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Abstract

This thesis addresses challenges in elicitation and aggregation of crowd information for set-

tings where an information collector, called center, has a limited knowledge about information

providers, called agents. Each agent is assumed to have noisy private information that brings a

high information gain to the center when it is aggregated with the private information of other

agents. We address two particular issues in eliciting crowd information: 1) how to incentivize

agents to participate and provide accurate data; 2) how to aggregate crowd information so that

the negative impact of agents who provide low quality information is bounded. We examine

three different information elicitation settings.

In the first elicitation setting, agents report their observations regarding a single phenomenon

that represents an abstraction of a crowdsourcing task. The center itself does not observe

the phenomenon, so it rewards agents by comparing their reports. Clearly, a rational agent

bases her reporting strategy on what she believes about other agents, called peers. We prove

that, in general, no payment mechanism can achieve strict properness (i.e., adopt truthful

reporting as a strict equilibrium strategy) if agents only report their observations, even if they

share a common belief system. This motivates the use of payment mechanisms that are based

on an additional report. We show that a general payment mechanism cannot have a simple

structure, often adopted by prior work, and that in the limit case, when observations can take

real values, agents are constrained to share a common belief system. Furthermore, we develop

several payment mechanisms for the elicitation of non-binary observations.

In the second elicitation setting, a group of agents observes multiple a priori similar phenom-

ena. Due to the a priori similarity condition, the setting represents a refinement of the former

setting and enables one to achieve stronger incentive properties without requiring additional

reports or constraining agents to share a common belief system. We extend the existing mech-

anisms to allow non-binary observations by constructing strongly truthful mechanisms (i.e.,

mechanisms in which truthful reporting is the highest-paying equilibrium) for different types

of agents’ population.

In the third elicitation setting, agents observe a time evolving phenomenon, and a few of them,

whose identity is known, are trusted to report truthful observations. The existence of trusted

agents makes this setting much more stringent than the previous ones. We show that, in the

context of online information aggregation, one can not only incentivize agents to provide

informative reports, but also limit the effectiveness of malicious agents who deliberately

misreport. To do so, we construct a reputation system that puts a bound on the negative
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Abstract

impact that any misreporting strategy can have on the learned aggregate.

Finally, we experimentally verify the effectiveness of novel elicitation mechanisms in commu-

nity sensing simulation testbeds and a peer grading experiment.

Key words: Game theory, Mechanism design, Incentive schemes, Peer prediction, Reputation

systems, Online learning, Crowdsourcing, Community sensing, Peer grading
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Résumé

Cette thèse aborde les défis posés par l’obtention et l’agrégation de l’information de groupe

(crowd information) dans les cas où un collecteur d’information, appelé centre, n’a qu’une

connaissance limitée des fournisseurs d’information, appelés agents. Nous supposons que

chaque agent dispose d’une information privée impure, qui apporte un fort gain d’infor-

mations au centre lorsqu’elle est agrégée avec l’information privée d’autres agents. Nous

aborderons deux cas particuliers de l’obtention de l’information de groupe : 1) comment

motiver les agents à participer et à fournir des données précises ; 2) comment agréger l’infor-

mation du groupe afin que l’impact négatif des agents fournissant une qualité d’information

inférieure soit limité. Nous examinerons trois cas différents d’obtention de l’information.

Dans le premier cas d’obtention d’information, les agents rapportent leurs observations d’un

phénomène unique, qui représente une abstraction d’une tâche de production participative.

Le centre n’observe pas lui-même le phénomène, mais récompense les agents en comparant

leurs rapports. À l’évidence, un agent rationnel rapportera ses observations selon une stratégie

basée sur ce qu’il pense des autres agents, appelés pairs. Nous prouverons qu’en général, il

n’existe pas de mécanisme de paiement satisfaisant la propriété d’amélioration rigoureuse

(c’est-à-dire garantissant l’adoption d’un rapport véridique comme stratégie d’équilibre) si les

agents rapportent seulement leurs observations, même s’ils partagent une croyance commune.

Ce résultat motive l’utilisation de mécanismes de paiement qui soient basés sur un rapport

additionnel. Nous montrerons qu’un mécanisme de paiement général ne peut pas avoir une

structure simple, pourtant souvent utilisée dans les travaux de recherche précédents, et que,

dans le cas limite, lorsque les observations peuvent prendre des valeurs réelles, les agents

sont contraints de partager une croyances commune. De plus, nous développerons plusieurs

mécanismes de paiement pour l’obtention d’observations non binaires.

Dans le deuxième cas d’obtention d’information, un groupe d’agents observent plusieurs phé-

nomènes a priori similaires. Grâce à cette condition de similarité, ce cas représente une amé-

lioration du cas précédent, et nous permet d’obtenir des propriétés de motivation plus fortes,

sans exiger de rapports additionnels, ni forcer les agents à partager une croyance commune.

Nous étendrons les mécanismes existants aux observations non binaires en construisant des

mécanismes fortement véridiques (à savoir des mécanismes dans lesquels rapporter la vérité

constitue l’équilibre offrant la plus grande récompense) pour différents types de population

d’agents.

Dans le troisième cas, les agents observent un phénomène évoluant en fonction du temps, et
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certains d’entre eux, dont l’identité est connue, sont chargés de rapporter des observations

véridiques. L’existence d’agents dignes de confiance rend ce cas nettement plus rigoureux que

les cas précédents. Nous montrerons que, dans le contexte d’un agrégateur d’information en

ligne, il est non seulement possible de motiver les agents à donner des rapports informatifs,

mais également de limiter la portée des faux rapports délivrés par des agents malintentionnés.

À cette fin, nous construirons un système de réputation qui imposera une limite à l’impact

négatif que peut avoir n’importe quelle stratégie trompeuse sur l’information agrégée.

Finalement, nous vérifierons expérimentalement l’efficacité de nouveaux mécanismes d’ob-

tention de l’information dans une simulation de détection en communauté et dans une

expérience d’évaluation par les pairs.

Mots clefs : Théorie des jeux, Théorie des mécanismes d’incitation, Mécanisme incitatif, Pré-

diction par les pairs, Systèmes de réputation, Apprentissage en ligne, Production participative,

Détection communautaire, Évaluation par les pairs
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1 Introduction

Involving many stakeholders in a decision making process is beneficial as it ensures that

the reached decision is preferred by the majority of the individuals affected by it. Therefore,

it comes as no surprise that modern systems rely on collective intelligence formed by ag-

gregating information from multiple sources. The most notable example of such systems is

the participatory web, where dynamic contents are created by engaging users in the design,

thus enabling them to share their knowledge and experience. MTurk1, TripAdvisor2, or Pre-

dictWise3, are only some of many examples on the modern web that strongly rely on crowd

intelligence.

The participatory web is often guided by the wisdom of the crowd approach [Sur05]: correct-

ness is obtained by aggregating contributions from many non-expert individuals, as it is in

product reviewing, opinion polling, crowdsourcing or community sensing. This approach,

however, fails to provide correct aggregates in certain cases, when participants provide false or

incorrect information either because [Gho13, LRSH11, HPZ06]:

1. obtaining accurate information requires effort;

2. participants have ulterior motives;

3. participants are biased towards their prior information.

These sources of inefficiencies imply that one of the key challenges is to solicit accurate infor-

mation owned by the crowd, while limiting the negative influence of crowd participants with

ulterior motives. The problem becomes even more challenging when reported information

cannot be directly verified by a party that elicits it.

To obtain quality data, an elicitation mechanism can incentivize participation using rewards

that may come in different forms but have a proper structure, so that the participants receive

1www.mturk.com
2www.tripadvisor.com
3www.predictwise.com
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Chapter 1. Introduction

the highest rewards for providing the most accurate data. In general, without a possibility of

directly verifying elicited data, rewards have to be based on comparison of reported values.

In other words, a participant’s reward depends on what others report, which induces a game

among participants from a game theoretic point of view. Therefore, the presented information

elicitation scenario can be modeled using standard game theory tools, where individuals are

represented by self-interested agents who reveal their private information only if that is in

their best interest [MRZ05]. The goal of an elicitation mechanism is to construct a game, i.e.,

a mechanism, in which participants are incentivized to invest effort and reveal their private

information.

This approach has been tried with success on crowdsourcing platforms such as MTurk. [Har11]

considered the task of screening resumes for a job description. A scheme where payments

depended on the agreement of answers with those of a human resources expert provided

significant improvements in accuracy. [SCH11] tested a large variety of payment mechanisms

using a task of classifying the type of content present on a web site, and found that the mecha-

nisms based on consistency of reports had the best performance. Giving rewards for agreeing

with another participant has also been used in the very successful ESP game [vAD04], where

players were rewarded for assigning the same label as a peer to an image. [KH12] proposed to

reward crowd workers based on the comparison of their answers with the aggregate obtained

from the crowd. [HF13b] investigated reward based on a consistency with a peer using a task

of counting nouns in a list of 30 English words. Crowd workers were rewarded with a bonus

whenever their answer agreed with that of a single, randomly chosen peer. They found that

this increases accuracy more than comparing against a gold standard. The same authors also

showed that the social pressure can further increase accuracy [HF13a]. [FPTJ14] designed a

peer consistency mechanism that allows the answer distribution to be biased, and showed

that it can correct anchoring bias in a counting task on MTurk. Furthermore, [GF14] compared

this mechanism to prediction markets [Han03, CP07] — information aggregators that perform

well in practice [PLGN01, NRTV07]. They found that the peer consistency mechanism can

achieve a similar performance.

Motivated by these results, we consider two important objectives in elicitation and aggregation

of crowd information from a game-theoretic perspective:

1. how to incentivize participants to invest effort in acquiring accurate information and

truthfully reveal it;

2. how to limit the negative influence that participants with ulterior motives might have

on the aggregated information.

Incentive mechanism design

There are two main directions in the incentive mechanism design: gold standard mechanisms

and peer consistency mechanisms. The former is based on the existence of gold standards to
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design scoring rules, typically, for elicitation of distribution properties or predictions [Han03,

GR07, LPS08].

We focus on peer consistency mechanisms, where incentives are formed by comparing values

reported by different participants — agents. Since these mechanisms do not rely on gold

standards, they are applicable even in scenarios when the ground truth is not possible to define

(as for subjective information) or when it becomes known in a distant future. There are two

basic types of peer consistency mechanisms, the peer prediction [MRZ05] and the Bayesian

truth serum [Pre04], that differ in the amount of knowledge they have about agents’ beliefs

and the amount of information they elicit from agents. The peer prediction is a minimal

mechanism, in a sense that it elicits only targeted information, but it assumes a certain

knowledge about agents’ beliefs. Contrary to the peer prediction, the Bayesian truth serum

is a knowledge-free mechanism, but it elicits additional information, in particular, it elicits

agents’ beliefs. Notice that both mechanisms are dependent on agents’ beliefs, which are

formed through agents’ belief systems that model how agents reason about each other’s private

information.

Considerable amount of literature has been devoted to making these mechanisms more

robust, often achieving better properties only for binary information structures [JF09, WP12b,

WP12a, DG13]. For example, robustness of the Bayesian truth serum in terms of the size of

agents’ population has been analyzed in [WP12b], while [DG13] substantially improves the

properties of the peer prediction by modifying the classical peer prediction setting. These

mechanisms, however, do not completely generalize to elicitation scenarios with non-binary

information structures, often requiring additional restrictions on how agents form their beliefs.

This resembles a common pattern in game theory that two significantly differs from three or

many4. Therefore, in this thesis, we address the following challenge:

Challenge 1: Designing robust knowledge-free incentive mechanisms applicable to elicitation

of non-binary information.

Information aggregation

In certain cases, incentives for quality might not be sufficient to prevent low quality reports in

the elicited data sets. This happens when participants do not respond to incentives, either

because they have ulterior motifs, as is the case for malicious participants, or because they are

spammers who provide random data.

A common way of addressing this issue is by using statistical inference methods for noise

reduction in the elicited data sets [RYZ+10, KOS11, LPI12, KOS13, VVV13]. However, these

methods are not designed for an online information fusion scenario where the reported

data has to be processed on the fly, as it is in real time community sensing.5 A particular

4For example, the famous Arrow’s impossibility theorem [Arr70] requires a non-binary outcome space.
5While one could potentially apply the mentioned methods repeatedly in batch mode, we are more interested
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Chapter 1. Introduction

algorithm suitable for this type of an online setting is the influence limiter algorithm [RS07],

first proposed for recommender systems. The algorithm places a reputation mechanism on

top of a predefined information fusion component: its reputation updating rule and influence

limitation procedure make it provably resistant to a wide range of manipulation strategies.

However, the algorithm does not scale very well with the number of participants, so it is

impractical for many crowdsourcing scenarios. Hence, the second challenge we address in

this thesis is:

Challenge 2: Designing a robust online aggregation method suitable for large scale crowdsourc-

ing.

Our contributions

We develop our results systematically, by considering three different elicitation settings and

providing for each of them mechanisms with provable elicitation properties.

Setting 1: Single-task elicitation

The first setting we consider is the classical peer consistency setting where participants have

private information about a single object, which we refer to as a phenomenon or a task. We start

by establishing the necessity of eliciting additional information in knowledge-free elicitation.

In particular, we show that there does not exist a strictly proper knowledge-free minimal

mechanism unless agents’ belief systems are highly constrained. Remarkably, even for non-

minimal mechanisms whose structure is decomposable (in a sense that they separately score

targeted and additional information), a condition that agents share a common belief system6

does not suffice to allow truthful elicitation of private information. This explains why the

Bayesian truth serum [Pre04] and its robust version for small population [WP12b] do not fully

extend to more general elicitation scenarios that simultaneously allow small populations and

non-binary private information, without putting additional restrictions on how agents form

their beliefs. In addition to the common belief condition (i.e., agents sharing a common belief

system), we define a mild constraint for which we construct a strictly proper mechanism called

the multi-valued robust Bayesian truth serum. This shows that decomposable mechanisms

are strictly more general than minimal mechanisms.

To further push the limits of possibility results in terms of the type of elicited information, we

investigate the realm of non-decomposable mechanisms. In cases where agents with similar

private information also have similar beliefs, it is possible to construct a strictly proper multi-

report mechanism. One such mechanism is the divergence-based Bayesian truth serum in

which agents with similar private information are penalized if their beliefs are substantially dif-

in a design that also includes incentives for informed reporting.
6A common belief system means that the agents acquire their beliefs in the same way. In particular, if two

agents have the same private information, they should also have the same beliefs.
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ferent. The mechanism can be adopted for the elicitation of real-valued information. We refer

to the modified mechanism as the continuous Bayesian truth serum. Like the prior Bayesian

truth serums, it requires agents’ to have a common belief system, but it does not put any

additional restrictions on the agents’ beliefs. Furthermore, we show that without the common

belief condition, any mechanism fails to elicit truthful real-valued information, thus proving

the generality of the divergence-based Bayesian truth serum in its setting. Using a community

sensing simulation testbed, we quantitatively demonstrate the importance of mechanisms

designed for the elicitation of information with a non-binary structure. Furthermore, we dis-

cuss the design of a Bayesian truth serum type of mechanism called the competitive Bayesian

truth serum, which is a building block of a contest for eliciting subjective information.

Setting 2: Multi-task elicitation

To address the issue of the common belief condition, we consider a variation of the basic

peer consistency setting in which agents provide their private information about multiple

phenomena. This is a common case in micro-task crowdsourcing where, for example, a worker

solves several micro-tasks and reports a set of answers, each answer being associated to

a different task. With such an information structure, we design a strictly proper minimal

elicitation mechanism that allows agents to have private (uncommon) belief systems; we call

it the minimal peer prediction with private priors. The mechanism assumes that the agents

are homogeneous in a way they acquire their private information. Furthermore, if additionally

the population of agents is large, we show how to make truthful reporting the highest paying

strategy profile using the logarithmic peer truth serum. We say that the logarithmic peer

truth serum is strongly truthful.

We then focus on heterogeneous population of agents. As we show with our impossibility

results, the transition from homogeneous to heterogenous population is not trivial, so as

a compromise between the two ends of the spectrum, we developed the robust peer truth

serum. The mechanism allows limited heterogeneity of agents’ population under a mild

restriction on the agents’ beliefs. As its variant for homogeneous populations (the logarithmic

peer truth serum), the robust peer truth serum makes the truthful reporting the most profitable

strategy profile (i.e., it is strongly truthful), but it requires smaller number of peers (per task) to

evaluate contributions, and, thus is numerically more stable. Due to its incentive properties

and relatively simple structure, we advocate the use of the robust peer truth serum in peer

grading and community sensing, which we also support by experiments and simulations.

Setting 3: Elicitation with trusted agents

Finally, we consider a setting that is more stringent than the previous two, as some agents

are trusted to provide truthful information. However, the existence of trusted agents enables

us to address Challenge 2. We consider a reputation based framework, suitable for filtering

out low quality reports. We first show that a simple reputation based approach, often used
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Chapter 1. Introduction

in practice, fails to limit the negative influence of malicious agents, even when they adopt

relatively simple misreporting strategies. Second, we prove that the influence limiter [RS07]

is not directly applicable to a large scale crowdsourcing due to its computational complexity.

To overcome the drawback of the influence limiter, we modify its reputation updating rule

and its influence limitation procedure. The novel algorithm is called the stochastic influence

limiter, and, just like the original influence limiter, it is resistant to manipulative behaviour.

We evaluate the algorithm on a community sensing simulation testbed and empirically verify

that it outperforms a state of the art reputation system for sensing.

Summary of the most important contributions

To summarize, the most important contributions of the thesis are:

• Two impossibility results highlighting the need for non-minimal peer consistency mech-

anisms and a more sophisticated design of these mechanisms. The formal results are

presented in Theorem 1 and Theorem 2.

• A general positive result regarding the non-minimal strictly proper elicitation, knowledge-

free of agents’ common belief system. The result is presented through two novel mech-

anisms — the divergence-based BTS and the continuous BTS — and their incentive

properties, stated in Theorem 4, Corollary 2, Theorem 5 and Theorem 6.

• Two positive results regarding the strongly truthful elicitation in the multi-task setting,

for acquiring large amount of data from a homogeneous population of agents and

for eliciting information from a heterogeneous population of agents whose beliefs

satisfy the self-predicting condition. The results are respectively presented through two

novel mechanisms — logarithmic PTS (log-PTS) and the robust PTS (RPTS) — and their

incentive properties, stated in Theorem 9, Theorem 10, Theorem 11, and Theorem 12.

• A modified version of the influence limiter algorithm, called the stochastic influence

limiter (SIL), suitable for large scale crowdsourcing. The stochastic influence limiter

is provably resistant to myopic misreporting strategies (Theorem 14 and Theorem 15),

while having low computational complexity (Theorem 13) and incentivizing strategic

agents to provide informative reports (Theorem 16).

• Quantitative validations of the developed mechanisms in community sensing testbeds

and an empirical study on the performance of peer consistency methods in peer grading.

Figure 1.1 provides classifications of peer consistency methods according to different criteria,

thus, relating the contributions of this thesis to other peer consistency methods.7 Note that

7For the definition of strict properness and strong truthfulness, and the explanation of informed truthfulness,
we refer the reader to Chapter 3 and Chapter 4. Targeted information is elicited through an information report,
while an agent’s posterior belief is elicited through a prediction report.
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not all of the peer consistency methods are included in the figure. More thorough comparison

can be found in the related work sections of the following chapters. Furthermore, Table 1.1

shows quantitative studies on incentive mechanism design that are (most) related to our work.

Full knowledge 

Knowledge about  
agents’ beliefs 

Partial knowledge 

Knowledge-free 
Related work: [MRZ05]  Related work: [Pre04, WP12b, DG13, 

WP13b, KSM+15, KS16b] 
 
This thesis: Divergence-based BTS,  
Log-PTS, Robust PTS 

Related work: [FPTJ14, SAFP16]  

Single task 

Number of a priori 
similar tasks 

Multiple tasks 

Large number of tasks 
Related work: [Pre04, MRZ05,  
WP12b, FPTJ14] 
 
This thesis: Divergence-based BTS  

Related work: [WP13b, KSM+15,  
KS16b] 
 
This thesis: Log-PTS, Robust PTS 

Related work: [DG13, SAFP16]  

Information report 

The amount of  
elicited information 

from an agent 

Information reports 
 for multiple-tasks 

Information and prediction  
reports Related work: [MRZ05, WP13b,  

FPTJ14, KSM+15] 
 
This thesis: Log-PTS, Robust PTS 

Related work: [Pre04, WP12b] 
 
This thesis: Divergence-based BTS 

Related work: [DG13,  
SAFP16, KS16b]  

Small number of  
peer/reference agents 

Number of peer/ 
reference agents 

Related work: [MRZ05, WP12b,  
FPTJ14, DG13, SAFP16, KS16b] 
 
This thesis: Divergence-based BTS  

Related work: [Pre04] 
 
This thesis: Log-PTS 

Related work: [WP13b, KSM+15] 
 
This thesis: Robust PTS 

Large number of peer/reference  
agents per task 

Small number of peer/reference  
agents per task 

Strict properness 

Incentive property 

Informed truthfulness 

Strong truthfulness 
Related work: [Pre04, MRZ05,  
WP12b, WP13b, FPTJ14] 
 
This thesis: Divergence-based BTS  

Related work: [DG13, KSM+15,  
KS16b] 
 
This thesis: Log-PTS, Robust PTS 

Related work: [SAFP16]  

Figure 1.1 – Classifications of peer consistency mechanisms according to different criteria

Table 1.1 – Quantitative studies

Type of study Related work This thesis

Experimental
Crowdsourcing ([SCH11, Har11, HF13a,

HF13b, FPTJ14, GMCA14]), Opinion polling
([GF14]), Surveys ([PS06, JLP12, WP13a])

Peer grading

Simulation based
Peer grading ([SP16a, SP16b]), Community

sensing ([FLJ14])
Community sensing
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Organization of the thesis

In Chapter 2, we start by explaining one of the basic building blocks that we use throughout

the thesis: strictly proper scoring rules. Furthermore, Chapter 2 also contains the justification

of why we need strict incentives that make truthful reporting strictly optimal strategy. Chapter

3 discusses peer consistency mechanisms designed for an elicitation scenario where a group of

participants provides information about a single object. This is the classical peer consistency

setting, often used for modeling acquisition of subjective information. Chapter 4 describes

peer consistency mechanisms that are developed for a typical crowdsourcing scenario where

a group of workers solves multiple a priori similar tasks. Naturally, these mechanisms achieve

stronger incentive properties than those discussed in Chapter 3. Chapter 5 considers the issue

of aggregating elicited information and discusses reputation based incentives for limiting the

negative influence of participants who deliberately misreport their information. The focus is

put on mechanisms designed for an online information fusion. We conclude the thesis with

Chapter 6 that provides final remarks and directions for future work.
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2 Preliminaries

Incentives for quality are based on functions that assign quality scores to the information

content of the reported data. In this chapter, we provide a short survey of scoring functions

that assign quality scores to probabilistic estimates. These are called proper scoring rules and

they play a crucial role in the development of the results presented in the following chapters.

Furthermore, we outline the importance of having strict incentives that reflect the quality

of the reported data, and we show their use in motivating participants to provide accurate

information, even when its acquisition is costly.

2.1 Proper scoring rules

One of the main tools for elicitation of probability distribution function is a class of mecha-

nisms called strictly proper scoring rules. Suppose that a respondent is asked to report her

probabilistic prediction F regarding an event that can be modeled as a random variable X ,

and whose outcome x eventually becomes known to the elicitation mechanism. For example,

in a weather forecast, prediction F is a probability distribution function over possible weather

conditions, while x is the realized weather condition. If the quality of F is determined by a

proper scoring rule S(F, x), the expected score is maximized for the optimal choice of F , i.e.,

the one that corresponds to the true distribution of X , denoted by Pr (X ). We focus on strictly

proper scoring rules for which Pr (X ) is the unique maximizer of EX (S(F, X )).

There is a wide variety of strictly proper scoring rules, such as the logarithmic, quadratic, and

spherical scoring rules. We describe in more details the logarithmic and quadratic scoring

rules since these two are the most relevant to the elicitation mechanisms that we develop in

this thesis. For an extensive overview of proper scoring rules, we refer the reader to [GR07].
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Chapter 2. Preliminaries

2.1.1 Logarithmic scoring rule

For a random variable X that takes values in a finite discrete set and a fully mixed forecast F

(i.e., F (x) > 0 for all values of x), the logarithmic scoring rule is defined as [Goo52]:

SL(F, x) =α · ln(F (x))+β (2.1)

where α and β are scaling parameters. Although the logarithmic scoring rule is not bounded,

from a practical point of view this is almost never a problem. Namely, the lower bound on

possible values of F (x) is usually not hard to estimate, so by using scaling parameters α and β,

one can easily fit scores to an arbitrary interval. For simplicity, we set α= 1 and β= 0 in the

remaining text.

To see why the logarithmic scoring rule is strictly proper, let us examine the expected value of

the score for report F , when the true distribution is Pr (X ):

EX (SL(F, X )) =∑
x

Pr (X = x) · ln(F (x)) =∑
x

Pr (X = x) · ln(Pr (X = x))

−
(∑

x
Pr (X = x) · ln(Pr (X = x))−∑

x
Pr (X = x) · ln(F (x))

)
=EX (SL(Pr, X ))−K L(Pr ||F )

where K L(Pr ||F ) is a Kullback-Leibler divergence between Pr and F . From the properties of

the KL divergence (e.g., see [Bis06]), it follows that K L(Pr ||F ) is non-negative and is equal to 0

if and only if F = Pr . Since the expected score depends on F only through K L(Pr ||F ), we can

conclude that it is strictly maximized for F = Pr .

Notice that the definition (2.1) extends to continuous domains as well. In particular, when

X takes values in R and F is a probability density function, the logarithmic scoring rule

SL(F, x) = ln(F (x)) is strictly maximized for F = p, where p is the true probability density of X .

In that case, KL divergence between p and F is equal to K L(p||F ) =∫
R p(x) · ln p(x)

F (x) d x.

2.1.2 Quadratic scoring rule

For a random variable X that takes values in a finite discrete set, the quadratic scoring rule (or

Brier score) is defined as [Bri50]:

SQ (F, x) =α ·
(
F (x)− 1

2
·∑

z
F (z)2

)
+β (2.2)

where α and β are scaling parameters, which we set to α= 1 and β= 0 in the remaining text.

In this case, the quadratic scoring rule takes values in [−1
2 , 1

2 ].

As done for the logarithmic scoring rule, we can inspect the expected value of the quadratic
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scoring rule to obtain:

EX (SQ (F, X )) =∑
x

Pr (X = x) ·
(
F (x)− 1

2
·∑

z
F (z)2

)

=∑
x

Pr (X = x) ·F (x)−∑
x

Pr (X = x) · 1

2
·∑

z
F (z)2

=∑
x

Pr (X = x) ·F (x)− 1

2
·∑

z
F (z)2

=∑
x

Pr (X = x) ·F (x)− 1

2
·∑

z
F (z)2 +∑

x
Pr (X = x)2 −∑

x
Pr (X = x)2

=∑
x

Pr (X = x)2 − 1

2
·∑

x
Pr (X = x)2

− 1

2
·
(∑

x
Pr (X = x)2 −2 ·∑

x
Pr (X = x) ·F (x)+∑

x
F (x)2

)

=EX (SQ (Pr, X ))− 1

2
·D(Pr ||F )

where D is the squared euclidian distance between probability vectors Pr and F , and it

represents the Bregman divergence associated to the quadratic scoring rule. Clearly, D(Pr ||F )

is always positive and equal to 0 only if F = Pr . Therefore, the expected score is strictly

maximized when F = Pr . The quadratic score can also be defined for a real-valued random

variable X , in which case prediction F , that is represented with a probability density function,

is scored with:

SQ (F, x) = F (x)− 1

2
·
∫
R

F (z)2d z (2.3)

and the associated divergence function is equal to D(p||F ) =∫
R(p(x)−F (x))2d x.

Notice that the other strictly proper scoring rules S also have the corresponding Bregman

divergences. We will abuse our notation and denote a divergence of a generic strictly proper

scoring rule by D(||).

2.2 Strict incentive mechanisms

The simplest form of incentives assigns equal rewards to participants without inspecting

the quality of reported data. The drawback of such a simple design is that it does not take

into account respondents’ valuation of different reports. For example, data acquisition typ-

ically requires some effort, which means that the best option for a participant is to provide

uninformative reports, instead of accurate information. Another example would be when a

participant has privacy concerns, so that truthful reporting is worse off for the participant as it

reveals substantial amount of private information.
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2.2.1 Binary participation choice

We can generally model the valuation of a participant in providing a certain information by

using a cost function c(R) that incorporates all aspects of revealing value R to the mechanism.

We adopt the conventional model of elicitation (e.g., [DG13, SAFP16]), in which the cost

function depends on the participant’s binary choice on how to acquire her information or,

alternatively, what type of information she will report. In particular, report R can be informed

or uninformed. An informed report is based on the private information of a participant, and

can be honest (the participant reveals her private information) or dishonest (the participant

misreports her private information). An uninformed report is an outcome of a heuristic

reporting strategy where a participant does not base her reporting decision on her private

information. An example of such a report is a randomly reported value. It is reasonable to

assume that the informed reports result are more costly than the uninformed reports because

one does not need to acquire any data for the latter case.

2.2.2 Design goal

The goal of an elicitation mechanism can now be cast to the problem of designing a payment

rule τ(R) such that the profit of a participant for reporting R, i.e., τ(R)− c(R), is maximized

when the participant provides high-quality information. Notice that c and τ are functions that

map reports to positive numbers that respectively represent costs and payments. Furthermore,

R can also model the action of not participating, for example, by setting R =�, τ(�) = 0 and

c(�) = 0. This means that our design goal includes the individual rationality condition, which

states that the participants should not engage in interaction with the system unless they expect

to positively profit from it.

From the perspective of a participant, the value of τ(R)− c(R) is not known in advance, since

it does not only depend on report R. In particular, payment rule τ(R) is not only dependent

on R, but also on other variables whose values might not be known to the participant. For

example, if a participant provides a prediction about a future event, payment rule τ could

be a proper scoring rule that depends on the participant’s prediction and the true outcome.

A rational participant would in that case aim to maximize expectation E (τ(R)−c(R)) that

is conditioned on her private information. Therefore, one can relax the design goals of an

elicitation mechanism, and require that τ(R)− c(R) is maximized in expectation for a high-

quality report.

Scaling incentives

Suppose now that there exists a certain mechanism τ0 that rewards a high-quality report of a

participant, denoted by Rhonest , with strictly higher expected payoff than any other report R:

E(τ0(Rhonest )) >E(τ0(R)),∀R �= Rhonest
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Let us consider a scaling parameter α:

α> max
R ′

max
(
0,c(Rhonest )−c(R ′)

)
E(τ0(Rhonest ))−E(τ0(R ′))

(2.4)

and a meta-mechanism τ1, such that:

τ1(R) =α ·τ0(R)

The expected profit for reporting Rhonest in the meta-mechanism is then equal to:

E
(
τ1(Rhonest )−c(Rhonest )

)
=E

(
α ·τ0(Rhonest )−c(Rhonest )

)
=E

(
α ·

(
τ0(Rhonest )−τ0(R)

))
+α ·E(τ0(R))−c(Rhonest )

> max
R ′

max
(
0,c(Rhonest )−c(R ′)

)
E(τ0(Rhonest ))−E(τ0(R ′))

·E
(
τ0(Rhonest )−τ0(R)

)
+α ·E(τ0(R))−c(Rhonest )

≥ c(Rhonest )−c(R)

E(τ0(Rhonest ))−E(τ0(R))
·
(
E(τ0(Rhonest ))−E(τ0(R))

)
+α ·E(τ0(R))−c(Rhonest )

=α ·E(τ0(R))−c(R) =E (τ1(R)−c(R))

for all R �= Rhonest . The first inequality comes from (2.4) and the fact that E
(
τ0(Rhonest )

)−
E (τ0(R)) is strictly positive, while the second inequality is due to the fact that R might not

maximize the lower bound on α. Therefore, using the described scaling technique, one

can convert any mechanism that satisfies the same property as τ0 into a meta-mechanism

that satisfies our objective. The technique requires an appropriate choice of α, which can

be estimated empirically [DG13] or elicited from participants using an auctioning protocol

[RF16a].1 This means that we can further relax our design goal: it suffices to find a payment

function τ(R) that is in expectation maximized for a good quality report.

Finally, we can also relax the condition that τ(R) should produce positive payments. Namely,

if τ0(R) is a payment rule with minimal payments equal to τmi n , then a payment rule τ1(R) =
α ·τ0(R)+β satisfies the aforementioned conditions for β = −α ·τmi n and an appropriate

choice of α. τmi n can be determined by the theoretical lower bound of payment rule τ(R) or

empirically (which is convenient if τ(R) does not have a theoretical lower bound).

We see that, in designing incentives for quality, the focus can be put on finding a payment

rule τ that maps reports to real numbers and results in maximum expected payoff for high-

quality reports. In the following chapters, τ is defined as a function on a set of reported

values coming from different participants. This induces a game among participants, which

means that a rational participant conditions her reporting strategy on what she believes about

other participants. We start with a minimum requirement on a payment mechanism that a

participant strictly maximizes her payoff by reporting truthfully whenever other participants

are honest.

1[RF16b] show how to make a better separation between payments for high and low quality reports.
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3 Single-task peer consistency mecha-
nisms

In this chapter, we discuss an elicitation scenario with a single information acquisition task

in which crowd participants observe a single phenomenon and report their observations.

The scenario we consider represents a very general peer consistency setting where a reward

mechanism does not inspect the phenomenon, but instead utilizes the correlations among

reported observations to reward participants.

3.1 Formal setting

We investigate a formal setting that can be described by a group of agents that observe a

certain phenomenon and report their observations to an entity called center. An agent a

observes a signal Xa = xa , updates her prior belief Pr (Xp ) regarding the observation of another

agent p to her posterior belief Pr (Xp |Xa = xa), and reports her observation xa to the center

through an information report Ya = ya . Moreover, the center might also ask agent a to

submit a prediction (forecast) Fa about the frequencies of signal values in the population,

.i.e., her belief Pr (Xp |Xa = xa). In order to obtain truthful observations, the center provides

agents with rewards that are calculated by comparing the reported observations (the center

does not sample the phenomenon so it cannot directly verify the observations). In this

chapter, we investigate mechanisms that incentivize an agent to report honestly whenever

the other agents submit truthful reports. The formal setting is depicted by Figure 3.1, and

we call the illustrated process sensing to emphasize that the agents observe (measure) the

phenomenon. This abstracts an elicitation process in crowd work, in particular, how crowd

participants acquire their private information and form beliefs about each other’s information.

Thus, a phenomenon can represent a crowdsourcing task, a real physical phenomenon, or a

model of how subjective information is formed, while observations are answers to the task,

measurements, or opinions, respectively.
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Chapter 3. Single-task peer consistency mechanisms

Phenomenon Center

Agent a

Agent p

Agent r

xa

xp

xr

Pr(xp,r|Xa=xa)
1. Observe phenomenon
2. Update belief
3. Report observation
4. Reward agent

Figure 3.1 – Single-task peer consistency setting

3.1.1 Elicitation model

We consider a group of agents A that make observations of a certain phenomenon, and report

their observations to an entity called center. A generic agent in A is denoted by a. With each

agent a, we associate k peer agents from A \{a} whose reports are used in assessing the quality

of agent a’s report. A generic peer of agent a is denoted by p. In the case when several agents

a or peers p are put in the same context, we put subscripts, e.g., ai and pi , j . The number of

agents N in group A is bounded from below by 2, meaning that N = |A | ≥ 2, while each agent

a has k ∈ {1, ..., |A |−1} peers.

