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Abstract
This thesis is devoted to the derivation of error estimates for partial differential equations

with random input data, with a focus on a posteriori error estimates which are the basis for

adaptive strategies. Such procedures aim at obtaining an approximation of the solution with a

given precision while minimizing the computational costs. If several sources of error come

into play, it is then necessary to balance them to avoid unnecessary work.

We are first interested in problems that contain small uncertainties approximated by finite

elements. The use of perturbation techniques is appropriate in this setting since only few

terms in the power series expansion of the exact random solution with respect to a parameter

characterizing the amount of randomness in the problem are required to obtain an accurate

approximation. The goal is then to perform an error analysis for the finite element approxi-

mation of the expansion up to a certain order. First, an elliptic model problem with random

diffusion coefficient with affine dependence on a vector of independent random variables

is studied. We give both a priori and a posteriori error estimates for the first term in the

expansion for various norms of the error. The results are then extended to higher order approx-

imations and to other sources of uncertainty, such as boundary conditions or forcing term.

Next, the analysis of nonlinear problems in random domains is proposed, considering the one-

dimensional viscous Burgers’ equation and the more involved incompressible steady-state

Navier-Stokes equations. The domain mapping method is used to transform the equations in

random domains into equations in a fixed reference domain with random coefficients. We give

conditions on the mapping and the input data under which we can prove the well-posedness

of the problems and give a posteriori error estimates for the finite element approximation of

the first term in the expansion. Finally, we consider the heat equation with random Robin

boundary conditions. For this parabolic problem, the time discretization brings an additional

source of error that is accounted for in the error analysis.

The second part of this work consists in the analysis of a random elliptic diffusion problem

that is approximated in the physical space by the finite element method and in the stochastic

space by the stochastic collocation method on a sparse grid. Considering a random diffusion

coefficient with affine dependence on a vector of independent random variables, we derive a

residual-based a posteriori error estimate that controls the two sources of error. The stochastic

error estimator is then used to drive an adaptive sparse grid algorithm which aims at alleviating

the so-called curse of dimensionality inherent to tensor grids. Several numerical examples are

given to illustrate the performance of the adaptive procedure.
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Résumé
Cette thèse est consacrée à la dérivation d’estimations d’erreur pour des équations aux dérivées

partielles contenant des données aléatoires. Un accent particuliers est mis sur les estimateurs

a posteriori qui sont à la base d’algorithmes adaptatifs. Ces derniers visent à obtenir une

approximation de la solution avec une certaine précision tout en minimisant le coût du calcul.

Lorsque plusieurs sources d’erreurs entrent en jeu, il est judicieux de les équilibrer afin d’éviter

tout travail inutile.

Nous nous intéressons pour commencer à des problèmes contenant de petites incertitudes

résolus par la méthode des éléments finis. Dans ce cas, l’utilisation de méthodes dites de

perturbation est indiquée car une bonne approximation de la solution peut être obtenue

avec peu de termes dans le développement en série de puissances de la solution exacte par

rapport à un paramètre controllant le niveau d’incertitude du problème. Le but principal

de ce travail est d’effectuer une analyse d’erreur pour l’approximation par éléments finis

du développement à un certain ordre. Nous considérons pour commencer un problème

modèle elliptique avec un coefficient de diffusion aléatoire qui dépend de manière affine

d’un vecteur de variables aléatoires indépendantes. Des estimations d’erreur a priori et a

posteriori sont données pour le premier terme dans le développement de la solution en

considérant différentes normes de l’erreur. Les résultats obtenus sont alors généralisés pour

des approximations d’ordres supérieurs ainsi que pour des problèmes contenant d’autres

sources d’incertitudes, comme par exemple les conditions au bord ou le terme de force.

L’étude se poursuit en considérant des problèmes non-linéaires définis sur des domaines

aléatoires, tout d’abord l’équation de Burgers à une dimension d’espace puis les équations de

Navier-Stokes stationnaires incompressibles. Les problèmes sont reformulés sur un domaine

fixe de reference à l’aide d’une transformation introduisant alors des coefficients aléatoires

dans les équations. Nous donnons des conditions sur la transformation et les données sous

lesquelles les problèmes sont bien posés et nous donnons des estimations d’erreur pour le

premier terme du développement. Finalement, nous considérons le problème de la chaleur

avec des conditions au bord de type Robin qui contiennent des incertitudes. Pour ce problème

parabolique, la discrétisation temporelle ajoute une source supplémentaire d’erreur qui est

prise en compte dans l’analyse d’erreur.

Dans la deuxième partie de ce travail, nous analysons un problème de diffusion elliptique avec

coefficient aléatoire résolu approximativement par la méthode des éléments finis en espace

physique et par la méthode de collocation stochastique avec grille fine en espace stochastique.

En considérant un coefficient de diffusion dépendant de manière affine d’un vecteur de
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Résumé

variables aléatoires indépendantes, nous donnons un estimateur d’erreur a posteriori basé sur

le résidu qui contrôle les deux sources d’erreur. L’estimateur controlant l’erreur stochastique

est ensuite utilisé dans un algorithme construisant de manière adaptative une grille peu dense,

permettant ainsi de palier au problème du fléau de la dimension dont souffrent les grilles de

type tensiorel. Plusieurs exemples numériques sont donnés pour illustrer les performances de

l’algorithme adaptatif.

Mots clefs : EDP avec données aléatoires, quantification des incertitudes, analyse d’erreur

a priori et a posteriori, éléments finis, technique de perturbation, collocation stochastique,

équations elliptiques, Navier-Stokes stationaire, équation de la chaleur
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Introduction

Partial differential equations (PDEs) are widely used for modelling problems in many fields

such as physics, biology or engineering. Nowadays, uncertainty is often included in mathe-

matical models arising from the simulation of complex systems. The uncertainty can reflect an

intrinsic variability of the system (aleatory uncertainty) or our inability to adequately charac-

terize all the inputs (epistemic uncertainty), due for instance to experimental measurements.

It can occur in the coefficients, the forcing term, the geometry, the boundary conditions,

the initial condition or combinations of them. A possible way to describe the uncertainties

present in the model is to use a probability framework. In such a setting, the uncertain input

data are characterized with random variables, or more generally random fields, yielding PDEs

with random input. In a forward uncertainty quantification (UQ) problem, the goal is then to

determine the effect of the uncertainty on the solution or a specific quantity of interest.

Several methods have been developed to tackle the numerical approximation of such problems

in both the deterministic and, more recently, the stochastic variables. We give a short overview

of the available methods, pointing to some references for an in-depth description, but we have

no pretension to be exhaustive.

The best known and most commonly used methods for solving deterministic problems numer-

ically are the finite difference [112,117], the finite element [31,49,61] and the finite volume [85]

methods, for which the theory is at a mature stage. Many other methods have been devel-

oped, either new methods or extension of the ones mentioned above, such as discontinuous

Galerkin [105], boundary element [30], meshless [86] or extended finite element methods [81].

The selection of the method depends upon the type of problems to solve: elliptic, parabolic or

hyperbolic.

For the approximation of random PDEs, the most popular method is certainly the Monte-Carlo

method (see [63] for instance) which consists in solving the equations for i.i.d. realizations of

the random input. The main drawback of this method is its well-known slow convergence rate

with respect to the sample size K , namely of O (1/
�

K ). However, the convergence is indepen-

dent of the dimension of the random space and this method is very easy to use in practice. To

improve the convergence rate of the method, some extensions have been introduced such

as the quasi-Monte Carlo [54, 55] and the multi-level Monte-Carlo [68] methods. Other than

MC type methods, we mention the stochastic spectral methods comprising the Stochastic
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Galerkin (SG) [67, 90] and the Stochastic Collocation (SC) [7, 97, 124] methods. These methods

exploit the possible regularity of the solution with respect to the random input combining the

generalized Polynomial Chaos (gPC) expansion of the solution with a Galerkin projection or

an interpolation procedure. Finally, in the framework of PDEs with small uncertainties, the

perturbation or Neumann series expansion methods [6,37,82,127] appear to be an appropriate

choice. For all these methods, an approximation in the physical space can be obtained using

any deterministic method mentioned above. In particular, in this thesis we focus on the finite

element method.

When a numerical method is used to solve a problem for which the exact solution is not at hand,

approximation errors are introduced. An error analysis should then be done to appropriately

estimate the various sources of error. In an a priori error analysis, the convergence of the

method is assessed under suitable regularity assumptions on the exact solution. The a priori

error estimate gives useful information about the asymptotic behaviour of the numerical

approximation when the various discretization parameters vary. However, this theoretical

bound usually depend on the unknown solution and is thus not a computable quantity. In

a posteriori error analysis, the goal is to provide computable error estimators that depend

only on the numerical approximation and the input data and that are localized in space.

Having such error estimators available can be necessary in many situations. Indeed, if the

solution presents local features evolving at fine scale, such as shocks, boundary layers or

singularities due to re-entrant corners in physical space, very fine approximation spaces are

required to capture them. However, this becomes quickly numerically unaffordable due to

the limitations in computer power and memory. A remedy is then to use adaptive strategies

based on a (reliable and efficient) a posteriori error estimator, refining only where needed, to

get satisfactory accuracy in the approximation while limiting the computational effort. When

several sources of error are affecting the numerical solution, the estimator should also furnish

an estimation of the contribution of each error component to the total error, so that it can be

used for balancing the errors.

The derivation of a posteriori error estimate controlling the finite element error started in

the late seventies with the work by Babuška and Rheinboldt [8], where a residual-based error

estimate is derived. Since then, many different types of a posteriori error estimates for the FEM

have been introduced, such as error estimators obtained by solving local problems [1, 41, 83]

or hierarchical [14], post-processed [128] and goal-oriented [13, 22, 100] error estimators, just

to mention a few. We refer to Verfürth [118], Ainsworth and Oden [3] or Grätsch and Bathe [73]

for a review of these different a posteriori error estimation techniques. Concerning the error

estimation of methods for solving random PDEs, a posteriori error estimators in the energy

norm for the stochastic Galerkin finite element method (SG-FEM) are derived in [24, 58, 59],

where adaptive refinement algorithms are proposed for both stochastic and physical spaces.

In the algorithm proposed in [59], the refined mesh is the same for all generalized polynomial

chaos (gPC) modes, contrary to the one in [58] where the refinement procedure is applied

independently for each mode. In [24], the adaptive procedure is driven by the two-sided

estimates the authors obtained for the error reduction when the finite element subspace,
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respectively the stochastic approximation space, is enriched. Concerning the stochastic

collocation finite element method (SC-FEM), a priori error estimates are given in [7, 20] but,

to our knowledge, no a posteriori error estimate for the whole solution in suitable norms has

been derived yet. Recently, a posteriori error estimates for a specific quantity of interest have

been developed. Goal-oriented error estimates can be found in [33, 35, 92] for the SG method

and in [4] for the SC method.

We can distinguish two parts in this thesis. In the first part, which encompasses Chapters 1, 2,3

and 4, we consider PDEs with small uncertainties affecting the coefficients, the forcing term,

the physical domain, the boundary conditions or combinations of them. The assumption of

small uncertainties naturally leads to the choice of perturbation techniques for the approxi-

mation of the stochastic space. Indeed, if the level of uncertainty is small, then only few terms

in the power series expansion of the solution with respect to a parameter ε characterizing the

amount of randomness of the problem will be needed to obtain an accurate approximation.

With this technique, we are reduced to solve only deterministic problems whose solutions can

be computed approximately with for instance the finite element method. The main goal of

this thesis is then to derive error estimates that control the two sources of error: the stochastic

error due to the truncation in the expansion of the solution and the spatial error coming from

the finite element approximation of the continuous deterministic problems.

To have a general idea of the methodology, let us consider an abstract problem of the form:

find u(·,Y(ω)) ∈V such that almost surely

A (u, v ;Y(ω)) = F (v ;Y(ω)) ∀v ∈V

where Y is a random vector used to characterize the randomness in the input data, whose

variability is controlled by a (small) parameter ε. Here, V is a given Hilbert space, A is a

bilinear form on V ×V and F is a linear functional on V , the latter two being parametrized

by the random vector Y. The solution u of this problem also depends on Y and, adopting a

perturbation approach, it is then expanded as

u(x,Y(ω)) = u0(x)+εu1(x,Y(ω))+ε2u2(x,Y(ω))+ . . .

Considering a finite element space Vh ⊂V , the first term in the expansion is approximated by

u0,h ∈Vh , the solution of

A (u0,h , vh ;y0) = F (vh ,y0) ∀vh ∈Vh

with y0 = E[Y]. Defining the residual for u0,h by

R(v ;Y(ω)) := F (v ;Y(ω))−A (u0,h , v ;Y(ω)),

the first step in the residual-based error estimation, that separates the two sources of error, is
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then

A (u −u0,h , v ;Y(ω)) = F (v ;Y(ω))−A (u0,h , v ;Y(ω)) = I+ II

with

I := F (v ;y0)−A (u0,h , v ;y0) = R(v ;y0)

II := F (v ;Y(ω))−F (v ;y0)−A (u0,h , v ;Y(ω))+A (u0,h , v ;y0) = R(v ;Y(ω))−R(v ;y0).

The two terms can then be bounded separately. The first term I is nothing else than the

residual for u0,h that can be bounded using a standard procedure as described by Verfürth

in [118]. It yields an a posteriori error estimator that is localized on each element of the spatial

mesh which can be used for mesh refinement. The second term is the one controlling the

randomness. In this work, we will apply this methodology to a wide range of problems, as

detailed in the thesis outline given below.

A different perspective is considered in the second part of this thesis, constituted of Chapter

5. Dropping the assumption of small uncertainty, and thus making perturbation techniques

unsuitable, we use the stochastic collocation method to solve the random PDE. For the abstract

problem considered above, this method, combined with the finite element method for the

physical space discretization, consists in solving

A (uh(·,yk ), vh ;yk ) = F (vh ;yk ) ∀vh ∈Vh

for a given set of collocation points yk , k = 1, . . . , Nc , in the stochastic space and building a

global polynomial approximation

uh,Nc (x,Y(ω)) =
Nc∑

k=1
uh(x,yk )Lk (Y(ω))

for suitable multivariate polynomials Lk . The goal is then to estimate the error due to this

method when combined with the finite element method for the spatial discretization. We

propose a residual-based a posteriori error estimate for an elliptic diffusion problem. It

consists of two terms controlling each source of error, the SC and the FE error. The stochastic

estimator is then used to drive an adaptive sparse grid algorithm.

The precise outline of this thesis is as follows.

Thesis outline

We start in Chapter 1 with an in-depth analysis of a second order elliptic differential equation

with random diffusion coefficient. We present the methodology we are using, namely a

perturbation technique for the stochastic space approximation and the finite element method

for the physical space discretization. We provide then a priori and a posteriori error analysis in

various norms and for several approximations. Extension to some class of nonlinear problems
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and a comparison in terms of computational costs with the stochastic collocation method

are also provided. Many numerical experiments are presented to illustrate the theoretical

findings.

The results are then extended in Chapter 2 where other sources of uncertainty are considered.

More precisely, we consider first the case of random Neumann boundary conditions and

then the combination of two uncertain inputs, the diffusion coefficient and the forcing term,

described by two independent sets of random variables.

In Chapter 3, we consider nonlinear partial differential equations defined in random domains.

Using the so-called domain mapping method, we use a random mapping to transform these

equations into PDEs on a fixed reference domain with random coefficients. We start with the

analysis of the one-dimensional steady-state viscous Burgers’ equation in random intervals

and consider then the more involved steady-state incompressible Navier-Stokes equations in

random domains. We show the well-posedness of these problems, under suitable conditions

on the mapping and the input data, and perform a posteriori error estimation for the finite

element approximation of the first term in the expansion.

A time dependent parabolic problem is analysed in Chapter 4, considering the heat equation

with random Robin boundary conditions. For the stochastic space, physical space and time

discretizations, we use a perturbation technique, the finite element method and the (implicit)

backward Euler scheme, respectively. We give an a posteriori error estimate for the first order

approximation, which is here constituted of three parts controlling each source of error.

We conclude this thesis with an adaptive sparse grid algorithm for the stochastic collocation

finite element method in Chapter 5. Considering again the diffusion model problem with

random diffusion coefficient, that is assumed to depend affinely on a finite number of random

variables, we derive an a posteriori error estimate for the total error that provides a guaranteed

upper bound for the error. We propose then an algorithm that adaptively construct the multi-

index set underlying the sparse grid and give numerical results to illustrate its performances.

Note: all the one-dimensional numerical experiments have been carried out using MATLAB

Released R2012a, while the 2D numerical results have been obtained using either FreeFem++

3.21 [78] or MATLAB.
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1 Elliptic model problems with random
diffusion coefficient

This chapter is mainly based on the paper [74] with respect to which we have done minor

changes in the notation, essentially the distinction between a random vector Y : Ω→ Γ⊂RL

and a realization y ∈ Γ. Moreover, we have added the following complements. First, a general

statement of the model problem under consideration in Section 1.1. Additional numerical

results are provided in Section 1.7. In particular, we present adaptive algorithms with non-

uniform refinement which balances the two sources of error, namely the physical space

discretization and the uncertainty. We give in Appendix some details about the derivation of

the various deterministic problems for the first three terms in the expansion of the random

solution, and state a precise link between each component of such terms and the derivatives

of u with respect to the stochastic space variable. Finally, a detailed proof of the upper and

lower bounds of a certain error estimator and estimates of the interpolation constant closes

this chapter.

Introduction

In this chapter, we are focusing on PDEs with small uncertainties (for instance the linear model

problem −div(a∇u) = f with a = a0 +ε(a1Y1 + . . .+aLYL) where ε is small and Y1, . . . ,YL are

random variables). Following a different path than Monte-Carlo type, stochastic Galerkin or

stochastic collocation methods, we adopt a perturbation approach, see e.g. [37, 82], which is

appropriate for problems with small variability. We thus expand the stochastic solution u as

u(x,ω) = u0(x)+εu1(x,ω)+O (ε2) (1.1)

where ε is a parameter controlling the magnitude of uncertainty in the input which is assumed

to be small. Uncoupled problems can be derived to find the deterministic part u0 and the

stochastic one u1 (and higher order terms), the error analysis being performed in various

norms. The main goal is then to derive a posteriori estimates for the error between the exact

(random) solution u and certain approximations to be defined. For instance, if we write u0,h

for the FE approximation of u0, then we will show that the error u −u0,h splits into two parts.

7
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More precisely, we will derive an a posteriori error estimator η composed of two deterministic

computable quantities η1 and η2 such that the following upper bound for the error holds

‖u −u0,h‖ ≤Cη, η= (
η2

1 +η2
2

) 1
2 ,

with the norm ‖·‖ to be defined and where C is a constant depending only on the domain D , the

mesh and a (deterministic) ellipticity constant. Therefore, by solving only one deterministic

problem we can obtain an upper bound of the error due to space discretization (η1) and

the error due to uncertainty (η2). This estimator can then be used to determine a mesh

size yielding comparable accuracy in h and ε. The same kind of results can be obtained for

‖u − (u0,h +εu1,h)‖, yielding a better accuracy in ε, and then for higher order terms.

We mention that the a posteriori error estimator that we obtain for u −u0,h for the elliptic

model problem (1.2) has similarities with the one derived in [26], although the context of

this paper is quite different from the one considered here. In [26] the authors derive an

adaptive finite element method (AFEM) for elliptic PDEs with discontinuous coefficients. The

proposed algorithm takes into account the error due to FE approximation but also the effect of

replacing the discontinuous input data by some piecewise polynomial approximation, which

plays the same role as a0 in our setting. More precisely, before applying a standard AFEM to

the problem, the mesh is first refined so that the discontinuous input are approximated by

piecewise polynomials with a prescribed accuracy. The specific form of the uncertain input

we consider here, see (1.12), allows us to increase the accuracy in ε by adding terms in the

expansion (1.1) of u.

This chapter is organized as follows. The model problem, a second-order elliptic diffusion

problem with homogeneous Dirichlet boundary conditions and random diffusion coefficient,

is stated in Section 1.1. The diffusion coefficient is assumed, among others, to be expanded

as a finite sum which depends on independent random variables with zero mean and unit

variance. The methodology we are using to approximation the solution is given in Section

1.2. Error analysis in the H 1
0 and L2 norms in the physical space, as well as goal-oriented error

estimation, is performed in Section 1.3 where the exact (random) solution u is approximated

by the (deterministic) FE approximation of u0. In Section 1.4, we consider the error between u

and the FE approximation of u0 +εu1, before giving a generalization for an approximation

of arbitrary order in ε. The theory is then extended to nonlinear problems in Section 1.5. In

Section 1.6, a comparison of the computational costs for the stochastic collocation method

and the one presented here is performed. Section 1.7 is devoted to numerical examples

used to illustrate and validate the theoretical results. Finally, a few complements are given in

Appendix.
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1.1. Problem statement

1.1 Problem statement

We start with a general and detailed description of the problem under consideration in this

chapter, namely an elliptic diffusion PDE with random diffusion coefficient. In this description,

we will make some distinctions in notation that will no longer be used in the next sections for

ease of presentation.

General problem statement

Let D be a bounded polyhedral domain in Rd , d = 1,2,3, and (Ω,F ,P ) a complete probability

space, where Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0,1] is a

probability measure. For any p ∈ [1,∞), let Lp
P (Ω) be the space of real-valued random variables

Y on (Ω,F ,P ) that are p-integrable with respect to P , i.e. such that
∫
Ω |Y (ω)|p dP (ω) <∞.

Moreover, if Y ∈ L1
P (Ω), we denote its expected value (or mean) by E [Y ] =∫

Ω Y (ω)dP (ω). The

following problem is considered.

Find u : D ×Ω→R such that P-almost everywhere in Ω (in other words almost surely in Ω):{
−div(a(x,ω)∇u(x,ω)) = f (x) x ∈ D

u(x,ω) = 0 x ∈ ∂D
(1.2)

where a is a random field on (Ω,F ,P ) over L∞(D). For simplicity, the right-hand side f is

assumed to be deterministic, f ∈ L2(D), but the case of stochastic forcing term could be

considered as well adding no real difficulty, see Chapter 2. Note that the divergence and

gradient operators apply only on x, the physical space variable. Let H 1
0 (D) be endowed with

the following norm

‖v‖H 1
0 (D) := ‖∇v‖L2(D) =

(∫
D
|∇v |2

) 1
2

.

The problem (1.2) can be written in weak form as:

find u ∈ L2
P (Ω)⊗H 1

0 (D) such that

E

[∫
D

a∇u ·∇vdx
]
= E

[∫
D

f vdx
]

∀v ∈ L2
P (Ω)⊗H 1

0 (D). (1.3)

Since the tensor product space L2
P (Ω)⊗ H 1

0 (D) is isomorphic (see for instance [10]) to the

Bochner space

L2
P (Ω; H 1

0 (D)) :=
{

v : Ω→ H 1
0 (D) |v is strongly measurable and ‖v‖L2

P (Ω;H 1
0 (D)) <∞

}
(1.4)

where

‖v‖2
L2

P (Ω;H 1
0 (D))

:=
∫
Ω
‖∇v(·,ω)‖2

L2(D)dP (ω) = E
[
‖∇v‖2

L2(D)

]
,

we can see the weak solution u of problem (1.2) as a function u : Ω→ H 1
0 (D). The correspond-

9
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ing pointwise weak formulation, equivalent to (1.3), is then given by:

find u(·, w) ∈ H 1
0 (D) such that

∫
D

a(x,ω)∇u(x,ω) ·∇v(x)dx =
∫

D
f (x)v(x)dx ∀v ∈ H 1

0 (D),P-a.e. in Ω. (1.5)

If the diffusion coefficient a is (uniformly) bounded from below and from above, namely

∃0 < ami n ≤ amax <∞ : P (ω ∈Ω : ami n ≤ a(x,ω) ≤ amax ∀x ∈ D̄) = 1, (1.6)

then we can show, by a straightforward application of Lax-Milgram’s Lemma, that problem

(1.5) is well-posed. More precisely, there exists a unique solution u ∈ L2
P (Ω; H 1

0 (D)) which

satisfies the a priori estimate

‖u‖L2
P (Ω;H 1

0 (D)) ≤
CP

ami n
‖ f ‖L2(D)

with CP =CP (D) the Poincaré constant.

Remark 1.1.1. With the above assumptions, the solution belongs to Lk
P (Ω; H 1

0 (D)) for any

k ∈ [1,∞]. This is also true in the more general case f ∈ Lkp
P (Ω; H 1

0 (D)) and a(x,ω) ≥ ami n(ω) > 0

a.e. in D and a.s. in Ω with 1
ami n

∈ Lkq
P (Ω), where 1

p + 1
q = 1 (see [7]).

We further assume that the random coefficient is well approximated by the finite expansion

a(x,ω) ≈ aL(x,ω) = a0(x)+ε
L∑

j=1
a j (x)Y j (ω) with a0(x) = E[a(x, ·)], (1.7)

where {Y j }L
j=1 are independent random variables with zero mean and unit variance.

Remark 1.1.2. The characterization (1.7) of the random input can be achieved using for in-

stance a truncated Karhunen-Loève type expansion (see [87, 88]) if the mean and the two-

point correlation (or equivalently the covariance) of a is known. In this case, the functions a j ,

j = 1, . . . ,L, in (1.7) write a j (x) =
√

λ jϕ j (x) with {λ j ,ϕ j } the eigenpairs of the (compact and

self-adjoint) integral operator associated with the covariance kernel V : D ×D →R given by

V (x,x′) := 1

ε2 E
[
(a(x,ω)−a0(x))(a(x′,ω)−a0(x′))

]
.

Notice that, in general, the family of random variables appearing in the KL expansion of an

arbitrary random field a are only uncorrelated (see [111]), but not necessarily independent.

The problem (1.2) is then approximated by:

10



1.1. Problem statement

find uL : D ×Ω→R such that P-a.e. in Ω the following equation holds{
−div(aL(x,ω)∇uL(x,ω)) = f (x) x ∈ D

uL(x,ω) = 0 x ∈ ∂D
(1.8)

which admits a unique weak solution uL ∈ L2
P (Ω; H 1

0 (D)) under the assumption

∃0 < aL,min ≤ aL,max <∞ : P (ω ∈Ω : aL,min ≤ aL(x,ω) ≤ aL,max, ∀x ∈ D̄) = 1.

The stochasticity of the problem (1.8) for uL can therefore be parametrized by the random

vector Y = (Y1, . . . ,YL). Indeed, with the definition of aL given in (1.7) we have aL(x,ω) =
ãL(x,Y1(ω), . . . ,YL(ω)) and thus uL(x,ω) = ũL(x,Y1(ω), . . . ,YL(ω)) thanks to the Doob-Dynkin

Lemma (see [6, p.6] for instance). We can therefore derive a parametric deterministic weak

formulation of (1.8). Let Γ = Γ1 ×Γ2 × . . .×ΓL where Γ j denotes the bounded image in R of

the random variable Y j , i.e. Γ j := Y j (Ω), for j = 1, . . . ,L. Moreover, let ρ j : Γ j →R+ denote the

probability density function of Y j , j = 1, . . . ,L. Thanks to the independence of the random

variables, the joint density function ρ : Γ→ R+ of the random vector Y factorizes as ρ(y) =∏L
j=1ρ j (y j ) for all y = (y1, . . . , yL) ∈ Γ. We can thus replace the probability space (Ω,F ,P ) by its

image (Γ,B(Γ),ρ(y)dy), where B(Γ) denotes the Borel σ-algebra defined on Γ and ρ(y)dy the

probability measure of Y. For any measurable function g̃L : Γ→R defined on (Γ,B(Γ),ρ(y)dy),

the expectation of the random variable gL = g̃L ◦Y : Ω→R is then given by

E[gL] =
∫
Ω

gL(ω)dP (ω) =
∫
Ω

g̃L(Y(ω))dP (ω) =
∫
Γ

g̃L(y)ρ(y)dy.

Remark 1.1.3. The error analysis for u −u0 with u0 the first term in the expansion, see (1.1),

is exactly the same as the one performed in Section 1.3 if the random variables are assumed

uncorrelated instead of independent, i.e. such that E[Yi Y j ] = E[Yi ]E[Y j ] for any i , j = 1, . . . ,L

with i �= j . For the higher order approximations, however, few changes have to be made to

the analysis given in Section 1.4. Moreover, the definitions given above are not restricted to

continuous random variables but also hold for discrete random variables. In such a case,

we consider a generalized probability density function defined via Dirac delta functions. For

instance, the density function of a random variable Y j taking value ±1 with probability 1
2 would

be

ρ j (y j ) = 1

2
(δ(y j +1)+δ(y j −1)).

Such random variables will be considered in the numerical results of Section 1.7.

The (parametric, pointwise) weak formulation of problem (1.8) reads:

find ũL : Γ→ H 1
0 (D) such that

∫
D

ãL(x,y)∇ũL(x,y) ·∇v(x)dx =
∫

D
f (x)v(x)dx ∀v ∈ H 1

0 (D),ρ-a.e. in Γ, (1.9)

11



Chapter 1. Elliptic model problems with random diffusion coefficient

where ãL(x,y) = a0(x)+ε
∑L

j=1 a j (x)y j . Thanks again to Lax-Milgram’s lemma, we know that

there exists a unique solution ũL ∈ L2
ρ(Γ; H 1

0 (D)) of problem (1.9) which satisfies

‖ũL‖L2
ρ(Γ;H 1

0 (D)) ≤
CP

ami n
‖ f ‖L2(D),

where similarly to (1.4) we define

L2
ρ(Γ; H 1

0 (D)) :=
{

v : Γ→ H 1
0 (D) |v is strongly measurable and ‖v‖L2

ρ(Γ;H 1
0 (D)) <∞

}
(1.10)

with

‖v‖2
L2
ρ(Γ;H 1

0 (D))
:=

∫
Γ
‖∇v(·,y)‖2

L2(D)ρ(y)dy.

Notice that the weak solution uL of problem (1.8) and the solution ũL of problem (1.9) are

related by

uL(x,ω) = ũL(x,Y1(ω), . . . ,YL(ω)) a.s. in Ω

and we have

‖uL‖L2
P (Ω;H 1

0 (D)) = ‖ũL‖L2
ρ(Γ;H 1

0 (D)).

For the sake of presentation ãL and ũL will be denoted again aL and uL , respectively, i.e. we

write aL(x,ω) = aL(x,Y1(ω), . . . ,YL(ω)) and uL(x,ω) = uL(x,Y1(ω), . . . ,YL(ω)), when no ambigu-

ity arises. Moreover, the goal here is not to analyse the error committed when replacing a by

aL , i.e. when the random input is approximated via L random variables. Therefore, we assume

from now on that a = aL , i.e. u = uL . We mention that a complete analysis of the (strong, weak)

error u −uL can be found in [44].

Specific problem statement

We give now a short statement of the problem that will be analysed in the subsequent sections,

indicating only the necessary assumptions and using the shorthand notation described above.

We consider the following problem.

Find u : D ×Ω→R such that a.s. in Ω:{
−div(a(x,ω)∇u(x,ω)) = f (x) x ∈ D

u(x,ω) = 0 x ∈ ∂D,
(1.11)

where f ∈ L2(D) is deterministic and a is a random field on (Ω,F ,P ) over L∞(D) which

satisfies the following assumptions (see [6, 7, 10] for instance) that ensure, among others, the

well-posedness of the problem:

(A1) coercivity and continuity: a is bounded and uniformly coercive, i.e. there exist two real

12



1.1. Problem statement

constants 0 < ami n ≤ amax <∞ such that

P (ω ∈Ω : ami n ≤ a(x,ω) ≤ amax ,∀x ∈ D) = 1.

(A2) finite dimensional noise: a is parametrized by L mutually independent random variables

a(x,ω) = a(x,Y1(ω),Y2(ω), . . . ,YL(ω)). More precisely, we assume that a can be expanded

as

a(x,ω) = a0(x)+ε
L∑

j=1
a j (x)Y j (ω), (1.12)

where the
{
Y j

}L
j=1 are independent random variables with zero mean and unit variance,

a j ∈W 1,∞(D) for j = 0, . . . ,L and ε ∈ [0,εmax ] with εmax the maximum value such that

property (A1) is satisfied. The functions a j , j = 0,1, . . . ,L, and the random variables Y j ,

j = 1, . . . ,L, are assumed to be independent of ε.

Notice that assuming a j ∈ L∞(D) for j = 0,1, . . . ,L is enough to ensure the well-posedness of

the problem. We impose here more regularity in order to avoid difficulties that are beyond the

scope of this work. We refer to [23] for a derivation of a posteriori error estimation in the case

of discontinuous coefficients. Moreover, as a consequence of assumption (A1), the random

variables Y j , j = 1, . . . ,L, have to be bounded almost surely. In particular, they have finite

moment of any order. Finally, from assumption (A2) it follows that the mean and variance of

a are given by E[a](x) = a0(x) and V ar [a](x) = ε2 ∑L
j=1 a2

j (x), respectively. Therefore, for fixed

functions a j , we can modify the variance of a by changing the value of ε. From assumption

(A2), the solution u is a function of the random variables Y j , i.e. u(x,ω) = u(x,Y1(ω), . . . ,YL(ω)).

Replacing (Ω,F ,P ) by (Γ,B(Γ),ρ(y)dy), the stochastic elliptic boundary value problem (1.11)

can equivalently be written in the following deterministic parametric form:

find u : D ×Γ→R such that ρ-a.e. in Γ we have{
−div

(
a(x,y)∇u(x,y)

) = f (x) x ∈ D

u(x,y) = 0 x ∈ ∂D.
(1.13)

The (parametric, pointwise) weak form of problem (1.13) then reads:

find u(·,y) ∈ H 1
0 (D) such that

A (u(·,y), v ;y) =F (v) ∀v ∈ H 1
0 (D), ρ-a.e. in Γ. (1.14)

where

A (u(·,y), v ;y) =
∫

D
a(x,y)∇u(x,y) ·∇v(x)dx, (1.15)

F (v) =
∫

D
f (x)v(x)dx. (1.16)

13



Chapter 1. Elliptic model problems with random diffusion coefficient

Again, thanks to Lax-Milgram’s lemma the coercivity and continuity assumptions on a ensure

the well-posedness of problem (1.14), namely there exists a unique solution u ∈ L2
ρ(Γ; H 1

0 (D)).

Indeed, since a is bounded from below and above almost surely, the bilinear form A is

continuous and coercive with constant of continuity and coercivity given respectively by amax

and ami n . Furthermore, the linear (deterministic) functional F is continuous, with constant

of continuity equal to CP‖ f ‖L2(D), where CP denotes the constant in the Poincaré inequality.

Therefore, the solution u of problem (1.14) satisfies

‖∇u(·,y)‖L2(D) ≤
CP

ami n
‖ f ‖L2(D) ρ-a.e. in Γ. (1.17)

Notice that the weak solution of problem (1.11) is then given by u(·,Y(ω)) with u the parametric

solution of problem (1.14) and it satisfies

‖∇u(·,Y(ω))‖L2(D) ≤
CP

ami n
‖ f ‖L2(D) a.s. in Ω. (1.18)

Moreover, it has been proved (see for instance [7]) that solution u = u(x,y) of (1.14) is analytic

with respect to each variable y j , j = 1, . . . ,L.

For ease of presentation, the dependence of the random variables Y j with respect to ω ∈Ω will

not necessarily be indicated in the subsequent analysis.

1.2 Methodology

In this section, we present the method we use to approximate the random (weak) solution u of

problem (1.11). We use first a perturbation technique for the stochastic space approximation,

yielding a collection of deterministic problems. The physical space approximation of each

problem is then performed using the finite element method. More precisely, we assume from

now on that ε in (1.12) is small enough that (A2) holds and expand the solution u = u(x,Y(ω))

with respect to ε up to a certain order N ∈N

u(x,Y(ω)) = u0(x)+εu1(x,Y(ω))+ . . .+εN uN (x,Y(ω))+O (εN+1). (1.19)

Inserting the latter expansion into (1.11) with a defined in (1.12) and keeping the O (1) term

with respect to ε yields the problem:

find u0 : D →R such that {
−div(a0(x)∇u0(x)) = f (x) x ∈ D

u0(x) = 0 x ∈ ∂D.
(1.20)

Then, writing u1(x,Y(ω)) =∑L
j=1 U j (x)Y j (ω) and keeping the O (ε) terms in (1.11) yields the L

problems:

14



1.2. Methodology

find U j : D →R such that

{
−div

(
a j (x)∇u0(x)+a0(x)∇U j (x)

) = 0 x ∈ D

U j (x) = 0 x ∈ ∂D
j = 1, . . . ,L, (1.21)

in which the solution u0 of problem (1.20) is needed. Notice that for j = 1, . . . ,L, the function

U j is related to ∂u(x,y0)
∂y j

with y0 = E[Y] = 0. Similarly, we can use the solutions U j , j = 1, . . . ,L,

of problem (1.21) to compute the deterministic part of the next term in the expansion (1.19),

which in turn is related to the second derivatives ∂2u(x,y0)
∂yk∂y j

, j ,k = 1, . . . ,L. Indeed, if we write

u2(x,Y(ω)) =∑L
j ,k=1 U j k (x)Y j (ω)Yk (ω), keeping the O (ε2) terms in (1.11), we get the L2 prob-

lems:

find U j k : D →R such that

{
−div

(
a j (x)∇Uk (x)+a0(x)∇U j k (x)

) = 0 x ∈ D

U j k (x) = 0 x ∈ ∂D
j ,k = 1, . . . ,L. (1.22)

More details about the derivation of problems (1.20), (1.21) and (1.22) are given in Appendix

1.A.

Remark 1.2.1. We will prove in the sections 1.3, 1.4.1 and 1.4.2 that

u −u0 =O (ε), u − (u0 +εu1) =O (ε2) and u − (u0 +εu1 +ε2u2) =O (ε3).

The solution to the deterministic problems (1.20), (1.21) and (1.22) can be approximated using

for instance the finite element method. For any h > 0, let Th be a family of partitions of D into

d-simplices (intervals, triangles, tetrahedra) K of diameter hK ≤ h. Unless otherwise stated,

we will always consider shape regular (see [49]) meshes of D, i.e. decompositions such that

there exists a constant c > 0 satisfying

hK

ρK
≤ c ∀K ∈Th ,∀h > 0 (1.23)

where ρK = sup{di am(B) : B is a ball contained in K }. The condition (1.23) is equivalent to a

minimal angle condition, namely that there exists a constant α0 such that αK ≥α0 > 0 for all

K ∈Th with αK the smallest angle of K . Let Vh ⊂ H 1
0 (D) be the space of continuous, piecewise

linear finite element functions associated to Th that vanish on ∂D , that is

Vh := {vh ∈C 0(D̄) : vh K ∈P1 ∀K ∈Th}∩H 1
0 (D),

where P1 is the set of polynomials of degree less than or equal to 1.

In the derivation of a priori and a posteriori error estimates, we will need an interpolation

operator which maps H 1
0 (D) to Vh , along with interpolation error bounds. We distinguish the

15



Chapter 1. Elliptic model problems with random diffusion coefficient

cases d = 1 and d = 2,3. For the one-dimensional case, any function of H 1
0 (D) is continuous

thanks to the Sobolev embedding theorem. Therefore, the Lagrange interpolant operator

rh : C 0(D̄) →Vh , which requires point evaluations, is well-defined and satisfies the following

error bounds: there exists a constant C > 0 such that ∀h > 0, ∀K ∈Th and all v ∈ H 1
0 (D) we

have

‖v − rh v‖L2(K ) ≤C hK ‖v ′‖L2(K ) (1.24)

and for all v ∈ H 2(D)

‖v − rh v‖L2(K ) +hK ‖v ′ − (rh v)′‖L2(K ) ≤ h2
K ‖v ′′‖L2(K ).

For the case d = 2,3, the functions of H 2(D) are continuous and we have the following error

bound (see [31, 49] for instance) based on the Bramble-Hilbert lemma: there exists a constant

C > 0 such that ∀h > 0, ∀K ∈Th and all v ∈ H 2(K ) we have

‖v − rh v‖L2(K ) +hK ‖∇(v − rh v)‖L2(K ) ≤C h2
K |v |H 2(K ). (1.25)

In general however, such regularity might not be reached by the solution of problem (1.14),

since we are seeking a solution in H 1
0 (D) in the physical space. In that case, we will use the

Clément interpolant [50] operator Ih : H 1(D) →Vh which satisfies the following interpolation

results: there exists a constant C > 0 such that ∀h > 0, ∀K ,e ∈Th and all v ∈ H 1(D) we have

‖v −Ih v‖L2(K ) ≤C hK |v |H 1(N (K )), (1.26)

‖∇(v −Ih v)‖L2(K ) ≤C |v |H 1(N (K )) (1.27)

and

‖v −Ih v‖L2(e) ≤C h
1
2
e |v |H 1(N (Ke )), (1.28)

where, for an internal edge e, Ke is the union of the two elements touching e and N (K )

(respectively N (Ke )) denotes the patch of elements associated to K (respectively Ke ). Notice

that the constant C in (1.26), (1.27) and (1.28) depends on the constant in (1.23) characterizing

the mesh aspect ratio.

We will now derive a priori and a posteriori error estimates in various norms, the error being

the difference between the exact solution and a certain approximate solution to be defined. We

first start by giving error estimates between the exact solution u and u0,h , the FE approximation

of u0. Our goal is to decompose the error into two parts, the error due to the finite element

approximation (h) and the error due to the uncertainty (ε).

1.3 Error analysis for the first order approximation

We consider u the (weak) solution of (1.11) and u0 that of (1.20), i.e. the case N = 0 in the

expansion (1.19). The error due to the stochastic truncation is of order ε. Indeed, for any

16



1.3. Error analysis for the first order approximation

v ∈ H 1
0 (D) and a.s. in Ω we have

∫
D

a∇(u(·,Y(ω))−u0) ·∇v =
∫

D
f v −

∫
D

a(·,Y(ω))∇u0 ·∇v =−ε
L∑

j=1
Y j (ω)

∫
D

a j∇u0 ·∇v. (1.29)

Using the FEM, the unknown solution u0 of problem (1.20) is approximated by u0,h , the

solution of:

find u0,h ∈Vh such that
∫

D
a0∇u0,h ·∇vh =

∫
D

f vh ∀vh ∈Vh . (1.30)

In what follows, we will derive a priori and a posteriori error estimates for u −u0,h in various

norms. In particular, the a posteriori error estimators, which are computable quantities,

yield useful information about the two sources of error by computing only one deterministic

problem.

1.3.1 A priori error analysis

This section is devoted to a priori error estimation for the strong and weak errors, which gives

information on the asymptotic behaviour of the error. In particular, we will show that the

order of the error of the mean in ε is twice the order of the strong error, while the order of the

error in h is the same for both. Sections 1.3.2, 1.3.2 and 1.3.2 are instead devoted to a posteriori

error estimates in different norms.

Strong error estimate

Let us first give error estimates on the strong error, i.e. on the error between u and u0,h in the

L2
P (Ω; H 1

0 (D)) norm. Our goal is to prove that there exists a constant C > 0 independent of h

and ε such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤C (h +ε).

Proposition 1.3.1. Let u and u0 be the (weak) solutions of problems (1.11) and (1.20), respec-

tively, and let u0,h be the solution of problem (1.30). If u0 ∈ H 2(D), then we have the a priori

error estimate

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤�

2

[
a0,max

a0,mi n
C 2h2|u0|2H 2(D) +L

ε2C 2
P

a2
0,mi n a2

mi n

‖ f ‖2
L2(D)

L∑
j=1

‖a2
j ‖L∞(D)

] 1
2

(1.31)

where C > 0 is the constant that appears in (1.25). Moreover, if we assume that for a fixed value

α> 1
2 , there exists a constant Mα such that for any L we have

∑L
j=1 ‖a2

j ‖L∞(D) j 2α ≤ Mα, then we
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also have

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤�

2

[
a0,max

a0,mi n
C 2h2|u0|2H 2(D) +Mα

ε2C 2
P

a2
0,mi n a2

mi n

‖ f ‖2
L2(D)

∞∑
j=1

j−2α

] 1
2

.

(1.32)

Remark 1.3.2. The a priori error estimate (1.31) blows up when L tends to infinity since the

second part of the estimate depends linearly on L. If we add a constraint on the functions

a j , j = 1, . . . ,L, for instance that a j decays as j−β with β > α+ 1
2 , then (1.32) holds with Mα

independent of L.

Proof. Using the fact that almost surely it holds∫
D

a0∇u0 ·∇v =
∫

D
f v =

∫
D

a∇u ·∇v ∀v ∈ H 1
0 (D),

we have for any v ∈V

∫
D

a0∇(u −u0,h) ·∇v =
∫

D
a0∇(u −u0) ·∇v +

∫
D

a0∇(u0 −u0,h) ·∇v (1.33)

= −
∫

D
(a −a0)∇u ·∇v +

∫
D

a0∇(u0 −u0,h) ·∇v

≤
[(∫

D

(a0 −a)2

a0
|∇u|2

) 1
2

+
(∫

D
a0|∇(u0 −u0,h)|2

) 1
2

]
·
(∫

D
a0|∇v |2

) 1
2

.

Thanks to the inequality (a +b)2 ≤ 2(a2 +b2), v = u(·,Y(ω))−u0,h ∈ V a.s. in Ω in the last

inequality yields

(∫
D

a0|∇(u −u0,h)|2
) 1

2 ≤ �
2

[
1

a0,mi n

∫
D

(a −a0)2|∇u|2 +
∫

D
a0|∇(u0 −u0,h)|2

] 1
2

.(1.34)

The second term of the right-hand side of (1.34) can be bounded in a standard manner as

follows. Using the Galerkin orthogonality property∫
D

a0∇(u0 −u0,h) ·∇vh = 0 ∀vh ∈Vh ,

we easily get ∫
D

a0|∇(u0 −u0,h)|2 ≤ a0,max‖∇(u0 −Ihu0)‖2
L2(D).

Since u0 ∈ H 2(D) by assumption, thanks to the interpolation result (1.25) we get∫
D

a0|∇(u0 −u0,h)|2 ≤ a0,maxC 2h2|u0|2H 2(D). (1.35)
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Therefore, using this last relation and the lower bound for a0 in (1.34) yields a.s. in Ω

‖∇(u −u0,h)‖2
L2(D) ≤ 2

[
a0,max

a0,mi n
C 2h2|u0|2H 2(D) +

1

a2
0,mi n

∫
D

(a −a0)2|∇u|2
]

.

Then, we take the expected value on both sides of the last inequality to get

E
[
‖∇(u −u0,h)‖2

L2(D)

]
≤ 2

[
a0,max

a0,mi n
C 2h2|u0|2H 2(D) +

1

a2
0,mi n

E

[∫
D

(a −a0)2|∇u|2
]]

. (1.36)

To complete the proof, we finally bound the expected value that appears on the right-hand

side of (1.36). First, using the relation (
∑L

j=1 x j )2 ≤ L
∑L

j=1 x2
j , we easily get

E

[∫
D

(a −a0)2|∇u|2
]
≤ L

ε2C 2
P

a2
mi n

‖ f ‖2
L2(D)

L∑
j=1

‖a2
j ‖L∞(D)

which proves (1.31). For (1.32), we use the additional assumption and the relation
∑

i ai bi ≤(∑
i a2

i

) 1
2
(∑

i b2
i

) 1
2 to obtain

(a −a0)2 = ε2

(
L∑

j=1
a j jα j−αY j

)2

≤ ε2

(
L∑

j=1
a2

j j 2α

)(
L∑

j=1
Y 2

j j−2α

)
≤ Mαε

2
L∑

j=1
Y 2

j j−2α.

Therefore, thanks to (1.18) and the fact that E[Y 2
j ] = 1, we obtain

E

[∫
D

(a −a0)2|∇u|2
]
≤ Mα

ε2C 2
P

a2
mi n

‖ f ‖2
L2(D)

L∑
j=1

j−2α ≤ Mα

ε2C 2
P

a2
mi n

‖ f ‖2
L2(D)

∞∑
j=1

j−2α.

Since α> 1
2 , the series

∑∞
j=1 j−2α converges which concludes the proof.

Mean of the error estimate

We are now interested in the error on the law of u. We restrict ourselves, in particular, to the

H 1
0 (D) norm of the expected value of u −u0,h . In this case, the statistical error is of order 2, to

be compared to the order 1 of the strong error. Under the same regularity condition on u0, we

can show the following a priori error estimate.

Proposition 1.3.3. Let u and u0 be the (weak) solutions of problems (1.11) and (1.20), respec-

tively, and let u0,h be the solution of problem (1.30). If u0 ∈ H 2(D), then we have the a priori

error estimate

‖E[u −u0,h
]‖H 1

0 (D) ≤
√

a0,max

a0,mi n
C1h|u0|H 2(D) +

ε2CP

a3
0,mi n

‖ f ‖L2(D)

L∑
j=1

‖a j‖2
L∞(D) +C2ε

3, (1.37)

where C1 > 0 is the constant in (1.25) and C2 is a constant independent of u, h and ε. Therefore,
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Chapter 1. Elliptic model problems with random diffusion coefficient

there exists a constant C̃ > 0 independent of h and ε such that

‖E[u −u0,h
]‖H 1

0 (D) ≤ C̃ (h +ε2).

Proof. Let us define u1 =∑L
j=1 U j Y j , where U j is the solution of problem (1.21) for j = 1, . . . ,L.

First, the expected value of the error u(·,Y)−u0,h naturally splits into two parts

E[u −u0,h] = E[u −u0]+ (u0 −u0,h)

and thus, thanks to the triangle inequality, we get

‖E[u −u0,h
]‖H 1

0 (D) ≤ ‖E[u −u0]‖H 1
0 (D) +‖u0 −u0,h‖H 1

0 (D).

From (1.35), we deduce a bound for the second term given by

‖u0 −u0,h‖H 1
0 (D) ≤

√
a0,max

a0,mi n
C1h|u0|H 2(D),

where C1 is the constant that appears in (1.25). Let us bound the term ‖E[u −u0]‖H 1
0 (D), which

is due to the uncertainty in the diffusion coefficient. Proceeding as in (1.29) and using the fact

that
∫

D (a j∇u0 +a0∇U j ) ·∇v = 0 for all v ∈V , the following equalities hold for any v ∈V and

a.s. in Ω∫
D

a∇(u −u1) ·∇v = −ε
∫

D
a0∇u1 ·∇v −

∫
D

(a −a0)∇u1 ·∇v

= −ε
L∑

j=1
Y j

∫
D

(
a0∇U j +a j∇u0

) ·∇v −ε2
∫

D

L∑
i , j=1

Yi Y j a j∇Ui ·∇v

= −ε2
∫

D

L∑
i , j=1

Yi Y j a j∇Ui ·∇v. (1.38)

Therefore, we have

∫
D

a0∇(u − (u0 +εu1)) ·∇v =−
∫

D
(a −a0)∇(u − (u0 +εu1)) ·∇v −ε2

L∑
i , j=1

Yi Y j

∫
D

ai∇U j ·∇v.

Since E[u1] = 0 and E[Yi Y j ] = δi j , where δi j denotes the Kronecker delta, taking the expected

value on both sides of last equality yields

∫
D

a0∇E[u −u0] ·∇v = E

[
−
∫

D
(a −a0)∇(u − (u0 +εu1)) ·∇v

]
−ε2

L∑
j=1

∫
D

a j∇U j ·∇v.
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1.3. Error analysis for the first order approximation

Thanks to Jensen’s inequality (see e.g. [89]), we obtain∫
D

a0∇E[u −u0] ·∇v ≤ E
[‖a −a0‖L∞(D)‖∇(u − (u0 +εu1))‖L2(D)

]‖∇v‖L2(D)

+ε2‖∇v‖L2(D)

L∑
j=1

‖a j‖L∞(D)‖∇U j‖L2(D).

If we take v = E[u −u0] in the last inequality, we get

‖E[u−u0]‖H 1
0 (D) ≤

1

a0,mi n

{
E
[‖a −a0‖L∞(D)‖∇(u − (u0 +εu1))‖L2(D)

]+ε2
L∑

j=1
‖a j‖L∞(D)‖∇U j‖L2(D)

}
.

(1.39)

We now give a bound on ‖∇U j‖L2(D), j = 1, . . . ,L. First, using standard techniques (Cauchy-

Schwarz, Poincaré inequalities, lower bound for a0), we get the following bound on the solution

of problem (1.20)

‖∇u0‖L2(D) ≤
CP

a0,mi n
‖ f ‖L2(D).

Then, taking v =U j as test function in the weak formulation of problem (1.21) yields

a0,mi n‖∇U j‖2
L2(D) ≤

∫
D

a0|∇U j |2 =−
∫

D
a j∇u0 ·∇U j ≤ ‖a j‖L∞(D)‖∇u0‖L2(D)‖∇U j‖L2(D)

and thus

‖∇U j‖L2(D) ≤
CP

a2
0,mi n

‖ f ‖L2(D)‖a j‖L∞(D).

Inserting this result in (1.39), we get

‖E[u−u0]‖H 1
0 (D) ≤

1

a0,mi n

{
E
[‖a −a0‖L∞(D)‖∇(u − (u0 +εu1))‖L2(D)

]+ ε2CP

a2
0,mi n

‖ f ‖L2(D)

L∑
j=1

‖a j‖2
L∞(D)

}
.

(1.40)

To conclude the proof, we show that the first term of the right-hand side of the last inequality

is of higher order in ε, namely of order ε3. Indeed, we have

‖a −a0‖L∞(D) = ε
L∑

j=1
|Y j |‖a j‖L∞(D) ≤ c1ε

and, taking v = u − (u0 +εu1) in (1.38),

‖∇(u − (u0 +εu1))‖L2(D) ≤
1

ami n
ε2

L∑
i , j=1

|Yi Y j |‖ai‖L∞(D)‖∇U j‖L2(D) ≤ c2ε
2 (1.41)

with c1,c2 two (deterministic) constants independent of u, h and ε. Therefore, we have

E
[‖a −a0‖L∞(D)‖∇(u − (u0 +εu1))‖L2(D)

]≤C2ε
3

with C2 = c1c2.
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Chapter 1. Elliptic model problems with random diffusion coefficient

Remark 1.3.4. A bound for ‖E[u −u0]‖H 1
0 (D) can also be obtained using Jensen’s inequality, the

fact that the term u1 is mean-free and (1.41) as follows

‖E[u −u0]‖H 1
0 (D) = ‖E[u −u0 −εu1]‖H 1

0 (D)

≤ E[‖∇(u − (u0 +εu1))‖L2(D)]

≤ ε2CP

ami n a2
0,mi n

‖ f ‖L2(D)

(
L∑

j=1
‖a j‖L∞(D)

)2

.

Compared to (1.37), there is no additional higher order term here but the constant for the term

of order ε2 is larger since the cross terms do not vanish and a−1
0,mi n is replaced by a−1

mi n.

1.3.2 A posteriori error analysis

A posteriori error estimate in the L2
P (Ω; H 1

0 (D)) norm

The goal is now to obtain an estimate of the error between u and u0,h which does not depend

on the exact (unknown) solution. Let us define the jump of a function ϕ across an edge e ∈Th

in the direction of ne by

[ϕ]ne (x) :=
{

limt→0+
(
ϕ(x+ tne )−ϕ(x− tne )

)
if e �⊂ ∂D

0 if e ⊂ ∂D,

where ne denotes a normal vector to e of arbitrary (but fixed) direction for internal edges and

the outwards normal to ∂D if e ∈ ∂D . Notice that the quantity [∇ϕ ·ne ]ne is independent of the

choice of the direction of the normal vector ne . We obtain the following residual type error

upper bound, proceeding as in [118], which is based on the relation

A (u −u0,h , v ;y) =R(v ;y0)+ [
R(v ;y)−R(v ;y0)

] ∀v ∈ H 1
0 (D), ρ-a.e. in Γ

with

R(v ;y) := F (v)−A (u0,h , v ;y),

where A and F are defined in (1.15) and (1.16), respectively, and y0 = E[Y] = 0.

