.13 (the black curve), it is clear that

MultiplePercolation aligns correctly almost all these nodes. Also, in expectation, there are(5
3

)
nt 3(1− t )2 = 7290 nodes that are present in exactly three networks. Again, from Figures 5.13

(the red curve), we observe that MultiplePercolation correctly aligns them .
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Figure 5.13 – Multiple network alignment for graphs sampled from Mul ti (G ,t,s,k) with pa-
rameters k = 5,n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MultiplePercolation.
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Figure 5.14 – Multiple network alignment for graphs sampled from Mul ti (G ,t,s,k) with pa-
rameters k = 4,n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MultiplePercolation.
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Figure 5.15 – Multiple network alignment for graphs sampled from Mul ti (G ,t,s,k) with pa-
rameters k = 3,n = 105, p = 20/n, t = 0.9 and s = 0.9. We set r = 2 for MultiplePercolation.
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5.6. Summary

5.6 Summary

In this chapter, we have introduced a new one-to-one global multiple-network alignment

algorithm, called MPROPER. The MPROPER algorithm has two main steps. In the first step

(SeedGeneration), it uses protein sequence-similarities to generate an initial seed-set of

tuples. In the second step (MultiplePercolation), MPROPER applies a percolation-based

graph-matching algorithm to align the remaining unmatched proteins, by using only the

structure of networks and the seed tuples from the first step. We have compared MPROPER

with several state-of-the-art methods. We observe that MPROPER outperforms the other

algorithms with respect to several measures. More specifically, MPROPER finds many consis-

tent clusters with high d-coverage (mainly for d = k). Also, it outputs alignments with high

structural similarity between networks, i.e., many interactions are conserved among aligned

clusters.

We have studied the transitivity of sequence similarities for real proteins and have found that

it is reasonable to assume a pseudo transitive relationship among them. We argue, based

on this pseudo transitivity property, that the SeedGeneration heuristic is able to find seed

tuples with high functional-similarities. In addition, we present a random-sampling model to

generate k correlated networks. By using this model, we prove that MultiplePercolation

aligns correctly (almost) all the nodes, if initially enough seed tuples are provided.
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Appendix

5.A GO Annotation: Statistics

In this appendix, we look at a few statistics regarding GO annotations. GO annotations

comprises three orthogonal taxonomies for a gene product: molecular-function, biological-

process and cellular-component. This information is captured in three different directed

acyclic graphs (DAGs). The roots (the most general annotations for each category) of these

DAGs are:

• GO:0003674 for molecular function annotations

• GO:0008150 for biological process annotations

• GO:0005575 for cellular component annotations

For information content of each GO term, we use the SWISS-PROT-Human proteins, and

counted the number of times each concept occurs. Information content is calculated based

on the following information:

• Number of GO terms in the dataset is 26831.

• Number of annotated proteins in the dataset is 38264085.

• Number of experimental GO terms in the dataset is 24017.

• Number of experimentally annotated proteins in the dataset is 102499.

Table 5.8 provides information related to different categories of GO annotations for the five

networks we used in our experiments.

Next we report the number of experimentally annotated proteins (at the cut-off level 5 of

DAGs) in each network:

• C. elegans: 1544 out of 4950 proteins (31.2 %).
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Table 5.8 – Statistics for experimental GO annotations.

GO type #GO #proteins Avg. #GO

All 20738 28896 49.47
Biological process 14876 20723 48.21
Molecular function 3938 21670 7.84
Cellular component 1924 21099 12.35

• D. melanogaster: 4653 out of 8532 proteins (54.5 %).

• H. sapiens: 10929 out of 19141 proteins (57.1 %).

• M. musculus: 7150 out of 10765 proteins (66.4 %).

• S. cerevisiae: 4819 out of 6283 proteins (76.7 %).

The probabilities of sharing at least one GO term (at the cut-off level 5) for clusters of size two

to five, when all the proteins of a cluster are annotated, are as follows:

• clusters of size 2: 0.215

• clusters of size 3: 0.042

• clusters of size 4: 0.009

• clusters of size 5: 0.002

Also, the probabilities of sharing at least one GO term (at the cut-off level 5) for clusters of size

two to five, when at least two proteins from each cluster are annotated, are as follows:

• clusters of size 2: 0.215

• clusters of size 3: 0.167

• clusters of size 4: 0.120

• clusters of size 5: 0.081

In Figure 5.16, the total number of annotated proteins, at different cut-off levels, are shown.

Also, the number of GO terms and the average number of GO terms for each annotated protein,

at different cut-off levels, are shown in Figures 5.17 and 5.18, receptively.
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Figure 5.16 – Number of annotated proteins for different cut-off levels
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Figure 5.17 – Number of different GO terms for different cut-off levels
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Figure 5.18 – Average number of GO terms for each annotated protein for different cut-off
levels
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6 IsoRank Node Similarities

As we discussed in the previous chapters, the alignment of protein-protein interaction (PPI)

networks has many applications, such as the detection of conserved biological network motifs,

the prediction of protein interactions, and the reconstruction of phylogenetic trees [57, 59, 111].

IsoRank is one of the first global network-alignment algorithms [119, 175, 176], where the

goal is to match all (or most) of the nodes of two PPI networks. The IsoRank algorithm

first computes a pairwise node-similarity metric; it then, based on this metric, generates an

alignment between the two node sets. The metric is a convex combination of a structural-

similarity score (with weight α) and an extraneous amino-acid sequence-similarity score for

two proteins (with weight 1−α).

In this chapter1, we make two contributions. First, we show that when IsoRank similarity

depends only on network structure (α= 1), the similarity of two nodes is only a function of

their degrees. In other words, IsoRank similarity is invariant to any network rewiring that

does not affect the node degrees. This result suggests a reason for the poor performance of

IsoRank in structure-only (α= 1) alignment. Second, using ideas from [14, 71], we develop

an approximation algorithm that outperforms IsoRank (including recent versions with better

scaling, e.g., [24]) by several orders of magnitude in time and memory complexity, despite only

a negligible loss in precision.

6.1 Problem Definition

We first define the IsoRank algorithm as given in [176]. Assume we are given two networks

G1(V1,E1) and G2(V2,E2) with |Vi | = ni and |Ei | = mi . Let Ni ,u represent the neighbours of

node u in graph i and di ,u = |Ni ,u | is its degree. Also, assume b is the doubly indexed vector

of BLAST sequence-similarities of proteins, i.e., b[u, v] is the sequence similarity between

proteins u ∈V1 and v ∈V2. The vector e= b
|b|1 is the normalized vector of sequence similarity

scores. Also, P is a n1n2 ×n1n2 square matrix, where P [u1,u2][v1, v2] refers to the entry at

1The material of this chapter is based on [98].
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row (u1,u2) and column (v1, v2).2 The elements of P are defined as follows:

P [u1,u2][v1, v2] =
⎧⎨
⎩

1
d1,v1 d2,v2

, if (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

0, otherwise

Problem 1 (IsoRank similarity problem [176]). Find the vector r from

r =αPr+ (1−α)e, (6.1)

for 0 ≤α≤ 1. If we assume |r|1 = 1 then the problem is equivalent to finding r from

r = (αP + (1−α)e1T )r.

The first step of the IsoRank algorithm is to compute r, where r[u, v] corresponds to the

similarity between nodes u ∈ G1 and v ∈ G2. The value of r[u, v] can be interpreted as a

likelihood such that the node u aligns with the node v based on structural and sequence

similarities. The second step is to construct an alignment based on the similarity vector

r. The original IsoRank [175, 176] proposes two approaches for alignment: (i) solving the

maximum-weight bipartite graph matching, where edge weights are elements of r; and (ii)

greedily aligning the most similar nodes first and removing them, then matching the most

similar among the remaining and so on. [175, 176]. The greedy method is much faster and has

shown slightly better alignment quality in many cases [175].

6.2 Structural IsoRank Depends Only on Degrees

In this section, we show that structure-only IsoRank (α= 1) depends only on node degrees and

does not use any other structural information from the two graphs G1,2. This is a surprisingly

weak dependence on the network structure, in the sense that any rewiring that conserves node

degrees does not affect the alignment produced by IsoRank.

We first define the tensor product (Kronecker product) of two graphs.

Definition 30 (Tensor product of two graphs [74]). The tensor product G1 ×G2 of two graphs

G1(V1,E1) and G2(V2,E2) is the graph G(V ,E) defined as follows:

• V =V1 ×V2 is the Cartesian product of the two sets V1,2.

• There is an edge between (u1,u2) and (v1, v2) ∈V (i.e., ((u1,u2), (v1, v2)) ∈ E ) if and only

if (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

Lemma 31. The IsoRank-similarity problem is equivalent to the PageRank problem [113] over

the graph G =G1 ×G2 with the teleportation constant α and the preference vector e.