The agents observe a phenomenon, and their observations are modeled as random variables

X that take values in an observation set X . The observation of each agent a, Xa , is private so

neither the center nor the other agents know of its realization. The observation of a peer p

is denoted by Xp , while the observation profile of k peers is denoted by Xp = (Xp,1, ..., Xp,k ).

Generic values in X are represented by x, y , and z, and the set of all probability distribution

functions over X by P . Unless indicated differently, X is a finite discrete set, and, for

simplicity, we describe the setting by assuming that this indeed holds.

An agent a has a probabilistic belief about how agents acquire their observations. The agent’s

belief system Ba is not known to the center and consists of:

• prior belief regarding her own observation Pr (Xa) ∈P ;

• prior belief regarding peers’ observations Pr (Xp ) ∈P k , and similarly for any subset of

peers, e.g., for a single peer, we denote Pr (Xp ) ∈P ;

• posterior belief regarding peers’ observations Pr (Xp |Xa) ∈ P k , and similarly for any

subset of peers, e.g., for a single peer, we denote Pr (Xp |Xa) ∈P .
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We assume that two basic conditions are satisfied in Ba :

• all the probability distribution functions in Ba are fully mixed, meaning that they assign

strictly positive probabilities to each outcome;

• posterior Pr (Xp |Xa) is stochastically relevant, meaning that D(Pr (Xp |Xa = x)||Pr (Xp |Xa =
y)) > 0 for ∀x �= y , where D(||) is the Bregman divergence of a strictly proper scoring

rule.

The second condition indicates that the posterior distribution regarding Xp conditioned on

Xa is different for different realizations of Xa [MRZ05]. The belief profile of group of agents

A is denoted by BA = (Ba1 , ...,BaN ), and when it is needed to distinguish between the beliefs

of different agents ai , we put subscript Prai (if there is no subscript, Pr denotes agent a’s

beliefs).

Once she observes the phenomenon, agent a is asked to submit a report Ra that contains:

• information report Ya ∈X , which represents agent a’s reported observation;

• additionally, she might be asked to submit a prediction report Fa ∈P , which represents

agent a’s prediction regarding the frequencies of signal values in the overall population.

When agents are honest, this report corresponds to agent a’s posterior belief Pr (Xp |Xa).

Therefore, the structure of report Ra , denoted by R, can be of the form R =X or R =X ×P ,

indicating that agent a’s report is Ra = Ya or Ra = (Ya ,Fa), respectively. For an agent a’s

peer, the notation is Yp , Fp and Rp , and the report profiles of agent a’s peers are denoted by

Yp = (Yp,1, ...,Yp,k ), Fp = (Fp,1, ...,Fp,k ) and Rp = (Rp,1, ...,Rp,k ).

The center rewards the agents based on the quality of the information they provide, and the

quality is estimated by comparing their reports. That is, a payment mechanism τ does not

only depend on the report of the agent that is being rewarded, but also on the reports of

other agents, her peers. In this chapter, we investigate single-task payment mechanisms τS ,

which are formally defined as τS : ×k
i=0R →R. Depending on the information structure that

the agents report, the payoff of an agent a is either a function of information reports alone,

i.e., τS(Ya ,Yp1 , ...,Ypk ) for R = X , or a function of information and prediction reports, i.e.,

τS(Ya ,Fa ,Yp1 ,Fp1 , ...,Ypk ,Fpk ) for R =X ×P .

Finally, each agent is assumed to be rational and risk-neutral, and her utility is reflected

through the reward given by the mechanism. Thus, an agent’s objective is to maximize the

payments provided by the center through mechanism τS . This further implies that an agent is

inclined to strategize on what to report to the center, which means that payment mechanism

τS should incentivize truthful revelation of private information, as further discussed in Section

3.1.6.
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Chapter 3. Single-task peer consistency mechanisms

3.1.2 Beliefs about peers

The mechanisms we are investigating are based on comparing reports that different agents

make about the same phenomenon. Clearly, there are cases in which such comparisons

do not make sense. For example, if agents all interpret the phenomenon differently, or use

different scales for measurement, their reports cannot be compared directly. Furthermore,

what matters is not the true situation, but what agents believe about their peers: to provide the

right incentives, it is sufficient that they believe their peers to be comparable to themselves,

even if in reality that might not be the case.

Therefore, we introduce a notion of belief constraint set C , whose elements are conditions C

that specify:

• how belief systems of different agents relate,

• how observations are acquired,

• how priors are updated to posteriors.

The set of admissible belief profiles under constraint set C is denoted by B(C ), and it contains

belief profiles Ba that satisfy conditions in C . In the following subsections, we define belief

conditions C important for developing the formal results of this chapter.

3.1.3 Relational constraints

Relational constraints describe how agents’ belief systems relate to each other, that is, how

much agents’ belief systems differ from each other. We identify two conditions: common belief

condition and divergence-based condition.

Common belief condition

The simplest constraint and arguably the most stringent condition is the one that states that

agents share a common belief system. We will, therefore, use this condition as a baseline

in exploring impossibility results. In particular, we would like to at least be able to design a

mechanism that elicits truthful observations for the case when all of the agents share the same

belief system.

Definition 1. A belief profile BA satisfies the common belief condition CC B if ∀a1, a2 ∈ A :

Ba1 = Ba2 .

Divergence-based condition

A particular property of the common belief condition CC B is that agents who have the same

observations should also have the same posterior belief about their peer agents. A possible

18
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relaxation of this condition would be to say that two agents should have more similar posterior

beliefs when they have equal observations than when their observations are different. More

formally:

Definition 2. A belief profile BA satisfies the divergence-based condition CDB if there exists

Θ≥ 0 such that ∀a1, a2 ∈A ∧∀x �= y:

D(Pra1 (Xp1 |Xa1 = x)||Pra2 (Xp2 |Xa2 = x)) ≤Θ< D(Pra1 (Xp1 |Xa1 = x)||Pra2 (Xp2 |Xa2 = y))

where D(||) is the Bregman divergence of a strictly proper scoring rule.

3.1.4 Acquisitional constraints

Acquisitional constraints model belief assumptions on how agents reason about the acquisi-

tion of their private information, in particular, their observations.

State model condition

We define an acsquisitional constraint based on a state model that is similar to the ones

introduced in [Pre04, MRZ05, WP12b].

Definition 3. Consider a random variable Ω taking values in R. A belief profile BA satisfies

the state model condition CSM if each belief system Ba is constrained with the following set of

assumptions:

• observations Xa1 and Xa2 of any two different agents a1 and a2 in A are conditionally

independent given Ω;

• agent a’s prior belief regarding Ω is a probability density function pa(Ω) that takes strictly

positive values;

• for all agents ai in A , probabilities Pra(Xai |Ω) are strictly positive.

Notice that Pra(Xai |Ω) and Pra′(Xai |Ω) (and similarly pa(Ω) and pa′(Ω)) are allowed to be

different for two different agents a and a′. However, we often drop the subscript a from

Pra(Xai |Ω) (and pa(Ω)) to simplify the notation.

Gaussian state model condition

We also consider a refinement of the state model condition CSM that specifies the probability

distribution functions of agents’ belief systems. We are particularly interested in Gaussian

state model condition CGSM that is defined for observations that take values in R and for

which the parameters of agents’ belief systems, i.e., probability density functions, are Gaussian

distributions.
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Definition 4. Consider observation space X =R. A belief profile BA satisfies the Gaussian

state model condition CGSM if it satisfies the state model condition CSM in which:

• the observation values Xa are generated by a Gaussian distribution pa(Xa) ∼N (μΩ,σ),

where σ is fixed (given);

• μΩ defines state Ω and is distributed according to a Gaussian distribution pa(μΩ) ∼
N (μ0,σ0).

As it is the case for the state model condition CSM , we often drop the subscript a from pa(Xa)

and pa(μΩ) when it is clear that we are referring to agent a.

3.1.5 Updating constraints

The updating constraints describe conditions about the strength of agents’ beliefs. The more

confident an agent is in her observation, the more likely it is (by her beliefs) that her peer

observes the same value.

Self-dominant condition

The strongest condition we consider is the self-dominant condition, where an agent a believes

that the value x she observes is also the most likely value observed by her peer p.

Definition 5. A belief profile BA satisfies the self-dominant condition CSD if for the posterior

belief of each Ba:

Pr (Xp = y |Xa = x) < Pr (Xp = x|Xa = x),∀y �= x (3.1)

A general class of cases where the self-dominant condition holds is when agents believe that

they observe the exact same signal only perturbed by an unbiased noise.

Self-predicting condition

As many settings do not satisfy this condition, we introduce a weaker condition, called the

self-predicting condition. Here, an agent a believes that she is most likely to observe a certain

value x when another agent p observes the same value.

Definition 6. A belief profile BA satisfies the self-predicting condition CSP if for the posterior

belief of each Ba:

Pr (Xa = x|Xp = y) < Pr (Xa = x|Xp = x),∀y �= x (3.2)
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By applying Bayes’ rule, we obtain an alternative form of the self predicting condition:

Pr (Xp = y |Xa = x)

Pr (Xp = y)
< Pr (Xp = x|Xa = x)

Pr (Xp = x)
,∀y �= x (3.3)

This form is important for the next chapter, where we redefine the self-predicting condition

for a multi-task setting.

A general class of cases where the self-predicting condition holds is when agents believe

that they observe different samples drawn from the same random distribution, but with the

condition that these samples are categorical [SAFP16], so that observing value x reduces

an agent’s belief that her peer observes another value y �= x [JF11]. Notice, however, that

unlike the described categorical case, the self-predicting condition allows (limited) correlation

between different observation values x and y .

Self-correlated condition

Arguably, the weakest condition that we consider is a self-correlated condition, which states

that an agent a should believe that observing a certain value x only increases the chances that

her peer observes the same value. More formally:

Definition 7. A belief profile BA satisfies the self-correlated condition CSC if for the posterior

belief of each Ba:

Pr (Xp = x|Xa = x) > Pr (Xp = x),∀x ∈X (3.4)

The self-correlated condition holds whenever agents observe the same phenomenon in a

similar way. In particular, it holds in the state models of standard peer consistency methods

[Pre04, MRZ05, WP12b].

Relative self-dominant condition

Finally, we consider a condition that is a combination of relational and updating constraints.

It states that the difference between Pra(Xp = x|Xa = x) and Pra(Xp = y |Xa = x) of an agent a,

be it greater or smaller than 0, is always strictly greater than the expected difference between

Pra j (Xp j = x|Xa j ) and Pra j (Xp j = y |Xa j ) of another agent a j . Notice that this condition is

similar to the self-dominant condition, but it only requires that self-dominance is satisfied

relative to the beliefs of other agents. Therefore, we call it relative self-dominance.

Definition 8. A belief profile BA satisfies the relative self-dominant condition CRSD if for the

posterior beliefs any two agents, a1 and a2, we have that:

Pra1 (Xp1 = x|Xa1 = x)−Pra1 (Xp1 = y |Xa1 = x)

>EXa2

(
Pra2 (Xp2 = x|Xa2 )−Pra2 (Xp2 = y |Xa2 )|Xa1 = x

)
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for all x �= y.

3.1.6 Reporting strategies

As a rational agent, agent a aims to maximize the reward obtained from the center, and

in the case of uncertainties, she is assumed to maximize her expected reward. To decide

which information to provide to the center, agent a should estimate the rewards expected for

different reports. Notice that she has no knowledge about what her peers have reported, so her

best reporting strategy depends crucially on the agent’s beliefs about the reports of her peers.

In this chapter, we assume that agent a believes her peers are honest. Given that, agent a faces

a choice between two basic strategies:

• honest: observe the phenomenon to obtain evaluation Xa = x, and report honestly

Ya = x (and Fa = Pr (Xp |Xa = x)). We denote honest report by Rhonest
a .

• dishonest: observe the phenomenon to obtain evaluation Xa = x, but report Rdi shonest
a �=

Rhonest
a .

To incentivize truthful revelation, payment mechanism τS should satisfy the property called

strict properness (e.g., see [SAFP16]), which we define for the setting of this chapter as follows.

Definition 9. We say that a singe-task payment mechanism τS is proper under the set of belief

constraints C if for all BA ∈B(C ), a ∈A , and Ra ∈R\{Rhonest
a }, we have that:

EXp

(
τS(Rhonest

a ,Rhonest
p )|Xa

)
≥EXp

(
τS(Ra ,Rhonest

p )|Xa

)
(3.5)

If the inequality is strict, then τS is strictly proper.

The definition of strict properness states that truthful reporting is a strict equilibrium of

mechanism τS . In particular, when the set of belief constraints consists of the common belief

condition and the state model condition (i.e., C = {CC B ,CSM }), mechanism τS has a form of

a Bayesian game (e.g., see [SLB08]), and the strict properness property implies that truthful

reporting is a strict Bayesian Nash equilibrium, irrespective of the parameters of agents’

common belief system.1 In general, agents might not have a common belief system, in which

case the strict properness property implies that truthful reporting is a strict ex-post subjective

equilibrium (see [WP12a]), with the admissible set of belief profiles defined by B(C ).2 Notice

that the concept of Bayesian Nash equilibrium is a special case of the ex-post subjective

equilibrium concept, obtained for the set of belief constraints equal to C = {CC B ,CSM }.

1As argued by [Wit14, SAFP16], one can adopt a correlated equilibrium concept instead.
2The (original) definition of the ex-post subjective equilibrium concept is based on admissible belief types that

categorize agents’ belief systems [WP12a], but using a reasoning similar to [FW16], one can define it via B(C ).

22



3.2. Related work

One might wonder why the strategy space of an agent does not include a possibility of the

agent not inspecting the considered phenomenon. The following proposition shows, however,

that we can, without loss of generality, constrain the strategy space of the agents to honest and

dishonest strategies. Namely, strategies in which an agent does not observe the phenomenon

do not represent the best response to the honest behaviour of the other agents whenever the

considered mechanism is strictly proper. On the other hand, to establish strict properness,

one only needs honest and dishonest reporting strategies.

Proposition 1. Consider an agent a that has not yet made an observation and suppose her

peers are honest ( Rp = Rhonest
p ). For any strictly proper payment mechanism τS, agent a’s payoff

is expected to strictly increase if she decides to adopt honest reporting strategy (Ra = Rhonest
a )

instead of a reporting strategy in which she does not make an observation.

Proof. Since mechanism τS is strictly proper, we know that the expected payoff of agent a

when she observes the phenomenon is maximized for report Rhonest
a . Consider now the

situation before the agent observes the phenomenon. The expected payoff for reporting Ra is

equal to:

EXp

(
τS(Ra ,Rhonest

p )
)
= ∑

x∈X

Pr (Xa = x) ·EXp

(
τS(Ra ,Rhonest

p )|Xa = x
)

< ∑
x∈X

Pr (Xa = x) ·EXp

(
τS(Rhonest

a ,Rhonest
p )|Xa = x

)

where the inequality comes from the fact that: τS is strictly proper, the best response (Rhonest
a )

is dependent on Xa , and Pr (Xa) is fully mixed. Since the right most part in the expression is

the expected payoff for honest reporting (calculated prior to the observation), we obtain that

agent a is expected to strictly increase her payoff when observing the phenomenon.

Remark 1. In this chapter, we do not analyze collusion properties of the developed mech-

anisms. As it turns out, even achieving strict properness is not trivial for the single-task

elicitation setting. We note that there are many practical scenarios where truthfulness, if

an equilibrium strategy profile, is a focal point, since other reporting strategy profiles might

require more unnatural coordination among agents. These include opinion polling or human

computation tasks in which workers do not frequently interact with each other. For example,

the study of [FPTJ14] did not appear to have a problem with collusion. On the other hand, a

susceptibility to collusion might be problematic if agents repeatedly and frequently interact

with a peer consistency mechanism, as experimentally shown in [GMCA14] and further argued

in [SP16a]. We refer the reader to [KS16a] on how to extend some of the results of this chapter

to be more robust to collusive behaviour.

3.2 Related work

Gold standard mechanisms are the simplest design of incentives for quality. They assume that

the center has access to gold standards, such as test tasks in crowdsourcing, and use these
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to score agents based on how accurate their reports are [OSL+11, Har11]. The more complex

designs of gold standard mechanisms allow agents to also express confidence in their answers

[SZP15, SZ15] or are suitable for the elicitation of accurate aggregates [FCK15, UDG15]. In

this type of mechanisms, we can also include proper scoring rules [Sav71, GR07], prediction

markets [Han07, CP07], and scoring rules for elicitation of averages, medians and modes of an

unknown quantities [LS09].

As our setting precludes the center from having the access to the gold standard, we focus on

peer consistency techniques, which are based on the comparison of reports. One of the most

basic peer consistency mechanisms is the output agreement [vAD04, vAD08] that rewards

agents if their reports agree. In a more general sense, agents can be rewarded by how close

their reports are, measured by a predefined distance function, and in this case, the output

agreement is shown to elicit common knowledge rather than agents’ private information

[WC13, WC14]. We show in this chapter a condition under which the mechanism is strictly

proper.

In order to deal with a potential bias towards prior information, the peer prediction method

[MRZ05] scores agents’ posterior beliefs for a reported value. The main idea behind the

mechanism is to extract an agent’s posterior belief from her reported value and score it using

a proper scoring rule and a report obtained from her peer agent. Due to the reliance on

strictly proper scoring rules, the mechanism is strictly proper. However, it assumes that agents

have a common belief system, known to the mechanism. Several modifications of the peer

prediction method were investigated in the literature. Instead of applying proper scoring rules,

[JF06a, JF06b] construct budget minimizing payment schemes using automated mechanism

design. They prove that if an agent is scored on the comparison of several reports rather than

just one, the minimum budget required to achieve incentive compatibility decreases. The

results also indicate that small deviations of agents’ beliefs from the common belief system

may lead to large increases in payments. [JF09] and [KSL16] investigate how to make collusive

strategies less profitable in the peer prediction framework.

The collective revelation [GRP09] elicits individual predictions and aggregate estimates. It

has a setting similar to the peer prediction mechanisms, with the common belief system

known to the mechanism, and agents that may make multiple observations, generated from a

distribution of a particular form (e.g., Bernoulli distribution).

In the group of knowledge-dependent mechanisms, we can also include mechanisms that

require knowledge regarding agents’ prior belief, but instead of assuming common belief

system, they put conditions on how agents update their beliefs. These include the shadowing

method [Wit14]3 and the peer truth serum [JF11, FPTJ14]. A full overview of these mechanisms

can be found in [FW16], where it is shown how these mechanisms relate to the partitioning of

the probability simplex P .

3We refer to the shadowing method as the one in which the shadowing approach transforms a known prior to a
posterior using an agent’s report.
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Weakly truthful mechanisms do not necessarily provide strict incentives [LS08] or may not

necessarily be proper [JF08, JF11]. The latter mechanism is the peer truth serum that rewards

agents using an estimate of the agents’ prior, as opposed to the exact one. The estimate is

obtained with a public statistic. If the statistic is close to the prior, the mechanism is strictly

proper, otherwise, it is helpful in a sense that it drives the statistics toward the agents’ prior.

Except for the output agreement, none of the mentioned mechanisms fits in the setting of this

chapter, either because they require knowledge about agents’ beliefs or because they are not

strictly proper. The mechanisms that have a formal setting closest to ours are called Bayesian

truth serums.

The (original) Bayesian truth serum (BTS) [Pre04] assumes a setting similar to the one used in

the peer prediction method, but does not require a common belief system to be known to the

mechanism. Instead, agents are obliged to provide two reports: the information report (their

observation) and the prediction report (the prediction of what other agents have observed).

BTS is strictly proper for large populations of agents. The robust Bayesian truth serum (RBTS)

of [WP12b] corrects the main drawback of BTS: its inadequacy to operate on small populations.

RBTS is strictly proper for small populations, but requires additional belief constraints when

observations are non-binary [Wit14]. The minimum truth serums of [Ril14] aim to minimize

the number of reported values in BTS type of mechanisms by exploiting the common structure

of agents’ beliefs. The mechanism requires that the number of agents is at least as large

as the observation space. [KS16a] builds on our work, presented in the following sections,

to improve the properties of the BTS design in terms of collusion resistance. Finally, four

interesting empirical results relate to the BTS mechanisms: [PS06] describe how to use the

BTS mechanism in order to obtain the ground truth even when the majority is wrong, while

[SCH11, WP13a, JLP12] demonstrate that the BTS mechanism rewards truthful responses and

has a positive effect in quality control. We study the application of a BTS type of mechanism

to a small scale community sensing setting, and provide a complementary approach to the

existing knowledge-dependent elicitation mechanisms proposed for community sensing

[FLJ14]. Furthermore, we provide an application based BTS result that relates to the design of

contests that optimize user involvement [GR14].

For completeness, we also mention the mechanisms which operate in a setting that separates

time before the observations are made from the time after the observations are made. In this

case, it is possible to exploit the temporal structure to elicit binary observations even when

the beliefs are private and subjective [WP12a]. The key idea is that the agents first report their

private prior belief about what the other agents will observe, then observe a binary signal,

and after the observation report their signal values. In this group, we can also include the

knowledge-free mechanism of [ZC14], which establishes temporal separation by creating two

step reporting protocol. The mechanism relies on a common belief system and asks agents to

first submit their information report, after which they report their prediction report knowing

the information report of another agent (this information is revealed to them).
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3.3 Single-report mechanisms

We begin our analysis with the mechanisms that elicit only the observed values, meaning

that reports take values in R = X . In other words, an agent a is asked to provide only her

information report Ya .

Since the center has no knowledge of the agents’ beliefs, we can expect that there does not

exist a strictly proper mechanism under arbitrary belief constraints. However, we show in this

section that this is true even if the agents’ beliefs are constrained to be common or satisfy the

self-predicting condition, i.e., C ⊆ {CSB ,CSP }.

Before formalizing the statement, let us take a closer look at single peer payment mechanisms.

Definition 10. A payment mechanism τS is 1-peer if it can be written as a function τS : R×R →
R of an agent a’s report and the report of one of her peers, i.e., τS(Ra ,Rp ).

As it is stated in the setting section, we consider scoring functions that depend on the reports

of k peers, which in the case of a single report have form τS(Ya ,Yp,1, ...,Yp,k ). On the other

hand, 1-peer payment mechanisms represent a restricted version of general scoring function

as they only consider an agent having one peer. In the case of a single report, 1-peer payment

mechanisms have form τ(Ya ,Yp ). Nevertheless, their structure simplifies the theoretical

analysis while keeping the obtained results general enough.

The following lemma shows that for proving impossibility results, it suffices to examine 1-peer

payment mechanisms: if strict properness is required for a relatively general, yet constrained

enough belief profile Ba that satisfies the common belief condition CC B or the self prediction

condition CSP , it is enough to consider 1-peer payment mechanisms. 4

Lemma 1. Suppose that agents provide only their information report, i.e., R =X . If there exists

a strictly proper payment mechanism under the set of belief constraints C ⊆ {CC B ,CSP }, then

there exists a 1-peer payment mechanism that is strictly proper under the same belief constraint.

Proof. Let τS be a strictly proper payment mechanism. If k = 1 (agent a has only one peer),

the statement follows immediately. Let us now consider k > 1.

Provided that all her peer agents are honest, the expected score of an agent a who observes x

for reporting y is equal to:

∑
x1,...,xk

Pr (Xp1 = x1, ..., Xpk = xk |Xa = x) ·τS(y, x1, ..., xk )

=∑
x1

(Pr (Xp1 = x1|Xa = x)·

· ∑
x2,...,xk

Pr (Xp2 = x2, ..., Xpk = xk |Xa = x, Xp1 = x1) ·τS(y, x1, ..., xk ))

4However, Lemma 1 does not imply that it is enough to consider 1-peer payment mechanisms in order to
achieve strict properness when additional restrictions are put on agents’ belief systems.
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=∑
x1

Pr (Xp1 = x1|Xa = x) · τ̃(y, x1)

where we put τ̃(y, x1) = ∑
x2,...,xk

Pr (Xp2 = x2, ..., Xpk = xk |Xa = x, Xp1 = x1) · τS(y, x1, ..., xk )).

Notice that τ̃(y, x1) depends on Pr (Xp2 = x2, ..., Xpk = xk |Xa = x, Xp1 = x1). However, the

original mechanism is strictly proper under any belief profile Ba that satisfies C ⊆ {CC B ,CSP },

so it must be strictly proper when the updating process keeps Pr (Xp2 = x2, ..., Xpk = xk |Xa =
x, Xp1 = x1) fixed, but alters Pr (Xp1 = x1|Xa = x). This implies the existence of a 1-peer

payment mechanism that is strictly proper under C ⊆ {CC B ,CSP } because τ̃ is strictly proper

for arbitrary beliefs Pr (Xp1 = x1|Xa = x) that satisfy C ⊆ {CC B ,CSP }.

Using the lemma, we now show the main result of this section: even under a relatively con-

strained beliefs, in particular, agents having a common belief system, no single-report peer

consistency technique is strictly proper. Notice that the setting of this chapter assumes that

the center has no knowledge about the agents’ belief systems. Clearly, the knowledge regarding

the structure of the agents’ belief systems plays a crucial role in the elicitation process. Thus,

the knowledge-free elicitation comes at a certain price, either through the structure of elicited

information or the restrictions imposed on agents’ belief systems.

Theorem 1. Suppose that agents report only their information report, i.e. R =X . There exists

no strictly proper payment mechanism under the set of belief constraints C ⊆ {CC B ,CSP }.

Proof. Let us assume that there exists a strictly proper payment mechanism τS for C ⊆
{CC B ,CSP }. Due to Lemma 1, we restrict our attention to 1-peer payment schemes. Let

agents’ have a common belief system, with arbitrary beliefs denoted by px = Pr (Xp |Xa = x),

py = Pr (Xp |Xa = y), pz = Pr (Xp |Xa = z), etc., and let these beliefs satisfy the self-predicting

condition. In particular, we set py (y) > px (y) > px (x) > py (x) and pz (z) > pz ′(z) for all

z, z ′ ∈X , z �= z ′. Due to the strict properness, we know that the expected payoff for reporting

x when x is observed should be strictly greater than the expected payoff for reporting some

other value. Similarly we obtain for another value y . The posterior belief when x is observed is

equal to px , while for observation y is equal to py . Therefore, the strict properness implies:

∑
z∈X

px (z) ·τS(x, z) > ∑
z∈X

px (z) ·τS(y, z)

∑
z∈X

py (z) ·τS(y, z) > ∑
z∈X

py (z) ·τS(x, z)

which can be rearranged to:

px (x) · [τS(x, x)−τS(y, x)]+px (y) · [τS(x, y)−τS(y, y)]+
+ ∑

z∈X \{x,y}
px (z) · [τS(x, z)−τS(y, z)] > 0
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py (x) · [τS(y, x)−τS(x, x)]+py (y) · [τS(y, y)−τS(x, y)]+
+ ∑

z∈X \{x,y}
py (z) · [τS(y, z)−τS(x, z)] > 0

To simplify the notation, let Δz = τS(x, z)−τS(y, z). The above expressions are then equal to:

px (x) ·Δx +px (y) ·Δy +
∑

z∈X \{x,y}
px (z) ·Δz > 0

−py (x) ·Δx −py (y) ·Δy −
∑

z∈X \{x,y}
py (z) ·Δz > 0

Let us now consider a new set of beliefs p
′
x , p

′
y , pz , etc., where: p

′
x (x) = py (y), p

′
x (y) = py (x),

p
′
y (x) = px (y), p

′
y (y) = px (x), p

′
x (z) = py (z) and p

′
y (z) = px (z) for z �= x, y . Notice that the new

set of beliefs satisfy the self-predicting condition. Since the incentive compatibility also has to

hold for the new posterior beliefs, we have:

py (y) ·Δx +py (x) ·Δy +
∑

z∈X \{x,y}
py (z) ·Δz > 0

−px (y) ·Δx −px (x) ·Δy −
∑

z∈X \{x,y}
px (z) ·Δz > 0

The last 4 inequalities give us:

(px (x)−px (y)) · (Δx −Δy ) > 0 (3.6)

(py (y)−py (x)) · (Δx −Δy ) > 0 (3.7)

Because we set py (y) > px (y) > px (x) > py (x), it cannot be that both (3.6) and (3.7) are satisfied.

That is, we have a contradiction.

The significance of Theorem 1 is that it motivates the use of mechanisms with an additional

report. Namely, as we show in the next sections, under the same set of belief constraints, there

exists a mechanism that requires an additional report but is strictly proper.

3.3.1 Output agreement

An alternative approach would be to examine stricter conditions regarding agents’ belief

systems. It suffices to use the self-dominant condition CSD in order to allow strict properness

among minimal knowledge-free mechanisms. This leads us to a very well known mechanism

called the output agreement (OA) [vAD04].

Output Agreement. Consider an agent a and her peer p. The output agreement mechanism

rewards an agent a with 1 if her report matches the report of her peer. Otherwise, the reward
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of agent a is equal to 0. That is, for reporting y , the agent obtains reward:

τS(y,Yp ) =1Yp=y (3.8)

where 1 is an indicator variable.

Proposition 2. The output agreement mechanism is strictly proper under the self-dominant

condition, i.e., C = {CSD }.

Proof. Consider an agent a that observes Xa = x and suppose her peer agent p is honest. If

agent a aims to maximize her expected payoff in the OA mechanism, she will choose to report:

argmax
z

E(τS(z, Xp )) = argmax
z

Pr (Xp = z|Xa = x) = {x}

where the last equality is due to the self-dominant condition CSD . Hence, we proved the

statement.

3.4 Multi-report mechanisms

We now turn to mechanisms that ask an agent to additionally provide her prediction report F ,

which represents her posterior belief about the reports of her peers. This means that the set of

possible reports is equal to R =X ×P .

3.4.1 Decomposable payment mechanisms

In general, a payment mechanism depends on all of the reported values, i.e., τS(Xa ,Fa , ...). In

this subsection, we consider a specific class of payment mechanisms τS that have a decompos-

able structure, meaning that they separately score an agent a’s information report from her

prediction report.

Definition 11. Suppose that agents provide both their information reports and prediction

reports, i.e., R =X ×P . We say that payment mechanism τS is decomposable if an agent a’s

total payment is calculated as the sum of her information score and her prediction score, where

the information score does not depend on the agent’s prediction report and the prediction score

does not depend on the agent’s information report. More precisely:

τS(Ra ,Rp ) = τY (Ya ,Rp )︸ ︷︷ ︸
information score

+ τF (Fa ,Rp )︸ ︷︷ ︸
prediction score

(3.9)

Having a decomposable structure, where an agent’s information score is independent of her

prediction report and her prediction score is independent of her information report, simplifies

the analysis of the incentives as they do not influence each other. Notice that the robust

Bayesian truth serum of [WP12b] is an example of a decomposable payment mechanism. For
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the limit case when the number of agents approaches infinity, the original Bayesian truth

serum [Pre04] converges to a decomposable payment mechanism since a single agent does not

have large impact on the frequencies of information reports nor on the average of prediction

reports.

The structure of decomposable mechanisms allows us to analyze information and prediction

scores separately. The prediction score elicits an agent’s belief about what other agents have

reported. Since the outcome is known to the mechanism (the mechanism knows what the

other agents have reported), truthful elicitation of the prediction report can be achieved using

proper scoring rules. Therefore, when proving impossibility results of decomposable payment

mechanisms, one can focus on information scores.

Lemma 2. There exists a decomposable payment mechanism that is strictly proper if and only

if there exists an information score τY such that the expected value EXp (τY (Ya ,Rhonest
p )|Xa) is

strictly maximized for Ya = Xa.

Proof. Consider the following score:

τF (Fa ,Rhonest
p ) = S(Fa ,Yp )

where S is a strictly proper scoring rule and Yp is the information report of a randomly chosen

peer p. Provided that the peer agents are honest (Yp = Xp ), the (strictly) best strategy for

agent a is to report her true posterior belief regarding what her peers have observed, i.e.,

Fa = Pr (Xp |Xa).

Since there exists a payment rule that elicits honest prediction reports regardless of the belief

constraints C , the existence of a decomposable strictly proper payment mechanism depends

only on the existence of an information score that complies with the conditions of the lemma.

Therefore, we proved the statement.

We keep the notion of 1-peer payment mechanisms from the previous section, i.e., 1-peer

payment mechanisms represent a restricted version of a general scoring functions and have

a form τS(Ra ,Rp ). Notice that Definition 10 includes the payment functions with prediction

reports. The following lemma shows the generality of 1-peer payment mechanisms in proving

impossibility results.

Lemma 3. If it is possible to construct a decomposable payment mechanism that is strictly

proper under the set of belief constraints C ⊆ {CC B ,CSC }, then it is possible to construct a strictly

proper 1-peer decomposable payment mechanism.

Proof. Due to Lemma 2, we restrict our analysis to the information score. Let τS be a payment

mechanism that satisfies the condition of the statement in Lemma 2, i.e., an agent a’s best

response to truthfulness of her peer agents is to report her honest information score. If k = 1

(agent a has only one peer), the statement follows immediately. Let us now consider k > 1.
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The expected information score of an agent a who observes Xa = x for reporting y , provided

that her peers are honest, is equal to:

∑
x1,...,xk

Pr (Xp1 = x1, ..., Xpk = xk |Xa = x) ·τY (y, Xp1 ,Prp1 , ..., Xpk ,Prpk )

=∑
x1

(Pr (Xp1 = x1|Xa = x)·

· ∑
x2,...,xk

Pr (Xp2 = x2, ..., Xpk = xk |Xa = x, Xp1 = x1) ·τY (y, Xp1 ,Prp1 , ..., Xpk ,Prpk ))

=∑
x1

Pr (Xp1 = x1|Xa = x) · τ̃(y, Xp1 ,Prp1 )

where we put τ̃(y, Xp1 ,Prp1 ) =∑
x2,...,xk

Pr (Xp1 = x1, ..., Xpk = xk |Xa = x, Xp1 = x1) ·
·τY (y, Xp1 ,Prp1 , ..., Xpk ,Prpk ). Notice that τ̃(y, Xp1 ,Prp1 ) depends on Pr (Xp2 = x2, ..., Xpk =
xk |Xa = x, Xp1 = x1). However, the original mechanism is strictly proper under any belief

profile that satisfies C , so it must be strictly proper when the belief updating process of agent

a keeps Pr (Xp1 = x1, ..., Xpk = xk |Xa = x, Xp1 = x1) fixed, but alters Pr (Xp1 = x1|Xa = x). This

implies the existence of a 1-peer payment mechanism that is strictly proper under constraints

C because τ̃ is strictly proper for arbitrary beliefs Pr (Xp1 = x1|Xa = x).

As in the previous section, we first provide the impossibility result: one cannot design a

strictly proper decomposable payment mechanism under the common belief condition C =
{CC B }. The proof of the formal result requires that the observation space is non-binary. If

the observations were binary, then the self-predicting condition CSP would hold under a

relatively weak assumption that the same observation values are positively correlated, in

particular, under the self-correlated condition CSC . We show this in the proof of Corollary 1,

while the following theorem provides the formal statement of the claim from the beginning

of the paragraph presented in a more general form, that is, the one in which the set of belief

constraints is any subset of {CC B ,CSC }.

Theorem 2. There exists no strictly proper decomposable mechanism under the set of belief

constraints C ⊆ {CC B ,CSC } when agents’ observations take more than two values, i.e., |X | > 2.

Proof. Let us assume that there exists a strictly proper payment mechanism τS , and due to

Lemma 3, we can assume that it is a 1-peer payment mechanism. Furthermore, because of

Lemma 2, we restrict our attention to its information score.