Proposition 1.3.5. Let u be the weak solution of problem (1.11) and let u0,h be the solution of

problem (1.30), respectively. There exists a constant C > 0 depending only on the constants in

(1.26) and (1.28) such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤

�
2

ami n

[
Cη2

1 +η2
2

] 1
2 , (1.42)
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1.3. Error analysis for the first order approximation

with

η2
1 := ∑

K∈Th

h2
K

∫
K

( f +∇· (a0∇u0,h))2 + ∑
e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne
(1.43)

η2
2 := ε2

∫
D

L∑
j=1

a2
j |∇u0,h |2. (1.44)

Remark 1.3.6. We mention that the analysis is similar to the one given below if we consider

the error in the energy norm ‖a1/2
0 ∇(u−u0,h)‖L2

P (Ω;L2(D)) instead of ‖∇(u−u0,h)‖L2
P (Ω;L2(D)). The

former should be preferred if the deterministic part a0 of the diffusion coefficient a varies widely

over D.

Proof. In the sequel, C will denote a constant whose value might change from one line to

another. Let v be any function in H 1
0 (D). We have a.s. in Ω

∫
D

a∇(u −u0,h) ·∇v =
∫

D
a∇u ·∇v −

∫
D

a∇u0,h ·∇v

=
∫

D
( f v −a0∇u0,h ·∇v)︸ ︷︷ ︸

=:A1

+
∫

D
(a0 −a)∇u0,h ·∇v︸ ︷︷ ︸

=:A2

, (1.45)

where A1 and A2 correspond respectively to the error due to the finite element approximation

of u0, solution to problem (1.20), and the error due to the truncation in the expansion (1.19) of

u. We bound now each term separately, starting with A2. Using the expansion of a given by

(1.12), we have

A2 ≤
(∫

D
(a −a0)2|∇u0,h |2

) 1
2
(∫

D
|∇v |2

) 1
2 = ε

(∫
D

(
L∑

j=1
a j Y j )2|∇u0,h |2

) 1
2

‖∇v‖L2(D). (1.46)

For the first term A1, we use the relation
∫

D a0∇u0,h ·∇vh =∫
D f vh for all vh ∈Vh with vh the

Clément interpolant of v together with interpolation results (1.26) to get

A1 ≤ ∑
K∈Th

(∫
K

∣∣ f +∇· (a0∇u0,h)
∣∣2
) 1

2

C hK |v |H 1(N (K ))

+ ∑
e∈Th

(∫
e
[a0∇u0,h ·ne]2

ne

) 1
2

C h
1
2
e |v |H 1(N (Ke ))

≤ �
2C

[ ∑
K∈Th

h2
K

∫
K
| f +∇· (a0∇u0,h)|2 + ∑

e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne

] 1
2

‖∇v‖L2(D).

(1.47)
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Chapter 1. Elliptic model problems with random diffusion coefficient

We have used the fact that

∑
K∈Th

‖∇v‖2
L2(N (K )) ≤C0‖∇v‖2

L2(D) and
∑

e∈Th

‖∇v‖2
L2(N (Ke )) ≤C0‖∇v‖2

L2(D)

where C0 depends on the maximum number of neighbours of each element in Th , which in

turn depends on the constant in (1.23). Since ami n is a lower bound for a, we deduce from

(1.45) with v = u(·,Y(ω))−u0,h ∈ H 1
0 (D) that a.s. in Ω we have

∫
D
|∇(u −u0,h)|2 ≤ 1

ami n
[A1 + A2] .

Combining this last inequality with the bounds for A1 and A2 given by (1.47) and (1.46)

respectively, we obtain a.s. in Ω

‖∇(u −u0,h)‖L2(D) ≤ 1

ami n

{�
2C

[ ∑
K∈Th

h2
K

∫
K

( f +∇· (a0∇u0,h))2

+ ∑
e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne

] 1
2

+ε

(∫
D

(
L∑

j=1
a j Y j )2|∇u0,h |2

) 1
2

⎫⎬
⎭

(1.48)

and thus, taking the square of this last equation and using again (a +b)2 ≤ 2(a2 +b2) yields

‖∇(u −u0,h)‖2
L2(D) ≤ 2

a2
mi n

{
2C 2

( ∑
K∈Th

h2
K

∫
K
| f +∇· (a0∇u0,h)|2

+ ∑
e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne

)
+ε2

∫
D

(
L∑

j=1
a j Y j )2|∇u0,h |2

}
.

The a posteriori error estimate (1.42) is obtained taking the square root of the expected value

on both sides of the last inequality and exploiting the independence of the random variables,

namely that E[Yi Y j ] = δi j for i , j = 1, . . . ,L.

Remark 1.3.7. In the one-dimensional case, we can take vh = rh v the Lagrange interpolant of

v and the sum over the edges (the discrete nodes here) vanishes. Indeed, any function and its

Lagrange interpolant coincide at each node xi , i = 0, . . . , Nh, of the considered discretization, or

more precisely v(xi )− rh v(xi ) = 0 for all i = 0, . . . , Nh. Since (1.24) holds for e.g. C = 2, we can

show that we have the following a posteriori error estimate

E
[
‖u′ −u′

0,h‖2
L2(D)

] 1
2 ≤

�
2

ami n

(
4

Nh−1∑
i=0

h2
i

∫xi+1

xi

( f + (a0u′
0,h)′)2 +ε2

∫
D

L∑
j=1

a2
j (u′

0,h)2

) 1
2

,

(1.49)

where u′ denotes the spatial derivative ∂u(x,ω)
∂x .

Remark 1.3.8. The computable quantity η = (
η2

1 +η2
2

) 1
2 can be used as an a posteriori error
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1.3. Error analysis for the first order approximation

estimator, which is reliable thanks to (1.42). It can be used to determine a mesh yielding

comparable accuracy in h and ε, i.e. for balancing the error due to physical space discretization

and the error due to the uncertainty. The spatial error estimator η1 is efficient in the sense that

it provides (up to a multiplicative constant depending only on amax and the regularity of the

mesh) a lower bound for the error plus the other contribution η2 and oscillation terms, the proof

being similar to the one given in Appendix 1.B. Even though we have not been able to prove that

η2 in (1.44) also provides a similar lower bound, the estimator η appears to be efficient for all

the numerical experiments we have considered.

We give below an a posteriori error estimator for the error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)) for which both

upper and lower bounds can be shown. The spatial error estimator is the same, namely η1

given in (1.43), while the stochastic error estimator is obtained by computing (approximately)

the dual norm of the residual r (v ;y) :=R(v ;y)−R(v ;y0). Here, we only give the statement of

the error estimator and we refer to Appendix 1.B for more details including the proof of the

bounds. Let Wj ,h ∈Vh be the solution of the problem

∫
D
∇Wj ,h ·∇vh =−

∫
D

a j∇u0,h ·∇vh ∀vh ∈Vh .

The error estimator can then be defined as

η̂2 = (
η2

1 + η̂2
2

) 1
2 with η̂2

2 := ε2
L∑

j=1
‖∇Wj ,h‖2

L2(D). (1.50)

Notice that the computation of η̂ in (1.50) requires the solution of L additional Poisson prob-

lems compared to the error estimator η based on (1.42), and a strategy to reduce the computa-

tional cost could be to introduce auxiliary local problems defined on an element or a small

subdomain, see e.g. [15, 107] and references therein. We mention that the extra computational

effort to get η̂2 instead of η2 is apparently not worth to pay in the present case, since the a

posteriori error estimator based on Proposition 1.3.5 is efficient, at least for all the numerical

experiments we have performed.

A posteriori error estimate in the L2
P (Ω;L2(D)) norm

We now give an a posteriori error estimate of the error between u and u0,h in the L2 norm in

space, which leads to a gain of one order in h. To do so, we use a duality argument (often called

the Aubin-Nitsche trick). We thus consider the dual problem of problem (1.11) given by:

find φ : D ×Ω→R such that P-almost everywhere:{
−div

(
a(x,ω)∇φ(x,ω)

) = u(x,ω)−u0,h(x) x ∈ D

φ(x,ω) = 0 x ∈ ∂D,
(1.51)

whose pointwise in y ∈ Γ weak form reads:
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Chapter 1. Elliptic model problems with random diffusion coefficient

find φ(·,y) ∈ H 1
0 (D) such that

∫
D

a(x,y)∇φ(x,y) ·∇v(x)dx =
∫

D
(u(x,y)−u0,h(x))v(x)dx ∀v ∈ H 1

0 (D),ρ-a.e. in Γ. (1.52)

Under regularity conditions on D , we have the following a posteriori error upper bound, which

implies that the convergence rate of the error is O (h2 +ε) in that case. That is that we gain

one order in h compared to the error in the L2
P (Ω; H 1

0 (D)) norm. However, the order of the

statistical error is not improved.

Proposition 1.3.9. Let u and u0 be the (weak) solutions of problems (1.11) and (1.20), re-

spectively, and let u0,h be the solution of problem (1.30). If φ(·,Y(ω)) ∈ H 2(D) and ‖φ‖H 2(D) ≤
C‖u −u0,h‖L2(D) a.s. in Ω, then there exist constants C1,C2 > 0 independent of u, h and ε such

that

E
[
‖u −u0,h‖2

L2(D)

] 1
2 ≤�

2
[
C1η

2
1 +C2η

2
2

] 1
2 (1.53)

with

η2
1 := ∑

K∈Th

h4
K

∫
K

(
f +∇· (a0∇u0,h)

)2 + ∑
e∈Th

h3
e

∫
e

[
a0∇u0,h ·ne

]2
ne

(1.54)

η2
2 := ε2

∫
D

L∑
j=1

a2
j |∇u0,h |2. (1.55)

Remark 1.3.10. Since we assumed a j ∈W 1,∞(D), j = 0, . . . ,L, the assumptions of Proposition

1.3.9 on the regularity of the dual solution φ are satisfied if, for instance, D is a convex polygon

(see [84]). The constant C in ‖φ‖H 2(D) ≤C‖u −u0,h‖L2(D) may depend on the uniform bounds of

Y j , a j and ∇a j and on εmax but is independent of ε.

Proof. First note that if we take v = u(·,y)−u0,h , ρ-a.e. in Γ, in (1.52), we directly get the L2

norm in space of the error at the right-hand side. We thus only need to estimate the left-

hand side by a quantity which does not depend on the exact solutions u = u(x,Y(ω)) and

φ = φ(x,Y(ω)) of respectively the primal and dual problems. In what follows, all equations

hold a.s. in Ω without specifically mentioning it. Since∫
D

a∇(u −u0,h) ·∇vh +
∫

D
(a −a0)∇u0,h ·∇vh = 0 ∀vh ∈Vh ,

we have for any vh ∈Vh

‖u −u0,h‖2
L2(D) =

∫
D

a∇(u −u0,h) ·∇φ

=
∫

D
a∇(u −u0,h) ·∇(φ− vh)−

∫
D

(a −a0)∇u0,h ·∇vh

=
∫

D
f (φ− vh)−

∫
D

a0∇u0,h∇(φ− vh)︸ ︷︷ ︸
=:A1

−
∫

D
(a −a0)∇u0,h ·∇φ︸ ︷︷ ︸

=:A2

. (1.56)
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1.3. Error analysis for the first order approximation

We now treat each term separately. For the first one, we follow the usual procedure. For any

vh ∈Vh , we have

A1 = ∑
K∈Th

∫
K

f (φ− vh)− ∑
K∈Th

∫
K

a0∇(φ− vh)∇u0,h

≤ ∑
K∈Th

‖ f +∇· (a0∇u0,h)‖L2(K )‖φ− vh‖L2(K ) +
∑

e∈Th

‖[a0∇u0,h ·ne
]

ne
‖L2(e)‖φ− vh‖L2(e).

If we take vh = rhφ, the Lagrange interpolant of φ, thanks to the interpolation error estimate

(1.25), the trace inequality and the standard elliptic regularity result ‖φ‖H 2(D) ≤C‖u−u0,h‖L2(D)

(see [31, 49] for instance), we obtain

A1 ≤ C1

⎡
⎣( ∑

K∈Th

h4
K

∫
K

( f +∇· (a0∇u0,h))2

) 1
2

+
( ∑

e∈Th

h3
e

∫
e

[
a0∇u0,h ·ne

]2
ne

) 1
2

⎤
⎦ |φ|H 2(D)

≤ �
2C1

( ∑
K∈Th

h4
K

∫
K

( f +∇· (a0∇u0,h))2 + ∑
e∈Th

h3
e

∫
e

[
a0∇u0,h ·ne

]2
ne

) 1
2

‖u −u0,h‖L2(D),

(1.57)

where C1 is a constant whose value might change from one line to another. Consider now the

second term A2 of (1.56). We have

A2 =−
∫

D
(a −a0)∇u0,h ·∇φ≤

(∫
D

(a −a0)2|∇u0,h |2
) 1

2 ‖∇φ‖L2(D),

and thus, it only remains to obtain an upper bound for ‖∇φ‖L2(D). Taking v =φ in the weak

form (1.52) of the dual problem yields∫
D

a∇φ ·∇φ=
∫

D
(u −u0,h)φ≤ ‖u −u0,h‖L2(D)‖φ‖L2(D).

Since a is bounded from below by ami n , thanks to the Poincaré inequality we get

ami n‖∇φ‖2
L2(D) ≤CP‖u −u0,h‖L2(D)‖∇φ‖L2(D),

and thus

‖∇φ‖L2(D) ≤
CP

ami n
‖u −u0,h‖L2(D).

Therefore, A2 can be bounded by

A2 ≤ CP

ami n

(∫
D

(a −a0)2|∇u0,h |2
) 1

2 ‖u −u0,h‖L2(D). (1.58)
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Inserting (1.57) and (1.58) into (1.56) yields

‖u −u0,h‖L2(D) ≤ �
2C1

( ∑
K∈Th

h4
K

∫
K

( f +∇· (a0∇u0,h))2 + ∑
e∈Th

h3
e

∫
e

[
a0∇u0,h ·ne

]2
ne

) 1
2

+ CP

ami n

(∫
D

(a −a0)2|∇u0,h |2
) 1

2

,

and thus

‖u −u0,h‖2
L2(D) ≤ 2

[
2C 2

1

( ∑
K∈Th

h4
K

∫
K

( f +∇· (a0∇u0,h))2 + ∑
e∈Th

h3
e

∫
e

[
a0∇u0,h ·ne

]2
ne

)

+ C 2
P

a2
mi n

∫
D

(a −a0)2|∇u0,h |2
]

. (1.59)

Since E[(a −a0)2] = ε2 ∑L
j=1 a2

j , the result follows from taking first the expected value and then

the square root on both sides of (1.59).

Goal-oriented error estimate

The a posteriori error estimates obtained so far yield upper bounds on the error in global

norms. In the case where we are interested in a particular quantity of interest, e.g. point values

or contour integrals, these estimates may not be appropriate. Goal-oriented error estimation

has thus been developed (see [13, 22, 100] and [4, 33, 35, 92] and the references therein for

the deterministic and stochastic framework, respectively) to bound a given functional using

optimal control techniques (based on a duality-argument). In this section we only sketch

the derivation of a goal-oriented error upper bound for the first-order FEM approximation

u0,h . Assume that we are interested in computing Q(u) with Q a linear functional on H 1
0 (D)

representing a quantity of interest which depends on the random vector Y only through the

random solution u(·,Y) itself. We introduce the dual problem:

find ϕ(·,y) ∈ H 1
0 (D) such that A (v,ϕ(·,y);y) =Q(v), ∀v ∈ H 1

0 (D),ρ-a.e. in Γ, (1.60)

where A is defined by (1.15). Let y0 = E[Y] = 0 denotes the nominal value for Y, for which

a(x,y0) = a0(x), and let ϕ0 be the deterministic solution of (1.60) with y = y0 and ϕ0,h its FE

approximation. Using the fact that Q does not depend on Y explicitly, we can easily show that
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1.3. Error analysis for the first order approximation

a.s. in Ω

Q(u(·,Y(ω)))−Q(u0,h) =
∫

D
f ϕ0 −

∫
D

a0∇u0,h ·∇ϕ0︸ ︷︷ ︸
=:A1

−
∫

D
(a −a0)∇u0,h ·∇ϕ0,h︸ ︷︷ ︸

=:A2

−
∫

D
(a −a0)∇u0,h ·∇(ϕ0 −ϕ0,h)︸ ︷︷ ︸

=:A3

−
∫

D
(a −a0)∇(u −u0,h) ·∇ϕ0,h︸ ︷︷ ︸

=:A4

−
∫

D
(a −a0)∇(u −u0,h) ·∇(ϕ0 −ϕ0,h)︸ ︷︷ ︸

=:A5

.

The first term A1, which is deterministic and of order h2, can be bounded using standard

techniques such as the Dual-weighted residual (DWR) method (see e.g. [13, 22]) or using the

parallelogram identity as proposed by Oden and Prudhomme in [100]. In the DWR method,

the upper bound depends on the unknown influence function ϕ0, either through |ϕ0|H 2(K ) or

‖∇(ϕ0 −ϕ0,h)‖L2(K ), K being an element of the mesh. In the former case, the H 2 semi-norm

can be estimated by a discrete analogue and in the latter case, the influence function might be

replaced by a discrete solution computed on a space richer than Vh or by post-processing. All

the other terms can be bounded provided we can obtain an upper bound for ‖∇(u−u0,h)‖L2(D),

which is given by (1.48), as well as an upper bound for ‖∇(ϕ0 −ϕ0,h)‖L2(D) which can be done

as in the previous sections. Moreover, based on the results obtained in the previous sections

we have

A1 =O (h2), A2 =O (ε), A3 =O (hε), A4 =O (hε+ε2) and A5 =O (h2ε+ε2h).

We might be interested in estimating the expectation or the variance of Q(u(·,Y))−Q(u0,h). In

the former case, notice that E[A2] = E[A3] = 0 and since A1 is a deterministic quantity, we have

E[Q(u)−Q(u0,h)] = A1 +E[A4]+E[A5].

Moreover, the term E[A5] is of higher order than E[A4] and can thus be neglected, so that we

have E[Q(u)−Q(u0,h)] =O (h2 +hε+ε2). In the latter case, we have

E[|Q(u)−Q(u0,h)|2] ≤ 5
(

A2
1 +E[A2

2]+E[A2
3]+E[A2

4]+E[A2
5]
)

.

As before, the term E[A2
5] can be neglected and we have E[|Q(u)−Q(u0,h)|2]

1
2 =O (h2 +ε+hε).

Moreover, if the mesh space h is chosen such that h2 ∼ ε, then both terms E[A2
3] and E[A2

4] can

also be omitted in the estimation of the variance and E[|Q(u)−Q(u0,h)|2]
1
2 =O (h2 +ε).

Finally, we mention that the estimate on the variance of Q(u)−Q(u0,h) can be used to have

a rough estimate on the failure probability P (Q(u) > Qcr i t ) with some critical value Qcr i t
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sufficiently far from Q(u0,h). Indeed, using the Bienaymé-Tchebychev inequality we have

P (Q(u) >Qcr i t ) ≤ E
[
(Q(u)−Q(u0,h))2

]
(Q(u0,h)−Qcr i t )2 .

1.4 Error analysis for higher order approximations

In this section, we generalize the a posteriori error estimate of Proposition 1.3.5 to higher order

approximation, that is when more terms in the expansion (1.19) of u are taken into account.

We start by giving the result for the second order approximation before generalizing to any

order of approximation.

1.4.1 Second order approximation

In this section, instead of considering the error between u and u0,h , we will give an estimation

of the error between u and u1
h , the FE approximation of u1 := u0 + εu1 = u0 + ε

∑L
j=1 U j Y j ,

where U j is the solution of problem (1.21). Since the random variables Y j , j = 1, . . . ,L, are

assumed to be bounded, the error due to the stochastic approximation of u is of order ε2 in

this case. Indeed, if we do not take the finite element approximation error into account, we

have a.s. in Ω (see (1.38) for details)

∫
D

a∇(u −u1) ·∇v =−ε2
∫

D

L∑
i , j=1

Yi Y j a j∇Ui ·∇v, (1.61)

and only the term of order ε2 remains. Let us now take the error due to the approximation of

u1 by u1
h := u0,h +εu1,h into account, where u1,h =∑L

j=1 Y jU j ,h and, for j = 1, . . . ,L, U j ,h is the

solution of

∫
D

a0∇U j ,h ·∇vh =−
∫

D
a j∇u0,h ·∇vh ∀vh ∈Vh . (1.62)

To simplify the notation, we define

w j ,h := a0∇U j ,h +a j∇u0,h .

We can show that, if the solution is regular enough in physical space, the convergence of the

error is in O (h+εh+ε2), i.e., that for a mesh size h of order ε2, the error is divided by 4 when ε

is halved. The following proposition provides an a posteriori error estimate.

Proposition 1.4.1. Let u be the weak solution of problem (1.11) and let u0,h and U j ,h, j =
1, . . . ,L, be the solutions of problems (1.30) and (1.62), respectively. There exist two constants

C1,C2 > 0 depending only on the constants in (1.26) and (1.28) such that

E
[
‖∇(u −u1

h)‖2
L2(D)

] 1
2 ≤

�
3

ami n

[
C1η

2
1 +C2η

2
2 +η2

3

] 1
2 , (1.63)
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with

η2
1 = ∑

K
h2

K ‖ f +∇· (a0∇u0,h)‖2
L2(K ) +

∑
e

he‖
[
a0∇u0,h ·ne

]
ne
‖2

L2(e), (1.64)

η2
2 = ε2

(∑
K

h2
K

∫
K

L∑
j=1

(∇·w j ,h)2 +∑
e

he

∫
e

L∑
j=1

[w j ,h ·ne ]2
ne

)
, (1.65)

η2
3 = ε4

⎛
⎜⎝∫

D

L∑
i=1

a2
i |∇Ui ,h |2E[Y 4

i ]+
∫

D

L∑
i , j=1
i �= j

[
a2

i |∇U j ,h |2 +2ai a j∇Ui ,h ·∇U j ,h
]⎞⎟⎠ . (1.66)

From (1.63), we see that the error splits into three parts, namely the error due to the FE

approximation of u0, the FE approximation of the U j , j = 1, . . . ,L and the truncation in the

expansion of u with respect to ε.

Proof. For any v ∈ H 1
0 (D) and a.s. in Ω we have

∫
D

a∇(u −u1
h) ·∇v =

∫
D

f v −
∫

D
a0∇u0,h ·∇v︸ ︷︷ ︸

=:A1

−ε
∫

D

L∑
j=1

Y j (a0∇U j ,h +a j∇u0,h) ·∇v

︸ ︷︷ ︸
=:A2

−ε
∫

D
(a −a0)∇u1,h ·∇v︸ ︷︷ ︸

=:A3

. (1.67)

where A1 and A2 are respectively the residual for u0,h and for U j ,h , for j = 1, . . . ,L, while A3 is

due to the truncation in the expansion (1.19) of u. Let us treat each term separately. The first

term A1 is bounded by (see Section 1.3)

A1 ≤ C1

[ ∑
K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

he‖
[
a0∇u0,h ·ne

]
ne
‖2

L2(e)

] 1
2

‖∇v‖L2(D).

(1.68)

Let us consider now the term A2. Since
∫

D w j ,h ·∇vh = 0 for all vh ∈Vh , we have

A2 = −ε
∫

D

L∑
j=1

Y j w j ,h ·∇(v −Ih v)

= ε
∑

K∈Th

∫
K

(
L∑

j=1
Y j∇·w j ,h)(v −Ih v)+ε

∑
e∈Th

∫
e
[

L∑
j=1

Y j w j ,h ·ne ]ne (v −Ih v)

≤ C2

( ∑
K∈Th

ε2h2
K ‖

L∑
j=1

Y j∇·w j ,h‖2
L2(K ) +

∑
e∈Th

ε2he‖[
L∑

j=1
Y j w j ,h ·ne ]ne‖2

L2(e)

) 1
2

‖∇v‖L2(D),

(1.69)
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where C2 depends only on the interpolation constants that appear in (1.26) and (1.28). Finally,

we estimate the last term A3. We have

A3 = −ε
∫

D
(ε

L∑
j=1

Y j a j )∇(
L∑

i=1
YiUi ,h) ·∇v =−ε2

∫
D

L∑
i , j=1

Yi Y j a j∇Ui ,h ·∇v

≤ ε2‖
L∑

i , j=1
Yi Y j a j∇Ui ,h‖L2(D)‖∇v‖L2(D). (1.70)

Since a is bounded from below by ami n , combining (1.67) with (1.68), (1.69) and (1.70) with

v = u(·,Y(ω))−u1
h(·,Y(ω)) ∈ H 1

0 (D) yields a.s. in Ω

‖∇(u −u1
h)‖L2(D) ≤

�
3

ami n

[
C 2

1

( ∑
K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

he‖
[
a0∇u0,h ·ne

]
ne
‖2

L2(e)

)

+C 2
2

( ∑
K∈Th

ε2h2
K ‖

L∑
j=1

Y j∇·w j ,h‖2
L2(K ) +

∑
e∈Th

ε2he‖[
L∑

j=1
Y j w j ,h ·ne ]ne‖2

L2(e)

)

+ ε4‖
L∑

i , j=1
Yi Y j a j∇Ui ,h‖2

L2(D)

] 1
2

,

using the inequality (a +b + c) ≤ �
3(a2 +b2 + c2)

1
2 . To conclude the proof, it only remains

to take the expected value on both sides of the square of this last inequality. By linearity of

the expected value, we can consider the three terms of the right-hand side separately. The

first term is a deterministic quantity and thus, taking the expected value on it has no effect.

For the two other terms, we just have to evaluate E[Yi Y j ] for 1 ≤ i , j ≤ L and E[Yi Y j Yk Yl ] for

1 ≤ i , j ,k, l ≤ L. Since the random variables are assumed to be independent, with zero mean

and unit variance, we have E[Yi Y j ] = δi j and

E[Yi Y j Yk Yl ] =

⎧⎪⎨
⎪⎩

E[Y 4
j ] if i = j = k = l

1 if the indices are pairwise equal

0 otherwise.

Let us write

B :=
L∑

i , j ,k,l=1
Yi Y j Yk Yl a j ak∇Ui ,h ·∇Ul ,h ,

which we split into three parts B1 (all indices are equal), B2 (two pairs of indices) and B3

(remaining indices). Thanks to the linearity of expectation, we have E[B ] = E[B1]+E[B2]+E[B3].

First, we can notice that E[B3] = 0. Moreover, the contribution to E[B ] when i = j = k = l is

E[B1] =
L∑

i=1
a2

i |∇Ui ,h |2E[Y 4
i ].

Let us consider now all the cases when we have pairwise equal pairs of indices. Out of 4 indices,

there are three different ways to form two pairs of indices, namely ( j = k, i = l ), ( j = i ,k = l )
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and ( j = l ,k = i ). Since the two last cases lead to the same result, we get

E[B2] =
L∑

i , j=1
i �= j

a2
j |∇Ui ,h |2 +2

L∑
i , j=1
i �= j

ai a j∇Ui ,h ·∇U j ,h .

Altogether, we finally get

E[B ] =
L∑

i=1
a2

i |∇Ui ,h |2E[Y 4
i ]+

L∑
i , j=1
i �= j

[
a2

i |∇U j ,h |2 +2ai a j∇Ui ,h ·∇U j ,h
]

,

which concludes the proof.

1.4.2 Generalization

Suppose now that the random solution u of problem (1.11) is expanded with respect to ε up to

order N ∈N, see (1.19). For 1 ≤ n ≤ N , let us write

un(x,Y(ω)) =
L∑

j1, j2,..., jn=1
U j1 j2··· jn (x)Y j1 (ω)Y j2 (ω) · · ·Y jn (ω) (1.71)

the nth term in the expansion. The Ln functions U j1 j2··· jn are obtained by solving for j1, j2, . . . , jn =
1, . . . ,L the deterministic problem{

−div
(
a j1 (x)∇U j2··· jn (x)+a0(x)∇U j1··· jn (x)

) = 0 x ∈ D

U j1··· jn (x) = 0 x ∈ ∂D
(1.72)

using the solutions U j2··· jn , j2, . . . , jn = 1, . . . ,L, obtained for the (n−1)th order term. Proceeding

as in Sections 1.3 and 1.4.1, it is easy to show that the error due to the truncation in the

expansion of u is of order εN+1. More precisely, we have for any v ∈ H 1
0 (D) and almost surely

∫
D

a∇
(

u −
N∑

n=0
εnun

)
·∇v =−εN+1

L∑
j0, j1,..., jN=1

Y j0 Y j1 · · ·Y jN

∫
D

a j0∇U j1 j2··· jN ·∇v. (1.73)

Since Y j , j = 1, . . . ,L are bounded, in particular they have bounded 2(N +1)th moment. When

the various deterministic functions are approximated using finite elements, if the solution is

regular enough in physical space then the error u −∑N
n=0 ε

nun,h in the L2
P (Ω; H 1

0 (D)) norm is

of order

h +εh +ε2h + . . .+εN h +εN+1.

The error in O (εnh), 0 ≤ n ≤ N , corresponds to the error made when the functions U j1··· jn (u0

for n = 0) are replaced by their FE approximation U j1··· jn ,h (resp. u0,h). An a posteriori error

estimate can thus easily be obtained as follows. First, the term in O (h), which corresponds to

the residual for u0,h , is obtained by estimating
∫

D ( f v −a0∇u0,h ·∇v), see (1.47). For the term

in O (hεn), n = 1, . . . , N , it suffices to estimate for j1, . . . , jn = 1, . . . ,L the residual defined for any
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v ∈ H 1
0 (D) by

〈R(U j1··· jn ,h), v〉 :=
∫

D

(
a j1∇U j2··· jn ,h +a0∇U j1··· jn ,h

) ·∇v,

where 〈·, ·〉 denotes the duality pairing bracket. For an explicit error estimate, computable

up to multiplicative interpolation constants, we finally need to express the expectation of

the product of n random variables E[Y j1 · · ·Y jn ] for all combinations of indices and for n =
1, . . . ,2(N +1). More precisely, we can show the following result.

Proposition 1.4.2. Let u be the weak solution of problem (1.11) and uN
h =∑N

n=0 ε
nun,h, where

un,h is the FE approximation of un given by (1.71). There exist N +1 constants Cn > 0, n =
0,1, . . . , N , depending only on the constants in (1.26) and (1.28) such that

E
[
‖∇(u −uN

h )‖2
L2(D)

] 1
2 ≤

�
N +2

ami n

[
C0η

2
0 +

N∑
n=1

Cnη
2
n +η2

N+1

] 1
2

, (1.74)

with

η2
0 = ∑

K
h2

K ‖ f +∇· (a0∇u0,h)‖2
L2(K ) +

∑
e

he‖
[
a0∇u0,h ·ne

]
ne
‖2

L2(e),

η2
n = ε2nE

[∑
K

h2
K ‖

L∑
j1,..., jn=1

Y j1 · · ·Y jn∇·w j1··· jn ,h‖2
L2(K )

+∑
e

he‖[
L∑

j1,..., jn=1
Y j1 · · ·Y jn w j1··· jn ,h ·ne ]ne‖2

L2(e)

]

η2
N+1 = ε2(N+1)E

[
‖

L∑
j0, j1,..., jN=1

Y j0 Y j1 · · ·Y jN a j0∇U j1··· jN ,h‖2
L2(D)

]
,

where

w j1··· jn ,h := a j1∇U j2··· jn ,h +a0∇U j1··· jn ,h j1, . . . , jn = 1, . . . ,L.

Proceeding similarly, this generalization can also be applied to the other error estimates we

obtained in Section 1.3. Finally, notice that the constant
�

N +2 that appears in (1.74) can be

avoided thanks to the triangle inequality for the L2
P (Ω) norm, yielding an upper bound of the

form a−1
mi n

(
C0η0 + . . .+CNηN +ηN+1

)
. The same holds for all the error estimates obtained in

Sections 1.3 and 1.4.1.

1.5 Extension to nonlinear problems

Keeping the same notations as in the previous sections, we are now interested in solving

problems of the form:
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1.5. Extension to nonlinear problems

find u : D ×Ω→R such that almost surely:{
F (a,u) = 0 in D

u = 0 on ∂D,
(1.75)

where F is a smooth nonlinear mapping that depends on the uncertain input a given by (1.12).

Again, the random solution u is expanded with respect to ε up to a certain order

u(x,Y(ω)) = u0(x)+εu1(x,Y(ω))+O (ε2).

Formally, we have

F (a,u) = F (a0,u0)+DaF (a0,u0)(a −a0)+DuF (a0,u0)(u −u0)+O (ε2),

where Da and Du denote the Fréchet derivatives with respect to a and u respectively, the

deterministic part u0 of u is the solution of the (nonlinear) problem{
F (a0,u0) = 0 in D

u0 = 0 on ∂D,
(1.76)

while the U j in u1 =∑L
j=1 Y jU j can be found by solving the (linear) problems

{
DaF (a0,u0)(a j )+DuF (a0,u0)(U j ) = 0 in D

U j = 0 on ∂D,
j = 1, . . . ,L. (1.77)

We can directly see one of the advantages of expanding the solution as proposed here, namely

that a single nonlinear problem must be solved to find u0, the other problems being linear.

A new FE solver corresponding to (1.77) has to be implemented to approximate the U j , j =
1, . . . ,L.

In the case of quasi-linear problems, the error analysis is very similar to the linear case

considered in Section 1.1. Indeed, under certain conditions such as well-posedness of the

problem, only the part of the estimate corresponding to the residual error in the physical

space has to be changed in the a posteriori estimate of the error between u and u0,h in the

L2
P (Ω; H 1

0 (D)) norm. For instance, let us consider problem (1.75) with

F (a(x,ω),u(x,ω)) :=−div(a(x,ω)∇u(x,ω))+u3(x,ω)− f (x). (1.78)

This well-posed problem has a unique solution in L2
P (Ω; H 1

0 (D)) and we can show the following

a posteriori error estimate for ‖u−u0,h‖L2
P (Ω;H 1

0 (D)), where u0,h ∈Vh is the deterministic solution

of ∫
D

a0∇u0,h ·∇vh +
∫

D
u3

0,h vh =
∫

D
f vh ∀vh ∈Vh . (1.79)

Proposition 1.5.1. Let u be the weak solution of problem (1.75) with F given by (1.78), and let

u0,h be the solution of (1.79). There exists a constant C > 0 depending only on the constants in
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(1.26) and (1.28) such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤ C

ami n

[
η2

1 +η2
2

] 1
2 ,

with

η2
1 := ∑

K∈Th

h2
K

∫
K

( f −u3
0,h +∇· (a0∇u0,h))2 + ∑

e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne

η2
2 := ε2

∫
D

L∑
j=1

a2
j |∇u0,h |2.

Proof. Since the proof is very similar to the one of Proposition 1.3.5, we only give the key

ingredients here. First, for any v ∈V we have almost surely∫
D

a∇(u −u0,h) ·∇v =
∫

D
( f −u3

0,h)v −
∫

D
a0∇u0,h ·∇v −

∫
D

(a −a0)∇u0,h ·∇v −
∫

D
(u3 −u3

0,h)v.

Then, for v = u −u0,h the last term in the above equality is non-positive. Indeed, using that

u3 −u3
0,h =

∫1

0
3(u0,h + t (u −u0,h))2(u −u0,h)d t ,

we get

−
∫

D
(u3 −u3

0,h)(u −u0,h) =−
∫

D

∫1

0
3(u0,h + t (u −u0,h))2(u −u0,h)2 ≤ 0.

Therefore, this term can be omitted since we are looking for an upper bound of the error.

Another example is the following. Let k > 0 be such that
kC 2

P
ami n

< 1, or in other words
kC 2

P
ami n

≤ 1−δ

for any δ ∈ (0,1). If we take

F (a(x,ω),u(x,ω)) :=−div(a(x,ω)∇u(x,ω))− g (u(x,ω)) (1.80)

in problem (1.75), where g is a Lipschitz function with Lipschitz constant k, then we can show

the well-posedness of the problem and the following a posteriori error estimate for the error

u −u0,h , where u0,h ∈Vh is the deterministic solution of∫
D

a0∇u0,h ·∇vh =
∫

D
g (u0,h)vh ∀vh ∈Vh . (1.81)

Proposition 1.5.2. Let u be the weak solution of problem (1.75) with F given by (1.80), and

let u0,h be the solution of (1.81). There exists a constant C > 0, depending only on δ and the

constants in (1.26) and (1.28), such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤ C

ami n

[
η2

1 +η2
2

] 1
2 ,
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with

η2
1 := ∑

K∈Th

h2
K

∫
K

(g (u0,h)+∇· (a0∇u0,h))2 + ∑
e∈Th

he

∫
e
[a0∇u0,h ·ne]2

ne

η2
2 := ε2

∫
D

L∑
j=1

a2
j |∇u0,h |2.

Proof. Again, we only give the key ingredients of the proof. First, for any v ∈V we have almost

surely ∫
D

a∇(u −u0,h) ·∇v =
∫

D
g (u0,h)v −

∫
D

a0∇u0,h ·∇v −
∫

D
(a −a0)∇u0,h ·∇v︸ ︷︷ ︸

=:A(v)

(1.82)

−
∫

D
(g (u)− g (u0,h))v.

With v = u −u0,h , the last term is bounded by

−
∫

D
(g (u)− g (u0,h))(u −u0,h) ≤ kC 2

P‖∇(u −u0,h)‖2
L2(D). (1.83)

Since

ami n‖∇(u −u0,h)‖2
L2(D) ≤

∫
D

a|∇(u −u0,h)|2,

taking (1.83) to the left-hand side of (1.82) and using kC 2
P ≤ ami n(1−δ) yield

ami nδ‖∇(u −u0,h)‖2
L2(D) ≤ A(u −u0,h).

A bound on A(u −u0,h), which contains the residual for u0 and a term of order ε, is found

proceeding exactly as in the proof of Proposition 1.3.5.

The constant C that appears in the error estimate of Proposition 1.5.2 is of order δ−1, and thus

explodes when δ tends to zero, i.e. when
kC 2

P
ami n

is close to one. In practise, it is usual to restrict

the analysis to Lipschitz function with Lipschitz constant k such that k ≤ ami n

2C 2
P

, so that δ≥ 1
2 .

Finally, let us consider an example where the uncertain coefficient is associated to the nonlin-

ear term, namely the problem (1.75) with

F (a(x,ω),u(x,ω)) =−Δu(x,ω)+a(x,ω)u3(x,ω)− f (x). (1.84)

In this case, we can show the well-posedness of the problem and the following a posteriori

error estimate in H 1
0 (D)-norm in physical space for the first order approximation u ≈ u0,h ,

where u0,h is the solution of∫
D
∇u0,h ·∇vh +

∫
D

a0u3
0,h vh =

∫
D

f vh ∀vh ∈Vh . (1.85)
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Chapter 1. Elliptic model problems with random diffusion coefficient

Proposition 1.5.3. Let u be the weak solution of problem (1.75) with F given by (1.84), and let

u0,h be the solution of (1.85). There exists a constant C > 0 depending only on the constants in

(1.26) and (1.28) such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤C

[
η2

1 +η2
2

] 1
2 ,

with

η2
1 := ∑

K∈Th

h2
K

∫
K

( f +Δu0,h −a0u3
0,h)2 + ∑

e∈Th

he

∫
e
[∇u0,h ·ne]2

ne

η2
2 := ε2

∫
D

L∑
j=1

a2
j u6

0,h .

Proof. The proof is based on the relations∫
D
∇(u −u0,h) ·∇v =

∫
D

f v −
∫

D
a0u3

0,h v −
∫

D
∇u0,h ·∇v −

∫
D

(au3 −a0u3
0,h)v

and

−
∫

D
(au3 −a0u3

0,h)v =−
∫

D
a
∫1

0
3(u0,h + t (u −u0,h))2(u −u0,h)d t v −

∫
D

(a −a0)u3
0,h v.

Since a is positive, the first term of the right-hand side of the last equality is less or equal to

zero for v = u −u0,h .

1.6 Computational costs

We perform here a comparison of the computational costs between the SC-FEM method [7,

124] and the one presented here, called perturbation method in the sequel, when comparable

accuracy is reached. Briefly, the SC-FEM applied to the model problem (1.11) consists, given a

set of (collocation) points {yk ∈ Γ,k = 1, . . . , Nc }, in finding uh(·,yk ) ∈Vh such that∫
D

a(x,yk )∇uh(x,yk ) ·∇vh(x)dx =
∫

D
f (x)vh(x)dx ∀vh ∈Vh

for k = 1, . . . , Nc and building a global polynomial approximation

uh,Nc (x,y) =
Nc∑

k=1
uh(x,yk )ψk (y),

for appropriate multivariate polynomials {ψk }Nc

k=1. Since the FEM is used to approximate

the physical space in both methods (stochastic collocation and perturbation), we use the

same mesh for the discretization of D. For a comparable statistical error, say an error with

convergence rate of order ε2, we take N = 1 in the expansion (1.19) of u for the perturbation
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1.6. Computational costs

method and use a sparse grid of level 1 for the SC method, based either on Clenshaw-Curtis

(see [51]) or Gaussian abscissas. The construction of the sparse grid interpolant of level 1 is

briefly described in the following. We refer to [65, 97, 124] for more details and the general

construction of sparse grid of arbitrary level. First, the sparse grid interpolant of level 0 of

a function f (y), denoted S0 f , is simply the evaluation of the function at (y0
1, . . . , y0

L), where

y0
j is the unique interpolation point in direction j . Next, for each variable y j , we define the

sequence of interpolation points at level i ≥ 1 by {yi
j ,k , k = 1, . . . ,m(i )}, where the number of

collocation points m(i ) can be taken for instance as

m(i ) = i +1 or m(i ) =
{

1 if i = 0

2i +1 if i ≥ 1.

The former choice for m corresponds to a total degree (TD) approximation space while the

latter corresponds to a Smolyak one (see [11]). Notice that compared to the articles mentioned

above, the level index i starts here at 0 instead of 1. We define then the one dimensional

(Lagrange) interpolation operator in direction j at level i = 1 by

U 1
j f (y1, . . . , yL) :=

m(1)∑
k=1

f (y0
1, . . . , y0

j−1, y1
j ,k , y0

j+1, . . . , y0
L)

(
m(1)∏

l=1,l �=k

y j − y1
j ,l

y1
j ,k − y1

j ,l

)
,

which is a polynomial of degree m(1)−1 in the direction j and constant in all other directions.

Finally, the level 1 sparse grid interpolant is defined as

S1 f := S0 f +
L∑

j=1
(U 1

j f −S0 f ) = (1−L)S0 f +
L∑

j=1
U 1

j f

which is nothing else than the sum of the level 0 sparse grid interpolant and the details in each

direction.

Remark 1.6.1. It can be proved that the SC approximation computed with a sparse grid of level

1 indeed yields an error of order ε2, using for instance a scaling argument together with the fact

that S1 is exact for any polynomial of (total) degree at most 1 (see [18]). More generally, we can

show that a sparse grid of level l yields an error of order εl+1 for the choice m(i ) = i , while for

the second choice of m it is of order εl+k+1, where k = 0 if l < L and k = l −L+1 otherwise.

The type of points in each direction is chosen according to the distribution of the random

variables. Note that the use of Clenshaw-Curtis points, which are the extrema of Chebyshev

polynomials and which are suitable for uniformly distributed random variables, and Smolyak

sparse grid leads to nested set of abscissas. However, since only sparse grids of level 1 are

considered, there is no real advantage to consider hierarchical sparse grids. In both cases

m(1) = 2 and Gauss-Legendre abscissas and m(1) = 3 and Clenshaw-Curtis abscissas, referred

to as SC1 and SC2 in the following, the sparse grid of level 1 consists of 2L +1 collocation

points (due to the use of nested set of abscissas in each direction for SC2).
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Chapter 1. Elliptic model problems with random diffusion coefficient

Let Wl , respectively Wnl , denote the work to solve once a given linear, respectively nonlinear,

problem. Moreover, let Wl̃ denote the work to solve the linear problem for U j associated with

the nonlinear one, see (1.77). Table 1.1 contains the computational costs for the SC-FEM and

the perturbation method. Notice that the work to construct the sparse grid is not taken into

account.

linear problem nonlinear problem
SC-FEM (2L+1) ·Wl (2L+1) ·Wnl

perturbation method (L+1) ·Wl Wnl +L ·Wl̃

Table 1.1: Computational costs for the SC-FEM and the perturbation method.

The perturbation method presents no real advantage for solving linear problems since the

costs for both methods differ only by a factor 2. The situation is different when a nonlinear

problem is considered. Indeed, when using the SC method, we need to solve as many nonlinear

problems as collocation points, i.e. 2L +1 problems, whereas only one nonlinear problem

needs to be solved for the perturbation method. The L remaining problems, to compute the

U j , j = 1, . . . ,L, are linear and so usually much cheaper to solve. However, one should invest

extra effort to derive by hand the Fréchet derivatives and implement the problems solved by

the U j , j = 1, . . . ,L.

1.7 Numerical results

This section is devoted to illustration and validation of the theoretical results obtained in the

previous sections. We start with the analysis of 1D problems, analysing first the convergence

rate for various errors and norms and presenting, next, algorithms which adaptively refine the

(physical) mesh to balance the two sources of error: the physical space discretization and the

uncertainty. We present then two 2D examples and conclude this section with a comparison

with the stochastic collocation method in term of computational costs when solving linear

and nonlinear problems.

1.7.1 1D problems

Let D = (0,1). In what follows, the true errors in the L2
P (Ω; H 1

0 (D)) and L2
P (Ω;L2(D)) norms

have been accurately approximated with the standard Monte Carlo method, with a sample of

size K = 10000, i.e. for V = H 1
0 (D) or L2(D) we approximate

‖v‖L2
P (Ω;V ) ≈

(
1

K

K∑
k=1

‖v(·,yk )‖2
V

) 1
2

∀v ∈ L2
P (Ω;V ),
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1.7. Numerical results

where {yk } ∈ Γ are i.i.d realizations of the random vector Y. With this choice for the sample size,

the variance of the estimation of the error for all the considered values of h and ε is at most

10−5 the estimated error. In what follows, whenever we refer to error it should be understood

that the true error has been accurately computed by the Monte Carlo procedure. Since the

exact random solution of the problems considered below is not known, the error is computed

with respect to a reference solution computed on a fine uniform mesh for D, namely with

a mesh-grid of length hr e f = 2−12. Notice that if we take a FE space of mesh size h = hr e f ,

then only the statistical error is considered. Finally, all the involved integrals are evaluated

numerically with sufficiently accurate quadrature formulas that permit to neglect the effect of

quadrature.

Let us first consider L = 50 random variables Y j , j = 1, . . . ,L, which can take the values ±1 with

probability 1
2 . Such discrete random variables have zero mean, unit variance and unit fourth

moment. Similarly to what is done in [124], we take a diffusion coefficient of the form

a(x,Y(ω)) = 1+ε
L∑

j=1

cos(2π j x)

(π j )2 Y j (ω), (1.86)

which is similar to a (truncated) Karhunen-Loève expansion with eigenvalues of order 1
j 4 . With

this choice of random diffusion coefficient, we have 1− ε
6 ≤ a(x,y) ≤ 1+ ε

6 . We take ε ∈ [0,4]

which guarantee property (A1) with ami n = 1
3 and amax = 5

3 . Finally, we consider two different

right-hand sides, namely

f1(x) = 1 and f2(x) = 72
(
1−72(x −0.5)2)e−36(x−0.5)2

. (1.87)

The latter corresponds to the exact solution u0(x) = e−36(x−0.5)2 −e−9 for problem (1.20) while

it is u0(x) = 0.5x(1−x) for the case f = f1.

Error in L2
P (Ω; H 1

0 (D))-norm

We consider first the error measured in L2
P (Ω; H 1

0 (D))-norm. We show in Figure 1.1 the con-

vergence rate of the error u −u0,h with respect to 2−9 ≤ h ≤ 2−3 for ε = 32h, along with the

a posteriori estimator based on (1.43) and (1.44). Based on this result, we can see that a

division of h and ε by two halves the error, which is in agreement with the convergence of

‖u −u0,h‖L2
P (Ω;H 1

0 (D)) in O (h +ε) predicted by the foregoing error analysis. Moreover, for the

two cases f1 and f2, the gap between the error and the estimator is of about 1.6 and 2.8,

respectively, which is comprised between the effectivity index of the stochastic error estimator

(1) and the spatial error estimator (3.46), see below for details. Concerning the convergence

rate of the second order approximation, we present in Figure 1.2 the error between u and u1
h

with respect to 2−3 ≤ ε≤ 2 for h = ε2/32. This result confirms the convergence in O (ε2) of the

stochastic truncation predicted by (1.63), when the exact solution is approximated by u0+εu1.

The error estimators depicted in Figures 1.1 and 1.2 do not take into account the unknown
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Figure 1.1: Convergence orders for problem (1.11) with f = f1 (left) and f = f2 (right). Log log
scale plot of the error between u and u0,h in L2

P (Ω; H 1
0 (D))-norm w.r.t h with ε= 32h.

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log ε

lo
g 

er
ro

r

function f
1

 

 

err

est

slope 2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

lo
g 

er
ro

r

log ε

function f
2

 

 

err

est

slope 2

Figure 1.2: Convergence orders for problem (1.11) with f = f1 (left) and f = f2 (right). Log log
scale plot of the error between u and u1

h in L2
P (Ω; H 1

0 (D))-norm w.r.t ε with h = ε2/32.
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1.7. Numerical results

constants due to interpolation error that appear in (1.42) and (1.63). These constants can

be estimated numerically as follows to obtain a sharp error estimator: consider the problem

−u′′
0 = f with f such that the exact solution is known, for instance f = f1 or f = f2, and define

1/CH 1
0

:= 3.46 ≈ η1/‖u0 −u0,h‖H 1
0 (D) for h small enough. This estimation can be done once

for all since CH 1
0

does not depend on the input data. We define then η̃ :=
(
C 2

H 1
0
η2

1 +η2
2

) 1
2

as

an estimator for the error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)). We will say that η̃ is a good approximation

of the error if the ratio η̃/‖u −u0,h‖L2
P (Ω;H 1

0 (D)) remains between ami n and amax . Since in the

considered case the ratio amax /ami n tends to 1 as ε goes to 0, we expect the effectivity index

of the estimator η̃ to approach 1 as ε gets smaller. We give in Tables 1.2 and 1.3 the results

obtained when the constant CH 1
0

is considered. In Table 1.2, the mesh size is fixed to h = 2−7

while in Table 1.3 we fix ε= 0.25. In both cases, the ratio of the estimator η̃, which contains the

estimated constant CH 1
0

, over the error is close to one.

ε er r or CH 1
0
η1 η2 η̃ η̃/er r or

f
=

f 1

4 1.2167e-1 2.2579e-3 9.1996e-2 9.2024e-2 0.75632
2 4.9276e-2 2.2579e-3 4.5998e-2 4.6054e-2 0.93461
1 2.3460e-2 2.2579e-3 2.2999e-2 2.3110e-2 0.98505

0.5 1.1760e-2 2.2579e-3 1.1500e-2 1.1719e-2 0.99652
0.25 6.1805e-3 2.2579e-3 5.7498e-3 6.1772e-3 0.99947

0.125 3.6545e-3 2.2579e-3 2.8749e-3 3.6556e-3 1.00031

ε er r or CH 1
0
η1 η2 η̃ η̃/er r or

f
=

f 2

4 9.5591e-1 6.4347e-2 7.8646e-1 7.8909e-1 0.82548
2 4.1806e-1 6.4347e-2 3.9323e-1 3.9846e-1 0.95312
1 2.0916e-1 6.4347e-2 1.9661e-1 2.0688e-1 0.98910

0.5 1.1782e-1 6.4347e-2 9.8307e-2 1.1749e-1 0.99720
0.25 8.0974e-2 6.4347e-2 4.9154e-2 8.0973e-2 0.99999

0.125 6.8769e-2 6.4347e-2 2.4577e-2 6.8881e-2 1.00163

Table 1.2: Error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u −u0,h‖L2
P (Ω;H 1

0 (D))

for h = 2−7 and various ε for both cases f1 and f2.

The same observation holds for the approximation u ≈ u0,h +εu1,h taking C1 =C2 =C 2
H 1

0
in

(1.63) and for the generalization (1.74) with Ci =C 2
H 1

0
for i = 0, . . . , N , see Table 1.4 where the

case u ≈ u0,h +εu1,h is presented for the case f = f2. Recall that η1, η2 and η3 are given in

(1.64), (1.65) and (1.66), respectively, and here η̃ :=
(
C 2

H 1
0
η2

1 +C 2
H 1

0
η2

2 +η3
2

) 1
2

.

Error in L2
P (Ω;L2(D))-norm

We consider now the error u −u0,h in L2
P (Ω;L2(D))-norm. According to the theoretical result,

we should get a convergence of order h2 for ε=C h2. Figure 1.3, which contains the plot of the

error and estimator based on (1.54) and (1.55) for C = 32 and 2−6 ≤ h ≤ 2−2, confirms that this
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N er r or CH 1
0
η1 η2 η̃ η̃/er r or

f
=

f 1
8 3.6575e-2 3.6127e-2 5.5801e-3 3.6556e-2 0.99946

16 1.8951e-2 1.8064e-2 5.7030e-3 1.8942e-2 0.99955
32 1.0712e-2 9.0318e-3 5.7384e-3 1.0701e-2 0.99890
64 7.3076e-3 4.5159e-3 5.7475e-3 7.3094e-3 1.00024

128 6.1765e-3 2.2580e-3 5.7498e-3 6.1772e-3 1.00011
256 5.8822e-3 1.1290e-3 5.7503e-3 5.8601e-3 0.99625

N er r or CH 1
0
η1 η2 η̃ η̃/er r or

f
=

f 2

8 9.7697e-1 1.0441e-0 4.6189e-2 1.0451e-0 1.06977
16 5.1089e-1 5.1478e-1 4.8261e-2 5.1704e-1 1.01204
32 2.6109e-1 2.5739e-1 4.8942e-2 2.6200e-1 1.00349
64 1.3766e-1 1.2869e-1 4.9112e-2 1.3775e-1 1.00066

128 8.0919e-2 6.4347e-2 4.9154e-2 8.0973e-2 1.00066
256 5.8787e-2 3.2174e-2 4.9164e-2 5.8756e-2 0.99946

Table 1.3: Error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u −u0,h‖L2
P (Ω;H 1

0 (D))
for ε= 0.25 and various h = 1/N for both cases f1 and f2.

ε er r or CH 1
0
η1 CH 1

0
η2 η3 η̃ η̃/er r or

h
=

2−
10

4 3.5236e-1 8.0434e-3 1.8607e-3 2.7488e-1 2.7500e-1 0.78044
2 7.3380e-2 8.0434e-3 9.3037e-4 6.8719e-2 6.9194e-2 0.94295
1 1.9054e-2 8.0434e-3 4.6519e-4 1.7180e-2 1.8975e-2 0.99586

0.5 8.9126e-3 8.0434e-3 2.3259e-4 4.2949e-3 9.1213e-3 1.02341
0.25 7.8616e-3 8.0434e-3 1.1630e-4 1.0737e-3 8.1156e-3 1.03231

0.125 7.7840e-3 8.0434e-3 5.8148e-5 2.6843e-4 8.0481e-3 1.03393

N er r or CH 1
0
η1 CH 1

0
η2 η3 η̃ η̃/er r or

ε
=

1

32 2.6010e-1 2.5739e-1 1.4792e-2 1.6950e-2 2.5837e-1 0.99337
64 1.3107e-1 1.2869e-1 7.4313e-3 1.7121e-2 1.3004e-1 0.99219

128 6.7384e-2 6.4347e-2 3.7201e-3 1.7165e-2 6.6701e-2 0.98987
256 3.6796e-2 3.2174e-2 1.8606e-3 1.7176e-2 3.6519e-2 0.99246
512 2.3761e-2 1.6087e-2 9.3036e-4 1.7179e-2 2.3554e-2 0.99128

1024 1.9131e-2 8.0434e-3 4.6519e-4 1.7180e-2 1.8975e-2 0.99188

Table 1.4: Error and estimators for the approximation u ≈ u0,h +εu1,h with h fixed (top) and ε

fixed (bottom) for the case f = f2.
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is the case. Similarly to the error in H 1
0 (D)-norm, the constant due to interpolation error could
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Figure 1.3: Convergence orders for problem (1.11) with f = f1 (left) and f = f2 (right). Log log
scale plot of the error between u and u0,h in L2

P (Ω;L2(D))-norm w.r.t h with ε fixed to 32h2 .

be estimated numerically once for all following the same procedure as above. However, even

with a sharp estimation of such constant, there is no guarantee that the estimator is efficient

though it has the correct convergence rate. We see two reasons for that. First of all, there are

no proofs, to our knowledge, that the part of the estimator due to the uncertainty (η2) is a

lower bound for the error in L2(D)-norm, mainly due to the use of the Poincaré inequality.