2Both the rows and columns are doubly indexed.
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Proof. Call A the adjacency matrix of graph G . Based on the definition of tensor product

of two graphs, it is easy to show that the degree of node (v1, v2) ∈ V is d1,v1 d2,v2 . Then the

PageRank problem over graph G with preference vector e is to find r′ such that

r′ =αD−1Ar′ + (1−α)e, (6.2)

where D is the diagonal matrix of weighted degrees. Again, it is straightforward to see that

P =D−1A. From these two facts, we conclude that r = r′.

Lemma 32. For the case 0 <α< 1 we have

r = (1−α)(I −αP )−1e.

Proof. The equation is simply derived from (6.1). We need only show that I −αP is non-

singular. To prove this, note that I −αP is a strictly diagonally dominant matrix. From

the Levy-Desplanques theorem [79], we know that a strictly diagonally dominant matrix is

non-singular.

Next, we explain how to compute r efficiently for three different cases (i) α= 0 (ii) α= 1 and

(iii) 0 <α< 1.

For the case α= 0, the trivial answer is r = e. r

Lemma 33. For the IsoRank-similarity problem with α= 1, we have

r =
[

d1,1d2,1

m
, · · · ,

d1,ud2,v

m
, · · · ,

d1,n1 d2,n2

m

]
(6.3)

where m =∑i∈V1

∑
j∈V2

d1,i d2, j .

Proof. In this case, the IsoRank-similarity problem is equivalent to the PageRank problem

over the undirected graph G with e= 0. It is easy to show that the vector r is the steady-state

probability distribution of a random walk over G . It is a well-known result that this probability

distribution is proportional to the degree of each node [125]. The lemma follows from the fact

that the degree of a node (v1, v2) ∈V is d1,v1 d2,v2 and the elements of r should sum to one.

From Lemma 33, we conclude that when IsoRank uses only the structural properties of the two

input graphs G1,2 (i.e., α= 1), the similarity of two nodes u ∈G1 and v ∈G2 is only a function

of their degrees d1,u and d2,v . This means that, in this case, IsoRank matches nodes only based

on the product of their degrees. In particular, the matching generated by the greedy approach

is as follows: (i) The node with highest degree in G1 is matched to the highest degree node

in G2; then (ii) the unmatched nodes with the second highest degrees in the two graphs are

matched, and so on.
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Example 34. We illustrate this concept by using an example taken from [176], see Figure

6.1. The equations are for the case where α= 1. The goal of the IsoRank-similarity problem

is to find the values of ri j . It is easy to see that the product of the degrees of the nodes

(as stated by Lemma 33) is the non-trivial answer for this set of equations, e.g., if we have

rbb′ = 2×2 = 4,rac ′ = 3,rca′ = 3,raa′ = 1 and rcc ′ = 9, then

rbb′ = 1

3
rac ′ + 1

3
rca′ +raa′ + 1

9
rcc ′ .

a

b

c

d e

c′

d′

b′

a′

e′

r

a′ b′ c′ d′ e′

a 0.0312 0.0937

b 0.1250 0.0625 0.0625

c 0.0937 0.2812

d 0.0625 0.0312 0.0312

e 0.0625 0.0312 0.0312

raa′ = 1
4rbb′ rbb′ =

1
3rac′ +

1
3rca′ + raa′ + 1

9rcc′ rdd′ = 1
9rcc′

rcc′ =
1
4rbb′ +

1
2rbe′ +

1
2rbd′ + 1

2reb′ +
1
2rdb′ + ree′ + red′ + rde′ + rdd′

Figure 6.1 – A small example from [176] of the IsoRank similarity problem for the case α= 1.

We performed experiments to confirm the invariance of IsoRank to degree-conserving rewiring

in the case α= 1. We generated two correlated graphs G1,2 by using the random bigraph model

from [99, 100], and compute the IsoRank-similarity vector with α= 1. We randomly rewire

some edges from both G1,2 such that node degrees are preserved (using the method from

[130]), and then align the two rewired graphs using the IsoRank implementation of the GraphM

package [72].3 This experiment confirmed Lemma 33. In conclusion, we observe that output

of IsoRank with α= 1 is only a function of node degrees and is otherwise independent of graph

structure.

Corollary 35. For n = max(|V1|, |V2|) and α ∈ {0,1}, we can compute the IsoRank vector in n2

steps. Also, we can compute the similarity between any two nodes in O(1).

Note that in (6.3) the normalizing constant m =∑i∈V1

∑
j∈V2

d1,i d2, j =∑i∈V1
d1,i

∑
j∈V2

d2, j =
4|E1||E2| can be computed in O(1), assuming the total sizes of the edge sets are available.

Corollary 36. For n = max(|V1|, |V2|) and α= 1, we can find the output of greedy IsoRank in

O
(
n logn

)
steps.

3To the best of our knowledge, this package is currently the most faithful implementation of the IsoRank
algorithm, which is why we used it for this experiment.
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Corollary 36 is because we can separately order the nodes in each of the graphs G1,2 based on

node degrees, then we can match the two lists.

6.3 Fast Approximate IsoRank

For the case 0 <α< 1, we can use the results of [14, 71] to approximate node-pair similarities

efficiently. From the result of Lemma 31, we know that the IsoRank-similarity problem is

equivalent to the PageRank problem over an undirected graph. Graham and Zhao [71] de-

signed an approximate algorithm for solving the PageRank problem over undirected graphs

with tight error bounds. Their algorithm is an improved version of the algorithm from [14].

Assume e[u, v] is the normalized sequence-similarity between two nodes u ∈ G1 and v ∈
G2. The SharpApproximateIsoRank algorithms returns vector r̃ as the approximation of r,

where r̃[u, v] is the (approximate) total similarity between u and v . Algorithm 9 describes

SharpApproximateIsoRank.4

Algorithm 9: SharpApproximateIsoRank(e,α,ε)

1 β← 1−α
α ,ε′ ← 1, ẽ← e and r̃← 0 ;

2 while ε′ > ε do
3 ε′ ← ε′/2;
4 r̃′, ẽ′ ← ApproximateIsoRank(ẽ,β,ε′) ;
5 r̃← r̃+ r̃′ and ẽ← ẽ′ ;

Algorithm 10: ApproximateIsoRank(e,β,ε)

1 r̃← 0 and ẽ← e ;
2 while there exists at least a pair (u, v) ∈V such that ẽ[u, v] ≥ εd1,ud2,v do
3 pick any pair (u, v) ∈V such that ẽ[u, v] ≥ εd1,ud2,v ;
4 r̃, ẽ← Push((u, v), r̃, ẽ);

5 return r̃ and ẽ;

Algorithm 11: Push
(
(u, v), r̃, ẽ,β

)
1 r̃′ ← r̃ and ẽ′ ← ẽ ;

2 r̃′[u, v] ← r̃[u, v]+ β
2+β ẽ[u, v] ;

3 ẽ′[u, v] ← 1
2+β ẽ[u, v] ;

4 for each pair (u′, v ′) such that (u′,u) ∈ E1 and (v ′, v) ∈ E2 do
5 ẽ′[u′, v ′] ← ẽ[u′, v ′]+ ẽ[u,v]

(2+β)d1,u d2,v
;

6 return r̃′ and ẽ′;

Lemma 37. For the number of edges m in the product graph G, we have m ≤ min(2|E1|D2,2|E2|D1),

where D1,2 are the maximum degrees in the two networks.

4The same as SharpApproximatePR from [14].
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Proof. From m =∑i∈V1

∑
j∈V2

d1,i d2, j we conclude that m ≤∑i∈V1
d1,i D2 ≤ 2|E1|D2 and m ≤

2|E2|D1.

Theorem 38. The SharpApproximateIsoRank algorithm reruns the two vectors r̃ and ẽ such

that

r̃ =αP r̃+ (1−α)(e− ẽ),

where | ẽ(u,v)
d1,u d2,v

| ≤ ε for all pairs (u, v) ∈V . The running time of the algorithm is

O

(
(1+α)min(|E1|D2, |E2|D1) log(1/ε)

1−α

)
.

Proof. This theorem is the direct result of Theorem 2 from [71] and Lemmas 31 and 37.

Corollary 39. For n = max(|V1|, |V2|) and given constants c > 0,0 <α< 1, we can approximate

the IsoRank vector r in O(n3 log(n)) steps with ε=Ω(n−c ).

Note that the time complexity of the original IsoRank algorithm for computing the approximate

IsoRank vector is O(n4). Corollary 39 gives the worst case performance. For many real (sparse)

biological networks, time complexity is much smaller.

6.4 Simulation Result

We compared the performance of the original IsoRank algorithm5 with our implementation

of the SharpApproximateIsoRank algorithm on aligning PPI networks of the five major eu-

karyotic species. Table 6.1 provides a brief description of the PPI networks that are extracted

from the IntAct database [1, 76]. The amino-acid sequences of proteins for each species

are collected in the FASTA format from the UniProt database [4, 15]. The BLAST bit-score

similarities [13] are calculated using these amino acid sequences. The IsoRank algorithm6

took 13 hours and 31 minutes to perform all ten pairwise alignments between species from

Table 6.1.7 The SharpApproximateIsoRank algorithm performed these ten alignments in 53

minutes for ε= 10−12, 59 minutes for ε= 10−13, and one hour and 11 minutes for ε= 10−14. For

larger networks, the relative advantage of SharpApproximateIsoRank would be even more

pronounced.