Let px = Pr (Xp |Xa = x), py = Pr (Xp |Xa = y), pz = Pr (Xp |Xa = z), etc., be some arbitrary

distribution functions that define agents’ common belief. Using the same arguments as in the

proof of Theorem 1, we obtain that the strict properness of τS implies:

px (x) · (τY (x, x,px )−τY (y, x,px ))+px (y) · (τY (x, y,py )−τY (y, y,py ))

+ ∑
z∈X \{x,y}

px (z) · (τY (x, z,pz )−τY (y, z,pz )) > 0
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py (x)(τY (y, x,px )−τY (x, x,px ))+py (y) · (τY (y, y,py )−τY (x, y,py ))

+ ∑
z∈X \{x,y}

py (z) · (τY (y, z,pz )−τY (x, z,pz )) > 0

This gives us:

(px (x)−py (x)) ·Δx (px )+ (px (y)−py (y)) ·Δy (py )

+ ∑
z∈X \{x,y}

(px (z)−py (z)) ·Δz (pz ) > 0 (3.10)

where Δz (pz ) = (τY (x, z,pz )−τY (y, z,pz )). Since the mechanism should be strictly proper for

arbitrary distribution functions, it should also be strictly proper for the following two cases:

1. When px (x) = py (x)− ε, px (z) = py (z) for z �= x, z ′, and px (z ′) = py (z ′)+ ε, where ε > 0

and ε<< 1. We denote this distribution by p−
x .

2. When px (x) = py (x)+ ε, px (z) = py (z) for z �= x, z ′, and px (z ′) = py (z ′)− ε, where ε > 0

and ε<< 1. We denote this distribution by p+
x .

Note that due to the stochastic relevance condition (see Section 3.1.1), we cannot put px = py .

From (3.10) and px (z ′)−py (z ′) = (1−∑z∈X \{z ′} px (z))−(1−∑z∈X \{z ′} py (z)) =∑
z∈X \{z ′}(py (z)−

px (z)), we obtain:

−ε · (Δx (p−
x )−Δz ′(pz ′)) > 0

ε · (Δx (p+
x )−Δz ′(pz ′)) > 0

In other words:

Δx (p−
x ) <Δz ′(pz ′)

Δx (p+
x ) >Δz ′(pz ′) (3.11)

Let us consider a new p++
y equal to: p++

y (x) = py (x)+ 2ε, p++
y (z) = py (z) for z �= x, z ′, and

p++
y (z ′) = py (z ′)−2ε. By applying the previous steps on p++

y , we obtain:

Δx (p+
x ) =Δx (p++−

x ) <Δz ′(pz ′) (3.12)

Δx (p+++
x ) >Δz ′(pz ′)

Hence we have a contradiction (expressions (3.11) and (3.12)). Therefore, there exists no

decomposable payment scheme that is strictly proper even if the common belief condition

CC B holds. All that is left to be shown is that that there exist distributions py = Pr (Xp |Xa = y),
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pz = Pr (Xp |Xa = z), etc., such that posteriors py , pz , ..., p−
x , p+

x , p++
y , p++−

x , and p+++
x , satisfy

the self-correlated condition CSC . To do so, let us fix py and let a fully mixed prior Pr (Xp )

be such that Pr (Xp = x) = py (x)−2 · ε and Pr (Xp = y) = py (y)− ε. Furthermore, let pz (z) >
Pr (Xp = z) for all z �= x, y . Then, the beliefs in the first part of the proof do satisfy the basic

properties of the setting and, moreover, the self-correlated condition CSC . Hence, we proved

the statement.

The impossibility result obtained by Theorem 2 is quite surprising. Even though the center

elicits agents’ posterior beliefs, which are formed from a common belief system, it still requires

additional constraints to achieve strict properness. Nevertheless, decomposable payment

mechanisms are strictly more general than single-report mechanisms in terms of elicitability.

Clearly, if we can elicit truthful observations using a single-report mechanism, then one

can construct a decomposable mechanism for which agents are truthful as well: one simply

applies the single-report mechanism as its information score, which by Lemma 2 implies

the existence of a strictly proper decomposable mechanism. To show that decomposable

payment mechanisms require strictly less restrictions, it suffices to construct a decomposable

mechanism that is strictly proper under belief constraints C = {CC B ,CSP }. Namely, Theorem 1

tells us that under these constraints, a single-report payment mechanism cannot be strictly

proper. This leads us to a decomposable payment mechanism called the multi-valued robust

Bayesian truth serum.

Multi-valued Robust Bayesian Truth Serum. The multi-valued RBTS mechanism has the

following steps:

• Each agent a is asked to provide two reports:

– information report Ya , which represents agent a’s observed value;

– prediction report Fa , which represents agent a’s prediction about the frequencies

of reported values in the overall population.

• Each agent a is linked with one peer agent p and is rewarded with a score:5

τS(Ya ,Fa ,Yp ,Fp ) =
1Yp=Ya

Fp (Ya)︸ ︷︷ ︸
information score

+ S(Fa ,Yp )︸ ︷︷ ︸
prediction score

(3.13)

where 1 is an indicator variable and S is a strictly proper scoring rule.

The multi-valued RBTS mechanism is an example of a strictly proper decomposable payment

mechanism for the set of belief constraints equal to C = {CC B ,CSP }. The direct consequence is

a strict generality of decomposable payment schemes over single-report payment mechanisms.

More formally:

5To avoid large information scores for small values of Fp , one can multiply the information score by miny (Fp (y))
and set the information score equal to 1 if Fp (Ya ) = 0.
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Theorem 3. Suppose that there are N ≥ 2 agents and each agent has k ≥ 1 different peers.

Then, the multi-valued RBTS mechanism is strictly proper under the set of belief constraints

C = {CC B ,CSP }.

Proof. Consider an agent a and suppose her peer agent p is honest. Since the prediction score

is a strictly proper scoring rule, agent a strictly maximizes it by reporting her true posterior

belief as her prediction report. Therefore, it is enough to examine the properties of the infor-

mation score.

Suppose that agent a observes x and reports y . Since peer p is honest, her prediction report

Fp is equal to Fp = Prp (Xpp |Xp = z), where z is peer p’s observation and pp is the peer of

p. Since belief systems are common, Prp (Xpp |Xp = z) = Pra(Xp |Xa = z). This means that

Fp = Pra(Xp |Xa = z), so the expected value of the agent’s information score is equal to:

E(τY (y,Yp ,Fp )) = Pra(Xp = y |Xa = x)

Prp (Xpp = y |Xp = y)
= Pra(Xp = y |Xa = x)

Pra(Xp = y |Xa = y)

By taking into account the self-predicting condition, i.e., Pra(Xp = z|Xa = x) < Pra(Xp =
z|Xa = z),∀z �= x, we get that the expected value of the information score is (strictly) maxi-

mized for:

argmax
y

E(τY (y,Yp ,Fp )) = argmax
y

Pra(Xp = y |Xa = x)

Pra(Xp = y |Xa = y)
= {x}

Therefore, the strict maximum of the information score is achieved when the agent reports

her true observation. This completes the proof.

An interesting implication of Theorem 3 is that the multi-valued RBTS is strictly proper pro-

vided that agents’ common belief system satisfies the self-correlated condition, while their

observations are binary signals. Namely, in the case of binary observations, the self-correlated

condition implies the self-predicting condition, which means that the set of belief constraints

corresponds to the one in Theorem 3.

Corollary 1. Suppose that there are N ≥ 2 agents and each agent has k ≥ 1 different peers.

Then, the multi-valued RBTS mechanism is strictly proper under the set of belief constraints

C = {CC B ,CSC } when the observation space is a binary set, i.e., |X | > 2.

Proof. By Theorem 3, it suffices to show that the self-correlated condition CSC implies the

self-predicting condition CSP whenever X is a binary set. Suppose that the self-correlated

condition CSC holds. Then, for all x ∈ X there exists εx > 0 such that Pr (Xp = x|Xa = x) =
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Pr (Xp = x)+εx . Therefore:

Pr (Xp = x|Xa = x)

Pr (Xp = x)
= Pr (Xp = x)+εx

Pr (Xp = x)
> 1 > 1−Pr (Xp = x)−εx

1−Pr (Xp = x)
= 1−Pr (Xp = x|Xa = x)

1−Pr (Xp = x)

= Pr (Xp = y |Xa = x)

Pr (Xp = y)

which means that the self-predicting condition holds. Hence, we proved the statement.

Notice that the robust BTS of [WP12b] represents a similar possibility results for a binary obser-

vation space: the setting it operates in satisfies the conditions of Corollary 1. Its generalization

for non-binary observations requires an additional belief condition, different than and not

comparable to the self predicting condition [Wit14].

3.4.2 Divergence-based Bayesian truth serum

The impossibility result of Theorem 2 motivates us to examine a broader class of scoring func-

tions than that of the decomposable payment mechanisms. In this subsection, we investigate

mechanisms which are composed of information and prediction scores, but the information

score is no longer independent of the prediction report.

As it is common in all of the BTS mechanisms, the prediction score is a strictly proper scoring

rule applied on the prediction report of an agent a and the information report of her peer p.

However, the information score is intuitively different: it penalizes the agent if her information

report agrees with that of her peer while their prediction reports are significantly different.

Disagreement between prediction reports is characterized by the condition that the divergence

between the reports is larger than a threshold Θ.

Divergence-based Bayesian Truth Serum. The divergence-based BTS has the following steps:

• Each agent a is asked to provide her information report Ya and her prediction report Fa .

• Each agent a is linked with a peer agent p and is rewarded with:

τS(Ya ,Fa ,Yp ,Fp ) =−1Ya=Yp∧D(Fa ||Fp )>Θ︸ ︷︷ ︸
information score

+ S(Fa ,Yp )︸ ︷︷ ︸
prediction score

where 1 is an indicator variable, S is a strictly proper scoring rule, D(||) is the divergence

associated to a strictly proper scoring rule, and Θ is a parameter of the mechanism.

The intuition behind the penalty of the divergence-based BTS is that honest agents will not

have inconsistent prediction reports and consistent information reports. This is certainly

the case if agents have a common belief system, but the mechanism also allows deviations

35



Chapter 3. Single-task peer consistency mechanisms

from this condition. The following theorem shows the condition on the belief systems and the

choice of parameter Θ that make this intuition true.

Theorem 4. Suppose that there are N ≥ 2 agents and each agent has k ≥ 1 different peers. Then,

the divergence-based BTS mechanism is strictly proper under the divergence-based condition,

i.e., C = {CDB }, for Θ that satisfies:

D(Pra(Xp |Xa = x)||Prp (Xpp |Xp = x)) ≤Θ< D(Pra(Xp |Xa = x)||Prp (Xpp |Xp = y))

(3.14)

for all x �= y, where we denoted a peer of p by pp .

Proof. Consider an agent a who observes x and believes that her peer agent is honest. Fur-

thermore, suppose that Θ satisfies the conditions of the theorem.

Due to the properties of the strictly proper scoring rules, agent a’s prediction score is in expec-

tation maximized when she reports Fa = Pra(Xp |Xa = x), and because stochastic relevance

holds, this is a strict optimum.

If agent a’s prediction report is Fa = Pra(Xp |Xa = x), then we conclude from condition (3.14)

that the maximum of her information score is achieved when she reports x, and is equal to 0.

Since the optimal value of the information score is equal to 0 and the prediction score is

maximized for Fa = Pra(Xp |Xa = x), it follows that Ya = x and Fa = Pra(Xp |Xa = x) is agent

a’s best response.

We still need to prove that this is the strictly optimal response. Since Fa = Pra(Xp |Xa = x) is

the strictly optimal response for the prediction score, and Ya = x achieves the optimal value

of the information score, it is enough to show that agent a’s information score is negative in

expectation for Ya �= x and Fa = Pra(Xp |Xa = x). Due to condition (3.14) and the fully mixed

posteriors, the expected score for reporting y �= x and Fa = Pra(Xp |Xa = x) is:

Pra(Xp = y |Xa = x) · (−1D(Pra (Xp |Xa=x)||Fp )>Θ)

= Pra(Xp = y |Xa = x) · (−1D(Pra (Xp |Xa=x)||Prp (Xpp |Xp=y))>Θ) =−Pra(Xp = y |Xa = x) < 0

where we used the fact that peer p is honest, and, thus, Fp = Prp (Xpp |Xp = y). Putting it all

together, the divergence-based BTS is strictly proper.

The direct consequence of Theorem 4 is that the divergence-based BTS is strictly proper under

the common belief condition CC B with an appropriate choice of parameter Θ.

Corollary 2. Suppose that there are N ≥ 2 agents and each agent has k ≥ 1 different peers. Then,

the divergence-based BTS with Θ= 0 is strictly proper under the common belief condition, i.e.,

C = {CC B }.
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Proof. The common belief condition CC B is a special case of the divergence based condition

CDB in which D(Pra(Xp |Xa = x)||Prp (Xpp |Xp = x)) = 0 for all x ∈ X , and due to stochastic

relevance D(Pra(Xp |Xa = x)||Prp (Xpp |Xp = y)) > 0 for all y �= x. Therefore, we can set Θ= 0 to

satisfy the conditions of Theorem 4, which then implies the claim.

A convenient feature of the divergence-based BTS is that it allows a population of agents to

have different belief systems, as long as the agents’ posteriors are more similar when they

observe the same value than when their observations are different. This is exactly what

condition (3.14) states, and is realistic if agents indeed have similar observations. Notice

that we formalized similarities between posteriors of two different agents using parameter

Θ. Although we have assumed that the center knows Θ, it is possible to make the divergence-

based BTS a non-parametric method.

Non-parametric Divergence-based Bayesian Truth Serum. To make the divergence-based

BTS a non-parametric method, we change its second step. In addition to a peer agent p, the

modified method also uses another peer agent p̂, and the overall score for agent a becomes:

τS(Ya ,Fa ,Yp ,Fp ,Yp̂ ,Fp̂ ) =−1Yp=Ya∧Yp̂ �=Ya∧D(Fa ||Fp )>D(Fa ||Fp̂ )︸ ︷︷ ︸
information score

+ S(Fa ,Yp )︸ ︷︷ ︸
prediction score

Theorem 5. Suppose that there are N ≥ 3 agents and each agent has k ≥ 2 different peers. Then,

the non-parametric divergence-based BTS mechanism is strictly proper under the divergence-

based condition, i.e., C = {CDB }.

Proof. Consider an agent a who observes Xa = x, and suppose her peer agents p and p̂ are

honest. Due to the divergence-based condition, D(Fa ||Fp ) < D(Fa ||Fp̂ ) holds whenever agent

a reports her true observation x and her true prediction Fa = Pra(Xp |Xa = x). In that case, the

information score achieves the optimal value. Because the prediction score is a strictly proper

scoring rule, agent a strictly optimizes it by reporting her true prediction Fa = Pra(Xp |Xa = x).

What is left to be shown is that the information score is also strictly optimal. This can be done

using the same reasoning as in Theorem 4. If agent a reported y �= x and Fa = Pra(Xp |Xa = x),

she would in expectation receive negative information score:

Pra(Xp = y |Xa = x) · (−1D(Pra (Xp |Xa=x)||Fp )>D(Pra (Xp |Xa=x)||Fp̂ ))

≤ Pra(Xp = y, Xp̂ = x|Xa = x) · (−1D(Pra (Xp |Xa=x)||Prp (Xpp |Xp=y))>D(Pra (Xp |Xa=x)||Prp̂ (Xpp̂ |Xp̂=x)))

=−Pra(Xp = y, Xp̂ = x|Xa = x) < 0

where we denoted peers of p and p̂ by pp and pp̂ , respectively. The first inequality comes

from the fact that we focus on the case when Xp̂ = x. In that case, Fp = Prp (Xa |Xp = y)

and Fp̂ = Prp̂ (Xa |Xp̂ = x) because peers p and p̂ are honest. Therefore, agent a is better off

reporting x instead, which completes the proof.
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Remark 2. The divergence-based BTS asks agents to report full posterior beliefs regarding

their peers’ observations. Provided that the stochastic relevance condition and the divergence-

based condition hold for coarser-grained observations as well, i.e., for posterior beliefs that

could indicate probabilities of a peer observing a strict subset of possible observations, then

one can minimize the size of the prediction report without affecting the incentive properties.

Namely, in that case, one could ask agents to report a binary prediction on whether their peers

observe a particular strict subset of possible observations, instead of asking them to report

the full frequency profile of reports. The strict subset can be randomly chosen, but one can

also use a domain specific knowledge to select a strict subset that maximizes the difference

between the expected payoffs for honest reporting and inaccurate reporting.

Remark 3. The penalty of the divergence-based BTS can be controlled by how much predic-

tions of an agent and her peer differ. For example, if the penalty condition is satisfied, then the

agent could get a penalty equal to −D(Fa ||Fp ) instead of −1. This way, more severe deviations

would lead to greater penalties.

3.4.3 Continuous Bayesian truth serum

The structure of the divergence-based score can be extended to allow observations that are

real numbers. Now, the elicitation mechanism has to take into account that perfect matching

of agents’ reports, as done in the information score of the divergence-based BTS mechanism,

would not produce sensible incentives since we are dealing with continuous observations.

The trick is to consider two observations similar if they are no more than d away from each

other, where d is a randomly chosen parameter. Then, we can apply the principle of the

divergence-based BTS mechanism: similar observations should lead to similar posterior

beliefs.

Continuous Bayesian Truth Serum. Consider observations Xa taking continuous values, in

particular, X =R. The continuous BTS mechanism has the following steps:

• For each agent a, the mechanism samples a number da from a uniform distribution on

interval (0,1)6, i.e., da = r and((0,1)). The continuous domain X =R is then uniformly

discretized with the discretization interval of a size da and the constraint that value Ya

is in the middle of the interval it belongs to. We denote the interval of a value Ya = y by

I a
y . The constraint can then be written as y = max I a

y −min I a
y

2 .

• Finally, an agent a is scored using a modified version of the divergence-based BTS score:

τS(Ya ,Fa ,Yp ,Fp ) =−1Yp∈I a
y ∧D(Fa ||Fp )>da ·Θ︸ ︷︷ ︸

information score

+ S(Fa ,Yp )︸ ︷︷ ︸
prediction score

6In general, one can use interval (0,b), where b > 0, and a non-uniform distribution that has a full support on
that interval.
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where D(||) is the divergence of a strictly proper scoring rule, and S is a strictly proper

scoring rule.

Parameter Θ of the continuous BTS reflects how close the posteriors of two similar signals are.

For example, when agents are fully confident in the correctness of their objective observations,

Θ should be big because posteriors of two similar signals can be significantly different. On

the other hand, when agents make mistakes, the posteriors of two similar signals are close

to each other, making the lower bound on Θ smaller. In certain applications, this fact can

be used to set the appropriate value of Θ. For example, in crowd sensing, the center could

assume that every crowd sensor is worse than some accurate sensor, so the center can adjust

Θ according to the specifics of the accurate sensor. For a value of Θ parameter such that da ·Θ
never underestimates the divergence D(||) of agents posteriors that observe similar values, the

continuous BTS is strictly proper under the common belief condition CC B .

Theorem 6. Suppose that there are N ≥ 2 agents and each agent has k ≥ 1 different peers.

Consider X =R, and suppose Θ ∈ (0,∞) is such that ∀x ∈X ,da ∈ (0,1), z ∈ I a
x :

D(p(Xp |Xa = x)||p(Xp |Xa = z)) ≤ da ·Θ (3.15)

where p(Xp |Xa) denotes agent a’s posterior belief. Then, the continuous BTS mechanism is

strictly proper under the common belief condition, i.e., C = {CC B }.

Proof. Suppose agent a observes x and believes that her peer p is honest. Since peer p is

honest, from the common belief condition CC B , we conclude that Fp = pp (Xpp |Xp = z) =
p(Xp |Xa = z) when peer p’s observation is Xp = z (notice that pp is a peer of p). Therefore, if

agent a reports x and Fa = p(Xp |Xa = x), her information score is equal to 0, because (3.15)

holds. The prediction score is a strictly proper scoring rule, so in expectation the optimal

choice for the prediction report is agent a’s posterior Fa = p(Xp |Xa = x) - this is a strict

optimum due to stochastic relevance. Therefore, reporting Ya = x and Fa = p(Xp |Xa = x)

results in the maximum payoff. As it was the case with Theorem 4, we need to show that agent

a’s information score is in expectation strictly negative for any information report Ya �= x,

provided that she reports the strictly optimal prediction report, i.e., Fa = p(Xp |Xa = x).

Let Ya = y �= x. Consider da1 such that x ∉ I a1
y . From stochastic relevance, we know that there

exists ε> 0 such that:

∀z ∈ I a1
y : D(p(Xp |Xa = x)||p(Xp |Xa = z)) > ε (3.16)

Now, consider da2 ≤ min(da1, ε
Θ ). Since I a2

y ⊆ I a1
y , inequality (3.16) implies:

∀z ∈ I a2
y : D(p(Xp |Xa = x)||p(Xp |Xa = z)) > ε≥ da2 ·Θ

Notice that Pr (da ≤ da2) > 0, because da is chosen uniformly at random from (0,1). Moreover,

Pr (Xp ∈ I a2
y |Xa = x) =∫

z∈I a2
y

p(Xp = z|Xa = x)d z > 0 due to the fully mixed posteriors. Since
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Fp = p(Xp |Xa = z) when peer p’s observation is Xp = z, we have that for information report

Ya = y �= x and prediction report Fa = p(Xp |Xa = x), the expected information score of agent

a is strictly negative. Therefore, the continuous BTS is strictly proper.

z

D(p(Xp|Xa=x)||p(Xp|Xa=z))

x=2

b|z-x| b|z-x|

Figure 3.2 – The divergence of posteriors as a function of a peer’s report.

It remains to see how to set the parameter Θ. Consider D(p(Xp |Xa = x)||p(Xp |Xa = z)) as a

function of z for a fixed x = 2. Condition (3.15) simply states that one can find a coefficient b

such that b · |z −2| ≥ D(p(Xp |Xa = 2)||p(Xp |Xa = z)) for z ∈ (1.5,2.5). As shown in Figure 3.2,

this corresponds to the divergence being bounded by two lines. More formally:

Proposition 3. Consider X =R. If ∀x ∈R, D(p(Xp |Xa = x)||p(Xp |Xa = z)) is a continuously

differentiable and bounded function of z ∈ (x − 1
2 , x + 1

2 ), then:

Θ> max
x

max
z∈(x− 1

2 ,x+ 1
2 )

∣∣∣∣∂D(p(Xp |Xa = x)||p(Xp |Xa = z))

∂z

∣∣∣∣
satisfies condition (3.15) of Theorem 6.

Proof. Consider a function f (z) = Θ · |z − x| −D(p(Xp |Xa = x)||p(Xp |Xa = z)) defined for a

specific value of x on interval z ∈ (x − 1
2 , x + 1

2 ). For z = x, the function is equal to f (x) = 0. Let

us consider z ′ ∈ (x, x + 1
2 ). We have:

f (z ′) =Θ · |z ′ −x|−D(p(Xp |Xa = x)||p(Xp |Xa = z ′))

=
∫z ′

x

(
Θ− ∂D(p(Xp |Xa = x)||p(Xp |Xa = z))

∂z

)
d z =

∫z ′

x
g (z)d z

where g (z) =Θ− ∂D(p(Xp |Xa=x)||p(Xp |Xa=z))
∂z . Due to the condition of the proposition, we know

that g (z) > 0 for all z ∈ (x, x+ 1
2 ). Therefore, f (z ′) strictly increases as |z ′−x| increases. Similarly,

we obtain that the same holds for z ′ ∈ (x − 1
2 , x). By combining these results with f (x) = 0, we

obtain the claim.

The continuous BTS is a parametric mechanism, so the center needs to set the parameter Θ.

Notice that the only restriction for strict properness is that the center sets Θ to a big enough
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value. However, there is a tradeoff between the value of Θ and the expected value of margin

difference of the information score between truthful and non-truthful reporting. That is, the

larger Θ is, the smaller the expected punishment is for an agent who deviates from truthful

reporting.

If the divergence function D(p(Xp |Xa = x)||p(Xp |Xa = z)) increases as |z − x| increases, it is

possible to make the continuous BTS a non-parametric method.

Non-parametric Continuous Bayesian Truth Serum. To make the continuous BTS a parameter-

free method, we introduce another peer agent p̂ and change the score to:

τS(Ya ,Fa ,Yp ,Fp ,Yp̂ ,Fp̂ ) =−1|Yp−Ya |<|Yp̂−Ya |∧D(Fa ||Fp )>D(Fa ||Fp̂ )︸ ︷︷ ︸
information score

+ S(Fa ,Yp )︸ ︷︷ ︸
prediction score

Proposition 4. Suppose that there are N ≥ 3 agents and each agent has k ≥ 2 different peers.

Let X =R. If ∀x, y, z ∈R:

|y −x| < |z −x| =⇒ D(p(Xp |Xa = x)||p(Xp |Xa = y)) < D(p(Xp |Xa = x)||p(Xp |Xa = z))

where p is agent a’s posterior belief, then the non-parametric continuous BTS is strictly proper

under the common belief condition, i.e., C = {CC B }.

Proof. The common belief condition implies that pp (Xpp |Xp = y) = p(Xp |Xa = y) and pp̂ (Xpp̂ |Xp̂ =
y) = p(Xp |Xa = y), where pp and pp̂ are peers of p and p̂, respectively. Therefore, for

agent a who observes x and honest agents p and p̂, D(Fa ||Fp ) < D(Fa ||Fp̂ ) holds whenever

|Yp −Xa | < |Yp̂ −Xa | and agent a reports truthfully. In that case (or if |Yp −Xa | > |Yp̂ −Xa |), the

information score achieves the optimal value. Furthermore, the prediction score is a strictly

proper scoring rule, so agent a’s best response is to report Ya = x and Fa = p(Xp |Xa = x).

Similarly to how it is done in Theorem 6, we can show that reporting truthfully is agent a’s best

response. First of all, the prediction score achieves its strict optimum for Fa = p(Xp |Xa = x)

due to the stochastic relevance condition. In other words, we only need to show that for any

information report Ya �= x, agent a’s information score is in expectation strictly negative when

she provides prediction report Fa = p(Xp |Xa = x).

Suppose that the agent reports Ya = y �= x. Furthermore, suppose that |Yp −x| < |Yp̂ < x|, while

|Yp̂ − y | < |Yp − y |. Due to the fully mixed beliefs, this happens with probability strictly greater

than 0, which implies that the expected information score is strictly smaller than 0. Since 0

is the optimal value of the information score, agent a’s best response to truthful reporting of

other agents is to report truthfully.

Remark 4. One might be wondering how efficient is the elicitation of continuous variables in

terms of the number of reported values. For practical considerations, agents’ beliefs can often

be modeled using a parametric density distributions. For example, an agent a’s posterior belief

could be modeled with a Gaussian distribution N (μx ,σx ), whose parameters depend on the
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agent’s observation x. In this case, reporting the posterior belief comes down to reporting two

parameters μx and σx , so the whole report consists of only three scalar values. We investigate

in the following subsection a possible belief model that complies with these conditions.

Importance of the common belief condition

Unlike the divergence-based BTS mechanism, which allows agents to have limited difference

in their belief systems, the continuous BTS mechanism requires agents to share the same

belief system. In this subsection, we further investigate the importance of the common belief

condition CC B for elicitation of real-valued observations.

Let us consider a natural belief system based on the Gaussian state model condition CGSM in

which the parameters are Gaussian distribution functions. More precisely, the observation

values Xa are generated by a Gaussian p(Xa) ∼N (μΩ,σ), where σ is fixed (given), while μΩ

defines state Ω and is distributed according to Gaussian distribution p(μΩ) ∼N (μ0,σ0).

Now, suppose that agent a observes value Xa = x. From the Bayesian updating of Gaussian

distributions [Bis06], it follows that agent a’s posterior belief regarding peer p’s observations

is a Gaussian p(Xp |Xx = x) ∼N (μx ,σx ) with the parameters equal to:

μx =
μ0

σ2
0
+ x

σ2

1
σ2

0
+ 1

σ2

, σ2
x = 1

1
σ2

0
+ 1

σ2

+σ2 (3.17)

The KL divergence of two normal distributions N (μ1,σ1) and N (μ2,σ2) is equal to [Iha93]:

log
σ2

σ1
+ σ2

1

2σ2
2

+ (μ1 −μ2)2

2σ2
2

− 1

2
(3.18)

From the expressions (3.17) and (3.18) it follows that the KL divergence between agent a’s

posterior belief when she observes x and her posterior when she observes z is:

D(p(Xp |Xa = x)||p(Xp |Xa = z)) = σ̂ · (x − z)2

2σ2

where σ̂ = σ2
0

σ2
0+σ2

σ2
0

2σ2
0+σ2 . Using Proposition 3, we obtain Θ that satisfies the conditions of

Theorem 6:

Θ≥ max
x

max
z∈(x−1/2,x+1/2)

∣∣∣∣σ̂ · 2 · (x − z)

2 ·σ2

∣∣∣∣
≥ σ̂ · 1

2 ·σ2 (3.19)

The center does not need to know parameters σ and σ2
0: it is sufficient to overestimate

(3.19). We often have that σ0 � σ, and hence σ̂ ≈ 1
2 . In that case, the center only needs

to underestimate the value of σ. For example, if the agents are crowd sensors with accuracy
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below a certain threshold, the center can infer the minimal value of σ. Furthermore, the

KL divergence between two Gaussian posteriors satisfies the conditions of Proposition 4,

which means that one can also use the non-parametric continuous BTS. Considering that

the divergence-based BTS allows agents to have differences in their belief systems, one might

wonder if it is possible to relax the common belief condition when observations take values

in R. The following theorem shows that this is not possible under the Gaussian state model

condition G = {CGSM }. The intuition is that one can define two belief models Ba1 and Ba2

that have the same posterior for two different observations xa and ya . The strict properness

condition, however, requires that only one information report results in optimal payment.

Theorem 7. No mechanism τS is strictly proper under the Gaussian state model condition

G = {CGSM }. In particular, consider an agent a and suppose her peers have a common belief

system satisfying condition CGSM . If a mechanism τS strictly incentivizes agent a to report

honestly when she adopts the common belief system, then it does not strictly incentivize her to

report honestly when she adopts an alternative belief system that differs from the common one

in parameter μ0.

Proof. Due to Lemma 3, we can, without loss of generality, focus on mechanisms in which

agents report both information and prediction reports. Let us assume the opposite, i.e., there

exists a mechanism τS that incentivizes agents to report honestly under the conditions of the

theorem. Suppose that agent a observes value xa and adopts a common belief system. Let us

denote the expected payoff of agent a by τ̄a . Strict properness of τS implies:

∀z �= xa : τ̄a(xa ,Fa) > τ̄a(z,Fa) (3.20)

where Fa = (μxa ,σxa ). Consider an alternative belief system defined by μ0 =μ′a
0 �=μa

0 and an

alternative observation ya = σ2

σ2
0

(μa
0 −μ′a

0 )+ xa . From expression (3.17), we know that in this

case agent a’s posterior is the same as for the previous case, i.e., μxa = μ′
ya

and σxa = σ′
ya .

However, from (3.20) it follows that the best response of agent a is to report xa , not ya . That is,

τS cannot incentivize both agent a, who has the same belief system as her peers p, and agent

a, who has a different belief system than her peers p, to report honestly.

3.5 Applications

We investigate two applications of the mechanisms presented in this section. First one is

community sensing, where we consider a sensing scenario in which a relatively small number

of sensors provide their measurements to the center. We demonstrate the importance of

having robust mechanisms designed for the elicitation of non-binary information. As the

second application, we study the design of a BTS type of mechanism in elicitation of subjective

information through a contest and we present our preliminary work on eliciting emotions

across the EPFL campus.
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3.5.1 Community sensing

In a community sensing scenario, private mobile devices equipped with sensors acquire

information about a spatially distributed phenomenon, such as air pollution or weather, and

report it to the center [BEH+06, ASC+10, KHKZ08]. Since sensing induces a cost due to the fact

that sensing modules need to be installed and maintained, the party interested in monitoring

the physical phenomenon needs to incentivize the crowd to incur this cost and provide quality

data.

We investigate a community sensing setting in which the center has no control over sensing

devices, nor does it have a way of directly verifying the correctness of the obtained data. There-

fore, to compensate for the cost of sensing, the center applies a peer consistency approach in

rewarding sensors. One of the peer consistency methods proposed for information elicitation

in community sensing setting is the mechanism from [FLJ14]. In this section, we provide a

complementary approach that does not require the center to know participants’ beliefs, but

is rather based on participants reporting their beliefs. In particular, we compare the rewards

of the continuous BTS with those produced by the output agreement and the RBTS for small

population as presented in [WP12b]7, and demonstrate the importance of proper mechanisms

that allow non-binary observations.

As an example of a community sensing scenario, we consider an air-quality monitoring over

an urban area. Each sensor is assumed to be a rational agent that measures air pollution at its

location and reports its measurement to the center.

Simulation setup

Our community sensing test-bed is based on a real dataset containing levels of UFP (ultra

fine particles) over Zurich urban area — the full description of the dataset can be found in

[HSW+14] — and a region based Gaussian Processes model that incorporates the spatial

features of the terrain, as described in [JLF14]. One chunk of data contains aggregated mea-

surements over the period of two weeks for 200 locations. In total, we have 22 chunks of data,

2 for each of 11 different months. Half of the data is used for training the GP model and the

other half for testing purposes.

The 200 locations are unevenly distributed and concentrated on the main tram lines in the

city of Zurich, as shown in Figure 3.3. Therefore, we investigate the use of peer consistency

techniques designed for a single-task scenario. We show in the next chapter how to design

more robust incentives provided that measurement locations are more evenly spread across

an urban area, while sensors report more frequently.

We consider a group of 10 sensors whose initial locations are obtained by randomly sampling

10 out of 200 regions in the first month. Since regions differ from month to month, we take the

7[Wit14] shows how to extend this mechanism to a non-binary domain.
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(a) The map of sensor measurements collected in
one week; the colors denote different sensor nodes
(nodes are placed on trams) [JLF14]

(b) Sensing locations of one of 11 months; the colors
show the intensity of pollution in the number of
particles per cm2

Figure 3.3 – Sensing locations in the Zurich dataset

closest available region to the current location of a sensor as its consecutive location. Sensors

are assumed to be rational agents and their beliefs are modeled with the GP model. For each

sensor, we run a separate evaluation process in which the other sensors report truthfully, while

the considered sensor reports according to one of the five strategies:

• honest: report truthfully its measurement;

• low: report a low level of pollution, defined by 7500;

• high: report a high level of pollution, defined by 22500;

• shift: report its measurement shifted by 2000 in the direction of 15000, for example, if

the measurement is 12000, the sensor reports 14000;

• random: report randomly according to its prior belief, defined as a prior probability

distribution of a peer’s measurement obtained from the GP model.

In all of the cases, sensors report their beliefs honestly if they are asked to provide them.

Furthermore, all of the numerical values express the number of particles per cm2. We first

determine the total payoff of each sensor in the period of 11 months, which then gives us the

basic statistics of the sensors’ payoffs: mean, minimum, 1st quartile, median, 3rd quartile

and maximum. Since the payoffs depend on randomly chosen parameters, such as the initial

locations of the sensors, we repeat the process 50 times to obtain the average statistics.8

8This ensures that the averages have statistical significance for best-response strategies. In particular, t-tests
show that the continuous BTS payments for truthful reporting are statistically different than the continuous BTS
payments for other reporting strategies, with p-values smaller than 0.01. The same holds for the best-response
strategies of the output agreement and RBTS.