Considering h = hr e f , the estimator over estimates the error by a factor of about 4.2 for f = f1

and 9 for f = f2, showing that the constant multiplying η2 does depend on f . Moreover, the

constant C1 in (1.53) depends in an implicit way on the uniform bound for a and ∇a (see

Remark 1.3.10).

Different setup

Similar results are obtained when other input data are considered. For instance, let us consider

independent uniformly distributed random variables in [−�3,
�

3]. In this case, the random

variables still have zero mean and unit variance but E[Y 4
j ] = 9

5 . This only modifies the part η3

in the a posteriori error estimate (1.63) for ‖u −u1
h‖L2

P (Ω;H 1
0 (D)). Moreover, we also modify the

functions a j considering here

a(x,Y(ω)) = 1+ε
50∑

j=1

cos(8π j x)sin(2π j x)

(π j )2 Y j (ω) (1.88)

for the random diffusion coefficient. Notice that this choice satisfies 1−
�

3ε
6 ≤ a(x,y) ≤ 1+

�
3ε
6 .

We give in Figure 1.4 some realizations of a and the corresponding solution for the case ε= 1

and f = f2 defined in (1.87).

The results obtained when the constant CH 1
0
= 1/3.46 is taken into account are given in Table

1.5. First, the mesh size is fixed to h = 1/N = 2−8 and ε varies and then, we set ε = 0.5 and

consider various partitions of [0,1]. When h is fixed, the error decreases linearly with respect
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Figure 1.4: Five realizations of the random diffusion coefficient a given in (1.88) with ε= 1
(left) and the corresponding solution for f = f2 (right).

to ε until the FE error is no longer negligible. The same observation holds when ε is fixed and

h varies. In both cases, the effectivity index of the error estimator η̃= (C 2
H 1

0
η2

1 +η2
2)

1
2 is close to

one.

ε er r or CH 1
0
η1 η2 η̃ η̃/er r or

2 3.2152e-1 3.2174e-2 3.0331e-1 3.0501e-1 0.94866
1 1.5541e-1 3.2174e-2 1.5165e-1 1.5503e-1 0.99754

0.5 8.1168e-2 3.2174e-2 7.5827e-2 8.2371e-2 1.01482
0.25 4.9399e-2 3.2174e-2 3.7914e-2 4.9725e-2 1.00659

0.125 3.7192e-2 3.2174e-2 1.8957e-2 3.7343e-2 1.00406
0.0625 3.3432e-2 3.2174e-2 9.4784e-3 3.3541e-2 1.00325

N er r or CH 1
0
η1 η2 η̃ η̃/er r or

8 9.7920e-1 1.0441e-0 9.7528e-2 1.0487e-0 1.07093
16 5.1403e-1 5.1478e-1 7.6937e-2 5.2050e-1 1.01258
32 2.6726e-1 2.5739e-1 7.5506e-2 2.6824e-1 1.00365
64 1.4900e-1 1.2869e-1 7.5726e-2 1.4932e-1 1.00217

128 9.8399e-2 6.4347e-2 7.5805e-2 9.9433e-2 1.01051
256 8.1817e-2 3.2174e-2 7.5827e-2 8.2371e-2 1.00676

Table 1.5: Error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u −u0,h‖L2
P (Ω;H 1

0 (D))

for h = 2−8 (top) and ε= 0.5 (bottom).

Adaptive algorithm

We propose here adaptive algorithms to determine, for a given ε, a mesh for D that balances

the two sources of error. The convergence rate of the error in the L2
P (Ω; H 1

0 (D)) norm with

respect to h for uniform refinements and for the first, second and third order approximation

for several given (fixed) values of ε is depicted in Figure 1.5 in the case f = 1 and a given in
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1.7. Numerical results

(1.86). First, we can notice that a better accuracy is reached when u is approximated by u2
h than
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Figure 1.5: Convergence rate for problem (1.11) with f = f1 for ε= 4,1,0.25,0.0625. Log log
scale plot of the error in L2

P (Ω; H 1
0 (D))-norm w.r.t h.

with u1
h , which in turn provides a better approximation than only the deterministic part u0,h .

This observation holds except for coarse meshes where the FE error is dominating yielding

comparable accuracy in all cases. Moreover, the global approximation error remains constant

for mesh sizes smaller than a critical value h0 of the mesh-size. Any further refinement of

the mesh below this value should thus be avoided since it would not improve the global

approximation error, being dominated by the stochastic error.

Based on this observation, it is interesting to determine how fine the mesh should be to get a

comparable error in h and ε. More precisely, for a given ε and for the approximation u ≈ u0,h ,

we would like to find a mesh for D such that

T −1

T
η2 ≤ η1 ≤ T +1

T
η2 (1.89)

for a given preset tolerance T > 1, where η1 and η2 are given by (1.43) and (1.44), respectively.

Notice that in all what follows, η1 can be replaced by CH 1
0
η1 if the estimated constant CH 1

0
is at

disposal, so that the correct balance of the two sources of error is considered. Moreover, we

mention that the choice of the law of the Y j , j = 1, . . . ,L, is irrelevant here as long as E[Y j ] = 0

and V ar (Y j ) = 1. Indeed, the error estimator η2 given in (1.44) is valid under these conditions

irrespectively of the law of Y j and only the solution u0,h is computed.
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Chapter 1. Elliptic model problems with random diffusion coefficient

Uniform refinement

The adaptation can be done in 1D using Algorithm 1 given below, where Nh +1 denotes the

number of discretization points in [0,1].

Algorithm 1 find h = N−1
h such that (1.89) holds

Require: Ni ni t and T
Ensure: mesh-size h which yield comparable accuracy in h and ε

1: Nh = Ni ni t

2: Compute u0,h on the uniform partition xi = i h, h = N−1
h , i = 0,1, . . . , Nh

3: Compute η1 and η2 according to (1.43) and (1.44)
4: if T−1

T ≤ η1

η2
≤ T+1

T then
5: stop
6: else
7: if η1

η2
< T−1

T then

8: Nh ←�Nh
2 � (mesh too fine)

9: else
10: Nh ← 2Nh (mesh too coarse)
11: end if
12: go to 2.
13: end if

Applying Algorithm 1 to our problem for T = 2 and various given ε, we get the results presented

in Table 1.6.

f1 f2

ε Nh η1 η2 Nh η1 η2

1 32 0.03125 0.02295 128 0.22264 0.19661
0.5 64 0.01563 0.01149 256 0.11132 0.09833

0.25 128 0.00781 0.00575 512 0.05566 0.04917
0.125 256 0.00391 0.00288 1024 0.02783 0.02458

0.0625 512 0.00195 0.00144 2048 0.01392 0.01229

Table 1.6: Value of h = N−1
h with respect to ε such that (1.89) holds with T = 2.

We mention that if T is large, i.e. T−1
T is close to T+1

T , the algorithm might not converge due to

an oscillation of the ratio η1

η2
below the lower bound T−1

T and above the upper bound T+1
T in two

consecutive steps. Such behaviour will be observed if no uniform partition of D satisfies (1.89).

Moreover, notice that with Algorithm 1, only refinement or only coarsening is performed,

depending on the initial number Ni ni t of subintervals.
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1.7. Numerical results

Non-uniform refinement

Algorithm 1 given above only uses uniform refinement or coarsening. Of course, adaptive

refinements can be considered as well exploiting the local nature of the estimator η1, which

can indeed be written as

η2
1 =

∑
K∈Th

η2
K with η2

K = h2
K

∫
K

( f +∇· (a0∇u0,h))2 + 1

2

∑
e⊂∂K

he

∫
e
[a0∇u0,h ·ne]2

ne
(1.90)

taking into account that each edge is then counted twice.

Remark 1.7.1. The factor 1
2 could in fact be replaced by 1

4 if we do not split the summation over

the elements and the edges in the derivation of the error estimate in (1.47), namely if we consider

an element point of view. Indeed, we can use the fact that for any v ∈ H 1
0 (D) and any vh ∈Vh

we have∫
D

f v −
∫

D
a0∇u0,h ·∇v = ∑

K∈Th

[∫
K

( f +∇· (a0∇u0,h))(v − vh)+
∫
∂K

1

2
[a0∇u0,h ·ne ]ne (v − vh)

]
.

Recall that in 1D, for a partition 0 = x0 < x1 < . . . < xNh = 1, the error estimator η1 reads

η2
1 =

Nh−1∑
i=0

η2
1,i with η2

1,i = h2
i ‖ f + (a0u′

0,h)′‖2
L2(xi ,xi+1).

The goal being to satisfy (1.89), a first possibility is to require that

Binf :=
(

T −1

T

)2

η2
2

1

Nh
≤ η2

1,i ≤
(

T +1

T

)2

η2
2

1

Nh
=: Bsup ∀i = 0, . . . , Nh −1. (1.91)

Another sufficient condition for (1.89) to hold is to impose that

Binf :=
(

T −1

T

)2

η2
2

hi

|D| ≤ η2
1,i ≤

(
T +1

T

)2

η2
2

hi

|D| =: Bsup ∀i = 0, . . . , Nh −1 (1.92)

using the fact that
∑Nh−1

i=0 hi = |D|. The criterion (1.91) imposes an equidistribution of the error,

enforcing a comparable value of the local error estimator on each subinterval regardless of

its length. In the second strategy (1.92), the repartition of the error is weighted by hi . This

is commonly used in a time-adaptivity framework so that the solution does not need to be

computed until the final time before adapting the time step.

We give in Algorithm 2 an adaptive procedure which find a (non-uniform) partition of D for

which (1.89) holds. The idea is to check for each subinterval [xi , xi+1], i = 0, . . . , Nh −1, of the

current partition of D if the local error estimator η1,i satisfies the criterion (1.91) or (1.92). If it

is too large, then we should refine the interval [xi , xi+1], for instance by adding its midpoint,

while a coarsening should be done if it is too small.

To better appreciate the behaviour of the non-uniform adaptation, we test Algorithm 2 with a

49



Chapter 1. Elliptic model problems with random diffusion coefficient

Algorithm 2 adaptive algorithm with non-uniform partition

Require: T and initial partition Th = {xi , i = 0, . . . , Nh −1}
Ensure: partition of D such that (1.89) holds

1: Compute u0,h on Th

2: Compute η1 and η2 according to (1.43) and (1.44)
3: if T−1

T ≤ η1

η2
≤ T+1

T then
4: stop
5: else
6: for i = 0, . . . , Nh −1 do
7: if η2

1,i > Bsup then

8: add the midpoint xi+xi+1
2 to Th

9: else if η2
1,i < Binf then

10: remove the endpoint xi+1 from Th (xi if i = Nh −1)
11: end if
12: end for
13: end if
14: go to 1.

different forcing term than in the previous sections, keeping the diffusion coefficient a as in

(1.86) and all other input data being unchanged. We consider the source term f for which the

corresponding solution u0 of problem (1.20) is given by1

u0(x) = x − 1−exτ−1

1−eτ−1 . (1.93)

The solution presents a boundary layer near x = 1 of width proportional to τ, see Figure 1.6.

It is linear on the remaining part of the interval, where only few points are thus sufficient to

obtain a good approximation. In the numerical results below, we choose τ= 0.05.

We give in Tables 1.7 and 1.8 the results obtained for various values of ε when using the

two adaptive criterion (1.91) and (1.92), respectively. We have denoted by Nh the number

of subintervals of D (i.e. Nh +1 is the number of nodes), hmin = mini hi and hmax = maxi hi

are the minimum and maximum mesh sizes, respectively, and iter stands for the number of

iterations of the adaptive algorithm. In all cases, we have started the adaptation with the initial

partition {0,0.5,1}.

First, we can see that the number of iterations is similar in both cases and the same holds

for the values of the error estimators η1 and η2. Moreover, the number of nodes is smaller

when criterion (1.91) is used while the maximum subinterval length hmax is in general larger

with (1.92). The latter strategy indeed allows to have large subintervals if the corresponding

local error estimator is small. This can be seen in Figure 1.6 where the repartition of the nodes

is given for various values of ε and for both criteria (1.91) and (1.91). The continuous line

1The function u0 in (1.93) is the solution of the problem −τu′′
0 +u′

0 = 1 in (0,1) with homogeneous Dirichlet
boundary conditions.

50



1.7. Numerical results

ε Nh hmin hmax η1 η2 iter
1 28 3.91e-3 6.56e-1 3.6424e-1 3.0474e-1 8

0.5 53 1.95e-3 6.25e-1 1.9848e-1 1.5272e-1 9
0.1 231 4.88e-4 4.69e-1 3.8504e-2 3.0727e-2 11

0.05 461 2.44e-4 2.50e-1 1.9233e-2 1.5164e-2 12
0.01 2056 6.10e-5 1.88e-1 4.4334e-3 3.0339e-3 14

0.005 4119 3.05e-5 2.81e-1 2.2138e-3 1.5178e-3 15
0.001 25646 3.81e-6 1.05e-1 3.3770e-4 3.0304e-4 18

0.0005 51292 1.91e-6 1.05e-1 1.6884e-4 1.5150e-4 19
0.0001 233216 4.77e-7 5.27e-2 3.7686e-5 3.0301e-5 21

Table 1.7: Adaptive partition of D such that (1.89) holds with T = 2 when criterion (1.91) is
used.

ε Nh hmin hmax η1 η2 iter
1 64 9.77e-04 5.63e-01 2.4702e-1 3.0720e-1 10

0.5 70 1.95e-03 6.25e-01 1.7704e-1 1.5273e-1 9
0.1 293 4.88e-04 4.69e-01 3.6756e-2 3.0704e-2 11

0.05 581 2.44e-04 5.47e-01 2.2340e-2 1.5356e-2 12
0.01 3880 3.05e-05 2.50e-01 3.2449e-3 3.0329e-3 15

0.005 7741 1.53e-05 4.38e-01 1.7937e-3 1.5338e-3 16
0.001 33949 3.81e-06 3.75e-01 4.0887e-4 3.0531e-4 18

0.0005 99606 9.54e-07 1.88e-01 1.6707e-4 1.5170e-4 20
0.0001 295692 4.77e-07 2.50e-01 4.0904e-5 3.0320e-5 21

Table 1.8: Adaptive partition of D such that (1.89) holds with T = 2 when criterion (1.92) is
used.
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Figure 1.6: Repartition of the nodes for ε= 1 (top), ε= 0.1 (middle) and ε= 0.01 (bottom) in
the case T = 2. Left: strategy (1.91), right: strategy (1.92).

represents the exact solution u0 given in (1.93).

As we have seen in Tables 1.7 and 1.8, the two methods yield comparable results. The number

of nodes for criterion (1.92) is larger but it allows, in general, larger maximum mesh size hmax.

Finally, we compare the results of Tables 1.7 and 1.8 with those obtained using a Dörfler [57]

bulk-chasing marking commonly used in adaptive finite element method (AFEM), see for

instance [42, 114]. To reach the target η1

η2
≤ T+1

T , a suitable fraction of the subintervals with

highest local error estimator is selected for refinement at each iteration. More precisely, for

a given parameter θ ∈ (0,1], we select an index set J ⊆ {0,1, . . . , Nh −1} of minimal cardinality

such that (∑
j∈J

η2
1, j

) 1
2

≥ θ

(
Nh−1∑
i=0

η2
1,i

) 1
2

= θη1.

This marking strategy is often referred to as equilibration strategy and yields comparable
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results than the so-called maximum strategy, see [119]. Notice that if θ is closed to 0, then only

few subintervals will be refined at each iteration while choosing θ close to 1 will generate a

set J of large cardinality. In particular, the case θ = 1 gives similar results than Algorithm 1

without coarsening, namely all the subintervals are refined at each iteration, except those for

which2 η1,i = 0. The procedure based on Dörfler marking is described in Algorithm 3. The

search for the index i ∈ {0, . . . , Nh −1} \ J with largest η2
1,i (see line 8) can be achieved by sorting

the local estimators η1,i in decreasing order before the while loop.

Algorithm 3 adaptive algorithm with Dörfler marking

Require: T , θ and initial partition Th = {xi , i = 0, . . . , Nh −1}
Ensure: partition of D such that η1

η2
≤ T+1

T
1: Compute u0,h on Th

2: Compute η1 and η2 according to (1.43) and (1.44)
3: if η1

η2
≤ T+1

T then
4: stop
5: else
6: J =� and ϑ= 0
7: while ϑ< θη1 do
8: J ← J ∪ { j } with j = argmaxi∈{0,...,Nh−1}\J η

2
1,i

9: ϑ←ϑ+η2
1, j

10: add the midpoint
x j+x j+1

2 to Th

11: end while
12: end if
13: go to 1.

We give in Table 1.9 the results obtained using the Dörfler strategy of Algorithm 3 for the same

values of ε than in Tables 1.7 and 1.8.

ε Nh hmin hmax η1 η2 iter
1 23 3.91e-03 5.00e-01 4.3240e-1 3.0736e-1 16

0.5 41 1.95e-03 5.00e-01 2.2862e-1 1.5371e-1 21
0.1 201 4.88e-04 5.00e-01 4.3679e-2 3.0756e-2 36

0.05 419 2.44e-04 2.50e-01 2.0873e-2 1.5164e-2 43
0.01 2017 3.05e-05 2.50e-01 4.3602e-3 3.0330e-3 58

0.005 4177 1.53e-05 2.50e-01 2.1044e-3 1.5165e-3 65
0.001 19715 3.81e-06 1.25e-01 4.4296e-4 3.0306e-4 80

0.0005 40705 1.91e-06 1.25e-01 2.1412e-4 1.5147e-4 87
0.0001 191790 4.77e-07 6.25e-02 4.5111e-5 3.0300e-5 102

Table 1.9: Dörfler strategy such that η1

η2
≤ T+1

T holds with T = 2 and θ = 0.5.

Compared to the results obtained with the two previous adaptive strategies, the Dörfler

2From a numerical point of view, any element which does not contribute to the sum for η1 will not be refined,
i.e. any element which is numerically zero due to machine precision.
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marking procedure requires more iterations but produces a partition of D satisfying η1

η2
≤ T+1

T

with fewer nodes. Moreover, this last inequality is tight here which is an expected feature for

moderate θ, or when few local error estimators are large compared to the others, since only

few subintervals are refined at each step. It is therefore more likely to stop the refinement

process when the tolerance is just satisfied. We give in Table 1.10 the results obtained when

changing the value of θ.

θ Nh hmin hmax η1 η2 iter
0.1 1934 3.05e-5 2.50e-1 4.5434e-3 3.0330e-3 704
0.4 2034 3.05e-5 2.50e-1 4.3241e-3 3.0330e-3 86
0.7 2202 3.05e-5 2.50e-1 3.9900e-3 3.0330e-3 31

0.95 2356 3.05e-5 2.50e-1 3.7186e-3 3.0330e-3 16
1 15872 6.10e-5 1.22e-4 3.8602e-3 3.0303e-3 14

Table 1.10: Dörfler strategy such that η1

η2
≤ T+1

T holds with T = 2 in the case ε= 0.01.

We see that when θ is small, the number of nodes is small but it requires many iterations of the

adaptive process. On the contrary, a large value of θ yields a partition of D with many nodes

obtained with few iterations. Notice that here, all cases but θ = 1 yield comparable results in

terms of number of nodes, minimal and maximal mesh sizes and estimators. As mentioned

above, the case θ = 1 yields similar results to those obtained with uniform refinement of the

mesh. The only difference lies in the fact that here, the midpoint of a subinterval [xi , xi+1] is

not added if η1,i is (numerically) zero. This explain why in Table 1.10 we get hmin �= hmax. If we

consider f1 or f2 as forcing term and ε= 0.0625, in which cases no local error estimator η1,i

vanishes, we get Nh = 512 and Nh = 2048 for f = f1 and f = f2, respectively, as in Table 1.6.

Adaptation for higher-order approximation in ε

Here, we give only a sketch of a possible adaptive scheme to achieve an approximate solution

with a prescribed accuracy, but we do not provide numerical experiments. As mentioned

previously, further mesh refinement should be avoided once the two error estimators η1 and

η2 are balanced since it would not decrease the total error. The latter can be decreased only by

adding more terms in the expansion of u. Based on this observation, we can think of a strategy

to adaptively increase the degree N in the expansion (1.19) of u together with adaptive mesh

refinements for each deterministic term in this expansion. Recall that the estimator for the

error u−uN
h = u−∑N

n=0 ε
nuh,n in the L2

P (Ω; H 1
0 (D)) norm reads a−1

mi n(CH 1
0

∑N
n=0ηn +ηN+1), see

Section 1.4.2. Starting with N = 0, we find a mesh of D (using Algorithm 2 for instance) such

that CH 1
0
η0 ≈ η1. If the error estimate does not reach the given tolerance, we increase N by one

and find a mesh such that CH 1
0

(η0 +η1) ≈ η2 and proceed then iteratively. Notice that different

meshes could be used for the FE approximation of each deterministic part of the solution (u0,

U1, U2, . . . ).
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1.7.2 2D problems

The numerical results obtained for the one-dimensional case generalize to problems of higher

dimensions. To motivate this statement, we present two numerical examples in 2D. In both

cases, the physical domain is D = (0,1)2 that we partition using uniform meshes of size h ∼ 1/n

for different values of n. The true error in the norm L2
P (Ω; H 1

0 (D)) is computed via the Monte-

Carlo method with sample size K = 1000 and a reference solution computed on the finest

mesh considered which corresponds here to nr e f = 28.

First example

We consider first the problem (1.11) with f (x) = 32(x1(1−x1)+x2(1−x2)) and

a(x,Y(ω)) = 1+ε
5∑

j=1

cos(2π j x1)+cos(2π j x2)

(π j )2 Y j (ω)

for x = (x1, x2) ∈ D, where Y j , j = 1, . . . ,5, are uniform random variables in [−�3,
�

3]. In this

setting, the exact solution u0 for the deterministic case ε= 0 is given by u0(x) = x1x2(1−x1)(1−
x2). The expected value and the standard deviation of u for the case ε= 0.5 is given in Figure

1.7.

Figure 1.7: Expected value (left) and standard deviation (right) of the solution with ε= 0.5 for
the first example.

Similarly to the 1D case, the constant due to interpolation can be estimated numerically,

yielding3 CH 1
0

:= 1/5.7. We define then η̃= (C 2
H 1

0
η2

1 +η2
2)

1
2 with η1 and η2 given by (1.43) and

(1.44), respectively. We report in Table 1.11 the results obtained for ε= 0.5 fixed and uniform

meshes of various sizes h ∼ 1/n while in Table 1.12, we fix n = 64 and vary ε.

In Table 1.12, where ε is fixed and n varies, the error decreases linearly with respect to h ∼ 1/n

3If the factor 1
2 is replaced by 1

4 for the jump contribution, see Remark 1.7.1, then we should take CH 1
0

:= 1/5.

See Appendix 1.C for more details.
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ε error CH 1
0
η1 η2 η̃ η̃/error

1 0.1749 0.0604 0.1842 0.1939 1.108
0.5 0.0974 0.0604 0.0921 0.1101 1.131

0.25 0.0703 0.0604 0.0461 0.0759 1.081
0.125 0.0622 0.0604 0.0230 0.0646 1.039

0.0625 0.0597 0.0604 0.0115 0.0615 1.029

Table 1.11: Error ‖u−u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u−u0,h‖L2
P (Ω;H 1

0 (D))
with n = 64 for the first example.

n error CH 1
0
η1 η2 η̃ η̃/error

8 0.4891 0.4649 0.0927 0.4741 0.969
16 0.2551 0.2381 0.0923 0.2554 1.001
32 0.1439 0.1202 0.0922 0.1515 1.053
64 0.0974 0.0604 0.0921 0.1101 1.131

128 0.0833 0.0303 0.0921 0.0969 1.164

Table 1.12: Error ‖u−u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u−u0,h‖L2
P (Ω;H 1

0 (D))
with ε= 0.5 for the first example.

when η2 is negligible compared to CH 1
0
η1. When it is no longer the case, the error continues

diminishing with refinement of the mesh but with a smaller rate. The same observation holds

for the results of Table 1.11 switching the role of h and ε. Finally, we observe in both cases that

the effectivity index of the error estimator η̃ that contains the estimated constant CH 1
0

is close

to 1.

Second example

Let {λi ,ϕi } be the eigenpairs of the Karhunen-Loève expansion of a (1D) Gaussian random

field with exponential covariance function C : D ×D →R given by

C (x, x ′) =σ2e
|x−x′ |

Lc

for which the analytical expression is known, see for instance [67] or [90]. We set the vari-

ance σ2 and the correlation length Lc to σ2 = Lc = 1 and we consider the random diffusion

coefficient a obtained by tensorization

a(x,Y(ω)) = 1+ε
3∑

i=1

3∑
k=1

√
λiλkϕi (x1)ϕk (x2)Yi k (ω) = 1+ε

9∑
j=1

a j (x)Y j (ω),

where Y j , j = 1, . . . ,9, are uniform random variables in [−�3,
�

3]. Finally, we choose here

f (x) = 10sin(2π(x1+x2)) for the forcing term. We give in Figure 1.8 the functions
√

λiλkϕi (x1)ϕk (x2)
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for i ,k = 1,2,3. Notice that we can choose the global index j so that λ j = λiλk is non-

decreasing but it is irrelevant here. Indeed, we do not perform a truncation on j and so

an ordering to keep the more relevant functions is not required.

Figure 1.8: Plot of the functions a j , j = 1, . . . ,9, constructed by tenzorization of one-
dimensional KL functions.

The expected value and the standard deviation of u for the case ε= 0.5 is given in Figure 1.9.

Finally, the results for a fixed n = 128 and a fixed ε = 0.05 are given in Tables 1.13 and 1.14,

respectively.

The conclusions for this second example are the same as in the previous example.

1.7.3 Comparison with the stochastic collocation method

We finally illustrate the findings of Section 1.6 concerning the computation costs for the SC-

FEM and the perturbation method. We consider the linear problem (1.11) and the nonlinear

problem (1.75) with F given by (1.78). In both cases, homogeneous Dirichlet boundary

condition are considered and we assume that the random variables Y j , j = 1, . . . ,L, that appear

in the characterization (1.86) of a are uniform random variables in [−�3,
�

3]. We compare

the computation time to solve the two problems with accuracy of order 2 in ε. Such accuracy

is reached when we consider a sparse grid of level 1 for the SC-FEM method and the second
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Figure 1.9: Expected value (left) and standard deviation (right) of the solution with ε= 0.1 for
the second example.

ε er r or CH 1
0
η1 η2 η̃ η̃/er r or

0.1 0.0623 0.0201 0.0605 0.0637 1.0227
0.05 0.0356 0.0201 0.0302 0.0363 1.0195

0.025 0.0245 0.0201 0.0151 0.0252 1.0269
0.0125 0.0210 0.0201 0.0076 0.0215 1.0263

0.00625 0.0200 0.0201 0.0038 0.0205 1.0274

Table 1.13: Error ‖u−u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u−u0,h‖L2
P (Ω;H 1

0 (D))
with n = 128 for the second example.

n er r or CH 1
0
η1 η2 η̃ η̃/er r or

8 0.3397 0.2762 0.0260 0.2774 0.8167
16 0.1804 0.1527 0.0291 0.1555 0.8616
32 0.0941 0.0791 0.0300 0.0848 0.9007
64 0.0527 0.0401 0.0302 0.0505 0.9577

128 0.0358 0.0201 0.0302 0.0367 1.0259

Table 1.14: Error ‖u−u0,h‖L2
P (Ω;H 1

0 (D)), estimators η1, η2 and η̃ and ratio η̃/‖u−u0,h‖L2
P (Ω;H 1

0 (D))
with ε= 0.05 for the second example.
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order approximation u ≈ u0,h+εu1,h for the perturbation method. Note that u1,h =∑L
j=1 U j ,hY j

where U j ,h for j = 1, . . . ,L is the solution of

∫
D

a0∇U j ,h ·∇vh +
∫

D
3u2

0,hU j ,h vh =−
∫

D
a j∇u0,h · vh ∀vh ∈Vh .

when problem (1.75) is considered. Finally, we use the same physical space discretization

for both methods, namely a uniform partition with h = 2−12. With this choice of mesh size,

the work to solve the (2L+1) problems dominates the one needed to construct the grid. The

computational time to solve both problems with respect to the number of random variables L

is given in Figure 1.10.
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Figure 1.10: Time to solve the linear problem (1.11) and the nonlinear problem (1.78) with
accuracy of order 2 in ε using the SC-FEM and the perturbation method.

As predicted in Section 1.6, the perturbation method presents no real advantage in terms of

computation time over the stochastic collocation one, since it is only twice faster. This factor

2 comes from the fact that the perturbation method requires the solution of L+1 problems,

while 2L +1 problems need to be solve in the stochastic collocation method. The situation

is different for nonlinear problems. In this case, the perturbation method is significantly

faster than the stochastic collocation one. Indeed, only one nonlinear problem and L linear

problems need to be solve for the former, to obtain respectively the deterministic part u0 of u

and the U j , j = 1, . . . ,L. For the SC method, we need to solve as many nonlinear problems as

collocation points. Even for the nonlinear problem considered here, where the nonlinearity

comes from the term u3 and which is quite cheap to solve, the perturbation method is about 8

times faster.

To conclude, we can mention that for h = hr e f , i.e. without error due to FE approximation and

a convergence of the error in O (ε2), the error for the perturbation method is about 1.4 and

3.5 times larger than the error obtained using respectively SC1 and SC2. Again, the error for

the perturbation method and the SC method has been accurately computed using the Monte

Carlo method. However, for a given problem, that is for fixed value of ε and L, the perturbation

method perform better than the SC method in terms of CPU time versus error for h > hr e f ,

especially for nonlinear problems. We plot in Figure 1.11 the computation time with respect to

the error for problems (1.11) and (1.78) with f = f2, ε= 0.5, L = 10 and 2−10 ≤ h ≤ 2−3. Notice
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Chapter 1. Elliptic model problems with random diffusion coefficient

that the results for SC1 are not depicted on this figure since they are indistinguishable from

those of SC2. Finally, we mention that it would be better, in terms of computational costs, to

adapt the level l of the sparse grid for the SC-FEM, respectively the order in the approximation

u ≈∑l
n=0 ε

nun,h for the perturbation method, with respect to h. Indeed, for the value of h for

which the total error is not too small, namely of order ε or larger, it is more suitable to take

l = 0 than l = 1 since comparable accuracy is reached at lower computational costs. However,

the error due to the uncertainty, which is of order ε for l = 0, will be dominating at some point

(see also Figure 1.5) and the value of l must be increased to be able to further reduce the error.
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Figure 1.11: Log log scale plot of the computational time w.r.t. the error in L2
P (Ω; H 1

0 (D))-norm
using the SC-FEM with Smolyak and Clenshaw-Curtis abscissas and the perturbation method.

Conclusions

In this chapter, we have performed error analyses for elliptic PDEs with coefficients affected by

small uncertainties, characterized through random variables. The exact random solution has

been approximated using a perturbation approach combined with the finite element method

for the physical space discretization.

For the first order approximation u ≈ u0,h , we derived strong and weak a priori error estimates

as well as a posteriori error estimates in the L2
P (Ω; H 1

0 (D)) and L2
P (Ω;L2(D)) norms. These

estimates naturally split into two parts, namely the error in h due to the physical discretization

and the error in ε due to the model. In the a priori error estimation, we have shown that the

order of the weak error in the model is twice the order of the strong error, the order of the

error due to FE approximation being the same in both cases. The a posteriori error estimator

in the L2
P (Ω; H 1

0 (D)) norm that we have obtained is a computable quantity of order h + ε

if the solution is regular enough in physical space. Given u0,h , this estimator is cheap to

compute and does not require any other FE solution. It can be used for mesh adaptation so

that comparable accuracy in h and ε is reached. We have shown that taking the L2 norm in

physical space leads to a gain of one order in h but no improvement in the error due to the

model. Finally, we gave a sketch of the derivation of a goal-oriented error estimate, which

is more suitable than an estimate in global norm when a particular quantity of interest is
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considered.

The a posteriori error estimation procedure for the error in the L2(Ω; H 1
0 (D)) norm has been

applied to the second-order approximation u ≈ u0,h +εu1,h , before giving a generalization

for approximations of any order. This reliable error upper bound can be used to adaptively

determine the order of approximation and partitions of D such that the total error is below a

given tolerance.

A posteriori error estimates have then been derived for a class of nonlinear problems through

three different examples. A comparison in terms of computational costs with the stochastic

collocation method has been performed, considering an error of order 2 in the model. The

perturbation method presents only mild advantages for solving linear problems, the computa-

tional cost being halved with respect to the SC method. The situation is different for nonlinear

problems. Indeed, the SC method requires the resolution of as many nonlinear problems as

collocation points while for the perturbation method, only one nonlinear problem has to be

solved for u0,h , the remaining problems being linear.

1.A Derivation of problems (1.20), (1.21) and (1.22)

We make here some remarks about the derivation of the problems (1.20), (1.21) and (1.22) that

we need to solve to build the approximate solution u0 +εu1 +ε2u2. In particular, we will see

that the deterministic problems for the terms u0 and u1 are uniquely determined while those

for u2 are not. We thus discuss the various ways to build the term u2. Moreover, we will make

a more precise link between each term and the derivatives of u = u(x,y) with respect to the y j ,

j = 1, . . . ,L.

Let us first give some details about the derivation of the problems. Recall that we assume that

the diffusion coefficient a has the form

a(x,ω) = a(x,Y(ω)) = a0(x)+ε
L∑

j=1
a j (x)Y j (ω).

Moreover, the random solution u is expanded as

u(x,Y(ω)) = u0(x)+εu1(x,Y(ω))+ε2u2(x,Y(ω))+ . . .

with u1 =∑L
j=1 U j Y j and u2 =∑L

j ,k=1 U j k Y j Yk . Similar expansion can be used for the higher

order terms, see (1.71) where the general case is treated or [126, 127]. If we substitute the

expansions of a and u in the first equation of problem (1.13), we get

−∇·
(

(a0 +ε
L∑

j=1
a j Y j )∇(u0 +ε

L∑
j=1

U j Y j +ε2
L∑

j ,k=1
U j k Y j Yk +·· · )

)
= f .

After recalling that f is deterministic by assumption, we separate then the terms of different
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order in ε. The equation for the O (1) term is

−∇· (a0∇u0) = f

which yields problem (1.20) after adding suitable boundary conditions. Next, the equation for

the O (ε) term is

−ε
L∑

j=1
Y j∇· (a0∇U j +a j∇u0) = 0. (1.94)

Since the set {Y j : j = 1, . . . ,L} is orthonormal, it is in particular linearly independent. Therefore,

equation (1.94) holds if and only if each term is zero, i.e.

∇· (a0∇U j +a j∇u0) = 0 ∀ j = 1, . . . ,L, (1.95)

which is nothing else than the first equation of problem (1.21). Notice that the relation (1.95)

can also be obtained by multiplying (1.94) by Yk and taking the ensemble mean, see [127],

thanks again to the fact that E[Y j Yk ] = δ j k . Finally, we collect the terms in O (ε2) to obtain

−ε2
L∑

j ,k=1
Y j Yk∇· (a0∇U j k +a j∇Uk ) = 0. (1.96)

A sufficient condition for (1.96) to hold is that

∇· (a0∇U j k +a j∇Uk ) = 0 ∀ j ,k = 1, . . . ,L, (1.97)

which corresponds to the set of PDEs in (1.22). However, it is not necessary to have (1.97) to

verify (1.96) since the set {Y j Yk : j ,k = 1, . . . ,L} is not linearly independent. Using the fact that

Y j Yk = Yk Y j , we can rewrite (1.96) as

−ε2
∑

1≤ j≤k≤L
Y j Yk∇· (a0∇(U j k +Uk j )+a j∇Uk +ak∇U j )β j k = 0 (1.98)

where β j k = 1− 1
2δ j k is introduced to allow to keep the cases j < k and j = k under the same

summation sign. Now, the set {Y j Yk : 1 ≤ j ≤ k ≤ L} is linearly independent [127] and thus

(1.98) holds if and only if

∇· (a0∇(U j k +Uk j )+a j∇Uk +ak∇U j ) = 0 ∀1 ≤ j ≤ k ≤ L.

If we write Ũ j k := U j k+Uk j

2 for j ,k = 1, . . . ,L we have then

u2 =
L∑

j ,k=1
U j k Y j Yk = ∑

1≤ j≤k≤L
β j k (U j k +Uk j )Y j Yk =

L∑
j ,k=1

Ũ j k Y j Yk .
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Notice that Ũ j k solves

−∇·
(

a0∇Ũ j k +
a j∇Uk +ak∇U j

2

)
∀ j ,k = 1, . . . ,L

and Ũ j k +Ũk j =U j k +Uk j . The advantage of building u2 with the Ũ j k instead of the U j k relies

in the fact that Ũ j k = Ũk j while U j k is not necessarily equal to Uk j . Therefore, the construction

of u2 with the Ũ j k requires the resolution of L(L+1)
2 whereas L2 problems need to be solved

when the U j k are used.

Notice that the problems we obtain for u0, U j , U j k and U j1 j2··· jn , given by (1.20), (1.21), (1.22)

and (1.71), respectively, are equivalent to those derived in [6]. In that paper, the authors apply

what they called the method of successive approximations which uses the Karhunen-Loève

expansion to represent the stochastic diffusion coefficient combined with the Neumann series

expansion method. In fact, applied to the specific linear elliptic diffusion model problem (1.11),

the (generalized or standard) Neumann expansion method and the perturbation method are

equivalent [121].

In the remaining part of this section, we clarify the link between the various terms u0, U j , U j k

and Ũ j k defined above and the derivatives of u = u(x,y) with respect to the y j . In other words,

we compare the expansion (1.19) of u with its Taylor expansion around y0 = E[Y] = 0. Recall

that it has been proved (see for instance [7]) that the weak solution u = u(x,y) of problem

(1.13), i.e. the solution of (1.14), is analytic with respect to each variable y j , j = 1, . . . ,L. First of

all, we have

a(x,y0) = a0(x),
∂a

∂y j
(x,y0) = εa j (x) and

∂2a

∂yk∂y j
(x,y0) = 0 ∀ j ,k = 1, . . . ,L.

Then, we recall that for each y ∈ Γ the solution u(·,y) ∈ H 1
0 (D) of problem (1.14) satisfies

∫
D

a(x,y)∇u(x,y) ·∇v(x)dx =
∫

D
f (x)v(x)dx ∀v ∈ H 1

0 (D),ρ-a.e. in Γ. (1.99)

The evaluation of equation (1.99) at y0 yields∫
D

a0(x)∇u(x,y0) ·∇v(x)dx =
∫

D
f (x)v(x)dx. (1.100)

We can formally differentiate equation (1.99) with respect to y j to get

∫
D

(
∂a

∂y j
∇u +a∇ ∂u

∂y j

)
(x,y) ·∇v(x)dx = 0, j = 1, . . . ,L, (1.101)

and thus for y = y0 we have∫
D

(
εa j (x)∇u(x,y0)+a0(x)∇ ∂u

∂y j
(x,y0)

)
·∇v(x)dx = 0, j = 1, . . . ,L. (1.102)
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Taking then the derivative of (1.102) with respect to yk , or equivalently the second derivative

of (1.99), we obtain for j ,k = 1, . . . ,L the relation

∫
D

(
∂2a

∂yk∂y j
∇u + ∂a

∂y j
∇ ∂u

∂yk
+ ∂a

∂yk
∇ ∂u

∂y j
+a∇ ∂2u

∂yk∂y j

)
(x,y) ·∇v(x)dx = 0.

Since ∂2a
∂yk∂y j

= 0, the evaluation of last relation at y0 gives us

∫
D

(
εa j (x)∇ ∂u

∂yk
(x,y0)+εak (x)∇ ∂u

∂y j
(x,y0)+a0(x)∇ ∂2u

∂yk∂y j
(x,y0)

)
·∇v(x)dx = 0, j ,k = 1, . . . ,L.

(1.103)

Finally, based on equations (1.100), (1.102) and (1.103) we conclude that

u0 = u(·,y0), εU j = ∂u

∂y j
(·,y0), ε2(U j k+Uk j ) = ∂2u

∂yk∂y j
(·,y0) and ε2Ũ j k = 1

2

∂2u

∂yk∂y j
(·,y0)

for j ,k = 1, . . . ,L.

1.B Upper and lower bounds for the error u−u0,h in the L2
P (Ω; H 1

0 (D))

norm

The goal here is to prove that the error estimator introduced in (1.50) provides both lower

and upper bounds for the error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)). We assume here that D ⊂Rd with d = 2,

mentioning that the case d = 1 can be treated easily since no jump terms occur while the

extension to the case d = 3 is straightforward. We first introduce the estimator in more details,

starting from the relation

A (u −u0,h , v ;y) =
∫

D
f v −

∫
D

a0∇u0,h ·∇v −
∫

D
(a −a0)∇u0,h ·∇v

= R(v ;y0)+ [
R(v ;y)−R(v ;y0)

]
for all v ∈ H 1

0 (D) and ρ-a.e. in Γ, where y0 = E[Y] = 0 and

R(v ;y) := F (v)−A (u0,h , v ;y) =
∫

D
f v −

∫
D

a(·,y)∇u0,h ·∇v.

For any y ∈ Γ, let r (·;y) : H 1
0 (D) →R be defined by

r (v ;y) :=R(v ;y)−R(v ;y0) =−
∫

D
(a(·,y)−a0)∇u0,h ·∇v. (1.104)

The dual norm of r is then given by ‖r (·;y)‖H−1(D) = ‖∇w(·,y)‖L2(D) with w(·,y) the solution of∫
D
∇w(·,y) ·∇v = r (v ;y) ∀v ∈ H 1

0 (D), ρ-a.e. in Γ. (1.105)
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We write then w(x,Y(ω)) = ε
∑L

j=1 Wj (x)Y j (ω) with Wj ∈ H 1
0 (D) such that

∫
D
∇Wj ·∇v =−

∫
D

a j∇u0,h ·∇v ∀v ∈ H 1
0 (D).

Let wh(x,Y(ω)) = ε
∑L

j=1 Wj ,h(x)Y j (ω), where Wj ,h ∈Vh is the FE approximation of Wj , and let

R and J denote the interior element residual and the jump defined on an element K and an

internal edge e by respectively

R K = ( f +∇· (a0∇u0,h)) K and J e =
[
a0∇u0,h ·ne

]
ne

.

The spatial and stochastic a posteriori error estimators η1 and η̂2 are given by (1.43) and (1.50),

respectively, definitions that we recall here for clarity

η2
1 := ∑

K∈Th

η2
K with η2

K = h2
K ‖R‖2

L2(K ) +
1

2

∑
e⊂∂K

he‖J‖2
L2(e), (1.106)

η̂2
2 := ε2

L∑
j=1

‖∇Wj ,h‖2
L2(D). (1.107)

To prove the spatial lower bound, see (1.112), we will need some definitions and notation that

we introduce now.

For any element K ∈Th , using the notation given in Figure 1.12-left, we define the so-called

element bubble function ψK and edge bubble function ψei , see for instance [118], by

ψK = 27λ1λ2λ3 and ψei = 4λi+1λi+2, i = 1,2,3,

where the indices are taken modulo 3 and λ1,λ2,λ3 are the (linear) barycentric coordinates

on K . Using the notation used in [118], we denote by wK the union of all the elements sharing

an edge with K and, for an internal edge e, we write we the union of the two elements sharing

e as an edge, see Figure 1.12 for an illustration.

1 2

3

K

e3

e2 e1
K e

Figure 1.12: Notation for an element K in Th (left) and illustration of the domains wK (middle)
and we (right).

The bubble functions satisfy the following properties: for any polynomial ϕ of degree less or

equal to k we have

‖ϕ‖L2(K ) ≤ c1‖ψ
1
2
K ϕ‖L2(K ), ‖∇(ψK ϕ)‖L2(K ) ≤ c2h−1

K ‖ϕ‖L2(K ) (1.108)
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and

‖ϕ‖L2(e) ≤ c3‖ψ
1
2
e ϕ‖L2(e), ‖∇(ψeϕ)‖L2(we ) ≤ c4h

− 1
2

e ‖ϕ‖L2(e), ‖ψeϕ‖L2(we ) ≤ c5h
1
2
e ‖ϕ‖L2(e),

(1.109)

where the constants Ci , i = 1, . . . ,5, depend only on k and on the shape regularity parameter

of Th given in (1.23). Moreover, we have

0 ≤ψK (x) ≤ 1 ∀x ∈ K , ψK (x) = 0 ∀x ∉ K , max
x∈K

ψK (x) = 1

and

0 ≤ψe (x) ≤ 1 ∀x ∈ we , ψe (x) = 0 ∀x ∉ we , max
x∈we

ψe (x) = 1.

For any element K , we denote by ḡK the mean value of g on K and similarly we denote by ḡe

the mean value of g on any internal edge e, i.e.

ḡK = 1

|K |
∫

K
g and ḡe = 1

|e|
∫

e
g .

Finally, we introduce the oscillation term θK defined by

θ2
K := ∑

T⊂wK

h2
T ‖R − R̄T ‖2

L2(T ) +
∑

e⊂∂K
he‖J − J̄e‖2

L2(e). (1.110)

We can now state the upper and lower bounds, given in the following proposition.

Proposition 1.B.1. Let u be the weak solution of problem (1.11) and let u0,h be the solution of

problem (1.30), respectively. There exist two constants C1,C2 > 0 depending only on the mesh

aspect ratio and s ∈ (0,1] such that

‖u −u0,h‖L2
P (Ω;H 1

0 (D)) ≤
1

ami n

(
C1η1 + η̂2

)+O (εhs), (1.111)

η1 ≤C2

⎡
⎣amax‖u −u0,h‖L2

P (Ω;H 1
0 (D)) + η̂2 +

( ∑
K∈Th

θ2
K

) 1
2

⎤
⎦+O (εhs) (1.112)

and

η̂2 ≤ amax‖u −u0,h‖L2
P (Ω;H 1

0 (D)) +C1η1 +O (εhs). (1.113)

Proof. We first derive a bound for the L2
P (Ω; H 1

0 (D)) norm of w (resp. wh) in term of the

norm of wh (resp. w) and higher order terms, where w is the solution (1.105) and wh its

FE approximation. Let us introduce ψ(x,Y(ω)) = ε
∑L

j=1ψ j (x)Y j (ω), where ψ j ∈ H 1
0 (D) is the

solution of ∫
D
∇ψ j ·∇v =−

∫
D

a j∇u0 ·∇v ∀v ∈ H 1
0 (D),
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and let ψh denotes its FE approximation. Notice that ψ(·,Y(ω)) solves∫
D
∇ψ ·∇v =−

∫
D

(a −a0)∇u0 ·∇v ∀v ∈ H 1
0 (D), a.s. in Ω,

which is similar to the problem (1.105) for w , except that u0,h is replaced by u0 in the right-

hand side. Thanks to the triangle inequality, we obtain

‖∇w‖L2(D) ≤ ‖∇wh‖L2(D) +‖∇(w −ψ)‖L2(D) +‖∇(ψ−ψh)‖L2(D) +‖∇(ψh −wh)‖L2(D)

from which we can deduce

‖∇w‖L2
P (Ω;L2(D)) ≤ ‖∇wh‖L2

P (Ω;L2(D)) +Cεhs ,

where s ∈ (0,1] depends only on the regularity of u0, ψ j , j = 1, ...,L, and the domain D and C is

a (deterministic) positive constant independent of h and ε but dependent on the mesh aspect

ratio, |u0|H 1+s (D) and |ψ j |H 1+s (D), j = 1, . . . ,L. Therefore, recalling that wh = ε
∑L

j=1 Wj ,hY j and

using E[Yi Y j ] = δi j we get

‖∇w‖L2
P (Ω;L2(D)) ≤ η̂2 +Cεhs (1.114)

with η̂2 given in (1.107). Finally, proceeding in the same way we can obtain the relation

η̂2 = ‖∇wh‖L2
P (Ω;L2(D)) ≤ ‖∇w‖L2

P (Ω;L2(D)) +Cεhs . (1.115)

We now prove the three bounds (1.111), (1.112) and (1.113) separately. The proof of (1.112)

is inspired by what is done in [99, 118], while the idea for the proof of (1.113) is based on the

proof of efficiency of the error estimator proposed in [102] for the Reduced Basis method. In

the sequel, all the equations hold a.s. in Ω without specifically mentioning it.

Upper bound The proof is similar to the one of Proposition 1.3.5, only the bound of term

controlling the stochastic error is different. For any v ∈ H 1
0 (D), taking vh = Ih the Clément

interpolant of v we have∫
D

a∇(u −u0,h) ·∇v =
∫

D
f v −

∫
D

a0∇u0,h ·∇v −
∫

D
(a −a0)∇u0,h ·∇v

=
∫

D
f (v − vh)−

∫
D

a0∇u0,h ·∇(v − vh)+
∫

D
∇w ·∇v

≤
⎡
⎣C1

( ∑
K∈Th

η2
K

) 1
2

+‖∇w‖L2(D)

⎤
⎦‖∇v‖L2(D),

where C1 depends only on the constants in (1.26) and (1.28). Since ami n is a lower bound for

a, taking v = u −u0,h we get

ami n‖∇(u −u0,h)‖L2(D) ≤C1η1 +‖∇w‖L2(D)

67



Chapter 1. Elliptic model problems with random diffusion coefficient

and thus, taking the L2
P (Ω) norm on both sides of the last inequality we have

ami n‖u −u0,h‖L2
P (Ω;H 1

0 (D)) ≤C1η1 +‖∇w‖L2
P (Ω;L2(D)).

Finally, we obtain (1.111) using (1.114).

h-lower bound First of all, notice that for any v ∈ H 1
0 (D) we have

∫
D

a∇(u −u0,h) ·∇v = ∑
K∈Th

∫
K

Rv + ∑
e∈Th

∫
e

J v −
∫

D
(a −a0)∇u0,h ·∇v

= ∑
K∈Th

∫
K

Rv + ∑
e∈Th

∫
e

J v +
∫

D
∇w ·∇v. (1.116)

The proof is then divided into three steps.

1. Let K be any element in Th and let vK = R̄K ψK . We take v = vK in (1.116). Since

suppψK ⊂ K , we have∫
K

a∇(u −u0,h) ·∇vK =
∫

K
R̄K vK +

∫
K

(R − R̄K )vK +
∫

K
∇w ·∇vK

and thus, using the properties of the element bubble function given in (1.108), we obtain

hK ‖R̄K ‖L2(K ) ≤ c2
1c2amax‖∇(u −u0,h)‖L2(K ) +c2

1c2‖∇w‖L2(K ) +c2
1hK ‖R − R̄K ‖L2(K ).

Thanks to triangle’s inequality, we finally obtain

hK ‖R‖L2(K ) ≤ c2
1c2amax‖∇(u −u0,h)‖L2(K ) +c2

1c2‖∇w‖L2(K ) + (1+c2
1)hK ‖R − R̄K ‖L2(K ).

(1.117)

2. Let e be any interior edge of Th , let ve = J̄eψe and let K1 and K2 be the two elements

that share e as an edge. We take v = ve in (1.116) to get∫
we

a∇(u −u0,h) ·∇ve =
∑

K∈we

∫
K

Rve +
∫

e
J̄e ve +

∫
e
(J − J̄e )ve +

∫
we

∇w ·∇ve .

Therefore, using the properties of the edge bubble function given in (1.109), we obtain

h
1
2
e ‖ J̄e‖L2(e) ≤ c2

3c4amax‖∇(u −u0,h)‖L2(we ) +c2
3c5he‖R‖L2(we )

+c2
3h

1
2
e ‖J − J̄e‖L2(e) +c2

3c4‖∇w‖L2(we )
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and thus

h
1
2
e ‖J‖L2(e) ≤ c2

3c4amax‖∇(u −u0,h)‖L2(we ) +c2
3c5he‖R‖L2(we ) + (1+c2

3)h
1
2
e ‖J − J̄e‖L2(e)

+c2
3c4‖∇w‖L2(we )

≤
2∑

i=1

[
amax c2

3(c4 +c2
1c2c5)‖∇(u −u0,h)‖L2(Ki ) + (1+c2

1)c2
3c5hKi ‖R − R̄Ki ‖L2(Ki )

c2
3(c4 +c2

1c2c5)‖∇w‖L2(Ki )
]+ (1+c2

3)h
1
2
e ‖J − J̄e‖L2(e)

using relation (1.117).

3. Putting everything together, we obtain for any element K ∈Th

η2
K = h2

K ‖R‖2
L2(K ) +

1

2

∑
e⊂∂K

he‖J‖2
L2(e)

≤ C2

(
a2

max‖∇(u −u0,h)‖2
L2(wK ) +‖∇w‖2

L2(wK )

+ ∑
T⊂wK

h2
T ‖R − R̄T ‖2

L2(T ) +
∑

e⊂∂K
he‖J − J̄e‖2

L2(e)

)
,

where C2 depends only on the regularity of the mesh (through the constants ci , i =
1, . . . ,5). Recalling the definition of θK in (1.110), if we sum over all K ∈Th and use the

relation (a2 +b2 +c2) ≤ (a +b +c)2 valid for any non-negative numbers a,b,c, we get

η1 ≤C2

⎡
⎣amax‖∇(u −u0,h)‖L2(D) +‖∇w‖L2(D) +

( ∑
K∈Th

θ2
K

) 1
2

⎤
⎦

where C2 has changed but still only depends on the mesh aspect ratio. Finally, we obtain

(1.112) taking the L2
P (Ω) norm and using (1.114).

ε-lower bound For any v ∈ H 1
0 (D) we have

∫
D
∇w ·∇v =−

∫
D

(a −a0)∇u0,h ·∇v =
∫

D
a∇(u −u0,h) ·∇v −

∫
D

a0∇(u0 −u0,h) ·∇v. (1.118)

Taking v = w in (1.118) and noticing that the last term of (1.118) is nothing else than (minus)

the residual for u0,h , we can easily derive the bound

‖∇w‖2
L2(D) ≤

⎡
⎣amax‖∇(u −u0,h)‖L2(D) +C1

( ∑
K∈Th

η2
K

) 1
2

⎤
⎦‖∇w‖L2(D)

where C1 depends only on the constants in (1.26) and (1.28). From the last relation, we deduce

taking the L2
P (Ω) that

‖∇w‖L2
P (Ω;L2(D)) ≤ amax‖u −u0,h‖L2

P (Ω;H 1
0 (D)) +C1η1
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which conclude the proof thanks to (1.115).

Remark 1.B.2. Since u0,h is piecewise affine, if a0 is piecewise constant then we have R = f and

J = J̄e . Therefore, in this case θK reduces to
∑

T⊂wK
h2

T ‖ f − f̄T ‖2
L2(T )

which does no longer depend

on u0,h. It is often refereed to as data oscillation.