5The official IsoRank implementation from http://groups.csail.mit.edu/cb/mna/isobase/
6Run with parameters –K 50 –thresh 1e-5 –alpha 0.9 –maxveclen 1000000. Note that in this version

of IsoRank the parameter –maxveclen sets a limit on the number of non-zero entries in the IsoRank vector, e.g.,
106 out of ≈ 2×108 possible entries between H. sapiens and M. musculus in this example.

7The GraphM package [72] took several days to finish these alignments.
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Table 6.1 – PPI networks of five major eukaryotic species from the IntAct molecular interaction
database [1, 76].

species #nodes #edges Avg. deg.

C. elegans 4950 11550 4.67
D. melanogaster 8532 26289 6.16
H. sapiens 19141 83312 8.71
M. musculus 10765 22345 4.15
S. cerevisiae 6283 76497 24.35

6.5 Summary

We have shown that the IsoRank node-similarity metric has a peculiar structure, in that the

network (structural) similarity depends only on the nodes’ degrees and not on the actual

edge set of the two networks. It appears that this fact has not been noted before and provides

some insight into its relatively poor performance for α = 1. We have also shed light on the

relationship between the IsoRank and PageRank problems. The IsoRank-similarity problem is

in fact equivalent to applying PageRank over the Kronecker product of the two graphs. This

equivalence enables us to apply ideas for efficient PageRank approximation algorithms to the

IsoRank-similarity problem, with significant gains in runtime and memory complexity.
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7 Modeling and Mitigating Epidemics

In this chapter1, we consider an important application area of network mining in public health.

We focus on human-mediated epidemics.2 We develop and model strategies for mitigating

an epidemic in a large-scale dynamic contact network. In particular, we explore new miti-

gation methods based on a realistic modeling of epidemics, while we consider mobility and

contact network of individuals in a geographical area. We argue that taking advantage of

mobile technology opens up many new opportunities for mitigating the spread of an epidemic.

Importantly, mobile technology is unique in that it enables the personalization of counter-

measures through precise measurements at the individual level, as well as individualized

recommendations.

Human mobility and contacts among population are crucial factors that enable the epidemic

to travel and spread geographically. At a high level, our mitigation approach is to maintain

deliberate contacts and to rewire the accidental ones. The idea is to weaken the links that,

in the contact network, form the path through which the epidemic spreads. By changing

the network structure, we seek to decelerate the dynamics and drive the epidemic down to a

sub-critical level. We show that the combination of information extracted from mobile data

(e.g., call-data records) and subsequent personalization of prevention advice opens up novel

ways of mitigating an epidemic. We envision a mobile service that sends recommendations

that encourage individuals to adapt their behavior, for example, by delaying or canceling a trip.

More generally, we formulate subtle, precise and minimally restrictive personalized behavioral

rules that, if followed even partially, will have a positive global effect on an epidemic.

In Section 7.1, using a human-contacts network, we build a time-dependent model of human

mobility; this enables us to accurately capture population movements across a geographical

area. These mobility patterns then power the core of our epidemic model, which enables us

to analyze epidemic outbreaks at the level of single individuals in Section 7.2. Beyond these

models, our main contribution is to foster the idea of a mobile service that sends personal

recommendations in order to help mitigate an epidemic. In Section 7.3, we present several

1The material of this chapter is based on [93].
2Transmitted by human contact,e.g., influenza
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concrete micro-measures and discuss their potential. In Section 7.4, we empirically evaluate

their effectiveness by using our epidemic model and providing some insights into further

research directions. In Section 7.5, we conclude this chapter.

7.1 Mobility Model

The spread of epidemics depends greatly on the mobility of infected individuals, and on the

locations where they interact with other individuals. In this section, we present a realistic,

data-driven mobility model that is an essential tool for simulating realistic epidemic propaga-

tion. Our mobility model is build upon the call-data records (CDRs) provided by the Data for

Development (D4D) challenge3 organized by France Telecom-Orange, a global telecommuni-

cations operator [31]. The D4D dataset contains anonymized data gathered from 2.5 billion

calls and SMS exchanges made by 5 million users in Ivory Coast over a period of five months,

from December 2011 to April 2012. In this dataset4, for each CDR the following information is

provided:

time, caller id, call duration, antenna id

This dataset contains high-resolution trajectories of 50,000 randomly selected individuals

over ten two-week periods. For each period, 50,000 of the customers are randomly selected

and then assigned anonymized identifiers (i.e., caller id) to protect the privacy of users.

The records are composed of the identifiers of the antennas (i.e., antenna id) from which

individuals made phone calls or sent SMSs over a two-week period. Also, for each antenna, we

have the corresponding, but slightly blurred, geolocation.

7.1.1 The Features of Mobility Model

A precise yet tractable model for population mobility should take into account certain micro-

scopic aspects at the individual level, and still scales up to millions of individuals to model the

propagation of epidemics. Moreover, it should capture the main differences between the mo-

bility of different groups of individuals, where a group is constituted of individuals exhibiting

similar mobility profiles. To construct a mobility model that fulfils these requirements, our

intuition is as follows: The home location of individuals strongly shapes their mobility patterns

because the places they visit regularly, e.g., their workplaces, schools or the shopping centers,

depend on the proximity to their home. Typically, we expect the most visited location (home)

and the second most visited location (school, university or work) to be geographically close

to each other. In addition to this geographical aspect, mobility is strongly time-dependent:

Individuals commute between home and work during the weekdays, with a substantial change

in their travel behavior during the weekends.

3See: http://www.d4d.orange.com/
4In order to build our model from data, we use SET2, one of the four datasets from D4D challenge.
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Building on this, we make the assumption that the individuals that share the same home-

location exhibit a similar time-dependent mobility pattern. Therefore, we construct a location

and time-based mobility model that depends on the variables presented in Table 7.1. The

conditional distribution of the location X (n) of user u depends on her home antenna ahome(u),

but also on the time of the visits (hk (n), w(n)):

p (X (n)|u, t (n)) = p
(

X (n)|hk (n), w(n), ahome(u)
)

. (7.1)

First, we choose the time resolution k = 3, in order to divide the day into 3 distinct periods:

Morning (6 am to 1 pm), afternoon (1 pm to 8 pm) and night (8 pm to 6 am). Second, condi-

tioning on the parameter w(n) enables us to distinguish between weekdays and weekends.

Finally, the home antenna ahome(u) of user u is defined as the most visited antenna during the

night period. Consequently, given the period of the day, the day type and the home antenna of

user u, the distribution of the location that she might visit (7.1) is a multinomial distribution

with |A| categories.

Table 7.1 – List of the definition and domain of the variables relative to user u, as well as those
describing her nth visit.

Definition Domain Explanation

A = {1, . . . , 1231} - Set of antennas
SP = {1, . . . , 255} - Set of sub-prefectures
k N Time resolution
sphome(u) SP Home sub-prefecture for user u
ahome(u) A Home antenna for user u
X (n) A Antenna
t (n) N Absolute time
hk (n) {1, . . . ,k} Period of the day
d(n) = day(t (n)) {1, . . . ,7} Day of the week
w(n) = weekday(t (n)) {0,1} Day type: weekday or weekend

7.1.2 Learning and Evaluating Mobility Models

To avoid having to deal with users whose location samples are very sparse, we consider only the

users who visited more than 1 antenna and made on average more than 1 call per day. In order

to evaluate the realism of our mobility model, we separate the data into two parts: For each

user, we put 90% of the calls in the training set and the remaining 10% in the test set. First, by

using a maximum-likelihood estimator, we learn a mobility model from the training set. Then,

we evaluate the accuracy of our mobility model by computing the average log-likelihood of the

calls in the unseen test set. The average log-likelihood reflects how well our model generalizes

to unseen data. As the test set might contain some locations not visited by a given class of users

in the training set, the maximum-likelihood estimate of the distribution (7.1) assigns a zero

probability to these observations. We cope with this by assuming that the distribution (7.1) is
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a multinomial distribution drawn from an exchangeable Dirichlet distribution, which implies

that the inferred distribution (7.1) is a random variable drawn from a posterior distribution

conditioned on the training data. A more detailed description of this smoothing procedure is

given by Blei et al. [29].

We tested several variants of mobility models by varying their structure and parameters (time

resolution, day of the week, etc). To have three representative baseline models for comparison,

we choose three predictors out of the several variants we tested.

Time-based Mobility (TM) The first baseline model is a time-based mobility (TM) model

defined by

p (X (n)|u, t (n)) = p
(

X (n)|hk (n), w(n)
)

, (7.2)

where all mobile-phone users exhibit the same time-dependant mobility pattern.