45



Chapter 3. Single-task peer consistency mechanisms

Simulation results

We compare the payoffs of three different reward mechanisms: the continuous BTS, the output

agreement and the RBTS for small population.

In the continuous BTS mechanism, a sensor provides its real valued measurements and its

prediction regarding the measurement of the closest peer sensor. The prediction report

contains the parameters of a Gaussian distribution obtained from the GP model. To score a

sensor a, we select another two peers, p and p̂, closest to the peer for which the sensor reports

its prediction. This way we ensure that sensors a, p and p̂ provide the prediction about the

same event: the measurement of the peer closest to sensor a. In scoring prediction reports we

use the logarithmic scoring rule defined by expression (2.1) with α= 0.01 and β= 1, while in

the information scores we use K L divergence.

In the output agreement mechanism, sensors provide only their measurements. To score a

sensor a, we select its closest peer and the payoff is equal to 1 if their reports do not differ by

more than 2000 (particles per cm2), and otherwise it is 0.

In the RBTS mechanism, sensors provide their real valued measurements, but in scoring

sensors, these are discretized to binary values using a predefined threshold. In particular, if

the provided measurement is less than 15000, the associate binary value is equal to 0, and

otherwise it is equal to 1.9 Apart from their measurements, sensors also provide their predic-

tion regarding the discretized measurement of their closest peers. We follow the description

presented in [WP12b], with two peers being selected as in the continuous BTS mechanism.

The prediction score of RBTS is scaled with α= 0.01 (β= 0).

The statistics of the average payoffs for the continuous BTS, the output agreement, and RBTS,

are shown in Table 3.1, Table 3.2, and Table 3.3, respectively. As noted in the preliminaries,

these payoffs can be scaled so that they take values in an arbitrary interval.

The simulation results imply that continuous BTS is strictly proper for the considered set of

strategies: all of the indicators, such as mean or median, are maximized for truthful reporting.

This is not the case for the output agreement nor the RBTS mechanism. For the former one,

the shift strategy maximizes most of the indicators, including mean and median. Namely, the

strategy tends to shift the result towards the mean of the data set (15179), which for normally

distributed data represents the most likely value. Therefore, it is important to correct the bias

towards prior information, but this cannot be achieved unless the bias is known or it is elicited

from sensors (agents), as is done in the continuous BTS.

The RBTS mechanism assigns the highest payoffs to the low strategy, implying that the binary

discretization is too coarse-grained for the considered sensing scenario. This shows the

importance of robust mechanisms that allow non-binary observations — even a simple

9By inspecting the data set, one can calculate that the mean of all observation values is 15179, which is very
close to the selected threshold.
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Table 3.1 – Average payoffs — continuous BTS

Strategy mean min max median 1st quartile 3rd quartile
honest 7.869 4.352 9.659 8.042 7.112 8.778

low 7.075 2.581 9.602 7.408 5.671 8.358
high 6.145 1.183 9.464 6.242 4.346 7.673
shift 7.389 3.895 9.476 7.645 6.342 8.287

random 6.773 3.699 9.101 6.543 5.702 7.657

Table 3.2 – Average payoffs — output agreement

Strategy mean min max median 1st quartile 3rd quartile
honest 4.114 0.68 7.78 3.76 2.18 5.1

low 0.34 0.0 1.28 0.14 0.0 0.32
high 0.794 0.0 2.74 0.26 0.1 0.84
shift 4.378 1.12 7.72 4.1 2.9 5.12

random 3.176 1.04 5.68 2.86 2.06 3.76

misreporting strategy often achieves better payoffs than honest reporting when a mechanism

does not take into account the complexity of reported information.

Table 3.3 – Average payoffs — RBTS [WP12b]

Strategy mean min max median 1st quartile 3rd quartile
honest 15.95 8.524 22.14 15.545 12.848 18.127

low 18.087 9.647 24.256 18.333 14.544 20.683
high 10.717 7.211 14.987 10.294 8.978 11.457
shift 15.13 8.104 20.958 14.863 12.22 17.149

random 15.103 8.863 20.58 14.757 12.493 16.734

3.5.2 Elicitation of subjective information10

One of the most basic applications of peer consistency methods is to solicit subjective judge-

ments or answers to hypothetical questions, in which case there is no well defined criteria for

evaluating the quality of the obtained report. In this section, we investigate an application

of the BTS mechanisms in eliciting the reports of emotional states from crowd participants

located in an area of interest, in our case, EPFL. This approach can be considered complemen-

10This subsection is based on the semester project ’EmoMap: Emotion Sensing of the EPFL campus’, which was
completed by Natalija Gucevska, under the supervision of Goran Radanovic and Boi Faltings.
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tary to traditional opinion polling, which is typically performed periodically, and thus does

not completely reflect the emotion profile of people at different time periods. Since emotional

states carry not only information about respondents, but also their surroundings, the elicited

information can be linked to different events, such as courses, and further used to provide

emotion-based recommendations.

(a) Report structure (b) Selecting emotions (c) Selecting location

Figure 3.4 – Predictemo application

Motivated by the success of games with purposes, such as the ESP game [vAD04, vAD08], we

propose an approach that has a form of a contest for subjective information and uses a BTS

type of mechanism to evaluate contributions of contestants. The contest was implemented as

an Android11 application Predictemo that has two modes: anonymous mode, in which users

anonymously provide their emotions and current locations, and game mode, in which users

play the Predictemo game logged in with their Facebook12 account. To achieve a good quality

control of reported information, the underlying reward mechanism in the Predictemo game

should be such that it incentivizes users to use the application in the non-anonymous (game)

mode.

Figure 3.4 shows a screenshot of the Predictemo application. When a user decides to make a

report, she selects one of the 20 available emotions from Geneva emotion wheel categories

[Sch05, KSMP14] (Figure 3.4b) and her approximate location, i.e., one of the EPFL buildings

(Figure 3.4c). Aside from reporting her emotion, a user can also see the emotions reported

by other users at different locations, but this information does not contain the most recent

emotions, since these are used for scoring users in the Predictemo game.

Figure 3.5 depicts the structure of the Predictemo game. When submitting a report, a player

selects her emotion and location, and additionally a prediction about what her opponent

reports (Figure 3.5a). The prediction constitutes of selecting the most likely emotion of the

opponent and ones confidence in this prediction. Once the opponent accepts the challenge,

the Predictemo game calculates the scores of players and updates the ranking list shown in

11www.android.com
12www.facebook.com
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(a) Report structure (b) Reported emotions (c) Ranking

Figure 3.5 – Predictemo game

Figure 3.5c. The total scores in the ranking list are scaled so that they only take positive values.

Players also have access to historical data, such as the list of emotions of other players at

different time periods (Figure 3.5b). Notice that the data does not include the most recent

emotions which are used in the scoring mechanism.

The underlying mechanism of the Predictemo game has a form of the optimal contest for

simple agents, introduced in [GR14]. We focus in this section on one of its crucial components

— procedure for evaluating the quality of players’ contributions, i.e., the scoring mechanism.

The detailed design of the Predictemo contest can be found in Section A.1 of the appendix.

Evaluating reports

The information structure that participants report in the Predictemo game consists of infor-

mation and prediction reports, so an appropriate method for evaluating contributions could

have a BTS structure. Instead of using the traditional BTS design, we rearrange the information

and prediction scores in order to obtain a structure of the score that is easier to explain to

the participants. In particular, we score an agent by how well she predicts her peer’s emotion

minus how well her peer predicts her emotion. However, the quality score of each prediction

includes the difficulty of predicting ones emotion. Such a scoring rule induces a competition

among agents, so we call the novel mechanism the competitive BTS, or simply co-BTS.

Competitive Bayesian Truth Serum. Consider two agents a1 and a2 that are matched with

each other, and let p denote other agents, i.e., their peers. We assign the quality scores to their

information and prediction reports using the following mechanism:

• The quality of agent a1’s prediction report is measured w.r.t. the information report of

agent a2, and is defined as:

qa1 (Fa1 ,Ya2 ) = SQ (Fa1 ,Ya2 )︸ ︷︷ ︸
accuracy of Fa1

+ 1−xa1,a2 (Ya2 )︸ ︷︷ ︸
difficulty of predicting Ya2
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where SQ is the quadratic scoring rule (2.2) with α= 1 and β= 0, i.e.:

SQ (Fa1 ,Ya2 ) = Fa1 (Ya2 )− 1

2
· ∑

z∈X

Fa1 (z)2

and xa1,a2 is a normalized histogram of reports from agents A \{a1, a2}:

xa1,a2 (x) = 1

N −2
· ∑

p∈A \{a1,a2}
1Yp=x

Intuitively, the quality of agent a1’s prediction depends both on how accurate the agent

a1 is and how hard it is to predict the observation of agent a2. Similarly we define the

quality of agent a2’s prediction as:

qa2 (Fa2 ,Ya1 ) = SQ (Fa2 ,Ya1 )︸ ︷︷ ︸
accuracy of Fa2

+ 1−xa1,a2 (Ya1 )︸ ︷︷ ︸
difficulty of predicting Ya1

• The score of agent a1 is defined by how much better (or worse) her prediction is com-

pared to the prediction of agent a2:

τa1 (Ya1 ,Fa1 ,Ya2 ,Fa2 ,Rp ) = qa1 (Fa1 ,Ya2 )−qa2 (Fa2 ,Ya1 )

Similarly, for agent a2, we have:

τa2 (Ya2 ,Fa2 ,Ya1 ,Fa1 ,Rp ) = qa2 (Fa2 ,Ya1 )−qa1 (Fa1 ,Ya2 )

The competitive BTS mechanism has a decomposable score structure, quite similar to the

one of the multi-valued RBTS, but with a more intuitive explanation. In particular, the quality

scores of agents imply that an agent should provide her best possible prediction to maximize

her score, while she cannot manipulate the quality score of another agent due to the fact that

the qualities also include the difficulty of predicting ones observation. Indeed, under the

relative self-dominant condition, the competitive BTS is strictly proper.

Proposition 5. Consider N > 2 agents (each agent having k = N −1 peers) and assume that

agents do not differentiate their peers in their belief systems (e.g., Pr (Xa1 |Xa2 ) = Pr (Xp2 |Xa2 ))13.

The competitive BTS is strictly proper under the relative self-dominant condition C = {CRSD }.

Proof. Consider an agent a1 whose observation is Xa1 = x, and suppose that the other agents

are honest. The score assigned to an agent a1 can be written as:

τa1 (Ya1 ,Fa1 ,Ya2 ,Fa2 ,Rp ) = qa1 (Fa1 ,Ya2 )−qa2 (Fa2 ,Ya1 )

= SQ (Fa1 ,Ya2 )−SQ (Fa2 ,Ya1 )+xa1,a2 (Ya1 )−xa1,a2 (Ya2 )

13One can remove this requirement if condition CRSD is transformed so that Pra2 (Xp2 |Xa2 ) is changed to
Pra2 (Xa1 |Xa2 ).
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= SQ (Fa1 ,Ya2 )︸ ︷︷ ︸
prediction score

+xa1,a2 (Ya1 )−Pra2 (Xa1 = Ya1 |Xa2 )︸ ︷︷ ︸
information score

+b

where b does not depend on agent a1’s report. Since the prediction score is the quadratic scor-

ing rule we know that its optimal value is achieved when agent a1 reports her true prediction,

and due to the stochastic relevance, this is a strict optimum. Therefore, we only need to show

that agent a1 also strictly optimizes her information report by reporting honestly. By taking the

expectation over other agents’ observations, we obtain that the expected information score

for reporting y is:

E
(
τa1,Y (y,Ra2 ,Rp )|Xa1 = x

)= Pra1 (Xp1 = y |Xa1 = x)−EXa2

(
Pra2 (Xa1 = y |Xa2 )|Xa1 = x

)
Since we assumed that agent a2 does not differentiate her peers, this gives us:

E
(
τa1,Y (y,Ra2 ,Rp )|Xa1 = x

)= Pra1 (Xp1 = y |Xa1 = x)−EXa2

(
Pra2 (Xp2 = y |Xa2 )|Xa1 = x

)
The difference between the expected information scores for truthfulness, i.e., y = x, and

misreporting, i.e., y = z �= x, is equal to:

E
(
τa1,Y (x,Ra2 ,Rp )|Xa1 = x

)−E
(
τa1,Y (z,Ra2 ,Rp )|Xa1 = x

)
= Pra1 (Xp1 = x|Xa1 = x)−Pra1 (Xp1 = z|Xa1 = x)

−E
(
Pra2 (Xp2 = x|Xa2 )−Pra2 (Xp2 = z|Xa2 )|Xa1 = x

)> 0

where the inequality follows from the relative self-dominant condition. This completes the

proof.

Notice that the competitive BTS does not require the common belief condition to hold. In fact,

this is important because the competition should allow agents to have different proficiencies in

predicting each other’s emotions, which are formally modeled as observations. Furthermore,

mechanism τa does not directly define monetary payments provided to participants, but

rather scores that are used for ranking the agents.

To simplify the input for the prediction report, a player is asked to provide the most likely

emotion of the other player, denoted by xm , and ones confidence in xm , denoted by cxm .

Assuming that the player has a symmetric posterior, the mode and the confidence can be

mapped into a probability distribution function over possible emotions that approximates

the player’s true posterior belief. To do so, we assign weights on different emotions, wx , that

approximately follow the gaussian shape:

wx = 1

σ
·e

−
(

d(x,xm )
σ

)2

where σ is a decreasing function of confidence (1/σ= c2
xm

/(1−c2
xm

+0.2)+0.001), and d(x, xm)

represents the minimal distance of emotion x from the reported mode xm on the Geneva
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emotion wheel. Once the weights are calculated, we normalize them to obtain the prediction

used in the co-BTS mechanisms:

Fp (x) = wx∑
y wy

3.6 Conclusion

In this chapter, we explored information elicitation mechanisms that do not have access to the

ground truth nor to the agents’ beliefs. We showed that minimal elicitation mechanisms, which

elicit only information reports, require the agents’ beliefs to be highly constrained, for example,

to satisfy the self-dominant condition. This led us to decomposable mechanisms that ask each

agent to provide an additional report, which is separately scored from her information report.

While decomposable mechanisms do provide more expressive framework, they are still not

general enough to allow arbitrary beliefs constrained only with the common belief condition.

Therefore, we constructed a general BTS mechanism, called the divergence-based BTS, that is

strictly proper as long as the agents’ posteriors are more similar when they observe the same

value than when their observations are different. In the limit case, when observations are real

values, the modification of the divergence-based BTS, called the continuous BTS, requires

that agents have a common belief system, and we proved that this requirement is not trivial

to relax. Using a community sensing testbed, we experimentally verified the importance of

mechanisms that allow non-binary observations. Finally, we showed how one can use a BTS

type of mechanism to evaluate the quality of reported information in a contest that follows

the design principles of optimal contests.

The non-existence of a strictly proper payment mechanism when observations take real values

and agents have different belief systems (Theorem 7) motivates us to further constrain the

elicitation setting so that more robust properties are allowed. Therefore, in the next chapter, we

turn to a different setting, more specific one, where a mechanism can extract useful statistics

from statistically independent reports.
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4 Multi-task peer consistency mecha-
nisms

In this chapter, we investigate an elicitation scenario where crowd participants observe multi-

ple a priori similar phenomena, with each participant observing a strict subset of them. The

considered scenario models a typical crowdsourcing of micro-tasks where a bundle of tasks

is assigned to a group of workers. For example, in text annotation, a requester could give

1000 sentences to a group of 100 workers, and each worker would annotate 50 sentences. By

utilizing the properties of such a multi-task information elicitation, we can achieve much

stronger incentive properties than the ones presented in the Chapter 3.

4.1 Formal setting

The main difference between the setting of this chapter and that of Chapter 3 is in the number

of phenomena that a group of agents observe. In particular, in this chapter we assume that

the center wants to elicit information about several statistically similar phenomena from the

same group of agents. As depicted in Figure 4.1, each agent is assigned to a specific subset of

phenomena and is asked to observe the phenomena and report her observations to the center.

By utilizing the structure of multiple phenomena, we seek to:

• allow agents to have less constrained private beliefs without necessarily reporting them;

• make uninformed reporting strategies, in which agents do not observe the phenomena,

less desirable than truthful reporting.

The first property states that agents can have more diverse beliefs about each other’s ob-

servations than allowed by the single-task mechanisms, while the center only requires the

agents to report their private observations. The second property implies that uninformed

reporting strategies are worse off for the agents. Notice that this is a stricter property than

strict properness, which was discussed in Chapter 3. In particular, the property implies that

truthful reporting should result in a greater expected payoff than any collusive strategy which
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  Φa, Φp, Φr
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Figure 4.1 – Multi-task peer consistency setting

is not based on observations. This represents a significant improvement over single-task

mechanisms, which are often susceptible to even simple collusion strategies.

We distinguish two types of agents’ population: homogeneous and heterogeneous. The key

difference between the two types is that the former type assumes that agents receive their

private information in a similar fashion, while the latter type does not. In other words, for

the former type, agents have homogeneous characteristics, although their beliefs are private,

while for the latter, agents are considered to be entirely heterogeneous, both in their beliefs

and in how they obtain their private information.

4.1.1 Elicitation model

To model the setting in game-theoretic terms, we follow Section 3.1.1 in Chapter 3, but with

the following differences.

Instead of one, there are M >> 1 a priori similar and statistically independent phenom-

ena Φ = {Φ1, ...,ΦM }, meaning that agents distinguish them only by their observations and

that the observation about phenomenonΦi does not contain any novel information about

phenomenonΦ j .

Each phenomenonΦi is observed by at least 2 different agents, randomly chosen from a large

group of available agents A (i.e., |A | >> 1). Unless specified differently, we will assume that

an agent observes exactly one phenomenon. This assumption does not have a significant

influence on the incentive properties discussed in this chapter: if it does not hold, we simply

partitionΦ into subsets that satisfy the assumption, and apply a reward mechanism to each

subset separately. The overall reward of an agent can then be defined as an average or a sum

of the obtained rewards.

Therefore, each agent a is associated with a phenomenonΦa . The peers of agent a are agents
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4.1. Formal setting

who observe the same phenomenon, while agents who observe other phenomena are called

reference agents. A generic peer agent is denoted by p and a generic reference agent is denoted

by r . We assume that agent a does not distinguish her peers nor her reference agents.1 The

number of peer agents is k > 1 and the number of reference agents is K > 1.

When an agent a observes a phenomenon Φi , she receives a private observation X i
a ∈ X ,

or simply Xa (since agent a observes a single phenomenon). The observation of a peer p

is denoted by Xp , while the observation profile of k peers is denoted by Xp = (Xp,1, ..., Xp,k ).

Similarly, the notation for reference agents is Xr and Xr = (Xr,1, ..., Xr,K ).

Furthermore, agent a’s belief system Ba is similar to the one introduced in Section 3.1.1, and

is defined by:

• prior belief regarding her own observation Pr (Xa) ∈P ;

• prior belief regarding the observations of agent a’s peers and references Pr (Xp ,Xr ) ∈
P k+K , and similarly for any subset of observations, e.g., for a single peer, we denote

Pr (Xp ) ∈P ;

• posterior belief regarding the observations of agent a’s peers and references Pr (Xp ,Xr |Xa) ∈
P k+K , and similarly for any subset of observations, e.g., for a single peer, we denote

Pr (Xp |Xa) ∈P .

The probability distributions are assumed to be fully mixed. Moreover, posterior belief

Pr (Xp |Xa) is assumed to be stochastically relevant. As in the previous chapter, agents ai

and a j are allowed to have different beliefs (Prai and Pra j respectively). However, it will often

be clear that the beliefs are associated to a specific agent a, in which case we drop the subscript

a from Pra (i.e., Pra → Pr ).

The statistical independence of phenomena is modeled by assuming that Xa1 and Xa2 are

independent for any two agents a1 and a2 who observe two different phenomena. This implies

that agent a’s posterior belief about a reference agent Pr (Xr |Xa) is equal to Pr (Xr ). Moreover,

agent a does not distinguish agent p and agent r , implying Pr (Xr ) = Pr (Xp ).

Finally, agents are assumed to provide only their information report Yp , i.e., Ra ∈R =X . A

payment function τM depends on both peer reports and reference reports, i.e., τM (Ya ,Yp ,Yr ),

where Yp and Yr are report profiles of peers and references, respectively. Formally, a multi-task

payment mechanism is a mapping τM : ×k+K
i=0 R →R.

1In game-theoretic terms, this can be modeled as agents having private ’types’ that are independently sampled
from a common distribution. Each agent would know her type, but would not know the types of other agents.
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4.1.2 Beliefs about peers

In order to establish the incentive properties of the mechanisms discussed in this chapter, we

consider four conditions imposed on the agents’ belief systems. The first three conditions are

acquisitional constraints, while the third one is an updating constraint. One of the considered

conditions is a variation of the stochastic relevance conditions defined for the acquisitional

belief constraints.

Acquisitional constraints

Observation process can be directly modeled using the state model condition CSM from

Section 4.1.2 applied to each phenomenon Φi separately.

Definition 12. Consider M random variables {ΩΦ1 , ...,ΩΦM } taking values in R. A belief profile

BA satisfies the multi-task state model condition CMT SM if each belief system Ba is constrained

with the following set of assumptions:

• observation Xa j of agent a j who does not observe phenomenon Φi is statistically inde-

pendent of ΩΦi ;

• observations Xa1 and Xa2 of any two different agents a1 and a2 that observe different

phenomena are statistically independent;

• observations Xa1 and Xa2 of any two different agents a1 and a2 that observe phenomenon

Φi are conditionally independent given ΩΦi ;

• agent a’s prior belief regarding ΩΦi is a probability density function pa(ΩΦi ) that takes

strictly positive values, and since phenomena are a priori similar, pa(ΩΦ j ) = pa(ΩΦi ) for

all ΩΦi and ΩΦ j ;

• for all agents ai ∈A , probabilities Pra(Xai |ΩΦ j ) are strictly positive.

To indicate that the population of agents is homogeneous, one can impose a restriction that

the agents’ observations are generated in a similar fashion. More precisely:

Definition 13. Suppose that a belief profile BA satisfies the multi-task state model condition

CMT SM . Then it also satisfies the homogeneous population condition CHP if for each belief

system Ba we have that:

Pra(Xai = x|Ωi =ω) = Pra(Xa j = x|Ω j =ω)

for all agents ai that observe Φi and a j that observes Φ j .

Notice that Pra(Xai ) =∫
RPra(Xai |Ωi =ω) ·pa(Ωi =ω)dω. Therefore, the homogenous pop-

ulation condition implies that agent a believes her observation to be a priori similar to the
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observation of any peer or reference agent: Pra(Xp ) = Pra(Xa). More generally, for any two

agents ai and a j , Pra(Xai = x) = Pra(Xa j = x). Furthermore, for an agent ai who observed Φi

and her peer pi , we have that:

Pra(Xpi , Xai ) =
∫
R

Pra(Xpi , Xai |Ωi =ω) ·pa(Ωi =ω)dω

=
∫
R

Pra(Xpi |Ωi =ω) ·Pra(Xai |Ωi =ω) ·pa(Ωi =ω)dω

where the last equality is due to the conditional independence of Xai and Xpi given Ωi . By

the homogenous population condition, it follows that Pra(Xpi , Xai ) = Pra(Xp j , Xa j ) (where a j

and p j observe Φ j ), which gives us:

Pra(Xpi |Xai ) = Pra(Xpi , Xai )

Pra(Xai )
=

Pra(Xp j , Xa j )

Pra(Xa j )
= Pra(Xp j |Xa j )

More specifically, Pra(Xpi |Xai ) = Pra(Xp |Xa). That is, if agent a knows the observation of

agent ai (who observed a different phenomenon), then she has the same belief about the peer

of agent ai as she has about her own peer when she observes the same value. Notice that the

identities Pra(Xp ) = Pra(Xa) and Pra(Xpi |Xai ) = Pra(Xp |Xa) play an important role in our

analysis.

Finally, we consider a restriction that is similar to the stochastic relevance condition, but

slightly more restrictive. It states that an observation x is statistically different than any linear

combination of other observations.2

Definition 14. Suppose that a belief profile BA satisfies the multi-task state model condition

CMT SM . Then it also satisfies the linear separability condition CLS if each belief system Ba

additionally satisfies:

K L(pa(Ωi |Xai = x)|| ∑
z∈X \{x}

wz ·pa(Ωi |Xai = z)) > 0

for all wz ≥ 0 such that
∑

z∈X \{x} wz = 1, where an agent ai observes Φi .

Notice that in the above conditions Pra(Xai |ΩΦ j ) and Pra′(Xai |ΩΦ j ) (and similarly pa(ΩΦi )

and pa′(ΩΦi )) are allowed to be different for two different agents a and a′. However, it is often

clear which agent we refer to; in that case we drop the subscript a from Pra(Xai |Ω) and pa(Ω).

Updating constraint

In a more general case, agents are heterogeneous in a way they observe their private informa-

tion. While the multi-task state model condition CMT SM allows agents to be heterogenous in

a way they acquire private information, we will show that additional constraints are needed

2A similar condition is adopted by [CM85] in extracting the full surplus from efficient allocation as revenue.
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in order to achieve desirable incentive properties. Therefore, we consider a belief updating

restriction equivalent to the self-predicting condition CSP introduced in Section 3.1.5, but

defined for a multi-task setting.

Definition 15. A belief profile BA satisfies the multi-task self-predicting condition CMT SP if

for the posterior belief of each Ba, we have that:3

Pr (Xp = y |Xa = x)

Pr (Xp = y)
−1 < Pr (Xp = x|Xa = x)

Pr (Xp = x)
−1,∀y �= x (4.1)

while Pr (Xr = y |Xa = x) = Pr (Xr = y).

As noted in Section 3.1.5, the self-prediction holds in the common case where an agent believes

that only the observation she endorses is more likely among her peers than was expected by

her prior belief. This includes binary answer spaces (as in [DG13]), as well as a more general

case when agents observe different samples drawn from the same categorical distribution,

but with unknown parameters sampled from a Dirichlet distribution.

We characterize the degree of correlation that an agent a believes to be possible between

different observation values x and y by the self-predictor δSP :

Definition 16. For a belief profile BA that satisfies the multi-task self-predicting condition

CMT SP , we define self-predictor δSP as the smallest number in [0,1] so that for each belief

system Ba

Pr (Xp = y |Xa = x)

Pr (Xp = y)
−1 <

(
Pr (Xp = x|Xa = x)

Pr (Xp = x)
−1

)
·δSP ,∀y �= x (4.2)

holds.

The smaller the self-predictor is, the more distinguishable different observations are. For

example, δSP = 0 indicates that different observation values are not correlated, in a sense that

observing a value x should decrease the belief that a peer agent observes different value y . For

δSP ≈ 1, on the other hand, agents are more likely to confuse two similar observations.

4.1.3 Reporting strategies

To examine stronger incentive properties than those analyzed in Chapter 3, we extend the

agents’ strategy space to include both uninformed and misreporting strategy profiles. In

particular, an agent a now faces a choice between two basic strategies:

• informed reporting: observe a phenomenon to obtain observation Xa = x, but report

Ya = y , where y is randomly sampled from a probability distribution that depends on

3We keep −1 on both sides to make the proofs and the notion of the self predictor clear.
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observation Xa . An example strategy is when the agent is honest, in which case the

distribution function is of the form 1y=x , where 1cond is an indicator variable equal

to 1 when condition cond is satisfied, and otherwise is 0. A more general informed

reporting strategy would be when the distribution function is 1y=σ̂(x), where σ̂ is a

bijective function σ̂ : X → X . We refer to the strategies of this form as permutation

reporting strategies.

• uninformed reporting: not observe a phenomenon and report according to a fixed

probability distribution function. The uninformed reporting strategy includes both

random reporting and collusive strategies in which agents agree in advance on reporting

the same value.

Furthermore, notice that an uninformed reporting strategy can be modeled using an informed

reporting strategy by equating all of the probability distributions from which Ya is sampled.

This means that we can assume agent a always makes an observation, but does not need to

base her reporting strategies on it.

Therefore, a generic strategy of agent a can be expressed with a set of probability distribution

functions Qa = {Qa,x ∈P |x ∈X } that defines how Ya is generated from agent a’s observation

Xa . In particular, for an observation Xa = x, Ya is a sample from a probability distribution

function Qa,x . We denote a superset of all possible Qa by Q and a set of probability distribution

functions associated to the honest strategy by Qhonest
a , i.e., Qhonest

a,x (y) =1y=x .

Since agent a does not distinguish her peers and reference agents, from an agent a’s per-

spective, they have the same (expected) behaviour. Therefore, we can assume that peers and

references have a symmetric strategy profile, so that Qp1 = ... =Qpk =Qrk = ... =QrK .

We now turn to the elicitation properties we investigate in this chapter, and the first property

we define is properness of a multi-task payment mechanism, similarly to how it is defined for

the single-task payment mechanisms.

Definition 17. We say that a multi-task payment mechanism τM is proper under the set of

belief constraints C if for all Ba ∈B(C ), a ∈A , and Qa ∈Qa\{Qhonest
a }, we have that:

EXp ,Xr

(
τM (Xa ,Xp ,Xr )|Xa

)≥EYa ,Xp ,Xr

(
τM (Ya ,Xp ,Xr )|Xa

)
(4.3)

If the inequality is strict, then τM is strictly proper.

As argued in the previous chapter, the strict properness property is closely related to the

ex-post subjective equilibrium concept, in particular, it implies that truthful reporting is an

ex-post subjective equilibrium under the considered belief constraints. In this chapter, we

show how to achieve this property under weaker constraints on agents’ belief systems.

A stricter property is to require that agents cannot profit by colluding. Clearly, without any

knowledge on how the agents acquire their observations, the center cannot, in general, make
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permutation strategy profiles strictly worse than honest reporting. Namely, if honest reporting

would result in strictly greater expected payoffs for one observation acquisition process, then,

by permuting the observations, we could define another acquisition process for which the

corresponding permutation reporting would result in greater expected payoffs than honest

reporting. Notice, however, that all of the permutation reporting strategies require that the

agents make observations and coordinate on their observations. Except for honest reporting,

the latter typically induces some cost. Therefore, our goal is to make honest reporting at

least as good as any other permutation reporting strategy and strictly better than any non-

permutation strategy. This is captured by a property called strong truthfulness [DG13, SAFP16],

which we define for the setting of this chapter as follows.

Definition 18. We say that a multi-task payment mechanism τM is strongly truthful under

belief constraints C if for all Ba ∈B(C ), a ∈A , Qa ∈Q, and Qp ∈Q, we have that:

EXp ,Xr

(
τM (Xa ,Xp ,Xr )|Xa

)≥EYa ,Yp ,Yr

(
τM (Ya ,Yp ,Yr )|Xa

)
(4.4)

where the equality holds only if Qa and Qp represent the same permutation reporting strategy.

Strong truthfulness implies strict properness in a sense that any strongly truthful mechanism

is also strictly proper. The converse is not true. Therefore, we minimally require that a payment

mechanism is strictly proper.

Remark 5. The strong truthfulness property implies collusive resistance in situation when

agents distinguish phenomena only by the values they observe. As pointed out by [GWL16],

if agents have alternative ways of distinguishing phenomena, there might exists collusive

strategy profiles that are more profitable than truthful reporting. Although such a collusive

behaviour has been studied on a peer grading data set [SP16b], it is not clear whether these

types of misreporting strategies would be indeed adopted in practice. We leave further analysis

on how to cope with this type of collusion for future work.

4.2 Related work

One of the first methods developed for a multi-task peer consistency is the peer consistency

mechanism of [DG13], which we refer to as the Dasgupta&Ghosh mechanism. The setting

that it operates in allows agents to be heterogeneous, both in their beliefs and in the way they

acquire their private signal. The mechanism assumes that observations are binary signals

related to an objective information, while the agents’ proficiencies in obtaining the true value

are bounded from below. Under this assumption, the Dasgupta&Ghosh mechanism is strongly

truthful. The acquisitional heterogeneity is reflected through the fact that agents are allowed

to have different proficiencies. However, as argued later in the chapter and independently

shown by [SAFP16], the Dasgupta&Ghosh mechanism requires that the categorical property

holds, i.e., that the increase from prior to posterior only happens for the observed value. This

property is not trivially satisfied when observations are non-binary.
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In contrast, [WP13b] analyze a minimal peer consistency setting where agents are homoge-

neous in the way they observe their private information, although their beliefs are subjective

(private). In particular, they apply the shadowing approach on empirical frequencies sampled

from independent phenomena to achieve strict properness for a homogenous population.

We develop on these mechanisms and extend them to settings with a non-binary observation

space. A host of recent results on the multi-task peer consistency methods is closely related

to our work. [KSM+15] investigate the same two settings as we do, and derive two strongly-

truthful mechanism, one for each of the settings. Both mechanisms resemble the robust

peer truth serum developed in this chapter, but are analyzed only in the limit case when the

number of phenomena is large. The correlated agreement mechanism of [SAFP16] adopts

the principles of the Dasgupta&Ghosh mechanism and generalizes it to a non-binary setting.

The mechanism is not necessarily strongly truthful nor strictly proper. Instead, it is informed-

truthful, which, in the case of a binary effort model, means that the mechanism provides

strict incentives for high effort, but agents are not strictly incentivized to report truthfully their

observations.4 Furthermore, the mechanism assumes a partial knowledge of agents’ belief

structure, which enables it to achieve its incentive properties using a small number of tasks.

The authors, however, describe an alternative approach that learns this partial knowledge

given a large enough set of tasks. [KS16b] provide a framework that one can use to derive

a number of results on strong-truthfulness, including the proof that the Dasgupta&Ghosh

mechanism is strongly-truthful. Moreover, they show how to extend the Dasgupta&Ghosh

mechanism to a non-binary setting, assuming that agents solve a large number of a priori

similar elicitation tasks.5 [SP16a] use replicator dynamics to demonstrate that the equilibrium

selection is important if agents are learning how to play over time. This result is supported by

the empirical study of [GMCA14], which experimentally showed that people can learn to play

uninformed reporting strategies if they result in higher payoffs.

Finally, we also mention the empirical work related to the peer consistency incentives de-

signed for two applications: peer grading and community sensing [ASC+10, KHKZ08]. While

several references propose the peer consistency mechanisms for massive open online courses

(MOOCs) [DG13, KSM+15, dASP16], to our knowledge, there has been very little work done on

evaluating different mechanisms in a peer grading scenario. The most systematic approach is

taken in [SAFP16, SP16a], where the authors study a structure of a MOOCs dataset and using a

replicator dynamics argued which mechanisms are potentially the most suitable for the peer

grading in MOOCs. Furthermore, [SP16b] raise practical concerns relevant for applying peer

consistency mechanisms in peer grading. By simulating several peer consistency mechanisms

4Informed truthfulness is a weaker notion than strong truthfulness, but as argued by [SAFP16], it is of a practical
importance, because informed-truthful mechanisms make uninformed reporting strategies strictly worse of than
informed ones. One of the important future steps would be to see whether a similar claim can be made for a
non-binary effort model.

5Both the learning algorithm of [SAFP16] and the mechanism of [KS16b] assume that an agent solves a large
(enough) number of a priori similar tasks. Thus, the allowed heterogeneity by these mechanisms does not
contradict Proposition 6, which provides an impossibility result of a proper knowledge-free elicitation for a
heterogeneous population of agents.