Remark 1.B.3. We deduce from the three relations (1.111), (1.112) and (1.113) that

ami n ≤ η̂2

‖u −u0,h‖
≤ amax as h → 0

and

C−1
1 ami n ≤ η1

‖u −u0,h‖
≤C2amax as ε→ 0,

where ‖ ·‖ denotes the L2(Ω; H 1
0 (D)) norm and C1 and C2 are two positive constants depending

only on the mesh aspect ratio.

1.C Estimation of the interpolation constant

In this section, we briefly present the value of the interpolation constant CH 1
0

that can be

included in the error estimator to get a sharp spatial error estimator. This value depends on

the degree of the finite element space as well as if we are in 1D, 2D or 3D.

In the one-dimensional case, we have already mentioned that the constant for P1 finite ele-

ment can be set to CH 1
0
= 1

3.46 ≈ 1
2
�

3
. The latter corresponds to the theoretical value

(
1

p+1

)1/p
1
2

with p = 2 given in [9].

For the 2D case, we consider the (deterministic) Poisson problem−Δu0 = f with homogeneous

Dirichlet boundary conditions. We set D = (0,1)2 and u0(x1, x2) = sin(2πx1)sin(4πx2) and

compute the corresponding right-hand side given by

f (x1, x2) = 20π2 sin(2πx2)sin(4πx2). (1.119)

We give in Table 1.15 the error ‖∇(u0 −u0,h)‖L2(D) and the two estimators η1 and η̂1 defined by

η2
1 =

∑
K∈Th

h2
K ‖ f +Δuh‖2

L2(K ) +
∑

e∈Th

he‖[∇uh ·ne]ne‖2
L2(e)

and

η̂2
1 =

∑
K∈Th

[
h2

K ‖ f +Δuh‖2
L2(K ) +

1

4

∑
e⊂∂K

he‖[∇uh ·ne]ne‖2
L2(e)

]
.

We consider both structured and Delaunay triangulations with N = 256 equidistant vertices

on each boundary of D , see Figure 1.13 where the meshes for the case N = 16 are given.

The constant 1/CH 0
1

can then be set to η1/‖∇(u0−u0,h)‖L2(D) or η̂1/‖∇(u0−u0,h)‖L2(D) depend-

ing on the definition of the estimator.
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Figure 1.13: Structured (left) and Delaunay (right) triangulations of D with N = 16.

Structured mesh Delaunay mesh
er r or η1 e.i. η̂1 e.i. er r or η1 e.i. η̂1 e.i.

P1 1.279e-1 7.352e-1 5.75 6.472e-1 5.06 1.037e-1 5.934e-1 5.72 5.296e-1 5.11
P1b 1.204e-1 5.225e-1 4.34 3.939e-1 3.27 9.450e-2 3.590e-1 3.80 2.668e-1 2.82
P2 9.592e-4 8.464e-3 8.82 8.195e-3 8.54 6.905e-4 6.473e-3 9.37 6.385e-3 9.25
P3 3.130e-6 7.136e-5 22.80 6.924e-5 22.12 2.017e-3 4.865e-5 24.12 4.749e-5 23.55

Table 1.15: Error, estimator and effectivity index for the Poisson problem.

Notice that we get similar values when considering other cases than (1.119). We see from the

results of Table 1.15 that, as expected, the interpolation constant depends on the polynomial

degree of the finite elements. Moreover, we could go further by estimating separately the

efficiency of the interior residual and the contribution of the jump terms, but we will not do it

in this thesis.
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2 Elliptic model problems with other
sources of uncertainty

Introduction

We extend here the results of Chapter 1 to include other sources of uncertainty. We first

consider the case of random Neumann boundary conditions. The analysis is very similar to

the one presented in Chapter 1. It is even easier in this case since the solution u depends

linearly on the random input, and thus only the first two terms in the expansion are non-

zero. We consider then the case where two random input data are affected by uncertainty,

namely we consider a random diffusion coefficient combined with a random forcing term.

Two different sets of random variables are used to describe each uncertain input data. Finally,

numerical results are given to illustrate the theoretical findings.

2.1 Neumann random boundary conditions

We consider the problem:

find u : D ×Ω→R such that a.s. in Ω:⎧⎪⎨
⎪⎩

−div(a0(x)∇u(x,ω)) = f (x) x ∈ D

u(x,ω) = 0 x ∈ ΓD

a0(x)∂u(x,ω)
∂n = g (x,ω) x ∈ ΓN ,

(2.1)

where ΓD ∪ΓN = ∂D with ΓD ∩ΓN =� and ΓD �= �. We assume that a0 is bounded from below

by a0,mi n and that g is characterized by L independent random variables
{
Y j

}L
j=1 with zero

mean and unit variance as

g (x,ω) = g (x,Y1(ω), . . . ,YL(ω)) = g0(x)+ε
L∑

j=1
g j (x)Y j (ω) (2.2)

with g j ∈ L2(ΓN ), j = 0,1, . . . ,L. Using the same notation as in the previous chapter, we can

rewrite problem (2.1) in parametric form as:
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find u : D ×Γ→R such that ρ-a.e. in Γ we have:

⎧⎪⎨
⎪⎩

−div
(
a0(x)∇u(x,y)

) = f (x) x ∈ D

u(x,y) = 0 x ∈ ΓD

a0(x)∂u(x,y)
∂n = g (x,y) x ∈ ΓN ,

(2.3)

whose weak formulation reads:

find u(·,y) ∈W such that∫
D

a0∇u(·,y) ·∇v =
∫

D
f v +

∫
ΓN

g (·,y)v ∀v ∈W, ρ-a.e. in Γ (2.4)

with W := H 1
ΓD

(D) = {v ∈ H 1(D) : v = 0 on ΓD } that we endow with the gradient norm ‖ ·‖W :=
‖∇·‖L2(D). This can be done thanks to the Friedrich-Poincaré inequality

‖v‖L2(D) ≤CF‖∇v‖L2(D) ∀v ∈W, (2.5)

which holds as long as ΓD �= �. Using again a perturbation technique, we write

u(x,Y(ω)) = u0(x)+εu1(x,Y(ω))+ε2u2(x,Y(ω))+ . . .

where u0 : D →R is the solution of⎧⎪⎨
⎪⎩

−div(a0(x)∇u0(x)) = f (x) x ∈ D

u0(x) = 0 x ∈ ΓD

a0(x)∂u0(x)
∂n = g0(x) x ∈ ΓN ,

(2.6)

and u1 =∑L
j=1 U j Y j with U j : D →R, j = 1, . . . ,L, the solution of

⎧⎪⎨
⎪⎩

−div
(
a0(x)∇U j (x)

) = 0 x ∈ D

U j (x) = 0 x ∈ ΓD

a0(x)
∂U j (x)
∂n = g j (x) x ∈ ΓN .

(2.7)

Contrary to the problem with random diffusion coefficient a of the previous chapter, we will

show that we have here u = u0 +εu1, i.e. there is no term of order higher than one in ε. This

is due to the linear dependence of u with respect to the uncertain input data g . The same

holds for instance when the forcing term f is random, see also the next section. The weak

formulation of problems (2.6) and (2.7) is given by, respectively,

find u0 ∈W :
∫

D
a0∇u0 ·∇v =

∫
D

f v +
∫
ΓN

g0v ∀v ∈W (2.8)

and

find U j ∈W :
∫

D
a0∇U j ·∇v =

∫
ΓN

g j v ∀v ∈W. (2.9)
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Notice that the problems for u0 and the U j , j = 1, . . . ,L, are decoupled, that is the solution u0

does not appear in the problem for U j as it is the case when dealing with random diffusion

coefficient, see problem (1.21). We first show the following three properties.

Proposition 2.1.1. Let u be the weak solution of problem (2.1) and let u0 and U j , j = 1, . . . ,L,

be the solutions of problems (2.8) and (2.9), respectively. Then for u1 =∑L
j=1 U j Y j we have

1. E[u] = u0

2. u = u0 +εu1

3. V ar [u] = ε2 ∑L
j=1 U 2

j .

Proof. First of all, if we take the expected value on both sides of equation (2.4) with y = Y(ω),

we get ∫
D

a0∇E[u] ·∇v =
∫

D
f v +

∫
ΓN

g0v ∀v ∈W

and thus, subtracting equation (2.8) we obtain∫
D

a0∇(E[u]−u0) ·∇v = 0 ∀v ∈W.

If we take then v = E[u]−u0, we have

0 ≤ a0,mi n‖∇(E[u]−u0)‖2
L2(D) ≤ ‖a

1
2
0 ∇(E[u]−u0)‖2

L2(D) = 0

which implies E[u] = u0 a.e. in D. We proceed similarly for the second relation. Indeed,

without writing the dependence of each function, we have for any v ∈W and a.s. in Ω∫
D

a0∇(u − (u0 +εu1)) ·∇v =
∫

D
a0∇u ·∇v −

∫
D

a0∇u0 ·∇v −ε

∫
D

a0∇u1 ·∇v

=
∫
ΓN

g v −
∫
ΓN

g0v −ε
L∑

j=1

∫
ΓN

g j v

= 0.

Taking then v = u −u0 −εu1 ∈W a.s. in Ω, we can easily show that ‖u − (u0 +εu1)‖L2
P (Ω;W ) = 0

and thus u = u0 +εu1 a.e. in D and a.s. in Ω. Finally, we directly get

V ar [u] = E[(u −E[u])2] = E[ε2u2
1] = ε2

L∑
j=1

U 2
j

using the fact that E[Yi Y j ] = δi j .

Remark 2.1.2. Notice that we could also see that u does not contain any term of order O (εk )

for any k ≥ 2 by observing that the term uk in the expansion of u would be the solution of the
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Chapter 2. Elliptic model problems with other sources of uncertainty

problem ⎧⎪⎨
⎪⎩

−div(a0(x)∇uk (x,ω)) = 0 x ∈ D

uk (x,ω) = 0 x ∈ ΓD

a0(x)∂uk (x,ω)
∂n = 0 x ∈ ΓN ,

for which uk = 0 is the obvious solution.

To simplify the notation in the a posteriori error estimates given below, we introduce the

generalized jumps across an edge e defined as

Je,0(u0,h) :=

⎧⎪⎨
⎪⎩

1
2 [a0∇u0,h ·ne ]e if e ⊂ D

g0 − limt→0+(a0∇u0,h ·ne )(x− tne ) if e ⊂ ΓN

0 if e ⊂ ΓD

with [·]ne the jump across an interior edge e defined by

[ϕ]ne (x) := lim
t→0+

(
ϕ(x+ tne )−ϕ(x− tne )

)
.

For j = 1, . . . ,L, the quantity Je, j (U j ,h) is defined analogously replacing u0,h and g0 by U j ,h and

g j , respectively. Moreover, we will need the following trace inequality (see for instance [109])

‖v‖L2(ΓN ) ≤CT ‖v‖H 1(D) ∀v ∈ H 1(D). (2.10)

Error estimation for u −u0,h

We consider the P1 finite element approximation of problem (2.8) given by

find u0,h ∈Wh :
∫

D
a0∇u0,h ·∇vh =

∫
D

f vh +
∫
ΓN

g0vh ∀vh ∈Wh (2.11)

with Wh = {v ∈C 0(D̄) : v K ∈P1 ∀K ∈Th}∩W and Th a regular triangulation of D . We have the

following a posteriori error estimate for the error u −u0,h , yielding an error of order O (hs +ε)

with s ∈ (0,1] depending on the regularity of the solution.

Proposition 2.1.3. Let u be the weak solution of problem (2.1) and let u0,h be the solution of

problem (2.11). Then, there exists a constant C > 0 depending only on CF in (2.5), CT in (2.10)

and the mesh aspect ratio such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤ C

a0,mi n

(
η2

h +η2
ε

) 1
2 ,
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with

η2
h := ∑

K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

he‖Je,0(u0,h)‖2
L2(e)

η2
ε := ε2

L∑
j=1

‖g j‖2
L2(ΓN ).

Proof. For any v ∈W and a.s. in Ω we have∫
D

a0∇(u −u0,h) ·∇v =
∫

D
f v +

∫
ΓN

g0v −
∫

D
a0∇u0,h ·∇v︸ ︷︷ ︸

=:I

+
∫
ΓN

(g − g0)v︸ ︷︷ ︸
=:II

.

We bound each term separately. The term I, which is the residual for u0,h , can be bounded as

follows

I ≤C1

[ ∑
K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

‖Je,0(u0,h)‖2
L2(e)

] 1
2

‖∇v‖L2(D)

where C1 depends only on the interpolation constants in (1.26) and (1.28). The second term is

bounded by

II =
∫
ΓN

(g − g0)v ≤ ‖g − g0‖L2(ΓN )‖v‖L2(ΓN ) ≤C2‖g − g0‖L2(ΓN )‖∇v‖L2(D), C2 =CT

√
1+C 2

F .

Combining these two bounds with the fact that a0 is larger than a0,mi n we get

‖∇(u −u0,h)‖2
L2(D) ≤ 1

a0,mi n

⎡
⎣C1

( ∑
K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

‖Je,0(u0,h)‖2
L2(e)

) 1
2

+ C2‖g − g0‖L2(ΓN )
]

Taking the expected value of the square of last inequality and using the fact that E[Yi Y j ] = δi j

allows us to conclude the proof.

Error estimation for u − (u0,h +εu1,h)

Let U j ,h be the P1 finite element approximation of U j which solves

find U j ,h ∈Wh :
∫

D
a0∇U j ,h ·∇vh =

∫
ΓN

g j vh ∀vh ∈Wh . (2.12)

We have the following a posteriori error estimate for the error u − (u0,h +εu1,h), yielding an

error of order O (hs +εhs), s ∈ (0,1]. In particular, there is no term of order O (εk ), k ≥ 2, and

thus no pure statistical error.

Proposition 2.1.4. Let u be the weak solution of problem (2.1) and let u0,h be the solution of
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Chapter 2. Elliptic model problems with other sources of uncertainty

problem (2.11). Moreover, let u1,h =∑L
j=1 U j ,hY j with U j ,h the solution of problem (2.12). Then,

there exists a constant C > 0 depending only on CF in (2.5), CT in (2.10) and the mesh aspect

ratio such that

E
[
‖∇(u − (u0,h +εu1,h))‖2

L2(D)

] 1
2 ≤ C

a0,mi n

(
η2

h +η2
εh

) 1
2 ,

with

η2
h := ∑

K∈Th

h2
K ‖ f +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e∈Th

he‖Je,0(u0,h)‖2
L2(e)

η2
εh := ε2

L∑
j=1

[ ∑
K∈Th

h2
K ‖∇· (a0∇U j ,h)‖2

L2(K ) +
∑

e∈Th

he‖Je, j (U j ,h)‖2
L2(e)

]
.

Proof. The proof can easily be deduced from the relation

∫
D

a0∇(u−(u0,h+εu1,h))·∇v =
∫

D
f v +

∫
ΓN

g0v −
∫

D
a0∇u0,h ·∇v︸ ︷︷ ︸

=:I

+ε
L∑

j=1

(∫
ΓN

g j v −
∫

D
a0∇U j ,h ·∇v

)
︸ ︷︷ ︸

=:II

a.s. in Ω, where I and II are nothing else than the residual for u0,h and u1,h , respectively. Each

of these terms can be bounded in a standard way to conclude.

2.2 Two sources of uncertainty

We consider again the diffusion model problem but with two input data affected by uncertainty,

namely the diffusion coefficient and the source term:

find u : D ×Ω→R such that a.s. in Ω it holds:{
−div(a(x,ω)∇u(x,ω)) = f (x,ω) x ∈ D

u(x,ω) = 0 x ∈ ∂D,
(2.13)

where f (·,ω) ∈ L2(D) a.s. in Ω and a is uniformly bounded from below and above by ami n and

amax , respectively. We prescribe homogeneous Dirichlet boundary conditions for simplicity

but we could easily extend the following results to other kinds of boundary conditions, includ-

ing random boundary conditions as treated in the previous section. We assume that the two

random inputs a and f are characterized through a finite number of random variables

a(x,ω) = a(x,Y1(ω), . . . ,YL(ω)) and f (x,ω) = f (x, Z1(ω), . . . , ZM (ω)).

More precisely, we assume an affine dependence of a and f with respect to the random
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2.2. Two sources of uncertainty

variables as follows

a(x,ω) = a0(x)+ε
L∑

j=1
a j (x)Y j (ω), (2.14)

f (x,ω) = f0(x)+δ
M∑

j=1
f j (x)Z j (ω), (2.15)

where
{
Y j

}L
j=1 and

{
Z j

}M
j=1 are two families of independent random variables with zero mean

and V ar (Y j ) = (σy
j )2 <∞ and V ar (Zi ) = (σz

i )2 <∞ for j = 1, . . . ,L and i = 1, . . . , M . Moreover,

we assume that f j ∈ L2(D) for j = 0,1, . . . , M . The two parameters ε and δ control the amount

of randomness in a and f , respectively.

Remark 2.2.1. The case where only the forcing term is affected by uncertainty can be easily

deduced from the one considered here by setting ε= 0.

Let Y = (Y1, . . . ,YL), Z = (Z1, . . . , ZM ) and R = (Y,Z). For j = 1, . . . ,L, let Γy
j denote the bounded

image in R of Y j and for i = 1, . . . , M let Γz
i be the image in R of Zi . Moreover, we write ρ

y
j

and ρz
i their probability density function. Let Γ= Γy ×Γz = Γ

y
1 × . . .Γy

L ×Γz
1 × . . .×Γz

M . Thanks

to the independence of the random variables, the joint density function ρ : Γ→ R+ of the

random vector R is given by ρ(r) = ρy (y)ρz (z) = ΠL
j=1ρ

y
j (y j )ΠM

i=1ρ
z
i (zi ) for all r = (y,z) ∈ Γ

with y = (y1, . . . , yL) ∈ Γy and z = (z1, . . . , zM ) ∈ Γz . By definition, for any measurable function

g : Γ→R, the expected value of the random variable g (R) is E[g (R)] =∫
Γ g (r)ρ(r)dr. The finite

dimensional noise assumption implies that the random solution u of problem (2.13) can be

described by L+M random variables

u(x,ω) = u(x,Y1(ω), . . . ,YL(ω), Z1(ω), . . . , ZM (ω)).

Therefore, the solution u can be sought in the probability space (Ω,F ,P ) or equivalently

in (Γ,B(Γ),ρ(r)dr). The problem (2.13) can indeed be equivalently written in the following

deterministic parametric form:

find u : D ×Γy ×Γz →R such that ρ-a.e. in Γ it holds:{
−div

(
a(x,y)∇u(x,y,z)

) = f (x,z) x ∈ D

u(x,y,z) = 0 x ∈ ∂D.
(2.16)

The pointwise weak formulation of (2.16) reads:

find u ∈ L2
ρ(Γ; H 1

0 (D)) such that

A (u(·,y,z), v ;y) = F (v ;z) ∀v ∈ H 1
0 (D), ρ-a.e. in Γ, (2.17)
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where

A (u(·,y,z), v ;y) =
∫

D
a(x,y)∇u(x,y,z) ·∇v(x)dx (2.18)

F (v ;z) =
∫

D
f (x,z)v(x)dx. (2.19)

The well-posedness of problem (2.17) can be shown using Lax-Milgram’s lemma. In particular,

the assumptions on f0, fi and Zi , i = 1, . . . , M , ensure that f ∈ L2
ρ(Γ;L2(D)).

We assume small uncertainty and use a perturbation approach expanding u with respect to ε

and δ as

u(x,Y(ω),Z(ω)) = u0(x)+εuy
1 (x,Y(ω))+δuz

1(x,Z(ω))

+ε2uy
2 (x,Y(ω))+εδuy z

2 (x,Y(ω),Z(ω))+δ2uz
2(x,Z(ω))+ . . . (2.20)

Notice that similarly to Section 2.1, there will be no term of higher order than 1 in δ, i.e. uz
2

vanishes, due to the linear dependence of u with respect to f .

The problem for u0 is given by:

find u0 : D →R such that{
−div(a0(x)∇u0(x)) = f0(x) x ∈ D

u0(x) = 0 x ∈ ∂D.
(2.21)

Writing then uy
1 (x,Y(ω)) =∑L

j=1 U y
j (x)Y j (ω) and uz

1(x,Z(ω)) =∑M
j=1 U z

j (x)Z j (ω), the first order

term in (2.20) is obtained by solving the following L+M deterministic uncoupled problems:

find U y
j : D →R such that

{
−div

(
a0(x)∇U y

j (x)+a j (x)∇u0(x)
)

= 0 x ∈ D

U y
j (x) = 0 x ∈ ∂D

j = 1, . . . ,L (2.22)

and

find U z
j : D →R such that

{
−div

(
a0(x)∇U z

j (x)
)

= f j (x) x ∈ D

U z
j (x) = 0 x ∈ ∂D

j = 1, . . . , M . (2.23)

Notice that the solution u0 of problem (2.21) is required in problem (2.22) but not in (2.23).

80



2.2. Two sources of uncertainty

Error u −u0,h

Let u0,h be the P1 finite element approximation of u0, i.e. the solution of

find u0,h ∈Vh :
∫

D
a0∇u0,h ·∇vh =

∫
D

f0vh ∀vh ∈Vh , (2.24)

where Vh = {v ∈C 0(D̄) : v K ∈P1 ∀K ∈Th}∩V and Th is a regular triangulation of D . The fol-

lowing proposition gives an a posteriori error estimation of the error u−u0,h in the L2
P (Ω; H 1

0 (D))

norm.

Proposition 2.2.2. Let u be the weak solution of problem (2.13) and let u0,h be the solution of

problem (2.24). There exists a constant C > 0 depending only the mesh aspect ratio such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤

�
3

ami n

[
Cη2

h +η2
ε+C 2

Pη
2
δ

] 1
2 , (2.25)

where CP is the Poincaré constant and

η2
h := ∑

K∈Th

η2
K with η2

K = h2
K ‖ f0 +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e⊂∂K
he‖1

2

[
a0∇u0,h ·ne

]
ne
‖2

L2(e)

(2.26)

η2
ε := ε2

L∑
j=1

(σy
j )2‖a j∇u0,h‖2

L2(D) (2.27)

η2
δ := δ2

M∑
j=1

(σz
j )2‖ f j‖2

L2(D). (2.28)

Proof. For any v ∈ H 1
0 (D) and a.s. in Ω we have

∫
D

a∇(u −u0,h) ·∇v =
∫

D
f0v −

∫
D

a0∇u0,h ·∇v︸ ︷︷ ︸
=:I

+
∫

D
( f − f0)v −

∫
D

(a −a0)∇u0,h ·∇v︸ ︷︷ ︸
=:II

. (2.29)

The term I is nothing else but the residual for u0,h and we have

I ≤
(

C
∑

K∈Th

η2
K

) 1
2

‖∇v‖L2(D), η2
K = h2

K ‖ f +∇·(a0∇u0,h)‖2
L2(K )+

∑
e⊂∂K

he‖1

2

[
a0∇u0,h ·ne

]
ne
‖2

L2(e)

(2.30)

with C an interpolation constant which depends only on the interpolation constants in (1.26)

and (1.28). For the second term, thanks to Cauchy-Schwarz and Poincaré inequalities we have

the bound

II ≤ (
CP‖ f − f0‖L2(D) +‖(a −a0)∇u0,h‖L2(D)

)‖∇v‖L2(D)

where CP denotes the constant in Poincaré’s inequality. Using the lower bound on a, we thus
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obtain

‖∇(u −u0,h)‖L2(D) ≤
1

ami n

⎡
⎣(C

∑
K∈Th

η2
K

) 1
2

+CP‖ f − f0‖L2(D) +‖(a −a0)∇u0,h‖L2(D)

⎤
⎦ .

The result follows from taking the expected value on the square of the last inequality.

As we will see in the numerical results, the loss due to the use of the Poincaré inequality for

the source term is dependent on the input data. In other words, the efficiency of the estimator

ηδ in (2.28), for which the Poincaré inequality has been used, will be different from one case

to another. A way to skirt this drawback is to replace ηδ by an implicit estimator obtained by

computing (approximately) the dual norm of a residual to be defined. The price to pay is that

the computation of this estimator, given in the following proposition, requires the resolution

of M additional (Poisson) problems.

Proposition 2.2.3. Let u be the weak solution of problem (2.13) and let u0,h be the solution of

problem (2.24). There exists a constant C > 0 depending only on the mesh aspect ratio such that

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤

�
3

ami n

[
Cη2

h +η2
ε+ η̂2

δ

] 1
2 +h.o.t ., (2.31)

where ηh and ηε are as in (2.26) and (2.27), respectively, and

η̂2
δ = δ2

M∑
j=1

(σz
j )2‖∇Wj ,h‖2

L2(D) (2.32)

with Wj ,h ∈Vh the solution of

∫
D
∇Wj ,h ·∇vh =

∫
D

f j vh ∀vh ∈Vh .

Proof. The only difference with respect to the proof of Proposition 2.2.2 is how we bound the

term II of (2.29) due to the uncertainty in the input data, more precisely the part due to the

forcing term. Let us introduce for any z ∈ Γz the operator R(·;z) : H 1
0 (D) →R defined by

R(v ;z) :=
∫

D
( f (·;z)− f0)v = δ

M∑
j=1

z j

∫
D

f j v.

The dual norm of R is then given by ‖R(·;z)‖H−1(D) = ‖∇w(·;z)‖L2(D) with w the Riesz represen-

tant of R, i.e. w(·;z) ∈ H 1
0 (D) is such that

∫
D ∇w ·∇v = R(v ;z) for all v ∈ H 1

0 (D) and ρz -a.e. in

Γz . We can write w = w(x,Z(ω)) = δ
∑M

j=1 Wj (x)Z j (ω) with Wj ∈ H 1
0 (D) the solution of

∫
D
∇Wj ·∇v =

∫
D

f j v ∀v ∈ H 1
0 (D) (2.33)
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from which we deduce

E
[
‖R‖2

H−1(D)

]
= δ2

M∑
j=1

(σz
j )2‖∇Wj‖2

L2(D).

Since the solution of (2.33) can not be computed exactly, we can replace it by its finite element

approximation Wj ,h ∈Vh . Doing so introduce an error of higher order, the proof being similar

to that of Proposition 1.B.1.

We mention that the computational cost to get the error estimator η̂δ is the same as that

needed to get the finite element approximation uz
1,h of the term uz

1 in the expansion (2.20).

Since the solution u depends linearly on the input f , there is no term of order δ2 and it would

thus be better to simply add the term δuz
1,h to u0,h . The quantification of the error in O (δh) so

introduced is made precisely in Proposition 2.2.5, see the term ηδh . As mentioned in Chapter

1, the computational cost might be reduced introducing auxiliary local problems defined on

an element or a small subdomain.

Remark 2.2.4. Notice that we could use the same procedure as used in Proposition 2.2.3 for

the whole term II, and not only the part due to f , by considering the residual defined for all

v ∈ H 1
0 (D) and (y,z) ∈ Γ by

R(v ;y,z) =
∫

D
( f (·,z)− f0)v −

∫
D

(a(·,y)−a0)∇u0,h ·∇v.

The dual norm of R is then given by ‖R(·;y,z)‖H−1(D) = ‖∇w(·;y,z)‖L2(D) where w(·;y,z) ∈ H 1
0 (D)

ρ-a.e. in Γ writes

w(x;Y(ω),Z(ω)) = ε
L∑

j=1
W y

j (x)Y j (ω)+δ
M∑

j=1
W z

j (x)Z j (ω)

with W y
j and W z

j the solutions of

∫
D
∇W y

j ·∇v =−
∫

D
a j∇u0,h ·∇v ∀v ∈ H 1

0 (D)

and ∫
D
∇W z

j ·∇v =
∫

D
f j v ∀v ∈ H 1

0 (D),

respectively. Writing W y
j ,h and W z

j ,h the finite element approximations of W y
j and W z

j , respec-

tively, the error estimate reads then

E
[
‖∇(u −u0,h)‖2

L2(D)

] 1
2 ≤

�
3

ami n

[
Cη2

h + η̂2
ε+ η̂2

δ

] 1
2 +h.o.t ., (2.34)
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with ηh defined in (2.26) and

η̂2
ε := ε2

L∑
j=1

(σy
j )2‖∇W y

j ,h‖2
L2(D) and η̂2

δ = δ2
M∑

j=1
(σz

j )2‖∇W z
j ,h‖2

L2(D). (2.35)

Error u − (u0,h +εuy
1,h +δuz

1,h)

Let us write u1
h = u0,h + εuy

1,h +δuz
1,h , where uy

1,h = ∑L
j=1 U y

j ,hY j , uz
1,h = ∑M

i=1 U z
i ,h Zi and, for

j = 1, . . . ,L and i = 1, . . . , M , U y
j ,h and U z

i ,h are the solutions of respectively

∫
D

(
a0∇U y

j ,h +a j∇u0,h

)
·∇vh = 0 ∀vh ∈Vh (2.36)

and ∫
D

a0∇U z
i ,h ·∇vh =

∫
D

fi vh ∀vh ∈Vh . (2.37)

To simplify the notation, we write w j ,h = a0∇U y
j ,h +a j∇u0,h . The following proposition gives

an a posteriori error estimation of the error u −u1
h in the L2

P (Ω; H 1
0 (D)) norm. Notice that

in particular, there is no term of order δ2. Indeed, we deduce from Proposition 2.2.5 that

‖u −u1
h‖L2

P (Ω;H 1
0 (D)) =O (h +h(ε+δ)+ε2 +εδ) if u is regular enough in the physical space.

Proposition 2.2.5. Let u be the weak solution of problem (2.13) and let u0,h, U y
j ,h , j = 1, . . . ,L

and U z
i ,h , i = 1, . . . , M, be the solutions of problems (2.24), (2.36) and (2.37), respectively. There

exist constants C1,C2,C3 > 0 depending only on the mesh aspect ratio such that

E
[
‖∇(u −u1

h)‖2
L2(D)

] 1
2 ≤ 2

ami n

[
C1η

2
h +C2η

2
εh +C3η

2
δh +2η2

εδ

] 1
2 , (2.38)

where

η2
h = ∑

K∈Th

η2
K with η2

K = h2
K ‖ f0 +∇· (a0∇u0,h)‖2

L2(K ) +
∑

e⊂∂K
he‖1

2

[
a0∇u0,h ·ne

]
ne
‖2

L2(e)

η2
εh = ε2

∑
K∈Th

L∑
j=1

(σy
j )2θ2

K , j with θ2
K , j = h2

K ‖∇·w j ,h‖2
L2(K ) +

∑
e⊂∂K

he‖1

2

[
w j ,h ·ne

]
ne
‖2

L2(e)

η2
δh = δ2

∑
K∈Th

M∑
j=1

(σz
j )2ϑ2

K , j with ϑ2
K , j = h2

K ‖ f j +∇· (a0∇U z
j ,h)‖2

L2(K ) +
∑

e⊂∂K
he‖1

2

[
a0∇U z

j ,h ·ne

]
ne

‖2
L2(e)

η2
εδ = ε4

⎛
⎜⎝∫

D

L∑
i=1

a2
i |∇U y

i ,h |2E[Y 4
i ]+

∫
D

L∑
i , j=1
i �= j

(σy
i σ

y
j )2

[
a2

i |∇U y
j ,h |2 +2ai a j∇U y

i ,h ·∇U y
j ,h

]⎞⎟⎠
+(εδ)2

L∑
j=1

M∑
i=1

(σy
j σ

z
i )2‖a j∇U z

i ,h‖2
L2(D).
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2.3. Numerical results

Proof. The proof can be easily obtained from the relation∫
D

a∇(u −u1
h) ·∇v = I+ II+ III+ IV ∀v ∈ H 1

0 (D), a.s. in Ω

with

I =
∫

D
f0v −

∫
D

a0∇u0,h ·∇v

II = −
∫

D
(a −a0)∇u0,h ·∇v −ε

∫
D

a0∇uy
1,h ·∇v

III =
∫

D
( f − f0)v −δ

∫
D

a0∇uz
1,h ·∇v

IV = −ε
∫

D
(a −a0)∇uy

1,h ·∇v −δ

∫
D

(a −a0)∇uz
1,h ·∇v,

bounding then each term separately.

2.3 Numerical results

We consider one-dimensional examples with D = (0,1). In the results below, the true error

is computed with the standard Monte Carlo method with a sample size of K = 10000 and a

reference solution computed on a uniform partition with mesh size hr e f = 2−12.

Random forcing term

We consider first the case where only the forcing term is random, that is we set ε= 0 in (2.14).

As mentioned above, the efficiency of the stochastic estimator ηδ in (2.28) depends on the

input data, due to the use of the Poincaré inequality for the forcing term. To observe this

behaviour, we consider the following two cases

f (x,ω) = 1+δ
M∑

j=1
f j (x)Z j (ω), f j (x) = sin(2π j x)

j
(2.39)

and

f (x,ω) = 1+δ
M∑

j=1
f j (x)Z j (ω), f j (x) = 0.5 j−

1
2 e−50 j (x−0.5)2

(2.40)

where Z j , j = 1, . . . , M , are uniform random variables in [−�3,
�

3].

The plot of several realizations of the forcing term for the case (2.39) with M = 6 and M = 50 is

given in Figures 2.1 and 2.2, respectively, where the corresponding solution is also depicted.

The forcing term contains much more high oscillating features with M = 50 than in the case

M = 6. The difference between the two cases for the corresponding solutions is not noticeable,

but is indeed present.
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Figure 2.1: Six realizations of the random forcing term f given in (2.39) with δ= 0.5 and M = 6
(left) and the corresponding solution (right).

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

x

f(
x)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

u(
x)

Figure 2.2: Six realizations of the random forcing term f given in (2.39) with δ= 0.5 and M = 50
(left) and the corresponding solution (right).
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2.3. Numerical results

Recall that we have set ε = 0 here, namely only the forcing term is affected by uncertainty,

and thus ηε = η̂ε = 0. We give in Table 2.1 the error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)) and the estimators

η= (η2
h +η2

δ
)

1
2 and η̂= (C 2

H 1
0
η2

h + η̂2
δ

)
1
2 with CH 1

0
= 1/3.46 for the first case (2.39), where ηh , ηδ

and η̂δ are given in (2.26), (2.28) and (2.32), respectively.

δ error ηδ η η/error η̂δ η̂ η̂/error

M
=

6

20 1.1692e-1 8.6354e-1 8.6357e-1 7.3859 1.1700e-1 1.1702e-1 1.0008
2−2 2.9361e-2 2.1588e-1 2.1603e-1 7.3575 2.9250e-2 2.9337e-2 0.9993
2−4 7.6029e-3 5.3971e-2 5.4534e-2 7.1727 7.3124e-3 7.6531e-3 1.0066
2−6 2.9040e-3 1.3493e-2 1.5591e-2 5.3689 1.8281e-3 2.9052e-3 1.0004
2−8 2.3004e-3 3.3732e-3 8.5096e-3 3.6992 4.5703e-4 2.3037e-3 1.0015

δ error ηδ η η/error η̂δ η̂ η̂/error

M
=

50

20 1.1745e-1 9.0142e-1 9.0146e-1 7.6750 1.1706e-1 1.1708e-1 0.9969
2−2 2.9515e-2 2.2536e-1 2.2549e-1 7.6400 2.9266e-2 2.9353e-2 0.9945
2−4 7.6573e-3 5.6339e-2 5.6878e-2 7.4280 7.3164e-3 7.6569e-3 0.9999
2−6 2.8939e-3 1.4085e-2 1.6106e-2 5.5656 1.8291e-3 2.9058e-3 1.0041
2−8 2.2996e-3 3.5212e-3 8.5694e-3 3.7264 4.5728e-4 2.3038e-3 1.0018

Table 2.1: Efficiency of the two error estimator η and η̂ for the case (2.39) with h = 2−7

(ηh =7.8125e-3).

We see that similar results are obtained for the two cases M = 6 and M = 50. Moreover, the

efficiency of the error estimator η varies between 3.7 and 7.7. More precisely, we recover

the value of CH 1
0

in a physical space error dominant regime while it is about 7.7 when the

stochastic error is dominant. The second error estimator η̂, obtained by taking into account

the constant CH 1
0

for ηh and by computing M additional Poisson problems (see Proposition

2.2.3), yields an effectivity index close to 1. The results for the second case (2.40), see Figure

2.3 for a plot of some realizations for f and the corresponding solutions, are given in Table 2.2.
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Figure 2.3: Seven realizations of the random forcing term f given in (2.40) with δ= 0.5 and
M = 50 (left) and the corresponding solution (right).

In this case, the effectivity index of the error estimator η is about 4.5 when the stochastic error
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Chapter 2. Elliptic model problems with other sources of uncertainty

δ error ηδ η η/error η̂δ η̂ η̂/error

M
=

50

20 7.2668e-2 3.2138e-1 3.2148e-1 4.4239 7.2070e-2 7.2106e-2 0.9923
2−2 1.8098e-2 8.0346e-2 8.0725e-2 4.4605 1.8018e-2 1.8159e-2 1.0034
2−4 5.0669e-3 2.0086e-2 2.1552e-2 4.2536 4.5044e-3 5.0386e-3 0.9944
2−6 2.5199e-3 5.0216e-3 9.2872e-3 3.6856 1.1261e-3 2.5232e-3 1.0013
2−8 2.2718e-3 1.2554e-3 7.9127e-3 3.4830 2.8152e-4 2.2754e-3 1.0016

Table 2.2: Efficiency of the two error estimator η and η̂ for the case (2.40) with h = 2−7

(ηh =7.8125e-3).

is dominant, to be compared to about 7.7 for the first example. This highlight the dependence

of the efficiency of η with respect to the input data, due to the different loss when using the

Poincaré inequality. On the contrary, the second error estimator η̂ is also very close to 1 for

this second example.

Random forcing term and diffusion coefficient

Let us now consider the case of two random inputs with

a(x,ω) = 1+ε
50∑

j=1
a j (x)Y j (ω), a j (x) = sin(2π j x)

(π j )2 , Y j ∼U [−�3,
�

3] (2.41)

and

f (x,ω) = 1+δ
50∑

j=1
f j (x)Z j (ω), f j (x) = 0.5 j−

1
2 e−50 j (x−0.5)2

, Z j ∼N (0,1).

Remark 2.3.1. We mention that the choice of the a j in (2.41) is the one for which we obtained

the largest effectivity index for the stochastic error estimator ηε, namely the ratio of ηε over the

error is about 1.8 in the pure stochastic error case (with δ= 0). It is still an open question, at

least to us, to show if there are cases for which we get a larger constant, i.e. for which the loss

due to the use of Cauchy-Schwarz inequality in∫
D

(a −a0)∇u0,h ·∇(u −u0,h) ≤ ‖(a −a0)∇u0,h‖L2(D)‖∇(u −u0,h)‖L2(D)

is bigger.

We give in Tables 2.3 and 2.4 the results obtained for the cases h = 2−5 and h = 2−7, respectively.

We report the error ‖u −u0,h‖L2
P (Ω;H 1

0 (D)), the estimators ηh , ηε and ηδ defined in (2.26), (2.27)

and (2.28), respectively, and the effectivity index of the full estimator η= (η2
h +η2

ε+η2
δ

)
1
2 . We

also give the efficiency of the implicit estimator η̂= (C 2
H 1

0
η2

h + η̂2
ε+ η̂2

δ
)

1
2 with η̂ε and η̂δ defined

in (2.35) and CH 1
0
= 1/3.46.

From the results of Tables 2.3 and 2.4, we see that the efficiency of the full error estimator η is
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2.3. Numerical results

ε δ error ηε ηδ η/error η̂ε η̂δ η̂/error
20 20 7.3783e-2 1.9954e-2 3.2249e-1 4.3995 1.1331e-2 7.2013e-2 0.9956

2−2 20 7.3191e-2 4.9885e-3 3.2249e-1 4.4272 2.8328e-3 7.2013e-2 0.9924
2−4 20 7.2246e-2 1.2471e-3 3.2249e-1 4.4847 7.0821e-4 7.2013e-2 1.0046
2−6 20 7.2718e-2 3.1178e-4 3.2249e-1 4.4555 1.7705e-4 7.2013e-2 0.9981

20 2−2 2.3233e-2 1.9954e-2 8.0622e-2 3.8195 1.1331e-2 1.8003e-2 0.9947
2−2 2−2 2.0159e-2 4.9885e-3 8.0622e-2 4.2964 2.8328e-3 1.8003e-2 1.0090
2−4 2−2 2.0186e-2 1.2471e-3 8.0622e-2 4.2840 7.0821e-4 1.8003e-2 0.9984
2−6 2−2 2.0131e-2 3.1178e-4 8.0622e-2 4.2952 1.7705e-4 1.8003e-2 1.0006

20 2−4 1.5453e-2 1.9954e-2 2.0155e-2 2.7309 1.1331e-2 4.5008e-3 0.9819
2−2 2−4 1.0487e-2 4.9885e-3 2.0155e-2 3.5776 2.8328e-3 4.5008e-3 0.9994
2−4 2−4 1.0114e-2 1.2471e-3 2.0155e-2 3.6789 7.0821e-4 4.5008e-3 1.0002
2−6 2−4 1.0068e-2 3.1178e-4 2.0155e-2 3.6937 1.7705e-4 4.5008e-3 1.0025

20 2−6 1.4804e-2 1.9954e-2 5.0388e-3 2.5276 1.1331e-2 1.1252e-3 0.9818
2−2 2−6 9.5369e-3 4.9885e-3 5.0388e-3 3.3600 2.8328e-3 1.1252e-3 0.9995
2−4 2−6 9.1184e-3 1.2471e-3 5.0388e-3 3.4741 7.0821e-4 1.1252e-3 1.0012
2−6 2−6 9.0934e-3 3.1178e-4 5.0388e-3 3.4811 1.7705e-4 1.1252e-3 1.0011

Table 2.3: for h = 2−5 (ηh =3.125e-2)

ε δ error ηε ηδ η/error η̂ε η̂δ η̂/error
20 20 7.3022e-2 1.9923e-2 3.2138e-1 4.4109 1.1490e-2 7.2070e-2 0.9999

2−2 20 7.2376e-2 4.9806e-3 3.2138e-1 4.4423 2.8724e-3 7.2070e-2 0.9971
2−4 20 7.2361e-2 1.2452e-3 3.2138e-1 4.4428 7.1811e-4 7.2070e-2 0.9965
2−6 20 7.1792e-2 3.1129e-4 3.2138e-1 4.4779 1.7953e-4 7.2070e-2 1.0044

20 2−2 2.1710e-2 1.9923e-2 8.0346e-2 3.8299 1.1490e-2 1.8018e-2 0.9898
2−2 2−2 1.8452e-2 4.9806e-3 8.0346e-2 4.3832 2.8724e-3 1.8018e-2 0.9963
2−4 2−2 1.8183e-2 1.2452e-3 8.0346e-2 4.4401 7.1811e-4 1.8018e-2 0.9994
2−6 2−2 1.7873e-2 3.1129e-4 8.0346e-2 4.5165 1.7953e-4 1.8018e-2 1.0160

20 2−4 1.2685e-2 1.9923e-2 2.0086e-2 2.3138 1.1490e-2 4.5044e-3 0.9890
2−2 2−4 5.7768e-3 4.9806e-3 2.0086e-2 3.8291 2.8724e-3 4.5044e-3 1.0040
2−4 2−4 5.0541e-3 1.2452e-3 2.0086e-2 4.2715 7.1811e-4 4.5044e-3 1.0070
2−6 2−4 5.0988e-3 3.1129e-4 2.0086e-2 4.2274 1.7953e-4 4.5044e-3 0.9888

20 2−6 1.1897e-2 1.9923e-2 5.0216e-3 1.8476 1.1490e-2 1.1261e-3 0.9888
2−2 2−6 3.8361e-3 4.9806e-3 5.0216e-3 2.7471 2.8724e-3 1.1261e-3 0.9966
2−4 2−6 2.6217e-3 1.2452e-3 5.0216e-3 3.5742 7.1811e-4 1.1261e-3 1.0007
2−6 2−6 2.5186e-3 3.1129e-4 5.0216e-3 3.6895 1.7953e-4 1.1261e-3 1.0043

Table 2.4: for h = 2−7 (ηh =7.8125e-3)
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Chapter 2. Elliptic model problems with other sources of uncertainty

comprised between the efficiency of each of its parts ηh , ηε and ηδ, depending on which is the

predominant source of error. For instance, the effectivity index tends to the value 3.46 when

the FE error is dominant, see e.g. Table 2.3 with δ= 2−6 and ε= 2−4 or 2−6, while it is about 4.5

in a δ-error dominant regime as in the similar case (2.40) considered above. Finally, we see

that if the error due to the uncertainty in the diffusion coefficient a is largest, the effectivity

index tends to the value 1.8 indicated in Remark 2.3.1. In all cases, the implicit error estimator

η̂ has an effectivity index close to 1, but more work is required to compute it.

Conclusions

In this chapter, we have extended the results we obtained in Chapter 1 for the linear model

problem to include other sources of uncertainty. More precisely, we have considered first the

case of Neumann random boundary conditions and then the combination of two random

input data, namely the diffusion coefficient and the forcing term. For the latter case, two differ-

ent sets of random variables have been used to characterize the data affected by uncertainty.

We have shown that when the random solution depends linearly on the random input, as it

is the case for Neumann boundary conditions or the source term, then the solution is fully

described by the first two terms in the expansion, the remaining terms being zero. Moreover,

we have seen that when the Poincaré inequality is required in the estimation, the efficiency

of the error estimator might change when modifying the input data, even though it has the

optimal convergence rate. The same behaviour was observed when considering the error

u−u0,h in the L2(D) norm in Chapter 1. As a remedy to the sensitivity of the error estimator to

the input data, we have proposed a second error estimator, see Proposition 2.2.3. It is obtained

by solving additional (Poisson) problems, as many as the number of random variables used to

characterized the uncertainty in the data. However, we can use the same spatial mesh than

the one for u0,h to solve these problems approximately.
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3 PDEs in random domains

In this chapter, we consider nonlinear PDEs defined on random domains. The first part

consists of the analysis of a 1D problem, namely the viscous Burgers’ equation to be solved

on an interval of random length. This equation, first introduced by Bateman in [19] and

then used by Burgers in [34] for modelling turbulence, can be seen as a simplification of the

Navier-Stokes equations to the one-dimensional case. In the second part, whose material in

mainly taken from the submitted paper [75], we consider the more involved incompressible

Navier-Stokes equations in random domains. We restrict ourselves here to the stationary

formulation of these equations.

For both problems, we use the so-called domain mapping method [125]: we introduce a

random mapping that transforms the deterministic PDEs defined on a random domain into

PDEs on a fixed reference domain with random coefficients. For simplicity, we assume that

the uncertainty in the system is only due to the random domain, but the analysis can be

straightforwardly extended to include other sources of randomness.

Introduction

Several approaches have been developed to perform analysis and numerical approximation

of PDEs in random domains, such as the fictitious domain method [40], the perturbation

method based on shape calculus [77] and the domain mapping method initially proposed

by [125] and also used for instance in [39, 43, 76]. In the first approach, the PDEs are extended

to a fixed reference domain, the so-called fictitious domain, which contains all the random

domains. The original boundary condition is then imposed through a Lagrange multiplier

yielding a saddle-point problem to be solved in the fictitious domain. In the perturbation

method, which is suitable for small perturbations only, the solution is represented using a

shape Taylor expansion with respect to the (random) perturbation field of the boundary of

the domain. Finally, the domain mapping approach, which is the one considered in this

work, transforms the deterministic PDEs defined on a random domain into PDEs on a fixed

reference domain with random coefficients via a random mapping. We give in Figure 3.1 an
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Chapter 3. PDEs in random domains

illustration of the mapping for a given ω between the physical domain and the reference one,

supplemented with some notation.

Physical domain

ũ(x,ω), p̃(x,ω)

Dω

x

x1

x2

Reference domain

u(ξ,ω), p(ξ,ω)

D

ξ

ξ1

ξ2

ξω

xω

Figure 3.1: Illustration and notation for the domain mapping approach.

Contrary to the method based on shape derivatives, our approach requires the construction of

a random mapping defined in the whole domain consistent with the random perturbation of

the boundary. If the random mapping is not given analytically, it can be obtained by solving

appropriate equations, e.g. Laplace equation as it is done in [125]. The domain mapping

method prevents the need of remeshing and can make use of the well-developed theory for

PDEs on deterministic domains with random coefficients. Numerical approximation of the

solution on the fixed reference domain can indeed be obtained through any of the well-known

techniques, such as Monte-Carlo methods [63] and their generalizations as quasi-Monte

Carlo [38,54,70] and multi-level Monte-Carlo [17,52,68,79], or the stochastic spectral methods

comprising the stochastic Galerkin [10, 11, 21, 64, 67] and the stochastic collocation [7, 97, 124]

methods.

The (weak) formulation on the reference domain can be obtained using two strategies, as

illustrated in Figure 3.2. In general, the two strategies are not equivalent. They yield the

same result only in particular cases, for instance if the Jacobian of the mapping does not

depend on the physical space variable. In this work, we will use the first strategy s1, that is the

formulation on the reference domain is obtained performing the change of variables on the

weak formulation of the problem on the random domain. We refer for instance to [36] for a

version where the second strategy s2 is used.

Strong formulation on Dω

Weak formulation on Dω

Strong formulation on D

Weak formulation on D

s1

s1

change of variable

s2

s2

change of variable

Figure 3.2: Two strategies s1 and s2 for the (strong) formulation on the reference domain.
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3.1. Steady-state viscous Burgers’ equation in random intervals

For the stochastic space approximation, we proceed as in the previous chapters and use a

perturbation approach [82] to expand the exact random solution with respect to a parameter

ε that controls the level of uncertainty in the problem. This approach yields uncoupled

deterministic problems for each term in the expansion, which can be solved using for instance

the finite element (FE) method. The main goal here is to perform an a posteriori error analysis

for the error between the exact random solution and the finite element approximation of

the first term in the expansion, that is the solution corresponding to the case ε = 0. The

error estimators we obtain are made of two parts, namely one part due to the physical space

discretization and another one due to the uncertainty. Their computation requires only the

FE approximation of the solution of the problem for ε = 0 and the Jacobian matrix of the

mapping between the reference domain and the physical random domain. These estimators

can be used for instance to adaptively determine a mesh that yields a numerical accuracy

comparable with the model uncertainty. Notice that the error estimates we get here using

the domain mapping method combined with a perturbation technique are defined for any

fixed ε. The only restriction is that ε is sufficiently small for the problem to be well-posed. The

more common perturbation method is to use shape calculus [77], thus avoiding to recast the

equations in a reference domain. However, the derivation of a posteriori error estimates for a

fixed value of ε is, in our opinion, not obvious in this context and, to the best of our knowledge,

it is still an open question.

We mention that the formulation we obtained in Section 3.2.2 for the Navier-Stokes equations

on the reference domain is similar to the one obtained for instance in [71] where a fluid-

structure interaction problem is considered or in [91, 108] where the Navier-Stokes equations

in parametrized domains are solved approximately using the Reduced Basis Method.

3.1 Steady-state viscous Burgers’ equation in random intervals

To start with, we consider a 1D problem on a random domain, namely the (nonlinear) steady-

state viscous Burgers’ equation. This equation can be viewed as a simplification of the Navier-

Stokes equations in the one-dimensional case. We consider a physical domain with uncertain

geometry, which reduces here to an interval of random length. We study first the deterministic

case, considering the Burgers’ equation on a fixed domain, say [0,1].
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3.1.1 Deterministic case

We consider the following nonlinear deterministic problem with mixed Neumann-Dirichlet

homogeneous boundary conditions:

find u : (0,1) →R such that ⎧⎪⎨
⎪⎩

−au′′ +buu′ = f in (0,1)

u(0) = 0

u′(1) = 0

(3.1)

where a and b are positive constants and f ∈ L2(0,1). It can be written in conservation form as

−au′′ + b

2
(u2)′ = f in (0,1).

Let V = {v ∈ H 1(0,1) : v(0) = 0} that we endow with the norm ‖ ·‖V := | · |H 1(0,1). This is possible

thanks to the Friedrich-Poincaré inequality, see (2.5), which reads here

‖u‖L2(0,1) ≤CF‖u′‖L2(0,1) (3.2)

and holds for instance for CF = 1�
2
≤ 1. The weak form of problem (3.1) is given by

find u ∈V :
∫1

0
au′v ′d x +

∫1

0
buu′vd x =

∫1

0
f vd x ∀v ∈V. (3.3)

We first show, under suitable conditions on the data, that the problem (3.1) is well-posed.

Since we do not have an a priori estimate, due to the mixed Neumann-Dirichlet boundary

conditions1, we restrict ourselves to the set of functions whose norm is bounded by a certain

constant. More precisely, we consider

M := {v ∈V : ‖v ′‖L2(0,1) ≤ r } with r =
√

CF

b
‖ f ‖L2(0,1).

Since M is a closed ball in V , it is bounded, convex and closed in V . The well-posedness of

the problem under certain assumptions on the data is proved in the following proposition.

Proposition 3.1.1. If a
b ≥ 2r , then there exists a solution u ∈M to problem (3.3). Moreover, if

a
b > 2r , then such solution is unique.

Strictly speaking, it is enough to assume a
b > r to prove the existence of a solution in M . Using

the definition of r , the condition a
b > 2r can be expressed more explicitly in terms of the given

1If we have homogeneous Dirichlet conditions in x = 0 and x = 1, we have an a priori estimate. Indeed, it is easy
to show that ‖u′‖L2(0,1) ≤ 1

a ‖ f ‖L2(0,1) taking v = u in (3.3) and using the fact that
∫1

0 buu′u = 0. The existence of a
solution can then be proved using for instance Schauder’s fixed point theorem while for the uniqueness, it holds

under the constraint CF ‖ f ‖L2(0,1) < a2

b .
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data by CF‖ f ‖L2(0,1) < a2

4b , which coincides with the one given in [28] replacing CF‖ f ‖L2(0,1) by

the dual norm ‖ f ‖V ′ . The proof of Proposition 3.1.1, given below for completeness, uses the

Schauder’s fixed point theorem for the existence and is inspired by the one given in [120]. The

uniqueness is proved using a variational argument.

Proof. Existence: we define the mapping T : M →V , u �→ Tu =: w , where w ∈V is the unique

solution of

find w ∈V : Au(w, v) = F (v) ∀v ∈V (3.4)

with

Au(w, v) :=
∫1

0
aw ′v ′d x +

∫1

0
buw ′vd x and F (v) :=

∫1

0
f vd x.

We show that T is well-defined, maps M to M and is compact. Let u ∈M , i.e. ‖u′‖L2(0,1) ≤ r .

The fact that T : M →V is well-defined follows directly from Lax-Milgram’s lemma. Indeed,

for any v, w ∈V we have

Au(w, v) ≤ a‖w ′‖L2(0,1)‖v ′‖L2(0,1)+b‖u‖L4(0,1)‖w ′‖L2(0,1)‖v‖L4(0,1) ≤ (a+br )‖w ′‖L2(0,1)‖v ′‖L2(0,1)

using successively Cauchy-Schwarz and Hölder’s inequalities and the fact that

‖v‖L4(0,1) ≤C‖v ′‖L2(0,1) holds with C = 1. (3.5)

Moreover, since u ∈M and a
b ≥ 2r by assumption, we have

−
∫1

0
buw ′wd x ≤ b‖u′‖L2(0,1)‖w ′‖2

L2(0,1) ≤ br‖w ′‖2
L2(0,1) ≤

a

2
‖w ′‖2

L2(0,1)

and thus

Au(w, w) = a‖w ′‖2
L2(0,1) +

∫1

0
buw ′wd x ≥ a

2
‖w ′‖2

L2(0,1).