Markov Chain (MC) The second baseline is a location-dependent first order Markov chain

(MC) defined by

p (X (n)|u, t (n), X (n −1), . . . , X (0)) = p (X (n)|X (n −1)) , (7.3)

where the current location of a user depends only the location she visited just before.

Sub-Prefecture Mobility (SPM) The third baseline is a time and sub-prefecture dependant

mobility model (SPM) defined by

p (X (n)|u, t (n)) = p
(

X (n)|hk (n), w(n), sphome(u)
)

, (7.4)

where the home of a user is represented by a sub-prefecture instead of an antenna. This

implies a more important aggregation of users, where two users who share the same home

sub-prefecture, have the same mobility pattern.

The experimental results are shown in Table 7.2. The first order Markov chain (MC) performs

the worst. This is not surprising as the time difference between two call records varies greatly,

ranging from a few minutes to a few days. The location associated with a call made in the

past few hours or days does not necessarily affect the current location. As the location data is

sporadic, it is not surprising that any model that learns from transitions performs poorly and

is outperformed by time-based models. Our model performs the best; and by comparing it to

the time-based model (TM), we realise that knowing the home-locations of users enhances

the predictive power of the mobility model. Moreover, the granularity of home locations is

crucial: Our model significantly outperforms the sub-prefecture dependent mobility model
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Table 7.2 – Log-likelihood of the unseen data from the test set. Our mobility model significantly
outperforms the baseline models since its predictive power, with respect to the test set, is
higher.

Mobility model Average log-likelihood

Our model -1.07
SPM -1.67
TM -2.9
MC -6.49

because it has a finer granularity of the home locations.

A realistic mobility model is an essential building block of a realistic epidemic-propagation

model because mobility drives population flows between regions, hence the geographical

proximity between individuals. In the next section, we introduce the model we use to simulate

an epidemic propagation.

7.2 Epidemic Model

Building up on the mobility, this section introduces our epidemic model. It is based on a

discretized, stochastic version of the SIR model [106]; Tables 7.3 and 7.4 provide an overview

of the parameters and quantities used throughout the section. We assume that the size of

the population (N individuals) remains constant—there are no births or deaths, a reasonable

assumption if the time horizon is limited to at most a few months. Under the SIR model, an

individual can be either susceptible to the disease, infective, or recovered from the disease and

immunized against further infections.5 We assume that most of the population is initially

susceptible, except for a small number of infective individuals that form the seed of the

epidemic. Individuals successively go through the susceptible, infective and recovered states;

a desirable outcome would have many individuals stay susceptible without ever becoming

infective. The basic SIR model assumes a random mixing of the whole population: any

given individual meets any other one with a uniform probability. In our model, we relax this

strong assumption by taking into account the mobility. We spread the population across M

regions; each region bears its own SIR process where the corresponding meta-population

mixes at random. These regional processes are independent and isolated, and the only way the

epidemic crosses regional boundaries is through human mobility [102]. In summary, regional

interactions take place uniformly at random, whereas global interactions are shaped by the

individuals’ mobility.

5In the literature, this state is sometimes known as removed. The important point is that they do not participate
in the epidemic anymore.
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Table 7.3 – Parameters of the epidemic model.

N total population
M number of regions
N∗

i initial population of region i , where i ∈ {1, . . . , M }
L number of different mobility classes
β contact probability
g recovery probability

Table 7.4 – Notation for various quantities related to the epidemic.

cl mobility class l , where l ∈ {1, . . . ,L}
Si distribution of the number of susceptible individuals in region i

across classes. Si = (Si ,c1 , . . . ,Si ,cL )
Ii distribution of the number of infected individuals in region i

across classes. Ii = (Ii ,c1 , . . . , Ii ,cL )
Ri distribution of the number of recovered individuals in region i

across classes. Ri = (Ri ,c1 , . . . ,Ri ,cL )
Si number of susceptible individuals in region i , equal to ‖Si‖1

Ii number of infected individuals in region i , equal to ‖Ii‖1

Ri number of recovered individuals in region i , equal to ‖Ri‖1

Ni population of region i , where i ∈ {1, . . . , M }

λi infection probability for region i . λi =β Ii
Ni

7.2.1 Local Epidemic Dynamics

In order to work at the individual level, we adapt the classic deterministic SIR model to have

a discrete-time stochastic variant. The contact probability β and recovery probability g are

constant across all regions.6 For a region i ∈ {1, . . . , M } we compute, at each time step, the force

of infection λi =β Ii
Ni

. This quantity represents the probability of making a contact that results

in an infection. During a time step, every susceptible individual gets infected independently at

random with probability λi , and every infective individual recovers independently at random

with probability g . If we denote by ΔXi the variation of Xi , Xi ∈ {S, I ,R} after one time step, it

is easy to see that

E(ΔSi ) =−λi Si

E(ΔIi ) =λi Si − g Ii

E(ΔRi ) = g Ii

are the expected difference equations for the SIR model under the random mixing assumption.

We note that our model has many similarities with that of Colizza et al. [45], used to model the

SARS pandemic.

6These quantities are rates in the continuous time SIR model. In order to carry over the characteristics of the
SIR model to our discretized version, we need to ensure that the sampling interval is short enough to ensure that
β, g < 1.

166



7.2. Epidemic Model

7.2.2 Implementation

Figure 7.1 – Snapshots of a sample epidemic process where each dot represents a region
(here, the surroundings of an antenna). Colors indicate the relative proportion of infective
individuals. Initially, just a few individuals form a seed of infectives (left). A little more that 9
days later, the epidemic has spread over most of the country (right).

To allow for distinctive mobility patterns across the population, individuals belong to one out

of L classes {c1, . . . ,cL} that fully characterize their mobility patterns. In accordance with the

mobility model (see Section 7.1), the individuals’ class is determined by their home antenna.

The implementation is best understood when decomposed into two distinct, successive

phases: a mobility phase where individuals can move between regions, and an epidemic phase

where individuals get infected or recover.

Mobility phase We consider every individual: Suppose the individual is in region i ; the mo-

bility model assigns a new region j according to its mobility class. If i �= j we update

the vectors Xi and X j accordingly, where X ∈ {S,I,R} depends on the current state of the

individual.

Epidemic phase We consider every region i ∈ {1, . . . , M }: We begin this phase by updating

the infection rate λi , given the current values of Ni and Ii . Every infected individual

then recovers with probability g , whereas every susceptible individual gets infected with

probability λi . Si , Ii and Ri are updated accordingly.

This process is repeated until the end of the period of interest.
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7.3 Mobile Micro-measures

Traditional epidemic-mitigation methods consist of heavy, top-down approaches such as

blockades, quarantines or large-scale vaccinations. For an alternative, we suggest that mobile

technology could enable a much richer and sophisticated set of mitigation measures for

human-mediated epidemics. In particular, we introduce the concept of micro-measures,

individual countermeasures tailored to their recipients’ specific behavior; this new approach

is the opposite of the one-size-fits-all pattern that characterizes most traditional mitigation

measures. The main characteristics of such micro measures are as follows:

Personalized. Recommendations are generated and communicated on an individual basis.

Mobile technology enables this in two ways: First, it allows for a quantity of valuable

behavioral information (such as location and activity) to be recorded, and second, it

provides a readily available unicast communication channel.

Adaptive. As the epidemic progresses and each individuals’ intentions are discovered, the

recommendations are instantly adapted to the situation. The personalization of mobile

micro-recommendations ensures their effectiveness. Such recommendations, in con-

trast with most large-scale mitigation efforts, would typically require much less time to

be set up and would always be in phase with the current state of the epidemic.

Microscopic. In contrast with a one-size-fits-all policy that typically considers an epidemic

from a macroscopic perspective, micro-measures tend to focus on subtle and local

changes. These changes, when looked at independently, are mostly insignificant; but

taken together, they result in important global improvements.

State-independent. An additional property of the service is that it is epidemic-state indepen-

dent: the recommendation should not depend on whether the individual is infective

or not. First, it does not require prior knowledge about the state of an individual as

it is often hard to determine precisely when she becomes infected. Second, it aligns

the incentives: Without additional knowledge, everyone can expect to benefit from

following the recommendation; this might not necessarily be the case when the state is

known.

This lays the foundation of our approach but does not yet suggest any concrete mitigation

scheme. Still, there are fundamental questions related to the feasibility of micro-measures.

Under which conditions do small, local changes (such as an individual’s agreeing to commute

slightly earlier) have a global impact? How many individuals need to cooperate, and how

does this, significantly alter the dynamics of the epidemic? An epidemic can often be seen as

being either supercritical (the epidemic grows) or sub-critical (it declines). What microscopic

changes are more likely to bring about a phase transition? Although a precise characterization

of these changes and, by extension, rigorous answers to these questions are beyond the scope

of this chapter, we intend to show initial evidence of the relevance of such a mobile service.
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7.3.1 Concrete Micro-Measures

Beyond the theoretical arguments, our contribution is the description and evaluation of three

concrete strategies to generate micro-measures. These strategies represent initial baselines

for further developments. Let us first note that contacts between individuals can broadly be

categorized into two groups: the deliberate contacts are, for example, between family members

or at work, whereas accidental contacts are formed by random encounters, for instance, while

shopping or commuting. At a high level, our approach is to maintain deliberate contacts and

to rewire the accidental ones. The idea is to weaken the links in the contact network that form

the path through which the epidemic spreads. By changing its structure, we seek to decelerate

the dynamics and drive the epidemic down to a sub-critical level.