61



Chapter 4. Multi-task peer consistency mechanisms

on a MOOCs data set, they conclude that the gain from exerting effort in peer grading might

be relatively low due to frequent disagreement between peers. In contrast, we perform an

on-campus experiment that compares the performance of one of the mechanisms developed

in this chapter to the performance of mechanisms with a simpler structure. There is also a

growing literature that studies other aspects in peer grading and takes orthogonal approaches

to achieve a better quality of peer grades (e.g., [PHC+13, KWL+13, WTL15, WDK+15]). For

example, estimating the reliability of peer graders and correcting for their biases [PHC+13]

or improving the grading accuracy by providing the peer graders with a feedback about their

grading biases [WTL15]. In regard to community sensing, there is a vast literature addressing

different issues, such as the optimal sensor placement [KSG08] or privacy and trustworthiness

of sensors [DBFH09, CRKH11, SK13]. One of the peer consistency methods proposed for

information elicitation in community sensing setting is the peer truth serum (PTS) [FLJ14],

and we study how to modify its design to make it more robust.

4.3 Homogeneous population

We first consider a homogeneous population of agents where the observations of different

agents are formed in a similar fashion. That is, the set of belief constraints C contains the

homogeneous population condition CHP

4.3.1 Minimal peer prediction with private priors

We start by demonstrating that the elicitation of private observations can be done with a

payment mechanism that asks agents to provide their information reports. To do so, we define

proxy events linked to the observations of other agents whose probabilities are the same as

those that would be reported in a prediction report, and use these to construct an expression

that an agent expects to be the same as the quadratic scoring rule. The mechanism acts as the

classical peer prediction [MRZ05], but instead of directly transforming an agent’s report to her

posterior belief, it appropriately samples reports of reference agents in order to obtain a term

that is in expectation equal to the agent’s posterior.

Mechanism

Consider an agent a1 that observes a phenomenon Φ1. Once agent a1 acquires observation

Xa1 = x, she updates her belief regarding the observation of her peer agent p1 to Pr (Yp1 |Xa1 =
x). If agent a1 believes that the other agents are honest, Pr (Xp1 |Xa1 = x) is also her belief

about the report of peer p1.

Now, consider another phenomenon Φ2 �=Φ1 observed by a reference agent r2. Agent a1’s

belief about the observation of agent r2 is Pr (Xr2 ) because agent a1 does not observe Φ2. How-

ever, agents obtain their private observations in a similar fashion. Therefore, if agent a1 knows
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that a proxy agent apr ox y2, associated to phenomenon Φ2, has observed Xpr ox y2 = y , her

belief about agent r2’s observation changes from Pr (Xr2 ) to Pr (Xp1 |Xa1 = y). Namely, agents

acquire their observation in the same way, so agent a1 should believe that Pr (Xr2 |Xapr ox y2 = y)

is equal to Pr (Xp1 |Xa1 = y). This means that the indicator variable 1Xr2=z is in expectation

equal to Pr (Xp1 = z|Xa1 = y) whenever the proxy for phenomenon Φ2 observes y .

Suppose that r2 is honest, i.e., Yr2 = Xr2 , and that the observation of honest proxy apr ox y2 is

equal to agent a1’s report, i.e. Yapr ox y = Xapr ox y = Ya1 = y . Then, the indicator variable 1Yr2=z

is in expectation equal to agent a1’s belief Pr (Xp1 = z|Xa1 = y), which would make up her

prediction report regarding her peer’s observation.

The idea is to arrange indicators 1Yr j =z so that they correspond to the quadratic scoring rule

(see (2.2) in Chapter 2), in which prediction Pr (Xp1 |Ya1 ) is scored by how well it predicts the

report of peer p1. Provided that the peer is honest, the expected score is maximized when the

prediction is equal to Pr (Xp1 |Xa1 ), which implies truthfulness of agent a1.

Minimal Peer Prediction with Private Priors. Let agent a1 and her peer p1 be an arbitrary

agents that report their observation Ya1 and Yp1 regarding the same phenomenon, here

denoted by Φ1.6 The mechanism has the following structure:

1. Randomly sample one response for all phenomena Φ2 �=Φ1 that are not observed by

agent a1. We denote this sample by Σ and we call it double-mixed if it contains all

possible values from X at least twice.

2. If sample Σ is not double-mixed, agent a1’s score is equal to τM (Ya1 ,Yp1 ,Yr ) = 0, where

Yr are the reports of all the reference agents of agent a1 (in this case, all agents that have

not observed Φ1).

3. Otherwise, take two different phenomena Φ2 �=Φ3 �=Φ1 whose Σ samples are equal to

Ya1 , and randomly select another sample for each of them to obtain two responses Yr2

and Yr3 . Finally, the score of an agent a1 is equal to:

τM (Ya1 ,Yp1 ,Yr ) = 1

2
+1Yr2=Yp1

− 1

2

∑
z∈X

1Yr2=z ·1Yr3=z

Notice that the last step of the mechanism is only applied when Σ is double-mixed, and this

is important to prevent a potential bias towards the more likely observations. Namely, if the

fourth step is executed whenever Σ contains two reports equal to report Ya1 , which is sufficient

for calculating score τM (Ya1 ,Yp1 ,Yr ) in this step, agent a1 might report dishonestly in the hope

of increasing the probability of getting non-zero payoff.

Figure 4.2 shows one possible outcome of the elicitation process for a binary evaluation space

{x, y}. To score agent a1, the minimal peer prediction first builds Σ sample based on the reports

6Subscripts 1, 2, and 3 are chosen for clarity; they can be replaced by any three different numbers from 1 to M .
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Φ1 Φ2 Φ3 Φ4 Φ5

a1 x

p1 y

r2 x

r3 y

proxy2 x

proxy3 x

proxy4 y

proxy5 y

Phenomena

A
ge

nt
s

sample Σ

Figure 4.2 – Minimal peer prediction with private priors.

of the proxy agents. Since Σ is double-mixed, the mechanism acquires the reports of agents r2

and r3, that, together with the report of agent p1, define agent a1’s score. In this case, the (ex

post) score of agent a1 is equal to 1
2 .

Properties

To illustrate the principle of the minimal peer prediction, consider an agent a1 with observa-

tion equal to Xa1 . Her belief about the observation of her peer is Pr (Xp1 |Xa1 ), while her belief

about the observation of a reference agent is Pr (Xr ). The mechanism works as follows. If Σ

is not double-mixed — which happens with probability strictly less than 1 for |Σ| ≥ 2 · |X | —

agent a1’s reward is 0. Otherwise, the mechanism searches in Σ for two phenomena Φ2 and Φ3

whose Σ samples are equal to Ya1 . Since agent a1 knows that samples of Φ2 and Φ3 are equal

to Ya1 , and all agents make observations in a similar way, agent a1 updates her belief about

the other observations of Φ2 and Φ3: Pr (Xr ) → Pr (Xp1 |Ya1 ). This means that a1’s belief about

the observations of agent r2 (who observes Φ2 and whose report is not in Σ) and agent r3 (who

observes Φ3 and whose report is not in Σ) is equal to Pr (Xp1 |Ya1 ).

Furthermore, the indicators 1r2=z and 1r3=z in score τM (Ya1 ,Yp1 ,Yr ) are in expectation equal

to Pr (Yp1 = z|Ya1 ). Therefore, assuming that the agents other than a1 are honest and that

sample Σ is double-mixed, the score is in expectation equivalent to the quadratic scoring rule

SQ (Pr (Xp1 |Ya1 ), Xp1 ) whose expected value is maximized for Ya1 = Xa1 . More formally:

Theorem 8. The minimal peer prediction with private priors is strictly proper under the ho-

mogenous population condition, i.e., C = {CHP }, whenever Σ sample contains at least two times

more elements than observation set X , i.e., |Σ| ≥ 2 · |X |.

Proof. Consider an agent a1 whose evaluation is equal to Xa1 = x, and suppose other agents

are honest, including an agent p1. Due to the independence of Xr2 and Xr3 and linearity of

expectations, the expected score of agent a1 for reporting x̃ when her peer reports y is equal
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to:

τ̄M (x̃, y) = pΣ ·
[

1

2
+Pr (Xp1 = y |Xa1 = x̃)− 1

2
· ∑

z∈X

Pr (Xp1 = z|Xa1 = x̃)2

]

where pΣ is the probability that Σ is double-mixed. Fully mixed priors and |Σ| ≥ 2 · |X | imply

that pΣ > 0, so τ̄M (x̃, y) has the structure of the quadratic scoring rule (see (2.2) in Chapter 2),

scaled by pΣ, that rewards agent a1’s posterior beliefs Pr (Xp1 |Xa1 = x̃) with the realization of

the outcome specified by peer p1’s report. Since the quadratic scoring rule is in expectation

maximized when agent a1 reports her true belief Pr (Xp1 = y |Xa1 = x), agent a1 is incentivized

to report honestly her observation, i.e., x̃ = x. Moreover, agent a1 is strictly incentivized to do

so because of the stochastic relevance of her posterior beliefs.

To score an agent, the mechanism requires 2 · |X | statistically similar phenomena in addition

to the phenomenon rated by the agent. Often, the number of phenomena that the mechanism

wants to monitor is significantly larger than observation space X , as in product reviewing,

where the number of ratings is relatively small, e.g., 5, while many products have statistically

similar features, i.e., they are a priori similar.

While the mechanism represents a possibility result for knowledge-free information elicitation,

it does not satisfy strong-truthfulness. We, therefore, turn to an alternative approach, which

assumes that the population of agents is large.

4.3.2 Logarithmic peer truth serum

Instead of sampling reports to design a score that acts as the classical peer prediction, one

can score agents by the statistical significance of their reports. This principle comes from the

(original) Bayesian truth serum (BTS) [Pre04], but we apply it in a different manner. Unlike the

original BTS mechanism, the novel mechanism does not require agents to have a common

prior belief and is minimal, in a sense that sensors report only their observations.

Mechanism

To determine the statistical significance, we first sample reports across different phenomena

and make the normalized histogram xΦ of reported values. That is, for each possible obser-

vation value x, we evaluate the fraction of reports in the sample that are equal to x. Second,

we calculate the normalized histogram xΦi of reports for each phenomena Φi . The statistical

significance of a report equal to x associated to phenomenon Φi is then defined as log
xΦi (x)
xΦ(x) .

Logarithmic Peer Truth Serum. Consider an agent who observes Φi and whose report is

equal to Ya = x. The logarithmic peer truth serum (log-PTS) applies the following steps to

reward the agent:
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• Calculate two empirical frequencies:

– Frequency of reports equal to x among agent a’s peers:

xΦi (x) = 1

k
·

k∑
i=1

1Ypi =x

– Frequency of reports equal to x among reference agents (r̂1, ..., r̂M−1) that are not

each other’s peers nor peers of agent a:

xΦ(x) = 1

M −1
·

M−1∑
i=1

1Yr̂i =x

To obtain reports from the reference agents (r̂1, ..., r̂M−1), one can randomly sample

a report for each phenomenon, except the one observed by agent a.

• Finally, reward agent a for reporting Ya = x with:

τM (Ya ,Yp ,Yr ) = log
xΦi (x)

xΦ(x)

To avoid potential issues with 0 values in xΦi and xΦ histograms, one can apply Laplace

(additive) smoothing with small smoothing parameters, or simply include the report of agent

a in both histograms. The latter would make the score equal to 0 when xΦi (Ya) = 0 and

xΦ(Ya) = 0. In our analysis, we use the convention of setting the score to 0 when xΦi (Ya) = 0

and xΦ(Ya) = 0.

Properties

Strict-properness. Consider an agent a whose belief systems satisfies the homogenous popu-

lation condition CHP , and assume that the other agents are honest. It can be shown that the

logarithm of ratio
xΦi (y)
xΦ(y) from agent a’s perspective converges to:

lim
k,M→∞

log
xΦi (y)

xΦ(y)
=

a.s.
log

Pr (Xa = y |ΩΦi )

Pr (Xa = y)

where y is the agent a’s report. Using Bayes’ rule we obtain:

lim
k,M→∞

log
xΦi (y)

xΦ(y)
=

a.s.
log

p(ΩΦi |Xa = y)

p(ΩΦi )
= log p(ΩΦi |Xa = y)+b

where b does not depend on report y . The score has one indicative feature: agent a is

scored based on how well it predicts state ΩΦi . More precisely, log
xΦi (y)
xΦ(y) is related to the

logarithmic scoring rule (see (2.1) in Chapter 2) applied on the posterior belief of an agent

whose observation is equal to y . The true belief of agent a is p(ΩΦi |Xa = x), where x is her

observation, so in order to be scored with her true belief, the agent should report y = x. Since
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the logarithmic scoring rule incentivizes agents to report their true beliefs, we obtain that

log-PTS provides proper incentives. To show this formally, we first prove the following lemma.

Lemma 4. Consider an agent a who observes Xa = x. As k → ∞ and M → ∞, the agent’s

payment in the logarithmic peer truth serum is maximized under the homogenous population

condition (C = {CHP }) if and only if she reports y such that:

p(ΩΦi |Xa = x) = p(ΩΦi |Yp = y)

Proof. Reports from histogram xΦi are conditionally independent given ΩΦi , so we can apply

the law of large numbers to obtain:

lim
k→∞

xΦi (x) =
a.s.

Pr (Yp = x|ΩΦi )

where we used the fact that peers are homogenous (Pr (Xpi = z|ΩΦi ) = Pr (Xp j = z|ΩΦi )) and

have a symmetric strategy profile.

Next, consider reference agents (r̂1, ..., r̂M−1). The reports of agents in (r̂1, ..., r̂M−1) are statisti-

cally independent, which implies that:

lim
M→∞

xΦ(x) =
a.s.

Pr (Yp = x)

due to the properties of the homogenous population condition CHP and the fact that peers

and references have a symmetric strategy profile.

Therefore, the expected score of agent a who observed Xa = x for reporting Ya = y is equal to:

lim
M→∞,k→∞

∫
R

p(ΩΦi =ω|Xa = x) · log
xΦi (y)

xΦ(y)
dω

=
a.s.

∫
R

p(ΩΦi =ω|Xa = x) · log
Pr (Yp = z|ΩΦi =ω)

Pr (Yp = z)
dω

=
∫
R

p(ΩΦi =ω|Xa = x) · log
p(ΩΦi =ω|Yp = y)

p(ΩΦi =ω)
dω

where the last equality is due to Bayes’ rule (the term inside the logarithm). The equation can

be further reduced to:∫
R

p(ΩΦi =ω|Xa = x) · log
p(ΩΦi =ω|Yp = y) ·p(ΩΦi =ω|Xa = x)

p(ΩΦi =ω) ·p(ΩΦi =ω|Xa = x)
dω

=
∫
R

p(ΩΦi =ω|Xa = x) · log
p(ΩΦi =ω|Yp = y)

p(ΩΦi =ω|Xa = x)
dω

+
∫
R

p(ΩΦi =ω|Xa = x) · log
p(ΩΦi =ω|Xa = x)

p(ΩΦi =ω)
dω

=−K L(p(ΩΦi |Xa = x)||p(ΩΦi |Yp = y))+K L(p(ΩΦi |Xa = x)||p(ΩΦi ))
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Notice that the only part that depends on the agent’s report is K L(p(ΩΦi |Xa = x)||p(ΩΦi |Yp =
y)). The expected payoff is negative in the KL divergence, so the best case for the agent is when

its value is equal to 0, which occurs if and only if p(ΩΦi |Xa = x) = p(ΩΦi |Yp = y).

Theorem 9. The logarithmic peer truth serum is strictly proper under the homogenous belief

condition (C = {CHP }) as k →∞ and M →∞.

Proof. Suppose that the peers and the reference agents are honest (Yp = Xp ) and let p(ΩΦi |Xa =
x) = p(ΩΦi |Yp = y) = p(ΩΦi |Xp = y). The homogeneity condition implies that p(ΩΦi |Xp =
y) = p(ΩΦi |Xa = y). Therefore, p(ΩΦi |Xa = x) = p(ΩΦi |Xa = y), which gives us:

Pr (Xp |Xa = x) =
∫
R

Pr (Xp |ΩΦi =ω, Xa = x) ·p(ΩΦi =ω|Xa = x)dω

=
∫
R

Pr (Xp |ΩΦi =ω) ·p(ΩΦi =ω|Xa = x)dω

=
∫
R

Pr (Xp |ΩΦi =ω) ·p(ΩΦi =ω|Xa = y)dω

=
∫
R

Pr (Xp |ΩΦi =ω, Xa = y) ·p(ΩΦi =ω|Xa = y)dω

= Pr (Xp |Xa = y)

where we used the conditional independence of Xp and Xa given ΩΦi . By the stochastic

relevance condition, it follows that y = x, which, by Lemma 4, implies the strict properness of

log-PTS.

Strong-truthfulness. Suppose now that the agents report according to a strategy which pre-

scribes that for an observation equal to x or y , the report is x, while for any other observation,

the report is truthful. In this case, the logarithm of ratio
xΦi (x)
xΦ(x) converges to:

lim
k,M→∞

log
xΦi (x)

xΦ(x)
=

a.s.
log

Pr (Xa ∈ {x, y}|ΩΦi )

Pr (Xa ∈ {x, y})
= log

p(ΩΦi |Xa ∈ {x, y})

p(ΩΦi )

where the last equality follows from Bayes’ rule. The part that is dependent on x is equal to

log p(ΩΦi |Xa = {x, y}). Therefore, if agent a reports x, she will get scored by the logarithmic

scoring rule applied on the belief of an agent who cannot distinguish between x and y . On

the other hand, if agent a’s observation is x, her true belief is p(ΩΦi |Xa = x). In other words,

her score is expected to be suboptimal, unlike in the case when everyone is honest. More

generally, log-PTS is strongly truthful for a large population of agents under the homogeneous

population and linear separability constraints. To show this, we first prove a lemma which

states that the agents should adopt the same reporting strategy when they use permutation

reporting.

Lemma 5. In the logarithmic peer truth serum, under the homogenous population condition

(C = {CHP }), agent a’s strictly best response to a permutation reporting strategy is to report

according to it, provided that k →∞ and M →∞.
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Proof. Let σ̂ be a bijective function that defines the permutation reporting strategy of an agent

a’s peers and references, i.e., Qp,x (z) = 1z=σ̂(x). Log-PTS rewards report y with the score of

report σ̂(y) when the peers and the references are honest. Due to Theorem 9, agent a’s best

response to truthful reporting of the other agents is to report Xa . Therefore, when the other

agents report according to σ̂, agent a’s best response is σ̂(Xa), which implies that the agent

should use the same reporting strategy as her peers and reference agents.

Theorem 10. The logarithmic peer truth serum is strongly truthful under the belief constraints

C = {CHP ,CLS} as k →∞ and M →∞.

Proof. Consider an agent a who uses strategy defined by Qa and believes that her peers and

reference agents adopt a strategy defined by Qp . Let us rewrite the condition of Lemma 4 as:

p(ΩΦi |Xa = x) = p(ΩΦi |Yp = y) = Pr (Yp = y |ΩΦi )

Pr (Yp = y)
·p(ΩΦi )

where we applied Bayes’ rule. Due to the homogeneity condition CHP , we know that:

Pr (Yp = y |ΩΦi ) = ∑
z∈X

Qp,z (y) ·Pr (Xp = z|ΩΦi ) = ∑
z∈X

Qp,z (y) ·Pr (Xa = z|ΩΦi )

Pr (Yp = y) = ∑
z∈X

Qp,z (y) ·Pr (Xp = z) = ∑
z∈X

Qp,z (y) ·Pr (Xa = z)

which, together with the previous expression and Bayes’ rule, gives us:

p(ΩΦi |Xa = x) = ∑
z∈X

Qp,z (y)∑
ẑ∈X Qp,ẑ (y) ·Pr (Xa = ẑ)

·Pr (Xa = z|ΩΦi ) ·p(ΩΦi )

= ∑
z∈X

Qp,z (y) ·Pr (Xa = z)∑
ẑ∈X Qp,ẑ (y) ·Pr (Xa = ẑ)

·p(ΩΦi |Xa = z)

By setting w ′
z = Qp,z (y)·Pr (Xa=z)∑

ẑ∈X Qp,ẑ (y)·Pr (Xa=ẑ) , we obtain:

p(ΩΦi |Xa = x) = ∑
z∈X

w ′
z ·p(ΩΦi |Xa = z)

Notice that w ′
z slightly differs from wz in the linear separability condition CLS as it includes

also w ′
x . If w ′

x < 1, we can define wz = w ′
z

1−w ′
x

for z �= x, so that wz ≥ 0,
∑

z∈X \{x} wz = 1 and:

p(ΩΦi |Xa = x) = ∑
z∈X \{x}

wz ·p(ΩΦi |Xa = z)

Due to the linear separability condition CLS , this cannot be the case, which implies that wx ′ = 1.

Therefore:

Qp,x (y) ·Pr (Xa = x)∑
ẑ∈X Qp,ẑ (y) ·Pr (Xa = ẑ)

= 1
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Qp,z (y) ·Pr (Xa = z)∑
ẑ∈X Qp,ẑ (y) ·Pr (Xa = ẑ)

= 0,∀z �= x

Since this has to hold for all possible observations x, we have that Qp,x (y) = 1. In other words,

peers and reference agents should use a permutation reporting strategy for the condition in

Lemma 4 to hold. Due to Lemma 5, agent a should also use the same strategy (i.e., Qa =Qp ) in

order for the condition to hold, which by Lemma 4, implies the strong truthfulness of log-PTS.

Hence, we proved the statement.

The main drawback of log-PTS is that it requires a large population of agents and, in particular,

a large number of peers. We therefore investigate an alternative approach which has more

stable payments as the number of peers decreases, and thus is more robust in terms of the

population size.

4.4 Heterogeneous population

Unlike the previous section, a group of agents is now considered to have heterogeneous

characteristics, i.e., agents differ in the way they observe phenomena. In the context of the

multi-task state model condition CMT SM , this would mean that, for two different agents a1

and a2, Pr (Xa1 |ΩΦi ) and Pr (Xa2 |ΩΦi ) are allowed to be different. We show, however, that it is

not possible to create strict incentives that would elicit both agent a1’s and agent a2’s private

signals under the set of constraints that contains only the multi-task state model condition

CMT SM . The intuition behind this result is that an agent might believe she is special in the way

she observes two possible observations x and y . In particular, she might believe that the other

agents swap these two observations.

Proposition 6. There exists no strictly proper mechanism τM under the multi-task state model

condition, i.e., C = {CMT SM }.

Proof. Consider two agents a1 and a2 that observe phenomenon Φi . Assume agent a1 believes

that the observation of any of her peers, Xp1 , is statistically similar to her observation:

Pra1 (Xp1 = x|ΩΦi ) = Pra1 (Xa1 = x|ΩΦi ),∀x

while agent a2 believes that the observation of any of her peers, Xp2 , is a sample from the

distribution:

Pra2 (Xp2 = x|ΩΦi ) = Pra2 (Xa2 = y |ΩΦi )

Pra2 (Xp2 = y |ΩΦi ) = Pra2 (Xa2 = x|ΩΦi )

Pra2 (Xp2 = z|ΩΦi ) = Pra2 (Xa2 = z|ΩΦi ),∀z �= x, y
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Furthermore, let Pra1 (Xa1 = z|ΩΦi ) = Pra2 (Xp2 = z|ΩΦi ) and Pra1 (Xr1 = z|ΩΦ j ) = Pra2 (Xr2 =
z|ΩΦk ) for all evaluations z, where r1 and r2 are reference agents of a1 and a2, respectively.

By applying the properties of the multi-task state model condition CMT SM , we obtain from

the above conditions that:

Pra1 (Xp1 ,Xr1 |Xa1 = x) = Pra2 (Xp2 ,Xr2 |Xa2 = y) (4.5)

Pra1 (Xp1 ,Xr1 |Xa1 = y) = Pra2 (Xp2 ,Xr2 |Xa2 = x)

Now, suppose that there exists a strictly proper mechanism τM and let Xa1 = Xa2 = x. Strict

properness implies:

∑
Xp1 ,Xr1

Pra1 (Xp1 ,Xr1 |Xa1 = x)·τM (x,Xp1 ,Xr1 ) > ∑
Xp1 ,Xr1

Pra1 (Xp1 ,Xr1 |Xa1 = x) ·τM (y,Xp1 ,Xr1 )

Since the formal setting assumes that the agents do not differentiate their peers nor reference

agents, by applying identity (4.5), we obtain:

∑
Xp2 ,Xr2

Pra2 (Xp2 ,Xr2 |Xa2 = y)·τM (x,Xp2 ,Xr2 ) > ∑
Xp2 ,Xr2

Pra2 (Xp2 ,Xr2 |Xa2 = y) ·τM (y,Xp2 ,Xr2 )

which contradicts the assumption that τM is strictly proper.

Instead of imposing a restriction on how agents acquire their private information, we now take

an alternative approach and put constraints on their belief updating process. More precisely,

the condition we assume to hold is the multi-task self-prediction CMT SP , which allows the

agents to have a limited heterogeneity in observing the phenomena.

4.4.1 Robust peer truth serum

The mechanism we consider combines the ideas from [DG13, WP13b] with the peer truth

serum (PTS) introduced in [JF11, FLJ14, FPTJ14], and we call it the robust peer truth serum

(RPTS). The idea behind the mechanism is to use the distribution of reported values from

different phenomena as the prior probability of possible observations, and scale the reward

given for agreement between agents with this distribution. This solves the major issue with

the PTS mechanism as presented in [FPTJ14], which is that the prior distribution had to be

known.

Mechanism

The peer truth serum (PTS) [JF11, FPTJ14] rewards an agent who reports answer x only if

a randomly chosen peer reported the same observation. It uses a commonly known prior

probability distribution x(x) over possible values x, and rewards a matching report x with 1
x(x) .
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Instead of using a predefined value for x, we construct it from the reports of agents who

observe different phenomena. Since x is calculated from a finite number of samples, it is

possible that x(x) is equal to 0 for a certain report x, which would lead to an ill-defined score

due to the division by 0. To overcome this problem, we distinguish values x for which statistic

x(x) is equal to 0. When x(x) �= 0, an agent who reports x obtains a score proportional to 1
x(x) −1

if her peer has also reported x, and a score proportional to −1 in any other case. Otherwise,

if x(x) = 0, an agent who reports x obtains 0, since there is no peer that matches the agent’s

report.

Robust Peer Truth Serum. Consider an agent a who observes phenomenon Φi and whose

report is equal to Ya = x. The robust peer truth serum (RPTS) rewards the agent using the

following steps:

• Randomly sample M reports from M different phenomena, including the phenomenon

Φi , but not agent a’s report.

• Calculate the frequency of reported values equal to x within this sample:

xa(x) = num(x)∑
y∈X num(y)

where num is the function that counts occurrences of reported values in the sample.

• Reward agent a for reporting Ya = x with:

τM (Ya ,Yp ,Yr ) =
⎧⎨
⎩

1x=xp

xa (x) −1 if xa(x) �= 0

0 if xa(x) = 0
(4.6)

where xp is the report of agent a’s peer, who observes phenomenon Φi and whose report

is in the sample from which xa was obtained.

The RPTS payment function uses multiple reference agents, but unlike log-PTS, it requires

only one peer. This represents a significant improvement in the numerical stability of the

score. If we can assign multiple peers p to agent a, which is the case when more than one peer

agent observes Φi , the final score of agent a can be the average of the RPTS over all selected

peers. Due to the linearity of the expectation, the transformed score has the same incentive

properties. However, using multiple reports reduces the variance in payments which may

often be desirable.

Properties

Although RPTS is a nonlinear scheme, the expected score can be expressed in a closed form.

Lemma 6. The expected payment to an agent a with observation Xa = x and report Ya = y in
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the RPTS mechanism is equal to:⎧⎨
⎩
(

Pr (Yp=y |Xa=x)
Pr (Yp=y) −1

)
· (1− (1−Pr (Yp = y))M−1) if Pr (Yp = y) > 0

0 if Pr (Yp = y) = 0
(4.7)

Proof. To make the proof notationally clear, let us denote Pp|a(y |x) = Pr (Yp = y |Xa = x) and

Pp (y) = Pr (Yp = y).

It is clear that for Pp (y) = 0, the expected payment to agent a is 0. When Pp (y) > 0, the

expected payment to agent a is:

∏
ri |Xri =y

Pri (y)
∏

ri |Xri �=y
(1−Pri (y)) ·Pp|a(y |x) · 1

(num(Xri = y)+1)/M︸ ︷︷ ︸
due to

1xp =y

xa (y) part when xa (y) �= 0

−
(

1− (1−Pp|a(y |x))
∏
ri

(1−Pri (y))M−1

)
︸ ︷︷ ︸

due to −1 part when xa (y) �= 0

Since agent a does not distinguish her workers, Pp (y) = Prk (y). Let i be the number of reports

equal to y from reference agents. We have:[
M−1∑
i=0

(
M −1

i

)
·Pp (y)i · (1−Pp (y))M−1−i ·Pp|a(y |x) · 1

(i +1)/M︸ ︷︷ ︸
due to

1xp =y

xa (y) part when xa (y) �= 0

− (
1− (1−Pp|a(y |x)) · (1−Pp (y))M−1)︸ ︷︷ ︸

due to −1 part when xa (y) �= 0

⎤
⎥⎥⎦

=
[

Pp|a(y |x) ·M ·
M−1∑
i=0

(M −1)!

i !(M −1− i )!
·Pp (y)i · (1−Pp (y))M−1−i · 1

i +1

−1+ (1−Pp|a(y |x)) · (1−Pp (y))M−1

]

=
[

Pp|a(y |x)

Pp (y)
·

M−1∑
i=0

(M −1+1)!

(i +1)!(M −1− i )!
·Pp (y)i+1 · (1−Pp (y))(M−1+1)−(i+1)

−1+ (1−Pp|a(y |x)) · (1−Pp (y))M−1

]

=
[

Pp|a(y |x)

Pp (y)
·

M∑
i=1

(
M −1+1

i

)
·Pp (y)i · (1−Pp (y))(M−1+1)−i

−1+ (1−Pp|a(y |x)) · (1−Pp (y))M−1

]
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=
[

Pp|a(y |x)

Pp (y)
·

M∑
i=1

(
M

i

)
·Pp (y)i · (1−Pp (y))M−i

−1+ (1−Pp|a(y |x)) · (1−Pp (y))M−1

]

=
[

Pp|a(y |x)

Pp (y)
· (1− (1−Pp (y))M )−1+ (1−Pp|a(y |x)) · (1−Pp (y))M−1

]

=
[

Pp|a(y |x)

Pp (y)
· (1− (1−Pp (y))M−1 +Pp (y) · (1−Pp (y))M−1)

− (1− (1−Pp (y))M−1)−Pp|a(y |x) · (1−Pp (y))M−1

]

=
(

Pp|a(y |x)

Pp (y)
−1

)
· (1− (1−Pp (y))M−1)

Hence, we proved the statement.

Strict-properness. We now give an intuitive understanding of the RPTS mechanism, assuming

a scenario where there are many phenomena M in the mechanism.

To decide on her best strategy, an agent a should estimate the reward she can expect for

reporting observation y . From Lemma 6, the agent’s payoff converges towards
Pr (Xp=y |Xa=x)

Pr (Xp=y) −1

provided that her observation is x and that the other agents are honest. Intuitively, xa(y)

approximates prior Pr (Xp = y) as the agent has only prior information about her reference

agents, while the probability of matching the peer agent is equal to Pr (Xp = y |Xa = x). If agent

a’s beliefs satisfy the self-predicting condition CMT SP , i.e.,
Pr (Xp=y |Xa=x)

Pr (Xp=y) < Pr (Xp=x|Xa=x)
Pr (Xp=x) for

y �= x, then her payoff is strictly maximized for y = x.

A more formal analysis, including cases with a smaller number of phenomena, is given in

Theorem 11. In particular, the theorem gives a condition on the number of phenomena M that

the center should use in rewarding each agent. The condition is related to the belief systems

of the agents, and is expressed through self-predictor δSP .

Theorem 11. The robust peer truth serum is strictly proper under the multi-task self-predicting

condition (C = {CMT SP }) if the number of phenomena M in the mechanism satisfies:

1− (1−Pra(Xp = x))M−1

1−Pra(Xp = x)M−1
≥ δSP (4.8)

for all x ∈X and all agents a ∈A .

Proof. From Lemma 6, it follows that the expected payoff of agent a, with observation Xa = x
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and report Ya = y , is:(
Pr (Xp = y |Xa = x)

Pr (Xp = y)
−1

)
·(1− (1−Pr (Xp = y))M−1)

≤
(

Pr (Xp = y |Xa = x)

Pr (Xp = y)
−1

)
· (1−Pr (Xp = x)M−1)

<
(

Pr (Xp = x|Xa = x)

Pr (Xp = x)
−1

)
· (1− (1−Pr (Xp = x))M−1)

where the first inequality follows from Pr (Xp = y)+Pr (Xp = x) ≤ 1 and the second inequality

follows from (4.1) (the self-predicting condition) and (4.8). We see that the maximal expected

payoff when the task is solved is achieved when agent a reports her true observation.

Strong-truthfulness. As has been done for the log-PTS mechanism, suppose now that the

agents report according to a strategy which prescribes that the report is x for an observation

equal to x or y , while for any other observation, the report is truthful. From Lemma 6, the

payoff for reporting x converges towards
Pr (Xp=x|Xa=x)+Pr (Xp=y |Xa=x)

Pr (Xp=x)+Pr (Xa=y) −1. Namely, in this case,

xa(y) approximates prior Pr (Xp = x)+Pr (Xp = y) as both agents who observe x and y report

x. Similarly, the probability of matching is Pr (Xp = x|Xa = x)+Pr (Xp = y |Xa = x). Let us

rearrange the expected payoff:

Pr (Xp = x|Xa = x)+Pr (Xp = y |Xa = x)

Pr (Xp = x)+Pr (Xa = y)
−1

= Pr (Xp = x|Xa = x)−Pr (Xp = x)+Pr (Xp = y |Xa = x)−Pr (Xa = y)

Pr (Xp = x)+Pr (Xa = y)

=
Pr (Xp = x) ·

(
Pr (Xp=x|Xa=x)

Pr (Xp=x) −1
)
+Pr (Xp = y) ·

(
Pr (Xp=y |Xa=x)

Pr (Xp=y) −1
)

Pr (Xp = x)+Pr (Xa = y)

=
(

Pr (Xp = x|Xa = x)

Pr (Xp = x)
−1

)
· Pr (Xp = x)+Pr (Xp = y) ·b

Pr (Xp = x)+Pr (Xa = y)
(4.9)

where we put:

b =
Pr (Xp=y |Xa=x)

Pr (Xp=y) −1

Pr (Xp=x|Xa=x)
Pr (Xp=x) −1

If agent a’s beliefs satisfy the self-predicting condition CMT SP , i.e.,
Pr (Xp=z|Xa=x)

Pr (Xp=z) < Pr (Xp=x|Xa=x)
Pr (Xp=x)

for z �= x, then it has to be that b < 1, which implies that expression (4.9) is strictly smaller than
Pr (Xp=x|Xa=x)

Pr (Xp=x) −1. This, on the other hand, is the expected payoff of agent a when everybody

is honest. More generally, RPTS is strongly truthful if the agents’ belief systems are compat-

ible with the self-predicting condition CMT SP and the number of tasks exceeds a threshold

dependent on the self-predictor δSP . To show this formally, we first prove an equivalent result

to that of Lemma 5 for log-PTS: agents should adopt the same reporting strategy when they
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use permutation reporting.

Lemma 7. Suppose that agent a’s belief system Ba satisfies the multi-task self-predicting condi-

tion (C = {CMT SP }) and condition (4.8). Then, in the robust peer truth serum, agent a’s strictly

best response to a permutation reporting strategy is to report according to it.