Finally, thanks to (3.2) we get

F (v) ≤CF‖ f ‖L2(0,1)‖v ′‖L2(0,1)

and the assumptions of Lax-Milgram’s lemma are satisfied. We now show that T maps M to

itself, i.e. Tu = w ∈M . Thanks to the coercivity of Au and the continuity of F , taking v = w in

(3.4) yields
a

2
‖w ′‖2

L2(0,1) ≤
∫1

0
f wd x ≤CF‖ f ‖L2(0,1)‖w ′‖L2(0,1)

and thus

‖w ′‖L2(0,1) ≤
2

a
CF‖ f ‖L2(0,1) =

2

a
br 2 ≤ r.

We finally show that T is compact. Let (un)n∈N be a bounded sequence in M . Since H 1(0,1)

is compactly embedded in L4(0,1), there exists a subsequence (un j ) j∈N which converges

in L4(0,1). Let un and um be two elements of this subsequence and write wn and wm the
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corresponding images under T . We have

∫1

0
a(w ′

n −w ′
m)v ′d x +

∫1

0
b
[
un(w ′

n −w ′
m)+w ′

m(un −um)
]

vd x = 0 ∀v ∈V.

If we take v = wn −wm , using that un ∈M and br ≤ a
2 we can easily show that

a

2
‖w ′

n −w ′
m‖L2(0,1) ≤ b‖w ′

m‖L2(0,1)‖un −um‖L4(0,1)

and thus

‖w ′
n −w ′

m‖L2(0,1) ≤ ‖un −um‖L4(0,1)

since wm ∈M . Therefore, (wn j ) j∈N is a Cauchy sequence in V and thus converges.

Uniqueness: we use a variational argument. Let u1,u2 ∈M be two solutions of problem (3.3).

We have ∫1

0
a(u′

1 −u′
2)vd x +

∫1

0
b(u1u′

1 −u2u′
2)vd x = 0 ∀v ∈V.

If we take v = u1 −u2, we obtain

a‖u′
1 −u′

2‖2
L2(0,1) = −

∫1

0
b(u1(u′

1 −u′
2)+u′

2(u1 −u2))(u1 −u2)d x

≤ b‖u1‖L4(0,1)‖u1 −u2‖L2(0,1)‖u1 −u2‖L4(0,1)

+b‖u′
2‖L2(0,1)‖u1 −u2‖2

L4(0,1)

≤ b(‖u′
1‖L2(0,1) +‖u′

2‖L2(0,1))‖u′
1 −u′

2‖2
L2(0,1)

≤ 2br‖u′
1 −u′

2‖2
L2(0,1)

and thus

(a −2br )‖u′
1 −u′

2‖2
L2(0,1) ≤ 0.

Since a
b > 2r by assumption, the last inequality implies u′

1 = u′
2. The fact that u1(0) = u2(0)

allows us to conclude that u1 = u2.

Remark 3.1.2. If the solution is assumed to be in H 2(0,1), we can alternatively use Schaefer’s

fixed point theorem [62] to prove the existence of a solution to problem (3.1).

We now give an a posteriori estimate of the error in the V norm between the exact solution u

and its finite element approximation. We thus consider

0 = x0 < x1 < . . . < xN < xN+1 = 1

a partition of [0,1] and let hi = xi+1 −xi for i = 0, . . . , N . Let Vh ⊂V be the finite dimensional

space of continuous piecewise polynomials of degree less or equal to one associated to this
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partition (the usual hat functions). The finite element approximation of problem (3.3) reads

find uh ∈Vh :
∫1

0
au′

h v ′
hd x +

∫1

0
buhu′

h vhd x =
∫1

0
f vhd x ∀vh ∈Vh . (3.6)

Similarly to the continuous case, we can show that there exists a unique solution uh ∈Mh to

problem (3.6) if a
b > 2r , with Mh = {vh ∈Vh : ‖v ′

h‖L2(0,1) ≤ r } ⊂M . Moreover, if we take v = vh

in (3.3) and subtract (3.6), we get the following so-called Galerkin orthogonality property

∫1

0
a(u′ −u′

h)v ′
hd x +

∫1

0
b(uu′ −uhu′

h)vhd x = 0 ∀vh ∈Vh . (3.7)

Proposition 3.1.3. If a, b and f are such that a
b > 2r , i.e. 4b

a2 CF‖ f ‖L2(0,1) < 1, then there exists a

constant C > 0 independent of h and u such that

‖u′ −u′
h‖L2(0,1) ≤

C

a

(
N∑

i=0
η2

i

) 1
2

(3.8)

with

η2
i = h2

i

∫xi+1

xi

( f −buhu′
h +au′′

h)2d x, i = 0, . . . , N . (3.9)

Proof. For any v ∈V , let 〈R(uh), v〉 =∫1
0 ( f v −buhu′

h v −au′
h v ′)d x denote the residual for uh .

We have ∫1

0
a(u′ −u′

h)vd x =
∫1

0
f vd x −

∫1

0
buu′vd x −

∫1

0
au′

h v ′d x

= 〈R(uh), v〉−
∫1

0
b(uu′ −uhu′

h)vd x.

If we take v = u −uh , the second term can be bounded by

−
∫1

0
b(uu′ −uhu′

h)vd x ≤ 2br‖u′ −u′
h‖2

L2(0,1).

Therefore

‖u′ −u′
h‖2

L2(0,1) ≤
1

a
〈R(uh),u −uh〉+

2br

a
‖u′ −u′

h‖2
L2(0,1).

Since a
b > 2r by assumption, there exists γ> 0 such that 2br

a ≤ 1−γ. Therefore, we have

‖u′ −u′
h‖2

L2(0,1) ≤
1

aγ
R(u −uh). (3.10)

It only remains to give an estimation of the residual. First note that

〈R(uh), vh〉 = 0 ∀vh ∈Vh .
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Taking vh = rh v the Lagrange interpolant of v and using standard techniques, we get

〈R(uh), v〉 ≤CI

(
N∑

i=0
h2

i

∫xi+1

xi

( f −buhu′
h +au′′

h)2d x

) 1
2

‖v ′‖L2(0,1) (3.11)

where CI is the constant (independent of h and v) in the interpolation error bound

‖v − rh v‖L2(xi ,xi+1) ≤CI hi‖v ′‖L2(xi ,xi+1). (3.12)

For instance, we can take CI =
√

49
30 . Inserting (3.11) in (3.10) yields (3.8) with C = CI

γ .

Remark 3.1.4. The a posteriori error estimate (3.8) holds under the constraint 2br
a < 1, i.e.

2br
a ≤ 1−γ for a certain γ> 0. However, if γ is chosen too small, then the constant C explodes.

In practice, it is common to assume that the input data are such that 2br
a ≤ 1

2 holds.

3.1.2 Random case

Let (Ω,F ,P ) be a complete probability space and for any ω ∈Ω let Dω := (0, s(w)) ⊆ D̂ be an

interval of random length s(w). To simplify the notation, the set

{(x,ω) : x ∈ Dω,ω ∈Ω}

will be denoted by Dω×Ω in the sequel. The goal is to solve the problem:

find ũ : Dw ×Ω→R such that a.s. in Ω⎧⎪⎨
⎪⎩

−a ∂2

∂x2 ũ(x,ω)+bũ(x,ω) ∂
∂x ũ(x,ω) = f̃ (x) x ∈ Dω

ũ(0,ω) = 0
∂
∂x ũ(s(ω),ω) = 0,

(3.13)

where a and b are positive constants and f̃ ∈ L2(D̂) is a deterministic forcing term. Let

Ṽω = {ṽ ∈ H 1(Dw ) : ṽ(0,ω) = 0 a.s. in Ω}. The pointwise weak form of problem (3.13) reads:

find ũ(·,ω) ∈ Ṽω such that

∫s(ω)

0
a
∂ũ(·,ω)

∂x

∂ṽ

∂x
d x +

∫s(ω)

0
bũ(·,ω)

∂ũ(·,ω)

∂x
ṽd x =

∫s(ω)

0
f̃ ṽd x ∀ṽ ∈ Ṽω. (3.14)

For ease of presentation, we will use the short hand notation ũ(ω) = ũ(·,ω) when no confusion

arises. Instead of solving this problem on the stochastic domain Dω, we will solve it on a

fixed reference domain, namely D = (0,1), by considering the change of variable x = s(ω)ξ.

Therefore, assuming s(ω) > 0 a.s. in Ω we define the (random) mapping

gω : Dω → D

x �→ ξ= gω(x) = x
s(ω)

(3.15)
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whose inverse is given by

g−1
ω : D → Dω

ξ �→ x = g−1
ω (ξ) = s(ω)ξ.

Let u(ξ,ω) = ũ(x,ω) and f (ξ,ω) = f̃ (x,ω) denote respectively the velocity and the forcing

term on the fixed domain D, i.e. u(ξ,ω) = ũ(g−1
ω (ξ),ω) and f (ξ,ω) = f̃ (g−1

ω (ξ)). Finally, let

V = {v ∈ H 1(D) : v(0) = 0}. Applying the standard chain rule and the change of variable

formula, the pointwise weak problem (3.14) can then be rewritten:

find u(ω) ∈V such that∫1

0

a

s(ω)

∂u(ω)

∂ξ

∂v

∂ξ
dξ+

∫1

0
bu(ω)

∂u(ω)

∂ξ
vdξ=

∫1

0
s(ω) f (ω)vdξ ∀v ∈V. (3.16)

The strong form of the problem on the reference domain can be stated as:

find u : D ×Ω→R such that a.s. in Ω⎧⎪⎨
⎪⎩

− a
s(ω)2

∂2

∂ξ2 u(ξ,ω)+ b
s(ω) u(ξ,ω) ∂

∂ξu(ξ,ω) = f (ξ,ω) ξ ∈ D

u(0,ω) = 0
∂
∂ξu(1,ω) = 0.

(3.17)

Notice that here, performing the change of variable on the variational formulation (3.14) of

the problem or directly on the strong formulation (3.13) yields the same result, which is not

the case in general. This is due to the fact that s does not depend on the physical variable plus

the fact that we are considering the pointwise (in ω) weak formulation.

From now on, we assume that the random length of interval s(ω) has the form

s(ω) = s0 +εY (ω),

where Y is a random variable with zero mean, unit variance and bounded image Γ. More-

over, we assume that Y is such that s(ω) is bounded almost surely from below and above by

respectively smi n and smax . More precisely, we assume that

∃0 < smi n ≤ smax <∞ : P (ω ∈Ω : smi n ≤ s(ω) ≤ smax ) = 1. (3.18)

Due to the Doob-Dynkin lemma, the solution u of (3.17) depends on the same random variable

as s, i.e. u(ξ,ω) = u(ξ,Y (ω)). Let ρ : Γ→ R+ denotes the density function of Y . The solution

of problem (3.17) can then be sought either in the probability space (Ω,F ,P ) or in its image

space (Γ,B(Γ),ρ(y)d y). The stochastic problem (3.17) can indeed be written in the following
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deterministic parametric form:

find u : D ×Γ→R such that ρ-a.e. in Γ we have⎧⎪⎪⎨
⎪⎪⎩

− a
s(y)2

∂2

∂ξ2 u(ξ, y)+ b
s(y) u(ξ, y) ∂

∂ξu(ξ, y) = f (ξ, y) ξ ∈ D

u(0, y) = 0
∂
∂ξu(1, y) = 0.

(3.19)

From now on, we will drop the dependence of the functions on either ξ, ω or y when no

confusion is possible. Furthermore, we will write u′ for ∂
∂ξ . Since s is expanded as sum of

coefficients, it is more convenient to have all its occurrences in the numerator rather than

having division by s. Therefore, we will consider the following weak form of problem (3.19):

find u(y) ∈V such that

∫1

0
au′v ′dξ+

∫1

0
bs(y)uu′vdξ=

∫1

0
s2(y) f vdξ ∀v ∈V ,ρ-a.e. in Γ. (3.20)

Before giving an a posteriori error estimation for the problem (3.17), and thus for the problem

(3.13), we briefly give a condition on the given data that ensures the well-posedness of the

problem. Recall that f = f̃ ◦ g−1
ω , i.e. f (ξ,ω) = f̃ (s(ω)ξ). Thanks to the uniform bounds on s,

we have in particular sk f ∈ L2
P (Ω;L2(D)) for any k. Notice that it can be shown using only the

lower bound smi n or the upper bound smax depending on the sign of k. For instance, we have

for the right-hand side of (3.20)

‖s2(ω) f (ω)‖L2(D) = s
3
2 (ω)‖ f̃ ‖L2(Dω) ≤ s

3
2
max‖ f̃ ‖L2(D̂) <∞ a.s. in Ω.

More generally, we can easily show that the assumption (3.18) ensures that the spaces L2(Dω)

and L2(D), respectively Ṽω and V , are isomorphic. This is precisely stated in the following

proposition.

Proposition 3.1.5. Under assumption (3.18), for any f̃ ∈ L2(Dω) and any ṽ ∈ Ṽω we have a.s.

in Ω �
smi n‖ f ‖L2(D) ≤ ‖ f̃ ‖L2(Dω) ≤

�
smax‖ f ‖L2(D)

and
1�

smax
‖∂v

∂ξ
‖L2(D) ≤ ‖∂ṽ

∂x
‖L2(Dω) ≤

1�
smi n

‖∂v

∂ξ
‖L2(D)

with f = f̃ ◦ g−1
ω and v = ṽ ◦ g−1

ω . The same relations hold for any f ∈ L2(D) and any v ∈V with

f̃ = f ◦ gω and ṽ = v ◦ gω.

Similarly to the deterministic problem (3.1), we restrict ourselves to the solutions which lie in

M defined by

M := {v ∈ L2
P (Ω;V ) : ‖v(ω)′‖L2(0,1) ≤ rω a.s. in Ω} (3.21)

100



3.1. Steady-state viscous Burgers’ equation in random intervals

with rω =
√

s(ω)
b CF‖ f (ω)‖L2(0,1), where CF is the Friedrich-Poincaré constant on the reference

interval D given in (3.2). Since

s(ω)‖ f (ω)‖L2(0,1) =
s(ω)�
s(ω)

‖ f̃ ‖L2(Dω) ≤
�

smax‖ f̃ ‖L2(D̂) <∞ a.s. in Ω,

we have rω ∈ L∞
P (Ω). Therefore, since L∞

P (Ω) ⊂ L2
P (Ω), M is a closed ball in L2

P (Ω;V ) and thus

M is bounded, convex an closed in L2
P (Ω;V ).

The well-posedness of the stochastic problem can thus be proved following a reasoning similar

to the one used in the deterministic case.

Proposition 3.1.6. If bs(ω)rω ≤ a
2 a.s. in Ω, or in other words if

4bs3
max

a2 CF‖ f (ω)‖L2(D) ≤ 1 a.s. in

Ω, then there exists a solution u ∈M to problem (3.20). Furthermore, if the inequality is strict,

then the solution is unique.

Remark 3.1.7. We can show the well-posedness of the problem under the slightly less restrictive

assumption
4CF bs5/2

max

a2 ‖ f̃ ‖L2(Dω) < 1 a.s. in Ω, (3.22)

setting then rω =
√�

s(ω)
b CF‖ f (ω)‖L2(0,1) in (3.21). The inequality (3.22) holds true if the input

data satisfy the assumption of Proposition 3.1.6 since ‖ f (ω)‖L2(D) ≥ s
− 1

2
max‖ f̃ ‖L2(Dω) by Proposi-

tion 3.1.5. We refer to Remark 3.2.9 for the same discussion about the small data assumption

for the well-posedness of the Navier-Stokes problem and we mention that the assumption of

Proposition 3.1.6 and (3.22) are consistent with (3.43) and (3.41), respectively.

We use a perturbation approach and write

u(ξ,Y (ω)) = u0(ξ)+εu1(ξ,Y (ω))+O (ε2)

with ε a small parameter that controls the amplitude of the variation of s. The goal is now to

derive an a posteriori error estimate for the approximation u ≈ u0,h with u0,h the finite element

approximation of u0. We assume that f̃ ∈ H 2(D̂) which allows us to write f = f (ξ,Y (ω)) as

f = f0 +ε f1Y +ε2 f2Y 2 with

f0(ξ) = f̃ (s0ξ), f1(ξ) = ∂ f̃

∂x
(s0ξ)ξ and f2(ξ,Y (ω)) = ξ2

∫1

0
(1− t )

∂2 f̃

∂x2 (s0ξ+εY (ω)ξt )d t ,

using a Taylor expansion with integral remainder of f̃ (sξ), s = s0 +εY . The deterministic part

u0 of the solution can be found by solving

⎧⎪⎨
⎪⎩

−au′′
0 +bs0u0u′

0 = s2
0 f0 in D

u0(0) = 0

u′
0(1) = 0.

(3.23)
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Remark 3.1.8. Notice that we could also choose to take (0, s0) as the reference domain, i.e. the

interval corresponding to the case ε= 0, using then the mapping gω(x) = s0x
s(ω) instead of (3.15).

In this case, the problem for u0 would not contain the coefficient s0, contrary to (3.23). We

should then be careful when using for instance the Friedrich-Poincaré inequality (3.2) which

holds on (0, s0) up to a factor s0.

We use the finite element method to approximate numerically the solution u0 of problem (3.23).

To this aim, we consider 0 = ξ0 < ξ1 < . . . < ξN < ξN+1 = 1 a partition of D and let hi = ξi+1 −ξi

for i = 0, . . . , N . Then, we consider Vh the finite dimensional space of V constituted of the

corresponding continuous, piecewise linear finite element functions that vanish in 0. We now

give an a posteriori estimate of the error between the exact solution u and the finite element

approximation u0,h of u0 in the L2
P (Ω;V ) norm.

Proposition 3.1.9. If 2bs(ω)rω
a ≤ 1

2 a.s. in Ω, then there exists a constant C > 0 depending only

on s0, f0, f1 and E[Y k f p
2 ] for p = 0,1,2 and some 3 ≤ k ≤ 8 such that

E
[
‖u′ −u′

0,h‖2
L2(0,1)

] 1
2 ≤ 2

�
2

a

[
η2

h +η2
ε

] 1
2 +Cε2, (3.24)

with

η2
h := C 2

I

N∑
i=0

h2
i

∫ξi+1

ξi

(s2
0 f0 −bs0u0,hu′

0,h +au′′
0,h)2dξ (3.25)

η2
ε := ε2C 2

F ‖2s0 f0 + s2
0 f1 −bu0,hu′

0,h‖2
L2(D), (3.26)

where CI and CF are the constants in (3.12) and (3.2), respectively.

Remark 3.1.10. The factor 2 in (3.24) comes from the assumption 2bs(ω)rω
a ≤ 1

2 on the input

data, which is imposed so that the constant does not explode, see also Remark 3.1.4.

Proof. For any v ∈V and a.s. in Ω we can decompose

∫1

0
a(u′ −u′

0,h)v ′dξ =
∫1

0
(s2

0 f0v −bs0u0,hu′
0,h v −au′

0,h v ′)dξ︸ ︷︷ ︸
A1(v)

+
∫1

0
(s2 f − s2

0 f0)vdξ︸ ︷︷ ︸
A2(v)

−
∫1

0
bs(uu′ −u0,hu′

0,h)vdξ︸ ︷︷ ︸
A3(v)

−
∫1

0
b(s − s0)u0,hu′

0,h vdξ︸ ︷︷ ︸
A4(v)

and thus

‖u′ −u′
0,h‖2

L2(D) =
1

a

[
A1(u −u0,h)+ A2(u −u0,h)+ A3(u −u0,h)+ A4(u −u0,h)

]
.

Let us consider each term separately. First of all, note that the first term A1 corresponds to

the residual for u0,h , the finite element approximation of problem (3.23). Using a standard
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procedure, it can be bounded by

A1(v) ≤
(

C 2
I

N∑
i=0

h2
i

∫ξi+1

ξi

(s2
0 f0 −bs0u0,hu′

0,h +au′′
0,h)2dξ

) 1
2

‖v ′‖L2(D)

with CI the constant in (3.12). Thanks to the Cauchy-Schwarz and Friedrich-Poincaré inequal-

ities, the second and fourth terms, that we keep together for sharpness2, can be bounded

by

A2(v)+ A4(v) ≤CF‖s2 f − s2
0 f0 −b(s − s0)u0,hu0,h‖L2(D)‖v ′‖L2(D).

Finally, we consider the term A3 which is due to the nonlinear part of the problem. If we take

v = u −u0,h ∈V a.s. in Ω, it can be bounded by

A3(u −u0,h) ≤ 2bs(ω)rω‖u′ −u′
0,h‖2

L2(D)

using Hölder’s inequality, Sobolev embedded theorem and the fact that ‖u′‖L2(0,1) and ‖u′
0,h‖L2(0,1)

are bounded by rω a.s. in Ω. Thanks to the assumption that 2bs(ω)rω
a ≤ 1

2 a.s. in Ω, we have

1

a
A3(u −u0,h) ≤ 1

2
‖u′ −u′

0,h‖2
L2(D).

Altogether, we obtain

‖u′ −u′
0,h‖L2(D) ≤ 2

a

⎡
⎣(C 2

I

N∑
i=0

h2
i

∫ξi+1

ξi

(s2
0 f0 −bs0u0,hu′

0,h +au′′
0,h)2dξ

) 1
2

+ CF‖s2 f − s2
0 f0 −b(s − s0)u0,hu′

0,h‖L2(D)

]
which yields

‖u′ −u′
0,h‖2

L2(D) ≤ 8

a2

[
C 2

I

N∑
i=0

h2
i

∫ξi+1

ξi

(s2
0 f −bs0u0,hu′

0,h +au′′
0,h)2dξ

+ C 2
F ‖s2 f − s2

0 f0 −b(s − s0)u0,hu′
0,h‖2

L2(D)

]
.

Since Y has zero mean and unit variance, the result follows taking first the expected value and

then the square root on both sides of last inequality. Indeed, we have

s2 f − s2
0 f0 = ε(2s0 f0 + s2

0 f1)Y +ε2( f0 +2s0 f1 + s2
0 f2)Y 2 +ε3( f1 +2s0 f2)Y 3 +ε4 f2Y 4

from which we deduce, recalling that s − s0 = εY ,

E
[
‖s2 f − s2

0 f0 −b(s − s0)u0,hu′
0,h‖2

L2(D)

]
= ε2‖2s0 f0 + s2

0 f1 −bu0,hu′
0,h‖2

L2(D) +C2ε
3

2Notice that we get comparable results if we bound these two terms separately, in which case the estimator due

to the uncertainty reads η2
ε = 2ε2C 2

F

(
‖2s0 f0 + s2

0 f1‖2
L2(D)

+b2‖u0,h u′
0,h‖2

L2(D)

)
.
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where C2 depends only on s0, f0, f1, E[Y k ] for k = 3, . . . ,6, E[Y k f2] for k = 3, . . . ,7 and E[Y k f 2
2 ]

for k = 4, . . . ,8.

Notice that we have used the Friedrich-Poincaré inequality to bound the terms A2 and A4 due

to the forcing and nonlinear terms, for which 1 is a uniform bound for D = (0,1). The loss due

to the use of this inequality is different from case to case, therefore affecting the efficiency of

the estimator ηε when changing the input data.

3.1.3 Numerical results

We consider here two numerical examples for the Burgers’ equation. We choose s0 = 1 for

simplicity. We start with the results for the deterministic case presented in Section 3.1.1.

Deterministic case

Let a = b = 1. For the first example, we consider

ũ(x) =−0.3tanh(x)+0.3sech(1)2x, x ∈ (0,1), (3.27)

and compute the corresponding right-hand side f̃ =−aũ′′ +bũu and for the second example

we set the source term to

g̃ (x) = sin(πx). (3.28)

Notice that g̃ does not satisfy the bound CF‖g̃‖L2(0,1) < a2

4b = 0.25 with CF = 1/
�

2 since

CF‖g̃‖L2(0,1) = 0.5. We give in Table 3.1 the results for these two cases considering various

(uniform) partitions of [0,1]. Here, error stands for the error ‖u′ −u′
h‖L2(0,1), while

η= 1

a

(
N∑

i=0
η2

i

) 1
2

with ηi in (3.9)

and e.i. denotes the ratio between the estimator η and the error. The error is computed with

the exact solution for the first case (3.27) and with respect to the reference solution obtained

with hr e f = 2−12 for the second case (3.28).

By looking at the effectivity index for both cases, we see that for h small enough, we recover

the value 3.46 ≈ 2
�

3 obtained in the one-dimensional numerical examples of the previous

chapters, see also Appendix 1.C. The slight increase of e.i. for small value of h in the second

case (3.28) is due to the fact that the error is computed with respect to a reference solution.

Random case

We consider now the case of random interval Dω = (0, s(ω)) with s(ω) = s0 +εY (ω) = 1+εY (ω),

where Y is a uniform random variable in [−�3,
�

3]. Considering f̃ and g̃ defined above
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3.1. Steady-state viscous Burgers’ equation in random intervals

f̃ g̃
h error η e.i. error η e.i.

1/4 1.3440e-2 4.6302e-2 3.4452 5.0731e-2 1.6499e-1 3.2523
1/8 6.7111e-3 2.3217e-2 3.4594 2.4118e-2 8.2193e-2 3.4080

1/16 3.3545e-3 1.1616e-2 3.4629 1.1901e-2 4.1057e-2 3.4499
1/32 1.6771e-3 5.8092e-3 3.4638 5.9306e-3 2.0524e-2 3.4606
1/64 8.3855e-4 2.9047e-3 3.4640 2.9626e-3 1.0261e-2 3.4636

1/128 4.1927e-4 1.4524e-3 3.4641 1.4804e-3 5.1306e-3 3.4656
1/256 2.0964e-4 7.2620e-4 3.4641 7.3909e-4 2.5653e-3 3.4708
1/512 1.0482e-4 3.6340e-4 3.4641 3.6736e-4 1.2826e-3 3.4915

1/1024 5.2409e-5 1.8155e-4 3.4641 1.7925e-4 6.4132e-4 3.5777

Table 3.1: Error, estimator and effectivity index for the deterministic Burgers’ equation with
mesh size 2−2 ≤ h ≤ 2−10.

as (deterministic) forcing terms for the problems on the physical random domain Dω, the

corresponding right-hand sides for the problems on the reference interval (0,1) are then given

by f (ξ,ω) = f̃ (s(ω)ξ) and g (ξ,ω) = g̃ (s(ω)ξ), respectively. We give in Figure 3.3 the graph of the

function f and the corresponding solution u of problem (3.20) for different values of s and the

results for the second case g can be found in Figure 3.4.
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Figure 3.3: Function f and corresponding solution u for various values of s.

We give then in Table 3.2 the error ‖u −u0,h‖L2
P (Ω;V ), the estimators ηh and ηε defined in (3.25)

and (3.26), respectively, and the effectivity index for the first case f . Notice that the error has

been computed with the Monte-Carlo method with a sample size K = 1000 using a reference

solution obtained with hr e f = 2−12. The results for the second case g are provided in Table 3.3.

As anticipated in the theoretical results, the efficiency of the error estimator ηε is sensitive to

the input data. Indeed, it is about 1.6 and 4.7 for the cases f and g , respectively. One remedy

would be to consider an implicit error estimator for ηε, proceeding similarly to what is done

in Proposition 3.2.16 for the Navier-Stokes equations or in Proposition 2.2.3 for the model

problem with random forcing term.
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Figure 3.4: Function g and corresponding solution u for various values of s.

ε= 0.005 ε= 0.00125
h ηh ηε error e.i. ηε error e.i.

1/4 4.6302e-2 1.9365e-3 1.3522e-2 3.4273 4.8413e-4 1.3469e-2 3.4379
1/8 2.3217e-2 1.9439e-3 6.8240e-3 3.4141 4.8598e-4 6.7214e-3 3.4549

1/16 1.1616e-2 1.9458e-3 3.5705e-3 3.2988 4.8644e-4 3.3693e-3 3.4508
1/32 5.8092e-3 1.9462e-3 2.0823e-3 2.9422 4.8656e-4 1.7037e-3 3.4218
1/64 2.9047e-3 1.9464e-3 1.4531e-3 2.4063 4.8659e-4 8.9101e-4 3.3055

1/128 1.4524e-3 1.9464e-3 1.2835e-3 1.8922 4.8660e-4 5.1987e-4 2.9464
1/256 7.2620e-4 1.9464e-3 1.2266e-3 1.6936 4.8660e-4 3.6041e-4 2.4254
1/512 3.6310e-4 1.9464e-3 1.1935e-3 1.6590 4.8660e-4 3.1774e-4 1.9108

1/1024 1.8155e-4 1.9464e-3 1.2322e-3 1.5865 4.8660e-4 3.0688e-4 1.6924

Table 3.2: Error, estimators and effectivity index for the Burgers’ equation in random intervals
for the first case f with ε= 0.005 and 0.00125.

ε= 0.01 ε= 0.0025
h ηh ηε error e.i. ηε error e.i.

1/4 1.6499e-1 1.7575e-2 5.0817e-2 3.2652 4.3939e-3 5.0736e-2 3.2532
1/8 8.2193e-2 1.6843e-2 2.4358e-2 3.4444 4.2108e-3 2.4133e-2 3.4103

1/16 4.1057e-2 1.6664e-2 1.2396e-2 3.5745 4.1659e-3 1.1932e-2 3.4587
1/32 2.0524e-2 1.6619e-2 6.9139e-3 3.8196 4.1548e-3 5.9977e-3 3.4914
1/64 1.0261e-2 1.6608e-2 4.6153e-3 4.2299 4.1520e-3 3.0952e-3 3.5763

1/128 5.1306e-3 1.6605e-2 3.8080e-3 4.5640 4.1513e-3 1.7249e-3 3.8261
1/256 2.5653e-3 1.6604e-2 3.6616e-3 4.5885 4.1511e-3 1.1517e-3 4.2369
1/512 1.2826e-3 1.6604e-2 3.5817e-3 4.6496 4.1510e-3 9.6613e-4 4.4970

1/1024 6.4132e-4 1.6604e-2 3.5264e-3 4.7121 4.1510e-3 8.9897e-4 4.6724

Table 3.3: Error, estimators and effectivity index for the Burgers’ equation in random intervals
for the second case g with ε= 0.01 and 0.0025.
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3.2 Steady-state incompressible Navier-Stokes equations in random

domains

We consider now the steady-state incompressible Navier-Stokes equations in random domains.

We start with the statement of the problem in Section 3.2.1. We introduce in Section 3.2.2 the

corresponding problem on a fixed reference domain using a random mapping and show its

well-posedness in Section 3.2.3 under the small data assumption and suitable assumptions

on the mapping. A specific but rather general form of the random mapping is introduced

in Section 3.2.4, namely that it depends linearly on finite (but arbitrary large) number of

independent random variables. In Section 3.2.5, which is the core part, an a posteriori error

analysis is performed with the derivation of two a posteriori error estimates for the first order

approximation. Finally, numerical experiments are presented in Section 3.2.6 and agree with

the theoretical results.

3.2.1 Problem statement

Let Dω ⊆ D̂ ⊂Rd , d = 2,3, be an open bounded domain with Lipschitz continuous boundary

that depends on a random parameter ω ∈Ω, where D̂ is a fixed bounded domain that contains

Dω for all ω ∈Ω. Here (Ω,F ,P ) denotes a complete probability space, where Ω is the set of

outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0,1] is a probability measure. By a

slight abuse of notations, we will denote

Dω×Ω := {(x,ω) : x ∈ Dω,ω ∈Ω}.

We consider the steady incompressible Navier-Stokes equations in Dω:

find a velocity ũ : Dω×Ω→Rd and a pressure p̃ : Dω×Ω→R such that P-almost everywhere

(a.e.) in Ω, or in other words almost surely (a.s.), the following equations hold

⎧⎪⎨
⎪⎩

−νΔxũ+ (ũ ·∇x)ũ+∇xp̃ = f̃ x ∈ Dω

∇x · ũ = 0 x ∈ Dω

ũ = 0 x ∈ ∂Dω,

(3.29)

where ν is the kinematic viscosity, f̃ ∈ [
L2(D̂)

]d
is the external force field per unit mass that we

assume to be deterministic and well-defined for all x ∈ D̂ . Note that p̃ is the pressure divided

by the density of the fluid. We consider homogeneous Dirichlet boundary conditions for the

sake of simplicity. Should we consider non-homogeneous conditions, a lifting of the boundary

conditions could be used which only modifies the right-hand side of the equations. However,

the lifting has to satisfy some assumptions for the problem to be well-posed (see [116] for a

complete discussion in the deterministic case). In particular, the forcing term would no longer

be deterministic. In (3.29), we have used the following notation: if we write x = (x1, . . . , xd ) and
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ũ = (ũ1, . . . , ũd )T then for i , j = 1, . . . ,d

∇xp̃ = (
∂p̃

∂x1
, . . . ,

∂p̃

∂xd
)T , (∇xũ)i j = ∂ũi

∂x j
, ∇x · ũ =

d∑
i=1

∂ũi

∂xi

and

(Δxũ)i = (∇x ·∇xũ)i =
d∑

j=1

∂

∂x j

∂ũi

∂x j
=Δxũi , [(ũ ·∇x)ũ]i =

d∑
j=1

ũ j
∂ũi

∂x j
.

Note that we will use the same notation to denote the norm of a scalar, vector or matrix-

valued function, with the natural extension ‖v‖2 =∑d
i=1 ‖vi‖2 (Euclidean norm) and ‖B‖2 =∑d

i , j=1 ‖Bi j‖2 (Frobenius norm) for any vector v = (v1, . . . , vd ) ∈Rd and any matrix B = (Bi j )d
i , j=1 ∈

Rd×d . In order to write the weak formulation of the problem, we need to introduce some

functional spaces. For a given Banach space W with norm ‖ ·‖W , we define the Bochner space

L2
P (Ω;W ) := {v : Ω→W, v is strongly measurable and ‖v‖L2

P (Ω;W ) <+∞},

where ‖v‖2
L2

P (Ω;W )
:=∫

Ω ‖v(ω)‖2
W dP (ω) = E[‖v‖2

W ] using the shorthand notation v(ω) = v(·,ω)

for ease of presentation. Notice that if W is a separable Hilbert space, then L2
P (Ω;W ) is

isomorphic [10] to the tensor product space L2
P (Ω)⊗W . Finally, we define Ṽω = [

H 1
0 (Dω)

]d

equipped with the gradient norm ‖ · ‖Ṽω
:= ‖∇x · ‖L2(Dω) and Q̃ω = L2(Dω). Note that unless

otherwise clearly stated, the Lebesgue measure is used in Dω. The (pointwise in ω) weak

formulation of problem (3.29) reads:

find (ũ(ω), p̃(ω)) ∈ Ṽω×Q̃ω such that

⎧⎪⎪⎨
⎪⎪⎩
ν

∫
Dω

∇xũ : ∇xṽdx+
∫

Dω

[(ũ ·∇x) ũ] · ṽdx−
∫

Dω

p̃∇x · ṽdx =
∫

Dω

f̃ · ṽdx

−
∫

Dω

q̃∇x · ũdx = 0
(3.30)

for all (ṽ, q̃) ∈ Ṽω × Q̃ω and a.s. in Ω. Since we impose Dirichlet conditions on the whole

boundary, the pressure is only defined up to an additive constant. We come back to this point

in the next section (see Remark 3.2.1). Under the assumption of small data, the well-posedness

of the problem on the family of random domains (Dω)ω∈Ω can be proved using two different

approaches. The first one would be to consider the Navier-Stokes equations directly on Dω×Ω.

Another approach, adopted here, consists in mapping the random domain to a reference one,

yielding PDEs on a (fixed, deterministic) reference domain with random coefficients.

3.2.2 Formulation on a reference domain

Let D ⊂Rd be an open bounded reference domain with Lipschitz continuous boundary ∂D.

We assume that there exists a mapping x : D ×Ω→ Rd that transforms D into Dω: for each
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ω ∈Ω
xω : D → Dω

ξ �→ x = xω(ξ)

where the notation xω(ξ) stands for x(ξ,ω). We assume that for any ω ∈Ω, xω is invertible

and sufficiently regular so that everything that follows makes sense, the precise regularity

assumptions on the random mapping x being given in Section 3.2.3. Let ξω be the inverse of

xω defined by
ξω : Dω → D

x �→ ξ= ξω(x).

We also introduce the d ×d Jacobian matrices A−1 = A−1(ξ,ω) and Ã = Ã(x,ω) corresponding

respectively to the random transformations xω and ξω and defined by

A−1 =
(

A−1
i j

)
1≤i , j≤d

with A−1
i j := ∂(xω)i

∂ξ j

and

Ã = (
Ãi j

)
1≤i , j≤d with Ãi j := ∂(ξω)i

∂x j
.

We mention that the matrix A−1 is often denoted F in the continuum mechanics literature.

For any function g̃ defined on Dω×Ω, we denote by g = g̃ ◦xω its corresponding function on

D ×Ω, i.e. g (ξ,ω) = g̃ (x,ω) with x = xω(ξ). Notice that the matrix A = Ã ◦xω is the inverse (in

the matrix sense) of A−1. From the chain rule, the following relations hold true

∇x = ÃT ∇ξ and ∇xũ = (∇ξu◦ξω)Ã,

where ÃT ∇ξ is a matrix-vector product. For the sake of notation, we will write ∇ instead of ∇ξ

from now on and use the notation

[
(B∇)p

]
i =

d∑
j=1

Bi j
∂p

∂ξ j
, (B∇) ·u =

d∑
i , j=1

Bi j
∂ui

∂ξ j
= B : ∇u

and

[(B∇)u]i j =
d∑

k=1
B j k

∂ui

∂ξk
, [(u ·B∇)v]i =

d∑
j ,k=1

u j B j k
∂vi

∂ξk

for a d ×d matrix B = (Bi j )1≤i , j≤d . Note that (A∇)p = A(∇p). Moreover, let Jx = det(A−1)

denotes the determinant of the Jacobian matrix A−1 associated to xω. Finally, we introduce

the spaces V = [
H 1

0 (D)
]d

and Q = L2
0(D) = {q ∈ L2(D) :

∫
D qdξ= 0}.

Remark 3.2.1. We choose to fix the constant part of the pressure by imposing zero average on D

and not on Dω, the goal being not to estimate this constant when performing the error analysis.

Notice that if we fix p̃ with zero average on Dω, then the average of the corresponding pressure

p = p̃◦xω on D would be small when xω is a small perturbation of the identity mapping. Indeed,

we have
∫

D pdξ=∫
D pdξ−∫

Dω
p̃dx =∫

D p(1−|Jx|)dξ.
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We are now able to write the weak formulation of problem (3.29) on the reference domain,

using the change of variable x = xω(ξ):

find (u(ω), p(ω)) ∈V ×Q such that{
a(u,v;ω)+c(u,u,v;ω)+b(v, p;ω) = F (v;ω)

b(u, q ;ω) = 0
(3.31)

for all (v, q) ∈V ×Q and a.s. in Ω, where

a(u,v;ω) := ν

∫
D

(∇uA(ω)) : (∇vA(ω))Jx(ω)dξ

b(v, q ;ω) :=−
∫

D
q Jx(ω)(A(ω)T ∇) ·vdξ

c(u,v,w;ω) :=
∫

D
[(u · A(ω)T ∇)v] ·wJx(ω)dξ

F (v;ω) :=
∫

D
f(ω) ·vJx(ω)dξ.

(3.32)

Using the relations (see Appendix 3.C for proofs)

(∇uA) : (∇uA) = (∇uA AT ) : (∇u), ∇uA = (AT ∇)u (3.33)

and

−
∫

D
q Jx(AT ∇) ·vdξ=

∫
D

Jx(AT ∇q) ·vdξ, (3.34)

the strong form of (3.31) can be written:

find u : D ×Ω→Rd and p : D ×Ω→R such that P-almost everywhere in Ω there holds:

⎧⎪⎨
⎪⎩

−ν∇· [(Jx A AT ∇)u
]+ (u · Jx AT ∇)u+ (Jx AT ∇)p = fJx ξ ∈ D

(Jx AT ∇) ·u = 0 ξ ∈ D

u = 0 ξ ∈ ∂D.

(3.35)

Notice that similarly to the formulation in [71], the continuity equation can be equivalently

written ∇· (Jx Au) thanks to Piola’s identity (see Appendix 3.C).

Remark 3.2.2. If homogeneous Neumann boundary conditions ν∂ũ
∂ñ − p̃ñ = 0 are prescribed

for problem (3.29) on a part of the boundary ∂Dω, typically at the outflow part of the bound-

ary, the corresponding boundary conditions for the problem on the reference domain D read

νJx∇uA AT n−p Jx AT n = 0. However, the problem might no longer be well-posed due to the

loss of (uniform) coercivity of a(·, ·;ω)+ c(·, ·, ·;ω) or its counter part on Dω. Indeed, we are

not able to control the negative part of the boundary integral. Braack and al. proved in [29]

the existence and uniqueness of a solution to the Navier-Stokes equations with small data

and homogeneous Neumann conditions on a part of the boundary after introducing what

they called a directed-do-nothing condition, adding a (boundary integral) term in the weak
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formulation of the problem. From a physical point of view, a force per unit area is prescribed by

imposing ν(∇xũ+ (∇xũ)T )ñ− p̃ñ = g̃, corresponding to νJx(∇uA+ (∇uA)T )AT n−p Jx AT n = g

on the reference domain. In such a case, Δxũ in (3.29) should be replaced by ∇x · (∇xũ+ (∇xũ)T ).

3.2.3 Well-posedness of the problem

The goal is now to show the well-posedness of problem (3.29), under suitable conditions on

the family of random mapping (xω)ω∈Ω and restriction on the input data. We will show that

there exists a unique solution (u, p) to problem (3.31), the weak solution of problem (3.29)

being then given by (ũ, p̃) = (u◦ξω, p ◦ξω).

For any ω ∈ Ω, we assume that xω : D → Dω, with Dω = xω(D), is a one-to-one mapping

such that xω ∈ [
W 1,∞(D)

]d
, ξω ∈ [

W 1,∞(Dω)
]d

and Dω is bounded with Lipschitz continuous

boundary ∂Dω. Since xω is invertible, the determinant Jx of its Jacobian matrix A−1 does not

vanish. Without loss of generality, we can assume that Jx > 0, namely that the mapping is

orientation-preserving. Moreover, we make the following assumption [43, 76] on the singular

values σi of A−1: there exist two constants σmi n ,σmax such that for i = 1, . . . ,d

0 <σmi n ≤σi (A−1(ξ,ω)) ≤σmax <∞ a.e. in D and a.s. in Ω. (3.36)

Notice that the singular values of A are then bounded uniformly from below and above by

σ−1
max and σ−1

mi n , respectively. Therefore, the random mapping x have finite moment of any

order and with the above regularity assumption we have x ∈ L∞
P (Ω;

[
W 1,∞(D)

]d
). Moreover,

the following properties are immediate consequences of assumption (3.36).

Proposition 3.2.3. Under assumption (3.36), we have a.e. in D and a.s. in Ω

• σd
mi n ≤ det(A−1) ≤σd

max ,

• σ−2
max ≤λi (A AT ) ≤σ−2

mi n for i = 1, . . . ,d,

where λi (A AT ), i = 1, . . . ,d, denote the eigenvalues of A AT .

Proof. Since the eigenvalues of A−1 A−T (and thus of the so-called (right) Cauchy-Green strain

tensor A−T A−1) are the square of the singular values of A−1, the first relation follows directly

from (3.36) and the fact that

det(A−1) =
√

det(A−1 A−T ) =
√
Πd

i=1λi (A−1 A−T ) =Πd
i=1σi (A−1).

The second relation is just a consequence of λi (A AT ) =σi (A)2.

The following proposition ensures that the spaces L2(Dw ) and L2(D), respectively
[
H 1

0 (Dw )
]d

and
[
H 1

0 (D)
]d

, are isomorphic.
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Proposition 3.2.4. Under assumption (3.36), for any g̃ ∈ L2(Dω) and ṽ ∈ [
H 1(Dω)

]d
we have

a.s. in Ω

σ
d
2
mi n‖g‖L2(D) ≤ ‖g̃‖L2(Dω) ≤σ

d
2
max‖g‖L2(D) (3.37)

and

σ
d
2
mi n

σmax
‖∇v‖L2(D) ≤ ‖∇xṽ‖L2(Dω) ≤

σ
d
2
max

σmi n
‖∇v‖L2(D) (3.38)

with g = g̃ ◦xω and v = ṽ◦xω. The same relations hold true for any g ∈ L2(D) and v ∈ [
H 1(D)

]d

with g̃ = g ◦ξω and ṽ = v◦ξω.

Proof. Let g̃ ∈ L2(Dω) and ṽ ∈ [
H 1(Dω)

]d
. The proof of (3.37) is immediate using the uniform

bounds on det(A−1) given by Proposition 3.2.3. For (3.38), we use the fact that σd
mi nσ

−2
max and

σd
maxσ

−2
mi n are uniform bounds for the eigenvalues (or equivalently singular values) of the

symmetric positive definite matrix det(A−1)A AT and the relation

‖∇xũ‖2
L2(Dω) =

∫
D

(∇uA) : (∇uA)det(A−1)dξ=
∫

D

d∑
i=1

(det(A−1)A AT ∇ui ) ·∇ui dξ.

The proof of (3.37) and (3.38) for the case g ∈ L2(D) and v ∈ [
H 1(D)

]d
is similar using the

relations σ−d
max ≤ det(A) ≤ σ−d

mi n and σ−2
maxσ

2
mi n ≤ λi (det(A)A−1 A−T ) ≤ σ−d

mi nσ
2
max a.e. in D

and a.s. in Ω.

To show the well-posedness of problem (3.31), the forms a, b and c defined in (3.32) have to

satisfy (uniformly) some properties, which we verify in the following proposition.

Proposition 3.2.5. For any u,v,w ∈V and any q ∈ L2(D) we have a.s. in Ω

• a is continuous: |a(u,v;ω)| ≤ νM‖∇u‖L2(D)‖∇v‖L2(D) with M =σ−2
mi nσ

d
max ,

• a is coercive: a(v,v;ω) ≥ να‖∇v‖2
L2(D)

with α=σ−2
maxσ

d
mi n,

• b is continuous: |b(v, q ;ω)| ≤σd
maxσ

−1
mi n‖q‖L2(D)‖∇v‖L2(D),

• c is continuous: |c(u,v,w;ω)| ≤ Ĉ‖∇u‖L2(D)‖∇v‖L2(D)‖∇w‖L2(D) with Ĉ =C 2
I σ

d
maxσ

−1
mi n,

where CI =CI (D) is the constant in ‖v‖L4(D) ≤CI‖∇v‖L2(D), resulting from Sobolev embedding’s

theorem and Poincaré’s inequality on D.

Proof. The proof is immediate from Proposition 3.2.3, Hölder’s inequality and the Sobolev

embedding theorem. The relation (see e.g. [106])∫
D

(∇·v)(∇·v)dξ+
∫

D
(∇×v) · (∇×v)dξ=

∫
D
∇v : ∇vdξ ∀v ∈V ,
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where ∇×v denotes the cur l of v, is used to prove the continuity of b.

Notice that we do not include the parameter ν in the constants α and M linked to the coercivity

and continuity of a, respectively, because we will track its occurrence in the derivation of

our a posteriori error estimates, the goal being to minimize the sensitivity of the effectivity

index with respect to ν. We mention that b is also continuous on
[
H 1(D)

]d
with the same

constant as in Proposition 3.2.5 up to a multiplication by a factor
�

d and satisfies the so-called

(Brezzi [32]) inf-sup condition infq∈Q supv∈V
b(v,q ;ω)

‖q‖L2(D)‖∇v‖L2(D)
≥ σmi n

σd
max

βω > 0 for any ω ∈Ω since

Dω is a Lipschitz domain. Moreover, we assume that there exists a constant β> 0 such that

the inf-sup condition holds uniformly with respect to ω, i.e.

inf
q∈Q

sup
v∈V

b(v, q ;ω)

‖q‖L2(D)‖∇v‖L2(D)
≥β a.s. in Ω. (3.39)

Remark 3.2.6. The inf-sup condition (3.39) can be easily shown under the assumption that the

mapping satisfies x ∈ L∞
P (Ω; [W 2,∞(D)]d ), proceeding similarly to [71]. Indeed, for any q ∈Q

there exists z ∈V such that ∇·z = q and ‖∇z‖L2(D) ≤C1‖q‖L2(D) with a constant C1 depending

only on the reference domain D, see for instance [69]. Setting v =−(Jx A)−1z we get a.s. in Ω

b(v, q ;ω) = ‖q‖2
L2(D) ≥

1

C1
‖q‖L2(D)‖∇z‖L2(D) and ‖∇v‖L2(D) ≤C2‖(Jx A)−1‖W 1,∞(D)‖∇z‖L2(D),

where C2 depends only on the Poincaré constant on D. From these two inequalities, we deduce

that b(v,q ;ω)
‖∇v‖L2(D)

≥β‖q‖L2(D) a.s. in Ω with β−1 =C1C2‖(Jx A)−1‖L∞
P (Ω;[W 1,∞(D)]d×d ).

Let us introduce the subspace Ṽdiv,ω ⊂ Ṽω constituted of all (weakly) divergence-free functions

of Ṽω, and its counterpart on D given by

Vdiv,ω := {v ∈V : b(v, q ;ω) = 0 ∀q ∈Q, a.s. in Ω}.

We can then formulate the (reduced, pointwise in ω) weak formulation of problem (3.31):

find u(ω) ∈Vdiv,ω such that

a(u,v;ω)+c(u,u,v;ω) = F (v;ω) ∀v ∈Vdiv,ω, a.s. in Ω. (3.40)

Proposition 3.2.7. For u(ω) ∈Vdiv,ω solution of (3.40), there exists a unique pressure p(ω) ∈Q

so that (u, p) is a solution of (3.31), a.s in Ω.

Proof. Follows from the inf-sup condition (see [69, p.283]).

Therefore, to show the well-posedness of problem (3.31), and thus of the original problem
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(3.30), it only remains to prove that the nonlinear problem (3.40) admits a unique solution.

Recalling that F is defined in (3.32) with f = f̃◦xω, the following proposition gives a sufficient

condition on the input data so that problem (3.40) is well-posed.

Proposition 3.2.8. If there exists θ ∈ [0,1) such that

CPC 2
I σ

3d
2 +4

max

ν2σ2d+1
mi n

‖f̃‖L2(Dω) ≤ θ < 1 a.s. in Ω, (3.41)

where CP = CP (D) denotes the Poincaré constant on D, then problem (3.40) has a unique

solution. Moreover, its solution satisfies

‖∇u(ω)‖L2(D) ≤ θ
νσd+1

mi n

C 2
I σ

d+2
max

= θ
να

Ĉ
a.s. in Ω, (3.42)

with α and Ĉ defined in Proposition 3.2.5.

Remark 3.2.9. Notice that if condition (3.41) holds, then Ĉ
(να)2 ‖F (·;ω)‖V ′

div,ω
< 1 a.s. in Ω, where

the norm on the dual space is defined in the usual way, which is nothing else but the standard

small data assumption for uniqueness (see e.g. [60, 69, 116]). Indeed, we have

Ĉ

(να)2 ‖F (·;ω)‖V ′
div,ω

= Ĉ

(να)2 sup
v∈Vdiv,ω

|F (v;ω)|
‖∇v‖L2(D)

≤ CPC 2
I σ

3d
2 +4

max

ν2σ2d+1
mi n

‖f̃‖L2(Dω) a.s. in Ω,

where for the last inequality we used the relation

|F (v;ω)| ≤σ
d
2
max‖fJ

1
2

x ‖L2(D)‖v‖L2(D) ≤CPσ
d
2
max‖f̃‖L2(Dω)‖∇v‖L2(D) a.s. in Ω.

Moreover, instead of (3.41), we could impose that

CPC 2
I σ

2(d+2)
max

ν2σ2d+1
mi n

‖f(ω)‖L2(D) ≤ θ < 1 a.s. in Ω (3.43)

since ‖f(ω)‖L2(D) ≥σ
− d

2
max‖f̃‖L2(Dω) by Proposition 3.2.4, and thus (3.43) implies (3.41).

The proof of Proposition 3.2.8 follows the same procedure as the one proposed in [109] for

deterministic steady Navier-Stokes equations in a given domain and is based on a fixed point

argument.

Proof. In this proof, the explicit dependence of the functions with respect to ω ∈Ω will not

necessarily be indicated, unless ambiguity holds. Moreover, with little abuse of notation we

define the space

L2
P (Ω;Vdiv,ω) := {v ∈ L2

P (Ω;V ) : v(ω) ∈Vdiv,ωa.s. in Ω}.
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First of all, we can show that

c(u,v,v;ω) = 0 ∀u ∈Vdiv,ω,∀v ∈V , a.s. in Ω. (3.44)

Indeed, if we write ũ = u◦ξω and ṽ = v◦ξω then ũ ∈ Ṽdiv,ω, ṽ ∈ Ṽω and

c(u,v,v;ω) =
∫

D
[(u · AT ∇)v] ·vJxdξ=

∫
Dω

[(ũ ·∇x)ṽ] · ṽdx

= −1

2

∫
Dω

(∇x · ũ)|ṽ|2dx+ 1

2

∫
∂Dω

(ũ ·n)|ṽ|2d s = 0

using the fact that we have imposed homogeneous Dirichlet boundary conditions. Now, for

any u ∈ L2
P (Ω;Vdiv) we define the (pointwise in ω) bilinear form Au(ω)(·, ·;ω) : Vdiv,ω×Vdiv,ω →R

by

Au(ω)(w,v;ω) := a(w,v;ω)+c(u(ω),w,v;ω),

which is uniformly continuous and coercive (on V and thus on Vdiv,ω) thanks to Proposition

3.2.5 and relation (3.44). Since ‖fJx‖L2(D) ≤ σd/2
max‖f̃‖L2(D̂) < +∞ a.s. in Ω, in particular fJx ∈

L2
P (Ω;L2(D)) and Lax-Milgram’s lemma ensures the existence of a unique solution to the

problem:

for every ω ∈Ω, find w(ω) ∈Vdiv,ω such that

Au(ω)(w,v;ω) = F (v;ω) ∀v ∈Vdiv,ω, a.s. in Ω. (3.45)

Moreover, taking v = w(ω) in (3.45) and using the coercivity of Au(·, ·;ω) we have a.s. in Ω

νσd
mi nσ

−2
max‖∇w‖2

L2(D) ≤ Au(w,w;ω) = F (w;ω) ≤CPσ
d
2
max‖f̃‖L2(Dω)‖∇w‖L2(D)

and thus

‖∇w‖L2(D) ≤
CPσ

d
2 +2
max

νσd
mi n

‖f̃‖L2(Dω) ≤
CPσ

d
2 +2
max

νσd
mi n

‖f̃‖L2(D̂) <∞ (3.46)

from which we deduce that w ∈ L2
P (Ω;Vdiv,ω). Notice that a fixed point of the application

Φ : L2
P (Ω;Vdiv,ω) → L2

P (Ω;Vdiv,ω), which maps u to the unique solution w of (3.45), is a solution

of problem (3.40). Therefore, it only remains to prove that Φ is a strict contraction. Let w =Φ(u)

with u ∈ L2
P (Ω;Vdiv,ω). First, using relation (3.46) we directly get that Φ(L2

P (Ω;Vdiv)) ⊂M , where

the ball M ⊂ L2
P (Ω;Vdiv,ω) is defined by

M := {v ∈ L2
P (Ω;Vdiv,ω) : ‖∇v‖L2(D) ≤

CPσ
d
2 +2
max

νσd
mi n

‖f̃‖L2(Dω) a.s. in Ω}.

Finally, we show that Φ is a contraction, i.e. that there exists a constant 0 < k < 1 such that

‖Φ(u)−Φ(ū)‖L2
P (Ω;V ) ≤ k‖u− ū‖L2

P (Ω;V ) ∀u, ū ∈ L2
P (Ω;Vdiv,ω).
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Let w =Φ(u) and w̄ =Φ(ū). Since w and w̄ satisfy problem (3.45) with Au(·, ·;ω) and Aū(·, ·;ω),

respectively, we have

a(w− w̄,v;ω)+c(u,w,v;ω)−c(ū,w̄,v;ω) = 0 ∀v ∈Vdiv,ω, a.s. in Ω,

from which we deduce

a(w− w̄,v;ω)+c(u− ū,w̄,v;ω)+c(u,w− w̄,v;ω) = 0,

or in other words

Au(w− w̄,v;ω) =−c(u− ū,w̄,v;ω).