Table 7.5 – We recapitulate the main characteristics of the three strategies we have imple-
mented to mitigate the spread of epidemic.

CUTCOMMUNITIES DECREASEMIX GOHOME

Knowledge to
maintain

List of communities
of locations

Social communities
of users

State of the epidemic
across regions

Recommendation Do not cross commu-
nity boundaries

Stay with your social
circle

Go/stay home

Intuition Weakening the weak
geographical links

Segmenting social
communities

Home is a safe place

CUTCOMMUNITIES strategy

It is clear that mobility is a driving factor for the spread of an epidemic. A straightforward strat-

egy would therefore be to reduce long-range contacts; it might be at the expense of reinforcing

local contacts. Uniformly reducing mobility is, however, both expensive and inflexible. To

overcome this, our first strategy, CUTCOMMUNITIES, takes into account communities of loca-

tions in the mobility network and focuses on reducing human mobility over inter-community

links—this is, in a sense, analogous to weakening the weak links in the network. The main

difference with a simple blockade is that our strategy is able to adapt to changes in the network

(note that mobility patterns vary over time, e.g., see Section 7.1). In practice, the service opera-

tor would maintain a list of location communities identified through the mobility patterns

of its userbase; when an individual checks whether a trip is safe, the service would verify

whether it crosses community boundaries and, if this is the case, discourage the individual

from making this trip.7 If additional per-location information is available about the current

state of the epidemic, recommendations could be further corrected according to the strength

of the epidemic at the individual’s current and projected locations.

7As a relaxation of this counter-measure, we could consider postponing the trip instead. Simply by delaying
certain trips, we could prevent harmful interactions between groups of individuals. This is analogous to time-
division multiplexing; a slight change in the habits of a group of people could significantly change the contact
surface.
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DECREASEMIX strategy

Instead of acting on mobility, to segment contacts across location communities, we also

consider the segmentation of social communities. We separate individuals inside the same

location, e.g., by making them visit different aisles of the same supermarket at different times.

Putting in place such a segmentation is more sophisticated than in the case of mobility, but

this strategy is the perfect example of another extremal point in the solution space. The service

operator would keep a list of social communities and would communicate a distinctive tag

(e.g., a color) to individuals according to their community. Individuals would access locations

differently, depending on their tag; for example, seating in a theater would be organized in

such a way that contacts between communities are minimized. We are aware that this strategy

could raise many concerns, because it segregates people, therefore great care would be needed

if it were to be implemented. Despite this, we retain it because it reflects a different trade-off

with respect to CUTCOMMUNITIES: Instead of discouraging individuals from going to certain

locations where they can be in contact with everyone, we allow them go everywhere, but

restrict the contact network.

GOHOME strategy

We consider a third case where the service recommends individuals to go home. The intuition

behind this strategy is that we assume that when at home, the contact rate decreases. Whereas

the previous strategies target the individuals’ location or contact network, this one is distinctive

in that it affects the rate of contact. With information on the progress of the epidemic across

locations, the operator could prioritize sending advice to those individuals whose cooperation

would yield the greatest effect. In Section 7.4, we will provide a detailed evaluation of the three

described strategies.

7.4 Empirical Evaluation

Next, we use our previously developed mobility and epidemic models to test the strategies

described in Section 7.3. Before evaluating our strategies, we first explain how the epidemic

model is parameterized and how epidemic spreads are quantitatively characterized.

7.4.1 Model Parameters and Evaluation Metrics

In order to be consistent with our mobility model, the epidemic model defines regions to be the

area surrounding the antennas (M = 1231). Hence, we will use the words region and antenna

interchangeably. As an individual’s mobility is tied to her home antenna, we distinguish

among L = 1231 different classes. To initialize the population attached to each antenna, we

use data from the AfriPop project [185] that provides us with Ivory Coast population figures

at the hectare level; to account for the fact that not every individual is mobile, we allow only
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55% of the population to move during the mobility phase8, which roughly corresponds to the

proportion of the population in the 15-to-64 age bracket [191]. Days are divided into three

time steps in order to match the mobility model9, and the typical time horizon is between

100 and 400 time steps (i.e., 1–4 months). Contact and recovery probability are usually set

to β= 1 and g = 0.5, respectively; although these synthetic values do not directly match any

well-known disease, they are still qualitatively close to realistic cases, such as influenza. All

our simulations start with a seed set of 23 infectives distributed across 5 antennas10 in the

Attécoubé district of Abidjan.

In order to quantify the difference between epidemic spreads, we propose three metrics for

evaluating the effectiveness of our mitigation strategies. Figure 7.2 shows how these quantities

are related to the epidemic’s evolution over time. For notational clarity, let X =∑M
i=1 Xi , X ∈

{S, I ,R} be the total number of individuals in each state over the country as a whole. As these

quantities evolve over time, they are functions of the time step n. The first metric is the size of

the largest outbreak or, equivalently, the maximal proportion of infective individuals,

I∗ = max
n

I (n)

N
.

The reasoning behind this metric is self-evident: in most cases, the larger the proportion of

infective individuals, the more difficult the control of the epidemic. It is also, broadly speaking,

a good indicator of the epidemic’s strength. Our second metric is closely related to the first

one, but considers the complementary dimension: it measures the time of the largest outbreak,

T ∗ = argmax
n

I (n).

Delaying the moment at which the epidemic reaches its peak enables individuals and govern-

ments to have enough time to adapt their behavior, respectively, to deploy measures. Finally,

our last metric captures the tail behavior of the epidemic: it measures the final proportion of

recovered users,

Q∗ = lim
n→∞

R(n)

N
.

Note that we would like to minimize this metric. After the epidemic dies out, all individuals

are either recovered or susceptible, and a low proportion of recovered individuals means that

a high percentage of the population did not go through the infective state at all.

8This distinction is rather crude and could certainly be further refined. However we deemed it to be sufficient
for our purposes.

9Notice that this is not a formal requirement. We use this subdivision mainly for simplicity.
10In the datasets provided by France Telecom-Orange, these antennas have the following identifiers: 57, 146, 330,

836, 926.
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T ∗

Q∗

I∗

Figure 7.2 – Metrics used to evaluate the effectiveness of mitigation strategies. I∗ indicates the
magnitude of the epidemic’s peak, T ∗ the time at which the peak happens, and Q∗ describes
the asymptotic number of individuals that got infected and recovered.

7.4.2 Results

We now take a closer look at our three proposed strategies. We will describe how we instan-

tiate them and we provide qualitative and quantitative assessments with respect to their

effectiveness.

CUTCOMMUNITIES strategy

The first strategy divides the country into location communities, according to the network of

mobility. We consider the weighted, undirected graph where nodes represent antennas, and

edge weight is equal to the average number of trips between the two endpoints (regardless

of direction). We use the Louvain community detection algorithm [30]; Figure 7.3 shows the

30 identified communities. It is interesting—but not surprising—to note that the communi-

ties are roughly geographicaly based.11 This confirms our hypothesis stating that there are

geographical weak links. Micro-measures are then generated as follows: When an individual

checks whether a trip is safe, the service first verifies whether the trip crosses community

11As a sidenote, we ran the Louvain method on a number of other graphs generated from the datasets provided
for the D4D challenge, including one derived from SET1 representing total antenna-to-antenna communications.
The communities always displayed the same geographical clustering. Furthermore, we observed that mobility
communities seem to be correlated to phone call communities.
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boundaries and whether the current or projected locations are affected by the disease; if both

of these conditions are met, the individual is discouraged from making the trip. The recipient

then complies with probability p.

Figure 7.3 – We find 30 communities in the mobility network, when using the Louvain com-
munity detection algorithm [30]. It is not surprising that these communities reflect the
geographical proximity between nodes, as trips between close antennas are more frequent
than between distant ones.