Proof. The proof is equivalent to the one for Lemma 5. Let σ̂be a bijective function that defines

the permutation reporting strategy of an agent a’s peers and references, i.e., Qp,x (z) =1z=σ̂(x).

RPTS assings to report y a score equal to the score of report σ̂(y) when the peers and the

references are honest. Due to Theorem 11, agent a’s best response to truthful reporting of the

other agents is to report Xa . Therefore, when the other agents report according to σ̂, agent a’s

best response is σ̂(Xa), which implies that the agent should use the same reporting strategy as

her peers and reference agents.

Theorem 12. The robust peer truth serum is strongly truthful under the multi-task self-predicting

condition (C = {CMT SP }) if the number of phenomena M in the mechanism satisfies:(
1− (M −1) ·Pra(Xp = x) · (1−Pra(Xp = x))M−2

1− (1−Pra(Xp = x))M−1

)
≥ δSP (4.10)

for all x ∈X and all agents a.

Proof. Consider an agent a that observes Xa = x and suppose her peers and reference agents

use a strategy profile defined by distribution Qp . The agent’s payoff for reporting y is equal to:

(∑
z∈X Qp,z (y) ·Pr (Xp = z|X = x)∑

z∈X Qp,z (y) ·Pr (Xp = z)
−1

)
·
(

1−
(

1− ∑
z∈X

Qp,z (y) ·Pr (Xp = z)

)M−1)

=
(

Qp,x (y) ·Pr (Xp = x|Xa = x)+∑z∈X \{x} Qp,z (y) ·Pr (Xp = z|Xa = x)

Qp,x (y) ·Pr (Xp = x)+∑z∈X \{x} Qp,z (y) ·Pr (Xp = z)
−1

)

·
(

1−
(

1−Qp,x (y) ·Pr (Xp = x)− ∑
z∈X \{x}

Qp,z (y) ·Pr (Xp = z)

)M−1)
(4.11)

where we used Lemma 6 to calculate the expected payoff.

Let us simplify our notation with the following substitutions: p = Pr (Xp = x), Δp = Pr (Xp =
x|Xa = x)−Pr (Xp = x), q = ∑

z∈X \{x} Qp,z (y) ·Pr (Yp = z), Δq = ∑
z∈X \{x} Qp,z (y) · (Pr (Xp =

z|Xa = x)−Pr (Xp = z)). Expression (4.11) can be written in the new notation as:

Qp,x (y) ·Δp +Δq

Qp,x (y) ·p +q
· (1− (1−Qp,x (y) ·p −q)M−1)

We will prove the statement by showing that under the conditions of the theorem:
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1. An optimum of the expected payoff is achieved when Qp,x (y) = 1, regardless of q .

2. When q > 0 the payoff is lower than when q = 0.

Part 1:

Notice that the self prediction implies the existence of ε> 0 such that Δp
p ·(1−ε) = Δq

q . Therefore,

we have:

Qp,x (y) ·Δp +Δq

Qp,x (y) ·p +q
· (1− (1−Qp,x (y) ·p −q)M−1)

=
Δp
p ·Qp,x (y) ·p + Δq

q ·q

Qp,x (y) ·p +q
· (1− (1−Qp,x (y) ·p −q)M−1)

= Δp

p
·
(
1− ε ·q

Qp,x (y) ·p +q

)
· (1− (1−Qp,x (y) ·p −q)M−1) (4.12)

The optimum of (4.12) is achieved for Qp,x (y) = 1, regardless of q .

Part 2:

We also need to show that the agents whose evaluations are z �= x lower the value of expression

(4.11) when Qp,z (y) > 0. Consider a function of λ ∈ [0,1]:

f (λ) = Δp +λ ·Δq

p +λ ·q
· (1− (1−p −λ ·q)M−1) = (Δp +λ ·Δq) · (

M−2∑
i=0

(1−p −λ ·q)i )

=Δp · (1+ Δq

q ·Δp
·λ ·q)(

M−2∑
i=0

(1−p −λ ·q)i ) (4.13)

where the second equality is due to (A.1) (see the appendix). For λ= 1, function f corresponds

to expression (4.11) with Qp,x (y) = 1. It suffices to show that function f is strictly decreasing,

meaning that the optimal value is obtained when λ = 0. Since this trivially follows when

Δq ≤ 0, in the remaining part of the proof we only consider the case when Δq > 0. Due

to the fully mixed beliefs, p + q = 1 implies Qp,z (y) = 1 for all z ∈ X , which further implies

Δq =∑
z∈X \{x}(Pr (Xp = z|Xa = x)−Pr (Xp = z)) = (1−Pr (Xp = x|Xa = x))− (1−Pr (Xp = x)) =

−Δp < 0. This means that for Δq > 0, we have p +λ ·q ≤ p +q < 1. The partial derivative of f

w.r.t. λ is equal to:

∂ f

∂λ
(λ) =Δq · (

M−2∑
i=0

(1−p −λ ·q)i )− (Δp +λ ·Δq) · (
M−2∑
i=1

i ·q · (1−p −λ ·q)i−1)

Due to (4.13), condition (4.10) (which implies Δq
q·Δp < 1

p ), p +λ · q < 1 and Lemma 9 (in Ap-

pendix), a sufficient condition for f to be strictly decreasing is that ∂ f
∂λ (λ) < 0 for λ = 0. We
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have:

∂ f

∂λ
(0) =Δq · (

M−2∑
i=0

(1−p)i )−q ·Δp · (
M−2∑
i=1

i (1−p)i−1)

Expressions (A.1) and (A.2) imply:

∂ f

∂λ
(0) =Δq · 1− (1−p)M−1

p
−q ·Δp · (1− (1−p)M−1)−p · (M −1) · (1−p)M−2

p2

Therefore, ∂ f
∂λ (0) < 0 whenever:

Δq

q
< Δp

p
·
(
1− (M −1) ·p · (1−p)M−2

1− (1−p)M−1

)

Since Δq
q ≤ maxz �=x

Pr (Xp=z|Xa=x)
Pr (Xp=z) and condition (4.10) holds, we conclude that ∂ f

∂λ (0) < 0. This

means that, from agent a’s perspective, the optimal value of Qp,z (y) for z �= x is 0.

Conclusion:

From Part 1 and Part 2 of the proof, we conclude that agent a strictly maximizes her payoff

when the other agents adopt a permutation reporting strategy. Now, notice that condition

(4.10) is stricter than condition (4.8) (see below Lemma 8). Therefore, by Lemma 7, the strictly

optimal choice for agent a is to adopt the same permutation reporting strategy, which proves

that the RPTS mechanism is strongly truthful.

Condition (4.10) is stricter than condition (4.8) in a sense that any self-predictor δSP that

satisfies (4.10) necessarily satisfies (4.8).

Lemma 8. If self-predictor δSP satisfies condition (4.10), then it also satisfies condition (4.8).

Proof. Suppose δSP satisfies condition (4.10). We have that:

δSP ≤
(

1− (M −1) ·Pr (Xp = x) · (1−Pr (Xp = x))M−2

1− (1−Pr (Xp = x))M−1

)

=

⎛
⎜⎝1− (M −1) · (1−Pr (Xp = x))M−2

1−(1−Pr (Xp=x))M−1

1−(1−Pr (Xp=x))

⎞
⎟⎠=

(
1− (M −1) · (1−Pr (Xp = x))M−2∑M−2

i=0 (1−Pr (Xp = x))i

)

<
(

1− (M −1) · (1−Pr (Xp = x))M−2

M −1

)
< 1− (1−Pr (Xp = x))M−1

< 1− (1−Pr (Xp = x))M−1

1−Pr (Xp = x)M−1

which means that δSP satisfies the condition (4.8). Hence, we proved the statement.
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Both conditions (4.8) and (4.10), as well as the expected payoff (4.7), depend on the number of

tasks M and self-predictor δSP . The bounds on δSP in(4.8) and (4.10) are always greater than

or equal to 0. This means that for categorical cases, where increase from prior to posterior

only happens for the observed value, the conditions (4.8) and (4.10) are satisfied regardless of

M and δSP . In the next subsection, we show how the number of tasks influences the amount

of positive correlation allowed between different observation values for a more general case.

4.4.2 Limiting cases with the number of tasks M = 2 and M →∞
We first examine the case when the mechanism uses only 2 phenomena to reward an agent

and one of them is observed by the agent (i.e., M = 2). The expected payoff of an agent a with

observation x for reporting y is in that case equal to:(
Pr (Yp = y |Xa = x)

Pr (Yp = y)
−1

)
· (1− (1−Pr (Yp = y))) = Pr (Yp = y |Xa = x)−Pr (Yp = y)

when Pr (Yp = y) > 0, while it is 0 otherwise. This effectively means that for M = 2, the RPTS

score is in expectation equivalent to a score that rewards Ya = x with:

τM (x,Yp ,Yr ) =1x=xp −x′a(xw ) (4.14)

where x′a(x) = 2 ·
(
xa(x)− 1x=xp

2

)
=1x=xq , i.e., x′a(x) is constructed by sampling one report from

the phenomenon not observed by agent a. xp and xa are as defined in the RPTS mechanism.

The requirement for strict properness of this score is that each belief system Ba satisfies:

Pr (Xp = y |Xa = x)−Pr (Xp = y) < Pr (Xp = x|Xa = x)−Pr (Xp = x),∀y �= x

That is, an agent’s belief change from prior to posterior should be the largest for the peer’s

observation equal to the agent’s observation. However, the condition for strong truthfulness

(4.10) imposes restriction that observation values are categorical, i.e., the increase from prior

to posterior should only occur for the observed value:

Pr (Xp = y |Xa = x)−Pr (Xp = y) < 0,∀y �= x

Although condition (4.10) is only a sufficient condition of Theorem 12, it is actually tight for

M = 2. Namely, if the condition did not hold, agents with observations x and y , and beliefs

Pr (Xp = y |Xa = x)−Pr (Xp = y) > 0 and Pr (Xp = x|Xa = y)−Pr (Xp = x) > 0, would be better

off reporting the same value (e.g., all of them report x or y) than reporting honestly. This comes

from the fact that their expected payoff with such a collusive behavior would be Pr (Xp =
x|Xa = x)+Pr (Xp = y |Xa = x)−Pr (Xp = x)−Pr (Xp = y) > Pr (Xp = x|Xa = x)−Pr (Xp = x)

and Pr (Xp = x|Xa = y)+Pr (Xp = y |Xa = y)−Pr (Xp = x)−Pr (Xp = y) > Pr (Xp = y |Xa =
y)−Pr (Xp = y), respectively for agents with observations x and y .
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Table 4.1 – Desirable lower bound on δSP w.r.t. M and mina,z Pra,z (Xp = z)

M mina,z Pra,z (Xp = z) = 0.05 mina,z Pra,z (Xp = z) = 0.1 mina,z Pra,z (Xp = z) = 0.2
10 δSP ≤ 0.19 δSP ≤ 0.36 δSP ≤ 0.65
30 δSP ≤ 0.55 δSP ≤ 0.84 δSP ≤ 0.98
60 δSP ≤ 0.84 δSP ≤ 0.98 δSP ≤ 1
100 δSP ≤ 0.96 δSP ≤ 1 δSP ≤ 1

With a larger number of tasks, the RPTS mechanism is equivalent to a payment rule that

rewards Ya = x with:

τM (x,Yp ,Yr ) =
1x=xp

x′a(x)
(4.15)

for x′a(x) > 0, and with 0 otherwise. Since x′a includes report xp , the mechanism can be simply

described by saying that agent a gets payment equal to 1
x′

a (x) when her report matches the

report of her peer, and 0 otherwise. For a large number M , the RPTS requirements for strict

properness and strong truthfulness coincide and are equal to the self-predicting condition

with an unconstrained self-predictor δSP ∈ [0,1]. In other words, RPTS allows, to some extent,

observation spaces that are not necessarily categorical.

We see that the center has to decide on an appropriate number of tasks to allow correlations

between two different observation values. To do this, it does not need a knowledge about

agents’ belief systems, only an upper bound on the minimal value of priors mina,z Pra(Xp = z)

and a lower bound on the value of self-predictor δSP . That is, mina,z Pra(Xp = z) should

not be overestimated, while δSP should not be underestimated. For example, one could

incrementally take reports of different phenomena into account - one by one - until the agents’

responses clearly indicate a bound on mina,z Pra(Xp = z), determined by the frequency of

the least frequent report, and a bound on δSP , determined by the correlation among different

reported values.

Conditions (4.8) and (4.10) specify the upper bound on correlations among different observa-

tion values, expressed by self-predictor δSP . In the table below we show how quickly the upper

bound of (4.10) approaches 1 as the number of tasks grows. Since, by Lemma 8, condition

(4.10) is stricter than condition (4.8), the upper bound applies for both conditions. Clearly,

for a reasonable number of tasks n, the bound allows significant deviations of δSP from the

categorical case (δSP = 0), even for the prior with values as small as 0.05.

We have seen that RPTS reduces to a simple score when statistic xa is calculated based on only

one phenomenon in addition to the phenomenon being observed by an agent a. The form of

the score (4.14) is similar to the Dasgupta&Ghosh mechanism introduced in [DG13]. In fact,

they are equivalent (see Section A.3 in the Appendix), which means that the Dasgupta&Ghosh

mechanism is a special case of RPTS obtained in the limit case when xa is calculated from only

two phenomena. Moreover, the equivalence implies that the Dasgupta&Ghosh mechanism
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requires non-correlated (categorical) observation values for the honest reporting strategy

profile to result in a maximum payoff.

4.5 Applications

The scenario depicted by Figure 4.1 captures many interesting crowdsourcing tasks. These

include objective tasks which have correct answers and subjective tasks where workers (agents)

are asked to provide their opinions. We present two examples of such crowdsourcing tasks,

peer grading and community (participatory) sensing.

4.5.1 Peer grading

One of the main challenges in massive open online courses (MOOCs) represents evaluation of

student assignments. This is especially true if assignments are essay questions that cannot be

graded automatically. In such cases, peer grading techniques can be applied: a participant

(student) grades assignments of their colleagues, and the grade of each student is obtained by

aggregating the peer-grades.

Peer grading in MOOCs represents an example of crowdsourcing where workers (agents) are

students who are assigned to grade their own assignments. A proper monitoring of such a

grading system is often infeasible due to a large number of participants, so the quality control

has to be designed in the form of incentives. Moreover, the incentives have to take into account

that participants have different grading abilities and are inclined to manipulate the reward

system.

Often, the quality control in subjective crowdsourcing tasks is achieved by using the output

agreement mechanism that rewards workers when their reports agree [vAD04, vAD08, HF13b].

This type of mechanism, however, does not take into account that workers may have a potential

bias towards more likely evaluations. That is, workers who believe that their opinion is not

the most common one, are incentivized to misreport. Moreover, colluding strategies where

workers report the same value result in higher payoffs, and such behaviour is likely to occur

[GMCA14].

We propose the RPTS mechanism for incentivizing peer-graders to invest their effort in grading

students. We consider a simplified version of the mechanism, similar to the one described by

expression (4.15), except that xa is calculated from all peer and reference reports. This does

not significantly effect the incentive properties, as the number of peer graders per grading

task is relatively low compared to the total number of peer graders, so we can expect that xa

converges towards prior Pr (Xp ). On the other hand, the simplified version of RPTS is much

easier to explain than the one which samples reference reports to construct xa .
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(a) The correct solution to a quiz question and a
student’s solution

(b) Input form for corrections of a student’s so-
lution

Figure 4.3 – Peer grading task

Experimental setup

In order to test the impact that RPTS has on the quality of grades, we designed a peer grading

experiments within "Artificial Intelligence" course at EPFL. In particular, as a part of the

evaluation process, the course contained three quizzes, each consisting of two parts: in one

part, students were asked to add a missing code; in the other, they were asked to find mistakes

in a given code. The three quizzes took place at different time periods during the semester,

assessing the knowledge about different topics of the course. Each problem in the quizzes

had a correct solution and these solutions were used to assign points to the students, which

were a part of the final grade. The official corrections of the quizzes were done by the teaching

assistants of the course. Before the official points were announced, the students were asked to

correct the solutions of their colleagues based on the correct solutions.

A criterion to determine the quality of a solution for a part of a quiz in which students were

supposed to add a missing code was described by three to four different cases that defined

potential mistakes or shortcomings of a student’s solution. These cases were designed so that

each of them covered combination of possibilities that could occur in the students’ solutions,

keeping in mind that the combinations are mutually exclusive between the cases. Naturally,

a peer grader was selecting only one of these cases, and reporting only one value in total for

the whole part. For the other part of the quiz, where students were supposed to find mistakes

in a given code and correct them, a grading criterion was much easier to define. For each

mistake in a given code, a student could either: not find the mistake; find a mistake, but not

correct it; find a mistake and correct it. Therefore, a peer grader was presented with these

three possibilities. Notice, however, that a peer grader made such reports for all mistakes that

were in a given code (four to five), effectively reporting several values. Each reported value

was treated separately in a peer rewarding mechanism. Figure 4.3a depicts the web interface

of the peer grading task.

To incentivize participation we rewarded the peer graders with bonus points (additional
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points that could improve their grades), that were obtained using one of the three different

reward schemes: the constant reward, the output agreement and RPTS. For the constant

reward regime, a peer grader who participated in the peer grading obtained the maximum

number of bonus points M axTot alRew ar d . For the output agreement, reward for reporting

an answer was equal to M axTot alRew ar d
NumTasks if a chosen peer reports the same answer, and is

0 otherwise. NumTasks denotes the number of sub-parts to grade, which was equal to

the number of reports that a peer grader made. The RPTS mechanism was also applied for

each report separately. Furthermore, RPTS was scaled with the scaling parameters equal

to α = β = 1
2 · M axTot alRew ar d

NumTasks — this ensured that the bonus points remained positive (see

Chapter 2). If a total number of the RPTS points exceeded M axTot alRew ar d , it was set to

M axTot alRew ar d . Finally, statistic xa(x) in RPTS was designed for each sub-part of a quiz

separately, and it was defined as an empirical frequency of grades equal to x among all reports

that were rewarded with RPTS for that sub-part of the quiz.

To test the quality of the reward schemes, we split the students into three groups of approx-

imately the same number of students. Since participation in the peer grading experiment

was not obligatory, the sizes of these groups varied. Each group was rewarded using all three

reward schemes, but different mechanisms were applied for different quizzes in a round robin

fashion. That is: if RPTS was used to assign rewards to a group for peer grading the first quiz,

the same group was rewarded with the constant reward for peer grading the second quiz; if

the output agreement was used to assign rewards to a group for peer grading the first quiz, the

same group was rewarded by RPTS for peer grading the second quiz, etc.

In order to do a peer grading for a quiz, students needed to go through a tutorial that explained

the peer grading task and a reward scheme that was used to assign bonus points - these

two were separately explained in two different sections. The tutorial also contained two

examples, one for the task explanation and one for the mechanism explanation. Each example

contained a simple test questions for improving students’ understanding. Different schemes

had a different example question, showing the most basic features of the mechanisms. For

the constant reward, students were asked to answer how many points they would obtain

upon fulfilling the peer grading task, with three possible answers: M axTot alRew ar d per

task, M axTot alRew ar d in total, or it depends on how other raters grade. For the output

agreement, the question asked to pick the correct claim, provided that the peer reported

correct. The claims were: for reporting correct the reward is 0, for reporting incorrect the reward

is M axTot alRew ar d
NumTasks , or for reporting correct the reward is M axTot alRew ar d

NumTasks . Finally, for RPTS, the

question asked what the reward was for reporting correct provided that everybody else reported

correct, and the options were: 5 · M axTot alRew ar d
2·NumTasks , 3 · M axTot alRew ar d

2·NumTasks , or 1 · M axTot alRew ar d
2·NumTasks .7

The options for each question were presented in a different order for different groups. Figure

4.4 depicts the tutorial web interface shown to users. A reward mechanism in subfigure is the

output agreement; similar interfaces were designed for the constant reward mechanism and

RPTS, and can be found in Section A.5 of the appendix.

7We used numerical values in all of the three test questions.
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(a) Explanation of the peer grading task (b) Explanation of a reward mechanism (output
agreement)

Figure 4.4 – Tutorial about the peer grading task

Experimental results

We measured the quality of raw data (non-aggregated responses from students) with respect to

the corrections made by the teaching assistants. For each student, we calculated the number

of correct reports, and then, for each mechanism, we determined the average error rate, i.e.

the percentage of incorrect grades. To measure the statistical significance, we performed

two tailed student’s t-test, with the significance level of 0.05. The null-hypothesis was that

the students’ error rates for two groups rewarded by different mechanisms follow the same

distribution.

For the first two quizzes, each peer grader graded 4 partial solutions of her colleagues; more

precisely, 2 solutions to the first part of the quiz, and 2 solutions to the second part of the

quiz. Since our analysis did not reveal any statistical significance of the accuracy of the raw

data across different schemes, we increased the number of solutions to grade for the third

peer grading task. That is, for the third quiz, each peer grader graded 10 partial solutions of

her colleagues; more precisely, 5 solutions to the first part of the quiz, and 5 solutions to the

second part of the quiz.

Table 4.2 – Average error rate for different mechanisms

Mechanism Num. students Error rate (%)
RPTS 16 6.88

output agreement 16 10.48
constant 14 11.98

The results of the third quiz are shown in Table 4.2; for each group, they contain the number of

students and the average error rate. As we can see, RPTS outperforms the baseline algorithms

by 3-5%. Furthermore, t-tests (in Table 4.3) show that there is a statistically significant dif-

ference between the error rates for the RPTS mechanism and the error rates for the constant
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Table 4.3 – T-tests: p-values for different mechanisms

Mechanism RPTS output agreement constant
RPTS - 0.0255 0.0497

output agreement 0.0255 - 0.5566
constant 0.0497 0.5566 -

reward or the output agreement, with p-values equal to 0.0497 and 0.0255, respectively.

4.5.2 Community sensing

In contrast to the previous chapter, we investigate now a community sensing scenario where

the network of community sensors is evenly distributed across an urban area and each sensor

reports frequently its measurements. This type of setting has been analyzed in [FLJ14], how-

ever, the proposed peer consistency method, called the peer truth serum, does not fully utilize

the properties of the setting. In particular, its major drawback is that uninformed reporting

strategies (strategies where sensors do not make measurements) can result in significantly

higher expected payoffs than honest reporting, which we verify in this section.

We formalize the considered community sensing scenario using the multi-task peer consis-

tency model, describe the application of the RPTS mechanism in the considered setting, and

experimentally confirm that it effectively discourages a wide range of collusive strategies —

those which are not based on sensors’ locations. Furthermore, we also compare its experi-

mental performance to that of the log-PTS mechanism, which also provides strong incentive

properties, but requires a denser sensor network.

Air pollution monitoring

As in the previous chapter, we consider an air quality monitoring over an urban area, where

each sensor is assigned a task of measuring air pollution at its location and reporting the

observed value to the center.

Air pollution is a localized phenomenon, meaning that its value significantly varies with

distance. Therefore, we approximate the correlation between two distant measurements by

assuming that they are conditionally independent given a global state Γ, which is modeled as

a random variable that takes values in a finite discrete set {γ1,γ2, ...}.

In particular, we model sensors’ belief systems as in the formal setting of this chapter, but

assuming that they depend on a specific value of Γ. In other words, the parameters of an agent

a’s belief system, such as probability distribution functions Pr (Xp ,Xr |Xa) and Pr (Xp ,Xr ),

depend on Γ, but satisfy the conditions imposed by the formal model and the set of constraints

C for each value of Γ. For example, Xp and Xr are independent (given Γ), and if the self-
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predicting condition CMT SP is imposed, the belief system satisfies:

Pr (Xp = y |Xa = x,Γ= γ)

Pr (Xp = y |Γ= γ)
< Pr (Xp = x|Xa = x,Γ= γ)

Pr (Xp = x|Γ= γ)
, y �= x

for all γ ∈ {γ1,γ2, ...}. The set of peers of sensor a is now defined as the sensors located in

the vicinity of sensor a, while the reference sensors are those located relatively far away

from sensor a. With this structure of sensors’ beliefs, the expected payoffs of sensors in the

mechanisms discussed in this chapter preserve the properties of strict properness and strong

truthfulness.8

Simulation setup

We examine the characteristics of incentives using realistic data of Nitrogen Dioxide (NO2)

concentrations over the city of Strasbourg. The data consists of both real measurements

collected by ASPA [ASP13] and estimations of pollution from the physical model ADMS Urban

V2.3 [CWC+02]. In total, the data set contains concentrations of NO2 for each hour, expressed

in parts per million (ppm), at 116 different locations over a period of four weeks. Each of

the 116 locations represents a sensor that reports measurements on hourly basis and gets

rewarded for each report separately. Figure 4.5 shows the sensor locations of the Strasbourg

dataset.

Figure 4.5 – Sensor placement in Strasbourg urban area

Although the initial measurements take values in R, we discretize it using four levels of

pollution defined as:

• low: concentrations 0−20 ppb;

• medium: concentrations 20−40 ppb;

8In log-PTS and RPTS, one can choose reference sensors that are not each other’s peers when calculating xΦ
and xa , respectively.
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• high: concentrations 40−60 ppb;

• extra-high: concentrations 60−∞ ppb.

Each hour, sensors report the measured level of pollution to the center and are rewarded for

providing their measurements. As a criterion for peer selection, we consider distance and

define peers of a certain sensor as k closest sensors. For example, Figure 4.5 shows where

peers of 2 sensors, sensor 27 and sensor 103, are located on the map. The peers of a sensor are

in this case defined as the ten sensors closest to it.

In the RPTS mechanism, we select one of k = 10 peers to score a sensor using the simplified

version of the RPTS mechanism, in which statistic xa is calculated from all of the reports

except the report of a sensor being scored. In the peer selection process of RPTS mechanism,

we effectively simulate the prior knowledge of the center by identifying for each location a

neighboring location at which the true measurements are the most correlated to the true

measurements at the considered location.9 The sensor located in this neighboring location is

considered to be a peer.10

In the peer truth serum (e.g., [JF11, FPTJ14]), we use the same peer selection process as in

the RPTS mechanisms. The PTS mechanism requires a knowledge about sensors’ prior belief,

so we construct the prior by calculating the frequency of different pollution levels in the

whole dataset. Notice that the frequencies are calculated from the true data, not sensors’

reports that are not necessarily truthful. The obtained prior x is equal to: x(l ow) = 0.402,

x(medi um) = 0.384, x(hi g h) = 0.16, x(extr a −hi g h) = 0.054. The PTS mechanisms uses

the same scaling parameters as RPTS. Thus, it rewards sensor a with 1/x(Ya)−1 if its report

matches the report of her peer, and otherwise the payoff of the sensor is equal to −1.

In the log-PTS mechanism, we use all k = 15 peers to calculate the frequency of peer reports

xΦi , while we simplify the calculation of the frequency of reference reports xΦ by including in

it the reports of all sensors, except for the report of the sensor that is being scored. The latter

resembles the simplification that we adopted for the RPTS mechanism. Furthermore, xΦi and

xΦ are smoothed using the Laplace (additive) smoothing operator with parameters αΦi = 10−4

and αΦi = 10−3 (parameters reflect that xΦ is calculated based on approximately 8 times more

reports than xΦ). No specific scaling was used in the log-PTS mechanism.

To demonstrate the correctness of our results, we examine six different reporting strategies

and evaluate their performance by analyzing the average scores of sensors. The six strategies

are defined as follows:

• honest: All sensors are honest.

9Notice that we examine the correlations using the true data, not sensors’ reports, which are not necessarily
truthful.

10On average, the best response to truthfulness is to report honestly, indicating that, in the considered data set,
the self-predicting condition holds in an average case.
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• collude: Sensors collude so that those who observe l ow or medi um report l ow , while

those who observe hi g h or extr a −hi g h report hi g h.

• colludeLow: All sensors collude and report low .

• colludeExtraHigh: All sensors collude and report extr a −hi g h.

• random: A sensor whose score is being calculated reports uniformly at random, while

others sensors are honest.

• randomAll: All sensors report uniformly at random.

For each sensor, we run a separate process in which the sensors report according to one of

these strategy profiles and we calculate the average payoff of the considered sensor.

Simulation results

The statistics of the average RPTS payoffs are shown in Table 4.4.11 These payoffs can be

further scaled in different ways, so that, for example, the incentives take positive values and

cover the cost of sensing.

Table 4.4 – Average payoffs — RPTS

Strategy mean min max median 1st quartile 3rd quartile
honest 0.678 -0.003 5.997 0.366 0.27 0.781
collude 0.232 -0.0146 2.177 0.105 0.07 0.281

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random 0.022 -0.1974 2.678 -0.108 -0.143 0.017
randomAll 0.007 -0.216 0.214 0.018 -0.044 0.061

As expected, random reporting strategies lead to scores that are concentrated around 0,

which is clearly seen from the median of random and randomAll strategies. Colluding on a

single value results in a payoff equal to 0, and this trivially follows from the structure of the

score. Collusion strategy collude has lower mean of the average payoffs than honest reporting.

Moreover, a careful inspection of medians and quartiles shows that the collusive strategies

are worse than honest reporting for the majority of sensors: the median, the 1st quartile, the

3rd quartile and the maximum of average payoffs are greater for honest reporting than for the

collusive strategies.

The described scenario involves stationary sensors, which means that the sensors are solving

approximately the same task over a longer period of time. This means that some sensors might

11T-tests show that the RPTS payments for truthful reporting are statistically different than the RPTS payments
for the other strategy profiles, with p-values smaller than 0.01. The same holds for the log-PTS (Table 4.6). For
the standard PTS (Table 4.5), the highest paying strategy profile is colludeExtraHigh, with payments that are
statistically different than the PTS payments for the other strategy profiles (p-values are smaller than 0.01).
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Table 4.5 – Average payoffs — PTS

Strategy mean min max median 1st quartile 3rd quartile
honest 1.992 1.449 3.094 1.908 1.72 2.183
collude 1.982 1.724 2.394 1.966 1.882 2.054

colludeLow 1.485 1.485 1.485 1.485 1.485 1.485
colludeExtraHigh 17.618 17.618 17.618 17.618 17.618 17.618

random -0.01 -0.333 0.387 -0.022 -0.116 0.083
randomAll 0.87 0.478 1.282 0.861 0.761 0.941

be favored in terms of their average payoffs. For example, a sensor that reports randomly

might obtain a relatively high average payoff over a longer sensing period when the histogram

of its reports is more correlated to the reports of its peer than statistic xa is. Although the

sensor reports randomly, its reports carry some information about its peer w.r.t. xa , hence it is

not surprising that such a sensor might obtain positive rewards. Notice, however, that honest

reporting leads to significantly higher payoffs, as shown in Figure 4.6.

Figure 4.6 – Average payoffs (times 10) of honest and random strategies for each sensor,
arranged in no particular order along the x-axis.

Unlike the RPTS mechanisms, the standard version of PTS is not resistant to collusive strategies.

As shown in Table 4.5, payoffs of the PTS mechanisms are significantly higher for collusive

strategies, in particular, when sensors report the least likely value (extr a −hi g h), which

leads to the order of magnitude greater payoffs than truthful reporting. This shows us the

importance of the robust design that can be achieved in the multi-task model.

Finally, we examine the payoffs of log-PTS and compare its qualitative performance to RPTS.

The statistic of the average log-PTS payoffs is shown in Table 4.6. As for RPTS, these payoffs

can be scaled so that they take positive values.

Qualitative performance of log-PTS is the same as for RTPS: honest reporting results in the

highest payoff. However, to achieve these properties, log-PTS requires a relatively dense sensor

network, with about 15 peers. We further investigate how robust log-PTS is when the density

of the sensor network decreases. To do so, we randomly sample subsets of sensors of different

sizes (100, 80, 60 and 40 sensors) on daily basis (i.e., each day a different subset is chosen), and

we calculate the median of average payoffs. Namely, the median of average payoffs reflects
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Table 4.6 – Average payoffs — log-PTS

Strategy mean min max median 1st quartile 3rd quartile
honest 0.037 -1.153 0.291 0.047 -0.017 0.102
collude 0.014 -0.27 0.106 0.019 -0.009 0.039

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.876 -1.631 -0.36 -0.823 -1.075 -0.673
randomAll -0.228 -0.362 -0.123 -0.228 -0.258 -0.19

how good a reporting strategy is for the majority of the sensors. In addition to reducing the

number of sensors, we also reduce the number of peers for each sensor. For example, in a

random subset of 80 sensors, the set of peers of a certain sensor contains 11 closest sensors.

Since the average payoffs in Table 4.6 for honest reporting were significantly higher than for

random reporting strategies, we only examine honest, collude and colludeLow strategy profiles

(colludeHigh results in the same payoff as colludeLow). The detailed results can be found in

Section A.4 of the appendix, and they include also other indicators, such as the mean of the

average payoffs.

Figure 4.7 shows the median of the average payoffs for the three strategies. Scores are scaled

so that the maximum score is equal to 50, while the score in colludeLow strategy profile is

equal to 10. We can see that truthful reporting remains the optimal strategy until the number

of sensors decreases to 40, which represents a critical value where the collusive strategies

colludeLow and collude become more profitable than truthfulness. This can be explained by

the low amount of information used in generating xΦi and xΦ (xΦi is constructed from only 7

reports). In colludeLow and collude strategies, sensors report one and two levels of pollution

respectively, so these strategies are less susceptible to random variations in measurements

than truthful reporting, where all four levels of pollution are reported.

Figure 4.7 – Median of average payoffs for different number of sensors and peers (log-PTS).

Unlike log-PTS, RPTS produces relatively stable scores across different configurations in the

number of sensors and peers. To avoid a potential bias in the peer selection process, we
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now use all peers in rewarding a sensor with the RPTS mechanism: the reward of a sensor

is obtained by averaging RPTS rewards across all of the peers. As shown in Figure 4.8, RPTS

scales down quite well, preserving the strong incentive properties even for a relatively small

population of sensors. This implies a greater practicality of the RPTS mechanism when

compared to the log-PTS mechanism.

Figure 4.8 – Median of average payoffs for different number of sensors and peers (RPTS).

4.6 Conclusion

In this chapter, we investigated an elicitation setting where agents observe multiple phenom-

ena, which models a typical multi-task crowdsourcing scenario. We showed that, when agents’

characteristics are homogeneous, there exists a simple and intuitive mechanism for truthful

elicitation of agents’ private information. The mechanism implements the peer prediction

with the quadratic scoring rule by appropriately sampling reports in the multi-task setting. Un-

like the (original) peer prediction, it does not require the knowledge of agents’ beliefs, that are

also allowed to be different. When the population of agents is large, we showed how to adopt

the principles of the (original) Bayesian truth serum in order to construct a mechanism that

not only allows agents to have different private beliefs, but is also strongly truthful, meaning

that truthful reporting results in the highest payoff among all strategy profiles.

On the other hand, for agents with heterogeneous characteristics, it is not possible to produce

strict incentives for truthfulness in the general case. Therefore, we analyzed the case when

agents have limited heterogenous characteristics, described by the self-predicting condition.

We presented a robust version of the peer truth serum mechanism, and showed that it has

strong incentive properties. Due to its simplicity and robustness, the mechanism is applicable

to a wide variety of crowdsourcing settings, such as community sensing or peer grading, which

we supported with experiments and simulations.

The mechanisms explained in this section rely on rewarding agents when their reports match.

Therefore, an interesting direction would be to explore whether one can extend the principles

of the continuous BTS to allow strong truthfulness in the multi-task setting when observations

are real-valued. Such a result is likely to provide a great insight into how much heterogeneity
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one can allow in multi-tasks settings. We conjecture that, under the multi-task state model

CMT SM , there is no strictly proper mechanism that allows deviations from the homogenous

population condition CHP when observations take real values. We expect that this result could

be proven in a similar fashion as Theorem 7 from the previous chapter. Notice that the claim

in this case is much stronger than that of Proposition 6.