Since w̄ ∈M , taking v = w− w̄ in the last equation yields a.s. in Ω

νσd
mi nσ

−2
max‖∇(w− w̄)‖2

L2(D) ≤ Au(w− w̄,w− w̄;ω) =−c(u− ū,w̄,w− w̄;ω)

≤ C 2
I σ

d
maxσ

−1
mi n‖∇(u− ū)‖L2(D)‖∇w̄‖L2(D)‖∇(w− w̄)‖L2(D)

≤ CPC 2
I σ

3d
2 +2

max

νσd+1
mi n

‖f̃‖L2(Dω)‖∇(u− ū)‖L2(D)‖∇(w− w̄)‖L2(D).

Therefore

‖∇(w− w̄)‖L2(D) ≤
CPC 2

I σ
3d
2 +4

max

ν2σ2d+1
mi n

‖f̃‖L2(Dω)‖∇(u− ū)‖L2(D) a.s. in Ω

which proves that Φ is a contraction under the assumption that (3.41) holds. By the Banach

contraction theorem, we know that there exists a unique fixed point u =Φ(u), which is solution

of problem (3.40). The fact that any solution of (3.40) is in M and is a fixed point of Φ achieves

the proof of well-posedness of the problem. Finally, recalling that α and Ĉ are defined in

Proposition 3.2.5, the bound (3.42) is immediate since

‖∇u‖L2(D) ≤
CPσ

d
2 +2
max

νσd
mi n

‖f̃‖L2(Dω) ≤ θ
νσd+1

mi n

C 2
I σ

d+2
max

= θ
νσ−2

maxσ
d
mi n

C 2
I σ

d
maxσ

−1
mi n

= θ
να

Ĉ

where we have used that u ∈ M for the first inequality and relation (3.41) for the second

one.

3.2.4 Specific form of the random mapping

We assume from now on that the random mapping x(ξ,ω) is parametrized by L mutually

independent random variables and write x(ξ,ω) = x(ξ,Y1(ω), . . . ,YL(ω)) with a slight abuse

of notation. This assumption with L finite, usually referred to as finite dimensional noise

assumption, is necessary to make the problem feasible for numerical simulation. Such approx-

imation of a random field can be achieved by several techniques, for instance using truncated

Karhunen-Loève or Fourier expansions. More precisely, we assume that the mapping xω from

116



3.2. Steady-state incompressible Navier-Stokes equations in random domains

D to Dω writes

xω(ξ) =ϕ0(ξ)+ε
L∑

j=1
ϕ j (ξ)Y j (ω), (3.47)

where the Y j , j = 1, . . . ,L, are independent random variables with zero mean and unit vari-

ance, the deterministic functions ϕ j : D → Rd are assumed to be smooth so that ∇ϕ0 ∈[
W 1,∞(D)

]d×d
and ∇ϕ j ∈ [L∞(D)]d×d for j = 1, . . . ,L, and ε ∈ [0,εmax ] is a parameter that

controls the amount of randomness. We assume that the random variables Y j , j = 1, . . . ,L,

and the functions ϕ j , j = 0,1, . . . ,L, are independent of ε. Without loss of generality, we can

assume that ϕ0 is the identity mapping (see [76]), i.e.

xω(ξ) = ξ+ε
L∑

j=1
ϕ j (ξ)Y j (ω). (3.48)

The Jacobian matrix A−1 associated to xω therefore reads

A−1(ξ,ω) = I +εA1(ξ,ω) with A1(ξ,ω) =
L∑

j=1
∇ϕ j (ξ)Y j (ω),

where I denotes the d×d identity matrix and ∇ϕ j (ξ) is the Jacobian matrix of ϕ j for j = 1, . . . ,L.

Finally, we make the following additional assumptions to ensure that (3.36) is satisfied:

Y j (Ω) = [−γ j ,γ j ] =: Γ j with γ j > 0, j = 1, . . . ,L, (3.49)

and

εmax < 1

δ
with δ such that

L∑
j=1

γ j‖∇ϕ j (ξ)‖2 ≤ δ a.e. in D, (3.50)

where ‖·‖2 is the spectral norm. It is straightforward to show that under assumptions (3.49) and

(3.50), then (3.36) is fullfield for any ε ∈ [0,εmax ] with σmi n = 1−εmaxδ and σmax = 1+εmaxδ.

Remark 3.2.10. A (truncated) Karhunen-Loève expansion of the random vector field xω (see

[76, 87, 88]) yields a characterization of xω that can be recast into the form (3.47). In this case,

the functions ϕ j , j = 1, . . . ,L, write ϕ j =
√

λ jψ j with
{
λ j ,ψ j

}
the eigenpairs of the (compact,

self-adjoint) integral operator associated with the covariance kernel V : D ×D →Rd×d given by

V (ξ,ξ′) := 1

ε2 E
[
(xω(ξ)−ϕ0(ξ))(xω(ξ′)−ϕ0(ξ′))T ]

.

We underline that in this work, we do not take into account the error made when the random

mapping is approximated via a finite number of random variables. Therefore, we assume here

that (3.47) is an exact representation of the random mapping introduced in Section 3.2.2.

Due to the Doob-Dynkin Lemma, the solutions u and p of (3.35) depend on the same random

variables as xω. Defining the random vector Y = (Y1, . . . ,YL), we can thus write u(ξ,ω) =
u(ξ,Y(ω)) and p(ξ,ω) = p(ξ,Y(ω)). The complete probability space (Ω,F ,P ) can thus be
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replaced by (Γ,B(Γ),ρ(y)dy), where Γ = Γ1 × . . .×ΓL , B(Γ) is the Borel σ-algebra on Γ and

ρ(y)dy is the probability measure of the random vector Y. Notice that since the random

variables Y j , j = 1, . . . ,L, are assumed independent, the joint density function ρ factorizes as

ρ(y) =ΠL
j=1ρ j (y j ) for all y = (y1, . . . , yL) ∈ Γ. Therefore, for any integrable function ĝ : Γ→R on

(Γ,B(Γ),ρ(y)dy), the expectation of the random variable g = g (ω) = ĝ (Y(ω)) is by definition

given by

E
[
g
]=∫

Ω
g (ω)dP (ω) =

∫
Ω

ĝ (Y(ω))dP (ω) =
∫
Γ

ĝ (y)ρ(y)dy.

With a little abuse of notation, we will not distinguish g and ĝ in what follows. The problem

(3.31) can then be rewritten into the following parametric form:

find (u, p) ∈ L2
ρ(Γ;V )×L2

ρ(Γ;Q) such that

{
a(u(y),v;y)+c(u(y),u(y),v;y)+b(v, p(y);y) = F (v;y)

b(u(y), q ;y) = 0
(3.51)

for all (v, q) ∈V ×Q and ρ-a.e. in Γ, where the various forms are defined as in (3.32) with A(ξ,ω),

A−1(ξ,ω), Jx(ξ,ω) and f(ξ,ω) replaced by A(ξ,y), A−1(ξ,y), Jx(ξ,y) and f(ξ,y), respectively. This

problem is well-posed under the so-called small data assumption (3.41) with f(ω) replaced by

f(y) and a.s. in Ω replaced by ρ-a.e. in Γ, the proof being essentially the same as the proof of

Proposition 3.2.8. The random weak solution of problem (3.35), i.e. the solution of (3.31), is

then given by (u(Y(ω)), p(Y(ω))) with (u, p) the parametric solution of (3.51).

Remark 3.2.11. Notice that for any y ∈ Γ, the partial derivative with respect to y j of the solutions

ũ = ũ(x,y) and p̃ = p̃(x,y) of the problem defined on Dy is given for j = 1, . . . ,L by

∂ũ

∂y j
= ∂u

∂y j
◦ξy + (

∂ξy

∂y j
·∇ξ)u◦ξy and

∂p̃

∂y j
= ∂p

∂y j
◦ξy +

∂ξy

∂y j
· (∇ξp ◦ξy). (3.52)

In other words, the (Eulerian) partial derivative with respect to y j of ũ (resp. p̃) is equal to the

material derivative with respect to y j of u = ũ◦xy (resp. p = p̃ ◦xy), transported back to Dy.

Moreover, we have the relation

(
∂ξy

∂y j
·∇ξ)u◦ξy =−(

∂xy

∂y j
◦ξy ·∇x)ũ (3.53)

and using it in (3.52) we recognize an analogy with the Arbitrary Lagrangian Eulerian (ALE)

formulation of PDEs on moving domains [27, 56], where the (Eulerian) partial time-derivative

is replaced by the partial time-derivative on the ALE frame written in the Eulerian coordinate

plus the convective-type term of the right-hand side of (3.53) in which the so-called domain

velocity is involved.
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3.2.5 A posteriori error analysis

To simplify the presentation, we assume from now on that d = 2 and that f̃ ∈ [
H 2(D̂)

]2
. Since

the forcing term on D is given by f = f̃◦xY and we assumed ϕ0 to be the identity mapping, the

regularity assumption on f̃ allows us to write f = f(ξ,ω) = f(ξ,Y(ω)) as

f(Y) = f0 +εf1(Y)+O (ε2) with f0 := f̃, f1(Y) :=
L∑

j=1
F j Y j , F j := (∇xf̃)ϕ j . (3.54)

The constant in the term of order ε2 in (3.54) depends on the second derivatives of f̃ and

products ϕiϕ j , i , j = 1, . . . ,L. Moreover, since d = 2 we have

Jx = det(A−1) = det(I +εA1) = 1+εtr (A1)+ε2 det(A1) with det(A1) ≤ δ2 (3.55)

using assumption (3.50) to bound det(A1) and

A = I −εA1 +
∞∑

k=2
(−1)kεk Ak

1 with ‖
∞∑

k=2
(−1)kεk Ak

1‖2 ≤ ε2δ2

1−εδ
≤ ε2δ2

σmi n
, (3.56)

where we have used a von Neumann series to expand A = (I +εA1)−1. We use a perturbation

approach expanding the solution (u, p) on the reference domain D with respect to ε up to a

certain order as

(u(ξ,Y(ω)), p(ξ,Y(ω))) = (u0(ξ), p0(ξ))+ε(u1(ξ,Y(ω)), p1(ξ,Y(ω)))+ . . . (3.57)

where (u0, p0) is the solution of the standard Navier-Stokes equations on D , i.e. it solves:

find u0 : D →Rd and p0 : D →R such that:

⎧⎪⎨
⎪⎩

−νΔu0 + (u0 ·∇)u0 +∇p0 = f0, ξ ∈ D

∇·u0 = 0, ξ ∈ D

u0 = 0, ξ ∈ ∂D.

(3.58)

Writing u1 =∑L
j=1 U j Y j and p1 =∑L

j=1 P j Y j , it can be shown that the couple (u1, p1) is obtained

by solving the L (linear) problems:

for j = 1, . . . ,L, find U j : D →Rd and P j : D →R such that:

⎧⎪⎨
⎪⎩

−νΔU j + (u0 ·∇)U j + (U j ·∇)u0 +∇P j = g j (u0, p0), ξ ∈ D

∇·U j = h j (u0), ξ ∈ D

U j = 0, ξ ∈ ∂D,

(3.59)
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where

g j (u0, p0) = (tr (∇ϕ j )f0 +F j )+ν∇· [(B̂ j∇)u0]− (u0 ·B j∇)u0 − (B j∇)p0,

h j (u0) = −(B j∇) ·u0

with

B j := tr (∇ϕ j )I −∇ϕT
j and B̂ j := tr (∇ϕ j )I − (∇ϕ j +∇ϕT

j ). (3.60)

Some details about the derivation of problems (3.58) and (3.59) are given in Appendix 3.A.

Here, we approximate the solution of the deterministic problem (3.58) using the finite element

method to obtain an approximation (u0,h , p0,h) and we provide an a posteriori error estimate

of (u−u0,h , p−p0,h). For any h > 0, let Th be a family of shape regular partitions (see [49]) of D

into d-simplices K of diameter hK ≤ h. Moreover, let (Vh ,Qh) with Vh ⊂V and Qh ⊂Q be a pair

of inf-sup stable finite element spaces, such as mini-elements P1b −P1 (see [5] or [69, p.175]

for a proof of stability of these spaces) or Taylor-Hood P2 −P1. We denote by (u0,h , p0,h) the

FE approximation of the (weak) solution (u0, p0) of problem (3.58). Writing y0 = E[Y] = 0, it is

obtained by solving:

find (u0,h , p0,h) ∈Vh ×Qh such that{
a(u0,h ,vh ;y0)+c(u0,h ;u0,h ,vh ;y0)+b(vh , p0,h ;y0) = F (vh ;y0)

b(u0,h , qh ;y0) = 0
(3.61)

for all (vh , qh) ∈ Vh ×Qh . The rest of this section is devoted to an a posteriori error analysis

for the error
∣∣∣∣∣∣(u−u0,h , p −p0,h)

∣∣∣∣∣∣, where the norm |||·||| is defined for any (v, q) ∈ L2
P (Ω;V )×

L2
P (Ω;Q) by ∣∣∣∣∣∣v, q

∣∣∣∣∣∣ :=
(
E

[
ν‖∇v‖2

L2(D) +
1

ν
‖q‖2

L2(D)

]) 1
2

.

Remark 3.2.12. Notice that we obtain the same results if we use the norm ν2‖∇v‖2 +‖q‖2 or

‖∇v‖2 + 1
ν2 ‖q‖2 on V ×Q. This choice of scaling is guided by the dimension unit of ν, p and ∇u.

This is moreover the natural scaling that arises when analysing the a priori estimates on the

solution or when performing the a posteriori error analysis (see Appendix 3.B for more details).

As we will see in the following, the error estimate consists of two parts, namely a part due

to the finite element approximation (in h) and another one due to the uncertainty (in ε).

Let us define for any y ∈ Γ the residual R(·;y) : V ×Q → R, which depends on (u0,h , p0,h), by

R((v, q);y) = R1(v;y)+R2(q ;y) with

R1(v;y) := F (v;y)−a(u0,h ,v;y)−b(v, p0,h ;y)−c(u0,h ,u0,h ,v;y)

R2(q ;y) := −b(u0,h , q ;y).

The first step in the residual-based error estimation consists in linking the error to the resid-

ual. The norm of the residual is then bounded by a computable quantity (possibly up to a
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multiplicative constant).

Proposition 3.2.13. Let σmi n, σmax , β and θ be defined in (3.36), (3.39) and (3.41), respectively.

If h is small enough, then there exists a constant C > 0 depending only on θ, σmi n, σmax and β

such that a.s. in Ω

ν‖∇(u(Y)−u0,h)‖2
L2(D) +

1

ν
‖p(Y)−p0,h‖2

L2(D) ≤C

(
1

ν
‖R1(·,Y)‖2

V ′ +ν‖R2(·,Y)‖2
Q ′

)
. (3.62)

We mention that the closer θ to 1, the larger C in Proposition 3.2.13, see relation (3.71).

Similarly, the closer σmi n to 0, the larger C will be. The proof of this proposition is inspired by

what is done in [2] for the deterministic steady Navier-Stokes equations. In order to simplify

the notation, we will write ‖ ·‖ instead of ‖ ·‖L2(D) in the sequel.

Proof. In what follows, all equations depending on y hold ρ-a.e. in Γ, without specifically

mentioning it. Moreover, the dependence of the functions with respect to y ∈ Γ will not

necessarily be indicated. Let e(y) := u(y)−u0,h and E(y) := p(y)−p0,h . Then (3.51) yields

a(e,v;y)+b(v,E ;y)+b(e, q ;y)+D(u,u0,h ,v;y) = R((v, q);y) (3.63)

for all (v, q) ∈V ×Q, where

D(u,u0,h ,v;y) := c(u,u,v;y)−c(u0,h ,u0,h ,v;y).

We can show that

D(u,u0,h ,v;y) ≤ (2θνα+Ĉ‖∇e0‖)‖∇e‖‖∇v‖ (3.64)

and

D(u,u0,h ,u−u0,h ;y) ≤ (θνα+Ĉ‖∇e0‖)‖∇e‖2 (3.65)

where e0 := u0−u0,h and M , α and Ĉ are defined in Proposition 3.2.5. Indeed, for any v ∈V we

have

D(u,u0,h ,v;y) = c(u,u−u0,h ,v;y)+c(u−u0,h ,u0,h ,v;y)

≤ Ĉ (‖∇u‖+‖∇u0‖+‖∇e0‖)‖∇e‖‖∇v‖
≤ Ĉ

(
2θ

αν

Ĉ
+‖∇e0‖

)
‖∇e‖‖∇v‖

thanks to (3.42), which proves relation (3.64). Relation (3.65) is proved analogously using

the fact that c(u,v,v;y) = 0 for any v ∈V . The rest of the proof consists of two steps, first the

derivation of a bound on ‖E‖ and then a bound on ‖∇e‖.

Using the inf-sup condition (3.39) for b, the bound (3.64) on D, the continuity of a and the
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relation (3.63) with q = 0, we have

‖E‖ ≤ 1

β
sup
v∈V

|b(v, p −p0,h ;y)|
‖∇v‖ = 1

β
sup
v∈V

|R1(v;y)−a(u−u0,h ,v;y)−D(u,u0,h ,v;y)|
‖∇v‖

≤ 1

β

[‖R1(·;y)‖V ′ + (νM +2να+Ĉ‖∇e0‖)‖∇e‖] . (3.66)

Therefore, using the relation (a +b)2 ≤ 2(a2 +b2) we obtain

1

ν
‖E‖2 ≤ 2

β2ν
‖R1(·;y)‖2

V ′ +
2(M +2α+ Ĉ

ν ‖∇e0‖)2

β2 ν‖∇e‖2. (3.67)

We now give a bound on the error ‖∇e‖ for the velocity. Using the inequalities (3.65) and (3.66),

the coercivity of the bilinear form a, Young’s inequality several times and taking v = e and

q =−E in (3.63), we get

να‖∇e‖2 ≤ a(e,e;y) = R1(e;y)−R2(E ;y)−D(u,u0,h ,e)

≤ ‖R1(·;y)‖V ′‖∇e‖+‖R2(·;y)‖Q ′‖E‖+ (θνα+Ĉ‖∇e0‖)‖∇e‖2

≤ 1

2γ1ν
‖R1(·;y)‖2

V ′ + ν

2β2γ2
‖R2(·;y)‖2

Q ′ + 1

β
‖R1(·;y)‖V ′‖R2(·;y)‖Q ′

+
(
γ1

2
+ γ2(M +2α+ Ĉ

ν ‖∇e0‖)2

2
+θα+ Ĉ

ν
‖∇e0‖

)
ν‖∇e‖2

≤ c1

ν
‖R1(·;y)‖2

V ′ +c2ν‖R2(·;y)‖2
Q ′

+
(
γ1

2
+ γ2(M +2α+ Ĉ

ν ‖∇e0‖)2

2
+θα+ Ĉ

ν
‖∇e0‖

)
ν‖∇e‖2,

(3.68)

with

c1 = 1

2γ1
+ 1

2
and c2 = 1

2γ2β2 + 1

2β2 .

Recalling that θ ∈ [0,1[ and using the convergence of u0,h to u0 as h tends to 0, we can choose

h, γ1 and γ2 small enough so that

γ1

2
+ γ2(M +2α+ Ĉ

ν ‖∇e0‖)2

2
+θα+ Ĉ

ν
‖∇e0‖ ≤ 1+θ

2
α. (3.69)

For instance, we can choose h small enough so that

Ĉ

ν
‖∇e0‖ ≤ 1−θ

6
α (3.70)

and take

γ1 = 1−θ

3
α and γ2 = 1−θ

3(M +2α+ 1−θ
6 α)2

α
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which depends only on θ, σmi n and σmax . Therefore, the last term of the right-hand side of

inequality (3.68) can be moved to the left and we get

ν‖∇e‖2 ≤ 2

(1−θ)α

[c1

ν
‖R1(·;y)‖2

V ′ +c2ν‖R2(·;y)‖2
Q ′
]

. (3.71)

Using this bound in (3.67) together with (3.70) we get

1

ν
‖E‖2 ≤

(
2

β2 + 4c1

3γ2β2

)
1

ν
‖R1(·;y)‖2

V ′ + 4c2

3γ2β2 ν‖R2(·;y)‖2
Q ′ .

Replacing finally y by Y(ω), the combination of last two inequalities permits to conclude the

proof since c1 and c2 depend only on β as well as γ1 and γ2, which in turn depend only on θ,

σmi n et σmax .

From Proposition 3.2.13, we deduce the following bound on the error in the |||·||| norm

∣∣∣∣∣∣u−u0,h , p −p0,h
∣∣∣∣∣∣≤�

C

(
1

ν
E
[‖R1‖2

V ′
]+νE

[
‖R2‖2

Q ′
]) 1

2

(3.72)

by simply taking first the expected value and then the square root on both sides of inequality

(3.62). The goal is now to derive a computable (deterministic) error estimator by estimating the

residuals that appear in the right-hand side of (3.72). We use a standard procedure to estimate

the part due to the space discretization and proceed in two different ways for the part due to

the uncertainty, more precisely the truncation in (3.57). The first one is straightforward and

does not require the resolution of additional problems. However, it uses the triangle inequality

as well as the Poincaré inequality (on the fixed domain D) to bound the terms due to the

external forces and the convection. Even though the Poincaré constant is a uniform bound, the

loss when using Poincaré’s inequality can be different depending of the problem, affecting the

sharpness of the error estimate from case to case. The second procedure consists in computing

the dual norm of some functional, and therefore requires the resolution of additional (linear)

problems. However, it has the advantage of requiring the use of Cauchy-Schwarz’s inequality

only and thus does not suffer from the drawback mentioned above.

First error estimate

Let [·]ne denotes the jump across an edge e ∈Th in the direction ne defined by

[
g
]

ne
(ξ) := lim

t→0+

[
g(ξ+ tne )−g(ξ− tne )

]
,

where ne is a unit normal vector to e of arbitrary (but fixed) direction for internal edges and the

outward unit vector for boundary edges. Since we impose homogeneous Dirichlet conditions

at the boundary, we set the jump to zero for boundary edges. We now have all the ingredients
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necessary to derive our first error estimate.

Proposition 3.2.14. Let (u, p) be the (weak) solution of problem (3.35) and let (u0,h , p0,h) be

the solution of problem (3.61). If the assumptions of Proposition 3.2.13 are satisfied, then there

exist positive constants C1, C2 and C3 independent of h and ε such that

∣∣∣∣∣∣u−u0,h , p −p0,h
∣∣∣∣∣∣≤�

2C
(
C1η

2
h +C2η

2
ε

) 1
2 +

�
CC3ε

2 with η2
h = ∑

K∈Th

η2
K and η2

ε =
L∑

j=1
η2

j ,

(3.73)

where C is the constant in Proposition 3.2.13 and

η2
K := 1

ν
η2

K ,1 +νη2
K ,2 and η2

j := 1

ν
η2

j ,1 +νη2
j ,2 (3.74)

with

η2
K ,1 := h2

K ‖f0 +νΔu0,h − (u0,h ·∇)u0,h −∇p0,h‖2
L2(K ) +

∑
e⊂K

he‖1

2

[
ν(∇u0,h)ne −p0,hne

]
ne
‖2

L2(e)

η2
K ,2 := ‖∇·u0,h‖2

L2(K )

η2
j ,1 := ε2

(
‖tr (∇ϕ j )f0 +F j‖2 +ν2‖(B̂ j∇)u0,h‖2 +‖p0,hB j‖2 +‖(u0,h ·B j∇)u0,h‖2

)
η2

j ,2 := ε2‖(B j∇) ·u0,h‖2, (3.75)

B j and B̂ j being defined in (3.60), f0 and F j in (3.54). Moreover, C1 depends only on the mesh

aspect ratio while C2 depends only on the Poincaré constant on D.

Remark 3.2.15. Notice that if εmaxδ is close to 1, or in other words σmi n is close to 0, then the

constant C3 in Proposition 3.2.14 might be large, see (3.56). Therefore, in order for the last term

of (3.73) to be negligible, we need to assume small perturbations of the domain, for instance by

imposing εmax ≤ 1
2δ .

Proof. Similarly to the proof of Proposition 3.2.13, it is understood that all equations depend-

ing on y hold ρ-a.e. in Γ unless explicitly stated. Thanks to (3.72), we only need to bound the

expectation of 1
ν‖R1(·;Y)‖2

V ′ and ν‖R2(·;Y)‖2
Q ′ , that is

∫
Γ

1

ν
‖R1(·;y)‖2

V ′ρ(y)dy and
∫
Γ
ν‖R2(·;y)‖2

Q ′ρ(y)dy,

by computable quantities. We decompose each term R1 and R2 into two parts which control

the FE error and the error due to truncation in the expansion (3.57), respectively. For y0 =
E[Y] = 0 and for all y ∈ Γ, v ∈V and q ∈Q we write

R1(v;y) = R1(v;y0)+ [R1(v;y)−R1(v;y0)]

and

R2(q ;y) = R2(q ;y0)+ [R2(q ;y)−R2(q ;y0)].
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Using standard procedure (Galerkin orthogonality, Clément interpolation [50]), see for in-

stance [118], and taking the contribution of the constant ν into account, the deterministic

quantities can be bounded by

1

ν
‖R1(·;y0)‖2

V ′ +ν‖R2(·;y0)‖2
Q ′ ≤C1

∑
K∈Th

η2
K

where C1 depends only on the Clément interpolation constant and the regularity of the mesh

and the local error estimator ηK is defined in (3.74). We now bound the terms due to the

uncertainty. We have

R1(v;y)−R1(v;y0) = II1 + II2 + II3 + II4 and R2(q ;y)−R2(q ;y0) = II5

with

II1 := F (v;y)−F (v;y0) ≤CP‖Jxf− f0‖‖∇v‖
II2 := a(u0,h ,v;y0)−a(u0,h ,v;y) ≤ ν‖[(Jx A AT − I )∇]u0,h‖‖∇v‖
II3 := b(v, p0,h ;y0)−b(v, p0,h ;y) ≤ ‖(Jx AT − I )p0,h‖‖∇v‖
II4 := c(u0,h ,u0,h ,v;y0)−c(u0,h ,u0,h ,v;y) ≤CP‖[u0,h · (Jx AT − I )∇]u0,h‖‖∇v‖
II5 := b(u0,h , q ;y0)−b(u0,h , q ;y) ≤ ‖[(Jx AT − I )∇] ·u0,h‖‖q‖.

The bound for each term is straightforward, except the one for the term II3 which can be

obtained by writing it in component form, see Appendix 3.C for details. Therefore, we obtain

1

ν
‖R1(·;y)‖2

V ′ +ν‖R2(·;y)‖2
Q ′ ≤C1η

2
h +C2κε(y)2,

where C2 is a (deterministic) constant that depends only on CP and

κ2
ε := 1

ν
‖Jxf− f0‖2 +ν‖[(Jx A AT − I )∇]u0,h‖2 + 1

ν
‖(Jx AT − I )p0,h‖2

+1

ν
‖[u0,h · (Jx AT − I )∇]u0,h‖2 +ν‖[(Jx AT − I )∇] ·u0,h‖2.

Since the independent random variables {Y j } are assumed to be of zero mean and unit variance,

we have E[Y j ] = 0 and E[Yi Y j ] = δi j for i , j = 1, . . . ,L and thus, using Young’s inequality and the
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relations (3.54), (3.55) and (3.56), among others, we get

E
[‖Jxf− f0‖2] = ε2

L∑
j=1

‖tr (∇ϕ j )f0 +F j‖2 +O (ε3)

E
[‖[(Jx A AT − I )∇]u0,h‖2] = ε2

L∑
j=1

‖(B̂ j∇)u0,h‖2 +O (ε3)

E
[‖(Jx AT − I )p0,h‖2] = ε2

L∑
j=1

‖p0,hB j‖2 +O (ε3)

E
[‖[u0,h · (Jx AT − I )∇]u0,h‖2] = ε2

L∑
j=1

‖(u0,h ·B j∇)u0,h‖2 +O (ε3)

E
[‖(Jx AT − I )∇·u0,h‖2] = ε2

L∑
j=1

‖(B j∇) ·u0,h‖2 +O (ε3)

with B j and B̂ j defined in (3.60). Therefore, for some constant c3 > 0 independent of ε and h

we get
1

ν
E
[‖R1‖2

V ′
]+νE

[
‖R2‖2

Q ′
]
≤C1

∑
K∈Th

η2
K +C2

L∑
j=1

η2
j +c3ε

3, (3.76)

where η j is defined in (3.74). To conclude the proof, it only remains to take the square root on

both sides of inequality (3.76). Indeed, using the notation ηh and ηε introduced in (3.73), we

have

(
1

ν
E
[‖R1‖2

V ′
]+νE

[
‖R2‖2

Q ′
]) 1

2 ≤ (
C1η

2
h +C2η

2
ε+c3ε

3) 1
2 ≤

√
C1ηh + (

C2η
2
ε+c3ε

3) 1
2

thanks to the inequality
�

a2 +b2 ≤ a +b for any a,b ≥ 0. Moreover, since ηε =O (ε) we get for

some constant C3 > 0 independent of ε and h

(
C2η

2
ε+c3ε

3) 1
2 =

√
C2ηε

(
1+ c3ε

3

C2η
2
ε

) 1
2

=
√

C2ηε

(
1+ 1

2

c3ε
3

C2η
2
ε

− 1

8

(
c3ε

3

C2η
2
ε

)2

+ . . .

)
≤

√
C2ηε+C3ε

2.

Finally, using the inequality a +b ≤�
2
(
a2 +b2

) 1
2 we obtain

(
1

ν
E
[‖R1‖2

V ′
]+νE

[
‖R2‖2

Q ′
]) 1

2 ≤
√

C1ηh +
√

C2ηε+C3ε
2 ≤�

2
(
C1η

2
h +C2η

2
ε

) 1
2 +C3ε

2,

which yields (3.73) thanks to (3.72).
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Second error estimate

As mentioned above, the use of the triangle inequality to bound each term linked to R1

separately, plus the Poincaré inequality for some of them (namely II1 and II4), in the derivation

of the error estimate controlling the randomness of the problem can affect the sharpness

of the error estimator ηε. However, it has the advantage to require the resolution of only

one (nonlinear) problem, namely the problem for (u0,h , p0,h). We propose in this section a

second error estimate for which the use of these inequalities is not required. It is obtained by

computing, approximately, the dual norm of the residual R1(v;y)−R1(v;y0). Similarly to the

error estimate of Proposition 3.2.14, the terms of higher order are neglected.

Proposition 3.2.16. Under the assumptions of Proposition 3.2.14, there exist constants C1, C3

and C4 independent of h and ε and s ∈ (0,1] such that

∣∣∣∣∣∣u−u0,h , p −p0,h
∣∣∣∣∣∣≤�

2C
(
C1η

2
h + η̂2

ε

) 1
2 +

�
C (C3ε

2 +C4hsε) with η̂2
ε =

L∑
j=1

η̂2
j , (3.77)

where ηh is as in (3.73) and

η̂2
j := 1

ν
η̂2

j ,1 +νη2
j ,2

with η j ,2 given in (3.75) and η̂2
j ,1 := ε2‖∇w j ,h‖2

L2(D)
for j = 1, . . . ,L, and w j ,h ∈Vh is the solution

of∫
D
∇w j ,h : ∇vhdξ =

∫
D

(tr (∇ϕ j )f0 +F j ) ·vhdξ−ν

∫
D

(B̂ j∇)u0,h : ∇vhdξ+
∫

D
p0,h(B j∇) ·vhdξ

−
∫

D

[
(u0,h ·B j∇)u0,h

] ·vhdξ (3.78)

for all vh ∈Vh. Moreover, the constant C1 depends only on the mesh aspect ratio.

Notice that contrary to the error estimate of Proposition 3.2.14, there is no internal constant

multiplying η̂ε in (3.77), the constant C2 =C2(CP ) appearing in (3.73) being indeed no longer

present.

Proof. The proof is similar to the one of Proposition 3.2.14. The only difference is the estima-

tion of the term r (v;y) := R1(v;y)−R1(v;y0) in the V ′ norm. We have ‖r (·;y)‖V ′ = ‖∇w(y)‖L2(D),

where w denotes the Riesz representant of r , i.e. w(y) ∈V is such that
∫

D ∇w(y) : ∇v = r (v;y)

for all v ∈V and ρ-a.e. in Γ. If we keep only the terms of order ε and use the properties of the

random variables Y j , j = 1, . . . ,L, taking the expected value of ‖r (·;Y)‖2
V ′ we get

E
[‖r‖2

V ′
]≤ ε2

L∑
j=1

‖∇w j‖2
L2(D) +O (ε3)
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where w j is the solution of

∫
D
∇w j : ∇vdξ= r j (v;u0,h , p0,h) ∀v ∈V

with

r j (v;u0,h , p0,h) :=
∫

D
(tr (∇ϕ j )f0 +F j ) ·vdξ−ν

∫
D

(B̂ j∇)u0,h : ∇vdξ+
∫

D
p0,h(B j∇) ·vdξ

−
∫

D

[
(u0,h ·B j∇)u0,h

] ·vdξ.

Obviously, the solution w j cannot be computed exactly. However, replacing w j by its finite

element approximation w j ,h ∈Vh introduces an error of higher order, namely an error of order

εhs with s ∈ (0,1]. Indeed, introducing for j = 1, ...,L the solution ψ j ∈V of

∫
D
∇ψ j : ∇v = r j (v;u0, p0) v ∈V

and its finite element approximation ψ j ,h ∈Vh , we have thanks to triangle’s inequality

‖∇w j‖L2(D) ≤ ‖∇(ψ j −w j )‖L2(D) +‖∇(ψ j −ψ j ,h)‖L2(D) +‖∇(ψ j ,h −w j ,h)‖L2(D) +‖∇w j ,h‖L2(D)

≤ ‖r j (·;u0, p0)− r j (·;u0,h , p0,h)‖V ′ +‖∇(ψ j −ψ j ,h)‖L2(D) +‖∇w j ,h‖L2(D)

≤ C4hs +‖∇w j ,h‖L2(D)

where s ∈ (0,1] depends only on the regularity of u0, p0, ψ j , j = 1, . . . ,L, and the domain

D [53, 72] and C4 is independent of h and ε but depends on the mesh aspect ratio, |u0|H 1+s (D),

|p0|H s (D) and |ψ j |H 1+s (D), j = 1, . . . ,L.

Based on Propositions 3.2.14 and 3.2.16, we can define two computable error estimators

η= (
η2

h +η2
ε

) 1
2 and η̂= (

η2
h + η̂2

ε

) 1
2 , where ηh and ηε are defined in (3.73) and η̂ε is defined in

(3.77). From a computational point of view, the computation of η̂ requires the solution of L

additional (linear) problems compared to the cost of getting the error estimatorη. However, the

gain of the second error estimator is twofold: it does not use the triangle inequality to bound

each term of r (v;y) separately and it does not require the use of the Poincaré inequality. The

numerical tests of the next section provide an illustration of the theoretical results obtained so

far.

3.2.6 Numerical results

We present now two numerical examples to test the error estimators derived in the previous

section. We consider the problem of a flow past a cylinder and consider two different types of

perturbation of the domain, namely a perturbation along the vertical axis of the position of the

cylinder and a perturbation of its shape. The true error
∣∣∣∣∣∣u−u0,h , p −p0,h

∣∣∣∣∣∣ is approximated
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with the standard Monte Carlo method using

∣∣∣∣∣∣v, q
∣∣∣∣∣∣≈

(
1

K

K∑
k=1

{
ν‖∇v(yk )‖2

L2(D) +
1

ν
‖q(yk )‖2

L2(D)

}) 1
2

where {yk } ∈ Γ are i.i.d. realizations of the random vector Y. We choose a sample size of

K = 1000 in which case the variance of the estimation of the error is at least a factor 2 ·10−4

smaller than the estimated error in all considered test cases. In what follows, whenever we

refer to error it should be understood that the true error has been computed by the Monte

Carlo procedure. Finally, the approximate solution (u0,h , p0,h) is computed using P1b −P1

finite elements and, since the exact solution (u, p) of the problem is not known, we compute a

reference solution using P2 −P1 finite elements on the finest mesh considered.

First example

For this first problem, based on a well-known benchmark problem described in [110], we

consider the geometry presented in Figure 3.5 and assume that it corresponds to the reference

domain D . More precisely, D consists of the rectangle [a1,b1]× [a2,b2] with a hole of radius R

located at c = (c1,c2). We assume that the rectangle is fixed and that the center c of the cylinder

is randomly moved along the vertical axis, namely that it is given by (c1,c2 +εY ) in Dω with Y

a uniform random variable in [−1,1]. We take f̃ = 0 and we prescribe the following inflow and

inlet outlet

u = 0

u = 0

u = 0

(a1, a2) (b1, a2)

(a1,b2) (b1,b2)

c
R

ξ1

ξ2

Figure 3.5: Geometry with prescribed boundary conditions for the first example.

outflow (parabolic) velocity profile on the inlet and outlet part of ∂Dω

ũ(a1, x2) = ũ(b1, x2) = (4Umax(x2 −a2)(b2 −x2)/(b2 −a2)2,0)T for a2 ≤ x2 ≤ b2,

with a maximum velocity Umax = 0.3 achieved at x2 = a2+b2
2 . We impose homogeneous Dirich-

let boundary conditions on the remaining parts of the boundary. The Reynolds number is

then given by 2
3Umax(2R)ν−1, where 2

3Umax corresponds to the mean velocity.

We choose a mapping xω, consistent with the perturbation mentioned above, such that all the

boundary nodes are fixed. In such a case, the boundary conditions for the equivalent problem

on D are the same than the ones on Dω. More precisely, we consider the mapping xω : D → Dω
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given componentwise by:

[
x1 = ξ1

x2 = ξ2 +εϕ1(ξ1)ϕ2(ξ2)Y (ω),

where for i = 1,2

ϕi (ξi ) =

⎧⎪⎪⎨
⎪⎪⎩

ξi−ai
ci−R−ai

−τ
(ξi−ai )(ξi−ci+R)

(ci−R−ai )2 if ξi ∈ [ai ,ci −R[

1 if ξi ∈ [ci −R,ci +R]
ξi−bi

ci+R−bi
−τ

(ξi−bi )(ξi−ci−R)
(ci+R−bi )2 if ξi ∈]ci +R,bi ],

(3.79)

which can be written under the form (3.48) as x(ξ,ω) = ξ+εϕ(ξ)Y (ω)/
�

3 with Y a uniform

random variable in [−�3,
�

3] and ϕ(ξ) = (0,ϕ1(ξ1)ϕ2(ξ2))T . The function ϕ2 alone fits the

required perturbation of the domain but we use the function ϕ1 to fix the nodes on the inlet

and outlet boundaries. Moreover, the parameter τ ∈ {0,1} is used to control the regularity of

the mapping. Indeed, choosing τ= 1 implies that all the functions appearing in the Jacobian

matrix A−1 of the mapping xω are continuous. From now on, according to [110], we fix the

value of the various geometry parameters to a1 = a2 = 0, b1 = 2.2, b2 = 0.41, c1 = c2 = 0.2

and R = 0.05, and we choose τ= 1. The functions ϕ1 and ϕ2 for these values of the various

geometrical parameters are given in Figure 3.6.
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Figure 3.6: Functions ϕ1(ξ1), ξ1 ∈ [0,2.2] (left) and ϕ2(ξ2), ξ2 ∈ [0,0.41] (right) defined in (3.79).

The numerical tests are performed using FreeFem++ 3.19.1-1 [78]. The mesh is constructed

with a Delaunay triangulation using n equispaced points on the left and right boundaries, 5n

on the upper and lower boundaries and 2n along the hole. The mesh size is then given by

h ≈ (
�

2n)−1 while the number of elements and vertices are about 12n2 and 7n2, respectively.

Notice that we are using piecewise linear triangular elements to mesh the physical domain

D whose boundary has a curved part, namely the hole modelling the cylinder. We are not

accounting this error here and we refer to [31, Chapter 10] or [48, Chapter VI] for an analysis

of such variational crime, introducing for instance isoparametric finite elements. Finally, we

recall that the error estimates derived in Sections 3.2.5 and 3.2.5 are valid for homogeneous

Dirichlet boundary conditions. In the case of inhomogeneous conditions, as considered

here, an additional term due to the approximation of the Dirichlet data should be included.
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However, thanks to the fact that the later is not affected by the mapping, it is a higher order

term in h (see for instance [16]) and thus we do not take it into account in the numerical

results.

Deterministic case

We first consider the deterministic case, namely when ε is set to zero. The reference values

in [110] include the drag (cD ) and lift (cL) coefficients and the pressure difference Δp =
p(0.15,0.2)−p(0.25,0.2) between the value at the front and the end point of the cylinder. Using

P2 −P1 FE on a mesh with n = 80, we obtain the values cD = 5.57469, cL = 0.0104584 and

Δp = 0.117525 which are consistent with the bounds given in [110].

We give in Figure 3.7 the velocity magnitude, the two components u1 and u2 and the pressure

obtained using P2 −P1 finite elements on the finest mesh, i.e. n = 64.

Figure 3.7: Velocity magnitude, components u1 and u2 and pressure for the first problem in
the case ε= 0 and ν= 0.001.

In Table 3.4, we give the results obtained for various values of n and ν, where err, η and e.i.

denote respectively the error, the error estimator (η2
h +η2

ε)
1
2 with ηh and ηε defined in (3.73)

and the effectivity index, namely the ratio between the error estimator and the error. Notice

that ηε = 0 here since ε = 0. We can see that in all cases, for h small enough, the effectivity

index is about 2.8. This value is consistent with the one obtained in Appendix 1.C, see Table

1.15.
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ν= 0.001 ν= 0.01 ν= 0.1 ν= 1
n err η e.i. err η e.i. err η e.i. err η e.i.
4 0.136 0.566 4.17 0.158 0.310 1.96 0.514 0.963 1.87 1.628 3.052 1.87
8 0.039 0.150 3.87 0.060 0.135 2.27 0.188 0.415 2.20 0.596 1.312 2.20

16 0.015 0.044 2.87 0.028 0.070 2.55 0.086 0.216 2.52 0.271 0.684 2.52
32 0.007 0.019 2.73 0.013 0.034 2.70 0.039 0.105 2.69 0.124 0.333 2.69
64 0.003 0.009 2.75 0.006 0.017 2.78 0.019 0.052 2.78 0.060 0.166 2.78

Table 3.4: Error, error estimator and effectivity index for the deterministic case (ε = 0) and
various viscosities for the first example.

Random case

We treat now the random case by considering values of ε between 0 and 0.05. With ε= 0.05, the

random position of the cylinder on the vertical axis lies between 0.15 and 0.25 with nominal

value in 0.2, which is quite a large perturbation considering that the height of the rectangle is

equal to 0.41.

The velocity magnitude for the case ν = 0.001 when the cylinder is moved from 0.2 to 0.25

is given in Figure 3.8. We plot the solution obtained when performing the computation on

the physical domain and on the reference domain, with the appropriate modification of the

coefficients in the equations for the latter case. The solution for the case ε= 0 is again given

for comparison.

Figure 3.8: Velocity magnitude for ν = 0.001 in the case ε = 0 (top) and ε = 0.05 with Y = 1
computed on Dω (middle) and on D (bottom) for the first example.

We give in Table 3.5 the numerical results obtained for ν= 0.001 and ν= 1 and various values

of n and ε.
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ν= 0.001 ν= 1
n ε err ηh ηε e.i. err ηh ηε e.i.
4 0.05 0.1389 0.5656 1.0649 8.68 1.8881 3.0521 2.4890 2.09
8 0.05 0.0591 0.1503 0.6797 11.78 1.0157 1.3124 2.3458 2.65

16 0.05 0.0452 0.0440 0.5487 12.19 0.8110 0.6839 2.3018 2.96
32 0.05 0.0429 0.0190 0.5288 12.32 0.7713 0.3333 2.2887 3.00
64 0.05 0.0428 0.0091 0.5246 12.25 0.7526 0.1655 2.2856 3.05
4 0.025 0.1361 0.5656 0.5325 5.71 1.6989 3.0521 1.2445 1.94
8 0.025 0.0436 0.1503 0.3399 8.52 0.7159 1.3124 1.1729 2.46

16 0.025 0.0249 0.0440 0.2743 11.15 0.4701 0.6839 1.1509 2.85
32 0.025 0.0205 0.0190 0.2644 12.96 0.3916 0.3333 1.1444 3.04
64 0.025 0.0194 0.0091 0.2623 13.51 0.3831 0.1655 1.1428 3.01
4 0.0125 0.1356 0.5656 0.2662 4.61 1.6458 3.0521 0.6223 1.89
8 0.0125 0.0401 0.1503 0.1699 5.66 0.6291 1.3124 0.5865 2.29

16 0.0125 0.0181 0.0440 0.1372 7.98 0.3310 0.6839 0.5755 2.70
32 0.0125 0.0119 0.0190 0.1322 11.25 0.2264 0.3333 0.5722 2.92
64 0.0125 0.0100 0.0091 0.1311 13.13 0.2056 0.1655 0.5714 2.89
4 0.00625 0.1356 0.5656 0.1331 4.29 1.6324 3.0521 0.3111 1.88
8 0.00625 0.0392 0.1503 0.0850 4.41 0.6043 1.3124 0.2932 2.23

16 0.00625 0.0160 0.0440 0.0686 5.08 0.2872 0.6839 0.2877 2.58
32 0.00625 0.0084 0.0190 0.0661 8.17 0.1559 0.3333 0.2861 2.82
64 0.00625 0.0058 0.0091 0.0656 11.45 0.1117 0.1655 0.2857 2.96
4 0.003125 0.1355 0.5656 0.0666 4.20 1.6324 3.0521 0.1556 1.88
8 0.003125 0.0389 0.1503 0.0425 4.01 0.6043 1.3124 0.1466 2.23

16 0.003125 0.0155 0.0440 0.0343 3.60 0.2872 0.6839 0.1439 2.58
32 0.003125 0.0074 0.0190 0.0330 5.18 0.1328 0.3333 0.1430 2.73
64 0.003125 0.0041 0.0091 0.0328 8.32 0.0760 0.1655 0.1429 2.88

Table 3.5: The error, the two contributions ηh and ηε of the error estimator in (3.73) and the
effectivity index for ν= 0.001 and ν= 1 for the first example.
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We recall that we use different FE spaces for the reference and the approximate solution and

thus, even in the case where the same mesh is used for both solutions, there is still an error

due to space discretization. We can see in Table 3.5 that the effectivity index tends to the

one obtained in Table 3.4 when the spatial error is dominating while when the statistical

error dominates, it is about 13 and 3 for ν = 0.001 and ν = 1, respectively. This highlights

the dependence of the error estimate given in Section 3.2.5 with respect to the input data.

However, we can see that when both h and ε are divided by 2 then the effectivity index remains

constant, this observation being tempered by the fact that the effectivity index for ε= 0 is not

constant for the various meshes considered (see Table 3.4). For instance, in the case ν= 0.001

and ε= (5n)−1, which corresponds to h ≈ 3.5ε, the effectivity index is about 8. We study now

the efficiency of the second error estimate with respect to the viscosity. In Figure 3.9, we give

the effectivity index with respect to ν for both error estimators η and η̂= (η2
h + η̂2

ε)
1
2 , where η̂ε

is given in (3.77), in the case ε= 0.025, n = 64 and nr e f = 64, which corresponds to a statistical

error dominant regime.
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Figure 3.9: Effectivity index with respect to the viscosity ν for the two error estimators η and η̂

defined in (3.73) and (3.77) for the first example.

We can see that the effectivity index of the first error estimator η remains constant for viscosi-

ties greater than 0.01 while below this value, it starts increasing as ν decreases. The situation is

different for the second estimator η̂ of Section 3.2.5, whose efficiency is not sensitive to the

value of ν.

Remark 3.2.17. In order to have the correct balance of the two terms appearing in the error

estimator η or η̂, we could estimate numerically the constants in front of each term ηh and ηε

or η̂ε. The estimation of these constants can also be used to construct a sharp error estimator,

namely an error estimator with effectivity index close to 1. According to the results in Table

3.4, the term ηh should be multiplied by a factor 1/2.8. For the term due to uncertainty, we

obtain that η̂ε should be multiplied by about 1.5, considering for instance same FE spaces and

fine mesh for both the reference and approximate solutions, whereas the constant in front of ηε
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depends on the viscosity as seen in Table 3.5 or Figure 3.9 (for instance 1/13 for ν= 0.001 or 1/3

for ν≥ 0.01).

To conclude the analysis of this first example, we mention that similar results are obtained

if we use homogeneous Neumann boundary conditions on the outlet part of the boundary.

Notice that in this case, the jump term should be modified appropriately since it is no longer

zero on the boundary edges belonging to the outlet.

Second example

For this second example, the reference geometry D consists in a square [−H , H ]2 with H = 0.5

and a circular hole of radius R = 0.15 centred at the origin, as depicted in Figure 3.10 where

the prescribed boundary conditions are also indicated. The shape of the hole is given on D

u = (1,0)T u = (1,0)T

u = (1,0)T

u = (1,0)T

u = 0

O

R

ξ1

ξ2

Figure 3.10: Geometry with prescribed boundary conditions for the second example.

by (ξ1,ξ2) = (R cos(θ),R sin(θ)) with θ ∈ [0,2π]. We perturb this hole by modifying its radius

with respect to the angle by the formula R +εdθ, where dθ =
∑L

j=1α j cos(k jθ)Y j and Y j are

i.i.d uniform random variables in [−1,1]. The coefficients k j and α j control the frequency and

the amplitude of each term, respectively. We mention that a similar perturbation is considered

in [125], where the mapping is not constructed explicitly but computed through solutions of

Laplace equations. We consider here the following mapping xω from D to Dω which fits the

above perturbation: denoting r =
√

ξ2
1 +ξ2

2 and θ = arctan( ξ2
ξ1

) the polar coordinates of any

point ξ= (ξ1,ξ2) of D , we take

x = ξ+ε
L∑

j=1
ϕ j (ξ)Y j (ω), ϕ j (ξ) =α j cos(k jθ)g (ξ)

[
cos(θ)

sin(θ)

]
, (3.80)
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where the cutoff function g is such that it vanishes at the boundary of the domain and is equal

to 1 in the hole, namely we use

g (ξ) =
{

1 if r ∈ [0,R]
(ξ2

1−H 2)(ξ2
2−H 2)

(R2ξ2
1r−2−H 2)(R2ξ2

2r−2−H 2)
otherwise.

(3.81)

The graph of this function is depicted in Figure 3.11

Figure 3.11: Function g = g (ξ1,ξ2) defined in (3.81).

The mesh is again built with a Delaunay triangulation using n equispaced points on the

boundaries of the square and 2n on the hole for various values of n with corresponding mesh

size h ≈ 1.5n−1 and number of elements and vertices of about 3.5n2 and 2n2, respectively.

Remark 3.2.18. Contrary to the previous example, the choice of the boundary conditions on

the outlet has an impact on the solution of this problem, due to the fact that the outlet is close to

the cylinder. This is especially true for small viscosities, in which case some flow is re-entering

the domain when homogeneous Neumann conditions are used while the solution presents a

boundary layer when Dirichlet conditions are enforced.

Deterministic case

We consider first the deterministic case taking ε= 0. The plot of the velocity magnitude, the

two components u1 and u2 and the pressure obtained using P2 −P1 FE and the finest mesh

(n = 160) is given in Figure 3.12.

Moreover, we give in Table 3.6 the results we get for various values of n and ν. Similarly to the

previous example, the effectivity index is about 2.8 in all cases, when h is small enough.
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Figure 3.12: From left to right: velocity magnitude, components u1 and u2 and pressure for
the second problem in the case ε= 0 and ν= 0.05.

ν= 0.05 ν= 0.1 ν= 0.5 ν= 1
n err η e.i. err η e.i. err η e.i. err η e.i.
10 0.477 1.149 2.41 0.621 1.405 2.26 1.364 2.988 2.19 1.930 4.221 2.19
20 0.230 0.579 2.51 0.278 0.697 2.51 0.590 1.470 2.49 0.833 2.074 2.49
40 0.112 0.294 2.63 0.132 0.353 2.67 0.279 0.745 2.68 0.393 1.052 2.68
80 0.055 0.148 2.71 0.064 0.176 2.75 0.134 0.371 2.76 0.190 0.523 2.76

160 0.026 0.073 2.77 0.031 0.087 2.80 0.066 0.184 2.80 0.096 0.259 2.80

Table 3.6: Error, error estimator and effectivity index for the deterministic case (ε = 0) and
various viscosities for the second example.

Random case

We consider first L = 1 random variable, we fix α1 = 1 and k1 = 6 in the definition of dθ and we

let 0 ≤ ε≤ 0.01. The vorticity of the velocity u and the pressure p in the case ε= 0.01, ν= 0.05

and Y = 1 is given in Figure 3.13, where the solution obtained by solving the problem defined

on Dω as well as the solution for the case ε= 0 are also given for comparison.

We give in Table 3.7 the numerical results obtained for ν= 0.05 and ν= 1 and various values of

n and ε.

Similarly to the previous example, we observe that the effectivity index tends to the one

obtained for the deterministic case (ε= 0) when the error in h is dominating, while it is about

6 and 1.5 for ν= 0.05 and ν= 1, respectively, when the statistical error dominates. This shows

again the sensitivity of the efficiency of the first error estimator with respect to the input data

but, as before, the effectivity index remains about constant when both h and ε are divided by

2. Indeed, for instance for ν= 0.05 and ε= (10n)−1, corresponding to h ≈ 15ε, it stays between

3.81 and 4.05. Finally, the same behaviour than in the previous example is observed for the

efficiency of the second error estimator η̂ with respect to the viscosity, as can be seen in Figure

3.14 where the results are given for the case ε= 0.005, n = 160 and nr e f = 160.