Figure 7.4 shows the effect of CUTCOMMUNITIES for different values of p. Compared to the

baseline (p = 0), the strategy affects the size I∗ and the time T ∗ of the epidemic’s peak. How-

ever, it does not change much the tail behavior: Q∗ stays constant at around 0.8, except for

the degenerate case where p = 1, which represents a blockade around the community initially

infected. We also observe that there seem to be two infection phases, made progressively

more apparent as p → 1, and that the blockade removes the second phase; these two phases

correspond to infections happening inside, respectively, outside the initially infected commu-

nity. Recall that this strategy only sends micro-measures to a fraction of the individuals, those
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who cross community boundaries—a case that by definition does not happen too often. It is

therefore interesting to consider the number of trips actually canceled as a result: Table 7.6 lists

the average and maximal proportion for different values of p. The numbers are quite low12,

suggesting that the communities form a natural partitioning of the regions. In conclusion, this

strategy does not affect the asymptotic behavior of the epidemic but significantly shifts its

peak. Altogether, it justifies the relevance of mobility-based geographical communities as a

data source to generate micro-measures.
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Figure 7.4 – Shape of the epidemic under the CUTCOMMUNITIES strategy, β= 1.0, g = 0.5. On
the left: solid lines represent the baseline (p = 0), dashed lines p = 0.9, dotted lines p = 0.99.
On the right, we compare p = 0.99 (solid) to a complete blockade (p = 1, dashed).

Table 7.6 – Proportion of movements affected when using the CUTCOMMUNITIES strategy for
three different values of the compliance probability p. We indicate the overall average over
the 80 time steps, as well as the maximum value.

p Affected movements Maximum

0.90 10.91% 21.38% (t s = 42)
0.99 12.57% 22.91% (t s = 51)
1.00 5.32% 12.20% (t s = 33)

DECREASEMIX strategy

Recall that this strategy assigns tags to individuals according to the social community to which

they belong, and it segregates contacts across social communities. A service operator might

use the call graph (i.e., the social network generated by using the information from who calls

whom) to infer social communities in the population; unfortunately, we do have access to such

data. In order to quantify the effectiveness this strategy, we proceed as follows. Similarly to our

mobility model, we make the assumption that the individual’s community C is determined by

12That these proportions are lowest when p = 1 is due to the fact that the epidemic is local to the infective seeds’
community
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his home antenna. The DECREASEMIX strategy does not decrease the total number of contacts;

instead it rewires contacts across communities to contacts inside the community. This is

done by splitting the contact probability into intra-community and inter-community contact

probabilities and introducing a mixing parameter q as follows:

βi ,C =
(
1−q +q

Ni ,C

Ni

)
β

βi ,C =β−βi ,C

λi ,C =βi ,C
Ii ,C

Ni ,C
+βi ,C

Ii ,C

Ni ,C

,

where Ni ,C indicates the number of individuals of community C currently in region i , Ni ,C =
Ni −Ni ,C and the other quantities follow the same convention of notation. The intuition is as

follows: When q = 1, everyone mixes at random inside a region, just as if no countermeasure

were applied at all. At the other extreme, when q = 0, contacts happen only with individuals

from the same community. Intermediary values of q enable us to play with the strength of the

segregation.

We evaluate the effectiveness of DECREASEMIX for different values of the mixing parameter

q . Our simulations are parameterized with β = 1.0, g = 0.5 and q ∈ {1,0.1,0.01}; Figure 7.5

shows the average behavior of the epidemic over 10 runs. The main characteristic of this

strategy is that it delays the epidemic outbreak. However, the slopes of the two curves at the

strongest point of the epidemic are not that much different. As s result, the final proportion of

recovered Q∗ does not vary much. But by making it 10 or 100 times more likely to contact an

individual of the same community, we delay T ∗ by approximately 5 and 16 days, respectively.

Our intuition about this phenomenon is that it takes more time for the epidemic to reach

certain communities (as they are more segregated), but once a community sees its first case of

infection, the spread is just as fast as before. We argue that one of the main limiting factors at

play here is the random mixing assumption: if we were able to bring finer structural changes

to the contact graph, the situation would look very different.

GOHOME strategy

Our last strategy encourages individuals to go home or stay home. In order to focus the

micro-measures on the most influential individuals, we assume that at each time step, the

service operator knows the proportion of susceptible, infective and recovered individuals

across locations. We suppose that before every trip, an individual sends a request to the

service that compares the proportion of infectives in both source and destination; the service

recommends going home if the destination has a proportion of infectives lower than the

source location. Individuals then comply with probability p. The main intuition behind this

choice is to avoid sending infective individuals to highly susceptible locations. Note that we

keep the state-independent assumption here: we do not know the state of the individual

when sending out a recommendation. The second important assumption is that, when an
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Figure 7.5 – Shape of the epidemic under the DECREASEMIX strategy averaged over 10 runs,
β= 1.0, g = 0.5, for different values of the mixing parameter. Solid lines correspond to q = 1.0,
dashed ones to q = 0.1, dotted ones to q = 0.01.

individual is at home, the contact probability is set to be equal to the recovery probability13,

i.e., βhome := g . This models the fact that there are less contacts at home, in term of accidental

ones. Mixing is not exactly uniform anymore, and the infection probability is adapted as

follows:

λi ,loc =βhome
Ii

Ni

λi ,vi s =β
Ivi s

Ni
+βhome

Iloc

Ni
.

Quantities with loc and vis subscripts correspond to individuals whose home region is i and is

not i , respectively. Note that the contact probability of visitors can significantly decrease in a

region where the proportion of visitors to locals is low.

This time, the effectiveness depends on the value of the compliance probability p. We use again

β = 1.0, g = 0.5 and let p ∈ {0.0,0.1,0.5,0.7}; Figure 7.6 shows the behavior of the epidemic

over 10 runs. As opposed to the results obtained with the DECREASEMIX strategy, we obtain

13When contact and recovery probability are equal, the single-population SIR epidemic (under the random
mixing assumption) does not develop anymore; setting βhome := g can therefore be seen as the least change
needed to stabilize the epidemic.

176



7.5. Summary

significant improvements to Q∗ as p increases.14 This observation is not surprising because by

suggesting to individuals to go home, we are directly reducing their contact probability, which

is a determining factor of the epidemic’s dynamics. It is also interesting to look at the actual

number of trips that are affected (i.e., cancelled) because of the micro-measures; Table 7.7

shows that a relatively low number of trips have to be altered to noticeably impact the spread.

In summary, this strategy has the potential to be quite effective, although the assumptions it

makes deserve a closer analysis.
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Figure 7.6 – Shape of the epidemic under the GOHOME strategy, β= 1.0, g = 0.5. Light curves
indicate individual runs, dark curves indicate average. On the left: p = 0.1, on the right:
p = 0.5.

Table 7.7 – Proportion of movements affected when using the GOHOME strategy for two
different values of the compliance probability p. We indicate the overall average over the 400
time steps, as well as the maximum value.

p Affected movements Maximum

0.1 2.81% 5.21% (t s = 190)
0.5 15.80% 26.12% (t s = 316)

7.5 Summary

In this chapter, we have explored the novel idea of using mobile technology in order to mitigate

the spread of human-mediated infectious diseases. We explicate the concept of mobile micro-

measures that consist of personalized behavioral recommendations given to individuals based

on a human-contacts network. By affecting, even partially, individual behaviors, we are able

to significantly hinder the epidemic propagation. These mobile micro-measures have several

original properties: they are adaptive, target individuals at the microscopic level and provide a

14Unfortunately, our simulation was limited to 400 time steps, which is not enough to clearly show the asymptot-
ical behavior. Our idea for the significant improvements to Q∗, however, is justified by looking at the worst runs
whose slope quickly tends to zero.
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rich set of mitigation methods. Using the data provided for the Orange D4D challenge [31], we

first develop a realistic mobility-model for the population of Ivory Coast. Then, we incorporate

this mobility model into an epidemic model based on SIR in order to simulate the epidemic

propagation. Taking advantage of this framework, we propose and evaluate three concrete

strategies used to generate micro-measures. Our strategies weaken the epidemic’s intensity,

successfully delay its peak and, in one case, significantly lower the total number of infected

individuals.

These preliminary results enable us to identify several research avenues. First, random mixing

is the most limiting assumption. Being able to change, at a finer level, the structure of a

human-contacts network is a key component of more advanced micro-measures. The mobile-

call graph is an example of a source of information about a social-contacts network, one that

is readily available to mobile-phone operators. Second, beyond our preliminary strategies,

it is highly important to deepen our understanding of the key ingredients that make mobile

micro-measures effective yet minimally restrictive. In parallel to mobile micro-measures, the

availability of large-scale mobility data opens up new research directions in epidemiology; a

more precise characterization of the relation between epidemic spread and human mobility

patterns is an interesting topic to investigate. To conclude this chapter, we firmly believe that

data-driven and personalized measures, which take advantage of mobile technology, are an

important step towards effective epidemic mitigation.
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In this thesis, we have succeeded in solving several network-mining problems from three

different aspects: the modeling and theory perspective, the computational perspective, and

the application perspective. To make better inferences about a network and its properties,

we tackled the problem of merging information from different sources; the main focus was

on network alignment. More specifically, in the first part of the thesis, we have established

fundamental bounds about the feasibility of network alignment between two networks. In the

second part of this thesis, we proposed a new network-alignment algorithm, distinguishing

computational limitations from theoretical limitations. In the third part of this thesis, by using

our results in the first two parts, we have taken an application approach to several problems.