Since the strong truthfulness implies strict properness, the results related to the elicitation of

real-valued observations could also explain why the existing strongly truthful mechanisms for

the homogenous population condition CHP , such as log-PTS or the mechanism of [KSM+15],

require a large number of phenomena. Namely, by examining the structure of the existing

strictly proper mechanisms for the homogenous population condition CHP , we expect that

any strictly proper mechanism designed for the same belief constraint, but real-valued obser-

vations, might need to sample any number of phenomena with strictly positive probability.

Finally, notice that the incentive properties of this and the previous chapter, i.e., strong truth-

fulness and strict properness, rely on agents being rational and responding to incentives. In

contrast, if there is a large enough coalition of malicious agents who deliberately misreport,

these properties do not suffice to incentivize other agents to report honestly, nor do they pre-

vent the center from learning a wrong aggregate. Therefore, in the next chapter we investigate

a setting where a few agents are trusted to provide truthful observations, so that the center can

use their reports to construct incentives for informed reporting and limit the negative impact

of malicious participants.
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line information aggregation

In the previous chapters, crowd participants are assumed to be rational agents who respond

to incentives provided by the center. This approach, however, reaches its limit of effectiveness

when a participant intends to be malicious and intentionally misreports values. Therefore, we

investigate a more rigorous approach in order to identify faulty or malicious agents — one

that is based on the reputation system framework. Notice that the agents are now assumed to

interact with the center over a longer period of time. This fact enables us to track the quality

of the information that agents provide via reputations, and hence discard information that

comes from low quality agents.

5.1 Formal setting

Figure 5.1 depicts the particularities of our setting. The center plays a role of an aggregator

that aims to estimate the state of a time evolving phenomenon based on the information

provided by a group of agents. At the beginning, the center has only prior information about

the observed phenomenon. After some time, the center receives a report and merges it with

the current estimate of the phenomenon using a pre-specified aggregation procedure M , thus

producing a new estimate. This process repeats until a trusted agent reports her observation,

after which the center can evaluate the reports of the crowd participants. We consider this

to be one period of sensing and we denote it by t . The sensing process then continues in the

same manner until the period t = T ; we refer to T as sensing time.

Notice that we consider the case where the private information is noisy and trusted agents are

a sparse resource. This means that the center cannot only use the reports of trusted agents

to properly monitor the phenomenon, but rather it needs to support their observation with

that of other agents. As an example scenario, one can consider sensing of an environmental

phenomena, such as air pollution, where it is reasonable to assume that the center can place a

few of its accurate sensors on, for example, public transportation, but to obtain a finer grained

sensing resolution, it uses crowd participants.
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Center

Agent 1 Agent 2 Agent 3

Trusted 
 agent

Report

Update
Evaluate
reports

Estimate 1 Estimate 2 Estimate 3

Figure 5.1 – Elicitation with online information aggregation

5.1.1 Aggregation model

In the considered setting, the center’s goal is to construct and publish an estimate E about

the current state of a time-evolving phenomenon, using the currently available set of obser-

vations. We are particularly interested in a real-time updating where estimate E is updated

after receiving each observation using an aggregation model M . We keep a general form

of aggregation model M , where the input is defined by a finite set of reported observations

{Y1,Y2, ...}, while the output is an estimate E .1 Estimate E can contain different information

about the phenomenon. For example, in case of pollution sensing, which is a spatially dis-

tributed phenomenon, the estimate could contain the probability distribution functions over

possible observations at different points of interest.

Since we want to keep a possibility of having a very general aggregation model M , we consider

it as a black box. This implies that after receiving a report from agent a, the center should

decide whether to publish a new estimate E new
a obtained by incorporating the report Ya into

the existing estimate E ol d
a or to keep the existing estimate as its output. The rationale behind

this is that the estimate updating should be computationally efficient. If, for example, a new

output would be a linear combination of E new
a and E ol d

a , a proper updating procedure for

obtaining P new
a would have an exponential time complexity in the number of agents, as we

argue in the following sections.

1Model M can also use other information in calculating estimates. For example, in community sensing, sensors
can report both their locations and measurements, which is useful for aggregation models based on spatial corre-
lations. Furthermore, model M can incorporate agent specific information in its aggregation procedure, which
can be prior or elicited knowledge. For example, agents can report how confident they are in their observations, in
which case, model M can weight reported observations according to agents’ confidences.
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5.1.2 Population of agents

In the considered setting, the center trusts a certain number of agents that we refer to as the

trusted agents; these agents are assumed to report truthful observations. The center does not

know the character of other agents, i.e., whether they are malicious or not. Non-malicious

agents are considered to be strategic — rational agents that aim to maximize their payoffs —

or honest, while malicious agents do not respond to incentives and their goal is to lower the

quality of produced estimates. In the group of malicious agents, we can also put faulty agents

that are not intentionally malicious, but do provide inaccurate data. Furthermore, notice

that malicious agents might report accurately in some sensing periods in order to deceive

the center. This means that the decision on how to use the agents’ reports in the information

fusion process should be done by monitoring the behaviour of the agents over the whole

sensing time T .

As for the previous chapters, we denote agent a’s observation by Xa , and we consider it to

be a random variable that takes values in X . The agents are assumed to provide only their

information report Ya , i.e., Ra ∈R =X .2 We focus on the payment mechanisms that reflect

agent a’s contributions to the quality of provided estimates, measured by scoring them against

a trusted report. Therefore, a payment function τG , which we define in the next subsection,

depends on agent a’s report and the report of a trusted agent. Moreover, it also depends on

the estimate published prior to the agent’s observation and the center’s aggregation model M .

To simplify the description of our algorithm, we impose three conditions for agents: an agent

reports one measurement per time period, observations between two time periods t1 and t2

are statistically independent, and reports from different agents arrive stochastically one at a

time (i.e., without a specific order).

Strategy space. We make restrictions to the strategic space of malicious agents by assuming

that their reports do not have a significant impact on the quality of the information provided

by non-malicious agents. As noted by [RS07], the restriction to myopic strategies is not a

trivial assumption, but still allows a large scope of possible misreporting strategies, including

strategies where malicious agents change their reporting behaviour over time.3 Furthermore,

it is likely that non-myopic strategies require complex implementation. For example, an

effective malicious strategy that is based on the report sequence would require information

about the start and end time of the sensing periods. Since each sensing period ends when

a trusted report is submitted, the center can easily obscure the starting point of a sensing

period by, for example, not immediately notifying agents of their reputation change. This also

2While in our formal model we assume that agents only report their observations, the main results of this
chapter are not dependent on the structure of the report. As already noted, more complex report structure can be
useful in making aggregation more accurate.

3Notice that such a strategy space is not trivially describable with heterogeneous reporting types (where each type
defines how to transform an observation to a report), because the reporting type of an agent might be dependent
on both time and the reporting types of other agents. For example, [RYZ+10] measure the performance of agents
(annotators) in binary classification in terms of the sensitivity and specificity with respect to the unknown gold
standard. In our setting, a malicious agent can change her sensitivity and specificity depending on, for example,
the current estimate E or the sensitivity and specificity of other (malicious) agents.
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provides a justification for the assumption of stochastic arrival of reports.

5.1.3 Quality score

We evaluate agents by their marginal contributions to the quality of produced estimates. More

precisely, consider an estimate E new
a obtained by fusing agent a’s report with an estimate

E ol d
a that preceded the report of agent a. Furthermore, let SE (E , Xtr ust ) be a general scoring

function that evaluates the quality of an estimate with respect to the report Ytr ust = Xtr ust of

a trusted agent, and let it be scaled so that it takes values in interval [−1/2,1/2] (see Chapter 2).

The score of agent a is then defined by the gain Ga of the center when it fully incorporates the

agents’s report into the existing estimate E ol d
a :

scor ea =Ga = SE (E new
a , Xtr ust )−SE (E ol d

a , Xtr ust )

It is easy to see that the score takes values in scor ea ∈ [−1,1]. The score can further be

used to calculate (monetary) incentives given to the agent. In particular, we define payment

mechanism τG : X ×X →R as τG (Ya , Xtr ust )
def= scor ea . Notice that we deliberately abuse our

notation by having three equivalent quantities, scor ea , Ga and τG , in order to clearly specify

the meaning of the properties we investigate in this chapter.

5.1.4 Myopic impact

Following the approach from [RS07], we use the notion of agent a’s myopic impact. Since our

main method probabilistically decides whether to accept or discard agent a’s report, we adopt

a notion of expected myopic impact.

Definition 19. The expected myopic impact of agent a at time period t is defined as:

Δ̄a,t =πupd ate ·Ga,t + (1−πupd ate ) ·0 =πupd ate ·Ga,t

where πupd ate is the probability of incorporating agent a’s report into the existing output.

Furthermore, we define the total myopic impact as Δ̄a =∑T
t=1 Δ̄a,t .

The intuition behind the definition is straightforward. Whenever the center accepts to fuse

agent a’s report into the existing estimate, the agent’s impact is equal to the center’s infor-

mation gain: Ga,t = SE (E new
a , Xtr ust )−SE (E ol d

a , Xtr ust ). Otherwise, when the center decides

to discard agent a’s report, the agent’s impact is 0 because it does not change the center’s

output E ol d
a . Notice that the myopic impacts, Δ̄a,t and Δ̄a , are functions of Ga,t . Since Ga,t is a

random variable, we can associate expected values over Ga,t for both Δ̄a,t and Δ̄a , which we

denote by E(Δ̄a,t ) and E(Δ̄a), respectively.4

The property we want to achieve with a reputation framework is a bounded negative impact

4E(Δ̄a ) is the expectation over gains from all time periods.
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of any agent. That is, the total myopic impact of agent a should be bounded from below by a

value independent of sensing time T , i.e. Δ̄a >−O(1).

5.1.5 Information loss

Bounding the negative value of a myopic impact does not entirely guarantee that a reputation

system has a good performance. For example, a simple reputation system that discards all

the reports completely limits the negative influence of malicious agents, but in doing so, it

discards all the valuable information coming from non-malicious agents as well. Therefore,

it is also necessary to measure an information loss for potentially discarding reports of an

informed agent a.

Definition 20. Consider an agent a whose expected scores are strictly greater than a predefined

parameter scor emi n > 0, i.e., E(scor ea,t ) > scor emi n > 0. The expected information loss I La

for an agent a is defined as:

I La =
T∑

t=1
[E(scor ea,t )−E(Δ̄a,t )]

The rationale behind this definition is that an agent’s scores reflect her contributions — infor-

mation gains — that the agent would have made had it not been limited, while her myopic

impact reflects the agent’s real contribution. We define information loss only for agents that

in expectation provide positive contributions better than some predefined threshold. The

information coming from other agents is not considered to be reliable, so we want to discard

it in the first place.

5.2 Related work

A common approach to filter low quality information in crowd work is to batch process

the elicited data and apply machine learning or statistical methods to infer the true labels

(e.g.,[RYZ+10, KOS11, LPI12, KOS13, JSV14]). This approach, however, implies that the under-

lying phenomenon, whose state is being estimated, is not monitored in real-time but rather

periodically.

In contrast, we investigate an online information aggregation setting, where estimates should

be updated after receiving each input from the crowd participants. The setting relates to

the vast literature on regret-minimization algorithms (e.g., [LR85, ACBF02, CBMS07, LW94,

NRTV07, CBL06]), and is similar to the model of prediction with expert advice [CBL06], in

particular, to the one where expert advice is sequential [KS10, KS11]. More precisely, in our

setting, agents, who arrive sequentially, are experts that provide either adversarial (malicious)

advice or advice that can be considered to be stochastic. Notice that this differs from the

traditional expert algorithms (e.g., [LW94]) where experts arrive simultaneously. Furthermore,
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we evaluate agents by the influence they have on the aggregate, which contrasts a traditional

way of evaluating each expert independently and is closely related to prediction markets

[Han03, CP07, CV10]. Unlike prediction markets, we do not ask an agent for prediction but

rather her private information, which is then aggregated explicitly with the existing reports.

The closest learning algorithm to our work is the influence limiter [RS07]. The algorithm

uses a reputation based framework and is provably resistant to misreporting. It was pri-

marily designed for recommender systems, and, as we show later in this chapter, its direct

transformation to our setting has several drawbacks.

Apart from the online learning algorithms, our work relates to the extensive literature on trust

and reputation systems (e.g., [JI02, Del05, ZVdS12, XS15]), out of which we emphasize those

for sensing, since the main application of our technique is community sensing.

The standard approach of dealing with untrustworthy information in sensing is by using

reputation systems [MM02, BB03, GS04, BLB02, YS10, Che09], with the Beta reputation system

[JI02] being the most common way of assigning reputation scores. While in the literature

one can find other ways of assigning reputation scores, such as using the Gompertz function

[HKH14], the classification of whether a sensor misbehaves is typically based on a simple

thresholding principle: if the reputation of a sensor is lower than a certain threshold, the

sensor is denoted as misbehaving, otherwise, it is considered to be trustworthy. A thresholding

approach is common even among the techniques that do not necessarily use reputation

systems (e.g., [WLSH09]). While such a thresholding principle can cope with simple attacks

where malicious sensors report consistently wrong values, it fails to protect the center against

deceiving attacks, as we describe it later in the paper.

[VRJ13] and [RRCN09] take a different approach to fuse information from multiple sensors that

are not a priori assumed to be trustworthy. [VRJ13] tries to learn the parameters related to the

trustworthiness using a maximum likelihood method over the assumed (Gaussian) model with

unknown parameters. [RRCN09] proposes a two stage Bayesian multi-sensor fusion algorithm

that incorporates model of sensors’ trustworthiness. Neither of the two multi-sensor fusion

methods have provable guarantees on the loss of the system experienced when the majority

of sensors is untrustworthy and potentially malicious. As alternatives to reputation systems,

we also mention hardware solutions, such as trusted platform modules (e.g., [SW10, GJL+11]).

These approaches, however, require additional hardware on each sensing module, which

limits their applicability.

5.3 Traditional approach

Let us now describe the thresholding approach traditionally used in reputation systems. When

the center receives a report Ya,t of agent a, it fuses the report with the existing information if

agent a’s reputation is greater than a certain classification threshold Θ, and otherwise discards

it. The approach is depicted by Algorithm 1. Function Upd ate(E ,Ya,t ) uses the existing set

of included reports (the set of reports that produced estimate E), adds to it report Ya,t , and
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Data: Initial reputation ρ0, threshold Θ

begin
for Agent a do

ρa,1 ←− ρ0;
end
for t = 1 to t = T do

Compute prior estimate E ;
Publish E ;
for Agent a do

Receive a’s report Ya,t ;

E ol d
a ←− E ;

E new
a ←−Upd ate(E ,Ya,t ) ;

if ρa,t ≥Θ then
E ←− E a

new ;
Publish E ;

end
end
Receive report Ytr ust ,t = Xtr ust ,t ;
for Agent a do

scor ea,t ←− SE (E new
a , Xtr ust ,t )−SE (E ol d

a , Xtr ust ,t );
ρa,t+1 ←− RepUpd ate(ρa,t , scor ea,t );

end
end

end
Algorithm 1: Thresholding

99



Chapter 5. Reputation-based incentives for online information aggregation

applies model M to obtain a new estimate. RepUpd ate updates the reputation of agent a

using scor ea,t , and has two conditions:

• if scor ea,t has a strictly positive constant value, the reputation converges over time

towards its maximum value;

• if scor ea,t has a strictly negative constant value, the reputation converges over time

towards its minimum value.

This simple reputation system can be considered to be a part of a large family of reputation

systems that use fix thresholds to classify whether a certain agent misbehaves or not. These

reputation systems can cope with simple attacks where malicious agents report consistently

wrong values. For example, in case of pollution monitoring, they can limit the effectiveness of

the malicious strategy that consists of reporting low pollution values. However, they fail to

protect the system against deceiving attacks.

One particular deceiving strategy of a malicious agent could be to report informative values

when her reputation is below threshold Θ, while report low quality information when her rep-

utation is above the threshold. The intuition behind this attack is that an agent reports useful

information only when the center does not use it, and when the center uses her information,

it deliberately misreports.

Proposition 7. Consider an aggregation model M that allows arbitrary generation of gains Ga,t

related to agent a. Then there exists a sequence of gains such that the total myopic impact Δ̄a of

agent a in Algorithm 1 is negative and monotonically decreases with T , i.e., limT→∞ Δ̄a =−∞.

Proof. Consider a sequence of gains such that whenever ρa,t <Θ, gain Ga,t is equal to Ga,t =
g > 0, while ρa,t ≥ Θ implies negative gain Ga,t = −g < 0. In other words, πupd ate = 1 for

Ga,t < 0 and πupd ate = 0 for Ga,t ≥ 0. Since reputations converge to the maximum possible

reputation if scor ea,t (i.e., Ga,t ) is fixed to g > 0, we know that ρa,t will infinitely often be

greater than Θ for T →∞. Therefore, Δ̄a is negative (because πupd ate = 0 for Ga,t ≥ 0) and

limT→∞ Δ̄a =−∞ (because ρa,t ≥Θ infinitely often).

5.4 Influence limiter

The influence limiter, when transformed to our setting, has the same skeleton structure as

the thresholding algorithm with the main differences in three components, which we point

out in this section. These components enable it to be provably resistant to any myopic-based

manipulation strategy (Theorem 4 and Theorem 7 in [RS07]). We show, however, that all of the

three components should be modified in order to obtain a practical algorithm. The structure

of the influence limiter is depicted in Algorithm 2.
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Data: Initial reputation ρ0

begin
for Agent a do

ρa,1 ←− ρ0;
end
for t = 1 to t = T do

Compute prior estimate E ;
Publish E ;
for Agent a do

Receive a’s report Ya,t ;

E ol d
a ←− E ;

E new
a ←−Upd ate(E ,Ya,t ) ;

wa,t = min(ρa,t ,1) ;

E ←− (1−wa,t ) ·E ol d
a +wa,t ·E new

a ;

end
Receive report Ytr ust ,t = Xtr ust ,t ;
for Agent a do

scor ea,t ←− MCQSR (E new
a ,E ol d

a , Xtr ust ,t );
ρa,t+1 ←− ρa,t +wa,t · scor ea,t ;

end
end

end
Algorithm 2: Influence limiter

101



Chapter 5. Reputation-based incentives for online information aggregation

Information aggregation. The standard version of the influence limiter has a deterministic

information fusion component. In particular, the influence limiter incorporates all of the

reports, but assigns different weights to different reports. In our scenario, this would mean

that when a report from an agent a is received, the new estimate E new
a is calculated and the

published estimate E is updated to:

E ←− (1−wa,t ) ·E ol d
a +wa,t ·E new

a (5.1)

Here, the weight is equal to wa,t = min(ρa,t ,1). The crucial part of the algorithm is how E new
a

should be calculated, i.e., the structure of the Upd ate function.

In the influence limiter, a sensible updating function has to include the fact that all reports are

fused, but with different weights. Since aggregation model M is assumed to be a black box,

one has to additionally ensure that the reports are properly weighted (limited) when updating

estimate E . For example, consider two reports Ya1 and Ya2 that arrive sequentially. Initially,

E should be set to M (�). Once Ya1 is reported, the update of E , denoted by E1, is easy to

calculate: we simply make a linear combination of E and M ({Ya1 }), with weights 1−w1 and

w1 (see (5.1)).

The problem, however, arises when we update the current estimate E1 for report Ya2 . Namely,

the new update should be a linear combination of the current estimate E1 and the estimate

E new
2 that does not limit Ya2 , but does appropriately limit the reports that had arrived before

Ya2 . In our case, the limited report in E new
2 would be Ya1 . Since Ya1 should in E new

2 be limited

in the same way as in E1 (otherwise report Ya2 has influence on the limiting process of prior

information), we obtain that E new
2 is equal to E new

2 ←− (1−w1) ·M ({Ya2 })+w1 ·M ({Ya1 ,Ya2 }).

Now, notice that for report Ya1 we only needed to query model M once because there were

no prior reports. For report Ya2 , we needed to query model M twice. This can be easily

generalized; for example, for the third report Ya3 , we would need to query model M four

times to obtain estimates: M ({Ya3 }), M ({Ya1 ,Ya3 }), M ({Ya2 ,Ya3 }) and M ({Ya1 ,Ya2 ,Ya3 }). By

induction, it follows that:

Proposition 8. The number of queries to a black box model M of the influence limiter algorithm

in one time period t is Ω(2n), where n is the number of the reported values.

Scoring rule. The properties of the influence limiter are proven only for the quadratic scoring

rule (see Lemma 5 in [RS07]). In particular, the score scor ea,t is calculated by using a function

MCQSR that evaluates the marginal contribution of an agent using the quadratic scoring rule.

For example, estimates E might contain the likelihood of possible reports of a trusted agent,

i.e., PrE (Xtr ust ), which means that scoring function SE can be defined as SE (E , Xtr ust ) =
SQ (PrE , Xtr ust ), where SQ is the quadratic scoring rule (see (2.2) in Chapter 2). Since our goal

is not to make restrictions on the form of model M , allowing general scoring techniques is

crucial in our design. For example, if a model M is non-probabilistic, a quadratic scoring rule

is not applicable.

102



5.5. Stochastic influence limiter

Furthermore, the influence limiter uses a binary outcome in its scoring rule (this is a require-

ment of Lemma 5 in [RS07]). In our scenario, the report Ytr ust = Xtr ust of a trusted agent is not

necessarily a binary observation, so one needs to transform it into a binary variable in order

to apply it to the influence limiter. For example, if Xtr ust takes values in R, the transformation

can be done by defining a threshold and a binary variable equal to 0 if Xtr ust is smaller than

the threshold, and 1 otherwise. An issue with this approach is that the evaluation process is

much less accurate. For example, if the threshold is equal to 30, then this scoring technique

would assign the same quality evaluations for both Xtr ust = 35 and Xtr ust = 50.

Reputation update. The reputation updating rule of the influence limiter is defined by

ρa,t+1 ←− ρa,t +wa,t · scor ea,t , and resembles the information fusion updating. This is not a

coincidence: a reputation change should reflect how much an agent influences the aggregate.

To lower the query complexity, we investigate a non-deterministic information aggregation

approach that allows general scoring rules based on non-binary outcomes. These changes

also imply a different reputation updating rule. All these structural differences point out that

the influence limiter is not trivially transformable to our setting.

5.5 Stochastic influence limiter

The stochastic influence limiter (SIL) is a version of the influence limiter reputation system

with an exponential reputation boosting. More precisely, its decision making rule is non-

deterministic and uses reputations (weights) that have a multiplicative updating rule.5

The exact description of SIL can be found in Algorithm 3, and it has the following steps. Initially,

agents’ reputations are set to ρ0 > 0. At time period t , upon the arrival of an agent a’s report,

the reputation system calculates estimate E new
a using function Upd ate(E ,Ya,t ), which adds

report Ya,t to the existing set of included reports (the set of reports that estimate E ) and applies

model M to obtain a new estimate. In the next step, the algorithm decides whether the current

estimate should be replaced with the update or not. The decision is probabilistic — with

probability equal to ρa,t

ρa,t+1 , the center sets estimate E to E new
a , while otherwise, it discards

agent a’s report. The final step of the repetitive algorithm is to update the reputation of agent

a when the report Ytr ust = Xtr ust of a trusted agent is received. The reputation updating rule

assigns a new reputation to agent a by adding to the current reputation ρa,t the score of agent

a modulated by η ·ρa,t , where η is a learning parameter. Parameter η should not exceed 1
2 , but

its proper value depends on threshold scor emi n that defines the minimum expected score

of an informed agent (see Definition 20). As it is shown in the following subsections, a good

value for η would be η= min( 1
2 , scor emi n). However, often the expected score E(scor ea,t ) is

for high quality reports greater than variance V ar (scor ea,t ), in which case one can set η= 1
2 .

5This is similar to the approach of the randomized weighted majority algorithm [LW94, NRTV07], designed for
the standard expert setting (see Section 5.2).
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Data: Initial reputation ρ0 > 0, learning parameter η ∈ (0, 1
2 ]

begin
for Agent a do

ρa,1 ←− ρ0;
end
for t = 1 to t = T do

Compute prior estimate E ;
Publish E ;
for Agent a do

Receive a’s report Ya,t ;

E ol d
a ←− E ;

E new
a ←−Upd ate(E ,Ya,t ) ;

if r and(0,1) < ρa,t

ρa,t+1 then

E ←− E new
a ;

Publish E ;

end
end
Receive report Ytr ust ,t = Xtr ust ,t ;
for Agent a do

scor ea,t ←− SE (E new
a , Xtr ust ,t )−SE (E ol d

a , Xtr ust ,t );
ρa,t+1 ←− ρa,t · (1+η · scor ea,t );

end
end

end
Algorithm 3: Stochastic Influence Limiter
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5.5.1 Query complexity

Since the deterministic information fusion rule of the standard influence limiter has an

exponential query complexity, we have applied a stochastic information fusion rule in the

SIL algorithm. Because of that, SIL has a significantly lower query complexity, in particular, it

makes only a constant number of queries per report.

Theorem 13. The number of queries to a black box model M of the SIL algorithm in one time

period t is O(n), where n is the number of reported values.

Proof. The SIL’s function Upd ate is simple: it uses the set of reports that produced E , say

{Y1, ...,Yk } where E ←− M ({Y1, ...,Yk }), adds to it the report Ya,t of agent a and calculates

E new
a ←−M ({Y1, ...,Yk }∪ {Ya,t }). Therefore, SIL makes O(1) queries to M for i − th agent, thus,

for n agents in one time period t we have O(n) queries.

5.5.2 Bounded negative impact

An important characteristic of SIL is that the probabilistic decision making rule allows a

possibility of incorporating reports of agents that are not necessarily considered to be reliable.

To make the procedure sound, the probability of fusing a report of an agent with low reputation

is low. For example, an agent with reputation 0.1 can affect the current estimate, but only

with probability 0.1
0.1+1 . This way, one makes deceiving malicious strategies less effective. In

particular, their overall impact cannot be highly negative, meaning that the sum of an agent’s

contributions, which can be positive and negative, is bounded from below.

Theorem 14. The total myopic impact Δ̄a =∑T
t=1 Δ̄a,t of agent a is in the SIL algorithm bounded

from below by:

Δ̄a >−1

η
·ρ0

where ρ0 is the initial reputation of agent a.

Proof. The expected myopic impact Δ̄a,t is equal to ρa,t

ρa,t+1 ·Ga,t = ρa,t

ρa,t+1 ·scor ea,t . On the other

hand, for reputation ρa,T+1 we have:

ln(ρa,T+1 +1) = ln(ρa,T · (1+η · scor ea,T )+1) = ln((ρa,T +1) · (1+ ρa,T

ρa,T +1
·η · scor ea,T ))

= ln(ρa,T +1)+ ln(1+η · Δ̄a,T ) = ... = ln(ρ0 +1)+
T∑

t=1
ln(1+η · Δ̄a,t )

≤ ln(ρ0 +1)+η
T∑

t=1
Δ̄a,t = ln(ρ0 +1)+η · Δ̄a

where we used the fact that ln(1+ x) ≤ x for x > −1. By noting that the updating rule for

reputations keeps the reputations positive, i.e., ρa,t > 0, we have ln(ρa,T+1 +1) > 0, so Δ̄a is
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lower bounded by:

Δ̄a >−1

η
· ln(ρ0 +1) ≥−ρ0

η

where we again applied ln(1+x) ≤ x for x >−1.

The consequence of Theorem 14 is that the direct damage of a group of m malicious agents

can be controlled by setting the agents’ initial reputation to a low value. Namely, the impact

Δ̄a,t of agent a at time period t is measured by her marginal contribution, so the total myopic

impact of all malicious agents over sensing period T is by Theorem 14 at least − 1
η ·m ·ρ0 (i.e.,

the absolute value of the negative impact is at most 1
η ·m ·ρ0). By choosing a small value of ρ0,

one can make the (negative) impact of malicious agents close to 0, regardless of the reporting

strategies they use and their reporting time frame. This also implies that, when averaged over

a longer sensing period, their negative impact is negligible.6

5.5.3 Bounded information loss

The SIL decision making procedure also induces a certain information loss due to the fact that

valuable information might be discarded. This is especially true for the initial sensing periods

where all agents have relatively low reputations, including the ones that are not malicious.

For example, if the reputations are set to ρ0 = 0.1, the probability of including a report from

an honest and informed agent is initially equal to 0.1
0.1+1 . Since only information that comes

from agents with large reputation scores has a good chance of being considered, informed

agents should build up their reputation quickly, which is indeed the case for the SIL algorithm

because the reputation increase is exponential. Namely, the increase in the reputation is equal

to η·ρa,t ·scor ea,t , which for non-malicious agents with predominantly positive scores implies

an exponential reputation growth. Therefore, by using the exponential reputation boosting,

SIL is capable of limiting the negative influence of malicious agents, while not discarding too

many reports of non-malicious agents.

The following theorem formally shows that if an agent reports informed observations, i.e.,

her scores are positive in expectation and greater than scor emi n , then there is a bound to the

amount of agent a’s information discarded by SIL.

Theorem 15. Consider an agent a whose reporting strategy does not depend on her reputation

ρa,t and that has expected scores strictly greater than threshold scor emi n, i.e., E(scor ea,t ) >
scor emi n > 0. Let parameter η be strictly greater than 0 and less than:⎧⎨

⎩
1
2 if V ar (scor ea,t )) <E(scor ea,t )

min( 1
2 , scor emi n) if V ar (scor ea,t )) ≥E(scor ew,t )

6One can reach the same conclusion for a malicious agent with m distinct identities.
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Furthermore, let us denote: ga,t = ln(1+η · scor ea,t ) ∈ [gmi n,t , gmax,t ] and ha,t =E(ga,t ). Then

the expected information loss I La of the SIL algorithm is bounded from above by:

I Ls =
T∑

t=1
(E(scor ea,t )−E(Δ̄a,t )) < z ·

⎡
⎣ e−

1
2 ·d

1−e−
1
2 ·d

+
2 · ln ρ0+1

ρ0

h

⎤
⎦

where z = max1≤t≤T E(scor ea,t ) ≤ 1, h = min1≤t≤T ( 1
t

∑t
τ=1 ha,τ) ≥ min1≤t≤T ha,t > 0 and d =

min1≤t≤T
1
t

(
∑t

τ=1 ha,τ)2∑t
τ=1[gmax,τ−gmi n,τ]2 > h2

2 .

Proof. The proof requires two important inequalities from the probability theory.

Markov’s inequality states that for a random variable ρ, b ≥ 0 and monotonically increasing

function f (·) > 0, we have:

Pr (|ρ| ≥ b) ≤ E( f (|ρ|))

f (b)

Hoeffding’s inequality states that for independent random variables ρ1, ρ2, ..., ρn that take

values in ρi ∈ [li ,ui ] and have total expectation E(
∑

i ρi ) = ρ̄, we have:

Pr (
∑

i
ρi − ρ̄ ≥ t ) ≤ e

−2· t2∑n
i=1

(ui −li )2

Pr (
∑

i
ρi − ρ̄ ≤−t ) ≤ e

−2· t2∑n
i=1

(ui −li )2

Now we are ready to prove the statement.

The expected value of the myopic impact is:

E(Δ̄a,t ) =E

(
ρa,t

ρa,t +1
· scor ea,t

)

Since scores are stochastically generated (they are independent of reputation ρa,t ), we obtain

that:

E(Δ̄a,t ) =E

(
ρa,t

ρa,t +1

)
·E(scor ea,t )

Furthermore, Markov’s inequality gives us:

E

(
ρa,t

ρa,t +1

)
≥ Pr (ρa,t ≥ ρ0 ·bt ) · ρ0 ·bt

ρ0 ·bt +1

where we used: bt = e
1
2 ·
∑t

τ=1 ha,τ , ha,τ =E(ln(1+η · scor ea,τ)). Let us also denote:

h = min1≤t≤T
1
t

∑t
τ=1 ha,τ. Using ln(1 + x) ≥ x − x2 for x ≥ −1

2 , it follows that ha,t ≥ η ·
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E(scor ea,t )−η2 ·E((scor ea,t )2). Due to the conditions of the theorem, we know that η <
E(scor ea,t ) or E(scor ea,t ) > 1

2 ·E((scor ea,t )2) (when V ar (scor ea,t ) <E(scor ea,t )), which by

scor ea,t ∈ [−1,1], implies that h > 0.

Now, notice that:

Pr (ρa,t ≥ ρ0 ·bt ) = Pr (lnρa,t ≥ ln(ρ0 ·bt )) = Pr

(
lnρa,t ≥ lnρ0 + 1

2
·

t∑
τ=1

ha,τ

)

= Pr

(
lnρa,t −

t∑
τ=1

ha,τ− lnρ0 ≥−1

2
·

t∑
τ=1

ha,τ

)

≥ 1−Pr

(
lnρa,t −

t∑
τ=1

ha,τ− lnρ0 ≤−1

2
·

t∑
τ=1

ha,τ

)
= 1−pt

where we denoted the last term Pr (.) by pt . Since lnρa,t − lnρ0 is a sum of t independent

random variables ga,τ = ln(1+η · scor ea,τ) (with 1 ≤ τ ≤ t) that are in expectation equal to

hs,τ =E(ga,τ), using Hoeffding’s inequality, we obtain:

pt ≤ e
− 2·(∑t

τ=1 ha,τ)2

4·∑t
τ=1[gmax,τ−gmi n,τ]2 ≤ e

−
2·
( ∑t

τ=1 ha,τ
t

)2

·t

4·
∑t
τ=1[gmax,τ−gmi n,τ]2

t ≤ e−
1
2 ·d ·t

where we put d = min1≤t≤T

(∑t
τ=1 ha,τ

t

)2

∑t
τ=1[gmax,τ−gmi n,τ]2

t

, which is greater than d > h2

2 because η·scor es,τ ∈
[−0.5,0.5] (and, hence, [gmax,τ− gmi n,τ]2 < 2). The expected information loss (the difference

between the agent’s score and its impact) in round t is bounded by:

E(scor ea,t )−E(Δ̄a,t ) =E(scor ea,t ) ·
(
1−E

(
ρa,t

ρa,t +1

))

≤E(scor ea,t ) ·
[

1− (1−e−
1
2 ·d ·t ) · ρ0 ·bt

ρ0 ·bt +1

]

=E(scor ea,t ) ·
[

1

ρ0 ·bt +1
+e−

1
2 ·d ·t · ρ0 ·bt

ρ0 ·bt +1

]

Therefore, over time period T , the information loss is in expectation upper bounded by:

z ·
[

T∑
t=1

1

ρ0 ·bt +1
+

T∑
t=1

e−
1
2 ·d ·t · ρ0 ·bt

ρ0 ·bt +1

]

where z = max1≤t≤T E(scor ea,t ). We examine bounds for each of the terms in the bracket. We

have:

T∑
t=1

e−
1
2 ·d ·t · ρ0 ·bt

ρ0 ·bt +1
≤

T∑
t=1

e−
1
2 ·d ·t = e−

1
2 ·d ·

T−1∑
t=0

e−
1
2 ·d ·t

< e−
1
2 ·d ·

∞∑
t=0

e−
1
2 ·d ·t = e−

1
2 ·d

1−e−
1
2 ·d
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where we applied
∑∞

t=0 xt = 1
1−x for x ∈ (0,1). Furthermore, using the fact that bt = e

1
2

∑t
τ=1 hs,τ ≥

e
1
2 ·t ·h we obtain:

T∑
t=1

1

ρ0 ·bt +1
≤

T∑
t=1

1

ρ0 ·e
1
2 ·t ·h +1

≤
∫T

t=0

1

ρ0 ·e
1
2 ·t ·h +1

d t <
∫∞

t=0

1

ρ0 ·e
1
2 ·t ·h +1

d t

= 2

h
· ln

ρ0 +1

ρ0

which completes the proof.