The results are similar when we consider other kinds of perturbation. For instance, let consider
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Figure 3.13: Vorticity of the velocity and pressure for ν= 0.05 in the case ε= 0 (left) and ε= 0.01
with Y = 1 computed Dω (middle) and on D (right) for the second example.
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Figure 3.14: Effectivity index with respect to the viscosity ν for the two error estimators η and
η̂ defined in (3.73) and (3.77) for the second example.
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3.2. Steady-state incompressible Navier-Stokes equations in random domains

ν= 0.05 ν= 1
n ε err ηh ηε e.i. err ηh ηε e.i.
10 0.01 0.5125 1.1492 1.6181 3.87 2.0403 4.2209 1.4479 2.19
20 0.01 0.3251 0.5785 1.5682 5.14 1.2200 2.0741 1.3862 2.04
40 0.01 0.2625 0.2937 1.5552 6.03 1.0216 1.0524 1.3730 1.69
80 0.01 0.2486 0.1478 1.5519 6.27 1.0040 0.5233 1.3696 1.46

160 0.01 0.2431 0.07279 1.5511 6.39 0.9630 0.2594 1.3687 1.45
10 0.005 0.4859 1.1492 0.8090 2.89 1.9575 4.2209 0.7240 2.19
20 0.005 0.2556 0.5785 0.7841 3.81 0.9477 2.0741 0.6931 2.31
40 0.005 0.1628 0.2937 0.7776 5.11 0.6163 1.0524 0.6865 2.04
80 0.005 0.1340 0.1478 0.7759 5.91 0.5149 0.5233 0.6848 1.67

160 0.005 0.1238 0.0728 0.7755 6.29 0.4891 0.2594 0.6843 1.50
10 0.0025 0.4792 1.1492 0.4045 2.54 1.9363 4.2209 0.3620 2.19
20 0.0025 0.2370 0.5785 0.3921 2.95 0.8602 2.0741 0.3465 2.44
40 0.0025 0.1263 0.2937 0.3888 3.86 0.4538 1.0524 0.3433 2.44
80 0.0025 0.0808 0.1478 0.3880 5.14 0.3085 0.5233 0.3424 2.03

160 0.0025 0.0662 0.0728 0.3878 5.96 0.2584 0.2594 0.3422 1.66
10 0.00125 0.4776 1.1492 0.2023 2.44 1.9317 4.2209 0.1810 2.19
20 0.00125 0.2319 0.5785 0.1960 2.63 0.8399 2.0741 0.1733 2.48
40 0.00125 0.1154 0.2937 0.1944 3.05 0.4098 1.0524 0.1716 2.60
80 0.00125 0.0624 0.1478 0.1940 3.91 0.2237 0.5233 0.1712 2.46

160 0.00125 0.0405 0.0728 0.1939 5.12 0.1517 0.2594 0.1711 2.05
10 0.000625 0.4772 1.1492 0.1011 2.42 1.9304 4.2209 0.0905 2.19
20 0.000625 0.2306 0.5785 0.0980 2.54 0.8347 2.0741 0.0866 2.49
40 0.000625 0.1125 0.2937 0.0972 2.75 0.3977 1.0524 0.0858 2.66
80 0.000625 0.0565 0.1479 0.0970 3.13 0.1987 0.5233 0.0856 2.67

160 0.000625 0.0304 0.0728 0.0970 3.99 0.1101 0.2594 0.0855 2.48

Table 3.7: The error, the two contributions ηh and ηε of the estimator in (3.73) and the
effectivity index for ν= 0.05 and ν= 1.
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(3.80) with L = 2 with k1 = 6, k2 = 11, α1 = 1 and α2 = 0.8. The results we obtained, given in

Figure 3.15 and in Table 3.8, are very similar to those presented in Table 3.7. The results for the

second error estimator η̂ with the estimated constant, see Remark 3.2.17, are also provided.

We can see that for h small enough, namely when the effectivity index for the spatial error

estimator is about 2.8 (see Table 3.6), the error estimator is sharp.

Figure 3.15: Vorticity of the velocity and pressure for ν= 0.05 in the case ε= 0 (left) and ε= 0.01
with Y = 1 computed Dω (middle) and on D (right) for the second example with L = 2.

Conclusions

In this chapter, we have considered steady-state nonlinear PDEs on random domains, namely

the one-dimensional viscous Burgers’ equation and the incompressible Navier-Stokes equa-

tions. We have used the domain mapping method to transform them into PDEs on a fixed

reference domain with random coefficients.

We have first studied the deterministic Burgers’ equation with mixed Dirichlet-Neumann

boundary conditions. We have shown the well-posedness of the problem under suitable as-

sumptions on the input data and we have derived an a posteriori error estimate. Then, the case

of random intervals has been considered, performing all the analysis on the fixed reference

domain. Finally, we have presented two numerical examples both in the deterministic and

random cases.

For the Navier-Stokes equations, we started the analysis by showing the well-posedness of the
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3.2. Steady-state incompressible Navier-Stokes equations in random domains

n ε err ηh ηε η/err ηh/2.8 1.5η̂ε η̂/err
10 0.005 0.4994 1.1492 1.4301 3.67 0.4104 0.1849 0.90
20 0.005 0.2924 0.5785 1.3884 5.14 0.2066 0.1992 0.98
40 0.005 0.22061 0.2937 1.3768 6.38 0.1049 0.2054 1.05
80 0.005 0.1983 0.1478 1.3739 6.97 0.0528 0.2072 1.08

160 0.005 0.1928 0.0728 1.3732 7.13 0.0260 0.2077 1.09
10 0.0025 0.4826 1.1492 0.7151 2.80 0.4104 0.0924 0.87
20 0.0025 0.2477 0.5785 0.6942 3.65 0.2066 0.0996 0.93
40 0.0025 0.1464 0.2937 0.6884 5.11 0.1049 0.1027 1.00
80 0.0025 0.1080 0.1478 0.6869 6.51 0.0528 0.1036 1.08

160 0.0025 0.0988 0.0728 0.6866 6.99 0.0260 0.1038 1.08
10 0.00125 0.4784 1.1492 0.3575 2.52 0.4104 0.0462 0.86
20 0.00125 0.2345 0.5785 0.3471 2.88 0.2066 0.0498 0.91
40 0.00125 0.1212 0.2937 0.3442 3.73 0.1049 0.0513 0.96
80 0.00125 0.0731 0.1478 0.3435 5.12 0.0528 0.0518 1.01

160 0.00125 0.0545 0.0728 0.3433 6.44 0.0260 0.0519 1.06

Table 3.8: Effectivity index of the two error estimators in the case ν = 0.05 for the second
example with L = 2.

problem under suitable assumptions on the input data and the mapping, before performing an

a posteriori error analysis. Using a perturbation method, we obtained two error estimates for

the first order approximation (u, p) ≈ (u0,h , p0,h). Both estimates are constituted of two parts,

namely one part due to space discretization in h and one due to the uncertainty in ε. They

already give useful information, especially when the problem contains small uncertainties.

They can indeed be used to adaptively find a spatial mesh that balances the two sources

of error. Further mesh refinement should then be avoided since it would not decrease the

total error, the statistical error being dominant. The latter can only be decreased by adding

more terms in the expansion of the solution. Notice that if we want to analyse higher order

approximations in ε, then we should impose additional regularity assumptions on f and on

the random mapping, namely that the Jacobian matrix ∇ϕ j belongs to
[
W 1,∞(D)

]d×d
for

j = 0,1, . . . ,L and not only for j = 0. Indeed, we have that the residual for the FE approximation

(U j ,h ,P j ,h) of (U j ,P j ) belongs to L2(D) for j = 1, . . . ,L, where (U j ,P j ) is the solution of (3.59)

and appears in the second term of the expansion of the solution. The same holds for the

residual of the higher order terms.

Each of the two error estimators η and η̂ that we obtained presents its advantages and draw-

backs. The first one can be computed by solving only one nonlinear problem, namely the

standard Navier-Stokes equations on the reference domain. We have seen however that the

sharpness of this estimator might be affected when changing the input data, as predicted by

the theory. In the two numerical examples considered here, the effectivity index remains con-

stant for moderate Reynolds numbers but then starts to increase as the viscosity diminishes.

The second error estimator shows promising results, its efficiency being indeed independent
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of the input data for all the cases we have considered. The extra cost to pay is the resolution of

L additional linear problems. Finally, as mentioned in Remark 3.2.17, the constant in front of

the two terms in h and ε can be estimated numerically (once for all for the second estimator)

to get a sharp error estimator, that is an estimator with effectivity index close to 1.

3.A Derivation of problems (3.58) and (3.59)

We give here some details about the derivation of the problems (3.58) and (3.59) that we need

to solve to obtain the first two terms in the expansion of the solution (u, p), namely (u0, p0)

and (u1, p1). These problems are obtained by replacing each term in (3.35), the problem in

strong form for (u, p), by its expansion with respect to ε and keeping only the appropriate

terms. Using relations (3.55) and (3.56), we can write

Jx A AT = (1+εtr (A1)+O (ε2))(I −εA1 +O (ε2))(I −εAT
1 +O (ε2))

= I +ε(tr (A1)I − A1 − AT
1 )+O (ε2)

and similarly

Jx AT = I +ε(tr (A1)I − AT
1 )+O (ε2).

Therefore, considering for instance the convection term, we get

(u · Jx AT ∇)u = ((u0 +εu1 +O (ε2)) · (I +ε(tr (A1)I − AT
1 )+O (ε2))∇)(u0 +εu1 +O (ε2))

= (u0 ·∇)u0 +ε
[
(u1 ·∇)u0 + (u0 ·∇)u1 + (u0 · (tr (A1)I − AT

1 )∇)u0
]+O (ε2).

Proceeding similarly for all the terms involved in the first equation of (3.35) and keeping the

O (1) terms with respect to ε we obtain

−νΔu0 + (u0 ·∇)u0 +∇p0 = f0

which is the first equation of (3.58). If we collect now the terms of order O (ε) we get

−νΔu1 + (u0 ·∇)u1 + (u1 ·∇)u0 +∇p1 = tr (A1)f0 + f1 +ν∇· [((tr (A1)I − A1 − AT
1 )∇)u0

]
−(u0 · (tr (A1)I − AT

1 )∇)u0 − ((tr (A1)I − AT
1 )∇)p0.

(3.82)

Finally, since

A1 =
L∑

j=1
∇ϕ j y j , f1 =

L∑
j=1

F j y j , u1 =
L∑

j=1
U j y j and p1 =

L∑
j=1

P j y j ,
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equation (3.82) is satisfied if

−νΔU j + (u0 ·∇)U j + (U j ·∇)u0 +∇P j = tr (∇ϕ j )f0 +F j

+ν∇·
[

((tr (∇ϕ j )I −∇ϕ j −∇ϕT
j )∇)u0

]
−(u0 · (tr (∇ϕ j )I −∇ϕT

j )∇)u0

−((tr (∇ϕ j )I −∇ϕT
j )∇)p0

(3.83)

for j = 1, . . . ,L, which is the second equation of problem (3.59). In fact, relations (3.82) and

(3.83) are equivalent since the random variables {Y j } are independent, with zero mean and

unit variance and thus form an orthonormal set. The second equation of (3.35), corresponding

to the incompressibility constraint, is treated analogously.

3.B Choice of the norm

We give here three justifications about the choice of the norm on the space V ×Q for the couple

(u, p), more precisely about the scaling with respect to the kinematic viscosity ν. We claim that

the appropriate scaling is given by

∣∣∣∣∣∣v, q
∣∣∣∣∣∣2

k := νk‖∇v‖2 +νk−2‖q‖2 for any choice k = 0,1,2. (3.84)

First of all, we can perform a dimensional analysis. The dimension unit of the kinematic

viscosity is [ν] = m2

s while we have, recall that p corresponds to the pressure divided by the

density of the fluid,

[|∇u|2] =
(

1

m
· m

s

)2

= 1

s2 and [p2] =
(

N

m2 · m3

kg

)2

= m4

s4 ,

from which we deduce that [νk |∇u|] = [νk−2p2] for all k. This is also the natural choice

of scaling that arises when looking at the a priori estimates on the solution (u, p) or when

performing a posteriori error estimation. For simplicity, let us consider the (deterministic)

Stokes problem given under the weak form by:

find (u, p) ∈V ×Q such that

a(u,v)+b(v, p) = F (v) ∀v ∈V

b(u, q) = 0 ∀q ∈Q,

with V = [H 1
0 (D)]d , Q = L2

0(D), a(u,v) = ν
∫

D ∇u : ∇v, b(v, q) =−∫
D q∇·v and F (v) =∫

D f·v. The

bilinear form a is continuous and coercive on V with constant ν and b is continuous on V

with constant 1 and satisfies the inf-sup condition with constant β= β(D). The problem is
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thus well-posed (see [32]) and the following a priori estimates are satisfied

‖∇u‖ ≤ 1

ν
‖F‖V ′ and ‖p‖ ≤ 1

β
(‖F‖V ′ +ν‖∇u‖) ≤ 2

β
‖F‖V ′ .

Therefore, we have

νk/2‖∇u‖+νk/2−1‖p‖ ≤Cνk/2−1‖f‖V ′ ∀k,

where C = (1+2/β) is independent of ν, which is consistent with the scaling (3.84). Finally, for

the a posteriori error analysis, denoting e = u−uh and E = p −ph with uh and ph the finite

element approximation of u and p, respectively, we have for any (v, q) ∈V ×Q

a(e,v)+b(v,E)+b(e, q) = R1(v)+R2(q), (3.85)

with

R1(v) := F (v)−a(uh ,v)−b(v, ph) and R2(q) :=−b(uh , q).

Using relation (3.85), Young’s inequality and the properties of a and b, we can easily show that

‖E‖ ≤ 1

β
‖R1‖V ′ + ν

β
‖∇e‖ (3.86)

and

ν‖∇e‖2 ≤ c1

ν
‖R1‖2

V ′ + c2ν

β2 ‖R2‖2
Q ′ (3.87)

with for instance c1 = c2 = 3, the value of these constants depending only on how we use

Young’s inequality. From the last two inequalities, we deduce that the scaling (3.84) should be

used to get

νk‖∇e‖2 +νk−2‖E‖2 ≤C
(
νk−2‖R1‖2

V ′ +νk‖R2‖2
Q ′
)

,

where C is a constant independent of ν (but which depends on the inf-sup constant β).

We mention that in a diffusion-dominating regime, the choice k = 0 yields a total error ‖e,E‖0

which remains constant when ν varies. Indeed, in such a case the velocity error ‖∇e‖ is

constant while the pressure error ‖E‖ behaves as ν, i.e. 1
ν‖E‖ is constant.

3.C Proof of some properties

Proposition 3.C.1. Let A,B ,C ∈Rn×n be square matrices with coefficients denoted respectively

by ai j , bi j and ci j for 1 ≤ i , j ≤ n, and let w be any smooth function with value in Rn. We then

have

AB : C B = ABB T : C (3.88)

and

(B T ∇)w =∇wB. (3.89)

144



3.C. Proof of some properties

Proof. We first show (3.88). For the term on the left-hand side, we have

AB : C B =
n∑

i , j=1
(AB)i j (C B)i j =

n∑
i , j=1

(
n∑

l=1
ai l bl j

)(
n∑

k=1
ci k bk j

)
=

n∑
i , j ,k,l=1

ai l bl j ci k bk j ,

while for the right-hand side, we get

ABB T : C =
n∑

i ,k=1
(ABB T )i k (C )i k =

n∑
i ,k=1

n∑
j=1

(AB)i j (B T ) j k (C )i k =
n∑

i , j ,k,l=1
ai l bl j bk j ci k .

We now prove (3.89). From the definition of the gradient operator applied to a vector field, we

have

(B T ∇)w =

⎛
⎜⎜⎝

((B T ∇)w1)T

...

((B T ∇)wn)T

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

(B T ∇)1w1 · · · (B T ∇)n w1
...

. . .
...

(B T ∇)1wn · · · (B T ∇)n wn

⎞
⎟⎟⎠

where wi denotes the i th component of w, and thus

[
(B T ∇)w

]
i j = (B T ∇) j (w)i .

Therefore, the coefficient of the i th-row and j th-column of the n ×n matrix (B T ∇)w is given

by

[
(B T ∇)w

]
i j =

n∑
k=1

(B T ) j k (∇)k wi =
n∑

k,l=1
bk j

∂wi

∂ξk
=

n∑
k=1

(∇w)i k (B)k j = (∇wB)i j .

We now show the relation (3.34) used in Section 3.2.2 to write the strong formulation of the

problem on D . It can be proven by an integration by part back on the random domain Dω or

using the Piola identity ∇· (Jx AT
)= 0 (see [101] for instance). Indeed, we have∫

D
q|Jx|(AT ∇) ·vdξ=

∫
Dω

q̃∇x · ṽdx =−
∫

Dω

∇xq̃ · ṽdx =−
∫

D
|Jx|(AT ∇q) ·vdξ,

which yields (3.34) since Jx is either positive or negative, depending if the orientation is

preserved or not by the mapping. Using the second alternative, since ∇· (Jx Av) = (∇· (Jx AT )) ·
v+ (

Jx AT ∇) ·v we have∫
D

q Jx(AT ∇) ·vdξ =
∫

D
q∇· (Jx Av)dξ−

∫
D

(∇· (Jx AT )︸ ︷︷ ︸
=0

) · (qv)dξ

= −
∫

D
Jx(AT ∇q) ·vdξ.

Be aware that in [101], the divergence operator applied to a tensor field is defined as the

divergence applied to its transposed according to the definition used here. Recall that here we
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defined
[∇· (Jx AT )

]
i =

∑d
j=1

∂
∂ξ j

(Jx(AT )i j ) = ∑d
j=1

∂
∂ξ j

(Jx
∂(ξω) j

∂xi
◦xω) for i = 1, . . . ,d . Moreover,

we mention that the Piola identity, which is easily obtained for smooth functions, say C 2

functions, is still valid (in a weak sense) for less regular functions such as H 1 functions (see for

instance [12, 47]).

Finally, we derive the bound for the term II3 = b(v, p0,h ;y0)−b(v, p0,h ;y) that appear in the

proof of Proposition 3.2.14. Writing ξ= (ξ1,ξ2) and v = (v1, v2)T , the two terms in component

form read

b(v, p0,h ;y0) =−
∫

D
p0,h∇·vdξ=−

∫
D

p0,h

(
∂v1

∂ξ1
+ ∂v2

∂ξ2

)
dξ

and

b(v, p0,h ;y) = −
∫

D
p0,h Jx(AT ∇) ·vdξ

= −
∫

D
p0,h Jx

(
A11

∂v1

∂ξ1
+ A21

∂v1

∂ξ2
+ A12

∂v2

∂ξ1
+ A22

∂v2

∂ξ2

)
dξ.

Subtracting these two terms and using (both continuous and discrete version of) Cauchy-

Schwarz’s inequality we finally obtain

II3 =
∫

D
(Jx A11 −1)p0,h

∂v1

∂ξ1
dξ+

∫
D

Jx A21p0,h
∂v1

∂ξ2
dξ+

∫
D

Jx A12p0,h
∂v2

∂ξ1
dξ

+
∫

D
(Jx A22 −1)p0,h

∂v2

∂ξ2
dξ

≤ ‖(Jx A11 −1)p0,h‖‖
∂v1

∂ξ1
‖+‖Jx A21p0,h‖‖

∂v1

∂ξ2
‖+‖Jx A12p0,h‖‖

∂v2

∂ξ1
‖

+‖(Jx A22 −1)p0,h‖‖
∂v2

∂ξ2
‖

≤ (‖(Jx A11 −1)p0,h‖2 +‖Jx A21p0,h‖2 +‖Jx A12p0,h‖2

+‖(Jx A22 −1)p0,h‖2) 1
2

(
2∑

i , j=1
‖∂vi

∂ξ j
‖
) 1

2

= ‖(Jx AT − I )p0,h‖‖∇v‖.
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We could also proceed as follows:

II3 = b(v, p0,h ;y0)−b(v, p0,h ;y) =−
∫

D
p0,h∇·vdξ+

∫
D

p0,h Jx(AT ∇) ·vdξ

=
d∑

i=1

[
−
∫

D
p0,h(I∇)i vi dξ+

∫
D

p0,h Jx(AT ∇)i vi dξ

]

=
d∑

i , j=1

[
−
∫

D
p0,hδi j

∂vi

∂ξ j
dξ+

∫
D

p0,h Jx(AT )i j
∂vi

∂ξ j
dξ

]

=
d∑

i , j=1

[∫
D

p0,h(Jx(AT )i j −δi j )
∂vi

∂ξ j
dξ

]
=

∫
D

p0,h(Jx AT − I ) : ∇vdξ

≤
∫

D
‖p0,h(Jx AT − I )‖F‖∇v‖F

≤ ‖p0,h(Jx AT − I )‖L2(D)‖∇v‖L2(D),

where ‖ ·‖F denotes the Froebenius norm.
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4 Time-dependent heat equation with
random Robin boundary conditions

Introduction

In this chapter, we perform an a posteriori error analysis for a time-dependent PDE with

random input data, namely the heat equation with random Robin boundary conditions. The

analysis is very similar to what has been done in the previous chapters, except that we have

to take into account the error due to time discretization. For instance, for the approximation

u ≈ u0,hτ, where u0,hτ is a space-time approximation of the deterministic part u0 in the

expansion of the solution u, the a posteriori error estimate is constituted of three parts, see

Proposition 4.3.1. Each part controls a different source of error, namely the error due to space

discretization, time discretization and uncertainty (truncation in the expansion of u).

4.1 Problem statement

Let D ⊂ Rd , d = 2,3, be an open bounded domain with Lipschitz continuous boundary ∂D

and let (Ω,F ,P ) be a compete probability space. We consider the following heat problem with

random Robin boundary conditions:

find u : (0,T )×D ×Ω→R such that a.s. in Ω the following equations hold⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(t ,x,ω)
∂t −∇· (k(x)∇u(t ,x,ω)) = f (t ,x) x ∈ D, t ∈ (0,T )

u(t ,x,ω) = 0 x ∈ ΓD , t ∈ (0,T )

k(x)∂u(t ,x,ω)
∂n +α(x,ω)u(t ,x,ω) = g (t ,x) x ∈ ΓR , t ∈ (0,T )

u(t ,x,ω) = ϕ(x) x ∈ D, t = 0

(4.1)

with ΓD and ΓR the Dirichlet and Robin boundary parts such that ΓD∪ΓR = ∂D and ΓD∩ΓR =�
and n is the outward unit normal vector on ΓR . Notice that the subsequent analysis can be

quite easily extended to the cases f = f (t ,x,ω), g = g (t ,x,ω), ϕ=ϕ(x,ω) or k = k(x,ω). From

a physical point of view, the Robin boundary conditions for the heat problem are used to

model the Newton’s law of cooling [123], namely that the rate of change of temperature is
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proportional to the temperature difference between the solid surface ΓR and its surroundings.

Mathematically, this results in imposing a linear combination of Dirichlet (impose the tem-

perature) and Neumann (impose the heat flux) boundary conditions. The parameter α is the

heat transfer coefficient and depends on the material, the geometry, the environment, etc.

In practise, this coefficient is often determined from experiments and is therefore subject to

uncertainty. Another similar problem arises for instance in glaciology, when modelling the

motion of glaciers, see for instance [80, 104] and references therein. The boundary conditions

prescribed on the sliding basal part are indeed affected by uncertainty, for instance due to a

lack of knowledge of the shape of the mountain or the difficulty to get measurements of the

velocity of the ice on the base of the glacier.

We make the following assumptions on the input data

f ∈ L2(0,T ;L2(D)), g ∈ L2(0,T ;L2(ΓR )), k ∈ L∞(D ;Rd×d ), ϕ ∈ L2(D), α(·,ω) ∈ L∞(ΓR ) a.s.

and

∃kmin > 0 such that ∀ξ ∈Rd , k(x)ξ ·ξ≥ kmin|ξ|2 a.e. in D. (4.2)

Moreover, we assume that the random field α depends on a finite number of random variables{
Y j

}L
j=1, namely

α(x,ω) =α(x,Y(ω)) =α(x,Y1(ω), . . . ,YL(ω)).

Let Γ= Γ1 × . . .×ΓL , where Γ j = Y j (Ω), and let ρ : Γ→R+ be the joint density function of the

random vector Y. Let

V = H 1
ΓD

= {v ∈ H 1(D) : v = 0 on ΓD }

endowed with the norm

‖v‖V :=
{ |v |H 1(D) = ‖∇v‖L2(D) if ΓD �= �

‖v‖H 1(D) =
√
‖v‖2

L2(D)
+‖∇v‖2

L2(D)
if ΓD =�.

The parametric (pointwise in y and t ) weak formulation of problem (4.1) reads:

find u ∈ L2
ρ(Γ;L2(0,T ;V )∩C 0([0,T ];L2(D))) such that

⎧⎨
⎩

u(0,x,y) = ϕ(x) x ∈ D,ρ-a.e. y ∈ Γ
d

d t

∫
D

uv +a(u, v ;y) = F (v) ∀v ∈V ,a.e. t ∈ (0,T ),ρ-a.e. y ∈ Γ
(4.3)

with

a(u, v ;y) :=
∫

D
k∇u ·∇v +

∫
ΓR

α(y)uv (4.4)

F (v) :=
∫

D
f v +

∫
ΓR

g v. (4.5)
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We can easily show that problem (4.3) is well-posed under the assumption

α(x,y) ≥αmin > 0 a.e. x ∈ ΓR ,ρ-a.e. y ∈ Γ. (4.6)

Indeed, the condition (4.6) ensures the (uniform) coercivity of the bilinear form a defined in

(4.4), that is there exists a constant Ca > 0 such that

Ca‖v‖2
V ≤ a(v, v ;y) ∀v ∈V and ρ-a.e. y ∈ Γ. (4.7)

It is obvious that (4.6) implies (4.7) for the case ΓD �= �, i.e. when V is endowed with the

gradient norm, while it can be proved proceeding ab absurdo for the case ΓD =�.

Remark 4.1.1. In the case ΓD �= �, the assumption (4.6) can be relaxed since the bilinear form

a is also coercive under the condition

‖α(·,y)‖L∞(ΓR ) < kmin

C 2
T (1+C 2

F )
ρ-a.e. y ∈ Γ, (4.8)

where CF and CT denote the Friedrich-Poincaré and trace constants in (2.5) and (2.10), respec-

tively. In particular, it is not necessary that α remains positive. Indeed, thanks to (4.2) and

using

−
∫
ΓR

αv2 ≤ ‖α‖L∞(ΓR )‖v‖2
L2(ΓR ) ≤C 2

T ‖α‖L∞(ΓR )‖v‖2
H 1(D) ≤C 2

T (1+C 2
F )‖α‖L∞(ΓR )‖∇v‖2

L2(D)

we have

a(v, v ;y) =
∫

D
k|∇v |2 +

∫
ΓR

αv2 ≥ (kmin −C 2
T (1+C 2

F )‖α‖L∞(ΓR ))‖∇v‖2
L2(D)

for any v ∈V and ρ-a.e. in Γ. The coercivity constant Ca > 0 is then given by

Ca =
{

kmin if (4.6) holds

kmin −‖α‖L∞(ΓR )C 2
T (1+C 2

F ) if (4.8) holds.

Specific form of α

We assume that the random coefficient α, which appears in the Robin boundary condition,

depends in an affine way on the random variables, namely that it can be written

α(x,Y(ω)) =α0(x)+ε
L∑

j=1
α j (x)Y j (ω),

where
{
Y j

}L
j=1 are independent random variables with zero mean and unit variance.

Example 4.1.2. Let D = (0,1)2 with boundary ΓD and ΓR = ΓR1 ∪ΓR2 ∪ΓR3 as shown in Figure

4.1.
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ΓR1

ΓR2

ΓR3

ΓD

D

Figure 4.1: Geometry with label for each part of the boundary.

We take then α(x,Y(ω)) =α0(x)+ε
∑3

j=1α j (x)Y j (ω) with

α0 =

⎧⎪⎨
⎪⎩

α0,1 if x ∈ ΓR1

α0,2 if x ∈ ΓR2

α0,3 if x ∈ ΓR3

, α j =
{

a j if x ∈ ΓR j

0 if x ∈ ΓR \ΓR j

, g =

⎧⎪⎨
⎪⎩

g1 if x ∈ ΓR1

g2 if x ∈ ΓR2

g3 if x ∈ ΓR3

and α0, j , a j ∈ L∞(ΓR j ), j = 1,2,3, such that (4.6) holds, i.e. α≥αmin > 0. For instance, in the

case Γ= [−1,1]3, it is then required that ε|a j | <α0, j for j = 1,2,3.

Methodology

As in the previous chapters, we use a perturbation technique expanding the (random) solution

u with respect to ε as:

u(t ,x,Y(ω)) = u0(t ,x)+εu1(t ,x,Y(ω))+ε2u2(t ,x,Y(ω))+ . . .

The problem for the first term u0 in the expansion simply reads:

find u0 : (0,T )×D →R such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u0(t ,x)
∂t −∇· (k(x)∇u0(t ,x)) = f (t ,x) x ∈ D, t ∈ (0,T )

u0(t ,x) = 0 x ∈ ΓD , t ∈ (0,T )

k(x)∂u0(t ,x)
∂n +α0(x)u0(t ,x) = g (t ,x) x ∈ ΓR , t ∈ (0,T )

u0(t ,x) = ϕ(x) x ∈ D, t = 0,

(4.9)

whose weak formulation can be written:

find u0 ∈ L2(0,T ;V )∩C 0([0,T ];L2(D)) such that⎧⎨
⎩

u0(0,x) = ϕ(x) x ∈ D
d

d t

∫
D

u0v +∫
D k∇u0 ·∇v +∫

ΓR
α0u0v = ∫

D f v +∫
ΓR

g v ∀v ∈V ,a.e. t ∈ (0,T ).
(4.10)
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Notice that problem (4.10) is nothing else than problem (4.3) with y = E[Y] = 0. Writing

u1(t ,x,Y(ω)) =∑L
j=1 U j (t ,x)Y j (ω), the second term in the expansion can be obtained by solving

the L problems:

find U j : (0,T )×D →R such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂U j (t ,x)
∂t −∇· (k(x)∇U j (t ,x)) = 0 x ∈ D, t ∈ (0,T )

U j (t ,x) = 0 x ∈ ΓD , t ∈ (0,T )

k(x)
∂U j (t ,x)

∂n +α0(x)U j (t ,x) = −α j (x)u0(x) x ∈ ΓR , t ∈ (0,T )

U j (t ,x) = 0 x ∈ D, t = 0.

(4.11)

4.2 Numerical approximation

We assume from now on that f ∈C 0([0,T ];L2(D)), g ∈C 0([0,T ];L2(ΓR )) and ϕ ∈C 0(D̄).

We approximate the solution u0 of problem (4.10) using the (implicit) Backward Euler scheme

in time and (Pk ) finite elements in space. For any τ > 0, let 0 = t0 < t1 < . . . < tM = T be

a discretization of the time interval [0,T ] into M subintervals In = [tn−1, tn] of length τn =
tn − tn−1 ≤ τ, n = 1, . . . , M . Moreover, for any h > 0, let Th be a shape regular (in the sense

of [49]) partition of D into d-simplices K of diameter hK ≤ h and let

Vh = {v ∈C 0(D̄) : v K ∈Pk , ∀K ∈Th}∩V

be the subspace of V constituted of continuous, piecewise polynomial functions on Th .

Remark 4.2.1. Notice that a different mesh could be used for each time step, see e.g. [103], in

which case we would write T n
h and V n

h the mesh and FE space at time tn. This functionality

would be needed for instance when using adaptive algorithms, to allow the spatial meshes to

vary in time. The introduction of an (interpolant) operator between two successive meshes is

then required.

The fully discretized problem reads:

1. Initialization: u0
0,h = rhϕ

2. For n = 1, . . . , M : find un
0,h ∈Vh such that:

∫
D

un
0,h −un−1

0,h

τn
vh +

∫
D

k∇un
0,h ·∇vh +

∫
ΓR

α0un
0,h vh =

∫
D

f n vh +
∫
ΓR

g n vh ∀vh ∈Vh ,

(4.12)

where f n = f (·, tn) and g n = g (·, tn). Finally, we define the global approximation u0,hτ, linear

153



Chapter 4. Time-dependent heat equation with random Robin boundary conditions

on each subinterval In , by

u0,hτ(t ,x) := t − tn−1

τn
un

0,h(x)+ tn − t

τn
un−1

0,h (x) for t ∈ [tn−1, tn], n = 1, . . . , M . (4.13)

4.3 A posteriori error analysis

For ease of notation, we introduce the element and edge residuals R and J defined on each

element K and each edge e by, respectively,

R(u0,hτ) K := f − ∂u0,hτ

∂t
+∇· (k∇u0,hτ) (4.14)

and

J (u0,hτ) e :=

⎧⎪⎨
⎪⎩

1
2 [k∇u0,hτ ·ne ]ne if e ⊂ D

g −α0u0,hτ−k∇u0,hτ ·ne if e ⊂ ΓR

0 if e ⊂ ΓD .

(4.15)

We have denoted by [·]ne the jump across an interior edge e, defined by

[ϕ]ne (x) := lim
t→0+

(
ϕ(x+ tne )−ϕ(x− tne )

)
.

Here, ne is the outer unit normal vector to the edge e if e ⊂ ΓR while for interior edges e ⊂ D , it

is a unit normal vector to e of arbitrary (but fixed) direction. Notice that the choice of direction

is irrelevant since quantities of the type [∇ϕ ·ne ]ne is not affected by this choice, while [ϕ]ne is.

We have now introduced all the ingredients necessary to derive our a posteriori error estimate

for the error e := u −u0,hτ given in the following proposition.

Proposition 4.3.1. Let u be the weak solution of problem (4.1) and let u0,hτ be defined in (4.13).

Then there exists a constant C > 0 depending only on the trace constant and the mesh aspect

ratio such that

E
[
‖(u −u0,hτ)(T )‖2

L2(D)

]
+ Ca

∫T

0
E
[‖u −u0,hτ‖2

V

]
d t ≤

‖ϕ− rhϕ‖2
L2(D) +

C

Ca

M∑
n=1

∑
K∈Th

[∫tn

tn−1

((ηn
K )2 + (γn

K )2 + (θn
K )2)d t

]
,

(4.16)
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where Ca is the constant in (4.7) and

(ηn
K )2 := h2

K ‖R(u0,hτ)‖2
L2(K ) +

∑
e⊂∂K

he‖J (u0,hτ)‖2
L2(e) (4.17)

(γn
K )2 := ‖k∇(u0,hτ−un

0,h)‖2
L2(K ) +‖ f − f n‖2

L2(K ) +
∑

e⊂∂K∩ΓR

‖g − g n −α0(u0,hτ−un
0,h)‖2

L2(e)

(4.18)

(θn
K )2 := ε2

L∑
j=1

‖α j u0,hτ‖2
L2(∂K∩ΓR ). (4.19)

Proof. Let us write e = u −u0,hτ. In what follows, all equations are valid for a.e. t and a.s.

in Ω without necessarily mentioning it. Moreover, C will denote a generic constant, whose

value might change from one occurrence to another, that depends only on the interpolation

constants in (1.26), (1.27) and (1.28), the trace constant in (2.10) and, if ΓD �= �, the Friedrich-

Poincaré constant in (2.5). Thanks to equations (4.12) and (4.13), we have for each vh ∈Vh and

each n ∈ {1, . . . , M }∫
D

∂u0,hτ

∂t
vh +

∫
D

k∇u0,hτ ·∇vh +
∫
ΓR

α0u0,hτvh =
∫

D
f vh +

∫
ΓR

g vh +
∫

D
k∇(u0,hτ−un

0,h) ·∇vh

+
∫
ΓR

α0(u0,hτ−un
0,h)vh +

∫
D

( f n − f )vh

+
∫
ΓR

(g n − g )vh (4.20)

using the fact that ∂u0,hτ

∂t = un
0,h−un−1

0,h

τn
on each time subinterval In , n = 1, . . . , M . Thanks to the

coercivity of a, see (4.7), we have

Ca‖e‖2
V ≤

∫
D

k|∇e|2 +
∫
ΓR

αe2.

We now let n be any value in {1, . . . , M }. Then, for all v ∈V we have

d

d t

∫
D

ev +
∫

D
k∇e ·∇v +

∫
ΓR

αev =
∫

D
f v +

∫
ΓR

g v −
∫

D

∂u0,hτ

∂t
v −

∫
D

k∇u0,hτ ·∇v

−
∫
ΓR

α0u0,hτv −
∫
ΓR

(α−α0)u0,hτv

(4.20)=
∫

D
f (v − Ih v)+

∫
ΓR

g (v − Ih v)−
∫

D

∂u0,hτ

∂t
(v − Ih v)

−
∫

D
k∇u0,hτ ·∇(v − Ih v)−

∫
ΓR

α0u0,hτ(v − Ih v)

−
∫

D
k∇(u0,hτ−un

0,h) ·∇Ih v −
∫
ΓR

α0(u0,hτ−un
0,h)Ih v

−
∫

D
( f n − f )Ih v −

∫
ΓR

(g n − g )Ih v −
∫
ΓR

(α−α0)u0,hτv,

where Ih denotes the Clément interpolant of v . Taking then v = e(t , ·,Y(ω)) a.e. t ∈ In and a.s.
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in Ω in the last inequality, we get

1

2

d

d t
‖e‖2

L2(D) +Ca‖e‖2
V ≤ I+ II+ III (4.21)

with

I := ∑
K∈Th

{∫
K

R(u0,hτ)(e − Ihe)+
∫
∂K

J (u0,hτ)(e − Ihe)

}

II := −
∫

D
k∇(u0,hτ−un

0,h) ·∇Ihe −
∫
ΓR

α0(u0,hτ−un
0,h)Ihe +

∫
D

( f − f n)Ihe +
∫
ΓR

(g − g n)Ihe

III := −
∫
ΓR

(α−α0)u0,hτe

and R and J defined in (4.14) and (4.15), respectively. Notice that the terms I, II and III control

the error due to space discretization, time discretization and truncation in the expansion of u,

respectively. We now bound each of these terms separately.

bound for I: recalling the definition of ηn
K in (4.17), we obtain using a standard procedure the

bound

I ≤C1

( ∑
K∈Th

(ηn
k )2

) 1
2

‖e‖V , (4.22)

where C1 is a positive constant that depends only on the interpolation constants in (1.26) and

(1.28).

bound for II: thanks to the triangle inequality, the interpolation error bounds (1.27) and (1.28)

and the trace inequality (2.10), the following inequalities hold true

‖∇Ihe‖L2(K ) ≤ ‖∇e‖L2(K ) +‖∇(e − Ihe)‖L2(K ) ≤C |e|H 1(N (K )),

‖Ihe‖L2(K ) ≤ ‖e‖L2(K ) +‖e − Ihe‖L2(K ) ≤C (1+hK )‖e‖H 1(N (K )) ≤C‖e‖H 1(N (K )),

‖Ihe‖L2(ΓR ) ≤ CT ‖Ihe‖H 1(D) =CT

[ ∑
K∈Th

(
‖Ihe‖2

L2(K ) +‖∇Ihe‖2
L2(K )

)] 1
2

≤C‖e‖V .

Therefore, regrouping the integrals over the boundary ΓR , we obtain the bound

II ≤ C2

[ ∑
K∈Th

(
‖k∇(u0,hτ−un

0,h)‖2
L2(K ) +‖ f − f n‖2

L2(K )

)

+ ∑
e⊂ΓR

‖g − g n −α0(u0,hτ−un
0,h)‖2

L2(e)

] 1
2

‖e‖V

= C2

( ∑
K∈Th

(γn
K )2

) 1
2

‖e‖V (4.23)

with γn
K given in (4.18) and where C2 is a positive constant that depends only on the constants

in (1.27), (1.28) and (2.10). It additionally depends on the Friedrich-Poincaré constant in (2.5)
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in the case ΓD �= �.

bound for III: for the last term, we easily get

III ≤ ‖(α−α0)u0,hτ‖L2(ΓR )‖e‖L2(ΓR ) ≤C3‖(α−α0)u0,hτ‖L2(ΓR )‖e‖V , (4.24)

where C3 =CT if ΓD =� and C3 =CT

√
1+C 2

F otherwise, with CT and CF given in (2.10) and

(2.5), respectively.

Using the bounds (4.22), (4.23) and (4.24) in (4.21) yields

1

2

d

d t
‖e‖2

L2(D) +Ca‖e‖2
V ≤ C

[ ∑
K∈Th

((ηn
K )2 + (γn

K )2)+‖(α−α0)u0,hτ‖2
L2(ΓR )

] 1
2

‖e‖V

≤ C

2Ca

[ ∑
K∈Th

((ηn
K )2 + (γn

K )2)+‖(α−α0)u0,hτ‖2
L2(ΓR )

]
+ Ca

2
‖e‖2

V

and thus, splitting the integral of the last term of the right-hand side over the elements K we

get
d

d t
‖e‖2

L2(D) +Ca‖e‖2
V ≤ C

Ca

∑
K∈Th

[
(ηn

K )2 + (γn
K )2 +‖(α−α0)u0,hτ‖2

L2(∂K∩ΓR )

]
.

To conclude the proof, we integrate the last inequality over the time subinterval In , we sum

then over n ranging from 1 to M and finally, we take the expected value on both sides recalling

that E[Yi Y j ] = δi j .

4.4 Numerical results

We give here two numerical examples to test the a posteriori error estimate derived in Section

4.3, see Proposition 4.3.1. We use P1 finite elements for the physical space approximation. In

both examples, we set k = I and we consider the case ΓD �= �. Therefore, the error e = u−u0,hτ

with u0,hτ defined in (4.13) is measured with the norm

er r := E

[∫T

0
‖∇e(t , ·, ·)‖2

L2(D)d t

] 1
2

=
(∫

Ω

∫T

0

∫
D
|∇e(t ,x,ω)|2dxd tdP (ω)

) 1
2

. (4.25)

Similarly to [103], we define then the error estimator

est :=
(
w2

ηη
2 +w2

γγ
2 +w2

θθ
2
) 1

2
(4.26)

with weights wη, wγ and wθ to be defined and

η2 =
M∑

n=1

∑
K∈Th

∫tn

tn−1

(ηn
K )2d t , γ2 =

M∑
n=1

∑
K∈Th

∫tn

tn−1

(γn
K )2d t , θ2 =

M∑
n=1

∑
K∈Th

∫tn

tn−1

(θn
K )2d t
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where ηn
K , γn

K and θn
K are defined in (4.17), (4.18) and (4.19), respectively. Notice that η controls

the space discretization, γ the time discretization and θ the truncation in the expansion of u

with respect to ε.

Let D = (0,1)2 with boundary ∂D = ΓD ∪ΓR as in Figure 4.1, let T = 1 and let Y j , j = 1,2,3, be

independent uniform random variables in [−�3,
�

3]. For the first case1, we consider

u0(t , x1, x2) = sin

(
10πt

2

)
sin

(πx1

2

)
sin

(πx2

2

)
and α(x,Y(ω)) =α0(x)+ε

3∑
j=1

α j (x)Y j (ω)

(4.27)

with α0(x) = 1 and α j (x) = χΓR j
(x), χ being the indicator function. We plug then u0 and α0

in (4.9) and compute the corresponding (deterministic) right-hand side f , boundary data g

and initial condition ϕ. For the second case, using the same notation as in Example 4.1.2, we

choose

f = sin(2πx1)t , ϕ= 0, g1 = g2 = g3 = 0, α0 =

⎧⎪⎨
⎪⎩

1 if x ∈ ΓR1

2 if x ∈ ΓR2

1.4 if x ∈ ΓR3

and a1 = 0.9, a2 = 1.2, a3 = 1.

(4.28)

We use a Delaunay triangulation with N equispaced vertices on each side of D for the space

discretization and a uniform time step τ for the time discretization.

Deterministic case

We start considering the case ε= 0. For the first problem, the error is computed with respect

to the exact solution u0 in (4.27) while for the second case (4.28), we use a reference solution

computed with Nr e f = 80 and τr e f = 2−7. Moreover, the constants wη and wγ in (4.26)

have been tuned considering two test problems with exact solutions for (4.9), namely u0 =
sin(πx1/2)sin(πx2/2) (mainly space error) and u0 = sin(πt/2) (mainly time error), leading to

wη = 1/5 and wγ = 1/13.

We give in Table 4.1 the results we get for the first case described in (4.27), considering various

meshes with N = 10,20,30,40 and various time steps τ= 2−4,2−5,2−6,2−7. The results obtained

when computing the error with respect to a reference solution obtained with Nr e f = 80 and

τr e f = 2−9 are also provided, for comparison with the random case below where such reference

discretization parameters are used. The results for the case (4.28) with N = 10,20,40 and

τ= 2−4,2−5,2−6 are provided in Table 4.2.

We see that for the first case (4.27), the error due to time discretization dominates the one due

to the space approximation. The contrary holds for the second case (4.28) where the FE error

is dominant. In both cases, the error estimator that contains the weights wη and wγ provides

1This first example is similar to the case (3a) considered in [103]. The difference is that here we impose Robin
(random) boundary conditions on a part of the boundary.
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4.4. Numerical results

N τ er r wηη wγγ est e.i. er r ref e.i. ref
10 2−4 3.0665e-1 1.0463e-1 3.0351e-1 3.2104e-1 1.0469 2.9537e-1 1.0869
10 2−5 1.6313e-1 7.5454e-2 1.5649e-1 1.7373e-1 1.0650 1.5339e-1 1.1326
10 2−6 9.2626e-2 6.0711e-2 7.8871e-2 9.9531e-2 1.0745 8.415e-2 1.1827
10 2−7 6.2591e-2 5.4026e-2 3.9521e-2 6.6938e-2 1.0695 5.6666e-2 1.1813

20 2−4 3.0436e-1 5.2280e-2 3.0351e-1 3.0798e-1 1.0119 2.9298e-1 1.0512
20 2−5 1.5801e-1 3.7632e-2 1.5649e-1 1.6095e-1 1.0186 1.4795e-1 1.0879
20 2−6 8.2734e-2 3.0209e-2 7.8869e-2 8.4457e-2 1.0208 7.3232e-2 1.1533
20 2−7 4.6377e-2 2.6833e-2 3.9520e-2 4.7768e-2 1.0300 3.8267e-2 1.2483

40 2−4 3.0383e-1 2.5771e-2 3.0351e-1 3.0460e-1 1.0025 2.9242e-1 1.0416
40 2−5 1.5679e-1 1.8571e-2 1.5649e-1 1.5759e-1 1.0051 1.4665e-1 1.0746
40 2−6 8.0254e-2 1.4930e-2 7.8869e-2 8.0270e-2 1.0002 7.0421e-2 1.1399
40 2−7 4.1706e-2 1.3278e-2 3.9520e-2 4.1691e-2 0.9996 3.2461e-2 1.2843

80 2−4 3.0369e-1 1.2951e-2 3.0351e-1 3.0378e-1 1.0003 2.9222e-1 1.0396
80 2−5 1.5648e-1 9.3271e-3 1.5649e-1 1.5677e-1 1.0019 1.4616e-1 1.0726
80 2−6 7.9614e-2 7.4936e-3 7.8869e-2 7.9224e-2 0.9951 6.9327e-2 1.1428
80 2−7 4.0438e-2 6.6615e-3 3.9520e-2 4.0077e-2 0.9911 2.9953e-2 1.3380

Table 4.1: Error, estimators and effectivity index for the first case (4.27) with ε= 0.

N τ er r wηη wγγ est e.i.
10 2−4 9.8673e-3 1.0500e-2 2.4507e-3 1.0782e-2 1.0928
10 2−5 9.8634e-3 1.0491e-2 1.2254e-3 1.0562e-2 1.0708
10 2−6 9.8624e-3 1.0488e-2 6.1275e-4 1.0506e-2 1.0653

20 2−4 5.1306e-3 5.2838e-3 2.4512e-3 5.8247e-3 1.1353
20 2−5 5.1233e-3 5.2790e-3 1.2257e-3 5.4194e-3 1.0578
20 2−6 5.1217e-3 5.2777e-3 6.1287e-4 5.3131e-3 1.0374

40 2−4 2.7265e-3 2.6335e-3 2.4513e-3 3.5978e-3 1.3196
40 2−5 2.7129e-3 2.6311e-3 1.2257e-3 2.9026e-3 1.0699
40 2−6 2.7099e-3 2.6304e-3 6.1290e-4 2.7009e-3 0.9967

Table 4.2: Error, estimators and effectivity index for the second case (4.28) with ε= 0.
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Chapter 4. Time-dependent heat equation with random Robin boundary conditions

an efficient estimation of the error, the effectivity index being close to 1.

Random case

Let us now analyse the random case. The true error er r in (4.25) is computed using the

standard Monte-Carlo method with sample size K = 100. Moreover, for the first case (4.27), the

reference solution is computed using Nr e f = 80 and τr e f = 2−9 while we use again Nr e f = 80

and τr e f = 2−7 for the second case (4.28). We choose wθ = 1/3 in (4.26), value obtained by

considering either case with the same mesh for the approximation and the reference solution,

for instance with the coarsest mesh parameters N = 10 and τ= 2−4. Notice that we get similar

value for the case N = Nr e f and τ= τr e f . We report in Tables 4.3, 4.4 and 4.5 the results we get

for the first example (4.27) with ε= 0.4, ε= 0.2 and ε= 0.1, respectively.

N τ er r wηη wγγ wθθ est e.i.
10 2−4 3.0838e-1 1.0463e-1 3.0351e-1 8.1729e-2 3.3128e-1 1.0742
10 2−5 1.8362e-1 7.5454e-2 1.5649e-1 8.6368e-2 1.9402e-1 1.0566
10 2−6 1.3418e-1 6.0711e-2 7.8871e-2 8.9909e-2 1.3413e-1 0.9996
10 2−7 1.1464e-1 5.4026e-2 3.9521e-2 9.2003e-2 1.1378e-1 0.9925

20 2−4 3.1287e-1 5.2280e-2 3.0351e-1 8.1727e-2 3.1864e-1 1.0184
20 2−5 1.8145e-1 3.7632e-2 1.5649e-1 8.6356e-2 1.8265e-1 1.0067
20 2−6 1.2883e-1 3.0209e-2 7.8869e-2 8.9889e-2 1.2334e-1 0.9574
20 2−7 1.0510e-1 2.6833e-2 3.9520e-2 9.1978e-2 1.0364e-1 0.9861

40 2−4 3.1236e-1 2.5771e-2 3.0351e-1 8.1726e-2 3.1537e-1 1.0097
40 2−5 1.7917e-1 1.8571e-2 1.5649e-1 8.6352e-2 1.7970e-1 1.0029
40 2−6 1.2198e-1 1.4930e-2 7.8869e-2 8.9884e-2 1.2051e-1 0.9880
40 2−7 1.0494e-1 1.3278e-2 3.9520e-2 9.1971e-2 1.0098e-1 0.9622

80 2−4 3.0781e-1 1.2951e-2 3.0351e-1 8.1726e-2 3.1458e-1 1.0220
80 2−5 1.8436e-1 9.3271e-3 1.5649e-1 8.6352e-2 1.7898e-1 0.9708
80 2−6 1.1655e-1 7.4936e-3 7.8869e-2 8.9882e-2 1.1981e-1 1.0280
80 2−7 1.0339e-1 6.6615e-3 3.9520e-2 9.1970e-2 1.0032e-1 0.9703

Table 4.3: Error, estimators and effectivity index for the first case (4.27) with ε= 0.4.

By analysing the results for this first case, we see that the (weighted) error estimator defined in

(4.26) provides a good control of the error. Indeed, the effectivity index remains close to one for

any value of N , τ and ε. Moreover, examining the behaviour of the error into more details, we

see that each contribution wηη, wγγ and wθθ efficiently controls the error. For instance, let us

consider the case N = 80 for which the FE error is negligible. When ε= 0.1, the time estimator

is dominant for any value of τ and the error is indeed divided by two when τ is halved. On the

contrary, for ε= 0.4, the stochastic estimator is dominant for τ= 2−6 and τ= 2−7 and we can

indeed observe it on the error: for the various time steps, the error decreases by a factor 1.67,
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4.4. Numerical results

N τ er r wηη wγγ wθθ est e.i.
10 2−4 3.0097e-1 1.0463e-1 3.0351e-1 4.0865e-2 3.2363e-1 1.0753
10 2−5 1.6461e-1 7.5454e-2 1.5649e-1 4.3184e-2 1.7902e-1 1.0875
10 2−6 9.8203e-2 6.0711e-2 7.8871e-2 4.4955e-2 1.0921e-1 1.1121
10 2−7 7.3308e-2 5.4026e-2 3.9521e-2 4.6002e-2 8.1221e-2 1.1079

20 2−4 2.9975e-1 5.2280e-2 3.0351e-1 4.0863e-2 3.1068e-1 1.0365
20 2−5 1.5843e-1 3.7632e-2 1.5649e-1 4.3178e-2 1.6664e-1 1.0518
20 2−6 8.6561e-2 3.0209e-2 7.8869e-2 4.4945e-2 9.5671e-2 1.1052
20 2−7 6.2790e-2 2.6833e-2 3.9520e-2 4.5989e-2 6.6308e-2 1.0560

40 2−4 2.9500e-1 2.5771e-2 3.0351e-1 4.0863e-2 3.0733e-1 1.0418
40 2−5 1.5450e-1 1.8571e-2 1.5649e-1 4.3176e-2 1.6340e-1 1.0576
40 2−6 8.8589e-2 1.4930e-2 7.8869e-2 4.4942e-2 9.1995e-2 1.0384
40 2−7 5.9959e-2 1.3278e-2 3.9520e-2 4.5986e-2 6.2071e-2 1.0352

80 2−4 2.9687e-1 1.2951e-2 3.0351e-1 4.0863e-2 3.0652e-1 1.0325
80 2−5 1.5454e-1 9.3271e-3 1.5649e-1 4.3176e-2 1.6260e-1 1.0522
80 2−6 8.6499e-2 7.4936e-3 7.8869e-2 4.4941e-2 9.1084e-2 1.0530
80 2−7 5.5422e-2 6.6615e-3 3.9520e-2 4.5985e-2 6.0998e-2 1.1006

Table 4.4: Error, estimators and effectivity index for the first case (4.27) with ε= 0.2.

N τ er r wηη wγγ wθθ est e.i.
10 2−4 2.9570e-1 1.0463e-1 3.0351e-1 2.0432e-2 3.2169e-1 1.0879
10 2−5 1.5506e-1 7.5454e-2 1.5649e-1 2.1592e-2 1.7507e-1 1.1291
10 2−6 8.7940e-2 6.0711e-2 7.8871e-2 2.2477e-2 1.0204e-1 1.1603
10 2−7 6.1673e-2 5.4026e-2 3.9521e-2 2.3001e-2 7.0780e-2 1.1477

20 2−4 2.9410e-1 5.2280e-2 3.0351e-1 2.0432e-2 3.0865e-1 1.0495
20 2−5 1.5116e-1 3.7632e-2 1.5649e-1 2.1589e-2 1.6239e-1 1.0743
20 2−6 7.7490e-2 3.0209e-2 7.8869e-2 2.2472e-2 8.7395e-2 1.1278
20 2−7 4.6148e-2 2.6833e-2 3.9520e-2 2.2995e-2 5.3015e-2 1.1488

40 2−4 2.9313e-1 2.5771e-2 3.0351e-1 2.0431e-2 3.0528e-1 1.0415
40 2−5 1.4913e-1 1.8571e-2 1.5649e-1 2.1588e-2 1.5906e-1 1.0666
40 2−6 7.4518e-2 1.4930e-2 7.8869e-2 2.2471e-2 8.3356e-2 1.1186
40 2−7 4.1056e-2 1.3278e-2 3.9520e-2 2.2993e-2 4.7611e-2 1.1596

80 2−4 2.9480e-1 1.2951e-2 3.0351e-1 2.0431e-2 3.0447e-1 1.0328
80 2−5 1.4910e-1 9.3271e-3 1.5649e-1 2.1588e-2 1.5825e-1 1.0613
80 2−6 7.4526e-2 7.4936e-3 7.8869e-2 2.2471e-2 8.2349e-2 1.1050
80 2−7 3.8214e-2 6.6615e-3 3.9520e-2 2.2992e-2 4.6204e-2 1.2091

Table 4.5: Error, estimators and effectivity index for the first case (4.27) with ε= 0.1.
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Chapter 4. Time-dependent heat equation with random Robin boundary conditions

1.58 and 1.13. The case ε= 0.2 presents an intermediate stage with ratios 1.92, 1.79 and 1.56.

Similar reasoning can be made for any other cases, namely that the saturation of the error is

well explained by the domination of one of the error estimators. To conclude on this example,

we finally mention that the slight increase of e.i. when τ decreases in Table 4.5 is due to the

fact that the error is computed with respect to a reference solution. Indeed, if we consider

the deterministic case ε= 0 with N = 80 and τ= 2−7, the error with respect to the reference

solution is 0.0299529 yielding an effectivity index of about 1.36, see also Table 4.1.

The results for the second case with ε = 0.5 and ε = 0.25 are provided in Tables 4.6 and 4.7,

respectively.