In Chapter 2, we have investigated the network-alignment problem from the modeling and

theory perspective. We propose a stochastic model for generating two correlated graphs

with partial node-overlap. We find sufficient conditions for the identifiability of the true

partial-alignment between the vertex sets of the two graphs. More specifically, we formulate

conditions for network density and prove that within these conditions a perfect alignment

is feasible. We show that the condition is indeed a mild condition on the scaling of the

average degrees of the two networks. Our theoretical results imply that, given unbounded

computational resources, network alignment is feasible in the presence of some minimal

structural similarity between two networks.

In Chapter 3, we have studied the network-alignment problem from the computational per-

spective. We propose a new percolation-based network alignment algorithm that, by using

only the network structure and a handful of initially pre-matched node couples called seed

set, can match large networks. We achieve a dramatic reduction in the size of the seed set. We

prove that under a wide range of network parameters, with high probability, our algorithm

will percolate, generating a large number of incorrect candidate couples along the way, but

will align only correct couples. By using ideas from bootstrap percolation theory, a phase

transition in the seed-set size of the percolation graph-matching (PGM) algorithm is formally

established. We also show the excellent performance of our algorithm in matching several

large real social-networks.
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From the application perspective, we have considered two important application areas of

network mining in biology and public health. The first application area is protein-protein

interaction (PPI) network alignment in biology. The alignment of PPI networks enables us to

uncover the relationships between different species, which leads us to a deeper understand-

ing of biological systems. Network alignment can be used to transfer biological knowledge

between species. Although different PPI-alignment algorithms were introduced during the

last decade, developing an accurate and scalable algorithm that can find alignments with high

biological and structural similarities among PPI networks is still challenging.

In Chapter 4, we have introduced a new global pairwise-network alignment algorithm for

PPI networks; we call the algorithm PROPER. Compared to other global network-alignment

methods, our algorithm shows higher accuracy and speed over real PPI datasets and syn-

thetic networks. We show that the PROPER algorithm can detect large portions of conserved

biological pathways between species. We highlight that PROPER has high potential in fur-

ther applications, such as detecting biological pathways, finding protein complexes and PPI

prediction.

In Chapter 5, we have extended PROPER to the global multiple-network alignment problem.

We have introduced MPROPER, a new scalable and accurate algorithm for aligning multiple

networks. We show that MPROPER outperforms the other state-of-the-art algorithms. To

generate k correlated networks, we present a graph-sampling model, as a generalization of

the model introduced in Chapter 2. By using this model, we guarantee the performance of the

MPROPER algorithm.

In Chapter 6, we have explored IsoRank, one of the first and most referenced global pairwise-

network alignment algorithms. We show that, when IsoRank similarity depends only on the

network structure, the final alignment is only a function of node degrees. Also, we develop

an approximation algorithm that outperforms IsoRank in time and memory complexity, by

several orders of magnitude, despite only a negligible loss in precision.

Our second application area is the control of epidemic processes. In Chapter 7, we have

developed and modeled strategies for mitigating an epidemic in a large-scale dynamic contact

network. We model the spread of epidemics on a network by using many pieces of information

about the mobility and behavior of a population, such as mobile call-data records. We first de-

velop a realistic mobility model for the population. Then, we incorporate this mobility model

into an epidemic model in order to simulate the epidemic propagation. Taking advantage of

this framework, we propose three concrete strategies used to mitigate the effect of epidemics

on that network. The goal of each strategy is a large reduction in infections, with a small effect

on the normal course of daily life. Finally, we evaluate these strategies over the Orange D4D

dataset and show the benefit of them, even if only a fraction of the population participates.
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8.1 Open Questions

There are still several open questions that await further exploration.

• In Chapter 3, we have done a comprehensive evaluation of PGM algorithms. Our

experimental results confirm that with only a few number of seeds it is possible to align

many real networks and random graphs. Despite the excellent performance of PGM

algorithms, their success depends on the structural similarity of two networks. It would

be beneficial to investigate the necessary and sufficient conditions under which PGM

algorithms are able to align two networks successfully.

• We believe it is possible to push further the class of PGM algorithms and design seed-less

graph-matching algorithms. For this reason, we can rely on two important ideas: (i)

Structural information of real networks (e.g., node degrees in networks with heavy-tailed

degree distribution) could be used for finding initial (noisy) seed couples; and (ii) it is

possible to make PGM algorithms even more robust to the noise. For example, we have

hard thresholding for matching. Indeed, in our PGM algorithms, when a node couple

receives enough marks, it is permanently matched, and an incorrectly matched couple

from the early steps cannot be corrected later. By relaxing this hard thresholding, a PGM

algorithm can tolerate a higher level of noise.

• We have demonstrated that aligning k different network, when initially enough number

of seed-tuples is provided, is possible. We believe that, in the multiple-network align-

ment problem, there is more information than in the case of pairwise alignment. For

example, to better align two networks, we can use the similarities of these networks

with a third network. An interesting research objective is further study of multiple-

network alignment from the modeling and theory perspective, and the computational

perspective.

• Although there are significant public benefits to release network data, these networks

often contain sensitive information about the node identities and interactions among

them. From the privacy point of view, revealing the inclusion or removal of a node or

an edge in a network is important and has many implications. A fundamental research

question is how to perturb the structure of a network in oder to make it resilient against

PGM de-anonymization attacks, while preserving global (or local) properties of the

network.

• A promising research direction could be improving the performance of our PPI network-

alignment algorithms and exploring their applications:

– Designing a variant of PROPER that takes into account gene duplication, network

motifs, clustering within networks and modularity of biological networks.

– Improving our multiple-network alignment algorithm by incorporating informa-

tion about the level of similarities of organisms, e.g., by using data from phyloge-

netic tree.
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– Designing algorithms for detecting protein complexes and biological pathways by

using network alignment.

8.2 Future Research Directions

Traditionally, reasoning about a network (or network inference) is based on the assumption

that the whole network is observable and that there is no ambiguity in the states and labels

of nodes. Unfortunately, it is not often possible to have a complete and unambiguous view

of a network, and in many scenarios there is insufficient information. For example, when

the underlying network is hidden, we might have access only to a set of active and passive

measurements of a network, such as a partial observation of a diffusion process over a network

or a temporal state of nodes in a dynamic network. Sometimes real networks are observed

through their subgraphs (patches), where node labels are ambiguous. In this regard, network

alignment, when relying solely on the structure of networks, is the most important function

for making inferences, when we are given two large (global) patches with no further (or a very

restricted) side information.

Designing efficient algorithms, to overcome the limitations caused by an incomplete view of a

network, will be a major benefit to the community of network science researchers and will

have applications in many domains, such as public health, biology and technology. Hence, one

research goal, for making effective inferences about global (or local) structure and properties

of networks, could be to provide a unified framework for combining information from different

types of network patches. We believe that the following directions provide a promising avenue

for future research.

• Developing a fundamental understanding of the properties of networks under incom-

plete, noisy and partial observations.

• Developing a unified graph-sampling framework for characterizing a wide range of

partial observations of networks.

• Designing algorithms for network reconstruction and for inferring global (or local)

properties of networks from network samples (e.g., patches) and noisy measurements.

• Using the developed models and algorithms to make inferences about real networks,

mainly for biological networks (e.g., to find biological pathways) and for public health

studies (e.g, to study hidden population-networks).
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[137] T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj. Optimal network alignment with

graphlet degree vectors. Cancer informatics, 9:121, 2010.

[138] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you know:

inferring user profiles in online social networks. In Proc. of ACM WSDM 2010, New York

City, USA, February 2010.

[139] M. Mistry and P. Pavlidis. Gene ontology term overlap as a measure of gene functional

similarity. BMC bioinformatics, 9(1):327, 2008.

[140] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Proc. of IEEE

Symposium on Security and Privacy 2009, Oakland, CA, USA, May 2009.

[141] S. Navlakha and C. Kingsford. Network archaeology: uncovering ancient networks from

present-day interactions. PLoS Comput Biol, 7(4):e1001119, 2011.

[142] M. Newman. Networks: an introduction. Oxford university press, 2010.

[143] M. E. Newman. The structure of scientific collaboration networks. Proceedings of the

National Academy of Sciences, 98(2):404–409, 2001.

[144] C. Notredame, D. G. Higgins, and J. Heringa. T-coffee: A novel method for fast and

accurate multiple sequence alignment. Journal of molecular biology, 302(1):205–217,

2000.

[145] A. Nunes, P. Calado, and B. Martins. Resolving user identities over social networks

through supervised learning and rich similarity features. In Proceedings of the 27th

Annual ACM Symposium on Applied Computing 2012, Trento, Italy, March 2012.

[146] S. Orchard, S. Kerrien, S. Abbani, B. Aranda, J. Bhate, S. Bidwell, A. Bridge, L. Briganti,

F. S. Brinkman, G. Cesareni, et al. Protein interaction data curation: the International

Molecular Exchange (IMEx) consortium. Nature methods, 9(4):345–350, 2012.