The intuition behind this result is fairly simple. If an agent has mostly positive scores greater

than scor emi n , it will boost up her reputation rather quickly to the values where her reports

are practically no longer limited. Notice that the bound on the total information loss does not

(directly) depend on time (i.e., does not monotonically increase with time), which means that

the information loss averaged over a long sensing period T becomes negligible. Furthermore,

the bound multiplicatively depends on parameter z that represents an agent’s expected score:

the better the agent is, the more quality information the center looses when it discards the

agent’s reports. The second multiplicand in the bound describes how quickly an agent can

boost up its reputation, which depends on how informative the agent is: the more useful the

agent’s reports are, the higher its score is, and thus the greater its reputation increase is. This is

captured by parameters h and d , which are related to the performance of an agent through

random variable ga,t = ln(1+η · scor ea,t ). Notice that by Theorem 15, we can set z = 1 and

d = h2

2 in order to obtain a looser upper bound that does not require estimates of z and d .

Theorem 14 and Theorem 15 provide guarantees on the performance of the SIL algorithm

that depend on initial reputation ρ0 and learning parameter η. The bounds of the theorems

indicate that the value of the initial reputation ρ0 should be such that it limits the negative

impact of malicious agents, while not discarding too much information from non-malicious

agents. Since for a longer sensing period accurate agents have enough time to build up their

reputations, the initial reputation ρ0 can be set to a relatively small value so that the SIL

algorithm is more robust against malicious reporting strategies.

A proper value for the learning parameter, on the other hand, depends on how informed

good agents should be and whether the qualities of their reports are allowed to have a high

variance. If the center considers that informed agents are only those that consistently report

good information, i.e., those who have positive expected scores with low variance, then η can

be set to 1
2 . On the other hand, if the center considers that informed agents are all those that

are expected to provide good information, i.e., those that have expected scores strictly greater

than scor emi n , then a good value of η is min(scor emi n , 1
2 ). Notice that the bound on negative

impact is inversely proportional to η. Therefore, low values of η should be avoided.
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5.5.4 Helpful reporting

Finally, we analyze the incentive component of the SIL algorithm. The important property

of agents’ scores, which define payments τG , is that they incentivize non-malicious agents

to provide reports that maximize the information gain of the center. Notice that the most

useful information is not necessarily the true observations. This is due to the presence of

malicious agents, as well as the possible imperfections of aggregation model M . In other

words, a strategic behaviour is often desirable.

Theorem 16. If an agent a maximizes her expected payoff E(τG (Ya , Xtr ust )) = E(scor ea,t ),

then she also maximizes her expected impact E(Δ̄a,t ).

Proof. The myopic impact of agent a, Δ̄a,t , is proportional to her score: Δ̄a,t = ρa,t

ρa,t+1 ·Ga,t =
ρa,t

ρa,t+1 · scor ea,t . Hence, an agent a that aims to maximize her expected score, is also incen-

tivized to submit a report that maximizes her expected impact.

5.6 Application to community sensing

We consider a community sensing scenario where the center aggregates crowdsensed in-

formation in an online manner, from both public and private sensors, to provide real time

estimates of air pollution over a certain urban area. In this scenario, the center controls a

few accurate sensors that provide spatially or temporally sparse measurements (e.g., very

accurate particle sensors are slow; similarly NO2 can be sensed chemically but it’s again slow

and expensive), so to properly monitor the localized features of air pollution, it complements

its own measurements with those obtained by crowd-participants who own ubiquitous sensor

devices.

Figure 5.2 – Community sensing scenario with online information fusion
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The model of the information fusion process that we consider in this section is depicted in

Figure 5.2, and it follows the formal model of this chapter. At the beginning, the center has

only prior information about air pollution over an urban area. After some time, the center

receives a report from a crowd-sensor and merges it with the current pollution map using

pollution (aggregation) model M . Clearly, apart from its measurement, the sensor also reports

its location, which we do not explicitly emphasize in the further text. Moreover, pollution

model M is assumed to capture correlations among measurements taken at different locations

well. The described process repeats until a trusted sensor reports its measurement, after which

the center can evaluate the reports of the crowd-sensors. The crowd sensing process then

continues in the same manner.

One of the main challenges in the described scenario is how to cope with untrustworthy

information. For example, a factory owner who wants to hide her own pollution traces could

install sensors that misreport values of pollution. Clearly, incentive schemes alone cannot

provide quality control that would solve the problem of participants with ulterior motives.

Reputation systems provide such a guarantee: bad reports lead to low reputation, which limits

the influence of the later reports. Therefore, we investigate the application of the stochastic

influence limiter in the considered setting and compare its performance to the performance

of the Beta reputation system with the thresholding principle, which is a state of the art

reputation system for sensing.

5.6.1 Simulation setup

Considering that in a real dataset one cannot identify upfront the strategies adopted by differ-

ent sensors, we simulate different malicious strategies to experimentally validate our approach.

Our pollution sensing scenario is based on the testbed from Chapter 4, section 4.5.2, but now

sensors’ measurements are not discretized. In total, the dataset contains approximately one

month of hourly measurements - the larger sensing periods can be simulated by looping over

the dataset several times, which we do 12 times to obtain the sensing time of T = 12 ·4 ·7 ·24

hours. Our main reputation system is SIL with the initial reputation set to ρ0 = 0.1.

Pollution Model

We use a probabilistic air pollution model that is based on Gaussian process regression, as

described in [RW05]. For any point of interest (in our case 116 locations), the pre-trained

Gaussian Process (GP) model produces a probability distribution function over the possible

levels of pollution from the reports of sensors placed at different locations. This posterior

distribution is a normal distribution N (μ,σ), with parameters μ and σ derived from the GP

model. We are interested in predicting the value of pollution level measures by a trusted sensor

at its location, so we denote the corresponding prediction by p(Xtr ust ).
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Performance Measure

We measure the quality of the aggregates of model M by how well they predict the measure-

ment Xtr ust of a trusted sensor. Since model M outputs a normal distribution N (μ,σ) for

a point of interest (x, y), we apply scoring rule (2.3) (see Chapter 2) on probability density

function p of the form p(x) = 1�
2πσ2

e−
(x−μ)2

2σ2 to obtain:

SE (p, Xtr ust ) = 1�
2πσ

e−
(Xtr ust −μ)2

2σ2 − 1

4σ
�
π

(5.2)

The score takes values in [− 1
4σ

�
π

, 1
σ
�
π

( 1�
2
− 1

4 )], and can be further scaled so that scor ea,t ∈
[−1,1]. In our case, no specific scaling was needed.

Sensors

We consider 40 mobile crowd-sensors and 1 trusted mobile sensor that are at each time period

placed at one of 116 available locations. The 40 crowd-sensors are either honest (25% of them)

or malicious sensors (75% of them). Malicious sensors report according to one of the following

four strategies. In the Vary strategy, sensors build up their reputations by reporting honestly

for the first 1000 iterations, and from then on, they report only a low level of pollution. In the

Deceive strategy, sensors report honestly when their reputation is below 0.5; otherwise, they

report a low level of pollution. Vary and Deceive is a mixed strategy where malicious sensors

first build up their reputation by reporting honestly for 1000 iterations, and from then on, they

use the Deceive strategy. Cover is a strategy that mimics a situation where malicious sensors

try to boost up their reputation when it is not important for them to misreport, and then,

on specific events, they report wrong values. In our case, malicious sensors boost up their

reputation for 1000 iterations. Then they report honestly whenever the pollution is below 35

ppb of NO2 or their reputation is lower than 0.5; otherwise, they report a low level of pollution.

The low level of pollution in the above strategies is defined as 10 ppb of NO2 plus a Gaussian

noise with 0 mean and the standard deviation equal to 5.

Theoretical Bound

By Theorem 14, it follows that 0.75 ·40 = 30 malicious sensors can cause an immediate damage

of at most 2 ·30 ·0.1 = 6 score units (units used in (5.2)). To calculate the bound from Theorem

15, one needs to decide on parameter η and estimate parameters z, h and d . We set η = 1
2 ,

and approximate z, h and d , by investigating averages of scor ea,t , log(1+ 1
2 · scor ea,t ) and

maxa log(1+ 1
2 · scor ea,t )−mina log(1+ 1

2 · scor ea,t ) over time t . Assuming that the scores of

honest sensors are similar in most of the sensing periods, these averages lead to the estimates:7

7If k << T sensing periods have significantly different values from the average values, to achieve a higher
precision, one can exclude these k periods when estimating the upper bound from Theorem 15 and simply add to
the calculated bound k ·maxτ∈kPer i od s E(scor ea,τ).
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z ≈ 0.002, h ≈ 0.001 and d ≈ 0.005, from which we can estimate the upper bound from Theorem

15: 10.39. By multiplying the estimate by the number of honest sensors (i.e., 10), we conclude

that the total information loss should be no more than 103.9 score units. Notice that the

bounds from Theorem 14 and Theorem 15 have different meanings: the bound from Theorem

14 describes how much a malicious sensor could intentionally shift the result, while the bound

from Theorem 15 describes an implicit damage whose nature is not controlled by a malicious

sensor. Nevertheless, it follows from the bounds that the quality degradation should not be

more than 109.9 score units in total. This can be averaged over time, so that at each time step

t , we have an average degradation of at most 109.9
t score units. The average goes to 0 as time

increases implying a no-regret property in terms of sensors’ myopic impact.

Baseline: Beta Reputation System

In the Beta reputation system, we quantify the behaviour of a sensor using two parameters,

α and β, which represent the parameters of the beta distribution B(α,β)8. In the setting we

analyze, the parameters can be updated as follows (e.g., see [JI02]). If the marginal information

gain Ga,t = scor ea,t of updating the current pollution map with a sensor a’s report is positive,

parameter αa,t is updated to αa,t+1 =αa,t+Ga,t . Otherwise, parameterβ is updated to βa,t+1 =
βa,t +Ga,t . The reputation of sensor a is at time t calculated as the mean of beta distribution

B(αa,t ,βa,t ), i.e., ρa,t = αa,t

αa,t+βa,t
. In other words, the reputation of sensor a characterizes the

fraction of the positive impact that the sensor had on the system. The decision on whether to

include the report of sensor a is based on its reputation and determined using the thresholding

principle. We set the initial values of α and β parameters to 0.01 and 0.1, respectively, with

threshold Θ= 0.5.

Evaluation Metric

We define a measure of an average regret that evaluates the quality of the aggregates produced

by the center with respect to the aggregates obtained by fusing the reports of honest sensors.

More precisely:

Av g Reg r ett =
Scor ehonest ,t −Scor ecenter,t

t

where Scor ehonest ,t is the total score (until the time period t ) of the aggregates obtained from

the reports of honest sensors, and Scor ecenter,t is the total score of the center (with a particular

reputation system) until the time period t . Both scores are calculated using the quadratic

scoring rule, as described in the previous subsections, applied on the pollution map published

prior to the report of a trusted sensor. Therefore, the regret is measured in the same score

units as the theoretical bound computed in subsection ’Theoretical bound’.

8Notice that α and β are parameters of the distribution, not the scaling parameters defined in Chapter 2
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(a) Vary (b) Deceive

(c) Vary and Deceive (d) Cover

Figure 5.3 – Average regrets (times 10) for different strategies (single simulation run)

5.6.2 Simulation results

Figures 5.3 and 5.4 show the performance of the SIL algorithm and the Beta reputation system

in terms of the average regret for four different misreporting strategies. Along with those

results, we put the theoretical estimate of the upper bound on the regret of SIL algorithm

( 109.9
t ), which is truncated to 0.1 for large values. The Beta reputation system is able to limit

the negative influence of malicious sensors that use the Vary strategy. However, in the Vary

strategy, malicious sensors misreport in a simple and consistent way. For the other three

misreporting strategies, the Beta reputation system experiences an average regret that is

clearly away from 0, and in two of the cases, the regret is increasing, which means that the

total negative impact of malicious sensors is not bounded. The SIL algorithm is much better

in dealing with malicious sensors: its average regret over a longer sensing period for all of the

malicious strategies is close to 0, as expected by the theoretical results. Finally, the strategy

independent upper bound on the SIL’s regret is often below the regret of the Beta reputation

system.
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(a) Vary (b) Deceive

(c) Vary and Deceive (d) Cover

Figure 5.4 – Average regrets (times 10) for different strategies — the figure shows the mean and
the 95% confidence interval of 50 simulation runs

5.7 Conclusion

In this chapter, we discussed a problem of having malicious agents in online information

fusion. We designed a novel reputation system, called the stochastic influence limiter (SIL),

that has a manageable complexity and puts an upper bound on the total negative impact that

malicious agents can have on the fused result, regardless of their reporting strategy. This is in

contrast to the standard reputation systems which do not provide any theoretical guarantees

and for which the total negative impact of malicious agents can increase over time.

Due to its theoretical guarantees, we advocated the use of the SIL algorithm in the community

sensing. We empirically confirmed that the theoretical results hold in a realistic air pollution

sensing scenario, and showed that in an average-case simulation, SIL outperforms a state of

the art reputation system for sensing, whose performance is often worse than the worst case

performance of SIL.
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The most interesting direction for future work would be to investigate under which conditions

the SIL mechanism provides guarantees when the evaluation is based on a peer consistency

approach. We expect that in this case, a majority of agents’ population should provide accurate

information. Furthermore, a payment mechanism needs to incentivize strategic agents to

report honestly even when a fraction of agents is dishonest, which is not possible for an

arbitrary population statistics. Namely, the presence of malicious agents changes the character

of belief conditions necessary to achieve properness of peer consistency techniques. For

example, the self-predicting condition, i.e., the belief condition under which the robust peer

truth serum is proper, might no longer hold when a fraction of agents is dishonest.
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Ensuring the accuracy of reported information is a major challenge for using crowds as part

of intelligent systems. In this thesis, we focused on two aspects important to achieve a good

quality control:

• incentivizing rational participants to acquire and report accurate information;

• filtering out low quality reports from participants that do not respond to incentives.

Incentive mechanism design

Instead of fixed rewards, participants should expect the highest rewards when they report

accurate information. Such mechanisms can be appropriately scaled so that only participants

who provide positive contributions profit from participating in the elicitation process. This is

important for two reasons:

• to improve the accuracy of reported information, and thus complement filtering mecha-

nisms such as gold tasks and reputation systems;

• to make participant self-selection help the mechanism by discouraging participants

that do not contribute useful results.

We focused on an incentive mechanism design in which the center cannot directly verify the

obtained information. Therefore, it has to compare reports in order to reward the participants

— agents. Two elicitation settings were investigated, a single-task setting and a multi-task

setting, which differ in the number of phenomena (tasks) that agents observe (solve).

For the single-task setting, in which agents observe a single phenomenon, we showed that an

additional report is needed whenever the agents’ beliefs are not highly constrained and the

center does not know them. We designed several Bayesian truth serum (BTS) mechanisms

that from each agent elicit targeted information and prediction report regarding what the
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other agents have reported. The most general mechanism, the divergence-based BTS, allows

agents to have different belief systems as long as their beliefs are more similar when they

observe the same value than when their observations are different. In the limit case when

observations take real values, a version of the divergence-based BTS for continuous domains

(the continuous BTS) is strictly proper if agents have a common belief system, and we show

that this condition cannot be further relaxed under reasonable constraints on the agents’

belief systems.

Unlike the single-task setting, the multi-task setting allows agents to have different beliefs,

but it assumes that the observed phenomena are a priori similar. The multi-task mechanisms

presented in the thesis achieve this result by appropriately sampling reports from different

phenomena in order to calculate the statistics used for scoring an agent. Depending on the

scoring technique, it is further possible to make truthful reporting the highest paying strategy

profile.

Future directions

While the aforementioned mechanisms have proven theoretical properties in their own do-

mains, and some of the mechanisms even offer experimental evidence of their superiority over

their predecessors, there is still a lack of understanding on how to exactly implement these

mechanisms in practice and how to make them robust enough for general use. An appropri-

ate implementation choice is often tied to the application domain, especially considering

the fact that some of the mentioned mechanisms are designed for specific scenarios, e.g.,

crowdsourcing.

Since data exchange systems are increasingly dealing with multi-dimensional information

structures, one of the important future directions would be to apply peer consistency tech-

niques in the elicitation of complex information. In order to examine consistency of peer

reports, an elicitation process might have to rely on domain specific knowledge or, alterna-

tively, be able to automatically discover relevant features of the elicited information. While

some of the existing techniques provide relatively stable incentives even for large observation

spaces (e.g., see [SAFP16]), there is still a need for proper incentives in a more general formal

setting, for example, the one that includes a non-binary participation (effort) choice.

Furthermore, most of elicitation mechanisms either belong to the gold standard or the peer

consistency mechanisms. At first glance, it does not seem sensible to use a hybrid approach as

there is a gold standard, but an argument for doing so is more obvious when we go beyond a

single shot elicitation scenario. Namely, in a scenario where participants repeatedly interact

with the center, the center would require a large number of gold standard evaluations to

frequently provide proper rewards to the participants. Therefore, by using a hybrid incentive

mechanism, one can make agents’ strategies converge towards truthful reporting in natural

game playing dynamics (e.g., regret minimization) while minimizing the number of gold

standard evaluations. This would also strengthen the incentives provided by multi-task peer
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consistency techniques, making them potentially resilient to a wider range of misreporting

strategies, e.g., to the one discussed in [GWL16].

Finally, the existing mechanisms usually model participants as risk-neutral rational agents

that maximize their rewards. While this model is fairly reasonable when dealing with, for

example, intelligent software agents, it fails to capture different risk attitudes and bounded

rationality of human participants. One of the relevant future steps would be to enrich the

existing models by incorporating the aspects of behavioral game and economic theories. Such

an approach has already been proposed for a specific scenario of designing optimal contests

[EG15], but it is yet to be seen how behavioral mechanism design should be applied in the case

of peer consistency mechanisms.

Information aggregation

To filter the low quality information coming from malicious participants, we designed a

reputation system that has provable guarantees on the amount of negative impact that a

malicious participant can have on the learned outcome. The novel reputation system, called

the stochastic influence limiter (SIL), has two components that differentiate it from the tradi-

tional reputation system design: its reputation updating procedure and stochastic information

fusion component. The former component has a form of exponential reputation boosting,

while the latter one fuses reports probabilistically with the probability of fusion being depen-

dent on the reputation of a participant. Consequently, SIL also discards some information

coming from informed participants, but we show that the amount of discarded information is

bounded from above. As an example of practical application, we considered sensing in which

the center is in control of a few trusted sensors that periodically report their measurements,

but supports these measurements with the community of sensors. We showed that the SIL

algorithm outperforms a baseline algorithm often used in sensing.

Future directions

While our work addresses the issue of adversary participants, it is restricted to the settings

where a mechanism can accurately evaluate the inputs provided by the users once the full

aggregate is obtained. The next step is to remove the requirement of trusted information

source and make an evaluation procedure based on peer consistency methods instead. In

particular, the idea would be to construct an online information fusion process that is capable

of limiting the negative influence of adversary participants but does not require trusted

information to evaluate the influence of a participant on an aggregated result. Clearly, some

constraints are needed either in terms of the percentage of adversary participants, as discussed

in similar approaches [KOS13], or in terms of the strategy space of adversaries, as studied in

the multi-task peer consistency mechanisms. Nevertheless, the empirical results in [PS06]

show that it is possible to extract the correct information from crowds using a peer consistency

score, even when the majority is wrong. This indicates that a combination of the stochastic
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Chapter 6. Concluding remarks

influence limiter and multi-task peer consistency mechanisms has great potential in resolving

this issue.
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A Appendix

A.1 Predictemo game: contest with subjective information

We follow the design of the optimal contest for simple agents, introduced in [GR14], where

agents strategize on participation due to the cost that they experience from participating in the

contest. In the considered application, the cost of participating models privacy costs that the

users experience by playing the Predictemo game, as they provide their identities along with

their emotions. The privacy costs are expected to be the same for each participant, which, in

the contest model of [GR14], means that the agents have a homogenous cost of participation.

Assuming that the participants do not strategize on the quality of their contributions, the

contest that maximizes participation provides m equal rewards to the first m participants,

where m depends on the participation cost and the budget V of the contest designer. We

explore this approach in a repetitive scenario where the contest is run over a longer period of

time. This enables us to eliminate the need of knowing the participation cost, and instead learn

the optimal choice of m over time. Furthermore, by applying a BTS type of mechanism (co-BTS

from Section 3.5.2 of Chapter 3), we assign a proper quality scores to reported information,

which discourages the rational participants from falsely reporting their emotions. As already

mentioned, the users of the Predictemo application also provide their coarse-grained locations.

However, the reports contain only the information about the closest building to the location

of a user, so we assume that this type of information is not misreported.

Optimizing the participation

We consider a contest design in which, at each time step t , participants report their subjective

information to a contest designer. A participant can report several reports during a time period

t , each report being scored with the co-BTS mechanism against another agent that reports at

approximately the same time. Due to the fact that co-BTS rewards agents using a zero-sum

reward structure, an agent effectively needs to outperform her peers in order to have a good

relative score. At the end of the period, agents are ranked in decreasing order by their total
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score, and first m participants are rewarded with V /m, where V is the budget of a contest

designer. The number m is a time dependent variable, chosen by the designer, and takes

values from {1, ...,mmax }. The maximum value mmax should be such that V /mmax represents

a lower bound on a reward that covers the cost of participation. Notice that this bound does

not need to be tight, so the center does not need to know the exact value of the cost.

We model the number of participants at a certain time step t ∈ {1, ...,T } as a random variable

Nm that takes value in N. In particular, we assume that Nm is a random sample of a Poisson

distribution whose parameter λm depends on the number of the rewarded agents m. With this

in mind, we would like to select m that leads to the greatest expected number of participants,

i.e., that has the associated Poisson distribution with the greatest mean λm .

The problem of finding the optimal m in an online manner belongs to a general class of the

multi-armed bandit problems (e.g. [ACBF02]), that investigate explore-exploit tradeoffs in

online learning processes. We apply the KL-UCB algorithm [GC11] as it allows the objective

quantity, in our case participation rate, to be distributed according to a Poisson distribution.

The algorithmic description of our approach is shown in Algorithm 4, and we call it KLUCoBits

to indicate that it is based on the KL-UCB algorithm with the co-BTS evaluation procedure.

The algorithm follows the steps explained in the above paragraphs, incorporated into the

KL-UCB algorithm. The first m steps of the algorithm sample participation rate for different

choices of m. Afterwards, the algorithm makes a more appropriate choice of m using proce-

dure K L_UC B_Sel ect M() that implements the arm choice function of KL-UCB, as explained

in [GC11]. For each possible choice of m, the procedure takes into account the obtained

participation rates for the considered m, but also the number of times the choice was made in

order to achieve a good explore-exploit tradeoff.

A.1.1 Predictemo game

The Predictemo game represents an implementation of the KLUCoBits contest design in

eliciting emotions across EPFL campus. Once logged in, a user chooses another player and

challenges the player to play the Predictemo prediction task. As pointed out in Section 3.5.2 of

Chapter 3, each player in the prediction task provides one of 20 possible emotions and the

prediction about what the other player will report.

At the end of each period, m best users are rewarded with V /m points. m is selected upfront,

before each period, and is known to players, as well as V . Users of the Predictemo application

can access a simplified description of the KLUCoBits reward mechanism from the login page,

or from their user profiles when they are logged in. The description outlines the basic concepts

of the reward mechanism. It states that V points are periodically given to m best users in

equal split, where users are ranked by the relative quality of the predictions they provide. The

quality of a prediction is said to be measured by how accurate the prediction is plus how

hard it was to predict the correct emotion, while the score that affects the ranking of a user is
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A.1. Predictemo game: contest with subjective information

Data: Time horizon T > 0, budget V , max number of rewards mmax

begin
for t = 1 to t = mmax do

m = t ;
Publish the number of rewards m and their value V /m;
Evaluate reports of agents using co-BTS;
when period t ends do

Get participation rate Nm,t ;
Rank agents according to their total co-BTS scores;
Reward first m agents with V /m;
NumM [m] = 1;
Tot al N [m] = Nm,t ;

endwhen
end
for t = mmax +1 to t = T do

m = K L_UC B_Sel ect M(NumM ,Tot al N , t );
Publish the number of rewards m and their value V /m;
Evaluate reports of agents using co-BTS;
when period t ends do

Get participation rate Nm,t ;
Rank agents according to their total co-BTS scores;
Reward first m agents with V /m;
NumM [m] = NumM [m]+1;
Tot al N [m] = Tot al N [m]+Nm,t ;

endwhen
end

end
Algorithm 4: KLUCoBits: multi-step contest with subjective information
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explained as the difference between the qualities of the user’s prediction and the prediction of

her opponent in the considered prediction task.

Figure A.1 – Report frequency

The preliminary version of the Predictemo application was deployed for a period of three

weeks. A reporting period t was set to be three days, having in total T = 7 full periods, or

equivalently, 21 days. We rewarded m best players of the Predictemo game with V = 60 points

at each time step t . m was chosen according to KLUCoBits from the set {1,2,3,4}. In this time

horizon, a player could collect points and exchange 60 points for a gift card worth 20 CHF.

In total, there were 15 EPFL students using the Predictemo application in the non-anonymous

(game) mode. Out of 89 submitted reports, 34.8% were anonymous reports, and the rest

(65.2%) were reports from the users whose identity is known. As shown in Figure A.1, the

participation rate fluctuated throughout the reporting time horizon T , but on average was

higher at the end of the 3 week period.

The preliminary version of the application offers basic insights into students’ emotional states,

such as the location at which users are more likely to report their emotions or the types of

the most frequent emotions, as shown in Figure A.2. The most interesting direction for future

work would be to link the reported emotions to the EPFL courses, and see how the reported

information compares to the traditional opinion polls that ask students to evaluate the quality

of the courses.

A.2 Geometric sequence

This section provides useful properties of geometric sequence 1+x +x2 + ...+xn−2, x ∈ (0,1).

Its closed form is:

1−xn−1

1−x
= 1+x +x2 + ...+xn−2 (A.1)

Another property that we will use is the derivative of the geometric sequence:

d

d x
(1+x +x2 + ...+xn−2) = d

d x

(
1−xn−1

1−x

)
= (1−xn−1)− (n −1) · xn−2 · (1−x)

(1−x)2 (A.2)
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A.2. Geometric sequence

(a) Emotion distribution (b) Location distribution

Figure A.2 – Distribution of reports

Next, we show that expression (1+ r · x) · (
∑n−2

i=0 (1−p − x)i ), where 1 > p > 0, r ∈ (0, 1
p ) and

x ∈ (0,1−p), has a maximal non-negative derivative at x = 0.

Lemma 9. Consider function f (x) = (1+ r ·x) · (
∑n−2

i=0 (1−p −x)i ), where p ∈ (0,1), x ∈ (0,1−p)

and r ∈ (0, 1
p ). If there exists x ′ ∈ (0,1−p) such that d f

d x (x ′) ≥ 0, then maxx
d f
d x (x) = d f

d x (0).

Proof. We can rewrite function f (x) as:

f (x) = (1+ r · x) · (
n−2∑
i=0

(1−p −x)i ) = (1+ r − r ·p − r · (1−p −x)) · (
n−2∑
i=0

(1−p −x)i )

= (1+ r − r ·p) ·
n−2∑
i=0

(1−p −x)i − r ·
n−1∑
i=1

(1−p −x)i

= r · (1− (1−p −x)n−1)+ (1− r ·p) ·
n−2∑
i=0

(1−p −x)i

The derivative of f (x) is equal to:

d f

d x
(x) = (n −1) · r · (1−p −x)n−2 − (1− r ·p) ·

n−2∑
i=1

i · (1−p −x)i−1

= (1−p −x)n−2 ·
(

(n −1) · r − (1− r ·p) ·
n−2∑
i=1

i

(1−p −x)n−1−i

)

Now, suppose there is x ′ ∈ (0,1−p) such that d f
d x (x ′) ≥ 0. Since x ∈ (0,1−p), the necessary

condition for that is:

(n −1) · r − (1− r ·p) ·
n−2∑
i=1

i

(1−p −x ′)n−1−i
≥ 0
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Therefore, we obtain:

d f

d x
(x ′) = (1−p −x ′)n−2 ·

(
(n −1) · r − (1− r ·p) ·

n−2∑
i=1

i

(1−p −x ′)n−1−i

)

≤ (1−p −x ′)n−2 ·
(

(n −1) · r − (1− r ·p)
n−2∑
i=1

i

(1−p)n−1−i

)

≤ (1−p)n−2 ·
(

(n −1) · r − (1− r ·p) ·
n−2∑
i=1

i

(1−p)n−1−i

)
= d f

d x
(0)

A.3 Dasgupta&Ghosh mechanism

We have seen that RPTS reduces to a simple score when statistic xa is calculated based on only

one phenomenon in addition to the phenomenon being observed by agent a. The form of

score (4.14) is similar to the Dasgupta&Ghosh mechanism introduced in [DG13]. In fact, they

are equivalent.

To see this, we first need to describe the basic structure of the Dasgupta&Ghosh mechanism.

Let us assume for simplicity that an agent a and her peer pi have only one common phenom-

ena Φi that they observe (see [DG13] for how to transform the mechanism when this does not

hold), and that they both observe m additional phenomena. Notice that now we have a larger

batch of phenomena and each agent observes multiple of them. By carefully rearranging

terms in the Dasgupta&Ghosh mechanism, we obtain that the mechanism is equivalent to:

1Ya,i=Ypi ,i︸ ︷︷ ︸
agreement A

− ∑
z∈X

∑
Φ j �=Φi

1Ya, j=z

m

∑
Φk �=Φi

1Ypi ,k=z

m︸ ︷︷ ︸
statistic B

= 1Ya,i=Ypi ,i︸ ︷︷ ︸
agreement A

− ∑
Φ j �=Φi

∑
Φk �=Φi

1Ya, j=Ypi ,k

m2︸ ︷︷ ︸
statistic B

where Ya, j is agent a’s report for phenomenon Φ j , and summation ΣΦ j is over the phenomena

observed by agent a (equivalent notation is used for agent pi ). Therefore, the total score is

equal to:

∑
Φi

[
1Ya,i=Ypi ,i −

∑
Φ j �=Φi

∑
Φk �=Φi

1Ya, j=Ypi ,k

m2

]
=∑

Φi

⎡
⎢⎣1Ya,i=Ypi ,i −

1

m

m∑
l=1

∑
Φl∈{Φl

−a,Φi
}

1Ya,i=Ypl ,l

m

⎤
⎥⎦

where {Φl
−a,Φi

} is a group of m phenomena not observed by agent a and they are obtained

from the previous step by rearranging the terms in the equation. This can be thought of as if
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A.4. Detailed simulation results for RPTS and log-PTS

the Dasgupta&Ghosh mechanism scores a report Ya,i with:

1Ya,i=Ypi ,i︸ ︷︷ ︸
agreement A

− 1

m

m∑
l=1

∑
Φl∈{Φl

−a,Φi
}

1Ya,i=Ypl ,l

m︸ ︷︷ ︸
statistic B

Now, since Ya,i and Ypl ,l are statistically independent (because agent a has not observed Φl ),

part B of the score is in the expectation equivalent to x′a(Ya,i ) (see Section 4.4.2). Therefore,

the mechanism defined by (4.14) and the Dasgupta&Ghosh mechanism are equivalent, which

means that the Dasgupta&Ghosh mechanism is a special case of RPTS obtained in the limit

case when xa is calculated from only two phenomena. Moreover, the equivalence implies that

the Dasgupta&Ghosh mechanism requires non-correlated (categorical) observation values for

the honest reporting strategy profile to result in a maximum payoff.

A.4 Detailed simulation results for RPTS and log-PTS

This section provides the detailed simulation results of the RPTS and log-PTS mechanisms

in the community sensing simulation setup of Section 4.5.2 (Chapter 4), for the decreasing

population of sensors.

Table A.1 – Average payoffs — RPTS (100 sensors, 13 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.138 -0.107 0.584 0.095 0.037 0.175
collude 0.051 -0.025 0.252 0.031 0.007 0.06

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.507 -0.658 -0.185 -0.517 -0.579 -0.459
randomAll -0.002 -0.051 0.05 0.0 -0.016 0.01

Table A.2 – Average payoffs — RPTS (80 sensors, 11 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.126 -0.126 0.569 0.087 0.035 0.168
collude 0.044 -0.023 0.216 0.029 0.011 0.057

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.513 -0.669 -0.276 -0.529 -0.577 -0.469
randomAll 0.0 -0.065 0.066 0.0 -0.018 0.017
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Table A.3 – Average payoffs — RPTS (60 sensors, 9 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.126 -0.098 0.589 0.089 0.032 0.17
collude 0.043 -0.042 0.206 0.029 0.008 0.062

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.52 -0.664 -0.228 -0.523 -0.576 -0.469
randomAll 0.0 -0.08 0.069 -0.004 -0.018 0.018

Table A.4 – Average payoffs — RPTS (40 sensors, 7 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.098 -0.112 0.522 0.068 0.013 0.161
collude 0.035 -0.031 0.239 0.02 0.0 0.052

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.535 -0.697 -0.308 -0.536 -0.586 -0.493
randomAll 0.0 -0.018 0.117 -0.003 -0.027 0.033

Table A.5 – Average payoffs — log-PTS (100 sensors, 13 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.025 -1.281 0.302 0.042 -0.02 0.104
collude 0.01 -0.352 0.109 0.015 -0.01 0.034

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.847 -1.718 -0.452 -0.808 -0.997 -0.658
randomAll -0.329 -0.5 -0.178 -0.332 -0.38 -0.279

Table A.6 – Average payoffs — log-PTS (80 sensors, 11 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest 0.014 -1.178 0.3 0.039 -0.03 0.09
collude 0.007 -0.283 0.12 0.012 -0.01 0.027

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.874 -1.425 -0.366 -0.858 -1.038 -0.694
randomAll -0.479 -0.701 -0.232 -0.473 -0.55 -0.409
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Table A.7 – Average payoffs — log-PTS (60 sensors, 9 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest -0.021 -1.389 0.277 0.011 -0.06 0.078
collude -0.004 -0.254 0.09 0.003 -0.015 0.023

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.887 -1.524 -0.465 -0.836 -1.026 -0.715
randomAll -0.759 -1.111 -0.406 -0.745 -0.846 -0.659

Table A.8 – Average payoffs — log-PTS (40 sensors, 7 peers)

Strategy mean min max median 1st quartile 3rd quartile
honest -0.069 -1.862 0.269 -0.006 -0.1 0.046
collude -0.016 -0.345 0.123 -0.0003 -0.025 0.017

colludeLow 0 0 0 0 0 0
colludeExtraHigh 0 0 0 0 0 0

random -0.994 -1.607 -0.563 -0.992 -1.139 -0.823
randomAll -1.224 -1.767 -0.773 -1.195 -1.364 -1.077

A.5 Web interfaces for the peer grading task in Section 4.5.1

This section provides figures of the web interfaces for the second question of the peer grad-

ing assignment and for the tutorials about the constant reward mechanism and the RPTS

mechanism.

(a) The correct solution to the quiz question and
a student’s solution

(b) Input form for corrections of the student’s
solution

Figure A.3 – Peer grading task - the second question
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(a) Explanation of the constant reward mecha-
nism

(b) Explanation of the RPTS mechanism

Figure A.4 – Tutorial about the reward mechanisms
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