N τ er r wηη wγγ wθθ est e.i.
10 2−4 1.0989e-2 1.0500e-2 2.4507e-3 5.2493e-3 1.1992e-2 1.0913
10 2−5 1.1020e-2 1.0491e-2 1.2254e-3 5.2393e-3 1.1790e-2 1.0699
10 2−6 1.1140e-2 1.0488e-2 6.1275e-4 5.2356e-3 1.1738e-2 1.0537

20 2−4 7.2634e-3 5.2838e-3 2.4512e-3 5.2568e-3 7.8461e-3 1.0802
20 2−5 7.1864e-3 5.2790e-3 1.2257e-3 5.2469e-3 7.5432e-3 1.0496
20 2−6 6.8839e-3 5.2777e-3 6.1287e-4 5.2431e-3 7.4646e-3 1.0844

40 2−4 5.7040e-3 2.6335e-3 2.4513e-3 5.2591e-3 6.3720e-3 1.1171
40 2−5 5.3548e-3 2.6311e-3 1.2257e-3 5.2491e-3 5.9982e-3 1.1202
40 2−6 5.5691e-3 2.6304e-3 6.1290e-4 5.2454e-3 5.8999e-3 1.0594

Table 4.6: Error, estimators and effectivity index for the second case (4.28) with ε= 0.5.

N τ er r wηη wγγ wθθ est e.i.
10 2−4 1.0142e-2 1.0500e-2 2.4507e-3 2.6247e-3 1.1097e-2 1.0942
10 2−5 1.0155e-2 1.0491e-2 1.2254e-3 2.6197e-3 1.0882e-2 1.0717
10 2−6 1.0167e-2 1.0488e-2 6.1275e-4 2.6178e-3 1.0827e-2 1.0650

20 2−4 5.7001e-3 5.2838e-3 2.4512e-3 2.6284e-3 6.3903e-3 1.1211
20 2−5 5.6392e-3 5.2790e-3 1.2257e-3 2.6234e-3 6.0210e-3 1.0677
20 2−6 5.6824e-3 5.2777e-3 6.1287e-4 2.6216e-3 5.9247e-3 1.0426

40 2−4 3.6562e-3 2.6335e-3 2.4513e-3 2.6296e-3 4.4563e-3 1.2188
40 2−5 3.6174e-3 2.6311e-3 1.2257e-3 2.6246e-3 3.9132e-3 1.0818
40 2−6 3.6337e-3 2.6304e-3 6.1290e-4 2.6227e-3 3.7647e-3 1.0361

Table 4.7: Error, estimators and effectivity index for the second case (4.28) with ε= 0.25.

Looking at the estimators for the case ε = 0.5, we see that the FE error is dominant when

N = 10, the FE and stochastic errors balanced for N = 20 and the stochastic error is dominant

when N = 40. We indeed observe this behaviour for the error. First, it remains more or less

constant when changing the time step. Moreover, it decreases by a factor about 1.6 when
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4.4. Numerical results

doubling N from 10 to 20, while the reduction of the error is only about 1.2 from N = 20 to

N = 40. When diminishing the level of uncertainty, taking ε = 0.25, the stochastic error is

lower and the error decreases by a factor 1.8 when increasing N from 10 to 20 and a factor 1.6

comparing the error for N = 20 and N = 40. Finally, the FE and stochastic error estimators are

balanced when N = 40.

Conclusions

We have considered in this chapter the heat equation with random Robin boundary conditions.

Under the assumption of small uncertainty, we have used a perturbation technique for the

stochastic space approximation. In addition, the finite element method and the (implicit)

backward Euler scheme have been used for the space and time discretizations, respectively.

The a posteriori error estimator we have obtained for the approximation of the first term in the

expansion consists in three distinct terms controlling each source of error. In the numerical

experiments, we have introduced a weighted error estimator, with weights tuned numerically,

and we have tested its efficiency on two different examples.
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5 Error analysis for the stochastic collo-
cation method

Introduction

In the previous chapters, we have used a perturbation approach for the stochastic space

approximation. Such technique is no longer appropriate for problems with large variability.

An alternative is to use the stochastic Galerkin or the stochastic collocation methods that

present potentially much faster convergence rate than Monte-Carlo type methods and can

handle large uncertainties. The advantage of the stochastic collocation method is that, as

sampling methods, it requires only the solution of decoupled deterministic problems and

thus allows the re-usability of deterministic solvers. However, it suffers from the so-called

curse of dimensionality when tensor grids are used, namely the performance of the method

deteriorates as the number of random variables increases. A remedy is then to exploit the

possible anisotropy of the solution, in the sense that the different random variables might

not have the same influence on the solution. Example of works in this direction are the

anisotropic sparse grid method proposed in [96] or the quasi-optimal sparse grids method

introduced in [20]. In the latter, the adaptive algorithm is based on a priori error estimates

whose constants are numerically tuned during the process, yielding what the authors called

an a priori/a posteriori strategy for which the proof of convergence has been obtained in [94].

An a posteriori sparse grid algorithm has been proposed in [95], where the adaptive process is

driven by profit indicators obtained by solving additional PDEs. The method is applicable to a

wide range of problems, including for instance the case of unbounded random variables or

non-nested grids and can be combined with a Monte Carlo sampling, using a control variate

technique, to handle rough random field [98]. However, the error indicators proposed so far

are heuristic and do not provide a certified control of the error. The goal here is to derive

a guaranteed upper bound of the error and use the stochastic error estimator to steer an

adaptive process yielding an approximate solution with prescribed accuracy.

In this chapter, we thus present a residual-based a posteriori error estimate accounting both

the stochastic collocation and the Finite Element error. We consider again the model problem

of Chapter 1, namely a diffusion equation with a random diffusion coefficient that depends
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Chapter 5. Error analysis for the stochastic collocation method

in an affine manner of a finite number of random variables. We start by briefly recalling the

SC method before presenting the error estimate. We give then possible adaptive algorithms,

focusing on the stochastic space adaptation since the physical space adaptation can be done

following a standard procedure. Finally, we give some preliminary numerical results to test

the efficiency of a simple version of our sparse grid adaptive strategy.

5.1 Problem statement

Let D ⊂ Rd be an open bounded domain with Lipschitz continuous boundary ∂D and let

(Ω,F ,P ) be a complete probability space. We consider the diffusion problem:

find u : D ×Ω→R such that P-a.e. in Ω, in other words a.s. in Ω, the following equation holds{
−div(a(x,ω)∇u(x,ω)) = f (x) x ∈ D

u(x,ω) = 0 x ∈ ∂D
(5.1)

with deterministic forcing term f ∈ L2(D) and random field a on (Ω,F ,P ) over L∞(D). We

assume that the random diffusion coefficient a is uniformly bounded from below and above

and that it depends affinely on a finite number of random variables. More precisely, we assume

that a satisfies the two following properties:

∃0 < ami n ≤ amax <∞ : P (ω ∈Ω : ami n ≤ a(x,ω) ≤ amax ∀x ∈ D̄) = 1. (5.2)

and

a(x,ω) = a0(x)+
N∑

n=1
an(x)Yn(ω), (5.3)

where {Yn}N
n=1 are independent random variables. Thanks to the Doob-Dynkin Lemma, the

solution u depends on the same random variables as the diffusion coefficient a, i.e. we

have u(x,ω) = u(x,Y1(ω), . . . ,YN (ω)). Let us introduce Γ = Γ1 × . . .×ΓN with Γn = Yn(Ω) for

n = 1, . . . , N . Moreover, let ρ : Γ→R+ be the joint probability density function of the random

vector Y = (Y1, . . . ,YN ), which factorizes as ρ(y) = ΠN
n=1ρn(yn) for all y = (y1, . . . , yN ) ∈ Γ. We

can then replace the probability space (Ω,F ,P ) by (Γ,B(Γ),ρ(y)dy), where B(Γ) denotes the

Borel σ-algebra defined on Γ and ρ(y)dy the probability measure of Y. Finally, we define the

Bochner space

L2
ρ(Γ; H 1

0 (D)) := {v : Γ→ H 1
0 (D) |v is strongly measurable and ‖v‖L2

ρ(Γ;H 1
0 (D)) <∞} (5.4)

with

‖v‖L2
ρ(Γ;H 1

0 (D)) :=
(∫

Γ
‖∇v(y)‖2

L2(D)ρ(y)dy
) 1

2

.
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5.2. Stochastic collocation finite element method

The (parametric, pointwise) weak formulation of problem (5.1) reads:

find u : Γ→ H 1
0 (D) such that

∫
D

a(x,y)∇u(x,y) ·∇v(x)dx =
∫

D
f (x)v(x)dx ∀v ∈ H 1

0 (D), ρ-a.e. in Γ. (5.5)

By a straightforward application of Lax-Milgram’s lemma, assumption (5.2) ensures the well-

posedness of problem (5.5), namely that there exists a unique solution u ∈ L2
ρ(Γ; H 1

0 (D)) which

satisfies the a priori estimate

‖u‖L2
ρ(Γ;H 1

0 (D)) ≤
CP

ami n
‖ f ‖L2(D).

Moreover, it has been shown (see for instance [7]) that the parametric solution u of problem

(5.5) is analytic with respect to each parameter yn ∈ Γn , n = 1, . . . , N .

5.2 Stochastic collocation finite element method

In this section, we briefly present the stochastic collocation finite element method (SC-FEM

for short) for solving numerically PDEs with random input data, following closely [115] and

focusing on the model problem (5.1). We also refer to [7, 124] for a complete discussion on

this method. The idea is to proceed in two steps: first a semi-discretization of problem (5.5)

using the FEM for the physical space approximation and then the application a collocation

method for the stochastic space approximation using global polynomials in y. We thus seek

for an approximate solution in a space P(Γ)⊗Vh , with P(Γ) ⊂ L2
ρ(Γ) a polynomial space on Γ

and Vh a FE subspace of V = H 1
0 (D).

More precisely, for any h > 0, let Th be a regular triangulation of D with elements T of diameter

hT ≤ h. We assume that the exists a constant c > 0 satisfying

hT

ρT
≤ c ∀T ∈Th ,∀h > 0 (5.6)

where ρT = sup{di am(B) : B is a ball contained in T }. We consider Vh ⊂ V a finite element

space of dimension Nh constituted of continuous piecewise polynomials on Th . The semi-

discretized problem is therefore given by:

find uh : Γ→Vh such that∫
D

a(x,y)∇uh(x,y) ·∇vh(x)dx =
∫

D
f (x)vh(x)dx ∀vh ∈Vh ,ρ-a.e. in Γ. (5.7)

The problem (5.7) is then further discretized by considering a set {y1, . . . ,yNc } of Nc collocation
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Chapter 5. Error analysis for the stochastic collocation method

points in Γ and building the global polynomial approximation

uh,Nc (y) =
Nc∑

k=1
uh(yk )Lk (y) (5.8)

for appropriate multivariate (for instance Lagrange) polynomials Lk , where uh(yk ) is the

solution of problem (5.7) with y = yk . Notice that if Lk satisfies Lk (yl ) = δkl , then the method

presented above for the stochastic space approximation is a collocation method in the sense

of [109], see [124].

A possible choice for the collocation points yk ∈ Γ is to take the Cartesian product of the abscis-

sas in each direction. However, using such tensor grid would rapidly become computationally

unaffordable due to the curse of dimensionality: the number of nodes increases exponentially

with N . To alleviate this drawback, the idea is to use a so-called sparse grid, first introduced by

Smolyak in [113]. Let us define

U
m(in )
n : C 0(Γn) →Pm(in )−1(Γn) (5.9)

a sequence of univariate polynomial interpolant operators along each direction Γn for n =
1, . . . , N . Here, m(in) denotes the number of collocation points used to build the interpolant

of level in and Pq (Γn) is the space of polynomials in yn of degree at most q . The function

m should satisfy m(0) = 0, m(1) = 1 and m(i ) < m(i +1) for any i ≥ 1. Moreover, let I ⊂NN+
be a multi-index set, where N+ = {1,2, . . .} denotes the positive integers. Setting U 0

n = 0 for

n = 1, . . . , N , we define then the sparse grid interpolant SI by

uh,I (y) = SI [uh](y) =∑
i∈I

Δm(i)(uh)(y) (5.10)

where

Δm(i) =
N⊗

n=1
Δ

m(in )
n =

N⊗
n=1

(
U

m(in )
n −U

m(in−1)
n

)

and m(i) = (m(i1), . . . ,m(iN )). The operators Δm(in )
n and Δm(i) are often referred to as difference

(or detail) and hierarchical surplus operators, respectively. In what follows, we assume that

uh(y) = ∑
i∈NN+

Δm(i)(uh)(y) ρ-a.e. in Γ, (5.11)

which holds if u is sufficiently smooth in y and if the operators U
m(in )
n in (5.9) are such that⊗N

n=1 U
m(in )
n u → u in V as i →∞. Finally, we mention that the operator SI in (5.10) can be

equivalently written as a linear combination of tensor grid interpolations, see for instance [122],

as

SI [uh](y) =∑
i∈I

ci

N⊗
n=1

U
m(in )
n (uh)(y), ci =

∑
j∈{0,1}N

(i+j)∈I

(−1)|j| (5.12)

in which many of the coefficients ci are actually zero, namely whenever i+1 ∈ I . We then call
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5.2. Stochastic collocation finite element method

sparse grid the set of Nc collocation points needed by (5.12) to compute SI [uh]. To summarize,

the sparse grid interpolant SI is characterized by the multi-index set I , the function m defining

the number of collocation points on each level and the type of univariate nodes. One example,

see for instance [18], is to consider

I (l ) = {i ∈NN
+ :

N∑
n=1

(in −1) ≤ l }

with

m(i ) =

⎧⎪⎨
⎪⎩

0 if i = 0

1 if i = 1

2i−1 +1 if i > 1

(5.13)

and Clenshaw-Curtis nodes, yielding nested grids. Here l denotes the level of the sparse

grid. Remark that I must contain the multi-index 1, which allows to approximate constant

functions.

In what follows, the only restriction on I will be that it is a downward closed set (a.k.a. lower

set), i.e. it satisfies

∀i ∈ I , i−e j ∈ I ∀ j = 1, . . . , N such that i j > 1. (5.14)

We give in Figure 5.1 an example of two multi-index sets satisfying or not this condition. The

set on the left does not satisfy (5.14) because (3,2) is in the set while (2,2) is not. This condition

is necessary to get good approximation properties, see for instance [66]. Moreover, our error

estimate will only be valid in the case SI is interpolatory, i.e. it satisfies SI [ f ](yk ) = f (yk ) for

k = 1, . . . , Nc where {y1, . . . ,yNc } are the collocation points in the sparse grid underlying the

multi-index set I and function m. Notice that such property requires the use of nested nodes.

Finally, we introduce the notion of margin MI , reduced margin RI and boundary ∂I of a

multi-index set I , see Figure 5.1-right for an illustration, defined respectively by

MI = {i ∈NN
+ \ I : i−en ∈ I for some n ∈ {1, . . . , N }}

RI = {i ∈ MI : i−en ∈ I for all n = 1, . . . , N with in > 1}

∂I = {i ∈ I : i+en �∈ I for some 1 ≤ n ≤ N }.

Notice that for a downward closed multi-index set I and j �∈ I , then I ∪ {j} is downward closed

if and only if j ∈ RI .

From now on, unless otherwise clearly stated, we assume that I is downward closed and that

the operator SI is interpolatory.
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Figure 5.1: Non-downward closed set (left), downward closed set (middle) and multi-index set
with its margin and reduced margin (right).

5.3 Residual-based a posteriori error estimate

We will now derive an a posteriori error estimate for the error u −SI [uh] which consists of two

parts controlling the finite element and stochastic collocation errors, respectively. We first

give two results that we will use in the derivation of the error estimate.

Proposition 5.3.1. Let SI be the operator defined in (5.10). Then for any f , g ∈C 0(Γ) we have

SI [ f g ] = SI [ f SI [g ]].

Proof. Since SI is assumed to be interpolatory, we have SI [g ](yk ) = g (yk ) for all k = 1, . . . , Nc .

By the definition of SI , we get then for any y ∈ Γ

SI [ f SI [g ]](y) =
Nc∑

k=1

(
f SI [g ]

)
(yk )Lk (y) =

Nc∑
k=1

f (yk )SI [g ](yk )Lk (y)

=
Nc∑

k=1
f (yk )g (yk )Lk (y) = SI [ f g ](y).

For any multi-index set I , let us define the polynomial space PI by

PI =
∑
i∈I

Pm(i1)−1 ⊗ . . .⊗Pm(iN )−1.

Notice that since we are using nested points, we have Nc = dim(PI ) with Nc the number of

collocation points in the sparse grid. Moreover, we have the following crucial approximation

properties.
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5.3. Residual-based a posteriori error estimate

Proposition 5.3.2. Let SI be the operator defined if (5.10). Then

1. SI [ f ] ∈PI ∀ f ∈C 0(Γ)

2. SI is exact on PI , i.e. SI [ f ] = f ∀ f ∈PI .

Proof. See [11].

Finally, we introduce the (generalized) jump of a function ϕ across an edge e ∈ Th in the

direction of ne as in Chapter 1 by

[ϕ]ne (x) :=
{

limt→0+
(
ϕ(x+ tne )−ϕ(x− tne )

)
if e �⊂ ∂D

0 if e ⊂ ∂D.

We can now state our residual-based a posteriori error estimate.

Proposition 5.3.3. Let u and uh be the solutions of (5.5) and (5.7), respectively and let SI [uh]

be the sparse grid approximation of uh computed using the multi-index set I . There exists a

constant C > 0 depending only on the mesh aspect ratio such that for any p ∈ [1,∞] we have

‖u −SI [uh]‖Lp
ρ (Γ;V ) ≤

1

ami n

[
CηI +ζI

]
, (5.15)

where

ηI =
Nc∑

k=1
ηI ,k‖Lk‖Lp

ρ (Γ), ηI ,k :=
( ∑

T∈Th

η2
I ,k,T

) 1
2

(5.16)

with

ηI ,k,T := h2
T ‖ f +∇· (a(yk )∇uh(yk ))‖2

L2(D) +
∑

e⊂∂T
he‖1

2
[a(yk )∇uh(yk ) ·ne ]ne‖2

L2(e) (5.17)

and

ζI =
∑

i∈MI

ζI ,i, ζI ,i := ‖Δm(i) (a∇SI [uh])‖Lp
ρ (Γ;L2(D)). (5.18)

Proof. In what follows, all equations hold ρ-a.e. in Γ without specifically mentioning it.

Moreover, the dependence of each function on variables will not necessarily be indicated,

unless ambiguity arises. For any v ∈V we have∫
D

a∇(u −SI [uh]) ·∇v =
∫

D
f v −

∫
D

a∇SI [uh] ·∇v

= SI

[∫
D

f v −
∫

D
a∇uh ·∇v

]
︸ ︷︷ ︸

=:I

+SI

[∫
D

a∇uh ·∇v

]
−
∫

D
a∇SI [uh] ·∇v︸ ︷︷ ︸

=:II

. (5.19)
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For the second equality, we have used that f is assumed to be deterministic and thus SI [ f ] = f

for any multi-index set I . We analyse the terms I and II separately. For the first term, thanks to

the Galerkin orthogonality we have

I =
Nc∑

k=1

[∫
D

f v −
∫

D
a(yk )∇uh(yk ) ·∇v

]
Lk (y)

=
Nc∑

k=1

[∫
D

f (v − vh)−
∫

D
a(yk )∇uh(yk ) ·∇(v − vh)

]
Lk (y) (5.20)

for any vh ∈Vh . We take vh = Ih v the Clément interpolant of v for which we have the following

interpolation error bounds, see also (1.26) and (1.28)

‖v − Ih v‖L2(T ) ≤C hT ‖∇v‖L2(N (T )) and ‖v − Ih v‖L2(e) ≤C h
1
2
e ‖∇v‖L2(N (Te )) (5.21)

for any element T and any edge e. Here, for an internal edge e, Te is the union of the two

elements touching e and N (T ) (resp. N (Te )) denotes the patch of elements associated to T

(resp. Te ). After splitting the integral in (5.20) over each element T and integrating by part, we

obtain

I ≤C
Nc∑

k=1
|Lk (y)|ηI ,k‖∇v‖L2(D) (5.22)

with ηI ,k defined in (5.16). Notice that this term ηI ,k is deterministic, namely it does not

depend on y. It controls the FE error made when solving approximately the problem for

the collocation point yk . We now bound the second term II. We first notice that, thanks to

Proposition 5.3.1, we have SI [a∇uh] = SI [a∇SI [uh]] since SI is assumed to be interpolatory.

Therefore, using relation (5.11) we get

II =
∫

D
(SI [a∇SI [uh]]−a∇SI [uh]) ·∇v =−

∫
D

∑
i�∈I

Δm(i)(a∇SI [uh]) ·∇v

= −
∫

D

∑
i∈MI

Δm(i)(a∇SI [uh]) ·∇v

≤ ‖ ∑
i∈MI

Δm(i)(a∇SI [uh])‖L2(D)‖∇v‖L2(D). (5.23)

We have used the fact that a depends in an affine way on the random variables, see (5.3), to

restrict the summation over the multi-indices of the margin MI of I . Indeed, by Proposition

5.3.2 we have

SI [uh] ∈PI , where PI =
∑
i∈I

Pm(i)−1 with Pm(i)−1 =Pm(i1)−1 ⊗ . . .⊗Pm(iN )−1

and by assumption

a ∈P0 +
N∑

n=1
Pen , with Pen =P0 ⊗ . . .⊗P0 ⊗ P1︸︷︷︸

nth i ndex

⊗P0 . . .⊗P0.
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5.3. Residual-based a posteriori error estimate

Therefore, we have a∇SI [uh] ∈∑N
n=1

∑
i∈I Pm(i)−1+en ⊂PI∪MI and thus

Δm(i) (a∇SI [uh]) = 0 ∀ i �∈ I ∪MI (5.24)

using again Proposition 5.3.2, namely that SI∪MI is exact on PI∪MI . Thanks to the uniform

lower bound ami n on a, taking then v = u(y)−SI [uh](y) in (5.19) and using the bounds (5.22)

and (5.23) for the terms I and II, respectively, yields

‖∇(u(y)−SI [uh](y))‖L2(D) ≤
1

ami n

(
C

Nc∑
k=1

|Lk (y)|ηI ,k +‖ ∑
i∈MI

Δm(i)(a∇SI [uh])(y)‖L2(D)

)
. (5.25)

To conclude the proof, it only remains to take the Lp
ρ (Γ) norm on both sides of the last inequality

and to use the triangle inequality for the norm Lp
ρ (Γ;L2(D)) to take out the sum over the multi-

indices i ∈ MI .

Notice that in this proof, we have strongly used the fact that SI is interpolatory and that

a depends in an affine way on the random variables. The latter allows us to restrict the

summation over all the multi-indices outside I in the bound of II to the multi-indices belonging

to the margin MI . Moreover, it is worth mentioning that equation (5.25) yields a pointwise (in

y) error estimate.

Remark 5.3.4. The spatial error estimate ηI in (5.16) depends on ‖Lk (y)‖Lp
ρ (Γ), k = 1, . . . , Nc ,

i.e. on the stability constant of the operator SI . These quantities can be bounded using the

Lebesgue constant for SI , whose growth depends on the choice of the function m and the family

of interpolation points used by U m(i )
n , n = 1, . . . , N . For instance, when using a doubling rule for

m as in (5.13) and Clenshaw-Curtis nodes, the Lebesgue constant associated with the operator

SI can be bounded by |I |2 [45]. As an alternative, we could bound the term I in (5.20) as follows

I = ∑
T∈Th

[∫
T

Nc∑
k=1

Lk (y)( f +∇· (a(yk )∇uh(yk )))(v − vh)+

1

2

∑
e⊂∂T

∫
e

Nc∑
k=1

Lk (y)[a(yk )∇uh(yk ) ·ne ]ne (v − vh)

]

≤ C

( ∑
T∈Th

η2
I ,T

) 1
2

‖∇v‖L2(D)

with

ηI ,T (y)2 := h2
T ‖

Nc∑
k=1

Lk (y)( f +∇·(a(yk )∇uh(yk )))‖2
L2(T )+

∑
e⊂∂T

he‖1

2

Nc∑
k=1

[a(yk )∇uh(yk )·ne ]ne‖2
L2(e).

(5.26)
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Since
(∑

T∈Th
η2

I ,T

) 1
2 ≤∑

T∈Th
ηI ,T , we can then replace (5.15) by

‖u −SI [uh]‖Lp
ρ (Γ;V ) ≤

1

ami n

[
C

∑
T∈Th

‖ηI ,T ‖Lp
ρ (Γ) +ζI

]
. (5.27)

Mesh refinement, using the error estimate of Proposition 5.3.3 or the one proposed here would

lead to different adaptive strategies. The estimator in (5.16) gives an estimation of the spatial

error for each collocation point, that is further localized on each element T ∈Th. Indeed, the

estimator ηI ,k,T in (5.17) is an indicator of the FE error for element T and collocation point

yk . Therefore, different spatial meshes could be considered for each collocation point. On the

contrary, the estimator in (5.26) gives an estimation of the spatial error for each element T ∈Th

and contains the contribution of all the collocation point. In this case, the same spatial mesh

would then be used for all the collocation points.

5.3.1 An abstract reformulation of the problem

We consider the (pointwise in y) abstract problem:

find: u(y) ∈V such that A (u, v ;y) =F (v ;y) ∀v ∈V , ρ-a.e. in Γ. (5.28)

Using the finite element method for the physical space approximation, we get the following

semi-discretized problem:

find uh(y) ∈Vh such that A (uh , vh ;y) =F (vh ;y) ∀vh ∈Vh , ρ-a.e. in Γ. (5.29)

Lax-Milgram’s lemma ensures the well-posedness of problems (5.28) and (5.29) under the

assumptions that the bilinear form A is (uniformly in y) continuous and coercive and that

the linear functional F is continuous. In particular, we assume that there exist two constants

α,α> 0 such that ρ-a.e. in Γ

α‖v‖2
V ≤A (v, v ;y) and |A (u, v ;y)| ≤α‖u‖V ‖v‖V ∀u, v ∈V.

We can then derive the following a posteriori error estimate.

Proposition 5.3.5. Let u and uh be the solutions of (5.28) and (5.29), respectively and let

uh,I = SI [uh] be the sparse grid approximation of uh computed using the multi-index set I . If

the series in (5.11) converge absolutely, then

‖u −uh,I‖Lp
ρ (Γ;V ) ≤

1

α

[
‖R(uh ; ·)‖Lp

ρ (Γ;V ′) +α
∑
i�∈I

‖Δm(i)[uh]‖Lp
ρ (Γ;V )

]

where the residual R is defined for any w, v ∈V and any y ∈ Γ by

< R(w ;y), v >:= F (v ;y)−A (w, v ;y)
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with < ·, · > the duality pairing bracket between V and V ′.

We highlight that in this proposition, SI is not assumed to be interpolatory and the dependence

on y of the coefficients in A and F is not specified. In particular, we do not assume an affine

dependency. However, the absolute convergence of the series in (5.11) is required and the

estimator is not computable as is since it contains an infinite series. A computable estimator

can however be obtained if we are able to provide estimation of the tail of the series.

Proof. For any v ∈V and ρ-a.e. in Γ we have

A (u(y)−uh,I (y), v ;y) = F (v ;y)−A (uh,I (y), v ;y)

= F (v ;y)− A(uh(y), v ;y)︸ ︷︷ ︸
=:I

+ A(uh(y)−uh,I (y), v ;y)︸ ︷︷ ︸
=:II

.

Bounding each term separately, we easily obtain

I =< R(uh(y);y), v >≤ ‖R(uh(y);y)‖V ′‖v‖V

and

II ≤α‖uh(y)−uh,I (y)‖V ‖v‖V =α‖(i d −SI )uh(y)‖V ‖v‖V ≤α
∑
i�∈I

‖Δm(i)[uh](y)‖V ‖v‖V

where i d denotes the identity operator. For the second term, we have used the relation (5.11),

namely that the sparse grid approximation converges ρ-a.e. in Γ. Therefore, thanks to the

coercivity of A , taking v = u(y)−uh,I (y) ρ-a.e. in Γ we get

‖u(y)−uh,I (y)‖V ≤ 1

α

[
‖R(uh(y);y)‖V ′ +α

∑
i�∈I

‖Δm(i)[uh](y)‖V

]
.

The proof is complete by taking the Lp
ρ (Γ) norm on both sides of this last inequality and using

the triangle inequality.

Remark 5.3.6. In the special case where A (u, v ;y) =∫
D a(y)∇u ·∇v and F (v ;y) =∫

D f v, which

corresponds to problem (5.5), the dual norm of the residual ‖R(uh(y);y)‖V ′ can be estimated by

‖R(uh(y);y)‖V ′ ≤Cη(y) with η(y) =
( ∑

T∈Th

ηT (y)2

) 1
2

with

ηT (y)2 := h2
T ‖ f +∇· (a(y)∇uh(y))‖2

L2(T ) +
∑

e⊂∂T
he‖1

2
[a(y)

∂uh(y)

∂ne
]ne‖2

L2(e).
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5.4 Adaptive algorithms

The error estimator deduced from Proposition 5.3.3 can be used to adaptively refine the

mesh and increase the multi-index set. Such an adaptive strategy aims at reaching a given

accuracy of the (FE and stochastic) error with computational cost as low as possible. The

theory for mesh adaptation, often referred to as adaptive finite element method (AFEM), is well

developed and studied. In particular, the convergence of some adaptive procedures has been

provided in many different cases. The first result in this direction is the work by Dörfler [57],

where the convergence of an adaptive algorithm for the Poisson equation is given. Over the

past decades, much effort has been put in proving convergence of adaptive algorithms (with

optimal rate) for various types of problems, see for instance [25, 42, 93, 114]. In the context of

parametric/random PDEs, we mention the work by [46] where the convergence of an adaptive

algorithm is given when the solution is approximated via a Taylor series. In [58, 59], where the

random PDEs are solved with the Stochastic Galerkin FEM, the convergence is proved when

the adaptation is performed in both physical and stochastic spaces. In this case, the extension

of the results obtained for the AFEM in [42] is straightforward and strongly uses the so-called

Galerkin orthogonality property. Finally, for the stochastic collocation method, we mention

the paper [20] in which a (quasi-optimal) sparse grid method based on a a priori/a posteriori

strategy is proposed and whose convergence is analysed in [94]. Moreover, an a posteriori

sparse grid algorithm is given in [95]. So far, at least to our knowledge, there is no proof of

convergence for adaptive stochastic collocation methods.

Here, we will use the a posteriori error estimate given in Proposition 5.3.3 to drive an adaptive

procedure. We start by considering only stochastic space adaptation since mesh adaptation

can be performed in a classical way. The error estimator ζI can be used to adaptively enrich the

multi-index set I in order to reach a prescribed accuracy while minimizing the computational

cost. The proposed adaptive procedure is given in Algorithm 4.

Algorithm 4 Adaptive algorithm (stochastic space adaptation)

Require: θ ∈ (0,1) and Tol > 0
Ensure: multi-index set I such that ζI ≤ Tol

1: I = {1}, uI = SI [uh], ζI = ζI ,1

2: while ζI > Tol do
3: J = new_index(θ, I ,ζI ) select a subset of MI satisfying (5.30)
4: I ← I ∪ J update the multi-index set
5: uI = SI [uh] compute the new sparse grid approximation
6: ζI =∑

i∈MI
ζI ,i compute the error estimator (5.18)

7: end while

It remains to define the routine new_index of Step 3, namely to define how we select the

multi-index set J ⊂ MI to be added to the current set I . Following a so-called Dörfler marking,

we choose to select J according to

find J ⊂ MI :
∑
i∈J

ζI ,i ≥ θ
∑

i∈MI

ζI ,i and I ∪ J downward closed. (5.30)
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We can think of several strategies to select J satisfying (5.30), keeping in mind that the goal is

to minimize the computational cost. Since the set should remain downward closed at each

iteration of the adaptive algorithm, we associate to each multi-index i a set Ai which consists

of all multi-indices that must also be included in I if i is added to I so that I remains downward

closed. Notice that Ai = {i} if i belongs to the reduced margin. Moreover, we can define a

notion of profit for each multi-index i ∈ MI as follows

Pi :=
∑

j∈Ai
ζI ,j∑

j∈Ai
Wj

(5.31)

taking into account all elements of Ai. Here, we have denoted by Wi the work contribution of

the multi-index i, which can be defined by [95]

Wi =ΠN
n=1(m(in)−m(in −1)). (5.32)

In the case of nested sets of point, as considered here, it corresponds to the number of new

points in Γ introduced if i is added to I . We could also choose to set Wi = 1 if we want to drive

the adaptation only based on the error indicators. With these definitions of Ai and Pi, we can

formulate a possible version of the routine new_index.

Algorithm 5 new_index

Require: θ, I and ζI

Ensure: multi-index set J ⊂ MI satisfying (5.30)
1: J =�, �= 0
2: while �< θζI do
3: i = argmaxi∈MI \J Pi

4: J ← J ∪ Ai

5: �=∑
j∈J ζI ,j

6: end while

Remark 5.4.1. Notice that the set J returned by Algorithm 5 might not be the optimal set

satisfying (5.30). Indeed, a better set could be obtained by re-computing at each iteration the

profit Pi in (5.31) of the multi-indices i ∈ MI \(RI ∪ J ) for which Ai contains a multi-index added

at the previous iteration. For such multi-index i, the set Ai has changed and thus the profit.

To summarize, we have to choose the following parameters:

• the value of the Dörfler parameter θ ∈ (0,1),

• the value of p ∈ [1,∞] for the Lp
ρ (Γ) norm,

• the definition of the work Wi by (5.32) or Wi = 1 in (5.31).
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Implementation

We give here some details about the computation of the error estimators ζI ,i defined in (5.18),

with particular attention to the case i ∈ MI \ RI .

We consider the case p =∞. Since the images of the random variables Γn , n = 1, . . . , N , are

bounded and u is smooth with respect to y, the essential supremum norm can be replaced

by the maximum norm. Of course, not all the points of Γ can be explored and we choose to

approximate the maximum norm searching for the maximum over a given set Θ⊂ Γ of finite

cardinality. The error is therefore computed using

‖u −SI [uh]‖L∞
ρ (Γ;V ) = max

y∈Γ
∣∣‖∇(u −SI [uh])(y)‖L2(D)ρ(y)

∣∣
≈ max

y∈Θ
∣∣‖∇(u −SI [uh])(y)‖L2(D)ρ(y)

∣∣
which requires the solution of |Θ| PDEs to get the value of u(y) for each y ∈Θ. Notice that since

the FE error will not be accounted for in the numerical results, all the computation can be

done on the same spatial mesh. The computation of the error estimators ζI ,i can be done as

follows. Let G be any downward closed multi-index set that does not contains i and such that

G ∪ {i} is also downward closed. The error estimator for i is then approximately

ζI ,i = ‖Δm(i) (a∇SI [uh])‖L∞
ρ (Γ;L2(D))

= ‖SG∪{i} [a∇SI [uh]]−SG [a∇SI [uh]]‖L∞
ρ (Γ;L2(D))

≈ max
y∈Θ

∣∣‖SG∪{i} [a∇SI [uh]] (y)−SG [a∇SI [uh]] (y)‖L2(D)ρ(y)
∣∣ . (5.33)

The key-point here is that no PDE need to be solved to compute (5.33). This formula can be

straightforwardly applied for all the multi-indices i ∈ RI with G = I , since G ∪ {i} is downward

closed, but a special care is required for the elements in MI \ RI . The idea is to iteratively

increase the multi-index set I to cover the full margin in such a way that it remains downward

closed throughout the process. We proceed layer by layer, starting by adding the elements of

the reduced margin RI , as described in the pseudo-code of Algorithm 6.

Algorithm 6 Computation of ζI ,i for all i ∈ MI

Require: I , SI [uh], a
Ensure: ζI ,i ∀i ∈ MI

1: G = I
2: while G �= I ∪MI do
3: R = RG ∩MI

4: for i ∈ R do
5: compute ζI ,i using (5.33)
6: G ←G ∪ {i}
7: end for
8: end while
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Notice that R at line 3 is a subset of the neighbours of the element of the previous previous

layer. Moreover, the order of selection of the elements of R in the for loop is irrelevant.

Remark 5.4.2. For the case p ∈ [1,∞), the Lp
ρ (Γ) norm can be computed (either exactly or

approximately) using a Gauss quadrature formula built upon SI (l ) with level l high enough.

Notice that the larger p and the larger the polynomial degree of the integrand, the larger the

level l should be.

Simplified algorithm

Algorithm 4, based on a Dörfler marking, is designed in the spirit of AFEM. The idea for

introducing such algorithm was to prove its convergence as it is done for example in [59] for

the Stochastic Galerkin method. We have made several attempts in this direction, for instance

to prove that the error estimator satisfies a certain contraction property or to use different

markings as it is done in [93] to control the decrease of the data oscillation. Unfortunately, we

have not been successful so far, mainly due to the lack of the so-called Galerkin orthogonality

valid for both the physical and the stochastic spaces when using the SG-FEM. The proof of

convergence of the proposed adaptive algorithm is thus still an open question.

In the numerical results of Section 5.5, we consider a simplified version of Algorithm 4. First of

all, we allow the selection of elements of the reduced margin RI only and not of the full margin

MI . This simplifies the definition of the profits, since we do not need to introduce the sets

Ai. Indeed, we recall that if I is downward closed, then so is I ∪ {i} for any multi-index i ∈ RI .

The second modification is that we add only one multi-index at a time. More precisely, the

adaptive algorithm that is used for the numerical experiments of Section 5.5 reads as follows.

Algorithm 7 Simplified adaptive algorithm (stochastic space adaptation)

Require: Tol > 0
Ensure: multi-index set I such that ζI ≤ Tol

1: I = {1}, uI = SI [uh], ζI = ζI ,1

2: while ζI > Tol do
3: i = argmaxi∈RI

Pi select the multi-index with highest profit
4: I ← I ∪ {i} update the multi-index set
5: uI = SI [uh] compute the new sparse grid approximation
6: ζI =∑

i∈MI
ζI ,i compute the error estimator (5.18)

7: end while

Remark 5.4.3. The adaptive process of Algorithm 7 is driven only by the profit of the elements

of the reduced margin RI of the current set I . To reduce the computational cost, we could

therefore compute ζI ,i for i ∈ RI only. However, the global error estimator ζI would no longer

be available and we have to define another stopping criterion for the algorithm. For example,

we can prescribe a tolerance Tol on the highest profit, i.e. stop the adaptive procedure when

maxi∈RI Pi < Tol .
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5.5 Numerical results

We consider here numerical examples to test Algorithm 7. In all what follows, we choose m as

in (5.13) and we use Clenshaw-Curtis nodes. The FE error is not accounted here. Moreover, we

consider the case p =∞ and we thus consider the error and estimator defined by respectively

‖uh −SI [uh]‖L∞
ρ (Γ;H 1

0 (D)) and
∑

i∈MI

‖Δm(i)(a∇SI [uh])‖L∞
ρ (Γ;L2(D)).

Be aware that the initialization step is not counted in the number of iterations given below.

Therefore, the cardinality of the set I at the kth iteration is equal to k +1.

First example

For this first example, we consider an inclusion problem with N = 2 random variables, similar

to the one consider in [11] for N = 8. The physical domain, depicted in Figure 5.1-left, is the

unit square D = (0,1)2. We identify three subdomains F , C1 and C2, with F a square centred in

the domain with side length equal to 0.2 and C1 and C2 two circular inclusions of radius 0.13.

We define the random diffusion coefficient by

a(x,Y(ω)) = a0(x)+
2∑

n=1
γnχn(x)Yn(ω) with a0 = 1 and Yn ∼U [−0.99,0.99] (5.34)

and we set the forcing term to f (x) = 100χF (x), where χF and χn , n = 1,2, denote the indicator

function of each subdomain. The parameters γ1 and γ2 are used to introduce anisotropy in

the problem, assigning more importance to one or another direction y1 or y2.

For the numerical experiments of this first example, we have used the following setting. The

FE mesh consists of 4961 vertices and 9696 triangles with minimal and maximal diameter hT

of about 7.367e-3 and 2.854e-2, respectively. Since we would like to test the efficiency of our

error estimator, namely to see if it is a good control of the (stochastic) error, we compute the

estimator ζI ,i for each multi-index i of the margin MI . We can therefore base the stopping

criterion on the global estimator ζI , see Remark 5.4.3. We set the tolerance to Tol = 10−6.

Finally, we compute the L∞
ρ (Γ) norm approximately using for Θ a 20×20 Cartesian grid of

equispaced points in each direction.

Isotropic case

We start with the isotropic case γ1 = γ2 = 1 in (5.34). The mean and the standard deviation of

the solution is given in Figure 5.2, while the evolution of the set I during the adaptive process

is presented in Figure 5.3. The multi-index with the green cross indicates the selected element

at the current iteration of Algorithm 7, i.e. the one with the highest profit that belongs to the

reduced margin of the previous set.
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5.5. Numerical results

Figure 5.2: Geometry of the problem (left), expected value (middle) and standard deviation
(right) of the solution for the case γ1 = γ2 = 1.
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Figure 5.3: Evolution of I during the adaptive process for the case γ1 = γ2 = 1. From left to
right and top to bottom: iterations 3,5,8,10,14 and order of selection of the multi-indices.
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We can detect the isotropy of the problem by the symmetrical construction of the multi-index

set. For instance, at iteration 11 the point (2,4) is added while (4,2) is selected at the next

iteration. Moreover, we see that the estimator provides a good control of the error as shown in

Figure 5.4, where the final multi-index set and the corresponding sparse grid are also given.

It has been obtained after 17 iterations, yielding a sparse grids of 97 points and an error and

an estimator of about 3.4649e-7 and 8.1070e-7, respectively. Finally, we mention that the

highest profit of the elements of the reduced margin of this final stage is about 2.3702e-8 and

is achieved at (2,5).
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Figure 5.4: Final multi-index set I (left), final sparse grid (middle) and error and estimator
with respect to the number of points in semi-logarithmic scale (right) for the case γ1 = γ2 = 1.

Anisotropic case

We now set different values for γ1 and γ2 in (5.34) to see if the adaptive algorithm is able to

capture the anisotropy of the problem. We start with the trivial case γ1 = 1 and γ2 = 0, for

which no point should be added in the second direction y2. This is indeed the result we get,

as shown in Figure 5.5. At the end of the adaptive procedure, which requires 4 iterations,

the sparse grid consists of 17 points and the error and estimator are about 1.4219e-10 and

1.5276e-10, respectively. The maximal profit among the elements of the reduced margin is

9.5472e-12 and is attained at (6,1).

Finally, we consider the case γ1 = 1 and γ2 = 0.1. We present in Figure 5.6 the set I at various

steps of the adaptive construction. As expected, we can clearly identify a preferred direction,

namely the horizontal direction which corresponds to y1.

The final situation, reached in 10 iterations, is given in Figure 5.7. In this case, there are 41

points in the sparse grid, the error and estimator are 6.8878e-8 and 1.2500e-7, respectively,

and the maximal profit among the elements of the reduced margin is of 1.9995e-8 at (3,3).
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Figure 5.5: Final multi-index set I (left), final sparse grid (middle) and error and estimator with
respect to the number of points in semi-logarithmic scale (right) for the case γ1 = 1 and γ2 = 0.
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Figure 5.6: Evolution of the multi-index set I during the adaptive process for the case γ1 = 1
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multi-indices.
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Figure 5.7: Final multi-index set I (left) and error and estimator with respect to the number of
points in semi-logarithmic scale (right) for the case γ1 = 1 and γ2 = 0.1.

Anisotropic case N = 8

To conclude on this inclusion problem, we consider the case N = 8 as in [11] and we choose

a similarly to (5.34) with Yn ∼U [−0.99,0.2] for n = 1, . . . ,8. The geometry is given in Figure

5.8-left, where the value of the coefficients γn , n = 1, . . . ,8, is also given. The FE mesh we are

using contains 3805 vertices and 7416 triangles with minimal and maximal diameter hT of

about 1.0041e-2 and 3.1153e-2, respectively. Moreover, a set of 500 points randomly sampled

from a multivariate uniform distribution is used for the approximation of the L∞
ρ (Γ) norm.

In Figure 5.8-right, we give the error and estimator for the 55 first iterations of Algorithm 7,

after which the estimator is about 2.5102e-3 and the sparse grid consists of 213 points in Γ.

Moreover, the projection of the obtained multi-index set I over two directions, namely y1 and

y4, y1 and y5 and y1 and y7, is presented in Figure 5.9.
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Figure 5.8: Geometry of the problem for N = 8 with indication of the coefficients γn , n = 1, . . . ,8
(left) and error and estimator with respect to the number of points in logarihmic scale for the
55 first iterations (right).

Even though the estimator still provides a reasonable control of the error, it is less efficient

than for the case N = 2. We see several possible explanations for this behaviour and we give a
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Figure 5.9: Projection of the multi-index set I obtained after 55 iterarions on (y1, y4) (left),
(y1, y5) (middle) and (y1, y7) (right).

non-exhaustive list below. First of all, we have not been able to prove that the error estimator

provides a lower bound for the error. The difficulties arise, among other, from the lack of

Galerkin orthogonality but also from the use of the triangle inequality to localize the estimator

on each multi-index of the margin. Moreover, we are not taking into account the error due

to the approximation of the L∞
ρ (Γ) norm and further investigation should be made in this

direction, namely trying to quantify this additional error and perform additional tests with

other training sets Θ.

Second example

As a second numerical experiment, we take again the 2D example investigated in Section 1.7.2

of Chapter 1, namely we choose f (x) = 32(x1(1−x1)+x2(1−x2)) and

a(x,Y(ω)) = 1+
N∑

n=1

cos(2πnx1)+cos(2πnx2)

(πn)2 Yn(ω) with Yn ∼U [−�3,
�

3]

for x = (x1, x2) ∈ D . We use a spatial mesh consisting of 2673 vertices and 5184 triangles with

minimum and maximum diameter hT of about 0.01 and 0.04, respectively. We set again the

tolerance to Tol = 10−6 in Algorithm 7 and the set Θ for the approximation of the L∞
ρ (Γ) norm

consists of 500 points in Γ randomly sampled from a multivariate uniform distribution. We

consider the two cases N = 3 and N = 5.

The results for the case N = 3 are given in Figure 5.10. We plot the error and the estimator with

respect to the work, i.e. number of points in the sparse grid. We also give the projection of the

final multi-index set I over two directions, namely y1 and y3. For this final state, obtained in

27 iterations, the error and the estimator are about 4.1493e-7 and 9.1738e-7, respectively, and

the grid contains 141 points. Finally, we mention that the multi-index that has been in the last

iteration to the final set I is (4,3,1) and that the maximum profit among the elements of RI is

about 3.0159e-8 and is reached at (3,2,3).

The Figure 5.11 contains the results for the case N = 5. The final multi-index set I is projected
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Figure 5.10: Error and estimator with respect to the number of points in logarihmic scale (left)
and projection of the final multi-index set on (y1, y3) (right) for the case N = 3.

on y1 and y5. The final grid has 469 points, for an error and estimator of about 2.2500e-6 and

9.8095e-6, respectively, and has been reached in 69 iterations. The last multi-index added to

the set is (4,4,1,1,1) and the maximum profit among the elements of the reduced margin of

the final set is about 7.7365e-8 at (3,2,1,2,2).
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Figure 5.11: Error and estimator with respect to the number of points in logarihmic scale (left)
and projection of the final multi-index set on (y1, y5) (right) for the case N = 5.

In both cases N = 3 and N = 5, the error estimator provides a good control of the error, the

overestimation being slightly bigger for N = 5 than N = 3. Moreover, due to the decay of the

an in n−2, the random variables Yn should have less and less influence as n increases. The

adaptive algorithm is able to capture this feature, as seen for instance when projecting the

obtained multi-index set over two different directions. From this experiment, together with

the numerical results obtained for the inclusion problems, we see that the efficiency of the

stochastic error estimator seems to be linked to the number of random variables. Further

investigation should be made in this direction to determine whether this is indeed the case or

if the reason is elsewhere, for instance the error due to the approximation of the L∞
ρ (Γ) norm.
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Conclusions

In this last chapter, we went out of the framework of small uncertainties considered in the pre-

vious chapters and in which a perturbation technique has been used for the stochastic space

approximation. Here, we have considered the stochastic collocation method which is also

appropriate for problems with a large amount of randomness but its use becomes challenging

for problem in high dimensions. We have proposed a residual-based a posteriori error estimate

that controls both the physical and stochastic space discretization. This estimate is valid under

quite strong assumptions but that are often meet in practise. First, we have assumed that the

random diffusion coefficient depends in an affine way on a finite number of random variables,

which is what we get for instance from a (truncated) Karhunen-Loève expansion of a random

field. The second assumption is that the sparse grid operator is interpolatory, which requires

the use of nested sequences of univariate nodes such as Clenshaw-Curtis or Leja nodes.

We have then proposed an adaptive sparse grid algorithm. The stochastic error estimator,

which is localized on each element of the margin of the current multi-index set, is used to

select the most profitable elements that should enter the set. The error estimator we have

proposed presents the advantage to be computable without solving additional PDEs. However,

it has the drawback that the profit need to be recomputed at each iteration of the adaptive

process since the residual depends on SI [uh]. We have made some numerical experiments to

test the efficiency of a simple version of the adaptive algorithm. These are just preliminary yet

promising results. They open the door to many improvements and prospects, including but

not limited to

• quantify the error of approximation of the L∞
ρ (Γ) norm using a finite number of (deter-

ministic or random) points in Γ

• test different choices of family of points, such as Leja-sequence of points

• make a comparison with other methods, adaptive or not

• analyse the complexity of the proposed adaptive strategy

• prove the convergence of Algorithm 4

• take the FE error into account and do mesh refinement when the FE error dominates the

stochastic one; take either the same mesh for all the collocation points or allow different

refinements for the various points, see Remark 5.3.4

• consider the case of infinite number of random variables

5.A Miscellaneous results

We give here some preliminary results which might be useful to prove the convergence of Al-

gorithm 4. In what follows, we will write Ik and Ik+1 two successive multi-index sets produced
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by the adaptive algorithm, that is Ik+1 = Ik ∪ Jk with Jk ⊂ MIk obtained using new_index and

thus satisfying the Dörfler condition (5.30). Moreover, since we perform only stochastic space

adaptation, we assume that there is no error due to FE approximation and the subscript h is

no longer indicated in what follows. We write then uk = SIk [u] and uk+1 = SIk+1 [u] the sparse

grid approximation corresponding to Ik and Ik+1, respectively.

First of all, since a depends affinely on the yn , n = 1, . . . , N , we have that if i ∈ MI then

Δm(i)(a∇Δm(j)(u)) = 0 ∀j ∈ I \∂I . (5.35)

Indeed, if j ∈ I \∂I then j+en ∈ I for all n = 1, . . . , N .

For ease of notation, we will write ‖ ·‖ instead of ‖ ·‖Lp
ρ (Γ;L2(D)) in the sequel.

Proposition 5.A.1. (Estimator reduction I)

If uk+1 = uk , then ‖∇(u −uk+1)‖ = ‖∇(u −uk )‖ but

ζIk+1 < ζIk .

Proof. First of all, we split the margin of Ik+1 into two disjoint parts as

MIk+1 = (MIk \ Jk )∪ (MJk \ MIk ).

Using the assumption uk+1 = uk we get then

ζIk+1 = ∑
i∈MIk+1

‖Δm(i)(a∇uk+1)‖

= ∑
i∈MIk+1

‖Δm(i)(a∇uk )‖

= ∑
i∈MIk

\Jk

‖Δm(i)(a∇uk )‖+ ∑
i∈MJk

\MIk

‖Δm(i)(a∇uk )‖

= ∑
i∈MIk

\Jk

‖Δm(i)(a∇uk )‖.

For the last equality, we have used that Δm(i)(a∇uk ) = 0 for all i ∈ (MJk \ MIk ) thanks to (5.24).

Indeed, if i ∈ (MJk \ MIk ) then i �∈ (Ik ∪MIk ). Finally, we use the property of Jk in (5.30) to obtain

ζIk+1 = ∑
i∈MIk

‖Δm(i)(a∇uk )‖− ∑
i∈Jk

‖Δm(i)(a∇uk )‖

≤ (1−θ)
∑

i∈MIk

‖Δm(i)(a∇uk )‖

= κζIk ,

with κ= (1−θ) < 1 for any choice of the Dörfler parameter θ ∈ (0,1).
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5.A. Miscellaneous results

One way to prove the convergence of Algorithm 4 is to prove a contraction property, for

instance on the error, the estimator or some other quantity. The difficulty is therefore to first

define the quantity on which we would like to prove a contraction property. We have tried to

do it on the estimator, but, unfortunately, we have not been able yet to find a conclusion. So

far, we have obtained the following relation

ζIk+1 ≤ ∑
i∈MIk

\Jk

‖Δm(i)(a∇uk )‖+ ∑
i∈MIk+1

‖Δm(i)(a∇(uk+1 −uk )‖

≤ (1−θ)ζIk +
∑

i∈MIk+1

‖Δm(i)(a∇(uk+1 −uk )‖.
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Conclusions and perspectives

In this thesis, error analysis for PDEs with random input data has been performed on various

problems with a focus on a posteriori error estimation.

The starting point was the well-studied elliptic diffusion model problem with random diffusion

coefficient and affine dependence on the random variables. Assuming small amount of

randomness in the model, characterized with the parameter ε, a perturbation technique was

used expanding the exact random solution of this problem in powers of ε. Error estimation for

the error between the exact solution and the finite element approximation of the truncated

expansion has been established in great details, considering different measures of the error.

Computing for instance only the first term in the expansion, which is deterministic, the

a posteriori error estimate provides information about both sources of error, namely the

physical space discretization and the uncertainty, and can be used to balance these two

errors. Moreover, such error estimates are the basis for adaptive strategies designed to find an

approximation of prescribed accuracy with computational cost as low as possible. Having a

posteriori error estimate for the approximation of any order allows us to adaptively choose

between mesh refinement and increase of the order of the expansion. The theoretical results

have been validated and illustrated through many numerical experiments in one and two

physical space dimensions. We are looking forward to perform numerical experiments on

adaptive schemes of higher-order in ε. A proof of the lower bound for the explicit stochastic

error estimator of the first order approximation, required to prove its efficiency, is still missing

at the moment.

Next, steady-state nonlinear problems in random domains have been investigated. For such

problems, the so-called domain mapping method has been used to transform the PDEs in

random domains into PDEs on a fixed reference domain with random coefficients. All the

analysis can then be made on this fixed reference domain and, from a numerical point of view,

this method prevents the need of remeshing. Application to the one-dimensional viscous

Burger’s equation and the incompressible Navier-Stokes equations has been proposed. The

well-posedness has been shown, under suitable conditions on the mapping and the input

data, using a fixed-point theorem for existence and a variational argument for uniqueness.

A posteriori error estimation has been proposed for a specific but rather general form of the

mapping, again under the assumption of small perturbation. For the Navier-Stokes problem,

two different estimates have been developed, each of them presenting advantages and draw-

191



Conclusions and perspectives

backs. Numerical results have been given for both problems. Possible extensions include the

consideration of problems for which the mapping is not given analytically, numerical exper-

iments on three-dimensional Navier-Stokes equations and analysis of the time-dependent

Burgers and Navier-Stokes equations.

To extend the proposed methodology to other types of problems, a parabolic problem has

been analysed next, namely the heat equation with random Robin boundary conditions. In

addition to the perturbation technique and the finite element method for the stochastic and

physical space approximations, respectively, an implicit time stepping scheme has been used

for the time discretization. An a posteriori error estimate for the approximation of the first

term in the expansion has been proposed and its efficiency has been investigated through

two numerical examples. Application to problems of practical interest could be an interesting

direction for a future work.

In the last part of this thesis, a residual-based a posteriori error estimate for the stochastic

collocation finite element method has be proposed. The error estimator controlling the

randomness in the problem has then be used to drive an adaptive sparse grid algorithm.

Finally, promising preliminary numerical examples have been given that open the door to

many thrilling perspectives, such as complexity analysis, comparison with other methods,

combination with spatial mesh refinement or proof of convergence of adaptive scheme.
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