[147] N. N. Parikshak, M. J. Gandal, and D. H. Geschwind. Systems biology and gene networks

in neurodevelopmental and neurodegenerative disorders. Nature Reviews Genetics, 16

(8):441–458, 2015.

[148] D. Park, R. S. 0001, M. Baym, C.-S. Liao, and B. Berger. IsoBase: a database of functionally

related proteins across PPI networks. Nucleic Acids Research, 39(Database-Issue):295–

300, 2011.

[149] R. Patro and C. Kingsford. Global network alignment using multiscale spectral signatures.

Bioinformatics, 28(23):3105–3114, 2012.

[150] P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In Proc. of

ACM SIGKDD 2011, San Diego, CA, USA, August 2011.

193



Bibliography

[151] P. Pedarsani, D. R. Figueiredo, and M. Grossglauser. A Bayesian Method for Matching

Two Similar Graphs without Seeds. In Conference on Communication, Control, and

Computing, Allerton Park, Monticello, IL, USA, pages 1598–1607, October 2013.

[152] S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy, V. Surendranath, B. Muthusamy,

T. Gandhi, K. Chandrika, N. Deshpande, S. Suresh, et al. Human protein reference

database as a discovery resource for proteomics. Nucleic acids research, 32(suppl 1):

D497–D501, 2004.

[153] C. Pesquita, D. Faria, H. Bastos, A. E. Ferreira, A. O. Falcão, and F. M. Couto. Metrics for

GO based protein semantic similarity: a systematic evaluation. BMC bioinformatics, 9

(Suppl 5):S4, 2008.

[154] H. T. T. Phan and M. J. E. Sternberg. PINALOG: a novel approach to align protein inter-

actionnetworks—implications for complex detection and function prediction. Bioinfor-

matics, 28(9):1239–1245, 2012.

[155] D. M. Powers. Evaluation: from Precision, Recall and F-measure to ROC, Informedness,

Markedness and Correlation. Journal of Machine Learning Technologies, 2(1):37–63,

2011.

[156] A. Radu and M. Charleston. Node handprinting: a scalable and accurate algorithm for

aligning multiple biological networks. Journal of Computational Biology, 22(7):687–697,

2015.

[157] M. Remm, C. E. Storm, and E. L. Sonnhammer. Automatic clustering of orthologs and

in-paralogs from pairwise species comparisons. Journal of molecular biology, 314(5):

1041–1052, 2001.

[158] P. Resnik et al. Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. J. Artif. Intell. Res.(JAIR),

11:95–130, 1999.

[159] A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch, M. Gatto, R. Casagrandi,

M. Murray, S. M. Vesenbeckh, and I. Rodriguez-Iturbe. Reassessment of the 2010–2011

Haiti cholera outbreak and rainfall-driven multiseason projections. PNAS, 109(17):

6602–6607, 2012.

[160] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information

diffusion across topics: idioms, political hashtags, and complex contagion on twitter.

In Proceedings of the 20th international conference on World wide web, pages 695–704.

ACM, 2011.

[161] C. Roth, S. Rastogi, L. Arvestad, K. Dittmar, S. Light, D. Ekman, and D. A. Liberles. Evolu-

tion after gene duplication: models, mechanisms, sequences, systems, and organisms.

Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 308

(1):58–73, 2007.

194



Bibliography

[162] S. M. E. Sahraeian and B.-J. Yoon. A network synthesis model for generating protein

interaction network families. PloS one, 7(8):e41474, 2012.

[163] S. M. E. Sahraeian and B.-J. Yoon. SMETANA: accurate and scalable algorithm for

probabilistic alignment of large-scale biological networks. PLoS One, 8(7):e67995, 2013.

[164] M. Salathé and J. H. Jones. Dynamics and control of diseases in networks with commu-

nity structure. PLoS Computational Biology, 6(4):e1000736, 2010.

[165] V. Saraph and T. Milenković. Magna: Maximizing accuracy in global network alignment.

Bioinformatics, 30(20):2931–2940, 2014.

[166] L. Sattenspiel and K. Dietz. A Structured Epidemic Model Incorporating Geographic

Mobility Among Regions. Mathematical Biosciences, 128(1):71–91, 1995.

[167] L. Sattenspiel and D. A. Herring. Simulating the Effect of Quarantine on the Spread of

the 1918–19 Flu in Central Canada. Bulletin of Mathematical Biology, 65(1):1–26, 2003.

[168] A. Schlicker and M. Albrecht. Funsimmat: a comprehensive functional similarity

database. Nucleic acids research, 36(suppl 1):D434–D439, 2008.

[169] B. Seah, S. S. Bhowmick, and C. F. D. Jr. DualAligner: a dual alignment-based strategy to

align protein interaction networks. Bioinformatics, 30(18):2619–2626, 2014.

[170] D. Shah. Gossip algorithms. Now Publishers Inc, 2009.

[171] R. Sharan and T. Ideker. Modeling cellular machinery through biological network

comparison. Nature biotechnology, 24(4):427–433, 2006.

[172] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp,

and T. Ideker. Conserved patterns of protein interaction in multiple species. Proceedings

of the National Academy of Sciences, 102(6):1974–1979, 2005.

[173] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp,

and T. Ideker. Conserved patterns of protein interaction in multiple species. Proceedings

of the National Academy of Sciences of the United States of America, 102(6):1974–1979,

2005.

[174] B. Shulgin, L. Stone, and Z. Agur. Pulse Vaccination Strategy in the SIR Epidemic Model.

Bulletin of Mathematical Biology, 60(6):1123–1148, 1998.

[175] R. Singh, J. Xu, and B. Berger. Pairwise Global Alignment of Protein Interaction Networks

by Matching Neighborhood Topology. In Proc. of Research in Computational Molecular

Biology 2007, San Francisco, CA, USA, April 2007.

[176] R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks

with application to functional orthology detection. Proceedings of the National Academy

of Sciences, 105(35):12763–12768, 2008.

195



Bibliography

[177] K. Sjölander. Phylogenomic inference of protein molecular function: advances and

challenges. Bioinformatics, 20(2):170–179, 2004.

[178] D. A. Spielman. Faster isomorphism testing of strongly regular graphs. In Proc. of ACM

STOC 1996, Philadephia, Pen., USA, May 1996.

[179] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM

Journal on Computing, 40(6):1913–1926, 2011.

[180] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal on

Computing, 40(4):981–1025, 2011.

[181] M. Srivatsa and M. Hicks. Deanonymizing mobility traces: Using social network as a side-

channel. In Proceedings of the 2012 ACM conference on Computer and communications

security, pages 628–637. ACM, 2012.

[182] L. Stone, B. Shulgin, and Z. Agur. Theoretical Examination of the Pulse Vaccination Policy

in the SIR Epidemic Model. Mathematical and Computer Modelling, 31(4):207–215,

2000.

[183] S. Suthram, T. Sittler, and T. Ideker. The Plasmodium protein network diverges from

those of other eukaryotes. Nature, 438(7064):108–112, 2005.

[184] Y. Tanahashi, J. R. Rowland, S. North, and K.-L. Ma. Inferring Human Mobility Patterns

from Anonymized Mobile Communication Usage. In MoMM 2012, pages 151–160. ACM,

2012.

[185] A. J. Tatem. Côte d’Ivoire AfriPop Data 2010 (alpha version). Emerging Pathogens

Institute, University of Florida, 2010. URL http://www.clas.ufl.edu/users/atatem/index_

files/CIV.htm.

[186] J. Taubenberger and D. Morens. 1918 Influenza: The mother of all pandemics. Rev

Biomed, 17:69–79, 2006.

[187] S. A. Teichmann and M. M. Babu. Gene regulatory network growth by duplication.

Nature genetics, 36(5):492–496, 2004.

[188] A. H. Y. Tong, M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader, N. Pagé, M. Robinson,

S. Raghibizadeh, C. W. Hogue, H. Bussey, et al. Systematic genetic analysis with ordered

arrays of yeast deletion mutants. Science, 294(5550):2364–2368, 2001.

[189] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph match-

ing: Models and global optimization. In Computer Vision–ECCV 2008, pages 596–609.

Springer, 2008.

[190] J. Truscott and N. M. Ferguson. Evaluating the Adequacy of Gravity Models as a Descrip-

tion of Human Mobility for Epidemic Modelling. PLOS Computational Biology, 8(10):

e1002699, 2012.

196



Bibliography

[191] United Nations, Department of Economic and Social Affairs. World Population

Prospects, the 2010 Revision, 2010. URL http://esa.un.org/unpd/wpp/index.htm.

[192] R. Van Der Hofstad. Random graphs and complex networks. Available: https://www.win.

tue.nl/~rhofstad/NotesRGCN.pdf, 2016.

[193] M. Vidal, M. E. Cusick, and A.-L. Barabási. Interactome networks and human disease.

Cell, 144(6):986–998, 2011.

[194] V. Vijayan, V. Saraph, and T. Milenković. MAGNA++: Maximizing Accuracy in Global
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